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Investigation of Inorganic Stratospheric Bromine using Balloon-Borne DOAS
Measurements and Model Simulations

Inorganic bromine is the second most important halogen effecting stratospheric ozone [WMO 2003].
Although the concentration of bromine in the stratosphere is about two orders of magnitude lower than
the concentration of chlorine, it currently contributes about 25% to global ozone loss due to its much
greater ozone depletion efficiency (factor of around 45) compared to chlorine.
In this study, stratospheric balloon-borne DOAS (Differential Optical Absorption Spectroscopy) mea-
surements of bromine-monoxide (BrO) were analysed and interpreted using the 3-D CTM (Chemical
Transport Model) SLIMCAT [Chipperfield and Pyle 1998] and a 1-D photochemical model. Photochemi-
cal changes were calculated along air mass trajectories which match the balloon data with SCIAMACHY
(SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) satellite observations in
order to produce a set of BrO profiles suitable for SCIAMACHY validation. Furthermore, DOAS BrO
observations were used to infer the trend of total inorganic stratospheric bromine, which peaked around
1998 at 21 ± 3 pptv and is consistently 3.5 to 5 pptv higher than the known trend in organic bromine
precursors (halons and methyl bromide) can account for. This discrepancy, the non-zero amount of
inorganic bromine observed around the tropopause and the rapid increase above the tropopause, all
indicate that short-lived organic bromine source gases have to be taken into account. These results were
confirmed by comparing the DOAS BrO data with different SLIMCAT model runs.
Moreover, previous discrepancies between DOAS OClO measurements and model comparisons
[Fitzenberger 2000] were removed and detailed model studies were used to investigate ozone loss on
specific days and the consistency of the known stratospheric photochemistry.

Untersuchung des Anorganischen Stratosphärischen Bromgehalts mittels
DOAS Ballonmessungen und Modellrechnungen

Anorganische Bromverbindungen sind die zweitwichtigsten Halogenverbindungen für den
stratosphärischen Ozonabbau [WMO 2003]. Obwohl die Bromkonzentration in der Stratosphäre
fast zwei Größenordnungen kleiner als die Chlorkonzentration ist, trägt Brom zur Zeit mit ca. 25% zum
weltweiten Ozonverlust bei, da es eine größere Effizienz im Zerstören von Ozone hat (ca. 45 mal so groß)
als Chlor.
Die vorliegende Arbeit befaßt sich mit stratosphärischen DOAS (Differentielle Optische Absorptions
Spektroskopie) Ballonmessungen von Brommonoxid (BrO). Diese wurden mit Hilfe des dreidimension-
alen Chemischen Transport Modells SLIMCAT [Chipperfield and Pyle 1998] und eines eindimensionalen
photochemischen Modells interpretiert. Um die Ballonmessungen mit SCIAMACHY (SCanning Imaging
Absorption spectroMeter for Atmospheric CHartographY) Satellitenmessungen vergleichen zu können,
wurden die photochemischen Änderungen entlang Luftmassentrajektorien berechnet, und es wurde
ein Satz an BrO Profilen erzeugt, der zur Validierung von SCIAMACHY geeignet ist. Darüberhinaus
wurden DOAS BrO Messungen dazu verwendet, den Trend des anorganischen Gesamtbromgehalts in der
Stratosphäre zu bestimmen, welches 1998 mit 21 ± 3 pptv seinen Maximalwert erreichte und durchweg
3.5 bis 5 pptv größer ist als der bekannte Trend der bromierten organischen Vorläufersubstanzen
(Halone und Methylbromid) es erwarten läßt. Diese Diskrepanz, zusammen mit dem beobachteten nicht
verschwindenden Anteil an anorganischem Brom an der Tropopause und dem raschen Anstieg darüber,
deuten an, daß kurzlebige bromierte organische Quellgase berücksichtigt werden müssen, was auch durch
Vergleiche mit verschiedenen SLIMCAT Modelläufen bestätigt wurde.
Weiterhin konnten bisher bestehende Unterschiede zwischen DOAS OClO Messungen and Modell-
vergleichen [Fitzenberger 2000] beseitigt werden. Die Konsistenz der bekannten stratosphärischen
Photochemie wurde mit detaillierte Modellrechnungen überprüft und der Ozonverlust an einzelnen
Tagen berechnet.
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Chapter 1

Introduction

The stratospheric ozone layer, centred at around 25 km altitude effects life on Earth in several ways. The
ozone molecule contains strong UV absorption bands that turn incoming solar UV radiation into heat,
causing the characteristic temperature structure of the stratosphere. Its strong infrared absorption bands
effect the radiation back from Earth into space. This alters the temperature structure of the troposphere
and thus influences the climate. Stratospheric ozone protects life on Earth by shielding it from the full
amount of solar UV radiation that can damage life forms and materials. The role of stratospheric ozone
is different to that of tropospheric ozone, which is mainly a product of pollution and effects human
health.
Although it was already known in the early 1970s that anthropogenic emissions of nitrogen and halogen
compounds influence the stratospheric ozone budget [Crutzen 1970; Molina and Rowland 1974], the
discovery of a dramatic ozone loss over Antarctica was surprising [Farman et al. 1985]. It was found,
that this phenomenon of almost 100% ozone reduction at altitudes between 12 km and 20 km, referred to
as the Antarctic ozone hole, occurs each austral spring in the southern hemisphere. Observations showed
that the analogous ozone depletion in the arctic regions has not been as severe, although substantial
late winter / spring ozone losses were observed during unusually cold stratospheric winters in the 1990s
[WMO 2003].
The anthropogenic emissions of organic halogen compounds (mainly chlorofluorcarbons (CFCs) and
halons) and the subsequent release of chlorine and bromine into the stratosphere were soon identified
as the likely cause of the spring time ozone depletion in the polar regions. The Montreal Protocol
on Substances that Deplete the Ozone Layer was agreed in 1987, leading to the phase-out of many
ozone-depleting substances. Based on increasingly strong scientific evidence, the Protocol has since been
strengthened by a number of amendments and adjustments (London, 1990; Copenhagen, 1992; Vienna
1995; Montreal, 1997; Beijing, 2000).
The mechanisms responsible for the formation of the Antarctic (and Arctic) ozone hole are now
quantitatively understood. The dynamic prerequisite is the formation of a strong winterly cyclone
over the pole - the polar vortex. Inside the polar vortex, temperatures can drop below 196 K and
polar stratospheric clouds (PSCs) can form [Toon et al. 1986; Crutzen and Arnold 1986]. Heterogenous
chemical reactions on the surface of PSCs convert stable inorganic halogen compounds, such as HCl,
ClONO2 or BrONO2 into more reactive species Cl2, HOCl, and BrCl [Solomon et al. 1986]. After polar
night, when the sunlight returns, the latter species photodissociate and destroy ozone through catalytic
cycles.
Strong dynamic disturbances make the Arctic vortex generally less stable than the Antarctic vortex and
prevent temperatures from being as low. Therefore, the potential for PSC formation and ozone depletion
is much reduced but ozone loss can be as high as 70% at around 20 km [EORCU 2000]. In addition
to the stratospheric ozone depletion over the poles, a statistically significant negative trend in ozone
can be also observed in both hemispheres at mid and high latitudes during all seasons. The increased
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2 CHAPTER 1. INTRODUCTION

bromine and chlorine loading of the stratosphere also primarily contributes to mid-latitudinal ozone loss,
as some heterogenous reactions that occur in the polar regions can take place on background aerosol in
the tropopause region [WMO 2003].
Although most of the key processes involved in ozone depletion are well understood, discernible
discrepancies can be observed when comparing the predictions of chemical model calculations with
atmospheric measurements. Neither the ozone destruction observed during the Arctic winter nor the
mid-latitudinal trend can be explained quantitatively by models [EC-Report 2001a; WMO 2003].
One of the questions concerning the future evolution of the ozone layer is the amplitude of the recovery
that may have started already, well after the peak halogen loading in the stratosphere has been reached.
As the stratosphere is also expected to cool in the future because of increased radiative cooling by
greenhouse gases, it is important to understand when chlorine and bromine levels will drop in order to
predict whether severe ozone depletion can occur in a northern hemisphere polar winter. In any case, as
it is uncertain how the dynamics of the stratosphere may change, it is important to reduce emissions as
much as possible and to monitor the temporal trend of chlorine and bromine in the stratosphere.

The differential optical absorption spectroscopy (DOAS) [Platt et al. 1979] is a well-established
technique for the sensitive detection and quantification of atmospheric trace gases. Within the scope of
this study, UV spectra recorded with a balloon-borne DOAS instrument, installed on the LPMA1 / DOAS
balloon gondola, were analysed for BrO and OClO absorption signatures. In total, thirteen flights have
been performed since 1996 at different geolocations and times. The lastest five flights were conducted
within the scope of this study and results are presented for the first time. The eight earlier flights were
re-analysed (see e.g. Harder [1999] or Fitzenberger [2000]) and new findings are presented here.
During daylight the most abundant stratospheric bromine species is BrO, which accounts for 60− 70 %
of total Bry [Lary 1996; Lary et al. 1996]. Fortunately, BrO is also the most feasible inorganic bromine
species to detect. Detection of atmospheric BrO in the past relied on (1) resonance fluorescence of
Br atoms formed by reaction with excess NO added to the probed air [Brune et al. 1989] or (2)
UV/visible spectroscopy of either (2a) scattered skylight analysed from the ground, (2b) direct sunlight
observed from balloon payloads and (2c) backscattered skylight detected from space [Fish et al. 1995;
Harder et al. 1998; Wagner and Platt 1998; Van Roozendael et al. 2002; Pundt et al. 2002].
Direct sunlight observations of BrO performed by the balloon-borne DOAS presented in this study
are used to examine inorganic stratospheric bromine and its chemistry in detail. DOAS BrO ob-
servations in combination with comparisons with the 3-D chemical transport model SLIMCAT
[Chipperfield and Pyle 1998] allow conclusions to be drawn about total inorganic bromine in the
stratosphere and about the composition of the organic bromine source gases. Observations from all
flights are used to study the trend in inorganic bromine over the covered time period and to compare it
with the known amount of organic bromine source gases. This is especially important as the Montreal
protocol and its amendments have to be monitored to see if they are having an impact and to see if the
stratospheric bromine load is levelling off, decreasing or will even increase in future.
Since satellite instruments are becoming more important and are well suited for global coverage and
trend analysis over a perennial time period, high-precision DOAS BrO profiles are used to validate BrO
limb profiles from the new SCIAMACHY2 satellite instrument. Lagrangian box model calculations on
isentropic trajectories are used to match the photochemical conditions of the satellite measurement with
the balloon observations.
The reaction of BrO with ClO produces OClO which was also detected during arctic winter flights and
which is an indicator for chlorine activation in the polar vortex. DOAS OClO observations during three
arctic winters, in combination with LPMA measurements, are therefore well suited to investigate the
consistency of the known stratospheric photochemistry and to calculate the ozone loss during that time.

Chapter 2 gives an overview of the stratospheric dynamics and the chemistry, and emphasises the
importance of the halogens. Descriptions of the measurement technique and the DOAS instrument are

1LPMA = Limb Profile Monitor of the Atmosphere
2SCIAMACHY = SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY
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given in chapters 3 and 4 respectively. Laboratory measurements of absorption cross-sections used in the
DOAS evaluation of BrO and OClO are presented in chapter 5. Recent balloon flights and BrO profiling
are both described in chapter 6. Chapter 7 shows how a set of SCIAMACHY BrO validation profiles
is inferred from balloon observations. OClO measurements of three DOAS balloon flights and studies
on the photochemistry of the stratosphere are given in chapter 8. Major findings on total inorganic
stratospheric bromine, its trend and the composition of the bromine source gases are dealt with in detail
in chapter 9, before this study ends with the conclusions - chapter 10.
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Chapter 2

Stratospheric Photochemistry and

Dynamics

Figure 2.1: Vertical structure of the Earth’s atmosphere. Adopted from Brasseur and Solomon [1986]

The atmosphere can be divided into a number of generally defined horizontal layers, distinguished
mainly by the temperature gradients. The pattern roughly consists of three relatively warm layers (near
the surface; between 50 and 60 km; and above 120 km) which are separated by two rather cold layers

5
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(between 10 and 30 km; and 80 - 100 km) (see Figure 2.1).

The troposphere, the lowest layer of the atmosphere, is the zone where weather phenomena and
atmospheric turbulence are most marked. It contains about 75 % of the total mass of the atmosphere
and virtually all the water vapour and aerosol. The temperature generally decreases with height
throughout the troposphere, at a mean lapse rate of 6.5 ◦C/km. This decrease is due to the adiabatic
expansion of rising air and the consequent cooling. Additional cooling occurs in the upper troposphere
by radiative cooling in the infra-red wavelength range mainly by water vapour, CO2, CH4 and O3

[Goody and Yung 1989]. Furthermore, the troposphere is heated mainly by turbulent heat transfer
(latent and sensible) from the surface and not by absorption of radiation. It is topped in most places
by a temperature inversion level and in others by a zone that is isothermal with height. This so called
tropopause acts as a ‘roof’ that effectively limits convection and keeps the troposphere self-contained
to a large extent. There is a distinct variation in the altitude of the tropopause, from 18 km in the
tropics, where there is great heating and convective turbulence, to only 8 km at the poles. This variation
is correlated to different sea level temperatures and pressures and therefore depends on the latitude,
season and daily changes of surface pressure.

The stratosphere is the second major atmospheric layer and extends from the tropopause to about
50 km, including about 20 % of the atmospheric mass. Although the stratosphere contains most of the
atmospheric ozone, with the maximum concentration at around 22 km, the maximum temperatures
associated with the absorption of the sun’s UV radiation by ozone occur at the stratopause. The air
density at the stratopause is much lower, so even limited absorption produces a large temperature
increase, causing temperatures that may exceed 0 ◦C. Generally temperatures increase with height in
summer, with the lowest temperature at the equatorial tropopause. During the winter, the structure
is more complex with very cold air (around -80 ◦C) at the equatorial tropopause, which is highest at
this time. Similar low temperatures occur in the lower stratosphere at the poles, whereas over 50 - 60 ◦N
there is a warm region with nearly isothermal conditions at about -45 to -50 ◦C. Seasonal changes of
temperature affect the stratosphere (see also section 2.1). The cold polar winter stratosphere often
undergoes dramatic sudden warmings (see section 2.1.6 ) associated with subsidence due to circulation
changes in late winter or early spring. During this time, temperatures at about 25 km may change from
-80 to -40 ◦C over a 2-day period, whereas the cooling in autumn is a more gradual process. In the lower
and middle tropical stratosphere, there is a quasi-biennial (26 month) wind regime, with easterlies and
westerlies in the layer from 18 to 30 km alternating every 12 to 13 months [Labitzke and van Loon 1988].
The reversal starts at high levels and takes approximately 12 months to descend from 30 to 18 km.
The temperature field in the stratosphere is caused by a balance between radiative and dynamic heating
or cooling. The major source of radiative heating is the absorption of ultraviolet radiation mainly by
ozone and molecular oxygen. Radiative cooling occurs through infrared emissions of CO2, H2O and
O3. Dynamic heating is caused by vertical (diabatic) motion, which occurs partly in response to the
annual varying solar insolation. A substantial part of the vertical motion occurs due to forces arising
from the breaking and dissipation of so-called Rossby waves, planetary waves with a typical wavelength
of the Earth’s diameter [Andrews et al. 1987]. The dominant features of the global stratospheric wind
system are the strong mean zonal winds. They can generally be understood as thermal winds. The
tropical lower stratosphere and the equatorial tropopause region are cold in comparison to the summer
polar stratosphere, which is subject to strong radiative heating. As a consequence of the temperature
difference, a geostrophic easterly wind forms. The opposite is true for the winter hemisphere. Due to the
low solar radiation, the winter polar stratosphere cools down and a westerly flow regime develops (see
section 2.1).
The overall feature of the annual mean stratospheric meridional circulation is well described by the
Brewer-Dobson circulation. Based on global water vapour and ozone observations they suggested a
circulation exhibiting rising motion only in the tropics, and descending motion at extra-tropical latitudes
[Brewer 1949; Dobson 1956]. This classical picture of the Brewer-Dobson circulation has been refined
considerably in recent years [WMO 2003]. Stratospheric transport and mixing reveals a number of
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Figure 2.2: Schematic diagram showing the structure of, and transport within, the stratosphere. Adopted from

WMO [2003]

distinct regions, depicted in Figure 2.2. In the winter hemisphere, one has to distinguish between the
‘surf zone’ of mid-latitudes, which is largely influenced by breaking of Rossby waves, and the polar
vortex, which is relatively undisturbed. The wave breaking process is associated with erosion of the
vortex through extraction of air from the vortex edge. This air is typically stretched out into filaments.
The surf zone also has a subtropical edge, isolating the tropics from the surf zone. Erosion processes
similar to those seen at the vortex edge are evident. The summer hemisphere is generally characterised as
a region of very weak meridional transport. Diabatic heating rates calculated from the UKMO (United
Kingdom Meteorological Office) analysis show atmospheric cooling (sinking air) poleward of 50◦ N below
20 km and atmospheric heating (rising air) poleward of 60◦ N between 25 km and 30 km altitude
in July. The altitude and latitude of the boundaries between heating and cooling differs for different
analyses [Cordero and Kawa 2001]. The rising motion of air masses in summer at high latitudes leads to
a summer to winter pole flow in the upper stratosphere and mesosphere.
In contrast to the region above, the region referred to as ‘lowermost stratosphere’ is bounded on the
side facing the equator by the tropopause rather than by the tropical stratosphere and it seems that
the distinction between surf zone and vortex does not exist. The isentropic surfaces of the lowermost
stratosphere intersect the mid-latitude tropopause and as a result rapid isentropic exchange is possible,
which is though hindered by conservation of potenial vorticity (section 2.1.2). It should be emphasized
that a combination of radiative, chemical and dynamical processes maintains the global distribution of
ozone and other species. Their distribution is a result of a balance between these processes. The nature
of the balance may differ, depending on location and season. In addition to examining the chemistry,
transport effects also need to be considered [Rosenlof 1999; Cordero and Kawa 2001]. Variations of
species such as CH4 or N2O, which are relatively long-lived in the (lower) stratosphere, can be used to
examine transport processes.

The mesosphere, between about 50 and 90 km (or 1 hPa to 0.01 hPa), has temperatures as low as
-130 ◦C at around 80 to 90 km in summer. Above this height, temperatures begin to rise again with
molecular oxygen and ozone absorption contributing to the heating process. This inversion is referred
to as the mesopause. In this region noctilucent clouds are observed at high latitudes in summer
[Lübken et al. 1996]. Their formation is thought to be related to the production of water vapour through
the oxidation of atmospheric methane.
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The thermosphere stretches from around 100 to 500 km. Its lower section, up to 200 km, com-
prises mainly nitrogen (N2) and oxygen in molecular (O2) and atomic (O) form. Above 200 km atomic
oxygen predominates over nitrogen (N2, N). Owing to the absorption of extreme ultralviolet radiation
by molecular and atomic oxygen, temperatures rise with height, reaching more than 1000 K at 350 km.
Above 100 km the atmosphere is increasingly affected by cosmic radiation, solar X-rays and ultraviolet ra-
diation, which cause ionization. Therefore the term ionosphere is commonly applied to layers above 80 km.

The exosphere has its base between 500 and 750 km. Here the atmosphere consists of atomic
oxygen, hydrogen and helium, of which about 1 % is ionised. Hydrogen and helium atoms can escape
into space, as the chance of molecular collisions deflecting the atoms downwards lessens with increasing
height. Hydrogen is produced by the breakdown of water vapour near the mesopause, while helium is
produced by the action of cosmic radiation on nitrogen and from the breakdown of radioactive elements.

2.1 Dynamics of the Polar Stratosphere

The temperature distribution in the polar winter stratosphere has crucial influence on the formation of
polar stratoshperic clouds (PSCs) and thus on ozone depletion. It is determined by the general airflow
on the horizontal scale of 103 to 104 km.
During the polar night, the lack of solar radiation causes the air to cool, resulting in a large scale descent
of air masses forming the so called polar vortex. As a result of the descent, the adiabatic compression
of air counteracts a further cooling and descent of the air masses. Although the descent should result in
an adiabatic heating, there is a marked cool region inside the polar vortex. This is due to the fact that
no solar radiation is absorbed during polar night and radiative cooling occurs through infrared emissions
of CO2, H2O and O3. Overall the radiative cooling outbalances the adiabatic heating. Therefore, during
winter the stratosphere at the pole is much colder than at low- or mid-latitudes, resulting in a meridional
pressure gradient �∇p. In a first approximation, friction can be neglected in the stratosphere and the
assumption can be made that the air motion is solely determined by the pressure gradient force �Fp and
the Coriolis force �Fc. The resulting air flow is a geostrophic wind. If the velocity is non-zero the flow will
be diverted by the Coriolis force, giving the velocity a component perpendicular to the pressure gradient.
The flow is further accelerated until an equilibrium of the pressure gradient and the Coriolis force is
reached (see Figure 2.3). The resulting geostophic wind flows parallel to the isobars and can be described
by:

�vg × �Ω =
1

2 · ρ
�∇p (2.1)

with the density ρ, the pressure gradient �∇p and the angular velocity of the Earth �Ω. Thus, during winter
a polar jet stream at around 60◦ latitude builds up which characterises the edge of the polar vortex.
The polar vortex is cyclonal and anticyclonal at the northern and southern hemisphere, respectively.
Due to the strong zonal flow, the air masses of the polar vortex are largely isolated from air masses at
mid-latitudes.

2.1.1 Potential Temperature

For the polar stratosphere winter we can assume that transport processes on the time scale of a couple
of days are adiabatic. Thus the flow of air can be described by means of isentropic surfaces which are
defined in this section.
Since the atmosphere is a compressible gas, neither the temperature nor the density are an adequate
measure for the layering. We therefore use the potential temperature Θ which is the temperature an air
parcel would have if it was moved adiabaticly i.e. without change in entropy, to a reference pressure level,
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Figure 2.3: a-c: Formation of the geostrophic wind. H and T denote high and low pressure areas, respectively.

a:Intermediate state when there is not yet an equilibrium of the pressure gradient force �Fp and the Coriolis

force �Fc. The resulting force �Fres further accelerates the flow, with a component in the direction of the velocity

(resulting in an increase of its absolute value) and a component perpendicular to it (changing the direction

of the velocity and �Fc towards the equilibrium state). b: Equilibrium case. c: The resulting geostrophic wind

parallel to the isobars is indicated. (Adapted from [Roedel 1992].)

which is simply defined as the normal pressure p0 = 1013 hPa. The potential temperature is therefore
defined by:

Θ = T ·
(

p0

p

) κ−1
κ

(2.2)

where T is the temperature, p the pressure as a function of height, p0 the normal pressure and κ = cp/cv

(i.e. κ−1
κ = 0.286) is the ratio of specific heat at constant pressure and constant volume, respectively. If

the atmospheric layering is stable, the potential temperature increases monotonically and can be used as
a substitute for the geometrical altitude as a vertical component. The corresponding surfaces of constant
potential temperature (or entropy) are called isentropic planes. Θ is therefore a conservative property in
any adiabatic air parcel displacement and is often used to evaluate air parcel trajectories.

2.1.2 Potential Vorticity

The polar vortex or the edge of the vortex can be defined by means of the potential vorticity (PV). A
measure for the vorticity of a horizontal air flow �v is the vertical component (here the z-component) of
the vector rot�v.

ξ = rotz�v =
∂vy

∂x
− ∂vx

∂y
= �∇h × �v (2.3)

ξ points in negative z-direction for anticyclones and in z-positive direction for cyclones. The vorticity
is non-zero for curved flows or for linear flows with horizontal wind shears, or a combination of both.
In reference to the inertial system Earth the described vorticity is simply the relative vorticity. In order
to obtain the absolute vorticity η the fraction of the Earth’s rotation, given by the Coriolis parameter
f = 2�Ωsin ϕ has to be added:

η = ξ + f = �∇h × �v + 2�Ωsin ϕ (2.4)
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As the vorticity is a conserved parameter, a continuity equation can be defined in the absence of external
forces:

dη

dt
+ η · �∇h · �v = 0 (2.5)

with
dη

dt
=

∂η

∂t
+

∂η

∂x
vx +

∂η

∂y
vy (2.6)

The potential vorticity combines the conservation of vorticity and the conservation of mass. On the
condition that there is no friction and the process is adiabatic, the potential vorticity in the atmosphere
is a mass conserving parameter. Its definition according to Ertel is

Q = η · ∇Θ
ρ

(2.7)

where η is the absolute vorticity, ρ the density and Θ the potential temperature. The unit of Ertel’s
potential vorticity is

1PVU (Potential Vorticity Unit) = 10−6Km2kg−1s−1.

The potential vorticity is thus well suited to describe the polar vortex, since its potential vorticity is
higher than that of the surrounding mid-latitudal air.

2.1.3 The Vortex Edge

Simultaneous to the descent of the air masses inside the polar vortex, slow vertical transport of strato-
spheric trace gases occurs. The vertical displacement of trace gases outside the vortex is impeded by
planetary waves, which cause meridional mixing of the air masses. Considering the absolute altitude,
it seems that air masses inside the vortex compared to outside, are shifted downwards by 2 to 3 km
[Schoeberl et al. 1992]. The polar vortex can therefore be defined by the gradient of long-lived trace gases
such as nitrous oxide (N2O), ozone (O3), water vapour (H2O) or methane (CH4). Therefore the vortex
edge is not clearly confined but rather stretched over a zone in the order of 101 to 102 km.
Besides its chemical characteristics the vortex edge can also be localised by dynamic components [e.g.
Nash et al. 1996 or Tao and Tuck 1994]. Different methods use either the potential vorticity or the zonal
wind. Due to the vortex, polar air masses have a significantly higher PV than air masses of mid and
low-latitudes. Since maximum values of the PV gradient occur at the vortex edge, it can be defined
accordingly. An example of the northern hemispheric polar vortex at the 675 K potential temperature
level is shown in figure 2.4. Data are for March 24, 2004 the day of an LPMA/DOAS balloon flight
carried out at Kiruna in northern Sweden. The potential vorticity is colour coded in units of PVU and
the edge of the vortex can clearly be recognised. The vortex during that winter was not very distinct and
different filaments can be seen. The map was generated with the GMT (Generic Mapping Tool) available
at http://gmt.soest.hawaii.edu using ECMWF (European Centre for Medium-Range Weather Forcasts)
data.

2.1.4 The Northern and Southern Polar Vortex

In the southern hemisphere the polar vortex evolves basically unperturbed according to the mechanisms
described at the beginning of section 2.1. Shape and flow pattern of the Antarctic polar vortex are mostly
stable and are not perturbed by wave activity in the stratosphere. The whole vortex is zonally symmetric
around the pole. Due to the unperturbed conditions, air inside the vortex can cool down significantly.
Therefore, every winter the temperature falls below the critical temperature for the formation of PSC-
particles (see also section 2.2.4).



2.1. DYNAMICS OF THE POLAR STRATOSPHERE 11

Figure 2.4: Example of the northern hemispheric polar vortex. The 675 K potential temperature level is plotted

for March 24, 2004 at 00 UT. The potential vorticity is colour coded in units of PVU (10−6Km2kg−1s−1).

Such a distinct vortex is the exception rather than the rule in the northern hemisphere. Although a low
pressure system also builds up in the Arctic, it is not centered above the pole. In the lower parts of
the stratosphere (around 100 hPa), the cold vortex is surrounded by a belt of warm areas, caused by
the winter jet streams in the upper troposphere. The strongest jet streams are found in the Western
Pacific, where the highest temperatures occur. These high temperatures are responsible for the Alëuten
anticyclone in the northern hemispheric stratosphere. This quasi-stationary anticyclone, named after the
Alëuten Islands in the Northern Pacific, has a strong influence on dynamics of the northern stratosphere
since it causes a displacement of the polar vortex towards Europe. As a result, the vortex is not centered
over the pole and the temperature distribution is influenced as the cold area of the polar vortex is shifted
to Northern Europe. On average, the low temperature and the vortex centre are located over Spitzbergen.
The asymmetry of the Arctic polar vortex is crucial for the dynamics of the northern hemisphere.

2.1.5 Planetary Waves

Whereas the Antarctic continent is centred around the pole and surrounded solely by water, the topog-
raphy of the northern hemisphere is more complex. The northern polar region is not only surrounded by
the Pacific and Atlantic Ocean, but also by the land masses of the American and Eurasian continents. As
a result of the different heat capacity of land and water and the continental disribution in the northern
hemisphere, temperature and pressure gradients build up and induce planetary waves in the atmosphere
(see e.g. Shindell et al. [1997]). These planetary waves propagate into the stratosphere where they dis-
turb and destabilise the polar vortex. Among other effects they cause warm air to be transported from
mid-latitudes to the polar region, which counteracts the radiative cooling of the polar vortex. Due to the
orthographic conditions, the activity of planetary waves is significantly larger in the northern than in the
southern hemisphere. As an overall result, temperatures in the Arctic polar vortex are on average higher
than in the Antarctic polar vortex. The low temperatures necessary for the formation of PSCs are often
only reached for a short time and are very regional [Pawson et al. 1995]. There is also a high variability
between winters, mainly caused by sudden stratospheric warmings.
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2.1.6 Stratospheric Warmings

Sudden stratospheric warmings occur during almost every northern hemispheric winter and hardly at
all during southern hemispheric winters. The stratospheric warmings are caused by perturbances in the
circulation due to planetary waves. One factor that stimulates these waves is the large moutain ranges
in the northern hemisphere. Planetary waves propagate through the troposphere into the stratosphere,
where they have larger amplitudes due to the decreasing air density. Local instabilities cause the wave
energy to dissipate, resulting in a warming of the stratosphere [MyIntyre and Palmer 1983]. Different
stratospheric warmings can be identified, depending on the size of the temperature increase and the
stability of the polar vortex.

Minor Warmings

Minor warmings are characterised by a sudden temperature increase of at least 25 K within a week, in
any stratospheric layer and any region of the winter hemisphere. They can be very intense and invert the
temperature gradient, but do not result in a turnover of the circulation at 10 hPa or below. Such minor
warmings occur in different strengths during almost every winter in the northern hemisphere. They are
also observed in the southern hemisphere, but only rarely.

Canadian Warmings

In the northern hemishpere there is an additional form of stratospheric warming called canadian warmings.
They often occur during early winter and originate from an amplification of the Alëuten anticyclone, which
is thereby shifted towards the pole. Canadian warmings can temporarily invert the temperature gradient
and the wind direction without causing a breakup of the polar vortex.

Major Midwinter Warmings

Besides heating the polar region and inverting the temperature gradient between 60◦ and 90◦ latitude at
10 hPa or below, major midwinter warmings are characterised by the breakup of the polar vortex. The
breakup is defined by the turnover of circulation from westerlies to easterlies at the 10 hPa level between
60◦ and 90◦ latitude. As a result, the centre of the polar vortex then lies south of 65◦ to 60◦ latitude and
the vortex itself is shifted and can split into one or more parts. After the major warming the polar vortex
rebuilds. In the Arctic, major midwinter warmings usually occur at most once per winter in January to
February. In the Antarctic such warmings do not occur due to the colder and more stable polar vortex.

Final Warmings

During spring the turnover from winter westerlies to summer easterlies appears in connection with the
final warmings. The characteristics are the same as for the major midwinter warmings, with the difference
that the polar vortex does not rebuild after its breakup. Early and late final warmings can be identified,
depending on the time of their occurence. The change from winter to summer circulation, that is, the time
of the final warming, occurs on average 2 months later in the southern hemisphere. While the northern
hemispheric polar vortex often breaks up as early as March, the Antarctic vortex mostly remains stable
and cold till the end of October [Labitzke 1999], allowing for a longer period of ozone depletion.

2.2 Stratospheric Chemistry

One of the most important stratospheric species is ozone. Although ozone is present in the atmosphere
in all layers, the bulk of ozone resides in the lower stratosphere with the concentration maximum at
∼ 22 km, referred to as the stratospheric ozone layer. In addition to its role in stratospheric heating,
the UV absorption of ozone is essential for the protection of living organisms on Earth from the short
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wavelength solar radiation. All solar radiation between 200 - 300 nm is intercepted in the mid and lower
stratosphere due to the presence of ozone. Furthermore, ozone is a so-called greenhouse gas. It is infrared
active and contributes to the radiative transfer in the long wavelength regime of the terrestrial radiation.
Ozone is primarily produced at mid-latitudes and in the tropics by photodissociation of molecular oxygen
by hard ultraviolet radiation (< 242 nm) and is transported toward the poles by the Brewer-Dobson
circulation resulting in an annual cycle in ozone. Because of the stronger Brewer-Dobson circulation in
the Northern Hemisphere (NH), the Arctic is both warmer and has larger column ozone amounts than
the Antarctic. In the NH, the amount of column ozone is greatest in late winter/early spring. During the
pre ozone-hole era there was less annual variation of O3 at the poles. In recent years, the annual cycle
has been modified by polar ozone depletion, most obviously in the Southern Hemisphere (SH).
This section first focuses on the chemical processes which are responsible for the current distribution of
stratospheric trace gases, in particular ozone, nitrogen and halogen compounds. It then carries on to the
processes leading to the so-called stratospheric ozone hole.

2.2.1 Ozone Chemistry

A chemical scheme for the formation and destruction of ozone in the stratosphere involving only oxygen
species was first proposed by Chapman [1930]. The photodissociation of molecular oxygen by ultraviolet
radiation produces atomic oxygen, which can react with molecular oxygen via a three-body reaction to
form ozone:

O2
hν−→ O + O (λ ≤ 242 nm) (2.8)

O + O2
M−→ O3 (2.9)

The photodissociation of ozone followed by reactions of atomic oxygen with either another oxygen atom
or with ozone, represent the processes with ozone loss.

O3
hν−→ O(1D) + O2 (λ ≤ 308 nm) (2.10)

O(1D) M−→ O(3P) (2.11)

O3
hν−→ O(3P) + O2 (λ ≤ 1180 nm) (2.12)

O + O M−→ O2 (2.13)
O(3P) + O3 −→ 2 O2 (2.14)

Due to the strong attenuation of the short wavelength radiation, the photolysis of O2 (reaction 2.8) and
thus the production of ozone occurs mainly in the upper stratosphere. The photolysis of ozone (reactions
2.10 and 2.12) below 50 km represents only a gross loss process over timescales of days, since almost
all atomic oxygen forms ozone again within a few seconds or less (reaction 2.9). An important aspect of
atmospheric chemistry is the family concept. If we define the OX family as the sum of the odd-oxygen
such as ozone, O(3P), and O(1D)1 then a number of reactions only convert one species of the OX family
into another without changing the total OX concentration. An important consequence is the difference
in lifetime. While the lifetime of the individual species is short (e.g. ∼ 10−8 s for O(1D) at 30 km) the
lifetime of the OX family as a whole is several weeks.
According to the photochemical model of ozone production, the rate of O2 photodissociation and hence
the O3 production is at a maximum with overhead sun. As a consequence the greatest ozone production is
found in the equatorial region, but even at 60◦ latitude the production rate is still effective. As a result of
transport and mixing processes, the average global distribution of ozone deviates substantially from the
pure photochemical predictions. Hence, the global distribution strongly depends on latitude and season
with the highest concentrations found at high latitudes during spring.
The stratospheric ozone profile can be explained qualitatively by the Chapman theory, based on pure

1Accordingly, HOX, ClOX, BrOX, and NOX families can be defined
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oxygen chemistry. Even the existence of the concentration maximum in the lower stratosphere is pre-
dicted correctly, but a quantitative comparison with the measured ozone profile shows that the con-
centrations are largely overestimated. It soon became clear that stratospheric ozone was chemically
not only destroyed by reactions with atomic oxygen but also by catalytic reactions, involving OH
(HOX-cycle [Bates and Nicolet 1950]), NO (NOX-cycle [Crutzen 1970; Johnston 1971]), Cl (ClOX-cycle
[Molina and Rowland 1974]) and Br (BrOX-cycle [Wofsy et al. 1975]):

X + O3 −→ XO + O2 (2.15)
XO + O −→ X + O2 (2.16)

net: O3 + O −→ 2 O2 (2.17)

where X represents one of the radicals OH, NO, Cl, or Br. The radical X is regenerated by reaction 2.16
and is once more available for another ozone destruction cycle until removed by a sink process. Thus,
a small concentration of the catalyst X already has a large impact on ozone concentration. Even in the
absence of atomic oxygen, the OH radical can destroy ozone by:

OH + O3 −→ HO2 + O2 (2.18)
HO2 + O3 −→ OH + 2 O2 (2.19)

net: 2 O3 −→ 3 O2 (2.20)

This cycle is particularly important at lower altitudes where less atomic oxygen is available.
Another type of catalytic cycle involving species of different families is:

X + O3 −→ XO + O2 (2.21)
Y + O3 −→ YO + O2 (2.22)

XO + YO −→ X + Y + O2 (2.23)
net: 2 O3 −→ 3 O2 (2.24)

where X=OH and Y=Cl, X=OH and Y=Br or X=Br and Y=Cl. Since no atomic oxygen is involved, this
cycle is important in the lower stratosphere, where catalytic ozone destruction cycles involving species of
only one family are suppressed.
The relative contributions of the various cycles to ozone depletion are shown in Figure 2.5. Values are

calculated for mid-latitudinal conditions (60 ◦N) in October. The relative contributions vary strongly
with altitude. While the ozone loss in the lower stratosphere is dominated by the HOX cycle with a
small contribution by the ClOX+BrOX cycle, the O3 loss between 25 and 40 km is almost solely caused
by the NOX cycle. Recent findings e.g. by [Salawitch et al. 2005] indicate a more important role of the
ClOX+BrOX cycle at low altitudes, also discussed in chapter 9. Above 40 km, the catalytic cycles involving
halogens play the dominant role. The relative contributions for other latitudes or seasons will differ from
the calculations shown in the figure and hold only true outside the polar vortex (see section 2.1). As
discussed in section 2.2.3, the dramatic ozone loss during polar spring is caused by cycles involving
chlorine and bromine.

It became clear that anthropogenic emissions of long-lived trace gases such as N2O, CH4, chloroflu-
orcarbons (CFCs) or halons have a crucial impact on the stratospheric ozone concentration, since these
gases can react to species which serve as catalysts in the ozone destruction cycles [e.g. Crutzen 1970;
Molina and Rowland 1974]. Therefore the total global ozone column has decreased in recent years. Be-
tween 1997 and 2001, the global average was ∼ 3 % below pre-1980 values [WMO 2003]. The lowest
annual average total column since the beginning of systematic global observations in the mid-1960s oc-
curred in 1992 - 1993 with values 5 % below the pre-1980 average. However, the ozone trends differ for
different seasons and latitudes. In the tropics (25◦N − 25◦S), no significant trend could be observed in
the 1980 - 2000 period, but only a decadal variation of ∼ 3 % peak-to-peak approximately in phase with
the 11-year solar cycle. Total column ozone loss becomes statistically significant in the 25◦− 35◦ latitude
bands of each hemisphere. In mid-latitudes 35◦− 60◦, the total column in the 1997 - 2001 period is below
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the pre-1980 average. Furthermore there are also discussions as to whether mid-latitudinal ozone loss can
be partly explained by polar effects (transport of polar air to mid-latitudes) or circulation changes such
as changes in the tropopause height. However, there are still difficulties in quantitatively understanding
the mid-latitude ozone loss [WMO 2003].
Due to the predicted decrease in stratospheric chlorine loading over the next 50 years, the total global
ozone column is expected to increase. For the present, the ozone values are expected to level out, but,
because of the year-to-year variability, it could take as long as a decade to obtain unambiguous measure-
ments. For a quantitative prediction of the O3 recovery, several effects are relevant besides the halogen
abundances. For example, stratospheric cooling, mainly due to further CO2 increases, is predicted to
amplifiy future ozone increases in the upper stratosphere. According to model calculations, a recovery to
pre-ozone-hole values (before 1980) is predicted to be significant by 2050.

2.2.2 Stratospheric Nitrogen Chemistry

Nitrogen species play an important part in stratospheric chemistry with respect to ozone. They are
responsible for ozone depletion (NOX cycle) and can transform ozone-destructive halogen species into
passive reservoir species. The dominant net source of stratospheric NOX (=NO+NO2) is the reaction of
O(1D) atoms with nitrous oxide (N2O):

O(1D) + N2O −→ 2 NO (58%) (2.25)
−→ N2 + O2 (2.26)

The natural sources of N2O (oceans and tropical forests) are twice as large as the anthropogenic ones. As
a consequence of biomass burning and the use of artificial fertilizers, the N2O level has increased from pre-
industrial levels of ∼ 260−285 ppb to 315−317 ppb in January 2001 [Prinn et al. 2000; Hall et al. 2002].
At present, its rate of increase is ∼ 0.75 ppb per year, with some interannual variability [WMO 2003].
N2O is an inert gas with a lifetime of 120 (97 − 137) years, for which no destruction processes in the
lower stratosphere are known. The only concurring loss process to reaction 2.25 is the photolysis of N2O,
which accounts for ∼ 90 % of its removal.

N2O
hν−→ N2 + O(1D) (λ ≤ 398 nm) (2.27)

Figure 2.5: The O3 loss rates due to catalytic cycles involving NOX, HOX, ClOX+BrOX, and OX reactive

families as a percentage of total O3 loss rates for 60 ◦N in October computed for the 1990s using JPL-97

[DeMore et al. 1997] values. Adapted from Portmann et al. [1999].
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cate heterogenous pathways. The red marked species can be measured with the instruments onboard the

LPMA/DOAS balloon gondola. Adopted from Bösch [2002]

Another significant but highly variable source of NOY
2 in the mesosphere and lower thermosphere is due

to solar proton events, galactic cosmic rays and energetic electron precipitation, which produce atomic
nitrogen through dissociations, predissociations or dissociative ionizations in collisions with N2. NOX,
formed in the mesosphere and thermosphere, partly descends into the stratosphere during winter and
early spring, when there is downward atmospheric transport at mid to high-latitudes. During daytime,
NO and NO2 are in a photochemical steady-state mostly via the reactions

NO + O3 −→ NO2 + O2 (2.28)
NO2 + O −→ NO + O2 (2.29)

and the photodissociation of NO2

NO2
hν−→ NO + O (λ ≤ 405 nm) (2.30)

The conversion of NO to NO2 can also take place with oxidants other than O3.

NO + HO2 −→ NO2 + OH (2.31)
NO + RO2 −→ NO2 + RO (2.32)
NO + ClO −→ NO2 + Cl (2.33)

In the stratosphere, the only relevant organic peroxy radical RO is CH3O2, which is formed by the
oxidation of CH4. The Leighton ratio ( NO

NO2
) is close to one in most of the stratosphere during daytime,

2NOY is the sum of the reactive nitrogen species, i.e. NOY = NO+NO2+NO3+2 N2O5+HNO3+ClONO2+HO2NO2+

BrONO2
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but increases rapidly above 40 km because of the increasing atomic oxygen densities. At dusk, NO is
rapidly converted to NO2, which reacts with ozone to build up NO3, an important nighttime nitrogen
species.

NO2 + O3 −→ NO3 + O2 (2.34)

During daytime, NO3 is rapidly destroyed by photolysis:

NO3
hν−→ NO2 + O (2.35)
hν−→ NO + O2 (2.36)

NO3 can react with NO2 to form the reservoir species N2O5, a species that does not destroy odd-oxygen.

NO3 + NO2 −→ N2O5 (2.37)

N2O5 is destroyed through collisional decomposition

N2O5
M−→ NO3 + NO2 (2.38)

or through photolysis during the day.

N2O5
hν−→ NO3 + NO2 (λ ≤ 1252 nm) (2.39)

The fast photolysis of NO2 together with the slow photolysis of N2O5 is responsible for the typical
diurnal variation of NO2. As the photolysis begins at sunrise, a strong decrease of the NO2 concentration
is observed. During the day, the NO2 concentration slowly increases due to N2O5 photolysis. At dusk
the decreasing NO2 photolysis causes a fast increase in concentration. The distribution of odd nitrogen
shows rising concentration with increasing latitude in summer, while in winter the abundance decreases
polewards of 40◦N − 50◦N [Noxon 1979; Coffey et al. 1981]. The tendency for NOX to increase at high
latitudes in summer can be understood in terms of atmospheric transport in a similar manner as for
ozone. The observed decrease in the winter season at high latitude is the result of the combined effects of
dynamics and chemistry. As a consequence of the reduced solar radiation during the polar winter, most
of the nitrogen has formed reservoir species and the NOX concentrations are smallest (denoxification). In
addition, the formation of the polar vortex (see section 2.1) prevents the poleward transport of NOX-rich
mid-latitudinal air. NO2 plays an ambiguous role in stratospheric ozone chemistry. On the one hand, it
participates in ozone destruction (NOX - cycle), on the other hand, it is involved in a number of reactions
forming reservoir species.

NO2 + OH M−→ HNO3 (2.40)

NO2 + ClO M−→ ClONO2 (2.41)

NO2 + BrO M−→ BrONO2 (2.42)

The catalysts can be released by photolysis

HNO3
hν−→ OH + NO2 (2.43)

ClONO2
hν−→ Cl + NO3 (λ ≤ 735 nm) (2.44)
hν−→ ClO + NO2 (λ ≤ 1065 nm) (2.45)

BrONO2
hν−→ Br + NO3 (λ ≤ 861 nm) (2.46)
hν−→ BrO + NO2 (λ ≤ 1129 nm) (2.47)

or by reactions with OH

HNO3 + OH −→ NO3 + H2O (2.48)
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Since the formation and decline of HNO3 are slow processes, HNO3 has only a small impact on the diurnal
variation of NOX. As a result of its long lifetime, HNO3 builds up large concentrations, which generally
exceed concentrations of total NOX below 25 km. Another important production channel of HNO3 is
the heterogeneous hydrolysis of N2O5 occurring on the surfaces of stratospheric aerosols such as aqueous
sulfate aerosol or ice (see section 2.2.5).

N2O5(g) + H2O(s) −→ 2 HNO3(s) (2.49)

During polar winter, HNO3 is the dominant NOY species. This can be explained by heterogeneous pro-
cesses (reaction 2.49), which continuously convert N2O5 into HNO3 and by the inefficiency of reactions
2.43 and 2.48 [e.g., Wetzel et al. 1995; Toumi et al. 1993].
Total reactive nitrogen, NOY, has a long photochemical lifetime in the middle and lower stratosphere. In
the upper stratosphere NOY is removed via the following reaction

NO + N −→ N2 + O (2.50)

where N is produced by the photolysis of NO. Since N2O is the major source of stratospheric NOY, the
distributions of NOY and N2O in the stratosphere are photochemically linked. Below 30 km, the mixing
ratio of NOY has been found to be almost linearly anti-correlated with N2O [Loewenstein et al. 1993;
Kondo et al. 1994; Kondo et al. 1996; Keim et al. 1997]. The gradient of this lower stratospheric correla-
tion is controlled by a combination of photochemistry and dynamics. At higher altitudes (30−70 km) the
shape of the correlation curve is overwhelmingly influenced by the rapid loss of NOY via reaction 2.50.
At these altitudes the correlation becomes nonlinear as it approaches a maximum. Above ∼ 70km, NOY

increases rapidly with altitude and is predominately composed of NO [Michelson et al. 1998].

2.2.3 Halogen Chemistry and Source Gases
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Figure 2.7: Chemical and dynamical processes affecting very short lived (VSL) substances in the troposphere

and stratosphere. Adapted from WMO[2003]

Halogen species play an important role in stratospheric ozone destruction and are mainly responsible
for the formation of the polar ozone hole. Due to their strong bonding, fluorine species (HF) are very
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stable and do not play a role in ozone depletion. The source gases get less stable from chlorine through
bromine to iodine and, thus, their Ozone Depletion Potential (ODP)3 increases. Due to its high strato-
spheric abundance (∼ 3.6 ppbv around 20 km), chlorine contributes about 60 % to ozone destruction
under ozone hole conditions. Bromine plays an important role since its much lower abundance (∼ 0.6 %
of chlorine) is compensated by an ODP that is ∼ 50 times higher. The contribution of iodine species
is still not fully clear as exact measurements of its stratospheric load do not exist. Although iodine
participates in ozone destruction, the iodine-containing gases are largley removed in the troposphere
before they can reach the stratosphere. Upper limits of IO and OIO and the implications for total
gaseous iodine and stratospheric ozone have been inferred by Bösch et al. [2003].
Figure 2.7 demonstrates the dynamic and chemical processes, that affect very short-lived source gases
(VSLS) in the troposphere and the stratosphere. Source gases with a longer lifetime basically undergo
the same processes, but have a higher chance of reaching the stratosphere. Once emitted at the Earth’s
surface by human activities and through natural processes, halogen source gases accumulate in the
atmosphere and are distributed throughout the lower atmosphere by winds and other air motions.
They are either removed from the atmosphere or undergo chemical conversion. Gases with the shortest
lifetimes (e.g. HCFCs or CHBr3) are destroyed to a great extent in the troposphere, therefore only a
fraction of these gases reaches the stratosphere. Halogen source gases with longer lifetimes accumulate in
the troposphere and are transported to the stratosphere, where they are converted to reactive halogen
gases (e.g. Br, BrO, Cl, ClO) by UV sunlight and other chemical reactions. Reactive halogen gases cause
chemical depletion of stratospheric ozone throughout the globe. At polar regions, polar stratospheric
clouds increase ozone depletion by reactive halogen gases during winter and spring (section 2.2.4).
Eventually, air that contains reactive halogen gases returns to the troposphere, where the gases are
removed by precipitation. The following sections give brief descriptions of the relavant chlorine and
bromine chemistry and their source gases. A description of the iodine chemistry can be found in e.g.
Bösch [2002].

Halogen Source Gases

Stratospheric ClOX
4 and BrOX

5 has a variety of sources, all of which are associated with the release of Cl
and Br atoms from haloginated organics by direct photolysis or reactions with OH and O(1D). Figure 2.8
summarizes the primary source gases of chlorine and bromine for the stratosphere in 1999. Methyl chlo-
ride (CH3Cl) is the only important natural chlorine source species. The most prominent artificial sources
are the chlorofluorcarbons (CFCs). CFCs are chemically inert gases which are photostable and have a
low solubility in water. Thus the lifetime of CFCs in the troposphere is very high, varying from years to
centuries and resulting in an almost uniform distribution in the troposphere. CFCs, along with carbon
tetrachloride (CCl4) and methyl chloroform (CH3CCl3) are the most important chlorine-containing gases.
Table 2.1 gives an overview of atmospheric lifetimes and the ODP of the most important chlorine and
bromine source gases.
The major source of bromine is CH3Br which provides more than 50 % of the total bromine con-

tent [Wamsley et al. 1998]. CH3Br is released by natural (biomass burning, oceans) and anthropogenic
(agricultural fumigants, gasoline additives, etc.) processes and has a lifetime of 0.7 years. It is believed
that the natural processes account for approximately 60 − 80 % of the total CH3Br load. Measure-
ments of Antarctic firn air indicate a positive trend of BrY from CH3Br of 2 − 2.5 ppt in the 1950-
1995 period [Sturges et al. 2001]. Methyl bromide peaked in 1998 and has since declined by nearly 5 %
[Montzka et al. 2003]. Another important source of bromine are the man-made halons. Halons are halo-
genated hydrocarbon gases originally developed to extinguish fires. They are widely used to protect large
computers, military hardware and commercial aircraft engines. Halon-1211 and Halon-1301 are the most

3The ODP is calculated on a ’per mass’ basis for each gas relative to CFC-11, which has an ODP defined to be 1. A gas

with a larger ODP has a greater potential to destroy ozone over its lifetime.
4ClOX=Cl+ClO+2·Cl2O2
5BrOX=Br+BrO
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Figure 2.8: Primary source gases of chlorine and bromine for the stratosphere in 1999. Adapted from

WMO[2003]

abundant halons emitted by human activities. Although controlled by the Montreal Protocol, their global
mean is still increasing slightly, due to the use of large halon stocks and the continued production in devel-
oping countries, by a mean annual rate of 0.1 ppt which is much slower than was observed in the mid-1990s
[Montzka et al. 2003]. Consequently, the sum of BrY from the most abundant halons and CH3Br peaked
in 1998 and declined thereafter in the troposphere at a mean annual rate of −0.25 ± 0.09 pptv (mean over

Table 2.1: Atmospheric lifetimes, emissions, and Ozone Depletion Potentials of halogen source gases. Anthro-

pogenic and natural sources are included. Adapted from WMO[2003]
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Figure 2.9: Reactive chlorine gas observations from space. In the stratosphere, reactive chlorine gases increase

with altitude and chlorine source gases decrease with altitude. The available chlorine (Cl∗Y) determined by the

source gases is nearly constant with altitude up to 47km. HCl and ClONO2 are the most abundant chlorine

gases in the ozone layer. Adapted from WMO [2003].

1999-2002, [Montzka et al. 2003]). This decline also caused the tropospheric Equivalent Chlorine (ECl =
[Cl] + 45·[Br]) to decrease faster than expected in WMO[2003] (see Figure 2.10). Minor bromine source
gases are CH2Br2 and CH2BrCl with atmospheric lifetimes of years and tropospheric mixing ratios of
1.1 and 0.14 pptv, respectively. After the Montreal Protocol (1987) and the amendments of Copenhagen
(1989), London (1992) and Beijing (1999) the industrial production of CFCs and halones was limited and
finally stopped (see Figure 2.11). The CFCs were replaced by partly halogenated substitutes (the so-called
HCFCs), which are less stable and hence have a shorter atmospheric lifetime. The loading of inorganic
chlorine in the unperturbed stratosphere has recently stabilized in response to the production regulations
and will decrease [WMO 2003]. These measurements are consistent with the trends for chlorinated organic
trace gases measured at the Earth’s surface. The stratospheric total inorganic bromine (BrY) for early
1999 in 5.6 - year old air is estimated at 21.25± 3 pptv from DOAS BrO measurements and ∼ 16 pptv

Figure 2.10: Right panel: Mean tropospheric organic Br from NOAA-CMDL flask measurements of CH3Br and

the most abundant halons, and in recent WMO scenario calculations. Trend uncertainty only shown for the

smoothed global results. Left panel: Changes in the global tropospheric load of both brominated and chlorinated

ozone-depleting gases in recent years expressed as equivalent chlorine (where ECl = [Cl] + 45·[Br]). The first

scenario assumes constant mixing ratios for CH3Br and CH3Cl, the second assumes constant CH3Cl and

measured changes in CH3Br and the third assumes the WMO scenario. Adapted from Montzka et al. [2003].
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from organic precursor measurements (Brorg
Y ) of CH3Br and halons. The discrepancy is due to the in-

flux of short lived organic bromocarbons or a possible direct transport of (BrY) from the troposphere.
Chapter 9 discusses the stratospheric bromine trend as deduced from DOAS BrO measurements and
compares it to organic precursor measurements (Brorg

Y ). An average annual increase of BrY of 0.7 pptv
is found by balloon-borne DOAS measurements in the years 1996−2000 (Harder et al. [1998]; [2000];
Fitzenberger et al. [2000] and Pfeilsticker et al. [2000]) which is broadly consistent with the increase of
tropospheric organic bromine over this time period. Salawitch et al. [2005] suggest that inorganic BrY at
and above the tropopause is 4−8 pptv greater than assumed in models used in previous trend assessment
studies. This study concludes that enhanced BrY causes photochemical loss of ozone below 14 km to
change from being controlled by HOX catalytic cycles (primarily HO2 + O3) to a situation where loss by
the BrO + HO2 cycle is also important.

0

Y

Figure 2.11: Effect of the Montreal Protocol. The city names and years indicate where and when changes to the

original 1987 Protocol provisions were agreed upon. The zero emissions line shows stratospheric abundances

if all emissions were reduced to zero beginning in 2003. Effective stratospheric chlorine as used here accounts

for the combined effect of chlorine and bromine gases. Adapted from WMO[2003]

Stratospheric Chlorine Chemistry

Once chlorine is released from its source gases, it undergoes a variety of reactions. Similar to NOX, ClOX

is dominated by the rapid cyclic transformation between Cl and ClO by the following reactions

Cl + O3 −→ ClO + O2 (2.51)
ClO + NO −→ Cl + NO2 (2.52)
ClO + OH −→ Cl + HO2 (2.53)

ClO + O −→ Cl + O2 (2.54)

and the photolysis of ClO.

ClO hν−→ Cl + O (2.55)
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Figure 2.12: Stratospheric bromine chemistry scheme [Lary 1996; Lary et al. 1996]

The main temporary reservoir species of ClOX are formed through the reactions with NO2, HO2 and
CH4

ClO + NO2
M−→ ClONO2 (2.56)

ClO + HO2 −→ HOCl + O2 (2.57)
Cl + HO2 −→ HCl + O2 (2.58)
Cl + CH4 −→ HCl + CH3 (2.59)

The active forms are regenerated again from ClONO2 and HOCl by photolysis,

ClONO2
hν−→ Cl + NO3 (λ ≤ 735 nm) (2.60)
hν−→ ClO + NO2 (λ ≤ 1065 nm) (2.61)

HOCl hν−→ Cl + OH (λ ≤ 500 nm) (2.62)

or from HCl by reaction with OH

HCl + OH −→ Cl + H2O . (2.63)

Since the absorption of HCl is limited to λ ≤ 205 nm its photolysis is extremely inefficient. Since only the
photolysis of HOCl is efficient, most of the chlorine is present in its inactive forms HCl and ClONO2. A
significant re-conversion to ClOX occurs only between 30 km and 45 km. At altitudes around 50 km almost
all chlorine resides as HCl [Solomon 1999]. As a result, the impact of chlorine on the stratospheric ozone
content is restricted to the upper stratosphere in unperturbed conditions (see Figure 2.5). For so-called
ozone-hole conditions, heterogenous processes lead to an efficient release of active ClOX and a subsequent
ozone destruction (see section 2.2.4). For low temperatures, the activation of chlorine can also occur on
liquid sulfate aerosols at mid-latitudes and polar regions [Webster et al. 1998; Solomon et al. 1998].

Stratospheric Bromine Chemistry

The second important halogen catalytic cycle is the bromine cycle. An overview of the bromine chemistry
according to Lary [1996] and Lary et al. [1996] is presented in this section (see also Figure 2.12). The
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impact of bromine is most effective during high chlorine activation inside the polar vortex, since the
combined cycle of BrO and ClO can effectively destroy ozone.

BrO + ClO −→ Br + OClO 59% (2.64)
−→ Br + ClOO 34% (2.65)
−→ BrCl + O2 7% (2.66)

Percentage yields for the three branches at 195 K using JPL 2002 kinetics [Sander et al. 2003] are noted.
Because of the fast photolysis of BrCl and the collision-induced decay of ClOO to Cl and O2, the reaction
of BrO with ClO leads to coupled catalytic bromine-chlorine ozone-depletion cylce. The third pathway is
the only known production channel of OClO in the lower stratosphere. Subsequent loss of OClO is nearly
all due to the fast photolysis,

OClO hν−→ ClO + O (λ ≤ 470 nm) (2.67)

which prevents the build up of large concentrations during daytime. Nevertheless, OClO is an im-
portant indicator of chlorine activation and ozone depletion [e.g., Solomon et al. 1987; Erle 1999;
Fitzenberger 2000; Wagner et al. 2001]. Recent findings by Canty et al. [2005] highlight the importance
of accurate knowledge of BrO+ClO reaction kinetics and suggest an increase of the BrCl yield from 7 %
(JPL 2002 value) to 11 % (near the upper limit of the uncertainty). Figure 2.13 shows the effect of a dif-

Figure 2.13: (a) Calculations of OClO for 18:00 LT using JPL 1997 kinetics (blue dashed curve), JPL 2002

kinetics (red solid), and JPL 2002 kinetics with a BrCl yield of 11 % (green dotted) at 68◦N for January

23, 2000, from a 10-day isentropic back trajectory photochemical model. Measured OClO (black dots) above

Kiruna (68◦N) at 18:00 LT on January 23, 2000, using lunar occultation, is also shown. (b) ClOX measurement

above Kiruna on January 20 and 27, 2000. (c) BrOX based on DOAS measurements of BrO above Kiruna

obtained on February 18, 2000. Adapted from Canty et al. [2005]

ferent BrCl yield for OClO lunar occultation and DOAS BrO solar occultation measurements during the
Arctic winter 1999/2000. Chapter 8 presents results from a comparison of DOAS OClO solar occultation
measurements at twilight and model calculations.
The fast BrO/Br conversion is also promoted by other reactions

Br + O3 −→ BrO + O2 (2.68)
BrO + NO −→ Br + NO2 (2.69)
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BrO + O −→ Br + O2 (2.70)

BrO hν−→ Br + O (λ ≤ 515 nm) (2.71)

BrO has a short lifetime (∼ 1 s) during the day. However, between 40 − 70 % of the total inorganic
bromine (BrY) can be in the form of BrO, since atomic bromine (Br) reacts very quickly with O3. The
most important sinks of BrO are its photolysis and reactions with NO, ClO and NO2. During sunset,
BrO concentrations decrease very rapidly, as the reservoir species become more and more abundant. The
main reservoir species are formed in reactions with NO2, HO2, ClO and CH2O.

BrO + NO2
M−→ BrONO2 (2.72)

BrO + HO2 −→ HOBr + O2 (2.73)
BrO + ClO −→ BrCl + O2 (2.74)
Br + HO2 −→ HBr + O2 (2.75)

Br + CH2O −→ HBr + CHO (2.76)

Under non-denoxification conditions (outside the polar vortex), bromine nitrate (BrONO2) is the most
important bromine reservoir species and has a photolytic lifetime of a few minutes. Because of its lower
photolytic stability, HOBr can form up to 30 % of the total inorganic bromine during daytime and can be
the most important bromine reservoir during the night, when taking into account the increased importance
of BrONO2 hydrolysis on sulphuric acid background aerosols (see section 2.2.5). The active species Br
and BrO are released from their reservoirs by photolysis

BrONO2
hν−→ Br + NO3 (λ ≤ 861 nm) (2.77)
hν−→ BrO + NO2 (λ ≤ 1129 nm) (2.78)

HOBr hν−→ Br + OH (λ ≤ 578 nm) (2.79)

BrCl hν−→ Br + Cl (λ ≤ 546 nm) (2.80)

Due to the relatively long wavelength absorption of these reservoir species, their photodissociation is very
efficient throughout the whole stratosphere. Moreover, Br atoms are rapidly regenerated from HBr via

HBr + OH −→ Br + H2O (2.81)

As a result, the partitioning of the total bromine content between active and inactive species is shifted
more towards the active forms when compared with chlorine. Thus, bromine is more efficient in destroying
ozone than chlorine.

2.2.4 Heterogeneous Chemistry on PSCs - The Ozone Hole

After the discovery of the ozone hole over Antarctica in early 1985 [Farman et al. 1985], it was recognized,
that the chemical conversion of species related to ozone loss, in the presence of stratospheric particles, is
important. These conversions ultimately result in the rapid build up of active ClOX and BrOX catalysts
which subsequently lead to ozone destruction. The dynamic prerequisite for polar ozone loss is the
formation of the winterly polar vortex as described in section 2.1. Temperature, size and persistence of
the polar vortex determine the rate of formation of particles referred to as Polar Stratospheric Clouds
(PSCs). Water, nitric acid and sulfuric acid are the main constituents of PSCs and appear in various
concentrations. PSCs can be liquid or solid. PSCs are often measured with LIDAR (LIght Detection
And Ranging) instruments and are thus classified with respect to their optical properties of backscatter
and depolarization (see Table 2.2). The mechanisms for the formation and the exact constitution of
PSCs is still subject of research. It was first believed that PSCs consist mostly of water ice. These
stratospheric ice clouds (now referred to as PSC type 2) are usually optically thick and brilliant in
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Table 2.2: PSC classification with respect to their optical properties [e.g., David et al. 1998].

Type Backscatter signal Depolarization Shape Composition Temperature

PSC 1a weak significant non-spherical possibly NAT < 196 K

PSC 1b very weak negligible spherical possibly STS < 196 K

PSC 2 large strong non-spherical ice < 188 K

color. They can occur when the temperature falls below the freezing point (Tice < 188 K). They have
been observed with concentrations between 10−4 and 10 cm−3 and diameters ranging from 2 to 25 µm
[WMO 2003]. McCormick et al. 1982 also observed optically thinner PSCs at warmer temperatures
(type 1 PSCs). It was suggested by Crutzen and Arnold [1986] and Toon et al. [1986] that these
particles are formed by solid nitric acid trihydrate (NAT = HNO3 · 3H2O). Laboratory measurements
of Hansen and Mauersberger [1988] supported the theory and showed that the NAT crystal is stable a
few degrees above the ice frost point (TNAT < 196 K) under stratospheric conditions. These particles,
referred to as type 1a PSCs, can exist a few Kelvin above the freezing point of ice but below the NAT
threshold of 196 K. Nitric acid dihydrate (NAD = HNO3 · 2H2O) could also form stable particles up
to 2.5 K below the NAT threshold. Typical size distributions of type 1a particles show diameters in
the range of 2 to 5 µm and concentrations below 0.1 cm−3 [WMO 2003]. HNO3 containing particles
with diameters around 15 µm have been observed and are believed to be NAT (or NAD) particles
(’NAT-rocks’) [Fahey et al. 2000].
In addition to solid NAT particles, liquid particles can appear for temperatures above the freezing

Figure 2.14: Simplified scheme of the NAT formation. Liquid particles are indicated as circles, whereas solid

particles are marked by hexagonals. Adapted from Carslaw et al. [1999]

point of ice [Browell et al. 1990]. These particles are called type 1b PSCs. They are typically found
with diameters smaller than 1 µm and concentrations of 10 cm−3 [WMO 2003], where the particle
volume increases strongly for temperatures of 3 to 4 K below the NAT threshold. These liquid particles
are interpreted as supercooled ternary (HNO3/H2SO4/H2O) solutions (STS) formed by the ubiquitous
Stratospheric Sulfate Aerosol (SSA) particles, i.e. H2SO4/H2O solutions, taking up large amounts of
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HNO3 at temperatures below 193 K.
Different particle types do not necessarily occur in distinct PSCs. Liquid and solid particles can coexist
in the same cloud [e.g. Tsias et al. 1999]. This was confirmed by balloon-borne in situ measurements
of PSCs by Voigt et al. [2000], who also presented the first direct evidence for the existence of NAT
particles. A simplified scheme of the possible pathways is given in Figure 2.14.
Temperatures in the Antarctic polar vortex are usually very low and often below the freezing point of
ice for months. Thus, over Antarctica synoptic scale type 2 PSCs are often observed. The Arctic polar
vortex is warmer and less stable (see also section 2.1), with temperatures below the freezing point of
ice only for a few days or weeks. Nevertheless, mesoscale processes such as gravity waves caused by
mountains can generate vertical air motions that are large enough to adiabatically cool the air parcels
below the frost point of ice, leading to the formation of PSCs (lee-wave PSCs) [Carslaw et al. 1998;
Rivière et al. 2000].

Further prerequisites for a strong and long lasting ozone depletion leading to the formation of an ozone
hole are denoxificiation and denitrification (see section 2.2.2). In the absence of sunlight, NOX is converted
to N2O5 and via hydrolysis to HNO3 (denoxification). Therefore the conversion of active chlorine, ClOX,
to ClONO2 through reaction 2.56 is suppressed. The sedimentation of large PSC particles containing
HNO3 to lower altitudes leads to an irreversible removal of NOY at higher altitudes (denitrification) and
to extended ozone depletion during polar spring (see e.g. Schlager and Arnold [1990]).
PSCs provide the surface for a number of heterogeneous reactions converting the chlorine reservoir species
HCl and ClONO2 to the more reactive species Cl2 and HOCl:

ClONO2(g) + HCl(s) het→ Cl2(g) + HNO3(s) (2.82)

ClONO2(g) + H2O(s) het→ HOCl(g) + HNO3(s) (2.83)

HOCl(g) + HCl(s) het→ Cl2(g) + H2O(s) (2.84)

N2O5(g) + HCl(s) het→ ClONO(g) + HNO3(s) (2.85)

Bromine species are activated by

BrONO2(g) + HCl(s) het→ BrCl(g) + HNO3(s) (2.86)

BrONO2(g) + H2O(s) het→ HOBr(g) + HNO3(s) (2.87)

HOBr(g) + HCl(s) het→ BrCl(g) + H2O(s) (2.88)

As soon as the sunlight returns at the beginning of the polar spring, the photochemically unstable
compounds Cl2 and HOCl photodissociate rapidly

Cl2
hν−→ 2Cl (λ ≤ 495 nm) (2.89)

HOCl hν−→ Cl + OH (λ ≤ 500 nm) (2.90)

The destruction of O3 occurs primarily by two gas-phase catalytic cycles, the ClO-dimer cycle
[Molina and Molina 1987] and the ClO/BrO cycle [McElroy et al. 1986]:

ClO + ClO M−→ Cl2O2 (2.91)

Cl2O2
hν−→ Cl + ClO2 (2.92)

ClO2
M−→ Cl + O2 (2.93)

2× (Cl + O3 −→ ClO + O2) (2.94)
net: 2 O3 −→ 3 O2 (2.95)
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and

ClO + BrO −→ Cl + Br + O2 (2.96)
−→ BrCl + O2 (2.97)

BrCl hν−→ Br + Cl (λ ≤ 546 nm) (2.98)
Cl + O3 −→ ClO + O2 (2.99)
Br + O3 −→ BrO + O2 (2.100)

net: 2 O3 −→ 3 O2 (2.101)

This ClO/BrO cycle is also effective at higher temperatures and even in darkness. The abundance of
BrO determines the removal rate by the ClO/BrO cycle. It is less important in the Antarctic with
higher chlorine activation but may account for up to 60 % of the Arctic ozone loss in cold winters
[Chipperfield and Pyle 1998]. In contrast to ClO, the abundance of BrO is not greatly affected by re-
actions involving PSCs since less than half of the available inorganic bromine budget is sequestered in
reservoirs such as BrNO3 and HBr. With the beginning of the renoxification in early polar spring, i.e.
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Figure 2.15: Ozone loss rates at 475 K for various winters (red squares) and area of possible PSC existence

(blue shaded areas) for the northern hemisphere. Adopted from WMO [2003]

the conversion of nitrogen reservoir species to NOX, the ozone depletion slows down and finally ends. In
the case of denitrification, the ozone depletion continues until the break-down of the polar vortex and
the subsequent mixing with ozone-rich, mid-latitudinal air. The vertical distribution of the ozone loss is
extremely non-uniform. While ozone is often totally destroyed between 13 and 20 km, it remains essen-
tially unaffected in the middle and upper stratosphere [e.g. Hoffmann et al. 1997]. In Antarctica, with
its stable winterly conditions and cold temperatures (below the 195 K threshold for PSC formation), the
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ozone level is directly linked to the halogen loading in the stratosphere. The same processes that lead to
ozone loss in Antarctica certainly occur in the Arctic, but the meteorology of the northern hemisphere
is more variable, with large interannual differences in the strength of the vortex and the duration of low
temperatures. Thus, the development of the ozone level in the Arctic not only depends on the future
trend of the halogen loading but also on climate change. Figure 2.15 shows Arctic ozone loss rates at
475 K for various winters.

2.2.5 Heterogeneous Chemistry on Sulfate Aerosoles

Significant ozone loss can also occur at mid-latitudes. It was soon clear that this loss could not
be attributed to dilution of polar air masses with low ozone at the end of the polar winter/spring
[Sze et al. 1989]. Fahey et al. [1993] explained these mid-latitudinal phenomena by heterogeneous chem-
istry on liquid stratospheric sulphuric acid aerosols, with the latter increasing dramatically after volcanic
eruptions [Avallone et al. 1993; Solomon et al. 1996]. After the eruption of Mount Pinatubo in June 1991,
it was possible to study the effect of enhanced aerosol loading of the PSC-free stratosphere in terms of
chlorine activation on the background aerosols. The aerosol Junge-Layer in altitudes of 10− 30 km con-
sists mainly of H2SO4/H2O droplets, which are distributed globally in the lower stratosphere (background
aerosol) [Roedel 1992].
Sulphuric species are emitted anthropogenically (direct SO2 emissions, fossil fuel burning) as well as
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Figure 2.16: Reactive uptake coefficients as a function of temperature of the key stratospheric heterogeneous

processes on sulfuric acid aerosols. Calculations are shown for a background pressure of 50 mbar and background

water vapor and HCl mixing ratios of 5 ppmv and 2 ppbv, respectively. Adapted from Sander et al. [2003].

naturally (organic sulphur species, dimethyl sulfid (DMS), COS and H2S from the ocean, volcanic erup-
tions). Direct entry of SO2 into the stratosphere is negligible, while long-lived sulphur species reach the
stratosphere, where they lead to the production of sulphuric acid

SO2 + OH M→ HSO3 (2.102)
HSO3 + O2 → HO2 + SO3 (2.103)
SO3 + H2O → H2SO4 (2.104)

and subsequently form hydrate aerosols in connection with water [Roedel 1992]. Typical aerosol surfaces
are about 1− 10 µm2cm−3 in the lower stratosphere under non-perturbed conditions.
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The N2O5 hydrolysis was the first reaction found to be relevant not only on PSCs but also on sulphuric
acid aerosol surfaces [Mozurkewich and Calvert 1988; Tolbert et al. 1988]. This reaction leads to a reduc-
tion of NOX and is therefore indirectly responsible for an increase in reactive chlorine. The same holds
true for the BrONO2 hydrolysis. BrONO2 hydrolysis also has a large influence on the bromine chemistry,
since it converts BrONO2 to HOBr, which photolyses faster. After the eruption of Mount Pinatubo and
El Chichon, model studies [Brasseur and Granier 1992; Lary 1996; Tie and Brasseur 1996] and measure-
ments [Solomon et al. 1994; Slusser et al. 1997] showed how important these reactions are at both high
and mid-latitudes. Figure 2.16 summarizes the reaction probabilities for the different reactions. The loss
of ClONO2, BrONO2, HOCl and HOBr on HCl is not important for temperatures above 200 K and back-
ground aerosol conditions. The time constant (or lifetime) for the different heterogeneous reactions can
be calculated from the aerosol surface area A, the reaction coefficient γ and the mean thermal velocity

vth - see for example Finlayson-Pitts and J. N. Pitts [1986]. vth =
√

8kbT
πm - where kb is the Boltzmann

constant, T the temperature and m the molecular mass.

τ =
4

γ × vth ×A
(2.105)

khet = τ−1 (2.106)

The ClONO2 hydrolysis has a time constant of 3 weeks for a typical aerosol surface area of A = 1 µm2

cm−3

and γ = 0.01. Therefore it is clear that most heterogeneous reactions do not lead to chlorine activation
at temperatures above 210 K. However, they cannot be neglected for T = 200 − 210 K, when aerosol
levels are slightly increased. Bromine reaction coefficients are higher by 1− 3 orders of magnitude than
respective chlorine reactivities, explaining why the effect of bromine is comparable to that of chlorine,
although bromine is about 100 times less abundant than chlorine.



Chapter 3

Methodology

3.1 Basics of the Atmospheric Radiative Transfer

A photon traversing the Earth’s atmosphere can undergo a variety of processes. It can be Rayleigh or
Raman scattered on air molecules, Mie scattered on aerosols, cloud droplets or ice particles, or it can be
absorbed by them. Since the absorption by aerosols and cloud droplets is negligible in the UV/vis/NIR1

wavelength range (∼ 300 − 800 nm), only the gaseous absorption of molecules will be considered in this
study. This section describes the different scattering processes and molecular absorption in more detail
and lists the definitions of some basic quantities in radiative transfer.

3.1.1 Definitions

The incident radiant energy per time dWλ at wavelegth λ on an arbitrary orientated area element dA is
represented by the spectral irradiance Eλ

Eλ =
dWλ

dA
(3.1)

Taking into account the orientation of the area element and the solid angle Ω of the incident radiation,
the spectral radiance Lλ, often simply called intensity Iλ, is obtained by

Lλ =
dWλ

dA⊥ dΩ
(3.2)

where dA⊥ = dA cosϑ and ϑ is the angle between the incident beam and the normal of the area element.
The irradiance can be calculated by integrating Lλ over the half sphere, considering the factor cosϑ:

Eλ =
∫

2π

Lλ cosϑ dΩ (3.3)

For isotropic radiation, the integration yields Eλ = πLλ. The actinic flux Fλ is of major importance for
the photochemistry. It is obtained by integrating Lλ over the whole sphere

Fλ =
∫

4π

Lλ dΩ . (3.4)

1UV: ultraviolet; vis: visible; NIR: near infrared
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3.1.2 Photochemical Effects

Absorption of ultraviolet and visible radiation by atmospheric molecules can cause the molecule to pho-
todissociate. The photodissociation rate of a molecule A is

dn(A)
dt

= −jA · n(A) (3.5)

where n(A) is the concentration of the molecule and jA the photodissociation probability or coefficient.
The photodissociation coefficient can be calculated by integrating the product of the absorption cross
section σ, which refers to the ability of a particular molecule to absorb a photon of a particular wave-
length, the actinic flux F and the quantum yield ε. The quantum yield describes the probability of
photodissociation after absorption of a photon.

jA =
∫

ε(λ)σ(λ)F (λ) dλ (3.6)

The spectral distribution of the absorption cross section and the quantum yield is determined in the
laboratory and can vary with temperature and pressure (see e.g. chapter 5). In most cases, the quantum
yield is close to unity but can be smaller, especially near the dissociation limit. This limit corresponds
to the minimum energy required to dissociate the molecule. Wavelengths given for photolytical reactions
(e.g. in section 2.2) indicate the dissociation limit.

3.1.3 Scattering

Rayleigh Scattering

Rayleigh scattering occurs if the dimension of the scatterer is small compared to the wavelength of
the incident radiation (e.g. air molecules). The scattered light can be treated as radiation emitted by an
oscillating dipole, excited by the oscillating field of the incident electromagnetic wave. The scattering cross
section has a λ−4 dependency for light frequencies smaller than the natural frequency of the oscillator (see
e.g. [Feynman et al. 1965]). An accurate empirical formula for the total cross section, taking into account
the polarizability and the anisotropy of air molecules, is given e.g. by [Brasseur and Solomon 1986]

σRayl =
4.02 · 10−28

λ3.916+0.074λ+ 0.05
λ

cm2 (3.7)

with λ given in µm. Other empirical formulas are found in literature, e.g. by Nicolet [1984]. The phase
function for unpolarized light is

p(θ) =
3
4

(1 + cos2 θ) . (3.8)

It describes the angular dependence of Rayleigh scattered radiation with the angle θ between incident
and scattered radiation. When taking into account the anisotropy of the molecules [Penndorf 1957] it can
be written as:

p(θ) = 0.7629 (1 + 0.932 cos2 θ) . (3.9)

Mie Scattering

Mie scattering occurs when the dimension of the scattering particle is equal to or greater than the wave-
length of the incident light. In this case, the emission of a large number of excited dipoles in the particles
has to be considered. The resulting interference leads to a strong emphasis of the forward direction of
the scattered light. This scattering characteristic can be approximated by the Henyey Greenstein phase
function:

p(θ) =
1− g2

(1 + g2 − 2g cos θ)
3
2

(3.10)
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with the asymmetry factor

g =< cos θ >=
1
2

+1∫
−1

p(θ) · cos θ d(cos θ). (3.11)

For atmospheric aerosols an asymmetry factor in the range of 0.6 to 0.7 is usually assumed. As a mixture
of different size aerosols is found in the atmosphere, the macroscopic extinction coefficient is used instead
of the scattering cross section. This macroscopic extinction coefficient is defined as the integral over the
particle size distribution times the scattering cross section and the particle surface [Van De Hulst 1957].
The size distribution of atmospheric aerosols is described well by the Junge distribution (∼ r−s−1) with
s = 3.5 ± 1 [Junge 1961] leading to a λ3−s dependence of the macroscopic extinction coefficient.

Raman Scattering

Raman scattering occurs when light is scattered inelastically on molecules. This means that the rotational
or rotational-vibrational state of the molecule and thus the energy of the scattered photon changes during
the scattering process. Consequently, the scattered light consists of the Rayleigh line (due to elastic scat-
tering contributions) accompanied by several closely spaced vibrational Raman bands, each consisting of
several rotational Raman lines. Detailed calculations of the Raman cross section for air molecules (O2

and N2) can be found e.g. in Bussemer [1993] and Funk [2000].
For measurements of scattered sunlight, a consequence of Raman scattering lies in the ‘filling’ of Fraun-
hofer lines. This effect is referred to as the Ring effect [Grainger and Ring 1962] (see section 3.4.1). Strong
atmospheric absorption lines can also be affected by the Ring effect [Fish and Jones 1995].

3.1.4 Absorption

An atom or molecule can be excited from its current energy state to a higher energy state by absorption
of a photon, if the energy difference of the two states equals the energy of the absorbed photon. The
transition probability depends linearly on the energy density of the radiation field with a proportionality
factor called Einstein coefficient of absorption. Atoms or molecules can change their internal state by ab-
sorption and stimulated or spontaneous emission where an Einstein coefficient is assigned to each process.
The strength of the absorption is thus given by the Einstein coefficient obtained by quantum mechanical
calculations (see e.g. [Bransden and Joachain 1983]). Besides energy conservation, certain selection rules
for the transitions have to be obeyed. The selection rules can be inferred by considering the symmetry
properties of the wave functions of the atomic or molecular states. The absorption characteristics of an
atom or molecule are expressed in terms of an absorption cross section, which is a measure of the proba-
bility of absorption at a certain wavelength.
While only electronic transitions are possible for atoms, molecules also have rotational and vibrational
transitions. Molecular absorption spectra in the UV/vis wavelength range (∼ 300 − 700 nm) consist of
rotational-vibrational spectra of different electronic transitions. Examples of some absorption spectra in
the UV/visible wavelength range are shown in Figure 4.2 and 4.3.
The spectral lines of the transitions are broadened by Doppler and pressure broadening. Under atmo-
spheric conditions, the natural line width, associated with the radiative lifetime of the excited state, is
negligible compared to the Doppler and pressure broadening. Because of the thermal motion of atoms and
molecules the statistically distributed Doppler shift of the absorption frequency causes the spectral line
to broaden, resulting in a Gaussian line shape. In the case of pressure broadening, the interaction with
neighbouring atoms or molecules causes the energy levels to shift. The amount of shift depends on the
energy level itself and the distance between the collision partners. For statistically distributed distances
the broadened line has a Lorentzian line shape. In general the line shape of atmospheric absorption lines
is dominated by pressure broadening. Doppler broadening only becomes important at low pressures. Both
broadening effects can be accounted for by a Voigt profile, which is obtained by convolving a Gaussian
with a Lorenzian profile.
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Figure 3.1: Extraterrestial and sea level solar spectrum. The dashed line indicates the spectrum of a black

body at T = 6000 K. Shaded areas indicate the absorptions of O3, H2O, CO2 and O2. Adapted from

Steinegger [1999].

3.2 Solar Radiation and the Solar Spectrum

Solar radiation ranges from X-rays through ultraviolet to far radio radiation. Almost all of the solar
radiation is emitted from the so called photosphere, a thin layer that is a few hundred kilometers thick.
Increases of temperature and pressure towards the inner layers causes a superposition of the emission
of layers with different temperatures. Since the outer layers absorb radition emitted by the inner layers
and temperature decreases towards the outer layers, only a thin layer contributes to the solar emission
spectrum. This continous spectrum is superimposed by a large number of absorption lines, the Fraunhofer
lines, which originate from higher layers of the sun‘s atmosphere. Analysing the Fraunhofer lines gives
information about the chemical composition and physical conditions, such as pressure and temperature.
At least 63 elements have been identified in the solar photosphere, hydrogen and helium (H and He)
being the most abundant.
A variety of other solar effects and characteristics exists. One of them is the solar centre to limb darkening.
It refers to the decrease of the observed intensity from the centre towards the edge of the solar disc. A
detailed description can be found e.g. in Bösch [2002]. The total irradiance E of the Sun is obtained by
integrating the spectral intensity over the half sphere and all wavelengths. The solar constant S is the
irradiance at a mean distance dE−S (= 1 AU2) from the earth to the sun:

S =
ER2

Sun

d2
E−S

= 1.37 kWm−2 (3.12)

where the solar radius Rsun = 696000 km. Interpreting the solar irradiance according to Stefan-
Boltzmann’s law, an effective temperature Teff of 5780 K can be assigned to the Sun. The solar irradiance
is subject to fluctuations such as thoses caused by the sun spot cycle which has a period of 11 years.
Sun spots are dark areas with an effective temperature of about 3500 K amd a diameter in the order of
∼ 104 km. The occurence of the sun spots is accompanied by several other phenomena such as promi-
nences and plages, which overcompensate the reduced radiation of the sun spots. The mean energy per
unit time and area arriving at the top of the Earth’s atmosphere is represented by:

S0 = S
πR2

Earth

4πR2
Earth

=
S

4
(3.13)

2Astronomical unit (AU) = 149598000 km
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where Rearth is the radius of the Earth. The mean radiance S0 in combination with the conversion of
energy in the earth-atmosphere system is the most important driving force of atmospheric processes.
S0 is subject to significant temporal variations as a result of quasi-periodical changes of astronomical
parameters controlling the Earth’s trajectory [Milankovitch 1920].
On the Earth’s surface only radiation with wavelengths larger than 300 nm can be observed. Due to
the strong absorptions of ozone in the Hartley band and the subsequent O2, N2 and O absorptions, the
earth‘s atmosphere is impermeable for radiation below 300 nm. In the infrared wavelength region there
are strong absorption bands of H2O and CO2 (see figure 3.1).

3.3 DOAS - Differential Optical Absorption Spectroscopy

The extinction of light with a spectral intensity I(λ) passing through an infinitesimally thin layer dl is
given by

dI(λ) = −I(λ)α(λ) dl (3.14)

in the case that emission of light and scattering of light from an arbitrary direction in the direction of
the considered light beam is neglected. α(λ) is the extinction coefficient and can be seperated into the
scattering and absorption coefficients αs(λ) and αa(λ), respectively.

α(λ) = αs(λ) + αa(λ) (3.15)

Neglecting inelastic Raman scattering, the coefficient αs(λ) includes Mie scattering on aerosols and
droplets and Rayleigh scattering by molecules:

αs(λ) = σRay(λ) · nRay + σMie(λ) · nMie (3.16)

σ being the scattering cross section and n the density of the scatterers. The absorption coefficient αa(λ)
is the sum of all absorbers i with a non-zero absorption cross section σi at wavelength λ and density ni

αa(λ) =
∑

i

σi(λ) · ni . (3.17)

Integration of equation 3.14 along the light path L yields the Beer-Lambert law

I(λ) = I0(λ) e−
∫

L
α(λ) dl (3.18)

The optical density τ can be introduced

τ(λ) = − ln
[

I(λ)
I0(λ)

]
(3.19)

to express equation 3.18 as
I(λ) = I0(λ) e−τ(λ) . (3.20)

If an intensity I at a certain wavelength is measured, the determination of the absorption of a species
requires exact knowledge of the extraterrestrial intensity I0 and the extinction due to Rayleigh and Mie
scattering. Few measurements of the extraterrestrial solar spectra exist (e.g., the quasi-extraterrestrial
measurement of Kurucz[1984] and [Gurlit et al. 2005]). Appyling them to the used instrument indroduces
large errors due to e.g. the different resolution and wavelength calibration. A further complication is the
absorption of other species at the same wavelength, which have to be separated. However, if a continuous
spectrum is measured instead of only a single wavelength, the Differential Optical Absorption Spec-
troscopy (DOAS) technique can be applied and the above limitations can be avoided [Platt et al. 1979;
Platt 1994]. The DOAS technique is based on the fact that Rayleigh and Mie scattering vary weakly
in wavelength, while molecular or atomic absorption cross sections usually consist of narrow absorption
bands (often overlaid by a broad continuum).
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Figure 3.2: Illustration of the DOAS principle. The absorption cross section σ can be split into a broad band

σb and a narrow band component σ′. Adopted from Stutz [1996]

The absorption cross section σ of a certain species can be separated into a low and a high frequency com-
ponent or a broad band and a differential absorption cross section σb and σ′, respectively (for illustration
see figure 3.2):

σ = σb + σ′ (3.21)

Accordingly, the absorption coefficient αa can be split into a broad and a narrow band component αa,b

and α′
a. Equation 3.18 can then be rewritten as:

I(λ) = I0(λ) e−
∫

L
(αs(λ)+α′

a(λ)+αa,b(λ)) dl = I ′0(λ) e−
∫

L
α′

a(λ) dl (3.22)

The differential optical density τ ′ can be defined according to equation 3.19:

τ ′(λ) = − ln
[

I(λ)
I ′0(λ)

]
=

∫
L

α′
a(λ) dl =

∑
i

τ ′
i(λ) (3.23)

Broad band structures can simply be removed by high pass filtering. In practice, a so-called Fraunhofer
reference spectrum I0(λ); that is, the measured spectrum with the smallest absorptions, is used. For the
balloon measurements this is the spectrum at balloon float recorded at the smallest solar zenith angle. The
absorber amounts in the Fraunhofer reference spectrum have to be determined by using other methods
(see section 6.1). The broad band components in the retrieval

∫
L
(αs(λ)+αa,b(λ))dl are approximated by a

polynomial. Assuming constant pressure and temperature along the light path, the differential absorption
cross section σ′

i,a(λ) for species i is independent of the light path and the differential optical density τ ′
i

can be expressed as

τ ′
i(λ) = σ′

i,a(λ) ·
∫

L

ni dl = σ′
i,a(λ) · SCDi (3.24)

where SCD is the slant column density. The SCD is the quantity otained when performing a DOAS-
retrieval. One of the shortcomings of this technique is the assumption that the pressure and temperature
are constant, which is usually not fulfilled. Section 3.4.1 includes a detailed discussion on the temperature
and pressure dependence of the absoption cross sections.

3.4 Spectral Retrieval

The recording of a spectrum I∗ with a grating spectrograph is represented mathematically by a convo-
lution of the continually and perfectly resolved incoming intensity spectrum I, with the instrument slit
function W of the apparatus.

I∗(λ) = I(λ) ◦W =
∫

I(λ − λ′) ·W (λ′)dλ′ (3.25)
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W (λ) can be approximated the spectrum of an atomic emission line from a low pressure lamp (e.g. a
mercury or cadmium lamp). Since the spectrum is recorded with a detector, the covered wavelength range
is mapped onto N discrete pixels n, each integrating the light in a wavelength interval ∆λ(n) around the
centre wavelength λ(n)

I(n) =
∫ λ(n)+

∆λ(n)
2

λ(n)−∆λ(n)
2

I∗(λ′) dλ′ (3.26)

Similar to equation 3.24 we can write

ln[I(n)] = ln[I0(n)]−
( ∑

i=1

SCDi · σi(n) + R(n) + N(n) + A(n)
)

(3.27)

where σi(n) are the convolved cross sections of the m absorbers. The broad band components of Mie and
Rayleigh scattering are represented by R(n). The detector and the photon noise are described by N(n),
and any structures caused by the spectrograph or the detector are summarized by A(n).
The spectral retrieval is the determination of the slant column densities SCDi. Therefore, an appropriate
model function F (n), with input parameters σi(n) and I0(λ) (the cross sections and the Fraunhofer
reference spectrum), is used for the approximation of ln[I(n)].

F (n) = ln[I0(n, d00, d01...)]−
( ∑

i=1

ai · σi(n, di0, di1...) + Pr(n)
)

(3.28)

The value of the fit parameter ai corresponds to the slant column density of species i and the broad
band structures are approximated by a polynomial Pr(n) of degree r. To account for possible differences
in the wavelength-pixel mapping of I0(n) and σi(n) compared to I(n), the reference spectra I0(n) and
σi(n) can be shifted and squeezed, expressed by the spectral alignment parameters dik. The parameter
di0 describes a shift in the wavelength-pixel mapping by di0 pixels. di1 represents a linear squeeze i.e.,
pixel n is shifted by di1(n− nc) pixels, where nc is the centre pixel of the spectral range in question. For
k > 1 the parameter dik describes a squeeze of higher order. The values d0k for the Fraunhofer reference
spectrum I0(λ) are often kept fixed and instead the measured spectrum I(λ) is shifted and squeezed.
In general, the shift and squeeze are required to compensate the misalignment of spectra as a result of
different measurement conditions (e.g., temperature, pressure) and optical effects.
The spectral analysis consists of a linear least square fit to derive the parameters ai and the parameters of
the polynomial and a successive non-linear Levenberg-Marquardt fit to determine the values di,k in order
to minimize

χ2 =
N∑

n=0

(
ln I(n)− F (n)

εn

)2

. (3.29)

N is the number of pixels in the retrieval range and εn is the measurement error of the nth diode. Usually,
a constant measurement error is assumed for all diodes, i. e. εn = ε = const. The fitting procedure starts
with a linear least-square fit where initial values for djk are assumed. The retrieved values for aj and
the polynomial coefficients are then input parameters for a non-linear Levenberg-Marquardt fit. After
performing one iterative step, the obtained new values dik are in turn used as input for the linear fit.
The iterative loop of successive linear and non-linear fit is stopped if one of several abortion criteria of
the Levenberg-Marquardt fit is fulfilled (e.g., convergence of the fit, represented by very small changes of
χ2 between two steps).
In contrast to the linear least-square fit, the Levenberg-Marquardt method is an iterative numerical
procedure. The reference spectra σi(n) and ln I0(n) are aligned to the measured spectra ln I(n) by varying
dik in order to minimize χ2. Therefore σi(n) and ln I0(n) have to be recalculated for the new wavelength-
pixel mapping, which is done by cubic spline interpolation. The Levenberg-Marquardt method also gives
an estimate of the errors of the alignment parameters. As the alignment parameters are input data for
the linear fit, their errors will influence the results of the linear fit. A numerical method is used to obtain
the dependence on the errors. Thus a spectrum is calculated which consists of the various reference
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spectra which are scaled, shifted and squeezed according to the results of the linear fit. In addition, this
spectrum is shifted and squeezed as given by the errors of the alignment parameters. The results of the
linear fit performed with the original spectrum and the spectra additionally shifted and squeezed allows
to infer the errors of the linear parameters caused by the errors of the alignment. Assuming that this
error is independent of the statistical error of the linear fit, the total error is obtained by Gaussian error
propagation.
The least-square solution for the linear fit can be found analytically [Albritton et al. 1976; Stutz 1996].
However, the fitting procedure will only give the best possible results including realistic errors if the
model function F (n) is well suited to describe the measurements ln I(n). Fit results will be incorrect
if the model lacks relevant processes or describes them inaccurately. Prerequisites for the validity of
the fitting procedure are independence of the measurement errors εn, linear independence of the σi and
measurement errors with a mean value of zero and a finite variance.
The linear least-square procedure also gives an estimate of the measurement error per pixel σ̂. If εn is
not explicitly given, σ̂ is used as measurement error instead. A significant overestimation of the real
measurement errors εn (estimated by considering the different noise contributions) is an indication of
an inadequate model function or of systematic errors. σ̂ is equal to the root-mean-square (rms) of the
remaining residual Res(n) = ln I(n)− F (n), if the number of pixels N in the fitting range is larger than
the number of linear parameters of the fitting procedure (the number of cross sections σi plus the degree
of the polynomial r).
The statistical errors of the parameters ai and the parameters of the polynomial are given by the diagonal
elements of the covariance matrix V . The first order covariance matrix is defined by

Vvw = cov(ap, aq) ≡ 〈(ap − āp) (aq − āq)〉 (3.30)

where ā is the mean. The correlation coefficients Cpq can be derived by

Cpq =
Vpq√
VppVqq

(3.31)

The correlation matrix is normalized in a way that all diagonal elements are equal to one. All other
elements are between ±1. The correlation of two parameters p and q is given by the correlation coefficients
Cpq where an absolute value close to 1 indicates strong correlation.
Usually, the remaining residual structure Res(n) = ln I(n) − F (n) of the fitting procedure does not
consist of pure noise. A pure noise spectrum is characterized by fully independent pixel intensities which
is equivalent to structures of a width of one pixel. However, a real residuum often shows groups of
adjacent pixels, changing their intensities simultaneously in a random way (statistical residual structures),
indicating interdependency between the pixels. The dependency of the measurement errors is described
by the variance-covariance matrix. If the covariance matrix is known the linear fit procedure can be
extended in such a way that the calculation of the fit results also accounts for the error interdependency
[Albritton et al. 1976]. If the matrix is not known, a numerical method can be used to examine the
influence of the residual structures on the fit results [Stutz and Platt 1996]. By smoothing a pure noise
spectrum with a running mean, a spectrum can be created that shows similar structures to the residuum.
The covariance matrix can then be calculated by varying the width of the smoothing filter until the width
of the generated structures are of the same order as the width of the residual structures. However, this
covariance matrix has to be recalculated for every measured spectrum, which is a very time-consuming
and tedious procedure. Therefore, empirical correction factors for errors given by the fitting procedure
were inferred and can be found in Stutz and Platt [1996].
The occurrence of systematic residual structures is not described by this method. Systematic errors
influence the fitting procedure in two ways. First, residual structures can be misinterpreted as molecular
absorptions and second, the fitting errors can be estimated incorrectly. A method to investigate the
impact of spectral artifacts on the DOAS evaluation can be found in Hausmann et al. [1999]. However,
this method is restricted to irregular, non-reproducible structures generated within the optical setup,
and it is not valid for reproducible structures. Spectral structures result from non-identified absorbers or
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instrumental errors.
The theoretical detection limit is an important quantity for the characterization of the quality of a
trace gas measurement. It can be defined as the lowest measurable value of the fit parameter ai or as the
smallest detectable average optical density τ limit (for the definition of τ see equation 3.19). For the latter,
an average optical density τi of a reference spectrum is defined by three times the standard deviation of
the reference spectrum σi(n):

τi = 3 ·
[

1
N − 1

N∑
n=1

(
σi(n)− σi

)2
]1/2

(3.32)

where N is again the number of pixels. As the estimation of the detection limit requires time-consuming
Monte-Carlo calculations, only the linear problem is considered (ignoring the uncertainties of the
wavelength-pixel mapping) allowing the derivation of the detection limit to be simplified. Defining the
detection limit ai as the value of ai with a relative error of 0.5 yields

ai = 2 ·
√

Vii . (3.33)

This means that the covariance matrix V has to be calculated, i.e. the evaluation has to be carried out.
In this study the software packages WinDOAS [Van Roozendael and Fayt 2000] and MFC
[Gomer et al. 1995] were used for the spectral evaluation, both providing the fitting procedure described
above. An additional feature of WinDOAS is the correction of instrumental stray light caused by reflec-
tions inside the spectrograph. The correction is performed by including an intensity offset O(n) described
by a polynomial of maximal 2nd order. The left side of equation 3.27 therefore reads:

ln[I(n)−O(n)] = ln[I0(n)]−
( ∑

i=1

SCDi · σi(n) + R(n) + N(n) + A(n)
)

(3.34)

The coefficients of the polynomial are additional parameters in the non-linear fit. Another important
feature of WinDOAS is that it allows single scaling parameters ai to be predefined in the model function
F (n). The Fraunhofer reference spectrum I0(n) is also scaled with a fitting parameter determined by
the linear fit. The scaling parameter for the Fraunhofer reference spectrum has to be set to one. One
shortcoming of WinDOAS is that it does not consider the error propagation of the uncertainties of the
non-linear parameters for estimating the errors of the linear parameters, as MFC does.

3.4.1 Sources of Errors

The accuracy of the results is determined by the noise of the measured intensities. If the described
procedure works well and the prerequisites are fulfilled, the accuracy is given by the estimated errors of
the scaling parameters. Several effects are inaccurately treated by the model function described above.
They result in systematic errors which contribute to the accuracy of the measurement and distort the
estimation of the fitting error. For some effects a correction term can be derived which can be included in
the model function. The most important effects arising from instrumental shortcomings as well as from
physical deficits of the model function, are discussed in this section.

Instrument Noise

Instrument noise is an important parameter in the fitting procedure. The statistical errors of the fitted
parameters and therefore the theoretical detection limit are determined by the noise of the measurement.
The photoelectron noise σph is caused by the statistical distribution of the number of electrons generated
by the photons which illuminate the detector pixel. Since the number of photoelectrons is distributed
according to Poisson statistics, the noise is given by

σph =
√

α ·Ne,total (3.35)
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where Ne,total is the maximum number of photoelectrons and α the degree of saturation. Ne,total can be
calculated from the semiconductor capacity and the charge voltage.
The dark-current noise σdc of a single detector photodiode is caused by the statistical variance of the
dark current across the junction. The dark current electrons are Poisson distributed and thus for an
integration time t and a mean number of dark current electrons per time n, the noise is obtained by

σdc =
√

n · t (3.36)

The mean number of dark current electrons depends strongly on the temperature of the photodiode and
the saturation level - nonlinearity of the dark current (see Figure 4.6).
Another important noise contribution is the electronic offset noise σoff . The electronic offset is added
to the photoelectron current before it is A/D converted to ensure positive values. Furthermore, there are
several electronic noise contributions, e.g. caused by the readout process σr of the preamplifier, or by the
analog-to-digital converter σadc. All these noise contributions are random noise and, thus, decrease when
several spectra are added up. The total noise σtot is therefore given by:

σtot =
√

σ2
ph + σ2

dc + σ2
off + σ2

r + σ2
adc (3.37)

For short integration times, the dark current noise can usually be neglected. Consequently, the total noise
consists of the signal-dependent photoelectron noise, which is the most dominant contribution for high
saturation α, and the offset noise. The signal-to-noise ratio can be increased by co-adding subsequently
recorded spectra, i.e. by increasing Ne,total.

Solar I0 Effect

The convolved cross sections used in UV/visible spectroscopy need to be corrected since the I0 spectrum in
the sunlight measurements is the highly-structured solar Fraunhofer spectrum, whereas in most cases the
I0 used to measure the laboratory absorption cross sections is almost flat. In DOAS sunlight spectroscopy,
the Fraunhofer structures are removed by forming the log ratio of a spectrum to a reference spectrum
with minimal absorptions (i.e. for our balloon measurements, that is the first spectrum at balloon float
at the smallest solar zenith angle), thus retaining the absorptions by atmospheric absorbers. Since both
spectra forming the ratio are measured using the same instrument and have therefore been filtered by
the instrument slit function, complete removal of the Fraunhofer structures is not possible.
Assuming no absorption, the reference spectrum IRef according to equation 3.25 is

IRef (λ) = I0(λ) ◦W =
∫

I0(λ′)W (λ − λ′) dλ′ (3.38)

where the I0 spectrum here is the solar Fraunhofer spectrum and W (λ) is the normalized instrument slit
function. Similarly, a spectrum with absorptions of optical density τ (see equation 3.19) can be written
as

ISpec(λ) =
∫

I0(λ′)e−τ(λ′)W (λ− λ′) dλ′ . (3.39)

The negative log ratio of the measurement spectrum ISpec to the reference spectrum IRef does not com-
pletely remove the I0 term unless IRef (λ) or τ(λ) are constant over the integration interval, i.e. the full
width of the instrument slit function. This is only approximately the case for broadly-structured cross
sections like O4, but not for NO2, BrO or O3 in the Huggins bands.
The above restrictions can be avoided by using a so-called I0 corrected cross section σcorr(λ)
[Johnston 1997]. In order to generate absorption cross sections that include the solar I0 effect, synthetic
spectra with an optical density τ(λ) = σ(λ)SCD, where SCD is the slant column density, are calculated.
This leads to the following definition:

σcorr(λ) =
1

SCD
ln

[∫
I0(λ′)e−τ(λ′)W (λ− λ′) dλ′∫

I0(λ′)W (λ − λ′) dλ′

]
(3.40)
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I0 corrected cross sections can be obtained directly with the programme WinDOAS, if a high-resolution
cross section of the absorber and of the solar spectrum is available. However, as shown by Huppert [2000],
the use of convolved cross sections results in larger residual structures compared to cross sections recorded
with the instrument itself. Thus, in this study cross sections of strong absorbers recorded with the same
instrument in the laboratory were mainly used for the spectral retrieval (see chapter 5). To account for
the I0 effect, a I0 correction was calculated and added to the measured cross section (see section 6.1).
Therefore, the measured cross section had to be calibrated with the convolved cross section taken from
literature.

Absolute Value and Temperature Dependence of Absorption Cross Sections

Most absorption cross sections in the UV/visible show a strong temperature dependence, i.e. the absolute
value and the shape of the cross section change according to temperature. The temperature dependence
can directly affect the retrieval of the fit parameters ai due to the change of the absolute value, and the
variation of the shape can result in large residual structures. Hence, if the temperature dependence of the
cross section of a strong absorber is not taken into account, it may not be possible to detect underlying
weak absorbers. Here the cross sections of NO2, O3, O4, BrO and OClO were used. Their temperature
and possible pressure characteristics is discussed briefly.
The temperature dependence of the NO2 cross section has been the subject of a number of studies (see e.g.

Figure 3.3: Temperature dependence of the differential BrO cross section. The vibrational band 7,0 of the

A 2Π3/2 ←− X 2Π3/2 electronic transition is plotted for a FWHM resolution of 0.4 nm. Data was taken from

Wahner et al. [1988], Wilmouth et al. [1999], Gilles et al. [1997], Fleischmann et al. [2001], Cox et al. [1982]

and Orlando et al. [1982].

Orphal [2003]; Harder et al. [1997]; Kirmse et al. [1997]; Pfeilsticker et al. [1999]). The NO2 cross section
can be described as a bell-shaped envelope with a superimposed differential structure. The temperature
effect on the cross section is a slight broadening of the envelope with increasing temperature while the
amplitude of the superimposed fluctuations decrease. The effect of broadening of the envelope is largest
for the red tail of the cross section, whereas for the UV the envelope does not change significantly with
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temperature. Thus, the integrated cross section is only dependant to a limited extent on the temperature.
The differential cross section shows an asymmetric increase with decreasing temperatures. The differen-
tial cross section has a smaller negative temperature coefficient in the region of the peaks and a larger
positive coefficient in the region in between. The magnitude of this temperature variation depends on the
wavelength and the spectral resolution of the instrument used. For a resolution of 0.54 nm (FWHM) the
differential cross section at 448 nm increases almost linearly with decreasing temperature by almost 40 %
from 298 K to 200 K [Pfeilsticker et al. 1999]. In addition, at very high spectral resolution the differential
cross section shows large changes with changing pressure. For the low spectral resolution used in this
work, this effect is not of importance.
A detailed study of the temperature dependence of the ozone absorption in the Chappuis band
(410 − 760 nm) can be found in Burkholder and Talukdar [1994] or more recently for the wavelength
range 230 - 850 nm in Voigt et al. [2001]. Near the peak of the Chappuis band (550 − 650 nm) the cross
section varies slightly (< 1 %), while at wavelengths outside the peak it decreases with decreasing tem-
perature. For example, at 420 nm the absorption cross section decreases by 40% when the temperature
decreases from 298 K to 220 K. A pressure dependence is not observed.
The temperature and pressure dependence of the O4 absorption was investigated by Osterkamp [1997]
and Pfeilsticker et al. [2000]. They found that the shape of the O4 collisional pair absorption cross section
does not depend on pressure or temperature, while the magnitude of the cross section decreases by about
11 % when increasing the temperature by 50 K.
The cross section of OClO consists of a series of absorption bands overlaid with a broad continuum
(see Figure 5.10). The continuum decreases when the temperature is lowered, while the individual bands
become sharper and the peak cross sections increase. The error of the OClO absorption cross section
is estimated to be about 10 % and its temperature dependance between 204 and 298 K is 10 − 20 %
[Wahner et al. 1987; Kromminga et al. 2003].
The temperature dependence of the differential BrO absorption cross section is shown in Figure 3.3. All
literature values available are compared for 0.40 nm FWHM resolution and the 5 independent measure-
ments are marked with circles. The differential BrO absorption cross section decreases by ∼ 15 % when
the temperature increases from 200 K to 250 K. Its absolute error at a given temperature is ∼ 10 % and
therefore the largest independent error source in the DOAS BrO retrieval. In future it will be necessary
to measure the BrO cross section with higher accuracy.
Since the light measured by the spectrograph has traversed several atmospheric layers with different tem-
peratures, the absorption seen in the spectrum is a composition of absorptions taking place at different
temperatures. Accordingly, the residual of the fitting procedure can be decreased by using several cross
sections (in general two or three cross sections are used) recorded at different temperatures for the same
species [Sanders 1996]. The temperatures should be in the range of the temperatures of the absorbing
trace gas.

Correlations of Cross Sections

Correlations between the cross sections included in the fit can lead to systematic structures in the fit
residual. Their effect on the quality of the fit is hard to quantify, e.g. residual structures as a measure of the
quality of the DOAS evaluation can get smaller when structures are fitted incorrectly by correlating cross
sections. Correlations may occur between weakly-structured absorbers like e.g. O4 and the polynomial.
Therefore the degree of the polynomial must be as low as possible and the fit parameters must be checked
to ensure they have a reasonable order of magnitude, e.g. not negative. Correlations can also be present
when including both a pseudo-absorber (like the Ring effect) and an additive intensity offset to correct
for instrumental stray light. This can be avoided by using only one of them. Since both effects are real,
exclusion of one leads to a larger residual.
Two (or more) cross sections of the same absorber at different temperatures are quite similar in structure
and, thus, strongly correlate. This can be avoided by using a mathematical orthogonalization procedure
which makes the cross sections linearly independent. But cross sections of different absorbers can also
show cross correlations or can correlate with the spectrum itself (see also equation 3.31). Generally,
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correlations increase with the degrees of freedom of the fit and decrease with increasing fit range, i.e.
number of pixels. They vary largely between different wavelength ranges.

Ring Spectrum

For scattered light measurements, the depth of the Fraunhofer lines changes with solar zenith angle caused
by the filling in effect of Raman scattering (see section 3.1.3). Usually, this is corrected by including a fur-
ther spectrum in the fitting process [Solomon et al. 1987]. This so-called Ring spectrum can be obtained
by polarization measurements or by model calculations [Funk 2000]. For direct sun light measurements
the Ring effect is negligible [Bauer 1997; Pundt et al. 1998] and therefore not applied.

Center-to-Limb Darkening Correction

The DOAS technique is based on the assumption that the structures of the Fraunhofer spectrum I0

remain constant for all measurements. In this case, the strong solar lines, with optical densities 100− 1000
times larger than the atmospheric absorption structures, can be removed properly from the measured
spectrum and the trace gas absorptions can be evaluated. This assumption is not valid for measurements
of direct sunlight during sunrise or sunset. As the solar disk has a diameter of 0.55◦ when seen from the
Earth without refraction, the zenith angles and hence the atmospheric air masses are different for rays
leaving the upper edge, center or lower edge of the Sun. This effect becomes more important as the solar
zenith angle increases. The optical densities of the solar Fraunhofer lines vary across the solar disk and
the resulting shift of the radiance-weighted average of the sun from the solar disk center to its upper
edge causes a change of the optical densities of the Fraunhofer lines over the course of the occultation
measurements (sunrise or sunset). Unfortunately, the relative change of the different solar lines is non-
uniform and therefore an exact treatment of this effect is difficult. Bösch [2002] investigated the Centre
to Limb Darkening effect in detail and derived a correction factor that is used in this study for the OClO
DOAS evaluation in the 362 − 390 nm wavelength range (see chapter 8).

Further Sources of Error

Changes in the wavelength-pixel mapping of the measured spectra and the molecular cross sections, with
respect to the solar reference spectrum, are compensated by shifts and squeezes. As the cross sections
are given on a discrete grid, the shifted and squeezed spectra are obtained by (spline) interpolation.
The approximation is better for higher sampling ratios, given by the number of grid points per full
width at half maximum (FWHM) of the instrument function. Roscoe et al. [1996] pointed out, that
interpolation errors are small for sampling ratios > 4.5. This criterium is fulfilled for the instrument
used here. A detailed investigation of this undersampling effect for the UV spectrograph can be found in
Vradelis [1998] and Ferlemann et al. [2000].

Systematic structures can be caused by changes in the instrumental resolution. Pressure and tem-
perature variations can displace optical components of the spectrograph thus altering the instrumental
resolution. Each Fraunhofer line and, to a smaller degree, each absorption band, will cause a positive
(negative) large peak at the center of the band and smaller negative (positive) dips at the wings in the
residual of the fitting procedure. A misalignment of one of the absorption cross sections also results in
systematic structures. In this case an almost symmetrical structure with a large positive and negative
peak at the wings of the band occurs in the residual. Both effects impact the scaling factors ai as well
as the estimated errors [Ferlemann 1998].

The fitting procedure requires absorption cross sections with the resolution given by the instru-
ment function. Therefore, a mathematical convolution of a highly resolved cross section with the
measured instrument function is performed. However, the instrument function is not constant over the
entire spectral range. This means that the convolved cross sections deviate from cross sections recorded
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directly with the instrument (see chapter 5), causing systematical residual structures.

There are several instrumental shortcomings which can result in additional residual structures if
they are not taken into account. Differences in the sensitivity of the detector diodes lead to errors if a
shift and squeeze is applied in the fitting procedure. The sensitivity of the diodes can be obtained by
measuring the broadband emission spectrum of a halogen lamp. The differences of the diode sensitivity
can be corrected by dividing of the measured spectra by the broadband emission spectrum. Further
structures can be caused by the used grating itself. These structures depend on the wavelength and can
not be removed easily.

Spectrometer stray light is caused by internal reflections of light from higher orders of the grat-
ing or from wavelengths not detected by the diode array. The stray light also occurs as an offset added
to the measured intensity, an effect which changes the optical densities of the Fraunhofer lines and of the
molecular absorption lines significantly. The stray light can be reduced but not totally suppressed by
using filters and light traps for higher orders of the grating. By including an additional intensity offset
(see section 3.4) the instrumental stray light can be accounted for in the fitting procedure.

The influence of the Memory effect, which causes strong structures of one spectrum to also ap-
pear in a successively recorded spectrum and the Etalon effect, which is caused by multiple reflections on
thin parallel surfaces, were investigated by Bauer [1997] and found to be small for the used instrument.
When using glass fibres to conduct the light into the spectrograph, structures can be caused by slight
variations of the exposure of the fibre entrance and thus the stimulation of different modes. Due to
inhomogeneities of the fibre the transmissions of the modes differ. By using e.g. a diffuser plate in front
of the fibre steady exposure is achieved and this effect can be avoided.



Chapter 4

Instrumentation

The measurements presented in this study have been performed with a DOAS UV/vis double spectrograph
installed on the LPMA/DOAS1 balloon gondola during a series of balloon flights conducted since 1996.
The DOAS spectrograph and the LPMA infrared Fourier Transform spectrograph (FTIR) both perform
direct sunlight measurements during balloon ascent and solar occultation.

4.1 The LPMA/DOAS Balloon Payload

The LPMA/DOAS balloon gondola is based on a gondola developed for astronomical observations by the
Observatoire de Genève and was optimised for atmospheric measurements by Camy-Peyret et al. [1995]
(Figure 4.1). In order to perform direct sun measurements, the gondola can be stabilised in azimuthal
direction with an accuracy of about 3 - 1◦ in the lower stratosphere and 1◦ - or better at balloon float
altitude. Therefore the gondola is aligned to the Earth’s magnetic field with a gyroscope. The gondola can
be rotated with respect to the larger balloon. The rotational energy is converted to frictional heat through
the torque of a special joint that connects the gondola with the balloon. The fine-pointing is performed
by a suntracker [Hawat et al. 1995], which provides the infrared Fourier Transform spectrograph and the
DOAS UV/vis spectrograph with a parallel solar beam. Since 2002, a mini-DOAS instrument has been
installed on the gondola as well, taking measurements of scattered sunlight in nadir and limb (90◦ to
the sun) geometry [Weidner 2005]. Furthermore the gondola is equipped with pressure and temperature
sensors, GPS antennas and an on-board chemical ozone sonde.

4.1.1 The LPMA Fourier Transform Interferometer

The FTIR operated by the french LPMA team is based on a DA2 Michelson type interferometer manu-
factured by BOMEM and customised for balloon operations. It has an effective aperture of 45 mm and
produces a maximum path difference of ∆max = 50 cm leading to an apodised resolution of 1

∆max
= 0.020

cm−1. The interferometer is equipped with two channel optics with two detectors cooled using liquid
nitrogen. The spectral signatures of ClONO2, HNO3, O3, CH4, N2O, NO and H2O are covered by a
HgCdTe detector (mid-IR) and those of HCl, O3, NO2, CH4 and HF by an InSb detector (near-IR)
[Camy-Peyret et al. 1995; Payan et al. 1998; Payan et al. 1999]. The instrument has also been used to
measure H2O and O2 in the 920 nm and 760 nm regions, respectively, to retrieve CCl2F2 in the lower
stratosphere and to obtain CO2 in the 13 µm region [Camy-Peyret et al. 1999]. A multifit algorithm
[Carlotti 1988] associated with an efficient minimization of the Levenberg-Marquardt type is used for the
retrieval of vertical mixing ratio profiles from ascent and occultation measurements. The algorithm allows
the information contained in several micro-windows to be combined. The molecular parameters used in

1LPMA = Limb Profile Monitor of the Atmosphere
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Figure 4.1: Schematic drawing of the LPMA/DOAS balloon gondola. Direct sunlight is directed into the

gondola by a suntracker and is subsequently analysed by the FTIR and the DOAS instrument.

the forward model are extracted from the HITRAN database [Rothman et al. 2003]. For more details on
the LPMA instrument and retrieval, see Dufour et al.[2005] and Butz et al.[2005].

4.1.2 The DOAS Balloon Spectrograph

A DOAS instrument optimized for airborne applications was designed and described, for example, by
Ferlemann [1998], Harder [1999] and Ferlemann et al. [2000]. The basic features of the instrument are
low weight, low power consumption, stable spectral imaging and insignificant thermal drift of the spec-
troscopic system.
The instrument consists of two spectrographs in one housing, which analyse the UV and the visible part
of the sunlight separately (see Figure 4.4). The light enters each of the two spectrographs via a quartz
fibre bundle, which forms a rectangular entrance slit at the fibre end on the spectrograph side. Telescope
optics are mounted on the other end of the fibre bundles, intended to average the light received from the
sun, to limit the spectral transmission range of the incoming light and to match the f -number of each
spectrometer. Coming from the entrance slit, the light reaches a holographic grating, which disperses
the light of the respective wavelength range in 1st-order onto the detector (UV: 316.5 − 417.3 nm and
visible: 399.9− 653.0 nm). The light is detected with Peltier cooled photodiode arrays. The width of the
entrance slit was chosen to fulfill the sampling criteria given by Roscoe et al. [1996], i.e. the FWHM of
the instrument function should be sampled with more than 4.5 detector pixels. The instrumental reso-
lution is found to be 0.55 nm (= 5.5 detector pixels) and 1.48 nm (= 5.7 detector pixels) for the UV
and the visible spectrometer, respectively. The whole spectrometer housing is evacuated and thermally
stabilized by a surrounding vessel filled with a water-ice mixture. Keeping the spectrograph at a stable
temperature of 0◦C avoids spectral shifts. In addition, a refrigerant circulates in a cooling circuit to
regulate the temperature of the optical components and to cool the warm side of the photodiode Peltier
elements. Low spectrometer stray light is achieved by suppressing the higher-order and zero-order grating
reflections by using light traps and, for some flights, by including a dispersive prism preananalyzer for
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Figure 4.2: Absorption cross sections in the UV wavelength range. Top to bottom: IO [Harwood et al. 1997],

Ozone [Voigt et al. 2001], HCHO [Cantrell et al. 1990], HONO [Stutz et al. 2000], OClO

[Wahner et al. 1987], O4 [Greenblatt et al. 1990], NO2 [Voigt et al. 2002] and BrO [Wahner et al. 1988].

For O4, the collisional pair absorption cross section is shown. Absorption cross sections are convolved to the

resolution of the spectrograph.

the UV spectrograph [Vradelis 1998]. A detailed description of the DOAS spectrograph can be found in
Bauer [1997].
In the wavelength range covered by the combination of the UV and vis spectrograph, absorption fea-
tures of several species can be found, e.g. O3, BrO, NO2, OClO, HONO, HCHO, O4 etc. in the UV
range and O3, NO2, H2O, O4, NO3, OClO, IO, OIO etc. in the visible range (see Figure 4.2 and 4.3) .
The results presented in this study focus on the retrieval of BrO and OClO from measurements taken
with the UV spectrograph. For previous results obtained by evaluating the UV/vis measurements see
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Figure 4.3: Absorption cross sections in the visible wavelength range. Top to bottom: Ozone

[Burrows et al. 1999], NO2 [Harder et al. 1997], O4 [Greenblatt et al. 1990], OClO [Wahner et al. 1987], IO

[Harwood et al. 1997], OIO [Cox et al. 1999] , H2O [Rothman et al. 2003], NO3 [Sander 1986] and O2

[Rothman et al. 1996]. For O4, the collisional pair absorption cross section is shown. Absorption cross sections

are convolved to the resolution of the spectrograph, except NO2, H2O and O2. Adopted from Bösch [2002]

e.g. Ferlemann et al. [1998]; Harder et al. [1998], [2000]; Fitzenberger et al. [2000]; Fitzenberger [2000];
Pfeilsticker et al. [2000]; Bösch [2002] and Bösch et al. [2003].

Modifications on the DOAS balloon spectrograph since 2001

Some minor repairs and modifications were carried out to improve the performance of the DOAS spec-
trographs.

• To reduce the weight, the original stainless steel housing was replaced with an aluminum housing,
reducing the total weight by 6 kg.

• The contaminated holographic UV grating was replaced with a new one of the same type (Jobin
Yvon 52300080).
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Figure 4.4: Schematic drawing of the DOAS instrument. Two holographic grating spectrographs (UV and

visible) are integrated into a vacuum-sealed aluminum housing. The light enters the spectrographs through

two quartz fibre bundles which form an apparent rectangular slit at the end. Photodiode array detectors

cooled with Peltier elements detect the light. The aluminum housing is surrounded by an Epoxy-glass resin

vessel which contains a water-ice mixture. A refrigerant is pumped through a cooling circuit to regulate the

temperature of the optical components and to cool the warm side of the Peltier elements.

• Visible grating was readjusted to cover spectral range from 400−653 nm (previously 417−671 nm)
to include OClO absorption band (see Figure 4.2 and 4.3).

• Partially broken fibre bundles replaced with new ones. The diameter was increased from 125 µm to
150 µm to obtain a better sampling.

• A new Swagelok connection was implemented between fiber and flange to prevent leakage. New
leakage rate of the spectrograph is ∼ 1.5·10−7 mbar·l

s . Teflon gaskets were initially used, but were
later replaced with nylon gaskets, which compensate thermal expansion and contraction much
better.

• Adaptors for the electrical connectors on top of the flange were built to thermally decouple the
connectors from the 0◦C cold housing, in order to avoid condensation of water and thus possible
short circuits. The 5 cm high adaptors were placed on the existing connector drillings and flange
mounted. New vacuum connectors which have a larger spacing between individual pins were chosen
to avoid short circuits.

• The valve, which is integrated in the flange, was replaced since the screw thread was worn out.

As the fibre bundles and the UV grating had to be replaced, and the visible grating readjusted, the whole
optical alignment between entrance slit, grating, photodiode array and light traps had to be renewed for
both spectrographs. Therefore a new set of reference spectra had to be recorded in the laboratory (see
chapter 5).

Recommendation for future balloon flights

A dispersive prism preanalyser for the UV spectrograph [Vradelis 1998] was used during balloon flights
between 1997 and 2000. Although it was possible to reduce the spectrometer stray light, the strong light
attenuation and the resulting longer integration times and fewer recorded spectra, greatly reduced the
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Figure 4.5: Spectral shift depending on the temperature of the spectrograph. The channel number at the peak

of a cadmium line at 340 nm is plotted for different cooling scenarios - see text for details. On the right axis

the temperature inside the spectrograph is shown for comparision.

quality of the trace gas retrieval. For at least one of the flights the preanalyser was subject to a shift and
vibrations, which influenced the imaging and the spectral retrieval. The inclusion of the intensity offset
in the WinDOAS software (see section 3.4) means that it is no longer necessary to correct for the small
(see [Ferlemann 1998]) spectrographic stray light mechanically. The preanalyzer was not used after 2001,
which lowered the integration time per spectrum. The low integration time between ∼ 150− 250 ms (for
the UV spectrograph, depending on altitude and SZA) allows (20 − 30) scans to be added up before a
spectrum is transmitted. Almost no height resolution is lost since the transmission and processing of one
spectrum takes ∼ 5 seconds, but the signal to noise is increased.
Up to 2001 all the water surrounding the spectrograph was frozen until an ice block formed and then it
was allowed to defrost slowly to obtain a water-ice mixture. By doing so the spectrograph was not in a
perfect thermal equilibrium, as demonstrated in Figure 4.5. Here the position of the peak of a cadmium
emission line was recorded and compared for different spectrograph temperatures. First the spectrograph
was cooled to 0◦C by adding ice frequently into the vessel surrounding the housing. After 2 days the
spectrograph was in a thermal equilibrium which was maintained for almost 3 days. Afterwards, the
water ice mixture was cooled with a cryostat, so a ice block formed slowly. The temperature further
decreased, down to -10◦C inside the spectrograph, which caused an additional shift of the emission line.
Letting the ice block melt slowly resulted in the opposite effect and again showed a deviation from thermal
equilibrium. Since spectral shifts are to be avoided, it is strongly recommended to use a water ice mixture
to cool the spectrograph and to keep it at thermal equilibrium.

4.1.3 mini-DOAS

Since 2002 a new light-weight mini-DOAS has been installed on the LPMA/DOAS gondola [Weidner 2005
and Weidner et al. 2005]. The new mini-DOAS spectrometer has been designed for low weight (∼ 5 kg)
and low power consumption (7.5 W), with particular emphasis being put on stable optical imaging and
a reasonably large signal-to-noise ratio. Its light weight and small size allow versatile applications on
different platforms and under several observation geometries (scanning and fixed limb, nadir and direct
sunlight). Skylight radiances in the UV/visible range between 330 and 550 nm are observed. The recorded
spectra are analysed for column densities of O3, NO2, BrO, H2O and O4 along the line of sight. For the
limb and nadir measurements Radiative Transfer (RT) calculations are used to simulate the measured
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quantities and infer vertical profiles of the measured species. The new method of atmospheric trace gas
profiling by balloon-borne UV/vis limb scatter measurements has been tested against simultaneous mea-
surements of the same parameters available from in-situ, or UV/vis/near IR solar occultation observations
performed by the LPMA and DOAS instruments onboard the same payload. Scanning limb observations
provide time-resolved profile information of radicals during sunset.

4.2 Instrumental Effects and Sun-Tracker Correlations

Within the framework of the ENVISAT / SCIAMACHY (ENVIronment SATellite / SCanning Imag-
ing Absorption spectroMeter for Atmospheric CHartographY) satellite validation, solar irradiance spec-
tra are measured absolutely with the LPMA and DOAS instruments at balloon float altitude. Af-
ter accounting for the atmospheric extinction due to Rayleigh scattering and gaseous absorption
(O3, and NO2), the measured solar spectra can be compared with previous observations by e.g.
Kurucz et al. [1984] or Thuillier et al. [1997]; [1998]. Details of the absolute calibration and results can
be found in Gurlit et al. [2005] and Lindner [2005] and are not discussed in any more detail here. Dur-
ing initial tests for the absolute calibration and a first data evaluation, some instrumental effects were
observed and measured. These effects are presented in this section.

4.2.1 Instrumental Deficits

Figure 4.6: Nonlinearity of the dark current for the UV spectrograph at −10◦C photodiode array temperature.

Counts are averaged over the total 1024 pixels of the photodiode array.

Since the balloon-borne LPMA/DOAS spectrometers analyse the solar light from a parallel beam
of 10 cm diameter, a sun simulator for laboratory test measurements was developed at the University
of Bremen. The sun simulator consists of a small passively-cooled reflective diffuser plate of 9.2 mm
diameter which is uniformly illuminated by 4 stabilised 250 W reflector Quartz Tungsten Halogen (QTH)
lamps. The small diffuser plate is imaged into infinity through a 200 mm diameter, f = 1000 mm, off-axis
parabolic mirror. It produces a collimated beam with a divergence of about 0.52o. The diffuser plate is
installed in the focus of the collimating mirror for the emission of a virtually homogeneous beam across
its principal axis [Gurlit et al. 2005]. Long integration times (up to 25 minutes for the UV spectrograph)
are necessary since the UV/visible output of this source is relatively low. With an average of ∼ 5 counts

s
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the dark current of the photodiode array can make up to ∼ 30 % of the total signal at an average
saturation level of ∼ 50 % of the lamp spectrum. That means that exact knowledge of the dark current
is mandatory. Unfortunately the dark current shows nonlinear behaviour at constant temperature, i.e.
it depends on the saturation level of the photodiode. It is usually assumed that the dark current is
independent of the discharge of the photodiode. However, it can be shown that it strongly depends
on the present charge in the barrier layer capacity and, therefore, on the voltage at the barrier layer
(see Stutz [1991]). Figure 4.6 shows the nonlinear behaviour of the UV spectrograph’s dark current at a
temperature of the photodiode array of −10◦C.
Another prerequisite for absolute calibration is the linearity of the detector response (photodiode and

Figure 4.7: Test of the detector’s linearity response (photodiode and electronics). The figure shows the ratios

of two sums of photodiode readouts for direct sun observations from ground, as a function of the average

saturation level of the upper channels. The two clusters of channel readouts are from the centre and from the

far wing of the Fraunhofer calcium line at 393 nm, where 7 and 11 photodiodes were considered, respectively.

The linear fit is for data points with a saturation level greater than 30 % but less than 80 %, which is the

typical maximum saturation level during measurements. The resulting curve represents linearity of the detector

electronics ((8.4 ± 1.5)× 10−5).

electronics). It was tested using the method suggested by Ferlemann et al. [2000] but values at different
saturation levels were weighted equally and only between 30 % and 80 % saturation level. Direct sun
observations from the ground were used to calculate the ratio of two clusters of photodiode readouts from
the centre and from the far wing of the Fraunhofer calcium line at 393 nm. It is assumed that the calcium
absorption line in the Fraunhofer spectrum remains constant over the period of the measurements. The
advantage of this method is that the ratio is independent of the integration time and fluctuations in the
intensity of the light source. The ratio is plotted in Figure 4.7 as a function of the average saturation
level of the upper channels. The ratio is expected to be constant which is the case for saturation levels
> 30 %. The results obtained are similar to the previous measurements of Ferlemann et al. [2000].
While performing measurements with a constant light source, it became clear that the exposure time was
not set or transmitted correctly. The UV and the visible spectrograph contain independent single-board
computers (MC68332 CPU module - also known as 68k) [Ferlemann 1998]. The program written in the
EPROM2 of the 68k module controls the read-out and the temperature regulation of the photodiode

2EPROM = Electrically Programmable Read Only Memory
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Figure 4.8: Illustration of the single-board computer MC68332 timing problem (see text for details). The

average counts per second for 200 successive lamp spectra recorded with the UV spectrograph are plotted.

Two domains can be distinguished: one for correctly and one for incorrectly transmitted exposure time. The

overall decrease of the intensity is due to a decrease in the lamp ouput.

arrays and their Peltier elements. Unfortunately, in the previous version of the program in some cases
an additional start signal, which initializes the exposure of the photodiode, was sent 10 ms after the
first one. Therefore for a specified exposure time it was possible to actually receive a spectrum that was
exposed 10 ms less. This behaviour is demonstrated in Figure 4.8 where the average counts per second
for successive lamp spectra, which were recorded with the UV spectrograph, are plotted for a specified
constant exposure time. Two domains can clearly be distinguished, where the overall decrease of the
intensity is due to the decrease in lamp ouput.
During balloon flights the 68k module is operated in automatic mode. This means that the exposure
time is calculated for each scan from the signal of the former scan in order to reach the optimum of 80 %
of the maximum signal, which avoids nonlinearity effects. This procedure has to be performed since the
signal changes constantly during the course of a balloon flight. In the previous version of the program,
used until 2001, the new exposure time was calculated with an accuracy of one millisecond, although
the internal timing of the 68k module is only in 10 ms steps. Therefore the wrong (with 1 ms accuracy)
exposure time was stored with the transmitted spectrum. In the latest version of the program these
deficiencies have been removed.

4.2.2 Sun-Tracker Correlations

During a first evaluation of the absolutly calibrated spectra for the flight at Aire sur l’Adour in October
2003, the intensity in counts per second, of 30 diodes at around 350 nm, is plotted against time. As can
be seen in Figure 4.9 the development of the intensity is not smooth, but shows a break from around
15:50 to 16:15 UT. The increase in intensity until the balloon reaches float altitude at 16:35 UT, is due
to decreasing absorption and scattering of light, mainly of NO2 and O3 and of Rayleigh scattering. After
reaching float altitude, observed air masses increase again as the Sun is setting, which leads to a decrease
of intensity. For details of the flight profile see section 6.3.3.
The observed increasing intensity is due to a change in the position of the acquisition mirror of the

sun-tracker (see Figure 4.1). Since the gondola is stabilised in azimuth direction, the acquisition mirror
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Figure 4.9: Dependence of the average intensity of 30 photodiodes of the UV spectrograph, on the sun-tracker

position for the balloon flight at Aire sur l’Adour on 9 October 2003. The thick red and mangenta line are

the elevation and azimuth offset position, respectively. Black dots denote the averaged intensity in counts

per second. A correlation between the sun-tracker position and the recorded intensity can be seen, especially

between 15:50 UT and 16:15 UT. The increase in intensity until the balloon reaches float altitude at 16:35 UT,

is due to decreasing absorption and scattering of light. As a result of the setting Sun, observed air masses

increase again, leading to a decrease in intensity.

mainly compensates for changes in elevation angle in order to guarantee a perfect pointing towards the
Sun. This behaviour is caused by an electronic offset applied to the pointing system of the sun-tracker
acquisistion mirror. Since the LPMA fourier transform spectrometer has a very narrow field of view,
the signal can be optimised by observing a different section of the Sun. Therefore, the pointing can be
changed from the nominal position, by applying a fixed angular offset to either the azimuth or elevation
position of the acquisition mirror. This is done by adding an electronic offset to the signal send to the
stepper motors which control the position. The conversion from electronic signal to actual angle in
degrees is given by equations 4.1 and 4.2.

0.023 ·OffsetElevation = ∆(Elevation)◦ (4.1)
0.0047 ·OffsetAzimuth = ∆(Azimuth)◦ (4.2)

To further investigate this effect, ground measurements were performed during the tropical campaign in
Teresina, Brazil in November 2004. The DOAS instrument was fully integrated into the balloon gondola
and direct sun light measurements were performed with the sun tracker during sunset. During measure-
ments the offset position of the acquisition mirror was changed in positive and negative elevation and
azimuth direction. Figure 4.10 shows the results of a typical BrO retrieval (see section 6.1) performed
with these recorded spectra. The root mean square (RMS) of the residual is used as an indication of the
quality of the DOAS fit. The overall increase of the RMS is due to the change in elevation by tracking
the setting sun. The first few data points show regular retrieval in nominal mirror position (18:50 to
18:54 UT). Between 18:55 and 19:06 UT the elevation offset was changed gradually up to ∼ 0.7◦ in both
directions. Afterwards an azimuth scan was performed in the same way up to ∼ 0.33◦ from 19:06 to 19:20
UT. It can clearly be seen that a change in elevation or azimuth offset position has a strong influence on
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Figure 4.10: Root mean square (RMS) of the residual as an indicator for the quality of a BrO retrieval, from

direct sun light ground measurements, for different elevation and azimuth offset positions of the sun-tracker

acquisition mirror. Measurements were taken during the tropical balloon campaign at Teresina, Brasil. The

overall increase of the RMS is due to the change in elevation by tracking the setting sun. Changes are given

relative to zero position in arbitrary electronic offset units, as used by the LPMA team and in angular degrees.

Sensitivity to elevation changes is more distinct than for azimuth.

the RMS and that changes in elevation seem to effect the residual more severly than changes in azimuth.
Figure 4.11 shows the field of view of the UV telescope as measured in the laboratory. Although the

Figure 4.11: Field of view of the UV telescope.

FWHM with about 3◦ is larger than the flare angle of the Sun disk, which is 0.53◦, the UV telescope shows
a strong sensitivity to changes in the optical axis (see also [Lindner 2005]). Therefore, the behaviour of
the intensity as observed in Figure 4.9 can easily be explained. Here, the elevation offset of the sun tracker
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Figure 4.12: Optical densities of the residual structures for HCHO and BrO retrieval (left and right panel,

respectively), from direct sunlight ground measurements, for different elevation offset positions of the sun-

tracker acquisition mirror. Left panel shows the 335 − 345 nm wavelength range of the HCHO fit window

(335 − 360 nm) and the right panel shows the 350 − 360 nm wavelength range of the BrO fit window

(346 − 360 nm). Three cases are plotted for an elevation offset angle of 0◦, 0.58◦ and 0.69◦, in black,

green and blue respectively. For comparison a normalised Sun spectrum is shown in red. It can be seen that

with increasing elevation offset angle, the residual structures get significantly larger and correlate with the

Fraunhofer absorption lines.

was changed to −0.23◦ between 15:50 UT and 16:15 UT. Such behaviour was not observed for the Vis
spectrograph.
A change in intensity alone does not explain the degradation of the DOAS-fit as observed in Figure 4.10.
This indicates that there is also a wavelength-dependent factor, which changes the imaging of the UV
spectrograph. Figure 4.12 shows residual structures of HCHO and BrO retrieval for the ground measure-
ments performed during the tropical campaign in Teresina, Brazil in November 2004. In the left panel a
sub window of the HCHO fit window from 335 − 345 nm is plotted for 3 elevation offset angles: 0◦, 0.58◦

and 0.69◦. The right panel shows the respective residual structures in the 350 − 360 nm sub window of
the BrO fit, for the same angles. For comparison, the reference Sun spectrum is also shown. It can be
seen that as the elevation offset increases, the residual shows large systematic structures that correlate
with the Fraunhofer lines.
A possible explanation is the wavelength-dependent reflectivity of the sun-tracker mirror, which varies
with the angle of incidence. Corresponding measurements performed by the French SOPRA company can
be found in Lindner [2005]. Polarisation effects might also be of importance. This behaviour and possible
causes have to be investigated further during future campaigns.



Chapter 5

Laboratory Reference Spectra

In order to optimise the DOAS retrieval for the different species that can be measured with the balloon
spectrograph, a series of reference spectra of the main absorbers was measured in the laboratory. These
reference spectra proved to be particularly valuable for the DOAS-retrieval of weak absorbers (BrO and
OClO), which mainly depends on the accurate removal of strong absorbers like O3 and NO2 from the
measured spectra. Although nowadays high resolution cross sections of all relevant absorbers exist and
can be convolved to the resolution of the balloon spectrograph, it is difficult to determine the exact
instrumental slit function W in the desired wavelength range. It is also virtually impossible to consider
variation of W with wavelength. The recording of a spectrum I∗ with a grating spectrograph is represented
mathematically by a convolution of the continually and perfectly resolved incoming intensity spectrum
I(λ), with W (λ) of the apparatus (for a detailed description see e.g. Stutz [1996]).

I∗(λ) = I(λ) ◦W =
∫

I(λ − λ′) ·W (λ′)dλ′ (5.1)

The instrumental slit function can be obtained experimentally by recording the spectrum of an atomic
emission line. With a full width at half maximum (FWHM) of typically 10−3nm, the emission lines can
be regarded as delta peaks compared to the typical resolution of 0.1 - 1 nm for a DOAS spectrograph. The
emission spectra of mercury, cadmium and neon are commonly used. When performing the convolution
with a computer, the highly-resolved cross section and the emission line spectrum have to be discretised,
i.e. they have to be interpolated on a linear dispersion. The advantage of recording reference spectra
with the spectrograph, which is used later for taking measurements, is that the described processes of
interpolation and convolution are no longer necessary. Another advantage is that the wavelength-pixel
mapping can be compared more easily for the measured and reference spectra.
An example of the effect of different instrument slit functions on the resulting reference spectrum is

shown in Figure 5.1, where a high resolution O3 (see Voigt et al. [2001]) cross section with a temperature
of 246 K was convolved. The different instrument slit functions used in this study were all derived from the
same cadmium emission line at 340.4 nm but unequally interpolated and corrected for baseline. The figure
shows the results for the 346 - 360 nm BrO evaluation wavelength range. It can be seen that especially at
the large absorption bands at ∼ 347 nm and ∼ 351.5 nm the results vary significantly. Since even small
changes in the reference spectra of the strong absorbers have a significant influence on the evaluation and
thus the detection limit of the weak absorbers, a new set of reference spectra was taken in the laboratory
after minor changes in the optical setup of the spectrograph had been carried out (see section 4.1.2). A
list of all the spectra recorded for different temperatures is given in table 5.1 and table 5.2, for the visible
and the UV channels respectively. In addition, spectra of nitrous acid (HONO) were taken in the UV
channel.

57
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Figure 5.1: High resolution O3 cross section at 246 K [Voigt et al. 2001] convolved with different instrument slit

functions in the 346 nm - 360 nm BrO evaluation window. The case scenarios a to e correspond to instrument

slit functions derived from the same 340.4 nm cadmium emission line.

5.1 Experimental Setup

The measurements were taken at the Institut für Umweltphysik using a cylindrical flow tube 1.22 m
in length and 3.4 cm in diameter (see Figure 5.2). A coolant is pumped through a second concentric
glass cylinder, allowing the temperature inside the flow tube to be varied between 350 K and 195 K. A
vacuum was created in a third concentric cylinder to thermally insulate the tube. For details regarding
the experimental setup see the diploma theses of Hönninger [1999] and von König [1996].
An evacuated cell with Suprasil quartz glass windows is flanged to each end of the flow tube. Suprasil is
well suited for this purpose because it has a transmission coefficient of more than 90 % for a path length
of 2 mm between 200 nm and 1000 nm. An OSRAM XBO 450 W xenon lamp was used as a light source
for the UV measurements as it has a high output in the 280 nm to 380 nm wavelength range and shows

Table 5.1: Overview of Laboratory reference spectra taken with the balloon spectrograph for the visible channel

(400 to 650 nm) at 1.3 nm resolution. The label of the spectra follows the balloon group internal numbering

Vis
T / K     ± 3K

O3 -
Spectrum #

NO2 -
Spectrum #

OClO -
Spectrum #

280 V258765 –
V258767

244 V258850 –
V258851

273 V258327 –
V258329

V258198 –
V258199

258 V258359 –
V258360

253 V258176 –
V258177

240 V258435 –
V258436

221 V259109 –
V259111

V258449 –
V258479

212 V258100 –
V258101

233 V259066 –
V259069

V258160 –
V258161

224

207 V259194 –
V259196

V258582 –
V258587

197 V258020 –
V258021
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Table 5.2: Overview of Laboratory reference spectra taken with the balloon spectrograph for the UV channel

(317 to 418 nm) at 0.5 nm resolution. The label of the spectra follows the balloon group internal numbering

UV
T / K     ± 3K

O3 -
Spectrum #

NO2 -
Spectrum #

OClO -
Spectrum #

BrO -
Spectrum #

293 V255306 –
V255314

240 V255396 –
V255394

221 V255420 –
V255422

V256203 –
V256205

212 V255426 –
V255442

273 V255334 –
V255337

V254532 –
V254534

V257438 –
V257441

V256182 –
V256183

253 V255373 –
V255377

V254537 –
V254539

V256945 –
V256947

V256192 –
V256194

233 V255401 –
V255410

V254588 –
V254590

V256962 –
V256963

224 V254606 –
V254608

V257039 –
V257048

216 V254699 –
V254702

207 V255442 –
V255443

V254745 –
V254747

V257058 –
V257063

201 V254799 –
V254800

197 V255460 –
V255461

V256217 –
V256220

almost no spectral structures. For the mesurements in the visible channel, an OSRAM XENOPHOT
HLX 150 W lamp was used which has no significant spectral structures over the whole wavelength range.
To create a parallel light beam through the flow tube, the spiral-wound filament was imaged by a lens
onto a pin hole (1 mm in diameter) which served as a point light source and was placed in the focus of a
second lens (see Figure 5.3). The diameter of the second lens determines the diameter of the light beam
and in this case was 20 mm. The telescopes of the balloon spectrograph were mounted on the opposite
side of the flow tube.
Before each series of measurements for a species at different temperatures, the flow tube was evacuated
down to ∼ 10−3hPa and then flushed with O2 or O3 to remove possible contamination and avoid surface
reactions. It was especially important to pump water vapor out of the tube to avoid reactions with H2O
and condensation of H2O on the tube and side windows. During the whole measurement process which
lasted about 6 weeks, the balloon spectrograph was kept stable at 0◦ C by adding ice frequently into the
surrounding water ice reservoir. This ensured that spectral shifts between the series of measurements of
different species could be avoided. Before each measurement for a certain temperature an emission line
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Figure 5.2: Sketch of the flow tube. The inner tube is used to synthesize and measure the trace gases. A

coolant can flow through the middle tube to vary the temperature and a vacuum can be created in the outer

tube to serve as thermal insulation. Adapted and modified from Hönninger [1999]
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Evacuated flow tube

Lamp Lens I Lens II Telescope

Aperture

Spectrograph
and detector

Figure 5.3: Experimental setup for taking reference spectra: The spiral-wound filament of the lamp is imaged

by lens I on a pin hole (1 mm in diameter). Lens II creates a parallel beam through the flow tube. The telescope

collects the light and couples it into the spectrograph.

spectrum of a mercury-cadmium lamp was taken. When comparing emission line spectra from different
measurements or days, no spectral shifts could be observed, i.e. they were smaller than 0.03 pixels.
Keeping the spectrograph stable in this way proved to be very useful for the further processing of the
spectra, since no relative spectral shift between the absorbers, especially the main absorbers (O3 and
NO2), had to be applied.
Before and after the flow tube was filled with a chemical species and an absorption spectrum at a certain
temperature was taken, a reference spectrum of the lamp was recorded, without absorber in the light
path. Furthermore, the temperature inside the tube was monitored to ensure it was stable. It was left to
stabilize for 20 minutes before starting a measurement. The following section gives a short description of
the measurement of each species and its particularities and shows examples of recorded reference spectra
in the UV channel.

5.2 O3 Reference

Ozone was produced using an ozoniser. Its mode of operation is based on the Siemens principle, in which
molecular oxygen is dissociated by impacts with electrons. Molecular and atomic oxygen react to ozone.
The ozoniser consists of two concentric glass tubes. A 0.5 mm strong copper foil is fixed around the outer
tube and inside the inner tube, to serve as electrodes. O2 flows through the gap between the tubes. The
outer electrode is grounded and voltage pulses of 14 kV at a frequency of 50 Hz are connected to the inner
one (for details see e.g. Hönninger [1999]). Since the discharge occurs at a fixed frequency, the amount of
oxygen atoms and therefore ozone molecules produced per time unit is fixed. The maximum concentration
that can be obtained under standard conditions is around 6 %, since an excess of ozone will be destroyed
inside the ozoniser itself. Such an ozone production rate can only be achieved at low flow rates.
Teflon tubes and stainless steel joints are used to connect the ozoniser with the flow tube to reduce ozone
loss by surface reactions. A constant air flow rate of approximately 4 l/hour was chosen. Figure 5.4 shows
recorded O3 cross sections plotted after they were processed and fitted to a high resolution absorption
cross section of Voigt et al. [2001] which was convolved to the resolution of the ballon spectrograph.
The laboratory cross section at Tlab = 197 K, Tlab = 207 K were fitted to a convolved cross section at
Tlit = 203 K, the Tlab = 223 K was fitted to Tlit = 223 K and Tlab = 240 K and Tlab = 253 K were fitted
to Tlit = 246 K respectively. Therefore the cross sections scatter around three regimes corresponding to
the three temperatures of the literature cross sections. Figure 5.4 shows a section of the Huggins band
from 345 nm to 360 nm, which is also the BrO retrieval range. Around 346 nm, 350 nm and 357 nm the
temperature dependence of the O3 absorption cross section can clearly be observed.
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Figure 5.4: O3 laboratory absorption cross section determined at the Institut für Umweltphysik. The 345 nm -

360 nm wavelength range is shown for five temperatures. The reference spectra were fitted (see text for

details) to convolved high resolution absolute absorption cross section at T = 203 K, T = 223 K and T = 246 K

Voigt et al. [2001]. Therefore, three different regimes [197 K/207 K, 223 K, 240 K/253 K] are displayed respec-

tively and absolute values are shown. Strong temperature effects can clearly be observed at 346 nm, 350 nm

and 357 nm.

5.3 BrO Reference

As BrO is a radical, it has to be produced permanently during observations. Here, BrO was produced
by reacting bromine with ozone. At room temperature bromine (Br2, from FlukaChemie with a purity
≥ 99.5 %) is a reddish brown fluid with a vapour pressure of 200 mbar. In order to obtain a constant

Figure 5.5: Br2 literature absorption cross section as determined by Seery and Britton [1964]
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and well defined amount of Br2, an adjustable flow of oxygen was channeled over liquid bromine, which
was kept constant at 0◦ C inside a washing flask. At 0◦ C, Br2 has a vapour pressure of 82 mbar. The
O2 pressure was kept constant at ∼1000 mbar. O3 was produced by an ozoniser as described in section
5.2. By merging the seperate flows of O2/O3 and O2/Br2 before the flow tube, a mixture of O2, O3 and
Br2 is formed. For a detailed description see Hönninger [1999]. BrO is mainly produced by the following
reations (see e.g. Wahner et al. [1988]) inside the flow tube:

Br2
hν−→ 2 Br (5.2)

Br + O3 −→ BrO + O2 k298 = 1.16 · 10−12 cm3

molecule · s (5.3)

As only low concentrations of BrO could be obtained, the recorded BrO cross sections are quite noisy.

Figure 5.6: BrO laboratory absorption cross section determined at the Institut für Umweltphysik. The 337 nm -

363 nm wavelength range is shown for four temperatures between 197 K and 273 K in arbitrary units.

Nevertheless they are very useful in determining the correct shift that has to be applied in the DOAS
evaluation for example for the convolved Wahner et al. [1988] BrO absorption cross section. The recorded
spectra have to be corrected for O3 and Br2 (see Figure 5.5) absorptions. The results are shown in Figure
5.6 in the 337 nm - 363 nm wavelength range for 4 different temperatures between 197 K and 273 K. Note
that arbitrary units are plotted and that the decreasing cross section with decreasing temperature is due
to the lower concentration inside the flow tube and not the temperature of the BrO absorption cross
section.

5.4 NO2 and HONO Reference

To record NO2 reference spectra, the flow tube was first evacuated and then filled from a connected
NO2 gas cylinder. After filling the flow tube with NO2 up to a pressure of ∼ 25 mbar, the tube was
sealed, allowing no flow. Unfortunately, nitrous acid (HONO) forms in the tube since the surface to
volume ratio is rather high and remnants of water were still present in the inner tube. The cooling of the
flow cell in particular favours the condensation of water on the inner tube’s surface. HONO is formed by
heterogenous reactions on surfaces. For a detailed description of the HONO chemistry see e.g. Stutz [1996]
and Trick [2000].

NO2(g) + NO2(g) + H2O(l)
surf.−→ HNO3(g) + HONO(g) (5.4)
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Figure 5.7: HONO laboratory absorption cross section determined at the Institut für Umweltphysik. The

328 nm - 390 nm wavelength range is shown for three different production rates (see text for details) in arbitrary

units.

The subscripts l and g denote the liquid and gas phase respectively. Since the adsorption of NO2 on
H2O is unlikely, the production of HONO is probably favoured by the reaction on aqueous atmospheric
aerosols and surfaces as follows:

NO2 + NO2 → N2O4 (5.5)
N2O4 + H2O(l) → (HNO3 + HONO)(l) (5.6)

The nitrous acid subsequentely escapes into the gas phase. At low temperatures the strongly temperature
dependent equilibrium is shifted in favour of the dimer N2O4.
As both N2O4 and HONO have significant absorption structures in the UV range it was necessary to

correct the measured UV absorption spectra of NO2 for both. The N2O4 structure is broad banded (see
Figure 5.8) and can be removed by fitting a polynomial to the NO2 spectra. For HONO the spectra had to
be recorded using the UV spectrograph in the laboratory. For this purpose, a glass apparatus developed
to produce HONO at the Forschungszentrum Karlsruhe and based on the work of Nash [1976] was used.
A 0.065 % sulphuric acid (H2SO4) and a 0.01 molar potassium nitrite dilution (KNO2) was pumped at
a constant rate via flexible tube pumps into a reaction tray. At equilibrium a pH-value of ∼ 2 adjusts.
Under these conditions the two dilutions form nitrous acid and potassium hydrogen sulphate.

H2SO4 + KNO2
H+→ K(HSO4) + HONO (5.7)

The quantities of NO and NO2 produced can be ignored. On the surface of the 800 mm high and 40 mm in
diameter glass downpipe, the reactant dilutions further react with each other and are collected in a glass
reaction tray. N2 at a constant rate of about 10 l min−1 was blown over the product dilution. Therefore,
outflowing gas contained HONO concentrations well above the equilibrium concentration. The product
dilution had to be pumped out of the tray with a second flexible tube pump to obtain stable conditions
and a constant filling level. For a detailed description and a picture of the apparatus see Trick [2000].
Figure 5.7 shows the recorded HONO spectra in the 328 nm - 390 nm wavelength range for 3 different
flow rates adjusted with the reactant pump. The NO2 spectra corrected for N2O4 and HONO are shown
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Figure 5.8: N2O4 literature absorption cross section as determined by Harwood and Jones [1994] for T = 213 K

in Figure 5.9 in the 360 - 390 nm wavelength range for temperatures of 207 K and 223 K. The reference
spectra were fitted to a convolved high resolution absolute absorption cross section at T = 223 K published
by Voigt et al. [2002]. Therefore absolute values are shown. Note that temperature effects can be seen
throughout the range.

Figure 5.9: NO2 laboratory absorption cross section determined at the Institut für Umweltphysik. The 360 -

390 nm wavelength range is shown for temperatures of 207 K and 223 K. The reference spectra were fit-

ted (see text for details) to a convolved high resolution absolute absorption cross section at T = 223 K

[Voigt et al. 2002]. Therefore absolute values are shown. Note that temperature effects can be seen.
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5.5 OClO Reference

Figure 5.10: OClO laboratory absorption cross section determined at the Institut für Umweltphysik. The 325

to 400 nm wavelength range is shown for a temperature of T = 207 K in arbitrary units.

OClO is formed and can be observed inside the vortex during the polar winter. To produce OClO
in the laboratory a small vessel containing potassium chlorate (KClO3) was placed inside a horizontally
mounted glass cylinder. The cylinder was closed at both ends with shot plugs which have small openings
in the middle to connect teflon tubes. Before the cylinder was sealed, highly concentrated sulphuric acid
(H2SO4) was dripped on the potassium chlorate. O2 was blown through the glass cylinder at a constant
rate to transport the produced OClO and the other reaction products into the flow cell. An example of
a measured OClO absorption cross section can be seen in Figure 5.10 for the 325 to 400 nm wavelength
range at a temperature of T = 207 K.

5.6 Summary and Effect on Retrieval

The recording of reference spectra in the laboratory with the balloon spectrograph has proved to be
important and useful. Especially for the retrieval of BrO and OClO it is of uttermost importance to
remove the absorption features of the strong absorbers O3 and NO2 thoroughly. Keeping the spectro-
graph stable over the whole measurement period in the laboratory, and therefore avoiding spectral shifts,
makes it possible to perform a relative wavelength alignment between the reference spectra independent
of literature values. Thus, incorrect wavelength calibrations as for the Wahner et al. [1988] BrO cross
section can be easily compensated. Several studies have been carried out on incorrect wavelength cali-
brations and the effect on the retrieval of for example BrO, see e.g. Mohamed-Tahrin et al. [2001] and
Aliwell et al. [2002]. Figure 5.11 shows, using the example of the Kiruna 1997 balloon flight, how dif-
ferent NO2 and O3 reference spectra influence the BrO retrieval. In panels a) - h) the development of
the slant column densities and important fit parameters for the BrO retrieval wavelength range (346 -
360 nm) are plotted. The standard retrieval with laboratory absorption cross sections of O3 and NO2 and
convolved literature absorption cross sections of OClO [Kromminga et al. 2003], O4 [Hermans 2002] and
BrO [Wahner et al. 1988] are plotted. The results of a retrieval are shown for comparison, where the O3

and the NO2 absorption cross sections were replaced with convolved literature absorption cross sections
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of Voigt et al. [2001] for O3 and Voigt et al. [2002] for NO2 at almost the same temperatures. All other fit
parameters were the same. Especially in the occultation part of the measurements, starting at 14:00 UT,
there are significant discrepancies between the two retrievals and the root mean square of the residual
(panel a) ) in the case of self-recorded references is much lower. In the development of the OClO -, O4 -

Figure 5.11: Development of the slant column densities and important fit parameters for the BrO retrieval in

the 346 nm - 360 nm wavelength range for the 1997 Kiruna balloon flight. Two scenarios are compared: In black

the standard retrieval with laboratory absorption cross sections of O3 at T = 197 K and T = 253 K and NO2 at

T = 228 K and in red a retrieval where the O3 and NO2 cross sections were replaced by convolved literature

absorption cross sections at T = 203 K and T = 246 K [Voigt et al. 2001] and T = 223 K [Voigt et al. 2002],

respectively.
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and BrO - differential slant column densities (panels d), f) and h)) gives more realistic values in the case
of self-recorded references. For the retrieval of weak absorbers, especially in the UV channel, the use of
absorption cross sections recorded with the balloon spectrograph is recommended to accurately remove
the spetral features of strong absorbers.
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Chapter 6

Stratospheric BrO Profiling

BrO slant column densities (SCDs) are retrieved by applying the DOAS method to the spectra recorded
during balloon flights, as described in detail in section 6.1. Stratospheric BrO profiles can be obtained
from BrO - SCDs with different inversion methods, which are explained in section 6.2. So far, 13 DOAS
balloon flights have been performed. The latest 5, which have not been discussed in detail in previous
publications, are presented in section 6.3.

6.1 Experimental Details of the BrO Evaluation

The theoretical details of the DOAS evaluation are described in section 3.4. The actual input parameters
and resulting errors are summarized here. All spectra measured during a balloon flight are corrected for
offset and dark current prior to the DOAS evaluation. Offset and dark current spectra are either recorded
on the ground before balloon launch or at balloon float after sunset. An important aspect of the DOAS
evaluation is the exact wavelength calibration of both the measured spectra and the fitted trace gas
cross-sections. In general, literature cross-sections measured with Fourier Transform (FT) spectrometers
have a very precise wavelength calibration.

6.1.1 The DOAS BrO-Retrieval

The BrO evaluation was performed in the wavelength range 346 to 360 nm as recommended by
Aliwell et al. [2002]. This wavelength range contains the UV vibration absorption bands (4−0 at 354.7 nm,
and 5 − 0 at 348.8 nm) of the A(2π)←X(2π) electronic transition of BrO. This set of reference spectra
used contained a NO2 reference spectrum for T= 207 K, mainly for Arctic winter flights, or T= 233 K,
where indicated. Two ozone spectra at T= 197 K and T= 253 K were fitted simultaneously to account for
temperature effects (see e.g. section 3.4.1), where the two cross-sections are orthogonalized to each other.
As described in chapter 5, the NO2 and O3 spectra were all recorded with the balloon spectrograph in
the laboratory. The NO2 spectra were calibrated, with respect to wavelength and the absolute value, with
the NO2 cross-sections given by Voigt et al. [2002]. For this purpose, the high resolution cross-section of
Voigt et al. [2002] was convolved to our instrumental resolution using the standard convolution tool of
WinDOAS. An I0-corrected convolution was also performed and the differences between both calculated.
This I0-correction was then added to the measured and calibrated NO2 reference spectra. The relative
wavelength alignment and calibration of the O3 reference spectra were performed correspondingly with
the convolved high-resolution cross-section of Voigt et al. [2001].
For the O4 absorptions, the measured laboratory spectrum of Hermans [2002] was used. The O4 reference
spectrum is not an absolute cross-section but a collision pair absorption cross-section. From measurements
in the laboratory it is known that the absorption of O4 per unit length can be written as A = α× [O2]2,

69
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Figure 6.1: Correlation coefficients for the BrO evaluation for flights after Kiruna 2001 (see text for details).

The coefficients of the polynomial are denoted by x0, x1 and x2.

where α is the collision pair absorption cross-section in units of cm5

molecule2 . The BrO reference used is the
absolute cross-section measured by Wahner et al. [1988], measured with a spectral resolution of 0.4 nm.
The wavelength calibration was taken from our own laboratory measurements. As observed in the lab-
oratory spectra the Wahner spectrum has to be shifted by ∼ 0.19 nm, which is in accordance with the
measurements of Wilmouth et al. [1999], who deduced a shift for the 4-0 and 5-0 vibrational absorption
bands of 0.07− 0.19 nm relative to the Wahner BrO cross section.
A 2nd- degree polynomial was used to approximate the broad-band components. Additionally an inten-
sity offset - an additive 1st- degree polynomial - was included in the fit to account for the spectrometer
stray light. The spectrum that was recorded immediately after the balloon float altitude had been reached
was used as the Fraunhofer reference spectrum.
The whole package of trace gases was then aligned to the Fraunhofer spectrum. For this purpose, a solar
spectrum was evaluated with large NO2 and O3 absorptions using the set of reference spectra, which was
allowed to be shifted. The coefficients obtained for the shift and squeeze were then used for the evaluation
of the whole flight where only the measured spectra were allowed to shift and squeeze.
The correlation coefficients for this set of reference spectra in the 346 − 360 nm range, together with
the polynomial are shown in Figure 6.1. A correlation coefficient in the range of ±1 indicates a strong
correlation, while a value around zero is an indication of a weak correlation. It can be seen that the
small correlations between BrO and the polynomial and the other trace gas cross-sections are negligible.
However, significant correlations exist between the polynomial and O4, which is very broad banded.
Figure 6.2 shows an example of a BrO DOAS evaluation for a spectrum that was recorded during balloon
ascent at Kiruna on March 24, 2004. Details of the flight can be found in section 6.3.4. Differential optical
densities for trace gas absorptions of O3 (at 197 K), NO2 (at 207 K), O4 and BrO are shown. It can be
seen that the differential optical density of BrO (∼ 0.5 ·10−3) is more than one order of magnitude smaller
than the dominating absorption of O3. Although the remaining residual is close to the residual structure
of ∼ 0.5 · 10−4 expected in theory, it still shows some systematic structures. A comparison of spectra
recorded in succession shows similar residuals. The cause is either unknown spectrometer structures or
shortcomings in describing the atmospheric absorptions [Ferlemann et al. 2000]. These shortcomings can
result from an incorrect characterisation of the known absorbers (e.g. temperature effects), or contribu-
tions of unknow absorbers, which might be present especially in the troposphere.
In order to avoid correlations, the degrees of freedom of a fit (number of fit parameters) has to be kept
as low as possible. This is especially important for the degree of the polynomial and the intensity offset.
Different wavelength ranges for the retrieval each have unique correlations.
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Figure 6.2: BrO DOAS evaluation in the 346− 360 nm wavelength range for a spectrum recorded during the

ascent of the balloon at Kiruna on March 24, 2004. The spectrum was recorded at 17.36 km at 79.70◦ SZA

(15:07:53 UT) with 22 scans and a total exposure time of 5.5 seconds. The upper panel shows the Fraunhofer

spectrum (black line) and the measured spectrum (red line). In the panels below the retrieved trace gas

absorptions of O3 (at 197 K), NO2 (at 207 K), O4 and BrO as described in the text are plotted. A 2nd- degree

polynomial was included in the fit. The black lines indicate the spectral absorptions and the red line represents

the sum of the spectral absorption and the residual of the fit. The lowest panel displays the remaining residual

structure.

The whole development of dSCDs (differential slant column densities) for all absorbers fitted in the
BrO retrieval for the Kiruna 2004 balloon flight can be found in Figure 6.3, together with important fit
parameters such as the root mean square (RMS) and shift and squeeze of the spectra. The fluctuating
values between 15:30 and 15:45 UT are due to a sun tracker scan (see section 4.2.2) as performed by
the LPMA team to improve the response of their instrument. The oscillations that can be seen between
16:15 and 17:00 UT, especially for the RMS, the O4 SCD and the squeeze, are due to oscillations of the
gondola and therefore oscillations of the sun tracker acquisition mirror.
Several wavelength ranges were considered for the detection of BrO. Extending the range to larger wave-
lengths (λ > 360 nm) is of no avail, since the strength of the absorption bands is about an order of
magnitude smaller than for λ < 360 nm. At smaller wavelengths (λ < 346 nm) the O3 absorption cross-
section increases significantly and dominates the fit. Although the fit error can be reduced by including
further BrO absorption bands at lower wavelengths, such a retrieval was not used for a number of reasons.
The fit error decreases as more (4 or 5) BrO absorption bands are included in the fit and correlations
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Figure 6.3: Development of the slant column densities and important fit parameters for the BrO retrieval in the

346− 360 nm wavelength range for ascent and sunset measurements of the balloon flight at Kiruna on March

24, 2004. Laboratory absorption cross-sections of O3 at T = 197 K and T = 253 K and NO2 at T = 207 K were

used together with literature cross-sections of BrO and O4 as described in the text (panels b) - f)). In panel

a) the resulting root mean square (RMS) of the fit is plotted. Panels g) and h) represent the shift and squeeze

of the fitted spectra respectively.

are reduced. The problem is that the fit error does not account for systematic errors caused by larger
systematic residual structures. By extending the wavelength range it becomes more difficult to remove
the strong absorbers precisely, especially O3. This is complicated even further by the strongly increasing
O3 absorption below 346 nm. Inaccurate removal of O3 causes large systematic residual structures, which
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Figure 6.4: BrO SCD retrieval for different BrO cross-sections available in literature from Wahner et al. [1988],

Wilmouth et al. [1999] and Fleischmann et al. [2001] (see also section 3.3). Results are shown for balloon

ascent (left panel) and solar occultation (right panel) for the Kiruna 2004 flight.

in turn cause unrealistic results for small underlying absorbers, like BrO. Therefore, a fit that departs
from the ‘classical’ BrO retrieval range as recommended by Aliwell et al. [2002] was not performed. This
also has the advantage of a better consistency and comparability with previous retrievals and BrO ob-
servations from other groups. Unfortunately it has become common practice by other groups to deviate
from the recommendations obtained during a comparison campaign presented by Aliwell et al. [2002].
The BrO cross-section of Wahner et al. [1988] was also chosen for better consistency and compa-

rability between measurements and because it is used by models (e.g. SLIMCAT) to calculate the
photolysis rate of BrO. A comparison was performed for BrO cross-sections of Wahner et al. [1988],
Wilmouth et al. [1999] and Fleischmann et al. [2001]. As expected from the values shown in Figure 3.3,
the cross-sections of Wahner et al. [1988] and Wilmouth et al. [1999] (in blue and black) give similar re-
sults and the Fleischmann et al. [2001] cross-section results in higher SCD values, although recorded at
an even lower temperature of 203 K. The retrieval for the Fleischmann et al. [2001] cross-section shows
a higher RMS (not shown here), but allows to investigate the BrO temperature dependence. By perfom-
ing the fit with BrO cross-sections recorded at temperatures between 203 and 273 K, it can be seen in
Figure 6.4 that the SCD values correspondingly increase by ∼ 13% due to the decreasing differential
cross-section.
Note that due to changes of the instrument before and after the campaign in August 2001 at Kiruna (see
section 4.1.2), there are three different sets of reference spectra for the BrO fit. A new set of reference
spectra was recorded in the laboratory and adjusted as described above before and after each change was
made.

6.1.2 Langley Plot

The total atmospheric SCD is given by the sum of the SCD retrieved by the fit (the differential SCD)
and the amount of absorber in the Fraunhofer reference spectrum, which is usually obtained by a Langley
plot. Assuming a constant mixing ratio VMR above balloon float altitude, the SCDs obtained for balloon
float for SZA < 90◦ can be written as

SCD = AMF · V CDAir · V MR− SCDFraunh (6.1)

with the air mass factor AMF, the vertical column density for air VCDAir and the slant column density
in the Fraunhofer spectrum SCDFraunh. The point of interception with the SCD-axis of a linear fit to
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Figure 6.5: Langley plot of the measured BrO absorption as a function of the calculated total air mass.

Observations are for a SZA range between 87.72◦ − 90.00◦ at balloon float (33.2 km) over Kiruna on March

24, 2004.

equation 6.1 yields the amount of the absorber in the Fraunhofer reference spectrum SCDFraunh. The
assumption of a temporally-constant BrO mixing ratio is almost fulfilled since photochemical changes are
small during the measurement period considered for the Langley plot. The slope of the linear regression
line gives the VMR above float altitude for a constant mixing ratio, which for BrO is generally only the
case between about 30 and 40 km.
A typical Langley plot for BrO is shown in Figure 6.5 for the balloon flight at Kiruna on March 24,

2004. Although balloon float altitude was already reached at 85.41◦ SZA, the first spectra are not used
for the Langley plot since they are below the detection limit and scatter around zero. Therefore, these
values would be weighted too strongly which leads to unrealistic result in the regression line. It was also
considered to average over a whole number of Brunt - Väisälä 1 oscillations and not a fraction of them.
In cases where not enough data points are available to perform a Langley plot, the amount of BrO
absorption present in the Fraunhofer reference spectrum (Fraunhofer offset) can also be determined by
comparing the development of the measured differential SCDs with modelled SCDs. The modelled SCDs
are obtained by integrating a model concentration field along the line of sight of the balloon observations
as shown in Figure 6.6 for the Kiruna 2004 flight (for model description see chapter 7). The offset between
the development of the modelled versus the measured SCDs gives the amount of absorber present in the
Fraunhofer reference spectrum. This method can be applied to BrO since the chemistry above balloon
float altitude (30− 40 km) is simple and can be modelled easily. It is dominated by the photolysis of BrO
and the reaction of Br with O3.
Figure 6.7 shows such a case. Since the balloon reached float altitude at 89.1◦ SZA, not enough spectra
are available to perform a proper Langley plot. A rudimentary estimate using a Langley plot gives a
Fraunhofer offset of (6.0± 2.2)× 1013 molecule/cm2. By comparing the differential SCDs with modelled
SCDs, a value of (7.2± 1.0)× 1013 molecule/cm2 can be deduced.
Another method exists to obtain the Fraunhofer offset. In principle, two different BrO evaluations can

be performed. One evaluation with the Fraunhofer spectrum of the corresponding flight and one with
the Fraunhofer spectrum of a previous flight for which the Fraunhofer offset is know. From the offset

1The balloon at float altitude is oscillates around the equilibrium altitude.
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Figure 6.6: Colour-coded model concentration field of BrO at Kiruna (67◦N, 22◦E) on March 24, 2004,

as a function of height and SZA. The thick black line and the thin black lines represent the trajectory of

the balloon and the light rays from the sun that reach the balloon instrument, respectively. The left panel

only shows measurements during the ascent and the float part of the balloon flight. The right panel shows

occultation measurements.

of the linear correlation of the two evaluations and the known amount of BrO in the old Fraunhofer
spectrum, the amount of BrO in the Fraunhofer spectrum of the actual flight itself can be obtained.
This method has proven to be valuable [Bösch 2002] for the evaluation of NO2 and O3 with spectra
recorded with the visible spectrograph. Unfortunately, due to the different optical setup and sampling of
the UV spectrograph, this method cannot be applied in the UV. Performing the BrO evaluation using a

Figure 6.7: BrO SCD development for the balloon flight at Kiruna on February 18, 2000. The black squares

are differential SCD values as obtained by the WinDOAS fit programme. Values corrected for Fraunhofer offset

((7.2 ± 1.0)× 1013 molecule/cm2) are shown in blue. The orange line is the modelled development of SCDs

by integrating a BrO concentration model field of the SLIMCAT CTM model, along the line of sight of the

balloon measurement (see text for details).
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Fraunhofer spectrum of a previous flight, results in up to 6 times higher residual structures, which has a
negative effect on the retrieval of BrO.

6.1.3 BrO-Retrieval Error

Spectral retrieval errors can be caused by the wavelength misalignment of the individual reference spectra.
A misalignment of the strong absorbers O3 and NO2 in particular can lead to systematically higher BrO
SCDs. Assuming a misalignment of less than 0.01 nm for the reference spectra, this effect only causes a
systematic error of ±3 % [Ferlemann et al. 1998]. Furthermore, the residual of the fitting process shows
systematic features. Since BrO optical densities are generally of the same order of magnitude (see e.g.
Figure 6.2) as the residual structures, the fit is systematically influenced. Sensitivity tests showed that a
±10 % error has to be assigned to account for the effect of the residual structures.
The error in determining the amount of BrO in the Fraunhofer reference spectrum (section 6.1.2) may
arise from uncertainties in the air SCD, photochemical changes in the BrO SCD and from the spectral
retrieval. In cases where the amount of BrO in the Fraunhofer reference spectrum is determined by
comparison with modelled SCDs (Figure 6.7), the error is defined by the model. Ferlemann et al. [1998]
deduced a error of ±3.5 × 1012 molecule/cm2. Since there is high variability between individual flights
and the quality of Langley plots, this study uses more conservative error estimates, which are mainly
determined by the errors of the Langley plot and / or the comparison with modelled SCDs. A summary
of all Fraunhofer BrO offsets and errors is given in Table 6.2
The error due to the absolute BrO cross-section as discussed in section 3.4.1 is ±10 % and errors due to its
temperature dependence in the temperature range encountered for stratopheric observations is estimated
to ±5 %.
Since the error of the fitting routine is not purely statistical, it already includes systematic errors of the fit
(∼ 10 %) accounting for the misalignment of the different absorption cross-sections and residual features.
Whenever SCDs are shown in this study, the error due to the determination of the amount of BrO in the
Fraunhofer reference spectrum and a ±10 % cross-section error are added to the fitting error by applying
Gaussian error propagation.

6.2 Profile Retrieval

In general, a balloon flight can be divided into three different phases. The balloon ascent, the balloon
float and the solar occultation. During the balloon ascent (see Figure 6.8), the balloon climbs vertically
through the trace gas profile at solar zenith angles (SZAs) less than 90◦. Thus, the change of the measured
slant column densities can be attributed directly to the concentration of the crossed height segment. Dur-
ing balloon float (until 90◦ SZA) and solar occultation (starting at 90◦ SZA), the balloon remains at a
constant altitude. The first measurement taken after reaching maximum altitude (i.e. at the smallest SZA
and therefore the smallest observed air mass) is commonly used as the Fraunhofer reference spectrum for
the spectral fitting procedure. The float measurements can be used to estimate the amount of trace gas
absorption contained in the Fraunhofer reference spectrum with a Langley plot (see section 6.1).
During solar occultation, the light path of the measurement crosses the trace gas profile twice for each

layer above the tangent point but below float altitude. Above float altitude each layer is crossed once. At
the tangent point the light path has the smallest distance to the Earth’s surface. Due to the increasing
SZA, the tangent height decreases and the light path crosses an increasing part of the trace gas profile.
The concentrations of most chemical species are subject to substantial photochemical changes at twilight.
Therefore, the obtained profiles also include photochemical changes, especially for solar occultation mea-
surements. A variety of retrieval techniques is available to derive a trace gas profile from slant column
density measurements [e.g. Rodgers 2000]. Profile retrieval techniques used in this study are described
here.



6.2. PROFILE RETRIEVAL 77

Earth

Sun

A
lti

tu
d

e

Balloon

Pos. 1

Balloon

Pos. 2

Trace gas profile

Troposphere
Stratosphere

Earth

A
lti

tu
d

e

Sun Pos.1

Sun Pos.2

Trace gas profile

Troposphere

Stratosphere

SZA 1

SZA 2

Figure 6.8: Observation geometry of the measurements for balloon ascent (left panel) and solar occultation

(right panel).

6.2.1 Inversion Techniques

The atmosphere can be divided into N layers, each with constant pressure, temperature and trace gas con-
centration. The measured slant column density SCD can then be written as the sum of the contributions
of the individual layers:

SCD =
N∑

i=1

SCDi =
N∑

i=1

AMFi · V CDi (6.2)

The vertical column density V CDi of layer i is given by the concentration multiplied by the height of
the layer. The V CDi is connected to the SCDi of layer i by the (box-)air mass factor AMFi, which is
given for direct light measurements by the ratio of the length of the light path through the layer to the
vertical height of the layer. For all M ascent or occultation measurements used for inferring a profile, a
system of M linear equations is obtained:⎡⎢⎢⎢⎣

SCD1

SCD2

...
SCDM

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
AMF1,1 AMF1,2 . . . AMF1,N

AMF2,1 AMF2,2 . . . AMF2,N

...
...

. . .
...

AMFM,1 AMFM,2 . . . AMFM,N

⎤⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎣

V CD1

V CD2

...
V CDN

⎤⎥⎥⎥⎦ (6.3)

With the air mass factor matrix AMF, this can be written as

−−−→
SCD = AMF · −−−→V CD (6.4)

The AMF matrix can be calculated using the raytracing and profile retrieval programme DAMF
[Schulte 1996]. The raytracing is based on a Runge-Kutta algorithm [Press et al. 1986] considering the
spherical geometry and the pressure and temperature-dependent refraction. To take into account the ex-
tent of the solar disk, with an apparent diameter of up to 5 km at the tangent point, the air mass factor
matrix is calculated for 8 rays. Each ray represents one of 8 equally-sized areas, obtained by splitting
the solar disk horizontally. The air mass factor matrix is then obtained by averaging the air mass factor
matrices of the 8 individual rays.
The desired profile −−−→V CD is obtained by inverting the air mass factor matrix:

−−−→
V CD = AMF−1 · −−−→SCD (6.5)
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Since the number of measurements M is usually much larger than the number of height segments N , the
inversion problem is overdetermined and cannot be solved by simple matrix inversion of AMF. Two dif-
ferent inversion techniques were used - the Singular Value Decompostion (SVD) method [Press et al. 1986]
and the Maximum A Posteriori (MAP) [Rodgers 2000] technique described below.
The SVD method uses a theorem of linear algebra, that a M ×N matrix, where M ≥ N , can be written
as a product of an M ×N orthogonal matrix U, a N ×N diagonal matrix W and the transpose of an
N × N orthogonal matrix V. The diagonal elements of W are called singular values. Thus the inverse
matrix AMF−1 can easily be calculated:

AMF−1 = V [diag(1/wj)]UT (6.6)

The SVD method then gives the best solution for −−−→V CD in the least-squares sense. The SVD method
offers no termination criteria to avoid over-interpretation of the measured SCDs. Stochastical variations
of the SCDs in the range of the measurement errors are interpretated as profile information. This becomes
apparent by the occurrence of negative entries in the retrieved−−−→V CD. The equations for very small singular
values map large variations in −−−→V CD on small variations in −−−→SCD and, analogously, equations with very
large 1/wj map small variations in −−−→SCD on large variations in −−−→V CD. Consequently, for a measured −−−→SCD
with statistical errors it is necessary to set the smallest singular values and their reciprocals to zero.
This is achieved by reducing the condition number of the air mass factor matrix, defined as the ratio
of the largest to the smallest singular value. Setting small singular values to zero only slightly reduces
the vertical resolution, while the propagation of the measurement errors is largely suppressed. The main
source of error for the profile retrieval is caused by the errors of the SCDs. Gaussian error propagation
yields:

∆V CDi =

√∑
j

( ∑
i

Vik
1

wk
UT

jk

)2(
∆SCDj

)2

(6.7)

Since the measurements do not generally contain information about all height segments of −−−→V CD, an
initial estimation (a priori information) of the profile and its variability can be used for these altitudes in
order to get reasonable results at the altitudes the measurements contain information about. According

to chapter 4 of Rodgers [2000], a best estimate
−−−→̂
V CD, which considers the measurements (−−−→SCD), the

a priori information (−−−→V CDapr) and their errors, can be found by applying the Maximum A Posteriori
(MAP) method. It can be written as:

−−−→̂
V CD = (AMFT SSCD AMF + S−1

apr)
−1(AMFT SSCD

−−−→
SCD + S−1

apr
−−−→
V CDapr) . (6.8)

S is the covariance matrix defined as a diagonal matrix, which contains the squared errors, i.e. SSCD =
diag(−−−−→∆SCD)2. −−−→V CDapr and Sapr are the a priori profile and its covariance, respectively, and can be

estimated by other measurements or chemical model ouputs. The covariance of
−−−→̂
V CD is defined by

Ŝ = (AMFT SSCD AMF + S−1
apr)

−1 , (6.9)

and its averaging kernel matrix Â is given by

Â = (AMFT SSCD AMF + S−1
apr)

−1(AMFT SSCD AMF) . (6.10)

The averaging kernels contain information about the quality and information content of the retrieved
profile. Each row of the averaging kernel matrix states where the information of the corresponding V CDi

is obtained from. The ideal case would be a delta function for each row, i.e. a value of 1 at column i and
0 everywhere else, i.e. the averaging kernel matrix would be the unit matrix. The area of the averaging
kernel, i.e. the sum of its elements, should also be close to 1 for altitude levels where the retrieval
is accurate. Generally, the area can be seen as a rough measure of the fraction of the corresponding
profile point that comes from the measurements, rather than from the a priori. The half-width of the
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averaging kernel gives information about the altitude resolution and the trace of the averaging kernel
matrix corresponds to the number of independent values in the retrieved profile. Therefore the altitude
grid can be chosen accordingly. The retrieval method works in a way that it decides whether to take
the information from the measurements or from the a priori profile based on the errors given in the
respective covariance matrices. The covariance of the measurement is determined by the measurement
errors but the error of the a priori can be taken, for example, from climatology. If the a priori covariance
is unknown, it has to be chosen carefully. If it is too small the retrieval could disregard information from
the measurements. If it is too large or if the a priori profile is selected incorrectly, the algorithm can
produce fake features in the retrieved profile that might be mistaken as profile information.

6.2.2 Errors of the Raytracing

Important input parameters required for the raytracing calculations are the atmospheric temperature
and pressure profile, the balloon altitude and the solar zenith angle. The uncertainties of these quantities
were not considered in the calculation of the profile errors. Temperature and pressure are measured up to
balloon float altitude with a Vaisala radio sonde and additional pressure and temperature sensors. The
inaccuracy of these measurements is 0.5 hPa for the pressure (between 1060 and 3 hPa) and 0.2 K for
the temperature. Above balloon float altitude, the US Standard Atmosphere [NOAA-S/T76-1562 1976],
which is only an approximation of the real atmospheric conditions, is scaled to the conditions of the balloon
flight. The altitude of the balloon is measured with an onboard GPS which has a vertical uncertainty of
∼ 20 m. The solar zenith angle is calculated for a given time and location by a routine provided by ARI
(Astronomisches Recheninstitut, University of Heidelberg). For a comparison of different routines see e.g.
Bösch [2002].

6.2.3 BrO Profile Inversion and Errors

Figure 6.9 compares the three different profile inversion techniques for BrO measurements taken during
the ascent of the balloon flight at Kiruna in 2003. Details of the flight are discussed in section 6.3.2. The
upper left panel of Figure 6.9 shows the a priori profile with 100% relative error that is used for the MAP
inversion. Resulting averaging kernels are plotted in the upper right panel. Concentration and volume
mixing ration BrO profiles, retrieved with the MAP and the SVD inversion techniques, are shown in the
lower panels on a 2 km grid. The three inversion techniques compare well in the 10 to 28 km range. Ascent
measurements for this flight started at ∼ 4 km and stopped at 30 km, but have two measurement gaps
between 4.5 to 6 km and 10.5 to 11.5 km. Therefore, values below 8 km and above 28 km do not contain
enough information to be reliable. This is demonstrated clearly by the averaging kernels. They show values
of 1 as expected for altitudes where the retrieval is accurate and no a priori information is used in the
MAP inversion. Below 8 km and above 30 km they deviate from 1, meaning that a priori information is
necessary. Here a value of 1 for the area of the averaging kernels is important - the maximum can deviate
from 1, which indicates a smaller height resolution. Furthermore, the half-width, which gives information
about the altitude resolution, is clearly higher. Starting at 28 km, the different inversion techniques begin
to deviate. For the SVD inversion, oscillations can occur at the boundaries of measurements (here at
32 km) which also influence values retrieved below (28 and 30 km). Thus, it can be useful to use an a
priori profile in order to supress oscillations. The a priori profile and its covariance have to be chosen
wisely though as otherwise fake values or even stronger oscillations can result.
The altitude grid is chosen according to results obtained from performing a MAP inversion, i.e. by
consulting the half-width of the averaging kernels and the trace of the averaging kernel matrix.
To better estimate the propagation of systematic errors in the BrO profile, inversion is performed twice.
First, the BrO SCDs with the errors as given by the DOAS evaluation are inverted. A second inversion
is performed with a systematic error added to the BrO-SCDs. This error is estimated by Gaussian error
propagation from a 10 % SCD error, which accounts for temperature effects and uncertainties of the BrO
cross-section, and the error of the BrO amount in the Fraunhofer reference spectrum (see also section
6.1.3). The difference between these two profiles is added directly to the error bars obtained in the first
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Figure 6.9: Example of a BrO profile inversion for Kiruna 2003 ascent measurements. The upper panels show

the a priori profile and averaging kernels of the MAP inversion. Lower panels compare BrO concentration and

volume mixing ratio profiles for the MAP and the SVD inversion techniques (see text for details).

inversion. Therefore a conservative estimate of profile errors is obtained.
Radicals like BrO or NO2 are subject to a distinct diurnal variation. In Figure 6.10 BrO and NO2

profiles are plotted for solar zenith angles between 60◦ and 100◦. It can be seen that photochemical
change is significant especially during solar occultation measurements. The measurement geometry is
more complicated for occultation measurements, and SCD values are a composite of the photochemical
situation at different SZAs, as indicated in Figure 6.6. Thus, profile inversion is expected to be ambiguous.
This is clearest for NO2. When measurements are taken between 90◦ and ∼ 95◦ at balloon float altitude
(33 km for Kiruna 2003), the tangent point of the observations decreases from 33 km down to ∼ 8 km.
When performing a profile inversion, the strong increase of NO2 absorption due to photochemical change
(at higher altitudes) is misinterpreted as higher profile concentrations at low altitudes (for decreasing
tangent point). Therefore occultation profiles are not accurate.
Model ouput can be used to scale a profile to the photochemical conditions of a specific SZA by introducing
the photochemical weighting factor κkj as described by Butz et al. [2005]. When model output is given
along the SZA timeline, κkj can be defined as κkj = akj

bj
. bj is the modelled trace gas concentration

at altitude j and at the SZA that the measurement is scaled to. akj is the corresponding modelled
concentration at altitude j and SZA k of the observation. As shown in Figure 6.6, each point on the line-
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Figure 6.10: Example of a BrO and NO2 photochemical evening evolution for SZA = (60◦ − 100◦). Model

simulations were performed as desribed in chapter 7 for the balloon flight on March 23, 2003 at Kiruna.

of-sight of the observation can be identified by its altitude and its local SZA. Since a layered atmosphere
is assumed in the profile retrieval, the slant path through layer j at local SZA k is multiplied by κkj . Thus
a photochemically-corrected weighting function matrix (here the AMF matrix) is obtained. Performing
the profile inversion with the photochemically-corrected weighting function matrix, scales the balloon
profile to the photochemical conditions of the desired SZA. Such a scaling is only possible if the relative
diurnal variation is modelled correctly.
Figure 6.11 corresponds to Figure 6.9 but shows occultation measurements. The same a priori profile

was used since changes are minimal above float altitude, where almost no information is contained in the
spectra. UV measurements were possible down to SZA = 94.25◦, corresponding to a tangent height of
∼ 14 km. The averaging kernels clearly indicate that no information is taken from the a priori profile
from float altitude (33 km) down to 16 km. In the lower panels the ascent profile is shown for comparison.
MAP inversion without scaling results in the profile shown as blue triangles. It matches (and is therefore
covered) perfectly with a profile inversion scaled to 90◦ SZA (red circles). This behaviour can be explained
by the fact that a) the photochemical change is minimal around float altitude b) the main atmospheric
absorption takes place around the tangent point, i.e. at 90◦ SZA and c) lower concentrations at higher
SZAs are compensated by higher concentrations at lower SZA along the line-of-sight, i.e. concentrations
decrease linearly with increasing SZA for altitudes below float. Such behaviour is not observed for NO2

occultation profiles for reasons discussed above. NO2 occultation profiles show too high values at lower
altitudes. The lower panels of Figure 6.11 also show profiles scaled to 92◦ and 94◦ SZA, together with
modelled profiles for comparison. Error bars shown here are not realistic and only reflect fitting errors. The
model underpredicts BrO abundances since NO2 is overpredicted and consequently too much inorganic
bromine exists as BrONO2. Therefore, a second model profile for 90◦ SZA is show as green line, which is
obtained by scaling NO2 in the model to simultaneaous measurements of the DOAS instrument.
SVD inversion for occultation profiles basically results in the same values as obtained by the MAP
inversion. Inversion of occulation measurements from other balloon flights and comparison with BrO
profiles scaled to 90◦ SZA resulted in the same conclusion, that BrO occultation profiles without scaling
already reflect conditions at 90◦ SZA.
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Figure 6.11: Example of a BrO profile inversion for Kiruna 2003 occultation measurements and the scaling

of profiles. The upper panels show the a priori profile and averaging kernels of the MAP inversion. Lower

panels compare MAP-inverted BrO concentration and volume mixing ratio profiles for different scalings to

90◦, 92◦ and 94◦ SZA. SLIMCAT model results (concentrations only) and the BrO ascent profile are shown

for comparison. Model calculations for constraint NO2 are shown for 90◦. For details see legend and text.

6.3 Discussion of LPMA/DOAS Balloon Flights

Thirteen successful DOAS flights have been performed since 1996, the last five within the framework
of this thesis. Although BrO and OClO UV measurements were reanalysed for flights presented by
Ferlemann [1998], Harder [1999] and Fitzenberger [2000], balloon flights performed before 2001 are not
discussed here. Necessary information is given whenever results are discussed in the following chapters. For
details, see for example the studies of Bösch [2002] and Fitzenberger [2000]. Tables 6.1 and 6.2 summarise
important parameters of measurement conditions and DOAS evaluation in the UV. In Table 6.1 the
time, SZA and altitude range during which UV observations were possible, are given for ascent / descent
and accordingly for sunset / sunrise. The Fraunhofer reference spectrum, the dark current and the offset
spectrum used for the DOAS evaluation and the Fraunhofer offset obtained for each flight are summarised
in Table 6.2. The following sections describe DOAS balloon flights performed since 2001 and show results
of the DOAS evaluation.
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Table 6.1: Summary of all 13 successful flights performed to the end of 2005. The altitude range, corresponding

universal time and SZA range, for which useful measurements were performed during the ascent/descent

(middle column) and sunset/sunrise part (right column) of the balloon flight. The altitude range for occultation

measurements is not indicated since the balloon stays at almost constant height during this time. Descent

measurements were only performed during the Gap campaigns in 1997 and 1999. For Kiruna 1998 and 2001,

measurements were performed at sunset and on the following morning at sunrise.

Date Location Ascent or Descent Sunset and / or Sunrise

Time/UT SZA - Range Time/UT SZA - Range

Place Geophysical Condition Altitude/km

Nov. 23, 1996 42.6◦ N, 5.7◦W 14:55:48 - 16:20:32 74.85◦ − 86.61◦ 16:38:12 - 16:53:33 90.00◦ − 92.97◦

Leon mid-lat. fall 5.06 - 31.05

Feb. 14, 1997 67.9◦ N, 21.1◦E 12:28:11 - 14:11:15 82.60◦ − 89.51◦ 14:15:45 - 14:51:58 90.00◦ − 94.32◦

Kiruna high lat. winter 6.10 - 30.17

June 20, 1997 44.0◦ N, 6.1◦E 04:37:40 07:42:32 85.88◦ − 56.29◦ 03:30:41 - 04:07:12 94.74◦ − 90.00◦

Gap mid-lat. summer 39.71 - 31.34

March 19, 1998 42.6◦ N, 5.7◦W 16:00:58 - 18:06:47 63.81◦ − 86.82◦ 18:21:47 - 18:42:47 90.00◦ − 94.40◦

Leon mid-lat. spring 1.01 - 38.00

Aug.19/20, 1998 67.9◦ N, 21.1◦E 16:03:07 - 18:21:00 74.85◦ − 87.35◦ 18:54:27 - 19:59:54 90.00◦ − 94.46◦

Kiruna high lat. summer 6.55 - 38.98 01:24:53 - 02:29:21 94.28◦ − 90.00◦

Feb. 10, 1999 67.9◦ N, 21.1◦E 11:49:08 - 13:06:11 83.01◦ − 86.05◦ 13:59:42 - 14:47:49 90.00◦ − 94.21◦

Kiruna high lat. winter 5.11 - 28.67

June 25, 1999 44.0◦ N, 6.1◦E 04:32:08 08:10:30 86.64◦ − 50.45◦ 03:36:45 - 04:08:22 94.34◦ − 90.00◦

Gap mid-lat. summer 38.98 - 20.65

Feb. 18, 2000 67.9◦ N, 21.1◦E 12:28:45 - 14:15:32 81.64◦ − 89.02◦ 14:24:54 - 14:58:29 90.00◦ − 93.60◦

Kiruna high lat. winter 4.81 - 30.05

Aug.20/21, 2001 67.9◦ N, 21.1◦E 15:55:26 - 18:17:50 74.89◦ − 87.99◦ 18:42:18 - 19:51:34 90.00◦ − 95.05◦

Kiruna high lat. summer 5.91 - 38.86 01:19:56 - 02:29:36 95.03◦ − 90.00◦

March 23, 2003 67.9◦ N, 21.1◦E 14:38:30 - 16:28:57 77.90◦ − 88.78◦ 16:41:02 - 17:23:50 90.00◦ − 94.25◦

Kiruna high lat. winter 3.72 - 30.08

Oct. 9, 2003 43.7◦ N, 0.3◦W 15:32:13 - 16:34:25 70.92◦ − 81.50◦

Aire sur l’Adour mid-lat. fall 14.60 - 33.24

March 24, 2004 67.9◦ N, 21.1◦E 14:04:28 - 16:05:44 74.58◦ − 85.41◦ 16:45:40 - 17:23:09 90.00◦ − 94.41◦

Kiruna high lat. winter 3.16 - 33.08

June 17, 2005 5.1◦ S, 42.9◦W 18:32:17 20:16:58 60.66◦ − 83.22◦ 20:47:06 - 21:05:46 90.00◦ − 94.20◦

Teresina tropics 1.85 - 33.32
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Table 6.2: Summary of important parameters used for the evaluation of the 13 successful flights performed

to the end of 2005. The label of the Fraunhofer reference spectrum, the recording time and corresponding

SZA are given for each flight. Furthermore, the retrieved BrO Fraunhofer offset (see section 6.1.2) and the

dark current and offset spectrum used for the individual retrievals are listed. The label of the spectra follows

the internal numbering of the balloon group. For some flights, successively-recorded spectra were added up

and used as the Fraunhofer reference spectrum. Two individual reference spectra were used for the sunset and

sunrise retrieval of the Kiruna 1998 flight. For Kiruna 2004 different reference spectra were used for the ascent

and occultation retrieval.

Date Reference Spectrum Time/UT Fraunhofer Offset / Dark Current Offset

Place SZA 1013 molecule
cm2 Spectrum Spectrum

Nov. 23, 1996 V126900 16:20:32 3.1 ± 0.4 V126078 V126080

Leon 86.61◦

Feb. 14, 1997 V129958 14:11:15 8.6 ± 1.5 V131064 V131062

Kiruna 89.51◦

June 20, 1997 V132825 04:37:32 1.4 ± 0.3 V126080 V126078

Gap 85.88◦

March 19, 1998 V150895 - V150899 18:06:47 - 18:07:36 1.1 ± 0.5 V135262 V135261

Leon 86.82◦ − 86.99◦

Aug.19/20, 1998 V182047 - V182059 18:20:07 - 18:22:06 1.5 ± 1.0 V182608 V182606

Kiruna 87.26◦ − 87.43◦

V183382 - V183386 02:53:31 - 02:54:01 5.2 ± 2.0

88.19◦ − 88.15◦

Feb. 10, 1999 V196488 13:06:11 5.0 ± 0.9 V195189 V195183

Kiruna 86.05◦

June 25, 1999 V203344 - V203352 04:31:25 - 04:32:08 1.5 ± 0.5 V202479 V202477

Gap 86.74◦ − 86.64◦

Feb. 18, 2000 V212529 14:15:32 7.2 ± 1.0 V208553 V208551

Kiruna 89.02◦

Aug.20/21, 2001 V246621 - V246633 17:58:01 - 17:59:01 2.0 ± 1.5 V228407 V228411

Kiruna 86.26◦ − 86.35◦

March 23, 2003 V285251 - V285259 16:28:57 - 16:29:28 7.2 ± 1.0 V275946 V275940

Kiruna 88.78◦ − 88.84◦

Oct. 9, 2003 V328293 16:34:25 1.6 ± 0.5 V309030 V309038

Aire sur l’Adour 81.50◦

March 24, 2004 V346185 16:05:44 2.3 ± 0.4 V335638 V335630

Kiruna 85.41◦

V346191 16:06:11

85.46◦

June 17, 2005 V428291 20:16:58 2.0 ± 0.5 V429080 V429074

Teresina 83.22◦
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6.3.1 LPMA / DOAS Flight on August 21/22, 2001 at Kiruna

Figure 6.12: Balloon trajectory, temperature and the SZA for UV observations at the position of the balloon

for the flight on August 21 and 22, 2001 at Kiruna. Times greater than 24 UT indicate morning measurements

on August 22.
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Figure 6.13: Balloon trajectory and observation geometry of the flight at Kiruna on August 21/22, 2001. The

trajectory is the thick black line. The thin black lines denote the light rays for occultation measurements,

which end at the tangent point. Numbers at the lines indicate the SZA. The left panel shows the observation

geometry for ascent and sunset measurements on August 21. The right panel shows corresponding sunrise

measurements on August 22.

A strong and steady zonal wind surrounds the pole in summer and suppresses the mixing of polar
with mid-latitudinal air (see chapter 2). At the end of the summer (mid to end August), the circulation
pattern breaks down and after a short transition period, the formation of the winter circulation begins.
The flight was launched on August 21, 2001 at 15:39 UT and SZA = 73.3◦ at Kiruna (67.9◦N, 21.0◦E).
The break down of the strong summer circulation had already occurred and the dominant stratospheric
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Figure 6.14: Same as Figure 6.3 but for sunset measurements of the balloon flight at Kiruna on August 21,

2001. A laboratory absorption cross-sections of NO2 at T = 233 K was used here.

winds were weak. Thus, long flights can be performed with almost no drift of the balloon and gondola.
For the specific measurement geometry of the LPMA/DOAS instruments, this means that measurements
can be taken during sunset and sunrise.
The altitude profile and the corresponding SZA for UV measurements are shown in Figure 6.12, where
times greater than 24 UT indicate morning measurements on August 22. After 2 h 40 min, the float
altitude of ∼ 39 km was reached at 18:18 UT and SZA = 88.0◦. From the temperature profile, the
tropopause height is estimated at ∼ 11.5 km.
There were only low clouds during ascent and the gondola could be stabilised quite early on. Thus
measurements with the DOAS spectrographs started at 5.91 km at 15:55:26 UT and SZA = 74.89◦.
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Figure 6.15: Same as Figure 6.3 but for sunrise measurements of the balloon flight at Kiruna on August 21,

2001. A laboratory absorption cross-sections of NO2 at T = 233 K was used here.

Apart from two small measurement gaps from 7.02 km to 7.49 km (15:58:57 - 16:00:36 UT) and 7.87 km
to 8.55 km (16:01:36 - 16:03:35 UT) observations could be performed continuously until float. The
mandatory sun-tracker scan, needed to optimise the signal of the LPMA instrument especially for
occultation measurements, started immediately after reaching float at 18:19 UT and lasted until 18:32
UT. Occultation data is not affected and measurements in the UV could be performed from 90.00◦ to
95.05◦ SZA (18:42:18 - 19:51:34 UT). During the night the balloon decended slowly due to lack of solar
heating and consequent cooling of the helium inside the balloon. At 21:58 UT and 35.1 km altitude,
ballast was dropped in order to reach around 38 km again before sunrise. Occultation measurements at
sunrise started at 01:19:56 UT at 95.03◦ and lasted until 02:29:36 UT on August 22, 2001. Measurements
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Figure 6.16: Same as Figure 6.2 but for a spectrum recorded during the ascent of the balloon at Kiruna on

August 21, 2001. The spectrum was recorded at 12.49 km at 76.99◦ SZA (16:18:11 UT) with 1 scan and a

total exposure time of 0.62 seconds.

continued until the ballon was cut at 02:47:07 UT and 88.55◦ SZA. For a summary of the observation
parameters see Table 6.1.
In Figure 6.13 the trajectory of the balloon is indicated by the thick black line. The thin black lines
denote the light rays for occultation measurements, which end at the tangent point. Numbers at the
lines indicate the corresponding SZA at the balloon position. The left panel shows the observation
geometry for ascent and sunset measurements on August 21. The right panel shows corresponding
sunrise measurements on August 22.
Since float altitude was reached at a high SZA and a sun-tracker scan was performed at float, the
spectra cannot be used for a Langley plot. Therefore, the absorber amount contained in the Fraunhofer
reference spectrum had to be obtained by the model-comparison method described in section 6.1.2. An
offset of (2.0 ± 1.5) × 1013 molecule/cm2 of BrO was determined for the reference spectrum obtained
by averaging 7 spectra recorded successively between 17:58:01 and 17:59:01 UT (see Table 6.2). Such an
early recorded Fraunhofer reference spectrum was chosen since strong oscillations of the gondola during
the last part of the ascent prevented correct alignment with the sun and thus had a negative impact on
the imaging.
Figure 6.14 shows the development of the slant column densities and important fit parameters for the BrO
retrieval in the 346 − 360 nm wavelength range for ascent and sunset measurements. Correspondingly,
Figure 6.15 shows the same quantities for sunrise measurements the following morning. Laboratory
absorption cross-sections of O3 at T = 197 K and T = 253 K and NO2 at T = 233 K were used together
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Figure 6.17: Important fit parameters and corresponding elevation and azimuth position of the sun-tracker

acquisition mirror for the flight on August 21/22, 2001 at Kiruna. Shown are the total elevation and azimuth

positions in arbitrary units (not only the offset as described in section 4.2.2). Ascent and sunset measure-

ments on August 21 are shown in the left panel. The right panel shows the corresponding results for sunrise

measurements on August 22.

with literature cross-sections of BrO and O4 as described in section 6.1.1 (panels b) - f)). In panel a)
the resulting root mean square (RMS) of the fit residual is plotted. Panels g) and h) represent the shift
and squeeze of the fitted spectra respectively. Float spectra recorded during the sun-tracker scan were
removed. Note that the trace gas cross-sections used for the retrieval of the Kiruna 2001 flight differ from
the set of references used for flights before 2001 and afterwards. Due to repairs and modifications carried
out on the DOAS spectrograph before and after the Kiruna 2001 campaign as described in section 4.1.2.
The laboratory spectra recorded especially for this flight are not listed in the tables of chapter 5, but
can be found in the internal balloon group laboratory accounts. The calibration and preparation of this
set of reference spectra follows the procedure described in section 6.1.1.
A DOAS fit for a spectrum recorded during the ascent of the balloon is plotted in Figure 6.16. The

spectrum was recorded at 12.49 km at 76.99◦ SZA (16:18:11 UT) with 1 scan and a total exposure time of
0.62 seconds. The upper panel shows the Fraunhofer spectrum (black line) and the measured spectrum
(red line). In the panels below the retrieved trace gas absorptions of O3 (at 197 K), NO2 (at 207 K),
O4 and BrO are plotted. A 2nd- degree polynomial was included in the fit. The black lines indicate the
spectral absorptions and the red line respresents the sum of the spectral absorption and the residual of
the fit. The panel at the bottom displays the remaining residual structure which still shows systematic
features. In contrast to the flights performed after 2001, only 1 scan per spectrum was recorded during
this flight. Therefore the signal-to-noise ratio is quite low, but can be compensated due to high statistics
and about 800 spectra recorded during ascent alone.
In Figure 6.17 important parameters that are sensitive to small changes in the optical imaging and the
quality of the fit are shown. The corresponding elevation and azimuth position offsets of the sun-tracker
acquisition mirror for the flight on August 21/22, 2001 at Kiruna are shown in arbitrary units as
described in section 4.2.2. The sun-tracker scan and its influence on the fit parameters can clearly be
observed.
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6.3.2 LPMA / DOAS Flight on March 23, 2003 at Kiruna

Figure 6.18: Balloon trajectory, temperature and the SZA for UV observations at the position of the balloon

for the flight on March 23, 2003 at Kiruna.

Figure 6.19: Example of the northern hemispheric polar vortex. The 675 K potential temperature level is plotted

for March 23, 2003 at 00 UT. The potential vorticity is colour-coded in units of PVU (10−6Km2kg−1s−1).

The flight was launched on March 23, 2003 at 14:28 UT and SZA = 77◦ at Kiruna (67.9◦N, 21.0◦E).
The altitude profile and the corresponding SZA for UV measurements are shown in Figure 6.18. After
2 h 15 min, the float altitude of ∼ 33 km was reached at 16:43 UT and SZA = 90.2◦. After 1 h at float,
the balloon was cut at 17:41 UT and SZA = 96◦. From the temperature profile, the tropopause height
is estimated at 8 km. The position of the polar vortex in the northern hemisphere is shown in Figure
6.19 for March 23, 2003 at 00 UT. The 675 K potential temperature level is colour-coded in units of PVU
(Potential Vorticity Units - 10−6Km2kg−1s−1). The polar vortex at that time was already disturbed
and split caused by warmings that had occured earlier. Below 675 K (∼ 26.7 km) the potential vorticity
over Kiruna was very low, which can be seen in Figure 6.20 - note that the scale for the PVU units
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Figure 6.20: Balloon trajectory, observation geometry and potential vorticity of the flight at Kiruna on March

23, 2003. The trajectory is the thick black line. The thin black lines denote the light rays for occultation

measurements, ending at the tangent point. Numbers at the lines indicate the SZA. The potential vorticity

at March 23, 24 UT is colour-coded in units of PVU (10−6Km2kg−1s−1) and plotted for the 400 K, 475 K,

550 K and 675 K levels.

changes from the upper to the lower panels. Plotted are the 400 K, 475 K, 550 K and 675 K levels. This
means that a filament of the vortex reached out over Scandinavia only at higher altitudes in the middle
stratosphere. Therefore, measurements were performed at the edge of vortex, observing both air masses
outside and inside the vortex at the same time during the ascent of the balloon. During solar occultation
the light rays of the direct sun measurements traversed the vortex edge especially for high solar zenith
angles. In Figure 6.20 the trajectory of the balloon is indicated by the thick black line. The thin black
lines denote the light rays for occultation measurements, ending at the tangent point. Numbers at the
lines indicate the corresponding SZA at the balloon position.
Although part of the observed air masses were located inside the vortex, no signs of chlorine activation
could be observed. The spectra were analysed for absorption features of OClO, which is an indicator
of chlorine activation, and no absorptions were found (see also chapter 8 for a discussion of OClO
measurements). This is in accordance with other observations and the rather high temperatures during
that winter.
Only low clouds were present on March 23, 2003 and the gondola could be stabilised quite early during
the ascent. Thus, measurements with the DOAS spectrographs started as early as 3.72 km at 14:38:30
UT and SZA = 77.9◦. Apart from two small measurement gaps from 4.30 km to 6.09 km (14:40:05
- 14:46:13 UT) and 10.49 km to 11.50 km (15:04:42 - 15:09:52 UT) observations could be performed
continuously. Since the launch had been delayed by 15 minutes, float altitude was not reached until 16:43
UT at SZA = 90.2◦. Therefore, the mandatory sun-tracker scan, needed to optimise the signal of the
LPMA instrument especially for occultation measurements, was performed during the last part of the



92 CHAPTER 6. STRATOSPHERIC BRO PROFILING

Figure 6.21: Same as Figure 6.3 but for the balloon flight at Kiruna on March 23, 2003.

ascent. Consequently, DOAS UV observations for the ascent can only be used up to 30.08 km reached
at 16:28:57 UT and SZA = 88.78◦. Occultation data is undisturbed and measurements in the UV could
be performed from 90.00◦ to 94.25◦ SZA (16:41:02 - 17:23:50 UT). For a summary of the observation
parameters see Table 6.1.
Since float altitude was reached too late to perform a Langley plot, the absorber amount contained
in the Fraunhofer reference spectrum had to be obtained by the model-comparison method described
in section 6.1.2. An offset of (7.2 ± 1.0) × 1013 molecule/cm2 of BrO was determined for the reference
spectrum obtained by averaging 5 spectra recorded successively between 16:28:57 and 16:29:28 UT (see
Table 6.2).
Figure 6.21 shows the development of the slant column densities and important fit parameters for the
BrO retrieval in the 346 − 360 nm wavelength range for ascent and sunset measurements. Laboratory
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Figure 6.22: Same as Figure 6.2 but for a spectrum recorded during the ascent of the balloon at Kiruna on

March 23, 2003. The spectrum was recorded at 11.62 km at 81.04◦ SZA (15:10:32 UT) with 3 scans and a

total exposure time of 0.81 seconds.

absorption cross-sections of O3 at T = 197 K and T = 253 K and NO2 at T = 207 K were used together
with literature cross-sections of BrO and O4 as described in section 6.1.1 (panels b) - f)). In panel a) the
resulting root mean square (RMS) of the fit is plotted. Panels g) and h) represent the shift and squeeze
of the fitted spectra, respectively. The features of the measurement gap and the sun-tracker scan can
clearly be seen.
A DOAS fit for a spectrum recorded during the ascent of the balloon is plotted in Figure 6.22. The

spectrum was recorded at 11.62 km at 81.04◦ SZA (15:10:32 UT) with 3 scans and a total exposure time
of 0.81 seconds. The upper panel shows the Fraunhofer spectrum (black line) and the measured spectrum
(red line). In the lower panels the retrieved trace gas absorptions of O3 (at 197 K), NO2 (at 207 K), O4

and BrO are plotted. A 2nd- degree polynomial was included in the fit. The black lines indicate the
spectral absorptions and the red line respresents the sum of the spectral absorption and the residual of
the fit. The lowest panel displays the remaining residual structure which still shows some systematic
features but is comparatively low for this flight.
In Figure 6.23 important parameters that are sensitive to small changes of the optical imaging and the
quality of the fit are shown. The corresponding elevation and azimuth position offsets of the sun-tracker
acquisition mirror are shown in arbitrary units as described in section 4.2.2. A change of the azimuth
and elevation position at around 15:35 UT resulted in a discontinuity in the shift and stretch of the
spectra. Also the sun-tracker scan starting at 16:30 UT can clearly be observed and causes the root
mean square of the fit to increase significantly.
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Figure 6.23: Important fit parameters and corresponding elevation and azimuth positions of the sun-tracker

acquisition mirror for the flight on March 23, 2003 at Kiruna. Shown are elevation and azimuth offsets in

arbitrary units as described in section 4.2.2.
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6.3.3 LPMA / DOAS Flight on October 09, 2003 at Aire sur l’Adour

Figure 6.24: Balloon trajectory, temperature and the SZA for UV observations at the position of the balloon

for the flight on October 09, 2003 at Aire sur l’Adour.
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Figure 6.25: Balloon trajectory of the flight on October 09, 2003 at Aire sur l’Adour.

The mid-latitude flight at Aire sur l’Adour, France, was launched on October 9, 2003 from the CNES
balloon division headquarters located at 43.7◦N, 0.25◦W. The flight profile is shown in Figure 6.24 together
with the temperature and the SZA at the position of the balloon for UV observations. The height of the
tropopause is estimated at ∼ 14 km. Launch was at 14:55 UT and SZA = 65◦. After 1 h 37 min float
altitude of ∼ 33 km was reached at 16:32 UT, half an hour earlier than initially planned. After 30
minutes at float, the balloon had to be cut at 17:08 UT, since it approached the densely populated area
of Toulouse. Thus no sunset measurements could be performed.
In Figure 6.25 the trajectory of the balloon is indicated by the thick black line. As the balloon ascended
too fast due to uncorrect filling with helium, it reached strong westerly winds in the middle stratosphere
earlier than planned. Thus, the early drift towards the east and the ban to overfly highly populated
areas prevented occultation measurements. The rapid ascent made the stabilisation of the gondola, and
therefore the tracking of the Sun, difficult and measurements did not start before 14.60 km at 15:32:13
UT and SZA = 70.92◦. Apart from a small measurement gap from 14.78 km to 16.54 km (15:33:05 -
15:38:03 UT) observations were performed continuously.
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Figure 6.26: Same as Figure 6.3 but for the balloon flight at Aire sur L’Adour on October 9, 2003.

An advantage of the fast ascent was that float altitude was reached at a low solar zenith angle of 80.8◦

at 16:32 UT. Float measurements were continued until 17:08 UT and SZA = 87.5◦. The extensive float
measurements allowed for a perfect Langley plot (see chapter 9) and provided optimum conditions for
the absolute radiometric calibration (see [Gurlit et al. 2005] and [Lindner 2005]). For a summary of the
observation parameters see Table 6.1.
Due to the low SZA of 81.50◦ at which the Fraunhofer reference spectrum was recorded, the absorber
amount contained in the spectrum is very low. By performing a Langley plot (section 6.1.2) an offset of
(1.6±0.5)×1013 molecule/cm2 of BrO was determined. The Fraunhofer reference spectrum was recorded
at 16:34:25 UT (see Table 6.2).
Figure 6.26 shows the development of the slant column densities and important fit parameters for the BrO
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Figure 6.27: Same as Figure 6.2 but for a spectrum recorded during the ascent of the balloon at Aire sur

L’Adour on October 9, 2003. The spectrum was recorded at 20.04 km at 73.76◦ SZA (15:49:57 UT) with 32

scans and a total exposure time of 5.44 seconds.

retrieval in the 346−360 nm wavelength range for ascent and float measurements. Laboratory absorption
cross-sections of O3 at T = 197 K and T = 253 K and NO2 at T = 207 K were used together with literature
cross-sections of BrO and O4 as described in section 6.1.1 (panels b) - f)). In panel a) the resulting root
mean square (RMS) of the fit residual is plotted. Panels g) and h) represent the shift and squeeze of
the fitted spectra, respectively. During the ascent of the balloon sun-tracker scans were carried out at
15:50:30 to 15:55:10 UT (20.2 − 21.6 km) and again at 16:10:15 to 16:15:10 UT (26.5 − 28.1 km). In
between these measurements, the elevation offset was set to a different but constant value. The features
of the short measurement gap and the sun-tracker scans can clearly be seen in the fit parameters.
A DOAS fit for a spectrum recorded during the ascent of the balloon is plotted in Figure 6.27. The

spectrum was recorded at 20.04 km at 73.76◦ SZA (15:49:57 UT) with 32 scans and a total exposure time
of 5.44 seconds. The upper panel shows the Fraunhofer spectrum (black line) and the measured spectrum
(red line). In the panels below the retrieved trace gas absorptions of O3 (at 197 K), NO2 (at 207 K),
O4 and BrO are plotted. A 2nd- degree polynomial was included in the fit. The black lines indicate the
spectral absorptions and the red line respresents the sum of the spectral absorption and the residual
of the fit. The lowest panel displays the remaining residual structure which still shows some systematic
features but is the lowest for all flights performed so far.
In Figure 6.28 important parameters that are sensitive to small changes in the optical imaging and the
quality of the fit are shown. The corresponding elevation and azimuth position offsets of the sun-tracker
acquisition mirror for the flight on October 09, 2003 at Aire sur L’Adour are shown in arbitrary units
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Figure 6.28: Important fit parameters and corresponding elevation and azimuth positions of the sun-tracker

acquisition mirror for the flight on October 09, 2003 at Aire sur L’Adour. Shown are elevation and azimuth

offsets in arbitrary units as described in section 4.2.2.

as described in section 4.2.2. Changes of the azimuth and elevation position at around 15:50 to 15:55
UT and 16:10 to 16:15 UT result in a discontinuity in the shift and stretch and can also be seen in the
O4-SCDs. The strong increase in the RMS and stretch before 15:50 UT and from 16:15 to 16:25 UT,
at times when the sun tracker offsets were not changed, is due to strong oscillations of the gondola and
insufficient stabilisation.
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6.3.4 LPMA / DOAS Flight on March 24, 2004 at Kiruna

Figure 6.29: Balloon trajectory, temperature and the SZA for UV observations at the position of the balloon

for the flight on March 24, 2004 at Kiruna.

The flight was launched on March 24, 2004 at 13:54 UT and SZA = 74.1◦ at Kiruna (67.9◦N, 21.0◦E).
The altitude profile and the corresponding SZA for UV measurements are shown in Figure 6.29. After
2 h 10 min, the float altitude of ∼ 33 km was reached at 16:05 UT and SZA = 85.6◦. The balloon was cut
at 17:50 UT and SZA = 97.7◦ after ∼ 1 h 45 min at float. From the temperature profile, the tropopause
height is estimated at ∼ 8.9 km. The position of the polar vortex in the northern hemisphere is shown in
Figure 6.30 for March 24, 2004 at 00 UT. The 675 K potential temperature level is colour-coded in PVU
(Potential Vorticity Units - 10−6Km2kg−1s−1). The polar vortex at that time was already disturbed and
several filaments had built up. Below 675 K (∼ 27.1 km) the potential vorticity over Kiruna was very low,
which can be seen in Figure 6.31 - note that the scale for the PVUs changes from the upper to the lower
panels. The 400 K, 475 K, 550 K and 675 K levels are plotted. This means that the edge of the vortex only
reached out over Scandinavia at higher altitudes in the middle stratosphere. Therefore, measurements
performed at the edge of vortex observed both air masses outside and inside the vortex at the same time
during balloon ascent. During solar occultation the light rays of the direct sun measurements traversed
the vortex edge especially for high solar zenith angles. In Figure 6.31 the trajectory of the balloon is
indicated by the thick black line. The thin black lines denote the light rays for occultation measurements,
ending at the tangent point. Numbers at the lines indicate the corresponding SZA at balloon position.
Although part of the observed air masses were located inside the vortex, no signs of chlorine activation
could be observed. The spectra were analysed for absorption features of OClO, which is an indicator of
chlorine activation and is discussed in chapter 8. This is in accordance with other observations and the
rather high temperatures during that winter.
Only low clouds were present on March 24, 2004 and the gondola could be stabilised quite early during
the ascent. Measurements with the DOAS spectrographs started at 3.16 km at 14:04:28 UT and SZA =
74.58◦. Apart from two small measurement gaps from 4.22 km to 5.71 km (14:08:50 - 14:14:16 UT) and
8.79 km to 9.61 km (14:25:01 - 14:28:38 UT) observations could be performed continuously. The second
measurement gap was probably due to strong winds at the tropopause, which cause strong oscillations
of the gondola. The mandatory sun-tracker scan, needed to optimise the signal of the LPMA instrument
especially for occultation measurements, was performed during the last part of the ascent. Consequently,
DOAS UV observations for the ascent between 23.54 km and 28.61 km (15:30:30 and 15:46:52) have to
be treated with care. Occultation data is undisturbed and measurements in the UV could be performed
from 90.00◦ to 94.41◦ SZA (16:45:40 - 17:23:09 UT). For a summary of the observation parameters, see
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Table 6.1.
Since float altitude was reached at SZA = 85.5◦ an extensive Langley plot as shown in Figure 6.5 in
section 6.1.2 could be performed. An absorber amount contained in the Fraunhofer reference spectrum
of (2.3 ± 0.4) × 1013 molecule/cm2 of BrO was determined. Due to strong oscillations of the gondola
during the float part of the flight and resulting large amplitudes of the sun tracker acquisition mirror,
two different reference spectra, recorded within one minute, were used in the BrO retrieval for the ascent
and the occultation part. Thus the residuals of the occultation-spectra retrieval could be reduced. The
Fraunhofer spectrum used for the ascent and occultation were recorded at 16:05:44 UT and SZA = 85.41◦

and at 16:06:11 and SZA = 85.46◦, respectively (see Table 6.2).
Figure 6.3 shows the development of the slant column densities and important fit parameters for the
BrO retrieval in the 346 − 360 nm wavelength range for ascent and sunset measurements. Laboratory
absorption cross-sections of O3 at T = 197 K and T = 253 K and NO2 at T = 207 K were used together
with literature cross-sections of BrO and O4 as described in section 6.1.1 (panels b) - f)). In panel a) the
resulting root mean square (RMS) of the fit is plotted. Panels g) and h) represent the shift and squeeze
of the fitted spectra, respectively. The features of the measurement gaps and the sun-tracker scan can
clearly be seen.
A DOAS fit for a spectrum recorded during balloon ascent is plotted in Figure 6.2. The spectrum was

recorded at 17.36 km at 79.70◦ SZA (15:07:53 UT) with 22 scans and a total exposure time of 5.5 seconds.
The upper panel shows the Fraunhofer spectrum (black line) and the evaluated spectrum (red line). In
the panels below the retrieved trace gas absorptions of O3 (at 197 K), NO2 (at 207 K), O4 and BrO are
plotted. A 2nd- degree polynomial was included in the fit. The black lines indicate the spectral absorptions
and the red line respresents the sum of the spectral absorption and the residual of the fit. The lowest
panel displays the remaining residual structure which still shows some systematic features but is very low
for this flight. The optical density of BrO is only 0.5 · 10−3 and clearly found by the fit, indicating the
high sensitivity achieved by the DOAS spectrograph.
In Figure 6.32 important parameters that are sensitive to small changes in the optical imaging and the
quality of the fit are shown. The corresponding elevation and azimuth position offsets of the sun-tracker
acquisition mirror for the flight on March 24, 2004 at Kiruna are shown in arbitrary units as described
in section 4.2.2. The sun-tracker scan and adjustments of the mirror position during the occultation
part between 17:00 and 17:20 UT can clearly be observed and causes the root mean square of the fit to
increase strongly. The increase and oscillations of the RMS between 15:50 and 17:00 UT, at a time when
the azimuth and elevation offsets were not modified, are caused by strong oscillations of the gondola.
The effect of the sun-tracker scan and the offset adjustments on the BrO retrieval during occultation
is shown in Figure 6.33. The left panel shows a section of the development of BrO-SCD values during
the ascent of the balloon and shortly before float. In the right panel corresponding offest adjustments
performed during occultation measurements are compared to BrO-SCD values. It can be seen that for
small adjustments the effect is within the error bars of the BrO retrieval errors as given by the WinDOAS
software.
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Figure 6.30: Example of the northern hemispheric polar vortex. The 675 K potential temperature level is plotted

for March 24, 2004 at 00 UT. The potential vorticity is colour-coded in units of PVU (10−6Km2kg−1s−1).

Figure 6.31: Balloon trajectory, observation geometry and potential vorticity of the flight at Kiruna on March

24, 2004. The trajectory is the thick black line. The thin black lines denote the light rays for occultation

measurements, ending at the tangent point. Numbers at the lines indicate the SZA. The potential vorticity

at March 24, 24 UT, is colour-coded in units of PVU (10−6Km2kg−1s−1) and plotted for the 400 K, 475 K,

550 K and 675 K levels.
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Figure 6.32: Important fit parameters and corresponding elevation and azimuth positions of the sun-tracker

acquisition mirror for the flight on March 24, 2004 at Kiruna. Shown are elevation and azimuth offsets in

arbitrary units as described in section 4.2.2.

Figure 6.33: Effect of the elevation and azimuth offsets of the acquisition mirror on the BrO-SCD retrieval of

the flight on March 24, 2004 at Kiruna. The left panel shows a section of the development of BrO-SCD values

during the ascent of the balloon and shortly before float. The sun-tracker scan performed by the LPMA team

can clearly be seen. The right panel shows corresponding offset adjustments performed during occultation

measurements.
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6.3.5 LPMA / DOAS Flight on June 17, 2005 at Teresina

Figure 6.34: Balloon trajectory, temperature and the SZA for UV observations at the position of the balloon

for the flight on June 17, 2005 at Teresina.

Figure 6.35: Balloon trajectory and observation geometry of the flight on June 17, 2005 at Teresina. The

trajectory is the thick black line. The thin black lines denote the light rays for occultation measurements,

which end at the tangent point. Numbers at the lines indicate the SZA.

The flight was launched on June 17, 2005 at 18:27 UT and SZA = 59.8◦ at Teresina, Brazil (5.1◦S,
42.9◦W). The altitude profile and the corresponding SZA for UV measurements are shown in Figure
6.34. After 1 h 48 min, the float altitude of ∼ 33.3 km was reached at 20:15 UT and SZA = 82.9◦. The
balloon stayed at float till long after sunset measurements before it was cut prior to sunrise. From the
temperature profile, the tropopause height is estimated at ∼ 17.0 km.
In Figure 6.35 the trajectory of the balloon is indicated by the thick black line. The thin black lines denote
the light rays for occultation measurements, ending at the tangent point. Tangent points are the areas
of main atmospheric absorption. Numbers at the lines indicate the corresponding SZA at the balloon
position.
Only low clouds were present on June 17, 2005 over Teresina and the gondola could be stabilised early
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Figure 6.36: Same as Figure 6.3 but for sunset measurements of the balloon flight at Teresina on June 17,

2005. A laboratory absorption cross-sections of NO2 at T = 233 K was used here.

during the ascent. Thus measurements with the DOAS spectrographs started at 1.85 km at 18:32:17
UT and SZA = 60.66◦ and lasted for the ascent up to 33.32 km at 20:16:58 UT and SZA = 83.22◦.
Apart from one small measurement gap from 4.56 km to 4.97 km (18:39:42 - 18:40:52 UT) observations
could be performed continuously. After reaching float altitude, the mandatory sun-tracker scan needed
to optimise the signal of the LPMA instrument was performed from 20:19:54 to 20:29:17 UT or 83.96◦

to 86.06◦ SZA. Since the spectra at or close to the detection limit are not used for the Langley plot
basically no spectra were lost due to the sun-tracker scan. Therefore an extensive Langley plot could
be performed with the remaining spectra up to SZA = 90.00◦. An absorber amount contained in the
Fraunhofer reference spectrum of (2.0 ± 0.5)× 1013 molecule/cm2 of BrO was determined. The Langley
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Figure 6.37: Same as Figure 6.2 but for a spectrum recorded during occultation measurements of the balloon

at Teresina on June 17, 2005. The spectrum was recorded at 33.46 km at 92.38◦ SZA (20:57:40 UT) with 8

scans and a total exposure time of 5.0 seconds.

plot is presented in chapter 9.
Occultation data is undisturbed and measurements in the UV could be performed from 90.00◦ to 94.20◦

SZA (20:47:06 - 21:05:46 UT). For a summary of the observation parameters see Table 6.1. The Fraunhofer
spectrum used for the ascent and occultation was recorded at 20:16:58 UT and SZA = 83.22◦ (see Table
6.2).
Figure 6.36 shows the development of the slant column densities and important fit parameters for the
BrO retrieval in the 346 − 360 nm wavelength range for ascent and sunset measurements. Laboratory
absorption cross-sections of O3 at T = 197 K and T = 253 K and NO2 at T = 207 K were used together
with literature cross-sections of BrO and O4 as described in section 6.1.1 (panels b) - f)). In panel a) the
resulting root mean square (RMS) of the fit is plotted. Panels g) and h) represent the shift and squeeze
of the fitted spectra, respectively. The features of the sun-tracker scan can be seen clearly in the RMS
and shift of the spectra. The shifts around 19.00 UT are due to strong azimuth oscillations of the gondola
and corresponding sun-tracker movements.
A DOAS fit for a spectrum recorded during the ascent of the balloon is plotted in Figure 6.37. The

spectrum was recorded during occultation at 33.46 km and 92.38◦ SZA (20:57:40 UT) with 8 scans and a
total exposure time of 5.0 seconds. The upper panel shows the Fraunhofer spectrum (black line) and the
measured spectrum (red line). In the panels below the retrieved trace gas absorptions of O3 (at 197 K),
NO2 (at 207 K), O4 and BrO are plotted. A 2nd- degree polynomial was included in the fit. The black
lines indicate the spectral absorptions and the red line respresents the sum of the spectral absorption and
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Figure 6.38: Important fit parameters and corresponding elevation and azimuth positions of the sun-tracker

acquisition mirror for the flight on June 17, 2005 at Teresina. Shown are elevation and azimuth offsets in

arbitrary units as described in section 4.2.2.

the residual of the fit. The lowest panel displays the remaining residual structure which still shows some
systematic features.
In Figure 6.38 important parameters that are sensitive to small changes in the optical imaging and the
quality of the fit are shown. The corresponding elevation and azimuth position offsets of the sun-tracker
acquisition mirror for the flight on June 17, 2005 at Teresina are shown in arbitrary units as described
in section 4.2.2. The sun-tracker scan and adjustments of the mirror position during occultation between
20:19 and 20:29 UT can clearly be observed and cause the root mean square of the fit residual to increase
significantly. Large RMS values shortly before 20:19 UT are due to azimuth oscillations of the gondola
and therefore of the aquisition mirror. After the sun-tracker scan was performed, a small offset signal was
adjusted for elevation and azimuth. The offset stayed constant for the remaining part of the flight and
did not further influence DOAS measurements.



Chapter 7

Validation of SCIAMACHY BrO

Limb Profiles

Since balloon-borne BrO profiling is by nature infrequent with respect to both spatial and temporal cover-
age, improved instrumentation was required to monitor atmospheric BrO more closely. This shortcoming
is only partially overcome by atmospheric BrO observations performed by the Global Ozone Monitoring
Experiment (GOME) which has routinely monitored global atmospheric BrO vertical columns since 1996.

The SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY)
instrument on the European Envisat (ENVIronment SATellite) satellite provides the possibility of pro-
filing BrO from space and receiving a global coverage within 3 days. Envisat was launched into a sun-
synchronous low earth orbit on February 28, 2002. SCIAMACHY is a UV / visible / near-IR spectrom-
eter, covering the wavelength range from 220 nm to 2380 nm at a moderate resolution of 0.2 to 1.5 nm
(FWHM). It measures either direct sunlight during solar occultation, sunlight scattered by the moon
during lunar occultation or sunlight scattered by the Earth’s atmosphere in nadir or limb direction (e.g.
[Bovensmann 1999]). In limb scattering mode, SCIAMACHY scans the Earth’s atmosphere vertically in
steps of 3.3 km from the ground to about 100 km tangent height with a vertical field of view (FOV) at
the tangent point of ∼ 2.8 km and a horizontal FOV of ∼ 110 km. A horizontal scan is performed at each
tangent height covering 960 km.
In order to exploit their full capacity, new satellite observations as performed by SCIAMACHY need
to be validated by means of other established methods. In the case of atmospheric BrO limb profil-
ing, validation is quite a challenging task not only because atmospheric BrO concentrations are low
(< 2 × 107 molecules/cm3) implying rather low atmospheric BrO absorption in the UV (Optical Densi-
ties < several 10−3), but also because BrO is subject to considerable diurnal variation. Validation thus
requires either perfect collocation of the validation observation with the satellite profiling (which in prac-
tice is not possible, see below), or other methods to account properly for possible temporal or spatial
mismatches between both sets of observations.
This study reports on balloon-borne BrO profile measurements using different techniques, performed
within the scope of Envisat / SCIAMACHY validation, which were performed for a wide range of geo-
physical conditions (high, mid and low latitudes during different seasons). The balloon observations
include (a) balloon-borne in situ resonance fluorescence detection of BrO, (b) balloon-borne solar occul-
tation DOAS measurements of BrO in the UV, and (c) BrO profiling from the solar occultation SAOZ
(Systeme d’Analyse par Observation Zenithale) balloon instrument.
For validation purposes these measurements were coordinated to occur close to Envisat / SCIAMACHY
overpasses. However, the large diurnal variation of the BrO radical and, to a lesser extent, presumably
small spatial gradients in total stratospheric bromine (and thus BrO) prevent a direct comparison of the
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balloon-borne and satellite limb measurements even if a perfect match of both observations i.e., in one
altitude range at one time, could be achieved. Moreover, since the different instruments for BrO validation
cannot be employed simultaneously and have different sources of random and systematic errors, a direct
comparison of these established techniques is virtually impossible.
To overcome all these difficulties, this study uses the following approach: All balloon-borne BrO ob-
servations are considered with reference to simulations of the tried and tested 3-D CTM (Chemical
Transport Model) SLIMCAT [Chipperfield 1999; Chipperfield et al. 2005]. If available, the referencing is
achieved by comparing the model data with measured dynamic parameters (such as source gas profiles
of N2O, CH4, ...) and photochemical parameters (profiles of O3, NO2, ...). In a second step, matching
forward and backward air mass trajectories between the balloon and satellite observations are calcu-
lated [Lumpe et al. 2003; Reimer and Kaupp 1997; Danilin et al. 2002]. A 1-D photochemical model is
run along the air mass trajectories on different altitude levels. The 1-D model is initialised with output
data of the 3-D model and further constrained by measured dynamic and photochemical parameters.
The total stratospheric bromine, regularly obtained by the DOAS instrument (see chapter 9), is also
constrained in the 3-D and 1-D models. Finally, based on the different observations and dynamic and
photochemical calculations, stratospheric BrO profiles adequate for comparison with SCIAMACHY are
calculated. For some test cases first retrievals of SCIAMACHY BrO profiles are compared with these
validation profiles.
This chapter is organised as follows; section 7.1 briefly describes the techniques used to obtain the BrO
profiles from the individual instruments. Methods and tools used to model the photochemical change
along trajectories are described in section 7.2. Section 7.3 reports on the individual measurements and
comparisons with the SCIAMACHY BrO observations. This section is also describing further constraints
of the 3-D model predictions as given by the various observations. These findings are interpreted and
discussed in section 7.4 with respect to inherent errors of each measurement technique.

7.1 Balloon-Borne and Satellite BrO Measurements

Since the DOAS measurements, the DOAS BrO evaluation and the profile inversion are already described
in chapters 4 and 6, this section will focus on the balloon-borne observations onboard the TRIPLE gondola
and from the SAOZ instrument. The last part is dedicated to a short description of the SCIAMACHY
BrO limb profiling.

7.1.1 Resonance Fluorescence BrO Measurements

Stratospheric profiles of BrO were measured in situ using the well-established chemical-conversion
resonance fluorescence technique [Brune et al. 1989]. Stratospheric air is sucked through a rectangular
duct by means of a Roots pump. The duct consists of an air inlet, an NO injector, one chlorine and
two bromine detection modules stacked behind each other. NO is periodically injected into the air
stream in order to convert BrO molecules to bromine atoms in a fast chemical reaction. The atoms
are detected downstream by means of a resonance fluorescence arrangement working at 131.8 nm and
consisting of a vacuum UV emission lamp and photomultiplier in a rectangular configuration. The
photomultiplier signal consists of a background signal, due to Rayleigh and chamber scatter, and the
Br resonance fluorescence signal when NO is added. From the difference signal between NO on and off
periods (10 s each) Br atom concentrations can be derived employing a pressure dependent calibration.
Laboratory calibrations are carried out before and after each flight using the fast chemical titration of
chlorine atoms by molecular bromine to ensure the accuracy of the measurements [Brune et al. 1989;
Toohey et al. 1990]. In brief, a known amount of chlorine atoms is titrated by bromine molecules forming
an equivalent amount of bromine atoms and BrCl molecules in a very fast and quantitative reaction. The
chlorine atom concentration is measured by vacuum UV absorption using the absorption cross section
as determined by Schwab and Anderson [1987].
Measured Br atom concentrations are converted into BrO initial concentrations by means of a kinetic
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model employing seven relevant reactions generating and consuming Br atoms and measured temper-
atures and pressures. In this model, reaction rates as recommended by Sander et al. [2003] and rates
as determined from intercomparisons of the independent Br atom measurements in modules B and C
are used. Details are subject to a forthcoming publication. The overall accuracy of the measurements
generally is about 35 % for BrO with a detection limit of about 5 pptv within 1 min. integration time
in the altitude range between 18 and 30 km. Lower down, measurements suffer from oxygen absorption
and at low pressures, starting at around 30 km, wall loss of Br atoms in the flow tube noticeably effects
the measurement, explaining a possible low bias.
Within the framework of the SCIAMACHY validation campaigns, the TRIPLE multi-instrument payload
performed 3 validation flights. TRIPLE consists of the Jülich ClO / BrO in situ instrument described
above, the cryogenic whole air sampler of the University of Frankfurt for observation of long-lived tracers
and the Jülich Fast in situ Stratospheric Hygrometer (FISH). An ECC ozone sonde (electrochemical
concentration cell) was onboard for all flights, except on June 9, 2003.

7.1.2 SAOZ BrO Measurements

BrO is measured by solar occultation in the 320− 400 nm UV spectral range during the afternoon ascent
of the balloon at SZA< 90◦ and at the beginning of sunset from float altitude up to 92◦−93◦ SZA, when
the contribution of scattered light becomes too large for continuing the measurements. In the following
only the ascent data is used. The sunlight is collected by a combination of a conical mirror and diffusers
within a field of view of 360◦ azimuth and +15◦ to −5◦ elevation.
The spectral resolution of the spectrometer is 0.9 nm with an oversampling of 10. There is no tem-
perature stabilisation. The system is run at ambient temperature, cooling by about 15◦ C during the
flight. The measurements are repeated every 30 s resulting in a vertical sampling of about 200 m dur-
ing the balloon ascent. A full description of the instrument and the retrieval algorithm can be found in
Pundt et al. [2002]. The spectral retrieval of BrO slant column densities is carried out with the WINDOAS
algorithm [Van Roozendael and Fayt 2000] according to the settings described in Pundt et al. [2002]. Be-
cause of the small BrO SCD at relatively high sun during ascent, the data is smoothed with a triangular
filter to increase the S/N ratio.
As a result, the altitude resolution is degraded to 3 km. Associated random errors are those provided by
the spectral fit, averaged within the 3 km layer and divided by the square root of the number of data
points. The data recorded in presence of clouds is removed using a colour index method.
Profile retrievals are carried out using the onion peeling technique. Random errors are propagated in
the retrieval algorithm. Their amplitude increases at decreasing SZA. The impact of photochemical
changes during the balloon ascent, and the contribution of scattered light, are ignored. As shown by
Pundt et al. [2002] this may result in a maximum error of 0.17 pptv and 0.3 to 0.4 pptv respectively.
The major systematic error comes from the uncertain estimation of the residual BrO column above float
altitude. A constant BrO mixing ratio of 14± 2 pptv is generally assumed. The uncertainty arising from
this decreases at decreasing altitude and is taken into account in the error bars shown. Systematic errors
due to the BrO cross-section’s uncertainty and its temperature dependence, estimated at +5 / − 10 %
by Pundt et al. [2002], are not included.

7.1.3 SCIAMACHY BrO Profile Retrieval

The Harvard Smithsonian algorithm is described elsewhere [Sioris et al. 2005]. The general spectral fitting
and inversion equation are presented in Sioris et al. [2003]. Thus the method is only summarized here.
Limb scan measurements contain two independent dimensions, namely wavelength and tangent height
(TH). Therefore, the retrieval problem is divided into two steps: the spectral fitting and the inversion
to obtain the vertical distribution. Radiances in the lower stratosphere are normalised with radiances
from the upper atmosphere. This removes the Fraunhofer and Ring effect structure quite effectively.
Absorption cross-sections and other pseudo-absorbers [Sioris et al. 2005] are fitted as basis functions to
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the normalised radiances, resulting in observed BrO-SCDs, which are then interpolated onto a standard
TH grid. This data analysis procedure is mimicked to obtain modelled BrO-SCDs. The modelling involves
radiative transfer (RT) simulations [McLinden et al. 2002] to generate radiances that are then spectrally
fitted. The vertical profile of BrO in the RT model is updated iteratively until convergence between
modelled and measured BrO-SCDs is reached [Sioris et al. 2005]. A further convergence criterion has
been added: if the agreement between modelled and observed BrO-SCDs at the bottom of the simulated
TH range is not within 1 %, this relative difference must not increase monotonically with decreasing TH.
This protects the retrieval from finding extreme values at the lower altitude limit. On March 25, 2004,
the O3 profile measured by DOAS in ascent [Butz et al. 2005] was used as a forward model input to the
SCIAMACHY BrO retrieval since the model [McLinden et al. 2002] O3 profile deviated from the true
condition substantially due to dynamic reasons.

7.2 Modelling

To interpret the observations of atmospheric processes measurements must be compared with models.
These models are used to verify the agreement between different measurements and the estimation of
parameters or species that were not or cannot be measured. One application of models is the calculation
of the diurnal variation of chemical species along trajectories of air parcels.

7.2.1 Trajectory Modelling

Balloon-borne measurements are inherently restricted by different constraints, limiting their flexibility
in satellite validation. First, the launch window depends not only on the surface weather conditions,
but also on stratospheric winds which determine the balloon’s trajectory and the match location.
Furthermore, the probed air masses of some balloon payloads are influenced directly by astronomical
parameters, such as the solar zenith angle for solar occultation measurements (e.g., LPMA / DOAS
payload). In practice, all these constraints make it difficult to match the temporal and spatial factors
of the balloon measurements directly with the individual satellite measurements. Air mass trajectory
matching can partly compensate for these restrictions [Lumpe et al. 2003].
Here, air mass trajectory calculations are used for matching the balloon-borne measurements with
SCIAMACHY observations. The calculations are courtesy of K. Grunow and are performed at the
FU-Berlin. The trajectory model uses the operational analysis and forecasts of the European Centre for
Medium Range Weather Forecasts (ECMWF) - or a combination of both - given every 6 hours on a
2.5◦ × 2.5◦ latitude / longitude grid. The ECMWF data is interpolated to 25 user-defined isentropic
levels extending from the surface up to 1600 K. The internal time step for integrating the air masses’
path is 10 minutes and the diabatic and climatological heating rates are based on Newtonian cooling.
The results (trajectory points) are stored for each hour [Reimer and Kaupp 1997].
Backward and forward trajectories are started at the balloon measurement locations which depend
on the individual measurement technique. In the case of the TRIPLE in situ payload, the air mass
trajectory end and start points are given by the balloon trajectory. For the LPMA / DOAS and the
SAOZ remote-sensing payloads, the start and end points are calculated from knowledge of the balloon
flight trajectory and the known observation geometry given by the line-of-sight for each measurement.
For post-flight analysis, air mass forward and backward trajectories are calculated for up to 10 days,
but for balloon flight planning purposes the time range is limited by the available ECMWF forecasts
(analyses are available up to 12 UT of the day before, forecasts for every 6 hours up to 72 hours).
The actual geolocations of SCIAMACHY observations are taken from the SCIAMACHY Operational
Support Team (SOST) on its website (http://atmos.af.op.dlr.de/projects/scops/). Here, the overpass
time, the geolocation and detailed measurement specifications (e.g. swath, measurement duration,
ground pixel size) can be downloaded for the SCIAMACHY limb and for the SCIAMACHY nadir mode
for each Envisat orbit. For the air mass trajectory-based matching technique only the area covered
by tangent points (light blue areas in Figure 7.1 - similar plots for all DOAS flights discussed here,
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Figure 7.1: Two days backward (upper panel) and forward (lower panel) air mass trajectories for TRIPLE

ascent observations at Aire sur l’Adour, France, on September 24, 2002. Envisat / SCIAMACHY orbit numbers

matching with the TRIPLE trajectory are 2940, 2954, 2968, 2982, 2995, and 2996. The light blue rectangles

represent the area probed by SCIAMACHY limb observations.

can be found at the end of this chapter, see Figure 7.12 to 7.15) of SCIAMACHY limb observation is
considered in more detail. This information is used to find satellite measurement points along individual
air mass trajectories, for which the spatial and temporal mismatch is as small as possible. The match
criterion is chosen based on the experience of the ozone Match experiment [von der Gathen et al. 1995]:
a time mismatch between the satellite observation and the air mass trajectory started at the balloon
observation of < ±1 hour and an area mismatch of < ±500 km. If SCIAMACHY observations do not
fulfil these criteria, the distance criterion is extended up to 1000 km. In this study only SCIAMACHY
limb measurements are considered.
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Time Time

Morning Evolution Evening Evolution

Figure 7.2: Colour-coded model concentration field of BrO as a function of height and SZA, for the DOAS

balloon flight on March 23, 2003 at Kiruna (67.9◦N, 22.1◦E). Left and right panels show the morning and

evening evolution of BrO respectively. The black lines in the left panel represent the line-of-sight of a SCIA-

MACHY limb scan. In the right panel the observation geometry of the DOAS measurements is shown for every

twentieth spectrum measured during ascent and every tenth spectrum during solar occultation. The thick

black line represents the trajectory of the balloon and the thin black lines indicate the optical path from the

Sun to the balloon instrument for measurements during ascent and solar occultation. Note that in the real

atmosphere the lines-of-sight are close to being straight lines, but the projection of the Earth’s curvature on

a straight x-axis causes the lines-of-sight to appear curved in the presentation.

7.2.2 Chemical Modelling

As outlined above, the use of a validated 3-D CTM photochemical model is necessary when different mea-
surements of stratospheric radicals are compared and validated. Figure 7.2 demonstrates why the model
has to be used to compare SCIAMACHY BrO limb measurements, left panel, with LPMA / DOAS
balloon ascent and occultation observations shown in the right panel. The measured line-of-sight BrO
absorption is indicated by the thin black lines in both panels. In addition, the thick black line in the
right panel represents the balloon trajectory. Here, the observations are superimposed a photochemical
simulation of stratospheric BrO from the SLIMCAT 3-D CTM [Chipperfield 1999] for March 23, 2003.
The observation geometry for SAOZ measurements is basically the same as for LPMA / DOAS. For
TRIPLE observations the situation is less complicated since measurements are performed in situ, but
still at varying SZA.
SLIMCAT is a 3-D off-line CTM with detailed treatment of the stratospheric photochemistry. The model
temperatures and horizontal winds are specified from analyses and the vertical transport in the strato-
sphere is diagnosed from radiative heating rates. In the stratosphere the model uses an isentropic coordi-
nate extended down to the surface using hybrid sigma-theta levels [Chipperfield 2005]. The troposphere
is assumed to be well-mixed.
The CTM was integrated with a horizontal resolution of 7.5◦ × 7.5◦ and 24 levels extending from the
surface to about 55 km. The model was forced using ECMWF analyses and the simulation started
on January 1, 1977. The model halogen loading was specified from observed tropospheric CH3Br and
halon loadings [WMO 2003]. In addition, an extra 4 pptv bromine was modelled in a tracer to represent
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Chemistry-module: Full NOy, HOx, BrOx and ClOx Chemistry
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Figure 7.3: Schematic overview of the 1-D photochemical model.

bromine-containing very short-lived species (VSLSs) and 1 pptv was assumed to be transported to the
stratosphere as BrY (see Chipperfield et al. [2005] and chapter 9 for more details). Accordingly, the total
stratospheric bromine loading around 2000 is approximately 21 pptv. Output was saved at 0 UT every 2
days, interpolated to the location of the balloon flights. A 1-D column model was then used to reconstruct
the diurnal cycle for comparison with the observations.
The 1-D Chemical Box Model LABMOS1 is based on the 0-D box model by Helmling [1994]. It has
been updated and extended to allow for trajectory calculations by Erle [1999], Fitzenberger [2000] and
Bösch [2002]. A schematic overview of the model and its input parameters is given in Figure 7.3. Within
the scope of this study the model was updated to JPL-2002 kinetics [Sander et al. 2003] and extended
to 20 potential temperature (Θ) levels between Θ = 323 K ( � 9 km) and Θ = 1520 K ( � 42 km).
The 1-D model calculates the stratospheric photochemistry on forward and backward air mass trajecto-
ries with the aim to find best guess profiles for the satellite observations based on the different validation
balloon measurements. The model contains bimolecular and trimolecular gas phase reactions as well as
photochemical (see section 3.1.2) and heterogeneous reactions. The heterogenous reactions used in the
model are treated according to the parameters given by Hanson et al. [1994] (see also section 2.2.5). A
complete list of all reactions included in the model can be found e.g. in Fitzenberger [2000]. Aerosol load-
ings are taken from Deshler et al. [2003] as recommended by Dufour et al. [2005]. Photolysis rates are
interpolated with respect to pressure, temperature, overhead ozone and solar zenith angle (SZA) from a
SLIMCAT lookup table where the actinic fluxes are calculated as recommended by Lary and Pyle [1991]
and validated for JNO2 by Bösch et al. [2001].
If available, the 1-D model is initialised at 0 UT with 3-D CTM SLIMCAT output of the same day at
the balloon launch site. If output is not available on the day of the balloon flight, a decision is made
whether to take output from the day before or the day after the flight by comparing measured O3, NO2

and / or tracers such as CH4 and N2O with the model and choosing the output that best matches the
measurement.
The model is run with fixed pressure and temperature for each Θ level taken from the meteorological
support data of the balloon flight; the SZA time-line is taken from the air mass trajectory calculations.
In satellite validation these measures guarantee that the photochemical evolution of the modelled air
mass corresponds to the true evolution between initialisation of the model, the satellite measurement and
balloon-borne observation. For simplicity a single representative SZA time-line is chosen for all Θ levels.
Furthermore, each BrO observation conducted by the remote sensing instruments SCIAMACHY, SAOZ
and DOAS is a composite of changing photochemical conditions (due to changing SZA) along the line-of-
sight. Arguably gradients in BrO arising from this effect are the smallest for the SCIAMACHY observa-
tions since it takes measurements during late morning (around 10:30 LT), i.e. far from sunset or sunrise.

1LAgrangian MOdel of the Stratosphere
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Hence a fixed SZA for SCIAMACHY observations is assumed.
Photochemical-weighting factors are calculated to scale balloon observations to the photochemical con-
ditions of the satellite measurements. In the case of DOAS measurements the scaling is performed prior
to profile inversion as described in section 6.2.3, thus compensating photochemical changes during the
ascent measurements of the balloon. For TRIPLE and SAOZ measurements, the ratio of the model profile
at the SZA of the satellite measurement and the model profile at the SZA of the balloon measurement is
calculated, and used to scale the profiles accordingly.
The modelling errors are estimated by sensitivity studies following a similar approach as described in
Bracher et al. [2005]. Several model runs are performed along a representative air mass trajectory with
varying model parameters that are important for the photochemical variation of BrO. These parameters
include the NO2 and O3 profile (±30%), overhead ozone (±35%), the temperature for each Θ level (±7K),
the rate constants of reaction BrO + O3 and BrO + NO2 (±20% and ±15%), the photolysis rate of
BrO and BrONO2 (±15%) and the aerosol surface area (±100%). The root-mean-square deviation of the
vertical profiles from the standard run gives the estimate of the modelling error and therefore the error of
the scaling. Although individual profiles can deviate significantly from a standard run profile at the same
SZA (e.g. for varied NO2 profile or JBrONO2 the difference is around 12 % and 10 % at the concentration
maximum respectively), the scaling of profiles is hardly affected since the ratio of two profiles of the same
model run is used. In the relevant altitude layer between 10 km and 30 km a scaling error of 5 % was
obtained. Whenever photochemically-corrected trace gas profiles are shown, the modelling error is added
applying Gaussian error propagation.

7.3 Observations and Further Constraints on the Photochemical

Modelling

An overview of balloon flights conducted within the framework of the SCIAMACHY validation is given
in Table 7.1. It includes information about the date and location of the soundings, the geophysical con-
dition and the SZA range of the measurements (first 4 columns). The right part of the table provides the
relevant information with respect to the ‘best’ matching SCIAMACHY limb observations, as indicated
by the calculated forward and backward air mass trajectories. For each balloon flight one ‘best’ match is
identified for the backward trajectory and one for the forward trajectory calculations. The orbit number
and overpass time, the altitude range in which the match obeys the match criteria, the maximum time
delay between SCIAMACHY and balloon measurement and the spatial distance between trajectories
and SCIAMACHY measurement are given for each match. For future validation exercises using balloon
measurements, it is thus recommended to use these identified pixels in SCIAMACHY profile retrieval
exercises.
Figures 7.4 to 7.8 display the key findings of the study using the examples of a TRIPLE flight conducted
on September 24, 2002 at Aire sur l’Adour, France, a SAOZ flight on January 31, 2004 at Bauru, Brazil,
and three DOAS flights on March 23, 2003 and March 24, 2004 at Kiruna, Sweden, and on October 9, 2003
at Aire sur l’Adour, France. The examples are chosen in order to cover a wide range of different geophysi-
cal conditions. Each figure shows the original measured BrO profiles i.e., the photochemically-uncorrected
balloon measurement (solid black squares) and, if available, the BrO profile as inferred from matching
SCIAMACHY observations (red dots). Both sets of observations show large discrepancies primarily due
to (1) inherent errors of the measurements, (2) the different daylight time of the individual observations
and thus photochemistry-related changes in stratospheric BrO, or (3) possible spatial gradients in strato-
spheric bromine, although this factor is less likely. For reasons related to (1) the reader is recommended
to refer to the relevant literature for each of the techniques used [Pundt et al. 2002; Brune et al. 1989;
Ferlemann et al. 1998; Sioris et al. 2005] . Within the scope of this study, reasons related to (2) and (3)
are dealt with using the trajectory model, the 1-D photochemical model and the SLIMCAT 3-D CTM
model. Before correcting the measured BrO profiles for photochemistry and dynamics, further constraints
are discussed, which arise from each observation and that can be used for photochemical modelling.
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Table 7.1: Compendium of balloon-borne BrO measurements and Envisat / SCIAMACHY overpasses. BA, BD

and SO denote balloon ascent, balloon descent and solar occultation, respectively.

Date Location Geophys. Cond. Instrument Satellite coincidence Altitude - Time - Spatial -

Time / UT SZA range Observ. Geom. Orbit, Date, Time / UT range / km delay / h distance / km

Aug. 12, 02 Kiruna high lat. summer SAOZ 2342, 11.08.02, 18:21 18 - 30 -24.8 179 - 494

18:15 - 19:10 67.9◦N, 21.1◦ E SZA: 85◦ − 89◦ BA 2352, 12.08.02, 09:37 5 - 30 -9.6 182 - 495

Sept., 24, 02 Aire sur l’Adour mid-lat fall TRIPLE 2954, 23.09.02, 11:06 21 - 29 -21.6 379 - 491

7:08 - 11:39 43.7◦N, 0.3◦ W SZA: 44◦ − 88◦ BA / BD 2968, 24.09.02, 10:32 16 - 33 -2.5 449 - 499

Oct. 1, 02 Aire sur l’Adour mid lat. fall SAOZ 3068, 01.10.02, 10:13 13 - 29 -7.1 278 - 487

16:35 - 17:25 43.7◦ N, 0.3◦ W SZA: 79◦ − 88◦ BA 3082, 02.10.02, 09:42 13 - 29 +17.0 265 - 493

Feb. 23, 03 Bauru subtropics summer SAOZ 5145, 23.02.03, 12:56 16 - 21 -8.2 403 - 486

20:42 - 21:30 22.4◦ S, 49.0◦W SZA: 76◦ − 85◦ BA 5160, 24.02.03, 14:04 24 - 28 +16.7 125 - 462

March 6, 03 Kiruna high lat. winter TRIPLE 5288, 05.03.03, 12:13 16 - 28 -19.6 4 - 481

6:25 - 10:49 67.9◦ N, 21.1◦ E SZA: 72◦ − 86◦ BA / BD 5301, 06.03.03, 10:04 5 - 31 +3.7 403 - 499

March 16, 03 Kiruna high lat. spring SAOZ 5418, 14.03.03, 14:08 23 - 29 -50.0 46 - 473

15:19 - 16:09 67.9◦N, 21.1◦ E SZA: 84◦ − 89◦ BA 5484, 19.03.03, 04:52 16 - 23 +61.2 9 - 452

March 23, 03 Kiruna high lat. spring LPMA / DOAS 5545, 23.03.03, 11:07 18 - 28 -5.2 268 - 496

14:47 - 17:35 67.9◦ N, 21.1◦ E SZA: 79◦ − 95◦ BA / SO 5558, 24.03.03, 09:01 19 - 29 +17.4 10 - 495

March 30, 03 Kiruna high lat. spring SAOZ 5645, 30.03.03, 10:49 5 - 29 -6.0 88 - 307

16:01 - 16:53 67.9◦N, 21.1◦ E SZA: 83◦ − 88◦ BA 5658, 31.03.03, 08:37 5 - 23 +16.8 47 - 494

June 9, 03 Kiruna high lat. summer TRIPLE 6652, 08.06.03, 19:01 5 - 31 -11.6 19 - 499

4:57 - 9:52 67.9◦ N, 21.1◦ E SZA: 45◦ − 70◦ BA / BD 6661, 09.06.03, 10:18 5 - 34 +5.1 60 - 494

Oct. 9, 03 Aire sur l’Adour mid-lat fall LPMA / DOAS 8407, 09.10.03, 09:51 17 - 31 -6.5 738 - 988

15:39 - 17:09 43.7◦N, 0.3◦ W SZA: 66◦ − 88◦ BA 8421, 10.10.03, 09:20 25 - 33 +17.2 547 - 977

Jan. 31, 04 Bauru subtropics summer SAOZ 10040, 31.01.04, 12:06 25 - 30 -9.7 287 - 492

20:54 - 21:46 22.4◦ S, 49.0◦W SZA: 76◦ − 86◦ BA 10055, 01.02.04, 13:15 15 - 21 +16.1 33 - 488

Feb. 5, 04 Bauru subtropics summer SAOZ 10112, 05.02.04, 12:51 5 - 21 -8.0 229 - 495

20:25 - 21:12 22.4◦ S, 49.0◦W SZA: 70◦ − 80◦ BA 10127, 06.02.04, 13:59 25 - 29 +17.0 179 - 479

March 24, 04 Kiruna high lat. spring LPMA / DOAS 10798, 24.03.04, 10:35 12 - 33 -5.4 371 - 499

13:55 - 17:35 67.9◦ N, 21.1◦ E SZA: 72◦ − 95◦ BA / SO 10811, 25.03.04, 08:24 20 - 26 +17.1 383 - 494

June 17, 05 Teresina tropics winter LPMA / DOAS 17240, 17.06.05, 11:53 25 - 30 -8.1 382 - 491

18:32 - 21:07 5.1◦ S, 42.9◦W SZA: 61◦ − 94◦ BA / SO 17255, 18.06.05, 13:02 5 - 33 +18.4 6 - 490

7.3.1 Photochemical Modelling and its Constraints

Before addressing photochemical modelling in more detail, 3 different constraints for the modelling are
discussed. These constraints are obtained from the balloon soundings performed within the scope of this
study - total stratospheric bromine, vertical transport and photochemical constraints.

Total Stratospheric Bromine

For stratospheric sounding of the LPMA / DOAS payload, total stratospheric bromine (BrY) can be
inferred for altitudes above balloon float altitude. Such a constraint is particularly important because it
largely constrains BrY in the lower stratosphere (taken here from the tropopause to the balloon float
altitude). Stratospheric BrY concentrations are known to have levelled-off in recent years and thus
spatial gradients (∼1 pptv across the global stratosphere) in BrY due to different age of air masses are
expected to be small (for details see [Montzka et al. 2003]). Once total stratospheric BrY is known, an
accurate constraint is available for stratospheric BrO taking [BrO] ≤ [BrY]. BrO can in principle be
further constrained, though less accurately, using results from a photochemical model.
Here, observations made on October 9, 2003 at Aire sur l’Adour are used to infer total stratospheric
BrY from DOAS measurements. For details on total stratospheric BrY, see chapter 9. A Langley plot is
performed, where the slope of measured BrO absorption is analysed as a function of the calculated total
air mass at balloon float altitude (33 km), covering a SZA range between 84.27◦ and 87.52◦ (Figure 9.3).
For this observation the slope of the least-squares-fitted data results in an average BrO mixing ratio of
(14.5 ± 1.5) pptv above 33 km. For this flight, the SLIMCAT calculations show that the [BrO] / [BrY]
ratio is around 0.76 at 33 km, 0.8 at 36 km, 0.76 at 40 km, 0.54 at 45 km, and 0.23 at 50 km. The
line-of-sight weighted average is concluded to be 0.72 for these conditions. Combining all uncertainties,
the measurement thus indicates [BrY] = (20.1± 2.8) pptv above 33 km at northern mid-latitudes by late
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Figure 7.4: Comparison of a BrO profile measured by TRIPLE during balloon ascent on September 24, 2002

at Aire sur l’Adour with model calculations and SCIAMACHY limb retrievals. Black squares represent the

photochemically-uncorrected balloon measurement and blue squares the balloon profile photochemically cor-

rected to the SZA of the SCIAMACHY measurement. Corresponding model profiles at the SZA of the balloon

and satellite observations are shown as solid and dashed green lines respectively. Total inorganic BrY volume

mixing ratios as used in the model (green dash-dotted line) and as retrieved by DOAS measurements (vertical

dark blue lines - see text for details) are also indicated. SCIAMACHY measurements are shown as red circles

and the altitude range for the match (as given in Table 7.1) is indicated as thin dotted horizontal lines. Panels

a) and b) show calculations for the ‘best’ backward match and panel c) and d) for the ‘best’ forward match.

Concentrations and volume mixing ratios are given for each case.

2003 (see chapter 9).

Vertical Transport

The diabatic vertical transport in the stratosphere is also known to be of particular concern in 3-D CTM
modelling i.e., for high (Arctic) and low (tropical) latitudes [Chipperfield 1999]. In order to compensate
for potential deficits in the vertical transport, the tracers N2O and CH4, which are available for TRIPLE
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Figure 7.5: Same as Figure 7.4, but for a BrO profile measured by DOAS during balloon ascent on March 23,

2003 at Kiruna.

and LPMA / DOAS flights, are also compared with the 3-D CTM output. Since dynamic tracers are
not measured simultaneously for the SAOZ flights, O3 is used as an indicator for the vertical transport.
In particular, the vertical transport is tested for the balloon flights presented in this study, as follows:
For the TRIPLE flight on September 24, 2002 it is found that the measured dynamic tracers N2O and
CH4 agree excellently with the CTM SLIMCAT simulations. Good agreement with SLIMCAT is also
found for the LPMA / DOAS flight on March 23, 03 (right panel in Figure 7.9). Unfortunately for the
October 9, 2003 and the March 24, 2004 LPMA / DOAS flight no LPMA profiles are available to date,
thus measured and modelled tracer profiles cannot be compared. Therefore, the dynamics are verified
by the O3 profile simultaneously recorded with the DOAS instrument, see left panels in Figure 7.10 and
Figure 7.11. For the October 9, 2003 flight N2O SCDs measured by the LPMA instrument are available
and compared with modelled values in the right panel of Figure 7.10. Measured values correspond well
with the model and thus also indicate no large inconsistencies in the dynamics. The same procedure was
performed for the SAOZ flight on January 31, 2004 since no other transport tracers were available. In
all three cases the measured O3 profile is found to correspond well with the model.
The overall good agreement of the model with the tracer data supports the findings of Feng et al. [2005]
who found that the version of SLIMCAT used here, with the CCM radiation scheme, performed well
in this respect. Therefore, large uncertainties in the vertical transport are considered unlikely for the
balloon flights discussed here.
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Figure 7.6: Same as Figure 7.4, but for a BrO profile measured by DOAS during balloon ascent on October

9, 2003 at Aire sur l’Adour.

Photochemistry and its Constraints

Potential disagreement between observations and the model also arises from photochemistry-related un-
certainties (see e.g. Canty et al. [2005]. It is found useful to constrain the 1-D photochemical calculations
with the measured abundances of NO2 and O3 [Bracher et al. 2005]. BrO reacts efficiently with NO2 to
BrONO2, with the photolysis of BrONO2 being the most important back reaction during daytime. There-
fore, stratospheric BrO is strongly dependent on NO2 and an appropriate scaling of the 1-D photochemical
modelling may reduce potential errors in BrO comparison studies to a great extent. Fortunately for the
SAOZ and DOAS BrO observations such a scaling can easily be performed since NO2 and BrO profiles are
measured simultaneously. For the TRIPLE BrO observation such a scaling of modelled/measured NO2 is
more difficult since the NO2 is not measured on that payload. Therefore, SCIAMACHY NO2 observations
[Sioris et al. 2004] are used, which were validated by balloon measurements by Butz et al. [2005].
The SCIAMACHY NO2 profile for the TRIPLE flight on September 24, 2002 matches the model values
between 22 and 33 km but shows up to 50 % smaller concentrations below 22 km. The accuracy of the
SCIAMACHY measurements is discussed in Butz et al. [2005]. Model values of NO2 for the SAOZ flight
on January 31, 2004 basically agree with the measured profile within the given error bars below 25 km but
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Figure 7.7: Same as Figure 7.4, but for a BrO profile measured by SAOZ during balloon ascent on January

31, 2004 at Bauru.

are systematically lower (∼ 30 % at 20 km). Above 25 km, up to balloon float altitude at around 30 km,
the agreement is very good. For the DOAS flight on March 23, 2003 the model NO2 shows systematically
higher values (10 %− 40 %) above 15 km than indicated by observations (left panel in Figure 7.9). The
DOAS NO2 observations on October 9, 2003 coincide with the model above 27 km and below 20 km
within the given errors, but the model profile is up to 40 % higher in-between. As shown in the right
panel of Figure 7.11, model results for March 24, 2004 underestimate DOAS measurements below 20 km
by 10 %− 20 % and overestimate them above 22 km up to balloon float altitude by up to 20 %.
Further photochemistry-related uncertainties in the SAOZ and DOAS observations are kept small when
only using measurements for SZA≤ 88◦, i.e. discarding solar occultation profiles from SAOZ and DOAS.

7.4 Results and Discussion

Panels a) and b) in Figures 7.4 to 7.8 show concentration and volume mixing ratio (VMR) profiles for the
‘best’ backward match and panels c) and d) show corresponding profiles of the ‘best’ forward match. Each
panel shows the original measured, photochemically-uncorrected BrO balloon measurement (solid black
squares) and the photochemically-corrected BrO profile (open blue squares), which is to be compared
with the SCIAMACHY measurement of the corresponding ‘best’ backward or forward match. The orbit
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Figure 7.8: Same as Figure 7.4, but for a BrO profile measured by DOAS during balloon ascent on March 24,

2004 at Kiruna.

number and time of each SCIAMACHY match are given in the label of each figure and in Table 7.1.
Error bars of the photochemically-corrected profiles include the estimated error for the photochemical
scaling as described in section 7.2. Model profiles at the SZA of the balloon and the satellite observation
are shown as solid and dashed green lines, respectively. Total inorganic BrY volume mixing ratios as used
in the model are also indicated as dash-dotted green line. SCIAMACHY measurements are shown as red
circles and the altitude range which fulfils the match criteria (as summarized in Table 7.1), is indicated
by the thin dotted horizontal lines. In cases where only one horizontal line is plotted (e.g. backward
match in Figure 7.8), the match criteria are fulfilled above the indicated altitude, over the entire plotted
range. Certain orbits of Level 1 SCIAMACHY data remain unavailable and cannot be presented in this
study. Total inorganic BrY and its uncertainty, inferred from DOAS BrO as described above, is marked
by dark blue vertical lines.

TRIPLE mid-latitude measurements on September 24, 2002 were performed between 55.6◦ and
67.9◦ SZA. The value SZA = 60.1◦ was chosen as a scaling reference for the balloon observation. The
SZA of the SCIAMACHY measurement is 45.1◦ fo the backward match and 50.7◦ for the forward
match. Since satellite and balloon measurements were taken in the morning well after sunrise, and
the diurnal variation of BrO during the morning is rather small (see Figure 7.2), the scaling over the
entire altitude range is < 5 %, for both the backward and forward match. Model results over the entire
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Figure 7.9: NO2 and N2O profiles measured by the LPMA / DOAS instruments during balloon ascent at

Kiruna on March 23, 2003.

altitude range are much larger than TRIPLE measurements. Comparing the dynamic tracers N2O and
CH4 between model predictions and TRIPLE measurements, shows good agreement. NO2 was scaled to
match SCIAMACHY observations of the 10:32 UT limb scan of orbit 2968, the same forward match used
for BrO comparison. SCIAMACHY NO2 profiles tend to show lower values below 20 km than balloon
validation measurements [Butz et al. 2005], possibly causing an overprediction of BrO in the model.
However, even if no NO2 scaling is performed in the model, modelled BrO is much higher than TRIPLE
measurements. Thus, apart from unknown instrumental problems, the discrepancy between modelled
and measured BrO cannot be explained. Although the time lag for the backward match between the
satellite and the balloon measurement is quite short (-2.5 h) and match criteria are fulfilled between 16
and 33 km (see Table 7.1), the corresponding SCIAMACHY profile is too large for observations below
27 km.

Figure 7.10: O3 profile and N2O - SCD values measured by the LPMA / DOAS instruments during balloon

ascent at Aire sur l’Adour on October 09, 2003.
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Figure 7.11: O3 and NO2 profiles measured by the DOAS instrument during balloon ascent at Kiruna on March

24, 2004.

DOAS high-latitude ascent measurements taken on March 23, 2003 were performed between 77.9◦

and 88.8◦ SZA. For comparison the model output is plotted at 80.0◦ SZA. The photochemically
corrected DOAS profile is obtained as described in section 7.2 and by Butz et al. [2005]. The SZAs
of the SCIAMACHY backward and forward match are 81.2◦ and 57.7◦, respectively. Compared to
the TRIPLE flight, the scaling for the backward and forward match is much higher (up to 15%)
since DOAS measurements took place during late afternoon, before sunset. The agreement of the
dynamic tracers N2O and CH4 between model predictions and LPMA measurements is warranted and
NO2 was scaled to DOAS measurements in the 1-D model, as described in section 7.3.1. The overall
agreement with the model is very convincing for the photochemically-uncorrected and corrected profiles.
The SCIAMACHY profile for the forward match has a time delay of +17.4 hours and match crite-
ria are obeyed from 19 to 29 km. SCIAMACHY values for this profile are in general higher than predicted.

DOAS mid-latitude ascent measurements taken on October 9, 2003 were performed between 71.0◦

and 81.5◦ SZA. For comparison purposes, the model output is plotted at 72.9◦ SZA. Since the SZAs of
the SCIAMACHY backward and forward matches are 51.8◦ and 51.7◦, respectively, both scalings are
similar. Due to strong oscillations of the gondola, measurements could only begin at ∼ 16 km, causing
higher uncertainty of the lowest profile point at 18 km. Agreement of the dynamic tracers between model
predictions and LPMA measurements could not be assessed, since no LPMA data is available to date.
Therefore, dynamics were verified by O3 measurements, which showed good agreement over the altitude
range covered. NO2 was scaled in the 1-D model as before. DOAS measurements coincide well with the
model over the entire range. The SCIAMACHY profile for the backward match, which has a time delay of
-6.5 hours and match criteria obeyed above 17 km, is generally in good agreement, although most values
tend to be too high. The forward match with a time delay of +17.2 hours lies within the given errors
above 25 km, but shows again high values in the lower stratosphere, where match criteria are not fulfilled.

SAOZ subtropical ascent measurements taken on January 31, 2004 before sunset were performed
between 76◦ and 86◦ SZA and thus a scaling reference for the balloon observation of 80.2◦ SZA was used.
The SZAs of the SCIAMACHY backward and forward match are both 36◦. As for the DOAS flight, the
scaling for the backward and forward match is significant. The agreement of the dynamics adopted in
the model with observations could only be verified by comparing O3 profiles also measured by the SAOZ
instrument indicating that large dynamic uncertainties can be ruled out. Simultaneous measurements of
NO2 allowed it to be scaled in the 1-D model. Agreement with the model for BrO between 17 km and
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25 km is convincing, but measurements below and above, are larger and even close to total BrY. The
comparison with a SCIAMACHY backward match shows agreement with the balloon measurements,
although it is outside the matching altitude range. Below 17 km the SCIAMACHY profile tends to have
[BrO] > [BrY]. The forward match shows a similar good agreement but again has too high values in the
lower stratosphere.

DOAS high-latitude ascent measurements taken on March 24, 2004 were performed between 74.6◦

and 85.4◦ SZA. For comparison the model output is plotted at 77.1◦ SZA. Since the SZAs of the
SCIAMACHY backward and forward match are 68.3◦ and 61.8◦, respectively, the scaling is very similar.
Agreement of the dynamic tracers N2O and CH4 between model predictions and LPMA measurements
could not be assessed, since no LPMA data is available to date. Therefore, dynamics could only be
verified by O3 measurements, which showed an overall good agreement over the entire altitude range.
NO2 was scaled in the 1-D model as before. The correspondence with the model is very convincing. The
available SCIAMACHY profile for the forward match has a time delay of +17.1 hours and match criteria
are obeyed only between 20 and 26 km, where the satellite profile shows 25 to 55 % higher values.

Overall, the agreement of the balloon BrO observations from the 3 instruments with the model
is encouraging. The tracer data measured by balloon instruments is found to correspond with the
SLIMCAT CTM and therefore large uncertainties in vertical transport can be ruled out. All profiles fall
within the constrained total BrY and mostly agree with the model within the error range. An exception
is the TRIPLE flight, where the source of discrepancy is unclear, since dynamic and photochemical
causes could be eliminated. After the scaling of NO2 in the model, DOAS and SAOZ BrO profiles
coincide with the model at almost every altitude within the errors (15 to 30 % for DOAS and 25 to 50 %
for SAOZ, depending on altitude and measurement conditions).

For the SCIAMACHY retrievals presented here, no clear trend can be observed, except that the
Harvard retrieval mostly shows higher values than expected from the photochemically-corrected balloon
validation profiles, especially for lower altitudes, where sensitivity of the satellite instrument decreases.
Sources of error might be spatial variations of BrO within the match criteria of 1 hour and 500 km,
although this is very unlikely. Smaller discrepancies could be explained outside the matching altitude
ranges, where air masses travelled along different trajectories that do not obey the match criteria. But
overall the diurnal variation of BrO (without large spatial gradients) should be able to explain most
of the scaling factor used to correct the profiles. The larger time delay for forward matches (see Table
7.1), and therefore the increasing uncertainty in the air mass trajectory calculation, could theoretically
explain higher discrepancies compared to backward matches, but this is not the case for the present
observations.

7.5 Conclusions

Stratospheric BrO abundances measured from 3 different balloon sensors were compared with reference
to the 3-D CTM SLIMCAT model output. Model calculations were used to generate a BrO profile valida-
tion set for the new Envisat / SCIAMACHY satellite instrument and were compared with first retrieval
exercises of SCIAMACHY BrO limb profiling. Since the diurnal variation of BrO and the spatial and
temporal difference between the different observations prevent a direct comparison, the observations were
considered with reference to outputs from the 3-D CTM. Air mass trajectory calculations were used to
identify coincident SCIAMACHY limb measurements. The balloon-borne BrO profiles were photochemi-
cally scaled along the trajectories with a 1-D stratospheric chemistry model to match the photochemical
conditions of the satellite observations. Model predictions were constrained by simultaneous observations
with the balloon instruments, of dynamic and photochemical relevant parameters.
Total [BrY] = (20.1± 2.8) pptv obtained from DOAS BrO observations at mid-latitudes in 2003, served
as an upper limit of the comparison. The good agreement of balloon trace gas measurements with the
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SLIMCAT model indicates that vertical transport is considered correctly and is not a major source of
error. Within the given range of errors of the different measurement techniques, most of the balloon
observations agree with model BrO. Initial BrO profiles available from SCIAMACHY agree to < ±50 %
with the photochemically-corrected balloon observations, with less agreement below 20 km. This should
encourage a further improvement of the satellite retrieval.
The presented set of BrO balloon profiles is meant to be representative and, according to the trajectory
calculations, the most suitable set of SCIAMACHY BrO validation profiles and is thus recommended for
future SCIAMACHY limb BrO retrieval exercises.
The LPMA / DOAS flight at Teresina on June 17, 2005 has not been analysed in detail yet and will be
part of a future study. Trajectory calculations, similar to Figure 7.4, for the four DOAS SCIAMACHY
validation flights are shown in Figures 7.12 to 7.15 on the following pages.
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Figure 7.12: Two days backward (left panels) and forward (right panels) air mass trajectories for the ascent

(upper panels) and occultation (lower panels) observations for the LPMA/DOAS flight on March 23, 2003

at Kiruna. The considered ENVISAT / SCIAMACHY orbit numbers and trajectory start times and altitudes

are given in the individual headers and legends, respectively. The light blue rectangles represent the areas of

tangent points, which are probed by the SCIAMACHY limb observations and meet the match criteria (see text

for details). Plots by courtesy of FU-Berlin.
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Figure 7.13: Same as Figure 7.12 but for the LPMA/DOAS flight on October 09, 2003 at Aire sur l’Adour

and ascent observations only. Plots by courtesy of FU-Berlin.
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Figure 7.14: Same as Figure 7.12 but for the LPMA/DOAS flight on March 24, 2004 at Kiruna. Plots by

courtesy of FU-Berlin.
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Figure 7.15: Same as Figure 7.12 but for the LPMA/DOAS flight on June 17, 2005 at Teresina. Plots by

courtesy of FU-Berlin.



Chapter 8

Stratospheric OClO

The bromine and chlorine catalytic ozone depletion cycles are coupled via the reaction of BrO and ClO.
The three reaction channels produce OClO, ClOO and BrCl as described in section 2.2.3. Due to the fast
photolysis of BrCl and the impact-induced decay of ClOO to Cl and molecular oxygen, the generation of
BrCl and ClOO leads to ozone depletion. As more than 50% of the educts lead to the formation of OClO
at stratospheric temperatures, this species is well suited to investigate this catalytic ozone depletion cycle.
Still, the relationship between OClO and ClO amounts is not linear, as it is limited by BrO for highly
activated conditions [Sessler et al. 1995; Canty et al. 2005].

The only OClO evaluation of DOAS balloon measurements has been presented by Fitzenberger [2000].
Four balloon flights were analysed to determine how much OClO was present in the stratosphere. Three
flights were performed at high latitudes during winter, where OClO was expected to be formed and one
at mid latitudes during late fall/beginning of winter. In all cases significant amounts of OClO were found.
For the flight at Kiruna on February 14, 1997 low OClO values were expected since the flight took place
at the edge of the activated polar vortex, with occultation measurements pointing outside the vortex.
For details on the flights and the balloon trajectory relative to the polar vortex, see Fitzenberger [2000]
and Bösch [2002]. The second flight at Kiruna during winter took place on February 10, 1999. Balloon
ascent was again at the edge of the vortex, but occultation measurements pointed inside the vortex. Some
chlorine activation was observed during winter 1998/1999, but in general temperatures were too high for
PSC formation. The third high-latitude winter flight at Kiruna was performed on February 18, 2000. It
was one of the coldest winters in the lower stratosphere in the last decades with a strong polar vortex and
high chlorine activation. The LPMA/DOAS balloon flight was well inside the vortex, but with occultation
measurements pointing toward the edge.
The mid-latitude flight at Leon on November 23, 1996 took place well outside the vortex, although the
boundary of one vortex fragment was close to northern Spain. From general knowledge of stratospheric
chemistry, no formation of detectable amounts of OClO would be expected. High values retrieved by
Fitzenberger [2000] with up to 10 pptv of OClO are rather puzzling and cannot be explained by model
and trajectory calculations. Furthermore, OClO DOAS retrievals by Fitzenberger [2000] for the Kiruna
winter flights showed much higher values than can be explained by comparison with model calculations.
Balloon ascent measurements in particular, with significant OClO SCD values for Kiruna 1999 and Kiruna
2000 observations, showed up to 10 times higher values than model calculations.
In this study a reevaluation of OClO for the 4 flights is presented. The first part of this chapter emphasises
the difficulties of the DOAS OClO evaluation and gives an error estimate. Sections 8.2; 8.3 and 8.4 present
case studies for OClO observations at Kiruna on February 14, 1997, February 10, 1999 and February 18,
2000. Observations are compared with model results and new findings for photochemical parameters.

129
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Figure 8.1: Absorption cross-sections in the UV OClO retrieval range (346− 390 nm) at the resolution of the

spectrograph. Top to bottom: OClO [Kromminga et al. 2003], O4 [Hermans 2002] (collisional pair absorption

cross-section), Ozone [Voigt et al. 2001], NO2 [Voigt et al. 2002], BrO [Wahner et al. 1988] and center to

limb darkening correction (section 3.4.1) obtained according to Bösch [2002].

8.1 OClO Evaluation

The DOAS technique make it possible to retrieve the UV OClO absorption signatures of the vibrational
and rotational absorption bands of the Ã2A2 ←− X̃2B1 electronic transition. Reference spectra used
for the OClO DOAS evaluation were obtained in the same way as reference spectra used for the BrO
evaluation described in section 6.1.1. Laboratory references of NO2 (at T= 203 K) and O3 (at T= 197 K
and T= 253 K) were calibrated, with respect to wavelength and absolute value, with the NO2 and
O3 high resolution cross-sections given by Voigt et al. [2002] and Voigt et al. [2001]. I0 corrections
were performed as described in section 6.1.1. The O4 laboratory spectrum of Hermans [2002], the
BrO absolute cross-section measured by Wahner et al. [1988] at T= 228 K and the OClO absolute
cross-section at T= 213 K from Kromminga et al. [2003] were included in the fit. Unfortunately
OClO was only measured during flights before 2001. Therefore, reference spetra recorded with the
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Figure 8.2: Development of the slant column densities and important fit parameters for the OClO retrieval

in the 346 − 372 nm wavelength range (orange) and for the BrO retrieval in the 346 − 360 nm wavelength

range (black) for the ascent and sunset measurements of the balloon flight at Leon on November 23, 1996.

Laboratory absorption cross-sections of O3 at T = 197 K and T = 253 K and NO2 at T = 203 K were used

together with literature cross-sections of OClO, BrO and O4 as described in the text (panels b) - f)). In panel

a) the resulting root mean square (RMS) of the fit is plotted. Panels g) and h) represent the shift and squeeze

of the fitted spectra, respectively.

balloon spectrograph in the laboratory after 2001, as described in chapter 5, could not be used.
For future flights it will be especially interesting to compare UV absorptions with OClO signatures
recorded with the Vis spectrograph between 400 nm and 430 nm. This was the primary motivation behind
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changing the wavelength range covered by the Vis spectrograph to smaller wavelengths (see section 4.1.2).

Most suited for OClO evaluation is a subwindow of the wavelength interval between 346 nm and
390 nm, covered by the UV spectrograph, as indicated in Figure 8.1. Below 346 nm the O3 absorption
is too strong and above 390 nm large Fraunhofer absorption lines make a DOAS retrieval impossible. It
was discovered that one of the most crucial factors in the evaluation of OClO is the correct choice of
subwindow. Subwindows covering only one absorption band of OClO can be ruled out since the subset
of pixels available for the DOAS fit is not sufficent for the high number of parameters to be fitted.
Fitzenberger [2000] used different wavelength ranges (345− 370 nm, 362− 382 nm, 362− 380 nm, 346−
365 nm, 362 − 390 nm and 346 − 368 nm) for analysing OClO for 4 balloon flights. The most common
wavelength range used by other groups is the 362−390 nm (±2 nm) interval (see e.g. Wagner et al. [2001]).
The advantage of analysing wavelengths larger than 362 nm is that the O3 absorption does not have to
be considered in the fit. For direct sun measurements, a center-to-limb-darkening correction has to be
included for λ > 372 nm [Bösch 2002] (see Figure 8.1).
Although the BrO cross-section has only small absorption signatures at around 368 nm and 374 nm
it shows strong anti-correlation with the OClO cross-section. Therefore, different results are obtained
by including or excluding BrO in the DOAS fit in the 362 − 390 nm range. If included in the fit the
BrO SCD values are too high compared to the standard BrO retrieval in the 346 − 360 nm range,
thus generating lower OClO values. If BrO is not included in the fit, the obtained OClO values are
overestimated. If no other sources of error were present, true OClO values would lie between the two
retrieval values, resulting in an additional SCD error of ∼ 15 % above the detection limit (generally
around (2− 4)× 1013 molecules/cm2).
Testing different retrieval ranges also showed that higher systematic residual structures are obtained in

Figure 8.3: Development of the OClO SCD values for the balloon flight at Leon on November 23, 1996.

The detection limit and modelled SCDs as described in the text are plotted in red and blue respectively for

comparison.

the 362− 390 nm interval. This is mainly due to stronger Fraunhofer absorption features for λ > 370 nm
but might also be due to small unknown absorptions of other trace gases. In the 346 − 365 nm and
346− 385 nm windows strong anti-correlations of OClO with O4 are observed. Accurate fitting of O4 is
essential to obtain realistic OClO values and a shift of 0.1 nm has to be applied to the O4 spectrum of
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Figure 8.4: OClO DOAS evaluation in the 346 − 372 nm wavelength range for a spectrum recorded during

occultation measurements of the balloon flight at Leon on November 23, 1996. The spectrum was recorded

at 30.76 km at 92.05◦ SZA (16:48:53 UT) with 16 scans and a total exposure time of 14.87 seconds. The

upper panel shows the Fraunhofer spectrum (black line) and the measured spectrum (red line). In the panels

below the retrieved trace gas absorptions of O3 (at 197 K), NO2 (at 203 K), O4, BrO and OClO as described

in the text are plotted. A 5th- degree polynomial was included in the fit. The black lines indicate the spectral

absorptions and the red line respresents the sum of the spectral absorption and the residual of the fit. The

lowest panel displays the remaining residual structure.

Hermans [2002]. In addition the 346− 385 nm interval covers almost 400 pixels, which makes accurate
DOAS retrieval difficult. Furthermore, OClO shows a larger correlation with NO2 than in other OClO
retrieval windows.
Anti-correlations of OClO with BrO are also present between 357 and 385 nm and from 362 to 385 nm,
where the later interval generally showed wider scatter of OClO SCD values than the other intervals.
Best results are obtained from 346 to 372 nm. Here correlations of OClO with BrO and O4 are minimal
although the choice of the degree of the polynomial, which is used to approximate broad-band components,
is still crucial. Naturally the polynomial highly correlates with the relatively broad-banded O4 and thus
influences OClO values. Comparing the development of O4 SCDs from the Vis spectrograph with values
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obtained from the OClO evaluation in the 346− 372 nm range for different balloon fights showed that a
5th- degree polynomial should be used in the DOAS fit rather than a 4th- degree polynomial. Figures 8.2,
8.6, 8.12 and 8.23 show the development of the slant column densities and important fit parameters for
OClO retrieval in the 346− 372 nm wavelength range (orange) and for BrO retrieval in the 346− 360 nm
wavelength range (black) for the 4 flights analysed for OClO absorptions. Panel h) of each figure shows
the corresponding BrO SCDs, which agree within the given error bars of the OClO and BrO retrieval,
for all four flights. Therefore, strong correlations of BrO and OClO can be ruled out in the 346− 372 nm
interval, demonstrating the accuracy of the OClO evaluation.
The OClO re-evaluation in the 346−372 nm interval shows systematically lower values compared to results
obtained by Fitzenberger [2000]. Especially in the case of the mid-latitude flight at Leon, on November
23, 1996, OClO values are even below the detection limit (see Figure 8.3), whereas Fitzenberger [2000]
received SCD values up to 3.7× 1014molecule/cm2, i.e. ∼ 10 times as high.
In contrast to BrO, the amount of OClO absorption present in the Fraunhofer spectrum is negligible,
and no Langley-plot needs to be performed (see section 6.1.2). Thus, differential SCDs obtained by the
DOAS evaluation of the spectra as shown in the Figures, are considered total SCDs. The detection limit
(section 3.4) as plotted in Figure 8.3 is twice the error given by the WinDOAS evaluation software.
Figure 8.4 shows a typical DOAS retrieval for a spectrum recorded at 92.05◦ for the Leon 1996 balloon
flight. The optical density of OClO is significantly lower than the remaining residual structures. The large
systematic residual feature at 356 − 358 nm is due to temperature effects in the NO2 cross-section and
therefore incorrect removal of NO2 absorptions. The high SCD values found by Fitzenberger [2000] could
not be reproduced in the 346−372 nm interval, nor in any other wavelength range. For reasons explained
above (e.g. O4 correlations) different retrieval ranges can lead to higher values, but can still not reproduce
the retrieval of Fitzenberger [2000]. A possible explanation is the incorrect wavelength alignment of O4,
O3 or NO2. In principle, the effect of incomplete removal of absorptions and resulting larger residual
structures, can also be observed in this study. This is mainly the case for occultation measurements,
where residual structures rise with increasing SZA. Thus, for a small absorber like OClO the DOAS fit
misinterprets residual structures as OClO absorptions, resulting in increasing SCDs for increasing SZA
during occultation. This effect can be observed for every DOAS balloon flight, also for measurements where
OClO is definitely not present in significant amounts. Higher SCD values for occultation measurements
compared to modelled SCDs, as shown in Figure 8.3 for Leon 1996 (occultation starting at 16:38 UT),
can therefore be explained. However, within the given errors of the WinDOAS evaluation these values
are still in accordance with model results and cannot explain the 10 times higher values obtained by
Fitzenberger [2000].
Modelled SCDs plotted in Figure 8.3 are obtained as described in section 6.1.2. The BrY content in
the model was adjusted to DOAS BrO observations as described in chapter 9 and ClO quantities were
compared to TRIPLE balloon measurements as reported by Vogel et al. [2005]. For a short description of
the TRIPLE payload, see chapter 7. TRIPLE observations were performed outside the vortex at Leon on
November 14, 1996. The ClO profile correspond well with values obtained with the SLIMCAT CTM model.
During daylight about 150 pptv and 200 pptv were measured at Θ = 600 K and Θ = 800 K respectively.
Vogel et al. [2005] also found an overall good agreement between photochemical box model calculations
and measurements, and deduced that no substantial uncertainties exist in midlatitude chlorine chemistry
in the stratosphere. Since ClO used in the model study presented here corresponds well with TRIPLE
measurements, and BrO is consistent with DOAS measurements, the modelled SCD values in Figure 8.3
are expected to be accurate.
Inaccuracies due to the degree of polynomial used and the high residual structures in the fitting procedure,
allow a total fitting error of 1.5 times the DOAS fit error to be defined. Another 10% SCD error is taken
into account for the OClO cross-section and temperature uncertainties and is added to the total fitting
error, applying Gaussian error propagation. Whenever model comparisons are shown in this chapter, SCD
errors are plotted with corresponding error bars. Within these errors, modelled and retrieved OClO SCDs
for the Leon 1996 flight correspond well with one another (Figure 8.3).
Model results presented here are obtained using the same model described in chapter 7, the only difference
being that the model is used in stacked mode, rather than calculating photochemistry along trajectories.
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Figure 8.5: Same as Figure 8.4 but for a spectrum recorded during occultation measurements of the balloon

flight at Kiruna on February 14, 1997. The spectrum was recorded at 29.79 km at 93.39◦ SZA (14:44:29 UT)

with 3 scans and a total exposure time of 9.18 seconds.

LPMA data and DOAS NO2 and O3 profiles given in this chapter are courtesy of A. Butz. Part of the
work can be found in Butz et al. [2005]. Important flight parameters for UV observations for the balloon
flights presented in the following sections, can be obtained from Table 6.1 and 6.1.

8.2 The LPMA / DOAS Measurements at Kiruna on February

14, 1997

Figure 8.6 shows fit results of the BrO and OClO retrieval for the flight at Kiruna on February 14, 1997.
Panel d) displays OClO values from the 346 − 372 nm retrieval range. OClO values are very low and,
as indicated in Figure 8.7, are hardly above the detection limit. In Figure 8.5 a typical OClO fit in the
346− 372 nm wavelength range is shown for a spectrum recorded at 93.39◦ SZA (14:44 UT). The optical
density of OClO is much smaller than the remaining residual structure of the fit. Fit parameters and
development of SCDs for the DOAS OClO evaluation are shown in Figure 8.6. Although no sensitivity



136 CHAPTER 8. STRATOSPHERIC OCLO

Figure 8.6: Same as Figure 8.2 but for the balloon flight at Kiruna on February 14, 1997.

studies are possible with values mainly below the detection limit, a standard model comparison was
performed.

A comparison of tracers has shown, that the dynamics are modelled correctly by SLIMCAT. N2O
(shown in Figure 8.8) and CH4 volume mixing ratio profiles, recorded by the LPMA instrument, show
reasonable agreement overall, but also indicate that air masses inside and outside the vortex were probed
during occultation measurements. Since the SLIMCAT model output is an average value taken from 4
grid points adjacent to the Kiruna station, it is clear that small features at the boundary of the vortex
cannot be represented correctly.
LPMA measurements of the reservoir HCl (right panel in Figure 8.8) also indicate that some chlorine
activated inside vortex air was observed during occultation measurements at around 20 km. Overall
the model has lower HCl values above 15 km, but agreement should be sufficient for a rough model
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Figure 8.7: Development of OClO and BrO SCD values for the balloon flight at Kiruna on February 14, 1997.

Modelled SCDs as described in the text are plotted in blue for comparison. The detection limit for OClO is

shown in red.

comparison. Unfortunately the chlorine reservoir species ClONO2 was not measured by LPMA during
this flight. Otherwise simultaneous measurements of HCl and ClONO2 could be used to derive ClOX

(= Cl + ClO + 2×Cl2O2 + OClO) for modelling.
Since the formation of OClO mainly depends on the amount of BrO, it is essential to check and, if
necessary, adjust values in the model. For the Kiruna 1997 balloon flight a total BrY of ∼ 18 pptv can
be inferred from BrO measurements as explained in chapter 9. In Figure 8.7 the measured and modelled
BrO SCDs are plotted and show good agreement. The same holds true for the BrO profile, which is not
shown here. In order to obtain correct BrO values in the model, it is also necessary to adjust the amount
of NO2 used in the model, as described in chapter 7. O3 and NO2 concentration profiles are compared in
Figure 8.9 and show very good agreement with SLIMCAT output. Therefore, NO2 does not need to be
scaled in the 1D-model.

Figure 8.8: N2O and HCl volume mixing ratio profiles as measured by the LPMA-FTIR, compared to SLIMCAT

model output, for the balloon flight at Kiruna on February 14, 1997. Ascent and occultation profiles are shown.
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Figure 8.9: O3 and NO2 concentrations measured with the DOAS Vis spectrograph in comparison to SLIMCAT

model output at SZA = 85.1◦, for the balloon flight at Kiruna on February 14, 1997. O3 ascent and occultation

profiles are shown.

Concentration fields of BrO and OClO are plotted in Figure 8.10. The only significant amounts of OClO
are formed between 15 to 20 km for SZA > 92◦, which is in accordance with modelled OClO SCDs in
Figure 8.7. Agreement with measured values is given within errors, where negative measured values at
the beginning of occultation are due to correlations and residual structures in the DOAS fit. Furthermore,
it can be observed that modelled OClO values increase faster during occultation, which can be explained
by higher chlorine activation in the model, as indicated by lower HCl abundances.
OClO values close to or slightly over the detection limit mean that the Kiruna 1997 observations are not
well suited to a stringent test of photochemistry, but on the other hand they do not indicate any major
inconsistencies.

Figure 8.10: Colour-coded model concentration fields of BrO (left) and OClO (right) from SLIMCAT output

at Kiruna (67◦N, 22◦E) on February 14, 1997. The observation geometry is superimposed (see e.g. Figure 6.6

for explanation).
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Figure 8.11: Same as Figure 8.4 but for a spectrum recorded during occultation measurements of the balloon

flight at Kiruna on February 10, 1999. The spectrum was recorded at 28.32 km at 93.25◦ SZA (14:37:17 UT),

with 1 scan and a total exposure time of 15.0 seconds.

8.3 The LPMA / DOAS Measurements at Kiruna on February

10, 1999

The OClO DOAS fit of spectra recorded at Kiruna on February 10, 1999, shows clear signs of OClO
absorption (Figure 8.11). Panel d) in Figure 8.12 shows the development of OClO SCDs. OClO values
obtained in the BrO retrieval range (346−360 nm) scatter around zero for ascent and float measurements,
but correspond well during occultation, where high values are observed. O4 SCDs in the OClO retrieval
range also correspond well with measurements obtained using the Vis spectrograph. The left panel of
Figure 8.13 shows the detection limit; OClO occultation values are clearly above the limit. As for Kiruna
1997, measurements took place at the edge of the vortex, pointing inside the vortex during occultation.
Temperatures of the probed air masses were moderately low with a minimum of 193 K between 20 and
25 km altitude. This winter only had short periods and small areas in which temperatures were low
enough to allow the existence of NAT PSC particles. It was a dynamically active winter with a disturbed
and relatively weak vortex. Large amounts of PSC particles leading to enhanced chlorine activation could
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Figure 8.12: Same as Figure 8.2 but for the balloon flight at Kiruna on February 10, 1999.

not build up. Two warmings with complete breakdowns of the vortex occured at the beginning of Decem-
ber and March. The vortex re-established in April and the final breakdown occured at the end of May
[EC-Report 2001b].
No significant ozone depletion (less than 5%) was observed during this winter at northern latitudes
(see also Figure 2.15). Nevertheless, some chlorine and bromine activations were observed and are also
predicted by models. Backward air mass trajectories indicate that the observed air masses were of po-
lar origin and were not exposed to much sunlight during the last few days before the measurement
[Fitzenberger 2000]. Since temperatures were generally too high for PSC formation, heterogeneous chem-
istry on background aerosols is important.
Dynamics and history of the probed air masses are accounted for by the SLIMCAT 3-D CTM. Modelled
OClO SCDs, as shown in Figure 8.13, which were calculated from the SLIMCAT concentration field,
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Figure 8.13: Development of OClO and BrO SCD values for the balloon flight at Kiruna on February 10, 1999.

Modelled SCDs as described in the text are plotted in blue for comparison. The detection limit for OClO is

shown in red.

correspond well with measurements without scaling, except during late occultation. The following section
verifies the validity of SLIMCAT model output and compares this output with measurements. Further
constraints and scalings are performed using 1-D model calculations.
A total BrY of ∼ 19.5 pptv can be inferred from BrO measurements as explained in chapter 9 (see right
panel in Figure 8.13). Comparing SLIMCAT output data of dynamic tracers with LPMA measurements
of N2O (Figure 8.15) and CH4 indicates reasonable agreement. It can be observed that below 20 km,
more inside vortex air masses were probed during occultation observations than during ascent measure-
ments, and that the model corresponds more to outside vortex conditions above 20 km. This can partly
be explained by the fact that the model is an average of four grid points around the Kiruna station. The
O3 profiles (not shown here) derived from DOAS ascent and occultation measurements [Butz et al. 2005;
Bösch 2002], also indicate that inside vortex air was probed during occultation. This can be seen by up
to 20% lower O3 values during occultation, between 10 and 20 km, compared to ascent observations.
The SLIMCAT NO2 profile has an unrealistically high value at 20.6 km (blue shaded stripe in the upper
right panel of Figure 8.14) that can also be observed indirectly in the ClONO2 profile in Figure 8.15.
Since simple scaling of NO2 could not remove this feature, the height segment was omitted and values
interpolated from the two adjacent height segments. Overall, DOAS observations and modelled NO2 in-
dicate a denoxified stratosphere below 21 km.
LPMA measurements of HCl and ClONO2 allow available ClOX to be derived. Since ClY was not mea-
sured at the same time it had to be determined with the help of TRIPLE measurements performed at
Kiruna on February 6, 1999. The cyrogenic whole air sampler of the University of Frankfurt installed
on the TRIPLE gondola measures all relevant long-lived tracers. Therefore a N2O - ClY correlation can
be derived [Engel et al. 1999], allowing ClY to be inferred for the LPMA / DOAS measurements 5 days
later (see also Figure 2.9). The calculated ClOX ( = ClY - HCl - ClONO2) is plotted in Figure 8.16 and
compared to ClOX of the SLIMCAT model. The low ClOX value at 23 km and the high value at 26 km in-
ferred from the measurements are due to ClONO2 values as shown in Figure 8.15. In the relevant altitude
range between 15 and 22 km the modelled and measured values correspond well, except at around 18 km,
where the modelled ClOX is much lower. Therefore modelled ClOX values were scaled to observations at
this altitude level, although the scaling has no major influence on the overall OClO observations, since
OClO values mainly depend on the amount of BrO.
When adjustments in the 1-D model are performed as described - i.e. scaling of NO2, O3, BrY and ClOX
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Figure 8.14: Colour-coded model concentration fields of BrO (upper left panel), NO2 (upper right panel), ClO

(lower left panel) and OClO (lower right panel) from SLIMCAT output at Kiruna (67◦N, 22◦E) on February

10, 1999. The observation geometry is superimposed (see e.g. Figure 6.6 for explanation).

(at one altitude), and one height segment is omitted from the SLIMCAT output - the resulting mod-
elled OClO SCDs correspond excellently with occultation measurements. In Figure 8.17 the ascent and
occultation measurements are magnified. SLIMCAT results are shown for purposes of comparison, as in
Figure 8.13, in light blue. The green line labeled ‘standard run’ is the resulting SCD development from
the 1-D model. It was discovered that scaling NO2 is responsible for most of the differences between
SLIMCAT and the 1-D model results. Ascent measurements are not expected to correspond as well, since
measurements were taken at the edge of the vortex and ClONO2, and therefore ClOX, cannot be inferred
from ascent observations. A correlation plot of measured and modelled OClO SCDs for this ‘standard
model run’ is shown in Figure 8.18. Occultation values for SZAs > 92◦ are highlighted in blue. The large
scatter of low values is mainly due to float spectra, which scatter around zero. The good agreement for
occultation values above the detection limit (>∼ 4× 1013molecule/cm2) is convincing.
Two model runs were carried out, where the chlorine and bromine load were changed to 70% of the actual
value (dashed red and mangenta lines in Figure 8.17). Although the uncertainty in BrY and ClY are less
than 10%, the test shows the response of the model and that the relationship between OClO and ClO
amounts is not linear, but limited by BrO. In another model simulation, the reaction rate of BrO with
NO2 was increased by 50%, approximately reflecting uncertainties at stratospheric temperatures as given
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Figure 8.15: N2O, HCl, HNO3 and ClONO2 volume mixing ratio profiles as measured by the LPMA-FTIR,

compared to SLIMCAT model output (February 11, 1999), for the balloon flight at Kiruna on February 10,

1999. Ascent and occultation profiles are shown.

by Sander et al. [2003]. The effect on OClO values is small, leading to a decrease of OClO abundances
due to the fact that less BrO is available (blue line in Figure 8.17).
The latest findings of Canty et al. [2005] (see also Figure 2.13) were investigated in a separate model run,
plotted as grey line in Figure 8.17. Using an isentropic trajectory model constrained by observed pro-
files of ClOX and DOAS BrO measurements, Canty et al. [2005] show that a nighttime profile of OClO
[Rivière et al. 2003] in the Arctic vortex during the winter of 2000 is overestimated (see section 8.4).
Calculated abundances of nighttime OClO are shown to be sensitive to the abundance of BrOX (BrO +
BrCl), to details of the air parcel history during the most recent sunrise / sunset transitions, and the
BrCl yield from the reaction BrO + ClO. The discrepancy between measured and modelled nighttime
OClO suggests that production of OClO occurs more slowly than implied by standard photochemistry.
If the yield of BrCl from the reaction of BrO + ClO is increased from 7% (JPL 2002 value) to 11% (near
the upper limit of the uncertainty), good agreement is found between measured and modelled nighttime
OClO. The impact is found to be considerably smaller on OClO observations obtained during twilight
(90 ≤ SZA ≤ 92), when photolytic processes are still active. By increasing the BrCl yield to 11% in
this study, the model tends to underestimate measured values, which on the other hand, are slightly
overestimated by the standard run.
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Figure 8.16: Comparison of ClOX from a SLIMCAT model simulation (blue) for 67◦N, 22◦E on February 11,

1999, with ClOX inferred from TRIPLE and LPMA / DOAS balloon measurements (black) as described in the

text.

von Hobe et al. [2005] discuss a re-evaluation of the ClO / Cl2O2 equilibrium constant based on strato-
spheric in-situ observations. Their measurements suggest that the thermal equilibrium between the dimer
formation and dissociation is shifted significantly towards the monomer compared to the current JPL-2002
recommendations. A fit of the JPL format for equilibrium constants yields keq = 4.06×10−23exp(6201/T )
compared to the JPL-2002 value of keq = 1.27× 10−27exp(8744/T ). The yellow line in Figure 8.17 gives
the results of a model run performed with values suggested by von Hobe et al. [2005]. As expected, mod-
elled OClO values are larger and close to the upper error limits, due to more available ClO.
A combined model run (dark green line) using the findings of Canty et al. [2005] and
von Hobe et al. [2005] gives equally good results as the standard run using JPL-2002 kinetics. Since
there are too many uncertainties in the modelling, scaling and the DOAS OClO evaluation and since
basically all model runs (apart from the unrealistic ones with altered BrY and ClY) match within the

Figure 8.17: Development of OClO SCD values for the balloon flight at Kiruna on February 10, 1999, compared

to different model studies as described in the text.
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Figure 8.18: Comparison of measured and modelled OClO SCDs for the balloon flight at Kiruna on February

10, 1999. Modelled values are taken from the standard model run.

stated error range, a final conclusion cannot be drawn.
This study does not infer OClO profiles from DOAS measurements, since no new information would
be gained from doing so. Retrieval of OClO profiles from occultation measurements also proves to be
impossible without photochemical scaling since photochemical change during twilight is too strong.
Figure 8.19 shows the evolution of almost all bromine species involved in the inorganic bromine chemistry
at the 453 K potential temperature level. Br and Br2 are missing, but are much less abundant at low
altitudes than the other bromine species. BrO only appears when photochemistry sets in, while BrONO2

is converted to HOBr and subsequently to BrCl during the polar night. HOBr produces BrO and OH in
the morning. Especially during sunset, BrO reacts with ClO to generate OClO, ClOO and BrCl. This
increase of BrCl can be seen clearly. Some chlorine monoxide is converted to OClO, until BrO is removed
and mainly converted to BrCl, and consequently is no longer available as a reaction partner. Since BrCl
is photolysed very rapidly, BrO appears when air masses are sunlit. Therefore, BrONO2 forms again
when BrO reacts with NO2. In general it can also be observed that the more sunlight that reaches the
air masses, the more important HOBr and BrONO2 become as nighttime reservoirs. At the beginning of
the night, BrONO2 is a more important reservoir than HOBr, while in the morning most of the bromine
nitrate has been converted heterogeneously to HOBr. Since HOBr is photolysed faster than BrONO2 it
leads to the morning / evening asymmetry observed in BrO concentrations. For the polar winter condi-
tions shown here, this asymmetry is not as pronounced as at lower latitudes.
The chlorine chemistry is shown in the left panel of Figure 8.19 for the 453 K potential temperature level.
ClO, Cl2O2, OClO and BrCl are the photochemically most active chlorine species and vary in relation
to one another from day to night, while the other chlorine species do not vary significantly. OClO is
nearly constant during the night at around 80 pptv. OClO values at initialisation are higher than mod-
elled values at sunset (-8 hours before endpoint) due to the scaling of NO2 and the history of the air
masses contained in the SLIMCAT output, which is used for initialisation at 0 UT (here -24 hours before
endpoint of the calculation). This means that a new equilibrium value results. Due to the fast photolysis
of OClO, daytime values are rather low and a rapid build-up of significant amounts is only observed for
SZAs> 92◦ as can be seen in Figure 8.14.
Nitrogen species are shown in Figure 8.20. The active NOX species NO and NO2 only appear during the
sunlit phases. The reaction of HNO3 with OH is also triggered by sunlight, producing NO3. During polar
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Figure 8.19: Evolution of bromine and chlorine species on the 453 K potential temperature isentropic level

for a one-day stacked model simulation starting at 0 UT on February 10, 1999. The model is initialised with

SLIMCAT output at 67◦N, 22◦E.

night, NO3 is consumed by the reaction with NO2, forming N2O5.
The left panel of Figure 8.20 shows the evolution of the oxygen species. O3 decreases slightly during
daylight at a rate of ∼ 20 ppbv/day. At night O3 mixing ratios remain constant. In Figure 8.21 the
ozone depletion rate is given in ppbv per day for the relevant altitude range between 10 and 25 km. As
expected, the peak value of ozone depletion (∼ 20 ppbv per day) is observed at around 18 km, where
chlorine activation is highest. Ozone loss from the SLIMCAT model is shown for comparison. The increase
of ozone loss above 25 km is due to the NOX cycle.
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Figure 8.20: Evolution of nitrogen and oxygen species on the 453 K potential temperature isentropic level

for a one-day stacked model simulation starting at 0 UT on February 10, 1999. The model is initialised with

SLIMCAT output at 67◦N, 22◦E.

Figure 8.21: Ozone depletion rate as a function of altitude in ppbv per day at Kiruna on February 10, 1999.
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Figure 8.22: Same as Figure 8.4 but for a spectrum recorded during occultation measurements of the balloon

flight at Kiruna on February 18, 2000. The spectrum was recorded at 30.02 km at 93.15◦ SZA (14:54:22 UT)

with 1 scan and a total exposure time of 65.0 seconds.

8.4 The LPMA / DOAS Measurements at Kiruna on February

18, 2000

During the arctic winter of 1999/2000 a strong and highly-activated polar vortex formed and denoxifica-
tion and denitrification occured. It was one of the coldest winters in the lower stratosphere since 1964/65.
The polar region cooled rapidly in the first half of November, with the polar vortex becoming stronger
throughout the stratosphere. Temperatures fell below the PSC threshold in the middle stratosphere by
mid-November and in the lower stratosphere by end of the month. During the first half of December the
vortex intensified and was cold and mostly undisturbed during the second half. The center of the strong
vortex lay between Scandinavia and the Pole with minimum temperatures around and below 188 K.
Throughout January, the vortex was cold and strong and the minimum temperatures were low enough
for PSC formation. In February, an upper stratospheric warming affected the lower stratospheric circu-
lation. However, during the first week of February minimum temperatures temporarily reached the PSC
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Figure 8.23: Same as Figure 8.2 but for the balloon flight at Kiruna on February 18, 2000.

type 2 threshold. The stratosphere above Europe was warm, with Scandinavia outside the polar vortex
except for a few days around February 18. During March, minimum temperatures were continuously
below the PSC threshold in the lower stratosphere. In mid-March, the temperatures rose above the PSC
threshold. The vortex split and the two parts drifted to Canada and Eastern Europe [Naujokat et al. 2000;
EORCU 2000]. PSCs were observed extensively in the vortex, with two main periods from mid-December
to early February and from late February to mid-March. The vortex was strongly activated and exten-
sively denitrified to a degree only previously observed in Antarctica [Santee et al. 2000]. Accordingly, a
large local ozone loss of more than 70 % was observed in the altitude range of 18− 20 km. Most of the
ozone loss occurred in March, but losses in January and February were also significant. The total column
of ozone loss was about 20− 25 % [EORCU 2000].
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Figure 8.24: Development of OClO and BrO SCD values for the balloon flight at Kiruna on February 18, 2000.

Modelled SCDs as described in the text are plotted for comparison in blue. Additionally the detection limit for

OClO is shown in red.

DOAS balloon measurements took place inside the vortex during ascent and occultation, although ob-
servations during occulation pointed towards and were close to the vortex edge. Due to the use of the
optical preanalyzer (see e.g. section 4.1.2) and a change in its filtering function during the flight, the
number of recorded spectra and the signal-to-noise ratio in the DOAS evaluation is comparatively low
[Fitzenberger 2000]. Figure 8.22 shows the evaluation of one of the 4 occultation spectra for which OClO
absorptions were observed. The development of OClO SCDs and other fit parameters is found in Figure
8.23. The root mean square of the residual in panel a) indicates the poor data quality compared to other
flights.
Modelled and measured OClO and BrO SCDs are shown in Figure 8.24 together with the OClO detec-
tion limit. Modelled OClO SCDs are calculated from SLIMCAT output data and already correspond well
with observations. Modelled BrO SCDs are obtained from a 1-D model run with a scaled total BrY of
∼ 20.5 pptv (see chapter 9).
The DOAS NO2 profile coincides with the SLIMCAT NO2 profile and only needs significant scaling above
25 km, where SLIMCAT model values are about 50 % higher. Both profiles have low NO2 levels up to
∼ 20 km where they increase rapidly, with SLIMCAT values already starting to rise at 18 km, indicating
a mismatch in the dynamics. Between 15 and 22 km the values of the SLIMCAT O3 profile are about
10 % higher and are scaled accordingly. Unfortunately the quality of LPMA data is also rather poor
for this balloon flight and only N2O and HCl profiles can be retrieved from ascent measurements as
given in Figure 8.26. While the HCl profile corresponds well with SLIMCAT, the N2O profile deviates
significantly and indicates a stronger descent of air masses in the model between 15 and 20 km. This
can partly be explained again by the SLIMCAT model output, which covers a large area and therefore
different conditions.
Figure 8.25 shows SLIMCAT model concentration fields of BrO, NO2, OClO and ClO. Compared to the
previous winter, much higher concentrations of ClO and therefore OClO exist, and chlorine activation is
present over a broader altitude range (see Figure 8.14 for comparison). Since no ClONO2 profile is avail-
able as for the Kiruna 1999 flight, ClOX cannot be calculated with the help of TRIPLE measurements
(N2O - ClY correlation) performed at the end of January at Kiruna. Therefore, 1-D model calculations
only include scaling of BrY, NO2 and O3. The results of this ‘standard run’ are displayed in Figures
8.27 and 8.28. The mismatch in dynamics between model and observations can be seen in the ascent
measurements, where modelled values decrease earlier. From the occultation values it can be seen that
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Figure 8.25: Colour-coded model concentration fields of BrO (upper left panel), NO2 (upper right panel), ClO

(lower left panel) and OClO (lower right panel) from SLIMCAT output at Kiruna (67◦N, 22◦E) on February

18, 2000. The observation geometry is superimposed (see e.g. Figure 6.6 for explanation).

only 4 spectra show significant OClO absorptions. The first of these spectra was recorded at 14:52 UT at
92.9◦ SZA and a tangent height of ∼ 21 km. This is in accordance with the values shown in Figure 8.25,
where basically zero OClO concentration is present above ∼ 20 km. The abrupt bends in the modelled
data are due to the altitude levels included in the model. As the tangent height decreases it eventually
crosses the boundary to a lower altitude level which is then included in model calculations. This also
causes the mismatch of the data point at 14:54 UT.
As for the Kiruna 1999 model simulations, a model run was performed with the BrCl yield according
to Canty et al. [2005]. A second model run used the ClO / Cl2O2 equilibrium constant as recommended
by von Hobe et al. [2005]. The combined run with recommendations according to Canty et al. [2005] and
von Hobe et al. [2005] is also compared to the standard run in Figure 8.27.
In Figure 8.29 nighttime profiles of the different model runs (SZA = 100◦) are compared to the SALOMON
nighttime OClO observations reported by Rivière et al. [2003] and used by Canty et al. [2005] (see Fig-
ure 2.13). SALOMON lunar occultation measurements were performed between ∼ 50 and ∼ 150 hPa
at Kiruna on January 23, 2000. The flight took place inside the vortex, but close to the edge (Figure 1
in Rivière et al. [2004]). Twilight profiles at SZA = 90◦, when OClO builds up rapidly from negligible
daytime abundances to nighttime values, are also shown. As expected the OClO values obtained from the
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Figure 8.26: N2O, and HCl volume mixing ratio profiles as measured by the LPMA-FTIR, compared to SLIM-

CAT model output (February 18, 2000), for the balloon flight at Kiruna on February 18, 2000.

model run with changed ClO / Cl2O2 equilibrium constant [von Hobe et al. 2005], are highest at twilight,
as more ClO is available. Nighttime abundances are almost the same as for the standard run, although
values are slightly smaller since build-up of BrCl is faster (see also Figure 4 in Canty et al. [2005]). The
modelled profile with changed BrCl yield corresponds well with SALOMON observations. The same holds
true for the nighttime profile of the combined model run, in which values are also determined by the rapid
build-up of BrCl.
Due to the uncertainties of the modelling and scaling, and particularly as the dynamic tracers do not
match well between the model and observations (Figure 8.27), it is not possible to decide which model
run matches best and gives the most realistic results from DOAS results alone. If the SALOMON mea-
surements are correct and correspond to the conditions of the DOAS observations, they can be used as
an additional constraint for the model simulation, therefore confirming results from Canty et al. [2005]

Figure 8.27: Development of OClO SCD values for the balloon flight at Kiruna on February 18, 2000, compared

to different model studies as described in the text.
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Figure 8.28: Comparison of measured and modelled OClO SCDs for the balloon flight at Kiruna on February

18, 2000. Modelled values are according to the standard model run.

and possibly those from von Hobe et al. [2005].
It has to be mentioned that SALOMON measurements took place 1) in a filament of the vortex located
over Scandinavia, i.e. with occultation measurements possibly observing inside and ouside vortex air
masses at the same time, 2) 4 weeks before DOAS measurements, i.e. possibly under different conditions
of chlorine activation and subsidence of air masses and 3) SALOMON simultaneously observed high values
of NO2 reported by Rivière et al. [2003] which are difficult to understand with known chemistry and do
not correspond to the denoxified conditions of DOAS observations. High amounts of NO2 coinciding with
increased OClO have been reported by Rivière et al. [2003] and Rivière et al. [2004] for three SALOMON
flights and in all cases could not be explained with known chemistry. This might indicate a systematic
instrumental or retrieval error.
In Figure 8.30 the ozone depletion rate is given in ppbv per day for the relevant altitude range between

Figure 8.29: A nighttime OClO profile recorded with the SALOMON instrument [Rivière et al. 2003] at Kiruna

on January 23, 2000, compared to modelled profiles.
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Figure 8.30: Ozone depletion rate as a function of altitude in ppbv per day at Kiruna on February 18, 2000.

10 and 25 km. As expected, the peak value of ozone depletion is observed at ∼ 18 km, where chlorine
activation is highest. These values are in good agreement with the study of Frieler et al. [2005], reporting
values of ∼ 4 ppbv ozone loss per sunlit hours at the 450 K level (∼ 18 km) for the Artic during this time.
With approximately 7.5 hours of SZA< 90◦ at Kiruna on February 18, 2000, an ozone depletion rate of
∼ 30 ppbv / day is obtained from these values, which is in accordance with the 30 to 40 ppbv / day
reported here.

8.5 Conclusions

A re-evaluation of DOAS OClO observations has largely removed previous discrepancies between mea-
surements and model simulations reported by Fitzenberger [2000]. This also solved the problem of OClO
observations outside the vortex at mid-latitudes at Leon, Spain, in 1996. Three case studies for Arctic
winter flights performed at Kiruna, show that the agreement between model simulations and the known
chemistry and DOAS observations is in general very good and that no major uncertainties and inconsi-
tencies exist. A detailed model study for Kiruna 1999 measurements used ClOX values derived from a
measured N2O - ClY correlation [Engel et al. 1999], and HCl and ClONO2 values from LPMA observa-
tions. The model study allowed to test photochemistry and to derive altitude dependent ozone loss rates
of up to ∼ (20) ppbv / day at 18 km. Recent findings on photochemistry from Canty et al. [2005] and
von Hobe et al. [2005] do not contradict DOAS measurements but further constraints are needed to prove
their validity.
For the Kiruna 1999 and Kiruna 2000 flights, ClO abundances should be verified in a future study
with TRIPLE measurements performed during the same time. The ozone depletion rate of ∼ (30 −
40) ppbv / day for Kiruna 2000 observations at around the 450 K level, correspond well with values re-
ported by Frieler et al. [2005]. Future DOAS balloon flights well inside the activated Arctic vortex, with
improved performance of the instrument, possible OClO measurements using the mini-DOAS instrument
[Weidner et al. 2005] and simultaneous LPMA measurements, would be very useful for further studies
on stratospheric chemistry, since discrepancies still exist between the observations and models.



Chapter 9

Total Stratospheric Bromine

Stratospheric bromine is the second most important halogen known to destroy stratospheric ozone. At
present its contribution to the total stratospheric ozone loss is estimated at about 25% [WMO 2003].
There has recently been great improvement in understanding the stratospheric budget and chemistry of
bromine (e.g. [Schauffler et al. 1998; Wamsley et al. 1998; Harder et al. 2000]). However, a major issue
that is still unresolved is the impact of VSL (very short-lived, i.e. with a lifetime of less than half a
year [WMO 2003]) organic bromine species on the photochemistry of the upper troposphere and lower
stratosphere (UTLS), where they are converted to reactive forms of bromine [Dvortsov et al. 1999] and
the amount of inorganic bromine influx from the troposphere into the stratosphere [Ko et al. 1997] (see
also Figure 2.7). In-situ mass spectrometric analyses of aerosols at the tropopause suggest that ∼ 1 pptv
of Br is tied to aerosols [Murphy and Thompson 2000]. Tropospheric inorganic bromine (BrY) may add
to the organic bromine (BrorgY ) input into the stratosphere if transported through the tropopause.
From the mid-1900s to 1995, bromine from halons and methyl bromide more than doubled in the
atmosphere [Fraser et al. 1999; Butler et al. 1999; WMO 2003]. Together with the increase of chlorine
abundances, the increase of stratospheric bromine has led to the depletion of stratospheric ozone.
While chlorine from long-lived gases has decreased in the lower atmosphere since around 1994
[Montzka et al. 1996], there is still concern about the increase of bromine, especially since bromine is
about 50 times more efficient than chlorine in destroying stratospheric ozone [WMO 2003].
The first part of this chapter presents an estimate of total stratospheric bromine inferred from DOAS
BrO measurements over about a 10 year period. Implications for the UTLS region and correlations with
simultaneously measured tracers are discussed in the second and third part.

9.1 Stratospheric Bromine Trend

Accurate knowledge of the amount of bromine entering the stratosphere from bromine-containing organic
source gases is required to evaluate bromine-catalyzed losses of stratospheric ozone and inorganic bromine
partitioning in the stratosphere. The primary source gases of stratospheric bromine are methyl bromide
(CH3Br), Halon-1211 (CBrClF2), Halon-1301 (CBrF3) and Halon-2402 (C2Br2F4) (see also section
2.2.3). Methyl bromide has both natural and anthropogenic sources. Figure 9.1 shows the historical
trend and the strength of individual sources of CH3Br. The primary use of industrially produced CH3Br
is for fumigation, but it is also produced by burning leaded gas and biomass. Oceans are the main
natural source and are also one of the primary sinks. Other sinks are reactions with OH, photolysis in
the stratosphere and uptake by soils and aquatic bacteria [e.g. Schauffler et al. 1998 and WMO 2003].
Reeves [2003] pointed out that the current understanding of the present-day atmospheric budget of
CH3Br is incomplete, with sinks far out-weighing sources by about 30%. According to Reeves [2003] an
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Figure 9.1: Historical trends assigned to the strengths of individual sources of CH3Br. The sources are des-

ignated as PP, preplanting fumigation; PH, post harvesting fumigation; ST, structural fumigation; AUTO,

automobiles; BIOB, biomass burning; CST, coastal salt marshes; OC, ocean emission. The trend in total

emissions from all these sources is plotted against the right hand axis. Adopted from Reeves [2003].

additional source or sources are required, which must have existed prior to industrial use of CH3Br,
if the current estimates of the known sources and lifetime of CH3Br are correct (see also Table 1-9
of WMO [2003]). The most recent estimate of the global lifetime of CH3Br is 0.7 (0.4 - 1.1) years
[WMO 2003].
Mixing ratios of CH3Br in the southern hemisphere have increased by about 3 pptv since 1900 and
peaked at around 9 pptv at the end of the 20th century. Saltzman et al. [2004] inferred a mean CH3Br
mixing ratio of 5.8 pptv from an Antartic ice core for mean gas dates from 1671 to 1942. These results
are consistent with estimates of the impact of anthropogenic activity (fumigation, combustion and
biomass burning). The use of methyl bromide as a fumigant in developed countries was scheduled to
begin decreasing after 1998. The Montreal Protocol and its amendments (Figure 2.11) specifies that

Figure 9.2: Left panel: Bimonthly hemispheric and global mixing ratios of methyl bromide measured at the

Earth’s surface (coloured points; coloured thick lines are 12-month running means). Results are compared to

a WMO global mean scenario and box-model calculations (C1). Right panel: Measured hemispheric mixing

ratios of the most abundant halons at Earth’s surface as ppt Br, compared to results from WMO scenarios.

Adopted from Montzka et al. [2003].
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production of CH3Br in developed countries should have been reduced from the 1991 levels by 25% in
1999 and by 50% in 2001 [WMO 2003]. Montzka et al. [2003] reported that global mean mixing ratios
of methyl bromide at the Earth’s surface began to decline steadily after 1998 (Figure 9.2) and that the
decrease is larger than anticipated. Since atmospheric releases from industrial production represent only
a fraction of the total releases of CH3Br, uncertainty in the magnitude of this fraction limits the ability
to describe how CH3Br mixing ratios will respond to production limits in the revised and amended
Montreal Protocol. A substantial fraction of the sources and sinks arise from biological processes, which
might be affected significantly by future changes in the climate (e.g. by an increase in temperature).
Because of the limited understanding of these processes, it cannot be predicted whether such changes
would enhance or reduce mixing ratios of CH3Br in the future [WMO 2003].

Sources of halons are exclusively anthropogenic and have been used primarily as fire extinguis-
hants since the 1960s. Measurements of H-1211, H-1301, H-2402 and H-1202 in atmospheric air samples
collected since 1978 have shown that concentrations of all 4 of these halons have increased substantially
during the latter part of the 20th century [Fraser et al. 1999; Montzka et al. 2003] (see Figure 9.2).
Further measurements of H-1211 and H-1301 in air trapped in firn snow have demonstrated that natural
sources of these compounds to the atmosphere are minimal or non-existent [Butler et al. 1999] and
that atmospheric concentrations were zero up to about 1970. The four halons made up 7.7 pptv of
organic bromine in 2000 [Montzka et al. 2003]. The production and consumption of the halons have
been regulated under the Montreal protocol and its amendments, in such a way that production and
consumption in developed countries should have ceased in 1994 and should have been frozen in developing
countries in 2002 at 1995 - 1997 levels and should be phased out by 2010. Despite these regulations
the concentrations of all four halons have increased since 1994, but at a decreasing rate (Figure 9.2).
This growth is due to banked halon, defined as material that is contained in inventories and installed
equipment. Thus, future mixing ratios are tied to the rate of emissions from these halon banks in
addition to the magnitude of future production in developing countries [WMO 2003]. It should be noted
that H-1202 is not covered by the Montreal Protocol or its admendments, since most of its production
is not deliberate. Although this halon has been used by the military in a few minor applications, it is
mostly produced from over-bromination during the production of H-1211 [WMO 2003].

9.1.1 BrY Inferred from Stratospheric DOAS BrO Measurements

Inorganic stratospheric bromine (BrY) can be inferred by two methods from stratospheric DOAS BrO
measurements. One method uses DOAS observations performed at balloon float for SZAs < 90◦. As
described in section 6.1.2, a Langley plot is performed where the slope of measured BrO absorption is
analysed as a function of the calculated total air mass at balloon float altitude (see Figure 9.3). The slope
of the least-squares-fitted data results in an average BrO mixing ratio above balloon float. So far, the
amount of spectra recorded during balloon float has been sufficient to perform such an accurate Langley
plot for 5 balloon flights. The date, place, SZA ranges and the resulting BrO mixing ratios are indicated
in the individual panels of Figure 9.3. Table 9.1 summarises the results of all Langley plots for all 13
DOAS balloon flights and indicates the float altitude. As mentioned in section 6.1.2, such a Langley plot
only gives the volume mixing ratio above float altitude for a constant BrO mixing ratio, which for BrO is
generally only the case between about 30 to 40 km (see for example BrO profile in Figure 9.5). Therefore,
balloon flights with float altitudes of around 38 to 39 km (5 in total - Gap 1997, Leon 1998, Kiruna 1998,
Gap 1999 and Kiruna 2001) cannot be used for such an analysis. Kiruna 1997, Kiruna 2000 and Kiruna
2003 measurements cannot be used since sufficient data is not available.
The errors of the method are due to uncertainties (a) in the total air mass (±2 %) checked by independent
temperature and pressure measurements aboard the LPMA / DOAS payload using two independent ray-
tracing codes, (b) the spectral retrieval of BrO (±5 %), (c) the absorption cross-section of BrO (±8 %),
and (d) the changing [BrO] / [BrY] ratio above balloon float altitude.
This ratio can be obtained by considering the bromine chemistry above balloon float altitude during the
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Figure 9.3: Measured BrO absorption as a function of the calculated total air mass observed for the indicated

SZA ranges at balloon float altitude (29 to 33 km for the shown cases). The slope of the least-square-fitted

data results in the average BrO mixing ratios above float altitude indicated in each plot.
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Table 9.1: Inferred BrO volume mixing ratio above float altitude for all 13 DOAS flights. Mixing ratios, given

in pptv, are obtained by performing a Langley plot. BV denotes Brunt - Väisälä oscillation.

Date BrO Mixing Ratio above Float / pptv Float Altitude / km

Place Sunset Sunrise

Nov. 23, 1996 All-data: 12.3 ± 0.4 31

Leon Last 2 BV: 12.3 ± 0.5

Feb. 14, 1997 30

Kiruna

June 20, 1997 All-data: 14.7 ± 0.8 39

Gap Last 1 BV: 14.5 ± 3.6

Last 2 BV: 16.0 ± 1.0

March 19, 1998 All-data: 11.6 ± 2.4 38

Leon Last 2 BV: 11.5 ± 3.6

Aug.19/20, 1998 All-data: 17.4 ± 2.3 All-data: 15.2 ± 1.8 39

Kiruna Last 2 BV: 20.8 ± 6.5 Last 2 BV: 13.9 ± 3.5

Last 3 BV: 20.6 ± 4.5

Last 4 BV: 21.3 ± 2.8

Feb. 10, 1999 All-data: 11.1 ± 0.7 29

Kiruna Last 3 BV: 15.2 ± 1.9

Last 4 BV: 14.7 ± 1.5

June 25, 1999 All-data: 19.3 ± 1.5 39

Gap Last 2 BV: 16.6 ± 2.1

Last 3 BV: 19.1 ± 1.6

Feb. 18, 2000 All-data: 13.0 ± 3.4 30

Kiruna

Aug.20/21, 2001 All-data: 14.6 ± 6.7 All-data: 19.2 ± 6.2 39

Kiruna Last 4 BV: 9.7 ± 9.4

March 23, 2003 All-data: 13.5 ± 2.7 33

Kiruna

Oct. 9, 2003 All-data: 11.4 ± 0.3 33

Aire sur l’Adour Last 2 BV: 14.7 ± 1.5

Last 3 BV: 14.4 ± 1.0

March 24, 2004 All-data: 12.6 ± 0.5 33

Kiruna Last 2 BV: 15.6 ± 2.2

Last 3 BV: 14.6 ± 1.6

Last 4 BV: 14.1 ± 1.3

Last 5 BV: 14.1 ± 1.0

June 17, 2005 All-data: 17.5 ± 0.6 33

Teresina Last 1 BV: 17.4 ± 3.0

Last 2 BV: 16.1 ± 1.2

Last 3 BV: 17.5 ± 0.8

day. In the sunlit upper stratosphere, the most important bromine reactions (≥ 90% - e.g. SLIMCAT)
are

BrO + h ν −→ Br + O (9.1)
Br + O3 −→ BrO + O2 (9.2)

Inaccuracies in this simple photochemical scheme are due to the BrO cross-section, the quantum yield
for BrO photo-dissociation (reaction 9.1), the rate coefficient kBr+O3 for reaction 9.2 and the ozone
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Table 9.2: [BrO] / [BrY] ratio for the balloon flights shown in Figure 9.3

Height / Leon Kiruna Aire sur l’Adour Kiruna Teresina
[km] 1996 1999 2003 2004 2005
31 0.65 0.72
33 0.72 0.75 0.76 0.77 0.78
36 0.79 0.78 0.80 0.81 0.80
40 0.76 0.64 0.76 0.74 0.77
45 0.52 0.37 0.54 0.47 0.60
50 0.22 0.20 0.23 0.20 0.32

Weighted
Average 0.69 0.74 0.72 0.69 0.75

BrY / [pptv] 17.8 19.9 20.1 20.4 21.5

concentration. For example, for the Aire sur l’Adour flight in 2003 the SLIMCAT model calculations
show that the [BrO] / [BrY] ratio is around 0.76 at 33 km, 0.8 at 36 km, 0.76 at 40 km, 0.54 at 45 km
and 0.23 at 50 km. The line-of-sight weighted average is concluded to be 0.72 for these conditions,
with the largest uncertainty coming from the uncertainty in kBr+O3 , which is ±20% according to
Sander et al. [2003]. Combining all uncertainties, the measurement indicates [BrY] = (20.1 ± 2.8) pptv
above 33 km at northern mid-latitudes by late 2003. BrY for the other flights shown in Figure 9.3 can
be derived similarly. The results are summarised in Table 9.2.

Another method to infer BrY from DOAS measurements is to compare measured and modelled
SCD values. Such a comparison is described in detail in section 6.1.2. An example for the balloon flight
at Kiruna on March 24, 2004 is shown in Figure 9.4 for occultation measurements. Ascent measurements
are not considered since the partitioning in the lower stratosphere (LS) might not be modelled correctly.

Figure 9.4: Comparison of measured and modelled BrO SCD values for occultation measurements during the

balloon flight at Kiruna on March 24, 2004. The left panel shows a direct comparison of the development

of the measured SCD values with 3 model scenarios with different total BrY loading. In the right panel the

corresponding correlation plots are shown.
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Figure 9.5: Modelled concentration and volume mixing ratio profiles for all important bromine species for a

SZA of 80◦ (solid) and 90◦ (dashed) at Kiruna on March 24, 2004. DOAS ascent and occultation profiles are

shown for comparison. Note that the legends are valid for both panels.

This is due to the fact that the inorganic bromine, i.e. the release of bromine from the organic precursors
is still subject to research (dealt with in the next section) and that incorrect modelling of the dynamics
causes incorrect concentrations and therefore SCD values in the LS. Both sources of error can be avoided
if measurements are only considered for probed air masses above the altitude where all BrorgY has been
converted to BrY. For the Kiruna 2004 measurements this is the case above 24 km as shown in Figure
9.5. NO2 and O3 are scaled in the model calculations as described in chapter 7. Three model runs with
different BrY are compared with DOAS measurements in Figure 9.4. The right panel shows a correlation
plot of the modelled versus the measured BrO - SCDs. Values after 17:15 UT should be disregarded since
the tangent height of observations is lower than 22 km, meaning that incorrect modelling of BrY might
play an important role. It is deduced here that BrY was around 21 pptv for these conditions. Such a
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Figure 9.6: Correlation between N2O and mean age as determined by Engel et al. [2002].

comparison was performed for all DOAS BrO measurements (not shown here) in order to infer BrY for
each balloon flight.
In Figure 9.5 all important inorganic bromine species are shown for an SZA of 80◦ (solid lines) and
90◦ (dashed lines), corresponding to ascent and occultation observations respectively. The retrieved
BrO profiles for DOAS ascent and occultation measurements are shown for comparison. BrO from the
SLIMCAT model is shown in green and BrO from a model run with NOX scaled to DOAS observations is
shown as light blue lines to demonstrate the effect that the scaling of NOX has in this case. Modelled and
measured profiles match perfectly. The rapid increase of BrONO2 at dusk is also nicely demonstrated.
Furthermore, it can be seen that above float altitude, the bromine chemistry is dominated by Br and BrO.

Combining all the available information inferred from DOAS BrO measurements and other publi-
cations, it is possible to reconstruct a recent history of the stratospheric bromine inventory. The
basic idea of this reconstruction is to put together the inferred stratospheric bromine and the air age
information from simultaneous measurements of N2O - using the knowledge of the temporal trend of this
species in the troposphere. Since the source gases of stratospheric bromine are emitted at the surface
of the Earth, a given tropospheric evolution can only be observed in the stratosphere with a temporal
delay. During transport into and within the stratosphere, air masses are further mixed. The mean effect
of transport and mixing can be charaterised by the concept of age of air, see e.g. Hall and Plumb [1994].
Species with no appreciable sources or sinks in the stratosphere whose tropospheric mixing ratios also
increase linearly can be used to determine the mean age of air in stratospheric air parcels. A conservative
tracer can be used to evaluate the mean age of an air parcel by comparing the measured mixing ratio in
the stratospheric parcel to a value in a time series of tropospheric mixing ratios of e.g. CO2, CFC-115
or SF6 [Wamsley et al. 1998]. Figure 9.6 shows the correlation between N2O and the mean age of air
as determined by Engel et al. [2002], based on a combination of CO2 and SF6 observations. LPMA
measurements of N2O as shown, for expample, in Figure 7.9, are used to infer the age of the air masses
probed around float altitude. The error of the correlation is given as ±1 year, due to the error in the N2O
- age of air correlation and the error of LPMA measurements. For the Kiruna 2004 measurements, N2O
was taken from SLIMCAT, and for the Teresina 2005 measurements N2O was taken from prelimiary
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Figure 9.7: Measured trends for bromine in the troposphere (lines) and stratosphere (points): global

tropospheric bromine from methyl bromide as measured in ambient air and firn air (dark blue line)

[Butler et al. 1999; Montzka et al. 2003]; global tropospheric bromine from the sum of methyl bromide plus

halons as measured in ambient air, archived air and firn air (purple line) [Fraser et al. 1999; Butler et al. 1999;

Montzka et al. 2003]; tropospheric bromine from VSL organic bromine compounds, or transport of bromine

bearing inorganic gases or bromine containing aerosols across the tropopause (blue shaded area) [WMO 2003;

Murphy and Thompson 2000; Salawitch et al. 2005]; total organic bromine from source gas as measured in

whole air samples (blue symbols) [Wamsley et al. 1998; Schauffler et al. 1998; Pfeilsticker et al. 2000]; total

inorganic bromine derived from stratospheric measurements of BrO and photochemical modelling that accounts

for BrO / BrY partitioning (open black squares). The years indicated on the abscissa are sampling times for

tropospheric data. For stratospheric DOAS data, the date corresponds to the time when that air was last in

the troposphere, i.e. sampling date minus mean stratospheric age from simultaneous N2O measurements.

TRIPLE measurements (courtesy of A. Engel from the Universtiy of Frankfurt) performed a week after
the LPMA / DOAS balloon flight.
In Figure 9.7 the past measured trend in BrorgY determined from ambient air, archived air and firn air
samples and BrY from balloon-borne DOAS measurements is displayed. As described at the beginning
of this chapter, measurements of the long-lived precursors, CH3Br and halons, peaked around 1998
and since then have declined [Montzka et al. 2003]. DOAS measurements follow this trend but show an
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additional offset. The role of short-lived bromine source gases (labelled as CNHMBrYClX in Figure 9.7) is
still subject to research and DOAS measurements indicate 3.5 to 5 pptv of these species, or tropospheric
inorganic bromine, are transported into the stratosphere. The error of the BrY inferred from DOAS
is estimated at ±3 pptv due to uncertainties in the BrO absorption cross-section and its temperature
dependence (∼ 10%, see also section 6.2), the amount of BrO contained in the Fraunhofer reference
spectrum and 1 to 1.5 pptv for modelling errors and uncertainties in the SCD comparison. Since the
conditions are similar for all flights, the same error is used for all of them.
Total organic bromine from source gases measured in whole air samples in the UT and LS
[Wamsley et al. 1998; Schauffler et al. 1998; Pfeilsticker et al. 2000] shows also higher values than
halons and CH3Br alone can explain. Schauffler et al. [1998] observed an average 6% contribution from
dibromomethane and 0.8% from bromochloromethane in the tropical UT. During their measurements
they also occasionally observed significant amounts of bromoform and dibromochloromethane (see e.g.
Table 9.3 for the chemical formula). In the study of Pfeilsticker et al. [2000] significant amounts of
VSL organic bromine species ((20.0 ± 0.7) pptv) are also reported for measurements at the UT. The
BrY = (21.5±3.0) pptv inferred from DOAS BrO measurements [Pfeilsticker et al. 2000] was re-analysed
here and a new value of BrY = (19.5± 3.0) pptv was obtained.
By comparing DOAS measurements with model simulations using varied bromine precursors, the
composition of the additional 3.5 to 5 pptv of BrorgY , needed to explain DOAS measurements can be
constrained. This issue is discussed in the next section.
The time range covered by DOAS balloon-borne measurements is rather short compared to the organic
high-precision measurements of CH3Br and the halons. It also has to be taken into account that the
organic measurements are in-situ measurements and the inorganic method relies on remote sensing
measurements. The agreement is still very convincing, but more measurements are needed to investigate
the influx of VSL organic bromine species and a possible transport of tropospheric inorganic bromine
into the stratosphere in more detail. Research is needed in particular in the tropics since they are
likely to be the main global source regions of this input. Another important issue in the future will be
to monitor the impact of the agreements made in the Montreal protocol and its amendments. DOAS
measurements indicate a levelling of BrY in the stratosphere but within uncertainties it is not possible
to predict if BrY will decline or even increase in future. The contribution of VSL organic bromine
compounds might be highly variable, depending on how quickly they are transported from the Earth’s
surface to the stratosphere. A change in future climate, e.g. an increase in oceanic temperatures and
therefore an increased release of natural organic bromine precursors, might cause BrY to increase in the
stratosphere despite any agreements on anthropogenic releases of BrorgY . Analyses of whole air samples
taken at the north-eastern coast of Brazil in mangrove woods [Schwärzle 2005] showed CH2Br2 mixing
ratios between 0.5 and 2.2 pptv, and CHBr3 mixing ratios ranging from 12 to 24 pptv. If such high
mixing ratios of VSL bromine species are ubiquitous at the coast and the ocean, and if they are rapidly
transported from the planetary boundery layer into the tropical stratosphere by convection, then they
can contribute significantly to stratospheric bromine.

9.2 Contribution of Very Short-Lived Organic Bromine Species

There has long been speculation regarding the role of decomposition products of VSL chlorine and
bromine species in the UTLS (upper troposphere - lower statosphere), where the role of VSL chlorine-
containing compounds has received less attention than bromine counterparts. As shown in the previous
section, DOAS observations suggest up to 5 pptv of additional organic bromine source gases in addition
to the known amount caused by halons and CH3Br. There has been much discussion suggesting that this
excess bromine partly resides in the troposphere, due to an ubiquituous background level of 1 to 2 pptv
of BrO (e.g. Ko et al. [1997]; Pfeilsticker et al. [2000]). Volcanoes have also been identified as a source of
tropospheric BrO by Bobrowski et al. [2003] with local mixing ratios as high as 1 ppb. Excess bromine
has important implications for photochemistry of tropospheric and / or stratospheric O3 depending on
where it resides.
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Table 9.3: Lifetime and median volume mixing ratio of the most important organic bromine species in the

tropical upper troposphere (not indicated for halons and methyl bromide - see Figure 9.2). Values according

to WMO [2003] and references therein.

Common Name Chemical Formula Lifetime / [years] Median VMR / [pptv] in
Tropical UT (8 to 12 km)

Halon - 1301 CBrF3 65 *
Halon - 1211 CBrClF2 16 See Figures
Halon - 1202 CBr2F2 2.9 9.1 and 9.2
Halon - 2402 CBrF2CBrF2 20 for their trend
Methyl bromide CH3Br 0.7 *
Dibromomethane CH2Br2 0.33 0.81 - 0.9
Bromofrom CHBr3 0.07 0.3 - 0.54
Dibromochloromethane CHBr2Cl 0.19 0.04 - 0.1
Bromodichloromethane CHBrCl2 0.21 0.08 - 0.14

Observations of VSL bromocarbons in the boundary layer are in the 0.02 to 5 pptv range WMO [2003].
Most of these substances have higher concentrations in the marine boundary layer in regions with high
ocean productivity. Dibromomethane with a lifetime of approximately 4 months is reasonably well
mixed throughout the troposphere (see also Table 9.3). Blake et al. [2001] report mixing ratios of 0.8 to
1.2 pptv in the tropics at 12 km altitude and Schauffler et al. [1998] of 0.3 to 0.7 pptv at 15 to 19 km.
Bromoform (see also Table 9.3) is mainly emitted from marine sources. 0.7 to 1.9 pptv were measured
over the Pacific and reported by Blake et al. [2001]. Recently Quack et al. [2004] showed in their study
that CHBr3 has a source throughout the tropical open ocean. Oceanic bromoform is the major source
of organic bromine in the atmosphere and may contribute to reactive bromine in the UTLS (e.g.
Dvortsov et al. [1999]). With its relatively short atmospheric lifetime of 2 to 4 weeks and its spatial
and temporal variability in production and sea-to-air flux, CHBr3 has a strongly varying atmospheric
distribution. Atmospheric mixing ratios range from 0.5 to 27.2 pptv (comparable to levels reported by
Schwärzle [2005] - see above) with elevated levels (2.4 to 4.4 pptv) at the equator [Quack et al. 2004].
Their findings indicate the possibility that changes in climate and surface winds could contribute to the
variability of the supply of bromine to the tropical LS. Carpenter et al. [2005] report on observations
of CHBr3 performed at Mace Head, Ireland. They observed a maximum of CHBr3 from spring until
autumn and a winter minimum, with mixing ratios of 5.3± 1.0 pptv and 1.8± 0.8 pptv respectively. The
emission sources are mainly macroalgae, but they also found evidence for a small terrestial flux from
peatland ecosystems, which has not previously been accounted for as a CHBr3 source.
Other VSL organic bromine species such as CHBrCl2 and CHBr2Cl (see Table 9.3) are also thought to
have mainly marine sources and to have similar distributions to CHBr3. Schauffler et al. [1998] reported
mixing ratios in the tropics at 10 km of 0.1 to 0.15 pptv for CHBrCl2 and 0.05 to 0.2 pptv for CHBr2Cl,
and at 15 km values below 0.03 pptv for CHBrCl2 and below 0.02 pptv for CHBr2Cl. A variety of other
VSL organic bromine source gases exists that might also contribute to BrY in the stratosphere. For more
details see, for example, WMO [2003].
One important issue in the study of halogen source gases is to track the life cycle of a source gas to
evaluate how its emission affects the inorganic halogen budget of the stratosphere [WMO 2003]. Like
other halogen source gases, the VSL bromine source gases are mainly emitted at the surface. Two
pathways are distinguished for delivering the products to the stratosphere (see also Figure 2.7). One is
the source gas injection pathway (SGI - [WMO 2003]), where the source gas is transported directly to
the stratosphere and reacts there to release the halogen atoms. The other possibility is the product gas
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Figure 9.8: Modelled concentration and volume mixing ratio profiles for all important bromine species for

SZA = 80◦ at Kiruna on March 24, 2004. Two SLIMCAT model runs are compared: with contributions to

bromine source gases from methyl bromide, halons and very short-lived substances (experiment 336 - solid lines

/ CH3Br, halons and VSLS themselves are shown as dotted lines); with contribution to bromine source gases

from methyl bromide only (experiment 323 - dashed lines). DOAS ascent profiles are shown for comparison.

injection pathway (PGI) involving the transport to the stratosphere of intermediate or final products
produced in the troposphere. The efficiencies of both pathways depends on the removal rate of a source
gas, by chemical (reaction with OH) or physical processes (UV photodissociation) in the troposphere as
compared to the transport rate from the ground to the stratosphere [WMO 2003].
Vertical transport times from the surface to the UT are shortest in the tropics. There the transition from
the troposphere to the stratosphere takes place in the TTL (tropical tropopause layer - see also Figure
2.7). Transport from the surface to the UT and TTL occurs mainly through convection. The transition
from air with typical tropospheric composition to air with typical stratospheric composition, does not
occur abruptly across the tropical tropopause. Air parcels rise slowly into the stratosphere, driven by
Brewer-Dobson circulation. To a small extent deep convection prenetrates deep into the TTL and a small
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Figure 9.9: Modelled concentration and volume mixing ratio profiles for all important bromine species for

SZA = 80◦ at Kiruna on March 24, 2004. Two SLIMCAT model runs are compared: with contributions to

bromine source gases from methyl bromide, halons and very short-lived substances (experiment 336 - solid

lines / CH3Br, halons and VSLS themselves are shown as dotted lines); with contributions to bromine source

gases from methyl bromide and 6 pptv of bromine bearing inorganic gases transported across the tropopause

(experiment 325 - dashed lines). DOAS ascent profiles are shown for comparison.

fraction of surface air might be injected directly into the stratosphere (see e.g. Gettelman et al. [2004,
Corti et al. [2005]). Air exchange across the extratropical tropopause is accomplished by processes over a
large range of temporal and spatial scales. The net mass exchange is controlled by global-scale processes
as part of the Brewer-Dobson circulation, e.g. Holton et al. [1995]. Nevertheless, synoptic-scale frontal
systems and to a lesser extent midlatitude deep convection can bring constituents from the boundary
layer to the UT. These processes may thus also transport VSL substances, their degradation products
and inorganic halogen into the lower stratosphere [WMO 2003]. However, it has to be noted that the
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Figure 9.10: Development of modelled and measured BrO SCDs for the balloon flight at Kiruna on March 24,

2004. The three model runs use different organic bromine source gases as indicated in the legend, but all have

BrY = 21.5 pptv. The right panel is a zoom into ascent measurements.

precise mechanisms of the cross-tropopause transport and their consequences for VSL substances are
still controversial and subject to ongoing research.

For most DOAS flights, measurements were started early enough during ascent to make observa-
tions in the troposphere and especially in the UTLS region. In the past, comparisons of DOAS
observations with SLIMCAT model data [e.g. Harder et al. 1998; Fitzenberger 2000] always showed
some discrepancies in the LS around the concentration maximum. The overall shape of the profile and
concentrations above the concentration maximum were modelled well, but DOAS measurements were
consistently higher at the concentration maximum. Up to experiment 323 (internal numbering of M.
Chipperfield denoting different SLIMCAT model runs - in short exp323), the bromine loading was

Figure 9.11: Correlation plots for measured versus modelled BrO SCDs for the Kiruna 2004 balloon flight. The

3 model runs described in Figure 9.10 and in the text are compared. The left and right panels show ascent

and occultation measurements respectively.
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Figure 9.12: Similar to Figures 9.10 and 9.11 but for the balloon flight at Kiruna on March 23, 2003. Right

panel shows ascent measurements only.

modelled as CH3Br only, i.e. the known trend of CH3Br and the halons was treated as one source gas -
methyl bromide. Total BrY had been adjusted though to reflect the total stratospheric bromine loading
observed by DOAS balloon soundings and was approximately 21 pptv around 2000.
In order to get a more realistic representation of the bromine source gases and their release in the LS,
it was decided to specify the bromine loading from observed tropospheric CH3Br and halon loadings
[WMO 2003]. To reflect the additional 3.5 to 5 pptv observed by DOAS, an extra 4 pptv of bromine was
modelled in a tracer to represent bromine-containing, very short-lived species (modelled as CH2Br2) and
1 pptv was assumed to be transported to the stratosphere as BrY (exp336 - see Chipperfield et al. [2005]).
In order to investigate if a large influx of BrO (and consequently other inorganic bromine species) could
be responsible for a higher BrY in the lower stratosphere, another model run (exp325) was performed,
in which the bromine loading was specified as CH3Br (= 15.5 pptv) and tropospheric BrO (= 6 pptv).
Figures 9.8 and 9.9 show a comparison of the DOAS BrO profile inferred from balloon ascent observations
at Kiruna on March 24, 2004 with SLIMCAT model output at an SZA of 80◦. Concentrations and
volume mixing ratios of all important bromine species are plotted for exp336 and exp323 in Figure 9.8
and for exp336 and exp325 in Figure 9.9. Since the troposphere is not treated in the LABMOS 1-D
model used by the DOAS balloon group, SLIMCAT output is shown directly, i.e. no scaling of NO2

was performed here, but was verified to have little effect. Only volume mixing ratios of the source gases
are shown. It can be seen nicely how the source gases are converted to inorganic bromine in the lower

Figure 9.13: Similar to Figures 9.10 and 9.11 but for the balloon flight at Leon on March 19, 1998. Right

panel shows ascent measurements only.
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Figure 9.14: Figure 5 of the study by Salawitch et al. [2005]. Fraction of odd oxygen loss by various catalytic

cycles within the AER model at 47◦ N, March 1993, for model runs with BrYTROP (BrY near the tropopause)

of 0, 4 and 8 pptv (panels a-c, as indicated). Panel d shows the difference between the ozone profile at 47◦ N,

March 1993 and the profile at 47◦ N, March 1980 for runs with BrYTROP of 0 (red short dashed), 4 (green

dashed) and 8 (solid blue) pptv.

stratosphere and slowly build up total reactive bromine. BrO concentrations of exp323 show too low
values around the maximum, which is matched perfectly by exp336.
With the tropopause around 9 km on that day, one can see that both model and measurements indicate
∼ 1 pptv of inorganic bromine in the upper troposphere (around 8 km). It has to be noted though that
the DOAS profile point at 6 km is not too reliable, due to measurement gaps during ascent (see section
6.3.4). A BrY of 3 to 4 pptv is found right above the tropopause (10 to 11 km). Overall it can be said
that the release of BrY from the source gases is rather rapid - an observation confirmed by other DOAS
balloon flights, which are not all presented in this study.
When 6 pptv of BrO is injected directly into the troposphere (exp325), other inorganic species are
formed and an equilibrium builds up in which most of the 6 pptv of inorganic bromine resides as HBr
(∼ 3 pptv) and equal amounts of HOBr and BrO (∼ 1.5 pptv). In Figure 9.9 the maximum BrO
concentration is matched quite well by modelled BrO from exp325, but amounts of BrO below the
concentration maximum are largely overestimated. Even half the amount of BrO (here ∼ 0.75 pptv) in
the troposphere (below 8 km) would still be too high. In general, DOAS BrO observations 2 km or further
below the tropopause are compatible with 0 pptv and do not indicate BrO values larger than 0.5 pptv.
Schofield et al. [2004] found an upper limit of 0.9 pptv for ubiquitous tropospheric BrO at 80◦ from their
ground measurements at 45◦S. From the high variability of the measurements Schofield et al. [2004]
inferred a mean value of 0.2 pptv for a well mixed troposphere.
Figure 9.10 shows a direct comparison of the measured BrO SCD values with model results from exp323,
exp325 and exp336. Exp336 matches perfectly with observations whereas exp325 has too high values for
measurements containing tropospheric absorptions. Exp323 is systematically too low up to ∼ 20 km.
Correlation plots of the different model runs with measured BrO SCDs are presented separately in
Figure 9.11 for ascent and occultation observations. Figures 9.12 and 9.13 show two further examples
from a high and a mid-latitude flight at Kiruna and Leon.

The implications for ozone loss due to increased BrY in the UTLS, based on DOAS observations
are currently being investigated by Chipperfield et al. [2005]. Salawitch et al. [2005] showed how addi-
tional BrY (without clearly identifying the sources) near the tropopause affects ozone depletion over
the past 25 years. They found better agreement between measured and modelled ozone trends as also
suggested by WMO [2003]. The model is run using the WMO Ab scenario for time evolution of BrY,
ClY, aerosols etc. with BrY then increased by either 4 or 8 pptv [Salawitch et al. 2005]. Figure 9.14
gives an overview of the model photochemistry and ozone loss by catalytic cycles at 47◦ N in March
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1993 [Salawitch et al. 2005]. Increasing additional BrY at the tropopause from 0 pptv to 4 and 8 pptv
shows that increased ozone loss is associated with a greater catalytic loss caused by the BrO+ClO
cycle. Futhermore, for non-zero additional BrY at the tropopause, ozone loss below about 14 km is not
purely dominated by HOX photochemistry anymore, since the BrO+HO2 cycle becomes more significant
[Salawitch et al. 2005].
It should be noted that throughout this study, SLIMCAT model results are taken from exp336 unless
stated otherwise.

9.2.1 First Tropical BrO Profile

A tropical BrO balloon profile has been measured for the first time. Details of the flight are given in
section 6.3.5. Since satellite instruments are not sensitive to the upper troposphere - lower stratosphere, or
even the troposphere (see chapter 7), this DOAS BrO profile presents the first accurate measurement up
to the mid stratosphere in the tropics. Due to the low BrO SCD values observed for these measurements,
the BrO SCDs were filtered with a Gaussian filter 1 km in width before profile inversion. Figure 9.15
shows a model comparison (similar to Figure 9.5) for the BrO ascent (corresponding to a SZA of ∼ 74◦)
and occultation (∼ 90◦) profiles measured at Teresina, Brazil, on June 17, 2005 (preliminary analysis).
The ascent profile matches perfectly with the model results from SLIMCAT (exp336). This demonstrates
again the validity of the implementation of VSL compounds into SLIMCAT. Around 1 to 3 pptv BrO
are observed at the thermal tropopause at ∼ 17 km and both the modelled and the measured profile
demonstrate the rapid release of inorganic bromine from its source gases. The fact that the occultation
profiles do not correspond, is rather strange and currently unexplained (also seen in a direct SCD
comparison - not shown here). BrO profiles from a constrained model run with scaled NO2 are included
in Figure 9.15 for comparison. It can be seen that scaling of NO2 only has a small effect on the BrO
profile and does not explain the observed discrepancy. It can be speculated whether the HOX chemistry
and therefore HOBr plays a more important role than at mid or high-latitudes. Further results, e.g. from
other balloon observations or satellite instruments performed around the same time are needed to make
a more specific assessment.

9.3 Correlation between Tracers and BrY

The LPMA / DOAS balloon payload offers the unique possibility of measuring tracers (N2O and CH4 from
LPMA) and BrY derived from DOAS BrO simultaneously - see section 9.1. The correlation of BrY with
tracers is especially important for the modelling community, since such correlations are used to model the
influx into the stratosphere and the release of BrY from the source gases. Wamsley et al. [1998] were the
first to derive such a correlation for CFC-11 (CCl3F) and BrY. They combined measurements of H-1211
and mean age estimates from SF6 (similar to Figure 9.6) both measured in the stratosphere up to 20 km,
with simultaneous measurements of CFC-11, measurements of brominated compounds in stratospheric
whole air samples and records of tropospheric organic bromine mixing ratios. From these measurements
they calculated the mixing ratio of total bromine in the lower stratosphere and its partitioning between
organic and inorganic compounds [Wamsley et al. 1998].
Figures 9.16 to 9.22 show the correlations of BrO and inferred BrY, with N2O and CH4 for 7
LPMA / DOAS balloon flights. A 1 pptv error was estimated for the BrO to BrY scaling. Except for the
Gap 1999 observations, ascent measurements were used for BrO. BrO SCD values were filtered with a
Gaussian filter 1 km in width before profile inversion in order to avoid oscillations in the profile and to
obtain a smooth correlation. Correlations as modelled by SLIMCAT from exp323 (when available) and
exp336 (see section 9.2) are included for comparison. When available, BrY inferred from a Langley plot
is also indicated (section 9.1). The BrY - N2O correlation given by Wamsley et al. [1998] is also plotted.
Wamsley et al. [1998] do not give the correlation of BrY - N2O directly but of BrY - CFC-11 together
with a correlation of N2O to CFC-11 for the tropics (−20◦ < latitude < 20◦ - here used for Teresina 2005
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Figure 9.15: Modelled concentration and volume mixing ratio profiles for all important bromine species for a

SZA of 74◦ (solid) and 90◦ (dashed) at Teresina on June 17, 2005. DOAS ascent and occultation profiles are

shown for comparison.

presented in Figure 9.22) and extratropics (latitude > 20◦ or latitude < −20◦). The tropical correlation
is valid for N2O mixing ratios between 225 and 310 ppbv and the extratropical correlation is valid for
N2O mixing ratios between 130 and 310 ppbv. The measurements used by Wamsley et al. [1998] were
performed in fall 1994. Unfortunately CFC-11 is scaled in SLIMCAT, i.e. it also accounts for other or-



9.3. CORRELATION BETWEEN TRACERS AND BRY 173

Figure 9.16: Correlation between BrY derived from DOAS BrO measurements and N2O and CH4 from LPMA

observations in the stratosphere for the Leon 1996 balloon flight. The correlation of BrO with N2O and CH4 is

shown in blue and results purely from simultaneous measurements performed during the balloon ascent. The

black curve represents the correlations of BrY derived from BrO measurements and modelling, with N2O and

CH4. For comparison, correlations are shown with BrY , N2O and CH4 taken from the SLIMCAT exp336 and

exp323 model runs, and the BrY - N2O correlation according to Wamsley et al. [1998] (thick black line). The

red square marks total BrY above float as derived by the Langley plot described in section 9.1.

ganic chlorine species and is not used as the CFC-11 tracer alone, thus not reflecting the real atmospheric
trend in CFC-11. All three species BrY, N2O and CH4 are not constant over time but show a trend in
the atmosphere (see e.g. Figure 9.7). A constant offest of inorganic bromine was added in each case as
indicated in the legend to account for the difference in BrY between Wamsley et al. [1998] measurements
and DOAS observations. For Gap 1999 and Kiruna 1997 only DOAS and LPMA data and correlations
from exp336 are shown as a detailed analysis is difficult in both cases. During Gap 1999, only occultation
measurements were performed, requiring a strong scaling from BrO to BrY, i.e. relying too much on

Figure 9.17: Same as Figure 9.16 but for the balloon flight at Kiruna in February 1997.
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Figure 9.18: Same as Figure 9.16 but for the balloon flight at Kiruna in February 1999.

model simulations. Furthermore, occultation measurements do not reach down to the low BrY values.
Kiruna 1997 measurements took place at the vortex edge, making the dynamical situation difficult (see
section 8.2).
Atmospheric methane (CH4) is a greenhouse gas whose radiative properties and atmospheric chemistry
affect both climate and stratospheric ozone. Measurements of CH4 in air extracted from polar ice indicate
that its abundance during the last 420,000 years of the preindustrial era varied between 350 ppbv and
700 ppbv [WMO 2003]. In 2000 CH4 was estimated to around 1780 ppbv. Systematic measurements of
CH4 show that its global abundance at the Earth’s surface continues to increase with an average growth
rate of 7.9± 0.1 ppbv / year from 1984 to 2000 [WMO 2003].
The atmospheric abundance of N2O, which is the major source of ozone-depleting nitrogen oxides (see
section 2.2.2), has been increasing steadily for decades. Its averaged global mixing ratio at the beginning
of 2001 was 315 to 317 ppbv with an averaged rate of increase of ∼ 0.75 ppbv / year [WMO 2003].
The shape of the correlations is due to the decrease of N2O and CH4 with increasing altitude, caused by
loss or sink processes (reaction with OH and photolysis) and the increase of BrY with altitude, caused

Figure 9.19: Same as Figure 9.16 but for the balloon flight at Gap in June 1999 and occultation measurements.
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Figure 9.20: Same as Figure 9.16 but for the balloon flight at Kiruna in March 2001.

by its release from the organic source gases (see section 9.2). Once organic bromine has been converted
into inorganic forms, as shown for example in Figure 9.15, BrY remains constant, as can be observed in
Figures 9.16 to 9.22. As expected, exp336 shows a steeper increase of BrY with decreasing N2O or CH4.
When scaled (i.e. by adding the indicated offset), the Wamsley et al. [1998] correlation matches well the
correlations derived from high latitude LPMA / DOAS observations. For mid latitudes (Leon 1996) and
for the tropics (Teresina 2005), the Wamsley et al. [1998] correlation is too flat and does not model the
rapid increase of BrY with decreasing N2O. Although it must be mentioned that for Leon 1996 mea-
surements, SLIMCAT does not model the dynamic situation well and further comparisons are necessary.
Unfortunately N2O and CH4 LPMA data for the Teresina 2005 and the Kiruna 2004 (not shown here)
flights are not available at present, but once they are will make an important contribution. For Teresina
2005, TRIPLE N2O (courtesey of A. Engel) measurements from a balloon flight at Teresina on June 25
(one week after LPMA / DOAS) are available and used for this preliminary analysis.
Kiruna 2001 LPMA / DOAS observations were used to derive an updated correlation, as compared to
Wamsley et al. [1998], for high latitudes. Equations 9.4 and 9.5 give the BrY - N2O and BrY - CH4 cor-

Figure 9.21: Same as Figure 9.16 but for the balloon flight at Kiruna in March 2003.



176 CHAPTER 9. TOTAL STRATOSPHERIC BROMINE

Figure 9.22: Same as Figure 9.16 but for the balloon flight at Teresina on June 17, 2005 and for N2O only.

N2O measurements (courtesey of A. Engel) were taken during a TRIPLE balloon flight on June 25.

relations ([BrY] in pptv, [N2O] in ppbv and [CH4] in ppmv) for this time (August 21, 2001) for observed
air masses at float altitude as old as 6 years (see also section 9.1).

[BrY] = 18.376 + 0.1212 · [N2O]− 0.0018 · [N2O]2 (9.3)
+9.664 · 10−6 · [N2O]3 − 1.892 · 10−8 · [N2O]4

[BrY] = 11.6403 + 54.0874 · [CH4]− 118.8673 · [CH4]2 (9.4)
+111.3144 · [CH4]3 − 37.5787 · [CH4]4

The BrY - N2O correlation is valid from 25 to 310 ppbv and the BrY - CH4 correlation from 0.4 to
1.7 ppmv.
Once LPMA data from Kiruna 2004 and Teresina 2005 is available, when additional LPMA data has been
reanalysed (Kiruna 1998, Leon 1998) and new model simulations (e.g. for Leon 1996) are made available,
correlations can also be derived for mid latitudes and the tropics, and the correlations presented here can
be confirmed.

9.4 Summary

DOAS BrO balloon measurements in combination with model simulations allow to infer total inorganic
stratospheric bromine. Combining the information from all 13 DOAS flights a recent history of the total
inorganic stratospheric bromine inventory can be constructed. Stratospheric BrY peaked around 1998
at 21 ± 3 pptv and since then shows constant levels (see Figure 9.7). Compared to the known trend of
organic source gases (halons and CH3Br), BrY inferred from DOAS observations is consistently 3.5 to
5 pptv higher. This discrepancy can be explained by a contribution of short-lived bromine source gases to
total BrorgY as shown by comparisons with different SLIMCAT model runs. DOAS measurements in the
tropics, where most of the influx of the source gases is believed to take place, are also in good agreement
with model simulations regarding the total BrY and its precursors.
Non-zero amounts of BrY are observed around the tropopause. Above the tropopause BrY increases
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rapidly in agreement with recent SLIMCAT model simulations which include contributions of VSLS.
BrO measurements in the troposphere, 2 km or further below the tropopause, are compatible with
0 pptv and do not indicate BrO values larger than 0.5 pptv, which is in agreement with findings of
Schofield et al. [2004].
Similar to the study of Wamsley et al. [1998] correlations between tracers (N2O and CH4) and BrY were
derived from LPMA / DOAS measurements and SLIMCAT model output. An updated correlation, as
compared to Wamsley et al. [1998], is given for high latitude summer. When a detailed analysis of the
tropical LPMA / DOAS observations is available similar correlations can also be derived for the tropics.
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Chapter 10

Conclusion

Absorption spectra, recorded with the UV DOAS spectrograph during thirteen LPMA / DOAS balloon
flights since 1996, were analysed for BrO and OClO signatures. The last five balloon flights were conducted
within the scope of this study at high- and mid latitudes and in the tropics. Previous flights were re-
analysed.

• Repairs and minor changes were performed on the DOAS spectrograph to ensure an optimum
performance of the instrument - section 4.1.2.

• The accuracy of the DOAS retrieval was improved compared to previous flights by recording a new
set of absorption reference spetra in the laboratory - chapter 5. This is essential for the retrieval
of small absorbers like BrO and OClO and also needs to be performed in future, after completing
modifications on the optical setup of the spectrograph.

• During initial tests for the absolute calibration (results not presented here but can be found, for
example in Gurlit et al. [2005]) and a first data evaluation, some instrumental effects were observed
- section 4.2. One is the correlation of the imaging in the UV with the pointing of the sun-tracker.
This effect is not fully understood yet and needs to be monitored and investigated, and if possible,
prevented in future.

• The BrO absorption cross-section and its temperature dependence, which are currently the major
sources of error in the DOAS evaluation (∼ 10%), need to be charaterised more precisely.

• In order to increase the sensitivity in the UV, especially during occultation measurements, telescopes
with larger light entrance should be considered. To avoid saturation of the photodiodes during
ascent, a filter wheel could be installed, which would allow the illumination to be modified. Higher
sensitivity in the UV would also allow for the possibility of performing nighttime lunar occultation
measurements, which would be especially interesting for detecting OClO inside the polar vortex.

BrO and OClO observations were interpreted with the help of the SLIMCAT [Chipperfield and Pyle 1998]
3-D chemical transport model and 1-D photochemical model simulations, which were further constrained
by LPMA / DOAS observations of other species.

• DOAS BrO profiles (and profiles from the TRIPLE and SAOZ balloon instruments) were used to
validate BrO limb profiles from the SCIAMACHY instrument on the European Envisat satellite.
Photochemical change was calculated along air mass trajectories to match the balloon with the
satellite observations. Thus, a set of BrO balloon profiles was produced, which is meant to be repre-
sentative and, according to the trajectory calculations, the most suitable set of SCIAMACHY BrO
validation profiles and is thus recommended for future SCIAMACHY limb BrO retrieval exercises
- chapter 7.

179
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• OClO observations inside and at the edge of the vortex, recorded during 3 winter flights at Kiruna,
were re-analysed and existing discrepancies between measurements and model simulations were
removed. Model comparisons with the known chemistry are able to reproduce DOAS OClO twilight
measurements generally very well. Recent findings on photochemistry from Canty et al. [2005] and
von Hobe et al. [2005] do not contradict DOAS measurements but further constraints are needed
to prove their validity - chapter 8.

• For two of these flights, altitude-dependent ozone loss rates of ∼ (30− 40) ppbv / day for Kiruna
2000 and of ∼ (20) ppbv / day for Kiruna 1999 observations at around the 450 K level were inferred
by a detailed model study.

• In future more accurate OClO measurements inside the vortex are required to further investigate
the photochemistry - mainly the pathways of the BrO plus ClO reaction [Canty et al. 2005].

• Total inorganic stratospheric bromine was inferred for all DOAS flights and a recent history of the
total organic and inorganic stratospheric bromine inventory was constructed. BrY from DOAS is
consistently 3.5 to 5 pptv higher than the known trend in halons and CH3Br can account for -
section 9.1.

• Comparisons of DOAS measurements with different SLIMCAT model runs show that additional
short-lived bromine source gases can account for the observed discrepancy in total organic and
inorganic bromine - section 9.1.

• Total inorganic bromine in the stratosphere peaked at around 1998 at 21± 3 pptv and since then
shows constant levels - Figure 9.7.

• In future more BrO DOAS observations are needed to monitor whether reduction in anthropogenic
organic bromine precursors (covered by the Montreal protocol and its amendments) reaches the
stratosphere and with what time delay. It is also possible that an increase of natural VSL bromine
substances (e.g. due to an increase in ocean surface temperature) causes further increase of bromine
in the stratosphere.

• DOAS observations indicate non-zero amounts of inorganic bromine around the tropopause, with
a rapid increase above, in agreement with recent SLIMCAT model simulations.

• Recent DOAS measurements in the tropics, where most of the influx of the source gases is believed to
take place, are in good agreement with model simulations regarding the total BrY and its precursors
- section 9.2.1. However, more measurements are needed for a detailed understanding of chemical
processes in the tropical TTL and LMS.

• A detailed analysis of the tropical LPMA / DOAS observations (including tracers such as N2O and
CH4) in combination with whole air sample measurements performed at the same time by TRIPLE,
will give more insight into the rather unexplored conditions of the photochemistry in the tropics.
Of special interest are the UTLS and the amount of short-lived precursors observed there.

• Measurements of BrONO2 (and other inorganic bromine species besides BrO) in the stratosphere
are needed to rule out uncertainties in the understanding of bromine photochemistry, especially for
the reaction of BrO with NO2.

• Although tremendous progress has been made during the last 20 years in the understanding of ozone
chemistry, there are still disrepancies and uncertainties that prevent to model past ozone losses
correctly or to predict the future of stratopheric ozone [WMO 2003]. This is especially important
since ozone is also a greenhouse gas and relevant to the climate.



Publications

Parts of this work have been published in:
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• Gurlit, W., H. Bösch, H. Bovensmann, J.P. Burrows, A. Butz, C. Camy-Peyret, M. Dorf, K. Ger-
ilowski, A. Lindner, S. Noel, U. Platt, F. Weidner, and K. Pfeilsticker, The UV-A and visible solar
irradiance spectrum: Inter-comparison of absolutely calibrated, spectrally medium resolved solar
irradiance spectra and from balloon- and satellite-borne measurements, Atmos. Chem. Phys., 5,
1879-1890, 2005.
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Bösch, H., C. Camy-Peyret, M. P. Chipperfield, R. Fitzenberger, H. Harder, U. Platt, and K. Pfeilsticker (2003).

Upper limits of stratospheric IO and OIO inferred from center-to-limb-darkening-corrected balloon-borne

solar occultation visible spectra: Implications for total gaseous iodine and stratospheric ozone. J. Geophys.

Res., Vol. 108, No. D15, 4455.
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large HNO3 - containing particles in the winter Arctic stratosphere. Science, Vol. 291.

Fahey, D. W., S. R. Kawa, E. L. Woodbridge, P. Tin, J. C. Wilson, H. H. Jonasson, J. E. Dye, D. Baumgardner,

S. Borrmann, D. W. Toohey, L. M. Avalone, M. H. Proffitt, J. Margitan, M. Loewenstein, J. R. Podolske,

R. J. Salawitch, S. C. Wofsy, M. K. W. Ko, D. E. Anderson, M. R. Schoeberl, and K. R. Chan (1993). In

situ measurements constraining the role of sulphate aerosols in midlatitude ozone depletion. Nature, , No.

363, 509–514.

Farman, J. C., B. G. Gardiner, and J. D. Shanklin (1985). Large losses of total ozone in Antarctica reveal

seasonal ClOx/NOx interaction. Nature, Vol. 315, 207–210.

Feng, W., M. Chipperfield, S. Davies, B. Sen, G. Toon, J. Blavier, C. Webster, C. Volk, A. Ulanovsky, F. Raveg-

nani, P. von der Gathen, H. Jost, E. Richard, and H. Claude (2005). Three-dimensional model study of the

Arctic ozone loss in 2002/03 and comparison with 1999/2000 and 2003/04. Atmos. Chem. Phys., Vol. 5,

139–152.
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Gauthier-Villars, Paris,.

Mohamed-Tahrin, N., A. South, D. Newnham, and R. Jones (2001, May). A new accurate wavelength calibration

for the ozone absorption cross section in the near-UV spectral region, and its effect on the retrieval of BrO

from measurements of zenith-scattered sunlight. J. Geophys. Res., Vol. 106, No. D9, 9897–9907.

Molina, L. T. and M. J. Molina (1987). Production of Cl2O2 from the self-reaction of the ClO radical. J. Phys.

Chem., Vol. 91, 433–436.

Molina, M. J. and F. S. Rowland (1974). Stratospheric sink for chlororflourmethanes: chlorine atom-catalysed

destruction of ozone. Nature, Vol. 249, 810–812.

Montzka, S., J. Butler, B. Hall, D. Mondell, and J. Elkins (2003). A decline in tropospheric organic bromine.

Geophys. Res. Lett., Vol. 30, No. 15, 1826–1829.

Montzka, S. A., J. H. Butler, R. C. Myers, T. M. Thompson, T. H. Swanson, A. D. Clarke, L. T. Lock, and

J. W. Elkins (1996). Decline in the tropospheric abundance of halogen from halocarbons: Implications for

stratospheric ozone depletion. Science, Vol. 272, 1318–1322.

Mozurkewich, M. and J. Calvert (1988). Reaction probability of N2O5 on aqueous aerosols. J.Geophys.Res., ,

No. 93, 15,889–15,896.

Murphy, D. M. and D. S. Thompson (2000). Halogen ions and NO+ in the mass spectra of aerosols in the upper

troposphere and lower stratosphere. Geophys. Res. Lett., Vol. 27, 3217–3220.

MyIntyre, M. and T. Palmer (1983). Breaking planetary waves in the stratosphere. Nature, Vol. 305, 593–600.

Nash, E. R., P. A. Newman, J. E. Rosenfield, and M. R. Schoeberl (1996). An objective determination of the

polar vortex using Ertel’s potential vorticity. J. Geophys. Res., Vol. 101, No. D5, 9471–9478.

Nash, T. (1976). Nitrous acid in the atmosphere and laboratory experiments on its photolysis. Tellus XXVI, Vol.

1-2.

Naujokat, B., K. Labitzke, R. Lenschow, and R.-C. Wohlfart (2000). The stratospheric winter 1999/2000.

Beilage zur Berliner Wetterkarte,.

Nicolet, M. (1984). On the molecular scattering in the terrestrial atmosphere: An empirical formula for its

calculation in the homosphere. Planet. Space Sci., Vol. 32, 1467–1486.

NOAA-S/T76-1562 (1976). US Standard Atmosphere. NOAA-S/T76-1562. Supplement Document, US Printing

Documents, Washington DC.

Noxon, J. F. (1979). Stratospheric NO2: global behaviour. J. Geophys. Res., Vol. 84.

Orlando, J., J. Burkholder, A. Bopegedera, and C. Howard (1982). Absorption coefficients and kinetics of the

BrO radical using molecular modulation. J. Photochem., Vol. 19, 189–207.

Orphal, J. (2003). A critical review of the absorption cross-sections of O3 and NO2 in the ultraviolet and visible.

J. Photochem. Photobiol. A, Vol. 157, 185–209.

Osterkamp, H. (1997). Messung von atmophärischen O4-Profilen. Master thesis, Institut für Umweltphysik,

Universität Heidelberg,.

Pawson, S., B. Naujokat, and K. Labitzke (1995). On the polar stratospheric cloud formation potential of the

northern hemisphere. J. Geophys. Res., Vol. 100, 23215–23225.

Payan, S., C. Camy-Peyret, P. Jeseck, T. Hawat, G. Durry, and F. Lefèvre (1998). First direct simultaneous HCl
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F. Lefèvre, S. Payan, and C. Camy-Peyret (2000). Role of lee waves in the formation of solid polar strato-

spheric clouds: case studies from February 1997. J. Geophys. Res., Vol. 105, No. D5, 6845–6853.



198 REFERENCES

Rodgers, C. (2000). Inverse methods for atmospheric sounding. Singapore, New Jersey, London, Hongkong:

World Scientific.

Roedel, W. (1992). Physik unserer Umwelt : Die Atmosphäre. Springer-Verlag, Berlin, Heidelberg, New York,.
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• Jean Evrard and André Laurens from CNES ‘equipe nacelles pointées ’ and the balloon team from Aire sur

l’Adour / France, without who the balloon flights would not have taken place.

• Our colleagues from the other balloon teams. Especially Fred Stroh, Andreas Engel and Serhiy Hrechanyy

(TRIPLE), Hermann Oelhaf and Gerald Wetzel (MIPAS) for their cooperation and for making their mea-

surements and results available to us.

• Ross Salawitch for his comments on our work and for keeping us updated and involved in the latest

developments and findings on stratospheric bromine.

• Florence Goutail, Michel Van Roozendael and Franois Hendrick for their cooperation on the SCIAMACHY

BrO validation.

• Chris Sioris for providing SCIAMACHY BrO limb profiles.

• All my friends, acquaintances and family who accompanied me and gave me support during the last years.

• Dominique Le Cocq, who with her love, sweetness and sweets gave me the necessary energy during the last

year. Her comments on my English are especially appreciated.

This work was conducted within ESA contracts AO 146 and AO 465. Funding came from the BundesMinisterium

für Bildung und Forschung (BMBF), contract DLR-50EE0017.


	Introduction
	Stratospheric Photochemistry and Dynamics
	Dynamics of the Polar Stratosphere
	Potential Temperature
	Potential Vorticity
	The Vortex Edge
	The Northern and Southern Polar Vortex
	Planetary Waves
	Stratospheric Warmings

	Stratospheric Chemistry
	Ozone Chemistry
	Stratospheric Nitrogen Chemistry
	Halogen Chemistry and Source Gases
	Heterogeneous Chemistry on PSCs - The Ozone Hole
	Heterogeneous Chemistry on Sulfate Aerosoles


	Methodology
	Basics of the Atmospheric Radiative Transfer
	Definitions
	Photochemical Effects
	Scattering
	Absorption

	Solar Radiation and the Solar Spectrum
	DOAS - Differential Optical Absorption Spectroscopy
	Spectral Retrieval
	Sources of Errors


	Instrumentation
	The LPMA/DOAS Balloon Payload
	The LPMA Fourier Transform Interferometer
	The DOAS Balloon Spectrograph
	mini-DOAS

	Instrumental Effects and Sun-Tracker Correlations
	Instrumental Deficits
	Sun-Tracker Correlations


	Laboratory Reference Spectra
	Experimental Setup
	O3 Reference
	BrO Reference
	NO2 and HONO Reference
	OClO Reference
	Summary and Effect on Retrieval

	Stratospheric BrO Profiling
	Experimental Details of the BrO Evaluation
	The DOAS BrO-Retrieval
	Langley Plot
	BrO-Retrieval Error

	Profile Retrieval
	Inversion Techniques
	Errors of the Raytracing
	BrO Profile Inversion and Errors

	Discussion of LPMA/DOAS Balloon Flights
	LPMA / DOAS Flight on August 21/22, 2001 at Kiruna
	LPMA / DOAS Flight on March 23, 2003 at Kiruna
	LPMA / DOAS Flight on October 09, 2003 at Aire sur l'Adour
	LPMA / DOAS Flight on March 24, 2004 at Kiruna
	LPMA / DOAS Flight on June 17, 2005 at Teresina


	Validation of SCIAMACHY BrO Limb Profiles
	Balloon-Borne and Satellite BrO Measurements
	Resonance Fluorescence BrO Measurements
	SAOZ BrO Measurements
	SCIAMACHY BrO Profile Retrieval

	Modelling
	Trajectory Modelling
	Chemical Modelling

	Further Constraints on the Photochemical Modelling
	Photochemical Modelling and its Constraints

	Results and Discussion
	Conclusions

	Stratospheric OClO
	OClO Evaluation
	The LPMA / DOAS Measurements at Kiruna on February 14, 1997
	The LPMA / DOAS Measurements at Kiruna on February 10, 1999
	The LPMA / DOAS Measurements at Kiruna on February 18, 2000
	Conclusions

	Total Stratospheric Bromine
	Stratospheric Bromine Trend
	BrY Inferred from Stratospheric DOAS BrO Measurements

	Contribution of Very Short-Lived Organic Bromine Species
	First Tropical BrO Profile

	Correlation between Tracers and BrY
	Summary

	Conclusion
	Publications
	List of Figures
	List of Tables
	References
	Acknowledgements


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


