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Abstract: The aim of this thesis is the proof of the existence of relaxation
shock profiles. The existence results apply if the reduced system is strictly
hyperbolic, satisfies the strict entropy condition, and if the underlying hy-
perbolic system with relaxation fulfills easy-to-check structural conditions.
In general, the ODE system for the relaxation shock profile has a singular
right-hand-side. The structural conditions allow the construction of a lo-
cally invariant manifold Γ̃, where the vector field to this ODE system has
a smooth extension from a dense subset of Γ̃ throughout Γ̃ and the classi-
cal center manifold theorem applies. We apply our results to exponentially
based moment closure systems.

Zusammenfassung: Ziel dieser Arbeit ist der Beweis der Existenz von
Relaxationsschockprofilen. Die Existenzresultate finden Anwendung, wenn
das reduzierte System strikt hyperbolisch ist, die strikte Entropiebedingung
erfüllt und das zugrunde liegende Relaxationssystem leicht nachzuprüfende
Strukturbedingungen erfüllt. Im Allgemeinen hat das gewöhnliche Differential-
gleichungssystem für das Schockprofil eine singuläre rechte Seite. Die Struk-
turbedingungen erlauben die Konstruktion einer lokal invarianten Mannig-
faltigkeit Γ̃, auf der das Vektorfeld zu diesem gewöhnlichen Differentialglei-
chungssystem eine glatte Fortsetzung von einer dichten Teilmenge von Γ̃ auf
ganz Γ̃ besitzt und das klassische Zentrumsmannigfaltigkeitstheorem An-
wendung findet. Wir wenden unsere Ergebnisse auf exponentiell basierte
Momentenabschluss-Systeme an.
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Introduction

A large number of physical phenomena involving nonequilibrium processes is
modelled by first-order partial differential equations of the form

Ut +
d
∑

j=1

Fj(U)xj
= Q(U)/ǫ,(1)

where ǫ > 0 is a small parameter, U is an unknown n-vector valued function
of (x, t) ≡ (x1, · · · , xd, t) ∈ Rd × [0,∞) and Q, Fj are given smooth n-vector
valued functions.

Furthermore, we assume that we have conservation structure, i.e. the first
n− r components of Q(U) vanish.

Important examples occur in inviscid gas dynamics with relaxation, mag-
netohydrodynamics, kinetic theories, extended thermodynamics, nonlinear
optics, numerics of conservation laws, and so on. Typical examples and fur-
ther references are given in [Y3].

In order to have a well-defined limit for ǫ → 0 (also called relaxation limit)
Yong introduced in [Y1] the so-called second stability condition which from
now on is referred to as stability condition.

This condition consists of the decomposition of Q(U) into a conservation and
a relaxation part, the symmetrizability of system (1) and a condition on the
coupling of the symmetrizer with the relaxation term (see (1.1.4)).

In the context of shock structure problems, the existence of traveling waves,
i.e. solutions of the form φ(ξ), ξ = (−st + ωjxj)/ǫ (ω = (ω1, · · ·ωd) ∈ Sd−1)
solving
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−sφξ +

d
∑

j=1

ωjFj(φ)ξ = Q(φ),(2)

is of independent physical interest ([WE]).

From the conservation structure it follows that for each solution φ(·) to (2)
with trajectory starting at a point U− there exist n − r constant quantities
c1, · · · , cn−r:

c1(φ(·)) ≡ c1(U−), · · · , cn−r(φ(·)) ≡ cn−r(U−).

We say that the trajectory is contained in the conservation manifold through
point U−.

If (−sIn +
∑d

j=1 ωjFjU(φ))−1 does not become singular and if the stability
condition together with generic coupling conditions is fulfilled, then the ex-
istence of traveling wave solutions has been proven (see [Y-Z]).

Here, the center manifold reduction works as well as in the existence proof for
viscous profiles by Majda and Pego (see [M-P]): System (2) can be brought
into the form

φξ = F(s, φ),(3)

where F is smooth.

Application of the the center manifold theorem gives the existence of a slow
invariant manifold of system (3) containing the fixed points of this system.

The intersection of this slow manifold with the conservation manifold is a
curve.

The orbit for the profile is bounded by two neighboring fixed points on the
curve and is contained in the stable manifold at one of them and in the un-
stable manifold at the other one.

If (−sIn +
∑d

j=1 ωjFjU(φ))−1 becomes singular, the right-hand-side F be-
comes singular, and the application of the center manifold theorem is not
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straightforward.

For this case we develop a modification of the center manifold reduction
method applied in [Y-Z].

This is possible, if, in addition to the stability condition, the dissipativity
condition (also called Kawashima’s condition) formulated by Shizuta and
Kawashima in [S-K], is fulfilled and if the simplicity condition is fulfilled, i.e.
zero is an eigenvalue of −sIn +

∑d
j=1 ωjFjU(φ) with multiplicity less than or

equal to one.

We construct a manifold Γ where the ODE system (2) defines a smooth vec-
tor field and then apply the center manifold theorem in order to obtain a
slow invariant submanifold of Γ containing the fixed points.

The existence theorem for this slow manifold (see (1.2.1)) is referred to as
main theorem.

Furthermore, the main theorem gives information about the dimension of the
stable and unstable manifolds at fixed points.

If the shock profile represents a simple shock (see chapter 1, section 3), the
trajectory of the shock profile is localized in the one-dimensional intersection
of the slow manifold of Theorem (1.2.1) with the conservation manifold and
is bounded by two neighboring fixed points (see Theorem (1.3.1)).

The methods developed in this thesis allow the construction of smooth shock
profiles connecting two states in a small enough neighborhood.

The existence of smooth profiles to general shocks remains to be an unre-
solved problem.

Organization of this work

This work is organized as follows:

In chapter 1 we introduce the stability condition, the dissipativity condition
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and the weakened structural condition and state the main theorems.

For the construction of the slow invariant submanifold we need the simplic-
ity condition and the weakened structural condition which is implied by the
stability and the dissipativity condition.

In chapter 2 we prove the main results.

We will show that the stability and dissipativity condition in fact implies
the weakened structural condition and we will construct the slow invariant
manifold for the traveling wave equations.

Furthermore, we will analyze the qualitative behavior on the slow manifold.

In chapter 3 we apply our results to exponentially based moment closure
systems.

The relaxation limit of these equations are the Euler equations for compress-
ible fluids.

If two states connected by a simple shock solving the Euler equations are
close enough to each other and the simplicity condition is fulfilled then they
can be represented by relaxation shock profiles which are solutions of mo-
ment closure systems.
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Chapter 1

Structural conditions and main
results

We consider first-order hyperbolic PDE with source term of the form

Ut +
d
∑

j=1

Fj(U)xj
=

1

ǫ
Q(U),(1.1)

where U =

(

u
v

)

∈ U ⊂ Rn, u ∈ Rn−r, v ∈ Rr, U is open, ǫ is a positive

real parameter, U is an n-vector valued function of (x, t) ≡ (x1, · · · , xd, t) ∈Rd × [0,∞).

The n-vector valued function Q(U) and the n-vector valued functions Fj(U)
are assumed to be of class C5.

Set B(U) = QU(U) and Aj(U) = FjU(U) for j = 1, · · · , d.

Furthermore, we assume that Q(U) has the form

Q(U) = Q(u, v) =

(

0n−r
q(u, v)

)

.(1.2)

The first n− r zero entries of Q correspond to n− r conserved quantities.

In many physically relevant systems these conserved quantities are mass, mo-
mentum and energy.
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1.1 Structural conditions

We motivate the structural conditions for linear systems with constant coef-
ficients of the form

Ut +
d
∑

j=1

AjUxj
= BU/ǫ,(1.3)

which can be viewed as linearization of system (1.1) in a constant state in
equilibrium.

In order to have a well-defined limit ǫ→ 0 for x-independent solutions

U ǫ(x, t) = exp(tB/ǫ)U ǫ(0, 0)

we introduce the following condition:

Condition 1.1.1 For each U ∈ E := {U ∈ U | Q(U) = 0} the Jacobian
B(U) = QU(U) has no nonzero purely imaginary eigenvalues.

Furthermore, we propose an analogous condition for the xj- direction:

Condition 1.1.2 If U ∈ E and Aj(U) is invertible, then A−1
j (U)B(U) has

no nonzero purely imaginary eigenvalues.

The Fourier transform of the solution U ǫ(x, t) of (1.3) with respect to x is

Û ǫ(ξ, t) = exp(tHr(1/ǫ, ξ))Û0(ξ),

where Û0 is the Fourier transform of the initial value U0 and

Hr(η, ξ) = ηB + i
d
∑

j=1

ξjAj .

In order to have well-posedness for the initial value problem of the linear
system we assume that the hyperblicity assumption is fulfilled, that is, there
exists a positive constant C such that

8



|exp(Hr(0, ξ))| ≤ C

for all ξ ∈ Rd, where | · | denotes some norm for matrices.

Assume that the hyperbolicity assumption is fulfilled and that

sup
η≥0,ξ∈Rd

|exp(Hr(η, ξ))| = ∞.

Under these conditions it is proven in [Y3] that for any t > 0, there exists
U0 ∈ L2 such that the unique global solution U ǫ(x, t) to (1.3) with initial
data U0 satisfies

lim sup
ǫ→0

‖U ǫ(·, t)‖L2 = ∞.

This fact implies a necessary criterion for a well-defined limiting behavior for
ǫ→ 0, the so-called stability criterion:

There is C(U) > 0 such that

∣

∣

∣

∣

∣

exp

(

ηB(U) + i

d
∑

j=1

ξjAj(U)

)
∣

∣

∣

∣

∣

≤ C(U)(1.4)

for Q(U) = 0, η ≥ 0 and ξ ∈ Rd where | · | denotes some norm
for matrices.

In order to give a characterization of the stability criterion in terms of veri-
fiable conditions Yong proved the following fundamental lemma by applying
the Kreiss matrix theorem (for further references see [KR], [K-L] and [Y3]):

Lemma 1.1.3 The stability criterion is equivalent to there being a positive
constant C and a Hermitian matrix A0(ξ), defined for ξ ∈ Rd with |ξ| ≤ 1,
such that

C−1In ≤ A0(ξ) ≤ CIn, A0(
ξ

η + |ξ|)Hr(η, ξ) +H∗
r (η, ξ)A0(

ξ

η + |ξ|) ≤ 0

for all (η, ξ) with η ≥ 0 and ξ ∈ Rd.
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Many physically relevant relaxation systems admit the existence of a positive
definite Hermitian matrix A0(ξ) independent of ξ such that the condition of
the lemma is fulfilled.

Such systems fulfill the conditions (1.1.1), (1.1.2) and the stability criterion,
if the so-called stability condition is fulfilled (see [Y1], [Y2]):

Condition 1.1.4 (stability condition) There is an invertible n×n-matrix
P (U) and an invertible r× r-matrix (0 < r ≤ n) S(U) defined on E = {U ∈
U | Q(U) = 0} such that

P (U)B(U) =

(

0 0
0 S(U)

)

P (U).(1.5)

As a hyperbolic system, (1) is symmetrizable, that means: For each U ∈ U
there exists a positive definite Hermitian matrix A0(U) with

A0(U)Aj(U) = A∗
j (U)A0(U) for all j.(1.6)

The hyperbolic part and the source term are coupled in the following sense:

A0(U)B(U) +B∗(U)A0(U) ≤ −P ∗(U)

(

0 0
0 Ir

)

P (U) ∀U ∈ E .(1.7)

For the solution U1(·, t) of (1.3) to ǫ = 1 the time-asymptotic limit require-
ment

lim
t→∞

‖U1(·, t)‖L2 = 0

is fulfilled, if Hr(1, ξ) is stable, i.e., all of its eigenvalues have negative real
parts.

If the stability condition is satisfied, the matrixHr(1, ξ) is stable, if
∑d

j=1 ξjAj
has no eigenvectors in ker(B) (see [Y3], p. 279f).

Hence, we introduce the dissipativity condition:

Condition 1.1.5 (dissipativity condition) For each U ∈ E , ω ∈ Sd−1

and s ∈ R it holds
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ker(
d
∑

j=1

ωjAj(U) − sIn) ∩ ker(QU(U)) = {0}.

Set A(U) =
∑d

j=1 ωjAj(U) and introduce for U ∈ E the block decomposition
corresponding to P (U)

P (U)A(U)P−1(U) =

(

A11(U) A12(U)
A21(U) A22(U)

)

.(1.8)

From now on, we assume that the origin is contained in E , and non-mentioning
the variable means evaluation at the origin.

Let Π denote the projector onto ker(A) commuting with A and define

Ã =
1

2πi

∫

Γ

ζ−1(ζ −A)−1dζ,(1.9)

where Γ encircles the nonvanishing eigenvalues of A in counterclockwise di-
rection and does not enclose the origin.

Furthermore, set

Λ̃ =
1

2πi

∫

C

(ζ − ΠB)−1dζ,

where C is a curve which surrounds the origin in counterclockwise direction
and does not enclose the non-vanishing eigenvalues of ΠB.

The operator Λ̃ commutes with ΠB and projects onto the generalized eigenspace
of ΠB to eigenvalue zero.

Choose bases (r1, · · · , rm) of ker(A11) and (l∗1, · · · , l∗m) of ker(A∗
11), such that

lirj = δij, and, for r =
∑m

i=1 αiri, set

l(r) =
m
∑

i=1

αili.(1.10)

The stability and dissipativity condition have already been checked for a
lot of relaxation systems, and we will show that they imply the weakened
structural condition which reads as follows:
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Condition 1.1.6 (weakened structural condition) With P fulfilling re-
lation (1.5), and with the block decomposition (1.8) induced by P there holds:

PAP−1 has a positive definite block diagonal symmetrizer of the form diag(A01, A02)
corresponding to the partition (1.8). Zero is a semisimple eigenvalue of ΠB
and Πdiag(0n−r, Ir), each nonzero eigenvalue of Λ̃ÃBΛ̃ and ΠB has nonzero
real part. Furthermore, there holds

Re(l(r)A12S
−1A21r) < 0 ∀ r ∈ ker(A11) \ {0},(1.11)

where l(r) is defined in (1.10).

After eventual linear transformation by P and multiplication of P−∗A0P
−1

(with A0 being the symmetrizer of A) from the left we can assume that sys-
tem (1.1) has normal form, i.e. P = A0 = In.

In the next chapter we will show the following proposition:

Proposition 1.1.7 Assume that system (1.1) has normal form and that the
stability and dissipativity condition are fulfilled. Then the weakened structural
condition (1.1.6) is satisfied.

1.2 Main theorem

The main task of this work is to treat the ODE system for traveling waves
φ(ξ) under the scaling

ξ = (−st+

d
∑

j=1

ωjxj)/ǫ = (−(σ + λp)t+

d
∑

j=1

ωjxj)/ǫ,(1.12)

which has the form

−sφξ +

d
∑

j=1

ωjFj(φ)ξ =(1.13)

= −(σ + λp)φξ +
d
∑

j=1

ωjFj(φ)ξ = Q(φ) =

(

0
q(φ)

)

,
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where λp is the p-th eigenvalue of A11 = A11(0).

We remark that after the scaling (1.12) the parameter ǫ does not occur any
more in equation (1.13): If traveling waves exist then the thickness of their
profile is of order O(ǫ).

The reason for writing the shock speed s in the form

s = σ + λp

is the fact that σ is a critical parameter, i.e. the qualitative behavior of
solutions of (1.13) changes under change of the sign of σ.

Traveling waves occur, if there exists an intersection of the stable manifold
at one limit state and the unstable manifold at the other one.

The first step in the construction of an intersection of a stable manifold and
an unstable manifold to system (1.13) consists of answering the question, how
the dimensions of the stable and unstable manifolds change under variation
of σ near σ = 0.

The following theorem answers this question and gives information about the
tangent space of the slow manifold where this change takes place.

In particular, the theorem controls the change of the dimensions of the stable
and unstable submanifolds of the slow invariant manifold (called Mσ) under
variation of σ.

Remembering that E = {φ ∈ U | Q(φ) = 0} and writing

B = B(0), S = S(0), Aij = Aij(0), Λ̃ = Λ̃(0), A = A(0), Ã = Ã(0)

this theorem reads as follows:

Theorem 1.2.1 Assume that the weakened structural condition (1.1.6) is
fulfilled.

Furthermore, assume that A−λpIn is invertible or zero is a simple eigenvalue
of A− λpIn.

13



Then there exists a C1 manifold M ⊂ Rn+1 and a real number δ > 0 such that
it holds: For any |σ| < δ it holds for the section Mσ = M∩{(σ̄, φ) | σ̄ = σ}:
The set {φ ∈ U | (σ, φ) ∈ Mσ} is locally invariant for C1 solutions φ(·)
of (1.13). If (σ, φ) ∈ Bδ(0) ∩ (R × E) then (σ, φ) ∈ Mσ. Furthermore, the
following claims are true:

1. The tangent space T0M is equal to R× V , where V is the generalized
eigenspace of Λ̃ÃB|Λ̃Rn to eigenvalue zero, and V has the form

V = P−1
(Rn−r ×

(

S−1A21 (ker(A11))
))

.(1.14)

2. Let P̂ be the projector onto V commuting with Λ̃ÃBΛ̃, set ψ = P̂φ,
let ψ 7→ φ(σ, ψ) be a C1 parametrization of {φ ∈ U | (σ, φ) ∈ Mσ}.
Then, system (1.13) induces an autonomous ODE system having the
form

ψξ = V(σ, ψ),(1.15)

where V(·, ·) is of class C1 and for σ > 0 (resp. σ < 0) the dimension
of the stable manifold (resp. unstable manifold) to system (1.15) at the
origin is equal to dim(ker(A11)) as long as A11 + σ̄I is invertible for
each σ̄ ∈ (0, σ] (resp. for each σ̄ ∈ [σ, 0)).

The form of V given in (1.14) has the following interpretation:

Writing V = P−1(V1 ×V2), where V1 = Rn−r and V2 = S−1A21 (ker(A11)),
the component V1 is the trivial part corresponding to the n − r conserved
quantities, the component V2 is the nontrivial part corresponding to the
instability near σ = 0.

1.3 Traveling waves for simple shocks

In our PDE system

Ut +

d
∑

j=1

Fj(U)xj
=

1

ǫ

(

0n−r
q(U)

)

(1.16)
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the first n− r entries of Fj are denoted by fj .

Taking into account that the equilibrium set E has the representation

E = {U =

(

u
v

)

| v = h(u)}(1.17)

for a smooth function h, we get in the limit ǫ→ 0 the reduced system

ut +

d
∑

j=1

fj(u, h(u))xj
= 0.(1.18)

We consider the limit from (1.16) to (1.18) for weak solutions of the form

u(x, t) =

{

u− if ω · x < st,
u+ if ω · x > st,

where u−, u+, s and ω = (ω1, · · · , ωd) ∈ Sd−1 are given and satisfy the
Rankine-Hugoniot relation

s(u+ − u−) = f(ω, u+, h(u+)) − f(ω, u−, h(u−))(1.19)

for f(ω, U) =
∑d

j=1 ωjfj(U).

Remembering the decomposition (1.8) we assume that λp is a simple eigen-
value of the constant matrix

A11(u−, h(u−)) =
∂f(ω, u, h(u))

∂u

∣

∣

∣

∣

u=u−

.

Denote by rp the corresponding eigenvector.

We make the assumption that for a real number δ̄ > 0 the pth Hugoniot curve
exists, represented by a function

[0, δ̄) → R×Rn−r, ρ 7→ (s(ρ), u(ρ))

with the properties

i.) s(0) = λp(u−), u(0) = u−,
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ii.) s(ρ)(u(ρ) − u−) = f(ω, u(ρ), h(u(ρ))− f(ω, u−, h(u−))) ∀ρ ∈ [0, δ̄),

iii.) ∂ρu(ρ)|ρ=0 = rp(u−),

iv.) s(·) is strictly monotone,

and we assume that the strict entropy condition

λp(u(ρ)) < s(ρ) < λp(u−) ∀ρ ∈ (0, δ̄)(1.20)

or the reversed strict entropy condition

λp(u−) < s(ρ) < λp(u(ρ)) ∀ρ ∈ (0, δ̄)(1.21)

is fulfilled.

For any v ∈ Rn denote by vI the vector with the first n− r entries of v and
by vII the vector with the last r entries of v.

If we have proven Theorem (1.2.1), it is not hard to show the following
theorem about the existence of smooth profiles to simple shocks:

Theorem 1.3.1 Assume that Q(U−) = 0, the weakened structural condition
(1.1.6) is fulfilled, λp(u−) is a simple eigenvalue of ∂uf(ω, u, h(u))|u=u− and
that the strict entropy condition is fulfilled.

Furthermore, assume that A−λpIn is invertible or zero is a simple eigenvalue
of A− λpIn.

Then there exists a real number δ > 0 such that the following statements are
true:

1. If there exists a solution φ ∈ C1(R,U) of (1.13) with φ(−∞) = U−,
φ(∞) = U+, if |U+ − U−| < δ and if λp(U

I
+) < s < λp(U

I
−) (resp.

λp(U
I
−) < s < λp(U

I
+)) then it holds: U I

+ is contained in the pth Hugo-
niot curve of U I

−, i.e. (U I
+, s) = (u(ρ), s(ρ)) for a parameter value

ρ ∈ I.

2. If U−, U+ ∈ E , |U+ − U−| < δ, the strict entropy condition (1.20)
(resp. the reversed strict entropy condition (1.21)) holds and U I

+ is
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contained in the pth Hugoniot curve of U I
− then there exists a solution

φ ∈ C1(R,U) of (1.13) such that φ(−∞) = U− and φ(∞) = U+ (resp.
φ(−∞) = U+ and φ(∞) = U−).

Proof:

From now on, we assume λp(U
I
−) = 0 and U− = 0 for notational simplicity,

and we can write s(·) = σ(·).

Assume there exists a solution φ ∈ C1(R,U) with φ(−∞) = 0 and φ(∞) =
U+.

QI ≡ 0 implies

(

d
∑

i=1

ωifi(φ(ξ)) − σφI(ξ)

)

ξ

= 0 ∀ξ ∈ R.(1.22)

Integrating (1.22) from −R to R (for R > 0) leads to the relation

f(ω, φ(R)) − f(ω, φ(−R)) = σφI(R) − σφI(−R).

In the limit R→ ∞ we get the Rankine-Hugoniot relation

f(ω, u+, h(u+)) − f(ω, u−, h(u−))(1.23)

= f(ω, u+, h(u+)) − f(ω, 0, 0)) = σu+ − σu− = σu+

for u− = U I
− = 0 and u+ = U I

+.

Due to (1.20) (resp. (1.21)), the only solutions of (1.23) are contained in
the pth Rankine-Hugoniot curve for |U+| small enough, i.e. ∃ρ > 0 such that
(u+, σ) = (u(ρ), σ(ρ)), and claim (1) follows.

Define the conservation manifold

Nσ = {φ ∈ U ⊂ Rn | f(ω, φ)− f(ω, 0) = σφI}.

For a solution φ(·) of system (1.13) with φ(−∞) = 0 (resp. φ(∞) = 0) it
holds φ(ξ) ∈ Nσ ∀ξ ∈ R.
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For the tangent space T0N0 of N0 at the origin it holds

T0N0 = ker((A11 A12)P ).(1.24)

From claim (1) of the main theorem and ker(A11) = Rrp it follows

T0M0 = {0} × V,(1.25)

where V = P−1 (Rn−r ×RS−1A21rp) .

If w ∈ V ∩ T0N0 then w has the form

w = P−1

(

v
cS−1A21rp

)

,

and it holds after multiplication of (A11 A12)P from the left:

0 = A11v + cA12S
−1A21rp.(1.26)

After multiplication of l(rp) (with l(·) defined in (1.10)) from the left we get
due to l(rp)A11 = 0:

0 = l(rp)A11v + cl(rp)A12S
−1A21rp = cl(rp)A12S

−1A21rp.

From (1.11) it follows c = 0 so that relation (1.26) is fulfilled if and only if
v ∈ Rrp.
We get

V ∩ T0N0 = RP−1

(

rp
0

)

.(1.27)

In other words, the invariant set Cσ = {φ ∈ U | (σ, φ) ∈ Mσ} ∩ Nσ is a

curve which approximately tangent to RP−1

(

rp
0

)

for σ small.

Assume that U+ ∈ E , that |U+| is small enough and that u+ = U I
+ fulfills the

Rankine-Hugoniot condition (1.23) for u− = U I
− = 0 and σ = σ+ = σ(ρ+) 6=

0.
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Obviously, 0, U+ are contained in Nσ+
, and, due to the main theorem, (σ+, 0)

and (σ+, U+) are contained in Mσ+
.

Hence, 0, U+ are contained in Cσ+
.

Due to the strict entropy condition (1.20) (resp. the reversed strict entropy
condition (1.21)), it holds

σ = σ+ < λ(U I
−) = 0, (resp. 0 = λ(U I

−) < σ = σ+).

Due to claim (2) of the main theorem, there exists a one dimensional unsta-
ble (resp. stable) manifold at U− = 0 (being contained in Mσ for σ = σ+)
for the ODE system induced on M̄σ+

= {φ ∈ U | (σ+, φ) ∈ Mσ+
}.

As this unstable (resp. stable) manifold is also contained in Nσ+
it is con-

tained Cσ+
.

Assume that the trajectory of a solution φ(·) of the traveling wave system
corresponds to a solution of the ODE system (in claim (2) of the main the-
orem) which is induced on Mσ by the traveling wave system (for σ = σ+).

Furthermore, assume that this trajectory has a non-void intersection with
the aforementioned unstable (resp. stable) manifold and a non-void intersec-
tion with the part of the line Cσ+

which connects the points 0 and U+.

Then, 0 = limξ→−∞φ(ξ) (resp. 0 = limξ→∞φ(ξ)), and there exists 0 6= U∗ ∈
Cσ+

such that U∗ = limξ→∞φ(ξ) (resp. U∗ = limξ→−∞φ(ξ)).

As the stationary points 0 and U+ are contained in the curve Cσ+
, such a

point U∗ 6= 0 being contained in Cσ+
exists, and U∗ is either equal to U+ or

is located between 0 and U+ on the invariant curve Cσ+
.

Now, we show that U∗ = U+.

Due to (1), U I
∗ is contained in the Rankine-Hugoniot curve through U I

− = 0
for σ = σ+.
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For |U I
+| and σ = σ+ small enough, u+ = U I

+ is the only solution of the
Rankine-Hugoniot relation (1.23).

Due to U+, U∗ ∈ E it holds U II
+ = h(U I

+), U II
∗ = h(U I

∗ ) (remembering (1.17).

Hence, we have U+ = U∗, i.e. there exists a solution φ with asymptotic states
U− = 0 and U+, and (2) has been proven. 2
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Chapter 2

Proof of main theorem

Before we go into the details we give the main structure of this chapter:

In section 2.1 we will cite the center manifold theorem and some basic facts
from perturbation theory of linear operators in Rn.

In section 2.2 we will prove Proposition (1.1.7) which says that the stability
and dissipativity condition imply the weakened structural condition.

In section 2.3 we will prove the main theorem under the assumptions that the
weakened structural condition is fulfilled and that a locally invariant man-
ifold Γ̃ with the following property exists: The vector field to the traveling
wave ODE system has a smooth extension from a dense set in Γ̃ throughout Γ̃.

Section 2.3 consists of three subsections:

In subsection 2.3.1 we will prove the basic proposition about the
existence of the invariant manifold M of the main theorem.

In subsection 2.3.2 (”Generalized kernel of the linearization”) we
will prove claim (1) of the main theorem about the tangent space
of the invariant manifold M at the origin.

In subsection 2.3.3 we will prove claim (2) of the main theorem
about the signature of real parts of nonvanishing eigenvalues of
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the linearization of the ODE system induced on M by the trav-
eling wave ODE system.

In section 2.4 we will prove the existence of the invariant manifold Γ̃ whose
existence is assumed in section 2.3, and we are ready with the proof of the
main theorem.

2.1 Preliminaries

For an ODE system of the form

yξ = Ay + F (y, z), zξ = Bz +G(y, z),(2.1)

where the eigenvalues of A have zero real parts, the eigenvalues of B have
nonzero real parts, F , G belong to Ck, k ≥ 2 and vanish along with their
first derivative at (y, z) = 0, the center manifold theorem says:

Theorem 2.1.1 ([KE]) With the variables (y, z), the matrices A, B and
functions F, G defined in (2.1) there exists a locally invariant manifold

M = {(y, z) | |y| < δ, z∗ = z(y)}

where z∗ is a Ck−1 function defined for |y| < δ for some δ sufficiently small
and vanishes along with its first derivative at y = 0. In other words: The
tangent space of M at (y, z) = (0, 0) is the linear space corresponding to the
eigenvalues of diag(A,B) with zero real parts. Moreover, any fixed point y
with |y| < δ is contained in M.

Let’s repeat the well-known notation of the Dunford-Taylor integral of linear
operators on Rn:

For a linear operator T : Rn → Rn, f holomorphic on a neighborhood of Ω
in the complex plane and a closed simple curve C contained in Ω which does
not intersect the eigenvalues of T, we define

f(T ) =
1

2πi

∮

C

f(ζ)(ζ − T )−1dζ,(2.2)
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where the integral path has to be taken counterclockwise.

If f and g are holomorphic on a neighborhood of Ω then the well-known
identity f(T )g(T ) = (fg)(T ) ([KAT]) implies for MC = 1

2πi

∮

C
1
ζ
(ζ − T )−1dζ

TMC = MCT = ΠC =
1

2πi

∮

C

(ζ − T )−1dζ,

i.e. TMC is a projector onto the subspace corresponding to the eigenvalues
of T which are encircled by C.

Now we will cite important theorems about the dependence of eigenvalues
on analytic perturbations.

We start from a given power series for T (σ):

T (σ) = T + σT (1) + σ2T (1) + . . . .

Let λ be one of the eigenvalues of the unperturbed operator T = T (0) with
algebraic multiplicity m, and let P and D be the associated projection and
eigennilpotent. Thus

TP = PT = PTP = λP +D, rank(P ) = m, Dm = 0, PD = DP = D.

The following theorem is about the dependence of eigenvalues on analytic
perturbations:

Theorem 2.1.2 ([KAT]) If T (σ) is analytic in σ there exist p1, · · · , pq ∈ N
such that for ωpj

= exp(2πi
pj

) there exist αjν ∈ C, ν ∈ N and a strictly positive

real number δ such that the Puiseux series

λjk(σ) = λ+

∞
∑

ν=1

αjνω
νk
pj
σ

ν
pj , k = 0, · · · , pj − 1

converges for |σ| < δ.

In particular, λjk(·) (j = 1, · · · , q, k = 0, · · · , pj − 1) are continuous functions
on (−δ, δ).
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We call {λj0(·), · · · , λjp−1(·)} the jth λ-group.

If P (σ) is the commuting projector of T (σ) with P (0) = P and if D = 0
then we can write (T (σ) − λ)P (σ) in the form (see [KAT])

(T (σ) − λ)P (σ) =

∞
∑

n=1

σmT̃ (n),

and the following theorem holds:

Theorem 2.1.3 ([KAT], p. 82) If λ is a semisimple eigenvalue of the un-
perturbed operator T = T (0) (i.e. D = 0) and T (σ) is analytic in σ then
each element of the λ-group is continuously differentiable near σ = 0. Fur-
thermore, T̃ (σ) = 1

σ
(T (σ) − λ)P (σ) is analytic in σ and

T̃ (σ) = P (0)
(

T (1) − λ
)

P (0) +O(σ)(2.3)

where P (σ) denotes the projector commuting with T (σ) corresponding to its
λ-group.

The following lemma is a straightforward consequence of the last theorem

Lemma 2.1.4 If A is noninvertible, zero is a semisimple eigenvalue of A,
Π = 1

2πi

∮

Γ
(ζ − A)−1dζ, (where Γ encircles the origin in counterclockwise

direction, but does not enclose the nonvanishing eigenvalues of A) and zero
is a semisimple eigenvalue of ΠB then

(A− σIn)
−1BΛ̃(σ) = Λ̃ÃBΛ̃ +O(σ),

where Ã = 1
2πi

∮

C
ζ−1(ζ −A)−1dζ (where C encircles the nonzero eigenvalues

of A in counterclockwise direction, but does not encircle the origin), Λ̃ = Λ̃(0)
is the projector onto ker(ΠB) commuting with ΠB and Λ̃(σ) is the projec-
tor commuting with σ(A− σIn)

−1B corresponding to the eigenvalues λ(σ) of
σ(A − σIn)

−1B with the following property: For each ǫ > 0 there exists a
δ(ǫ) > 0 such that |λ(σ)| < ǫ for |σ| < δ(ǫ).

Proof:
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Set Λ = In − Π and define Ã(σ) by

Ã(σ) =
1

2πi

∮

C

ζ−1(ζ − (A− σΛ))−1dζ,

where C encircles the nonzero eigenvalues of A in counterclockwise direction,
but does not encircle the origin.

For σ small enough it holds

Ã(σ)(A− σΛ) = (A− σΛ)Ã(σ) = Λ

and

ΠÃ(σ) = Ã(σ)Π = 0,

so that

(Ã(σ) − 1

σ
Π)(A− σIn) = (Ã(σ) − 1

σ
Π)(A− σΛ − σΠ) = In =

= (A− σIn)(Ã(σ) − 1

σ
Π).

Hence, there holds (taking Ã(0) = Ã into account):

σ(A− σIn)
−1BΛ̃(σ) = (σÃ(σ) − Π)BΛ̃(σ) = σΛ̃ÃBΛ̃ +O(σ2).

The last identity follows due to the semisimplicity of eigenvalue zero of ΠB
and formula (2.3) with T (σ) = (σÃ(σ)−Π)B and P (σ) = Λ̃(σ) plugged into
the claim of Theorem (2.1.3). 2

Define A(σ, φ) := −(σ + λp)In +
∑d

j=1 ωjAj(φ) and consider the function

(σ, φ) 7→ A−1(σ, φ)Q(φ).(2.4)

Denote by Λ̃σ the family of projectors commuting with A−1(σ, 0)B corre-
sponding to the eigenvalues λ(σ) of A−1(σ, 0)B with the following property:

There exist K > 0 and δ > 0 such that |λ(σ)| < K for each σ ∈ (−δ, δ).

Define Π̃σ = I − Λ̃σ and set Λ̃ = Λ̃0, Π̃ = Π̃0.

We will need the following proposition about the linearization of function
(2.4) at the origin:

25



Proposition 2.1.5 If v(·) : R→ Rn is a parametrization with limσ→0 v(σ) =
v then relation

lim sup
σ→0

|A−1(σ, 0)Bv(σ)| <∞

implies v ∈ Λ̃Rn. Furthermore, Λ̃ is the commuting projector onto the (gen-
eralized) kernel of ΠB.

Proof:

Let Π be the projector onto ker(A(0, 0)) commuting with A(0, 0) and set
Λ = In − Π.

Define Ã(σ) by

Ã(σ) =
1

2πi

∮

C

ζ−1(ζ − (A(0, 0) − σΛ))−1dζ,

where C encircles the nonzero eigenvalues of A(0, 0) in counterclockwise di-
rection, but does not encircle the origin.

For σ small enough it holds

Ã(σ)(A(0, 0) − σΛ) = (A(0, 0) − σΛ)Ã(σ) = Λ

and

Ã(σ)Π = ΠÃ(σ) = 0.

Hence, it holds σ 6= 0 small enough

(Ã(σ) − 1

σ
Π)A(σ, 0) = (Ã(σ) − 1

σ
Π)(A(0, 0) − σΛ − σΠ) = In =

= A(σ, 0)(Ã(σ) − 1

σ
Π).

We can write

A−1(σ, 0)B = (Ã(σ) − 1

σ
Π)B = Ã(σ)B − 1

σ
ΠB.
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Hence, from

lim sup
σ→0

|A−1(σ, 0)Bv(σ)| <∞

it follows

lim sup
σ→0

∣

∣

∣

∣

1

σ
ΠBv(σ)

∣

∣

∣

∣

<∞.

This implies

0 = lim
σ→0

ΠBv(σ) = ΠBv,

so that

v ∈ ker(ΠB).(2.5)

Due to the weakened structural condition, zero is a semisimple eigenvalue of

lim
σ→0

σA−1(σ, 0)B = −ΠB.

Due to Theorem (2.1.3), each eigenvalue λ(σ) in any 0 - group (due to the
notation of Theorem (2.1.3)) of σA−1(σ, 0)B is continuously differentiable in
σ.

As Λ̃σ is the projector commuting with A−1(σ, 0)B corresponding to the
eigenvalues which are uniformly bounded with respect to σ for σ small, it is
the projector commuting with σA−1(σ, 0)B corresponding to the eigenvalues
of order O(σ).

As each eigenvalue λ(σ) in any 0 - group of σA−1(σ, 0)B is continuously dif-
ferentiable in σ, each eigenvalue λ(σ) of σA−1(σ, 0)B is of order O(σ) if and
only if it is in some 0 - group of σA−1(σ, 0)B.

Hence, Λ̃ = Λ̃0 is the commuting projector onto the kernel of

lim
σ→0

σA−1(σ, 0)B = −ΠB.

As Λ̃ is the projector onto the kernel of ΠB commuting with ΠB, the claim
of the proposition follows. 2
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Set

S = {(σ, φ) | ∃A−1(σ, φ)}.
If Proposition (2.1.5) has been shown it is not hard to prove the following
proposition:

Proposition 2.1.6 Assume that Γ̃ is a C2 manifold of dimension rank(Λ̃)+
1 such that the section Γ̃σ = {(σ̄, φ) ∈ Γ̃ | σ̄ = σ} is a C2 manifold of dimen-
sion rank(Λ̃) containing (0, σ) for σ small enough and that the restriction
of (σ, φ) 7→ A−1(σ, φ)Q(φ) on S∩Γ̃ has an extension of class C2 throughout Γ̃.

Then the tangent space of Γ̃ at the origin is equal to R× Λ̃Rn.

Proof:

As the restriction of (σ, φ) 7→ (0, A−1(σ, φ)Q(φ)) on S ∩ Γ̃ has a smooth
extension of class C2 throughout Γ̃, for any family of curves (σ, τ) 7→ γσ(τ)
with γσ(0) = 0, (σ, τ) 7→ ∂τγσ(τ) smooth in (σ, τ) and (σ, γσ(τ)) ∈ Γ̃σ for
(σ, τ) ∈ I × I (where I is an open interval containing 0) the derivative

∂τ [A
−1(σ, γσ(τ))Q(γσ(τ))]|τ=0 = A−1(σ, 0)B∂τγσ(0)

exists for small σ 6= 0 and is uniformly bounded with respect to σ for σ small.

As (σ, τ) 7→ ∂τγσ(τ) is smooth the limit limσ 6=0,σ→0 ∂τγσ(0) exists.

From Proposition (2.1.5) it follows

∂τγ0(0) ∈ Λ̃Rn.(2.6)

As Γ̃0 is a manifold of dimension rank(Λ̃) and (2.6) is true for any smooth
curve τ 7→ γ0(τ) with γ0(0) = 0 and γ0(τ) ∈ Γ̃0, it follows

T(0,0)Γ̃0 = {0} × Λ̃Rn.

As (σ, 0) ∈ Γ̃ for σ small enough, it holds

T(0,0)Γ̃ = R× Λ̃Rn.2

We will need the following lemma about matrices with semisimple eigenvalue
zero:
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Lemma 2.1.7 Assume that zero is a semisimple eigenvalue of M ∈ Cn×n.
Then zero is a simple singularity of ζ 7→ (ζ −M)−1, i.e. there exists C > 0
such that |(ζ −M)−1| ≤ C 1

|ζ|
(where | · | denotes some matrix norm).

Proof:

As zero is a simple eigenvalue of M we can choose an invertible matrix S
such that SMS−1 has block form

SMS−1 = diag(M1, 0r),

where rank(M1) = n− r.

Then zero is a simple singularity of ζ 7→ (ζ −M)−1 if and only if zero is a
simple singularity of

ζ 7→ S(ζ −M)−1S−1 = (ζ − SMS−1)−1 = diag((ζ −M1)
−1, ζ−1Ir).

Obviously, the first block of the block matrix in the last expression is analytic
in ζ for ζ small.

The second block has a simple singularity at ζ = 0. 2

Furthermore, we will need the following lemma:

Lemma 2.1.8 Let U ⊂ Rn be an open neighborhood containing zero and r
an integer with 0 < r < n. Assume that w̄1(·), · · · w̄r(·) ∈ Ck(U ,Rn) and that
for each φ ∈ U the vectors w̄1(φ), · · · , w̄r(φ) are linearly independent. Set

V = span(w̄1(0), · · · , w̄r(0)).

Furthermore, assume that Π̃ : Rn → Rn is a projector with ker(Π̃) = V .

Then there exists a projector valued function Π̂(·) : O → Rn×n of class Ck

for an open neighborhood containing zero such that Π̂(0) = Π̃ and that for
each φ ∈ U it holds

ker(Π̂(φ)) = span(w̄1(φ), · · · , w̄r(φ)).
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Proof:

Before we go into the details, we remark that we will use the well-known
Gram-Schmidt orthonormalization for this proof.

There exists an invertible matrix S such that Π̃ = S−1(
∑n−r

i=1 eie
T
i )S, where

ei is the i - th canonical base vector.

Obviously it holds

eTi Sw̄j(0) = 0 for i = 1, · · · , n− r, j = 1, · · · , r.(2.7)

Set v̄i(φ) := Sw̄i(φ) for i = 1, · · · , r and

ṽ1(φ) :=
v̄1(φ)

|v̄1(φ)| ,

and define inductively for j = 2, · · · , r

ṽj(φ) =
v̄j(φ) −∑j−1

i=1 ṽ
T
i (φ)v̄j(φ)ṽi(φ)

|v̄j(φ) −∑j−1
i=1 ṽ

T
i (φ)v̄j(φ)ṽi(φ)|

.

Then, ṽ1(·), · · · , ṽr(·) ∈ Ck(U ,Rn) and ṽTi (φ)ṽj(φ) = δij .

For w̃i(φ) = S−1ṽi(φ) it holds

span(w̃1(φ), · · · , w̃r(φ)) = S−1span(ṽ1(φ), · · · , ṽr(φ)) =

= S−1span(v̄1(φ), · · · , v̄r(φ)) = span(w̄1(φ), · · · , w̄r(φ))

Note that (2.7) implies that ṽTj (0)ei = 0 for i = 1, · · · , n− r, j = 1, · · · , r.

Set

ē1(φ) =
e1 −

∑r
i=1 ṽ

T
i (φ)e1ṽi(φ)

|e1 −
∑r

i=1 ṽ
T
i (φ)e1ṽi(φ)|

and define inductively for j = 2, · · · , n− r

30



ēj(φ) =
ej −

∑r
i=1 ṽ

T
i (φ)ej ṽi(φ) −∑j−1

i=1 ē
T
i (φ)ej ēi(φ)

|ej −
∑r

i=1 ṽ
T
i (φ)ej ṽi(φ) −∑j−1

i=1 ē
T
i (φ)ej ēi(φ)|

.

Then, ē1(·), · · · , ēn−r(·) ∈ Ck(O,Rn) for an open neighborhood O containing
zero, ēTi (φ)ēj(φ) = δij , ēi(0) = ei and ēTi (φ)ṽj(φ) = 0 for i = 1, · · · , n− r and
j = 1, · · · , r.

Set

Π̂(φ) = S−1(

n−r
∑

i=1

ēi(φ)ēTi (φ))S.

Due to ēTi (φ)ēj(φ) = δij , the matrix
∑n−r

i=1 ēi(φ)ēTi (φ) is an orthogonal pro-

jector. Hence, Π̂(φ) is a projector of rank n− r.

As 0 = ēTi (φ)ṽj(φ) = ēTi (φ)Sw̃j(φ) for i = 1, · · · , n − r and j = 1, · · · , r, it
holds

ker(Π̂(φ)) = span(w̃1(φ), · · · , w̃r(φ)) = span(w̄1(φ), · · · , w̄r(φ)).2

2.2 Checking of weakened structural condi-

tion

In this section we will show that the stability and dissipativity condition im-
ply the weakened structural condition.

The analysis of the algebraic structure of the linearization at the bifurca-
tion point uses the following lemma about the existence of a block-diagonal
symmetrizer of PAP−1:

Lemma 2.2.1 ([Y2]) Assume system (1.1) satisfies (1.5), (1.6) and

A0(U)QU (U) +QU(U)∗A0(U) ≤ 0.

Then P−∗(U)A0(U)P−1(U) is a block-diagonal matrix corresponding to par-
tition (1.8).
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Now we turn to the proof of Proposition (1.1.7).

Due to the block symmetrizer Lemma (2.2.1), the matrix PAP−1 has a pos-
itive definite block-diagonal symmetrizer corresponding to partition (1.8).

Hence, it remains to show:

(i). Re(l(r)A12S
−1A21r) < 0 ∀ r ∈ ker(A11) \ {0}, where l(r) is given by

(1.10).

(ii). Zero is a semisimple eigenvalue of ΠB and Πdiag(0n−r, Ir).

(iii). The eigenvalues of Λ̃ÃBΛ̃ which are different from zero have a nonva-
nishing real part.

(iv). The eigenvalues of ΠB which are different from zero have a nonvanish-
ing real part.

Remember that we assume that (after eventual linear transformation by
P = P (0) and multiplication of P−∗A0P

−1 = P−∗A0(0)P−1 from the left)
system (1.1) has normal form, i.e. P = A0 = In and that A and A11 are
already symmetric.

As A11 is symmetric, it holds l(r) = r∗.

ad (i):

It holds A21r 6= 0 for each r ∈ ker(A11) \ {0}. Otherwise,

P−1

(

r
0

)

∈ ker(B) ∩ ker(A) = ker(B) ∩ ker
(

A11 A12

A21 A22

)

,

a contradiction to the dissipativity condition (1.1.5).

As the matrix A is symmetric it follows

A12 = A∗
21, A11 = A∗

11.(2.8)

The latter implies A∗
11r = 0 and therefore r∗A11 = 0.
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Having made the above preparations, we get

Re
[

r∗A12S
−1A21r

]

= Re
[

r∗A∗
21S

−1A21r
]

< 0,

because S + S∗ ≤ −Ir (due to (1.7) with A0(0) = In), and (i) follows.

ad (ii):

If z = ΠBy 6= 0, ΠBz = 0 then z ∈ range(Π) \ {0} or

z ∈ ker(A) \ {0}.(2.9)

Assume it holds zII = 0 , then we get zI ∈ ker(A11) and 0 = (Az)II = A21z
I ,

and (i) implies zI = 0, a contradiction to (2.9).

Hence, relation (2.9) implies zII 6= 0, and we conclude from (1.7) (with
P = A0(0) = In):

z∗ (B +B∗) z ≤(2.10)

≤ −z∗diag(0n−r, Ir)z = −|zII |2 < 0.

On the other hand, it follows from ΠBz = 0

z∗Π∗BΠz = 0, z∗Π∗B∗Πz = 0(2.11)

so that z = Πz and adding the two relations in (2.11) imply

z∗ (B +B∗) z = 0,(2.12)

a contradiction to (2.10), and the first part of (ii) follows.

If z = Πdiag(0n−r, Ir)y 6= 0, Πdiag(0n−r, Ir)z = 0 then z ∈ range(Π) \ {0}
or

z ∈ ker(A) \ {0}.(2.13)

Assume it holds zII = 0 , then we get zI ∈ ker(A11) and 0 = (Az)II = A21z
I ,

and (i) implies zI = 0, a contradiction to (2.13).
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Hence, relation (2.13) implies zII 6= 0, and we conclude:

z∗diag(0n−r, Ir)z = −|zII |2 < 0.(2.14)

On the other hand, it follows from Πdiag(0n−r, Ir)z = 0

z∗Π∗diag(0n−r, Ir)Πz = 0(2.15)

so that z = Πz implies

z∗diag(0n−r, Ir)z = 0,(2.16)

a contradiction to (2.14), and the second part of (ii) follows.

ad (iii):

Assume there exists y 6= 0 with Λ̃ÃBΛ̃y = iκy, 0 6= κ real.

As zero is a semisimple eigenvalue of ΠB and due to identity (2.3) in The-
orem (2.1.3) it holds for A(σ) = A + σΠ, where Λ̃(σ) denotes the projector
commuting with (A(σ))−1B corresponding to the eigenvalues which are uni-
formly bounded for σ small:

(A(σ))−1BΛ̃(σ) = (Ã+
1

σ
Π)BΛ̃(σ) = Λ̃ÃBΛ̃ +O(σ),

and we get for y(σ) = Λ̃(σ)y

(A(σ))−1By(σ) = iκy + r(σ),(2.17)

where limσ→0 r(σ) = 0.

Multiplication of A(σ) resp. y∗A(σ) to (2.17) from the left and performing
the limit σ → 0 give

By = iκAy, y∗By = iκy∗Ay.(2.18)

A being symmetric, it follows from the second relation in (2.18) thatRe(y∗By) =
0, or in other words:

y∗ [B +B∗] y = 0.
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The last r components of y are zero due to (1.7).

Return to the first relation in (2.18).

Obtain iκAy = By = diag(0, S)y = 0, i.e. Ay = 0.

As the last r components of y are zero, it follows A11y
I = 0 and A21y

I = 0,
and we conclude from (i) that yI = 0, a contradiction to y 6= 0, and (iii)
follows.

ad (iv):

Assume there exists y 6= 0 with ΠBy = iκy, κ 6= 0.

Then it holds:

y∗ΠBy = iκy∗y.(2.19)

From (2.19) it follows Re(y∗ΠBy) = 0, or in other words:

y∗ [ΠB +B∗Π] y = y∗ [B +B∗] y = 0.

The last r components of y are zero due to (1.7).

y being an eigenvector of ΠB and ΠBy 6= 0 imply that y is contained in
ker(A) \ {0}.

As the last r components of y are zero, it follows A11y
I = 0 and A21y

I = 0,
and we conclude from (i) that yI = 0, a contradiction to y 6= 0, and (iv)
follows.

2.3 Algebraic structure

In order to prove the main theorem we analyze the linearization of the trav-
eling wave system.
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The basic proposition in section 2.3.1 gives the connection between the alge-
braic structure of the linearization and the invariant manifolds.

In section 2.3.2 and 2.3.3 the algebraic structure will be analyzed in terms
of the generalized kernel and the signature of the nonvanishing eigenvalues.

2.3.1 Basic proposition

For A(σ, φ) := −(σ + λp)I +
∑d

j=1 ωjAj(φ) the traveling wave system aug-
mented by the equation for σ has the form

σξ = 0, A(σ, φ)φξ = Q(φ).(2.20)

Denote by Λ̃σ (resp. P̂(σ)) the projector commuting with A−1(σ, 0)B corre-
sponding to the eigenvalues remaining uniformly bounded in σ for σ small
(resp. to the eigenvalues being zero in the limit σ → 0) and set Π̃σ = I− Λ̃σ.

Set Λ̃ = Λ̃0 and Π̃ = Π̃0.

The projector Λ̃ is the commuting projector onto the (generalized) kernel of
ΠB; set Π̃ = Π̃0.

Remember the definition (1.9) of Ã, remember

E = {Q(φ) = 0}, B = DQ(0)

and set

S = {(σ, φ) | ∃A−1(σ, φ)}.

We will prove the following proposition about invariant manifolds for system
(2.20):

Proposition 2.3.1 Assume that the weakened structural condition is ful-
filled, that Γ̃ ⊂ R × U is a locally invariant C2 manifold of dimension
rank(Λ̃) + 1 for system (2.20), that the section Γ̃σ = Γ̃ ∩ {(σ̄, φ) | σ̄ = σ} is
a locally invariant C2 manifold of dimension rank(Λ̃) with (σ, 0) ∈ Γ̃σ for σ
small enough, that S ∩ Γ̃ is dense in Γ̃ and that the restriction of (σ, φ) 7→
A−1(σ, φ)Q(φ) on S ∩ Γ̃ has a C2 extension throughout Γ̃. Furthermore, as-
sume there exists δ > 0 with the following property: If (σ, φ) ∈ Bδ(0)∩(R×E)
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then (σ, φ) ∈ Γ̃. Then Γ̃ contains a locally invariant C1 submanifold M such
that the section Mσ = M∩ Γ̃σ is invariant and that the following conditions
are fulfilled:

1. There exists δ > 0 with the following property: If (σ, φ) ∈ Bδ(0)∩(R×E)
then (σ, φ) ∈ M.

2. The tangent space T(0,0)M has the form R ×W , where W is the gen-

eralized kernel of Λ̃ÃB|Λ̃Rn.

3. The dimension of the intersection of Mσ with the stable (resp. unsta-
ble) manifold for system (2.20) at the origin is equal to the sum of the
algebraic multiplicities of eigenvalues of

P̂(σ)A−1(σ, 0)B|P̂(σ)Rn

with strictly negative (resp. strictly positive) real part.

Remark 2.3.2 In section 2.4 we will prove the existence of a manifold Γ̃
fulfilling the assumptions of Proposition (2.3.1).

If A = A(0, 0) is invertible then Π = ΠB = 0 and Λ̃ = In.

Hence, we can make the following remark

Remark 2.3.3 If A is invertible then Γ̃ is an open subset of R× U .

Proof of Proposition (2.3.1):

Due to Proposition (2.1.6), the tangent space of Γ̃ at the origin is equal toR× Λ̃Rn, and due to assumption, it holds (σ, 0) ∈ Γ̃σ for σ small enough.

Hence, there exist an open interval containing zero and a C2 function g(·, ·) :
I × Λ̃Rn → Π̃Rn, with g(σ, 0) = 0 for σ ∈ I and D(σ,φ1)g(σ, φ1)|(σ,φ1)=0 = 0

such that (σ, φσ) is contained in Γ̃ if and only if

φσ = φ1 + g(σ, φ1)(2.21)
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for some φ1 ∈ O ⊂ Λ̃Rn, where O is an open neighborhood of 0 in the topol-
ogy induced on Λ̃Rn.

Let V : Γ̃ → Rn be the C2 extension of the restriction of (σ, φ) 7→ A−1(σ, φ)Q(φ)
on S ∩ Γ̃.

This extension exists due to the assumptions of the theorem.

As (0, A−1(σ, φ)Q(φ)) ∈ T(σ,φ)Γ̃ for each (σ, φ) ∈ Γ̃∩S (due to the invariance

of Γ̃) and Γ̃∩S is dense in Γ̃, it holds (0, V (σ, φ)) ∈ T(σ,φ)Γ̃ for each (σ, φ) ∈ Γ̃.

As (0, V (σ, φ)) ∈ T(σ,φ)Γ̃ for each (σ, φ) ∈ Γ̃, the set Γ̃ is a locally invariant
manifold for system

σξ = 0, φξ = V (σ, φ).(2.22)

Plugging (2.21) into the second equation in (2.22) and applying Λ̃Λ̃σ from
the left give

Λ̃Λ̃σ(Λ̃ +Dφ1
g(σ, φ1))φ1ξ = Λ̃Λ̃σV (σ, φ1 + g(σ, φ1)).(2.23)

Set

Λ̂(σ, φ1) =
1

2πi

∫

Γ

ζ−1(ζ − Λ̃Λ̃σ(Λ̃ +Dφ1
g(σ, φ1))Λ̃)−1dζ,

where Γ is a curve which encloses the eigenvalue 1 of the projector

Λ̃ = Λ̃Λ̃σ(Λ̃ +Dφ1
g(σ, φ1))Λ̃|(σ,φ1)=(0,0)

in counterclockwise direction and does not enclose the origin.

After multiplication of Λ̂(σ, φ1) from the left to (2.23), noting that

Λ̂(σ, φ1)Λ̃Λ̃σ(Λ̃ +Dφ1
g(σ, φ1))Λ̃ = Λ̃

and Λ̃φ1ξ = φ1ξ and augmenting by the equation for σ we get

σξ = 0, φ1ξ = Λ̂(σ, φ1)Λ̃Λ̃σV (σ, φ1 + g(σ, φ1)).(2.24)

Obviously, the map
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(σ, φ1) 7→ Λ̂(σ, φ1)Λ̃Λ̃σV (σ, φ1 + g(σ, φ1))

is of class C2.

From (2.24) we get after augmenting by the equation for σ and noting that
lim(σ,φ1)→0 Λ̂(σ, φ1) = Λ̃ and that, due to Lemma (2.1.4), limσ→0 Λ̃σA

−1(σ, 0)B =

Λ̃ÃBΛ̃:

σξ = 0, φ1ξ = Λ̃ÃBΛ̃φ1 +O(σ2 + |φ1|2).

As, due to the weakened structural condition, each nonzero eigenvalue of
Λ̃ÃBΛ̃ has nonzero real part, we conclude from the center manifold theorem
that there exists a locally invariant C1 - manifold M̄ for system (2.24) such
that the following claims are true:

(i). For (σ, φ1) small enough it holds: If Λ̂(σ, φ1)Λ̃Λ̃σV (σ, φ1 +g(σ, φ1)) = 0
then (σ, φ1) ∈ M̄.

(ii). The tangent space T(0,0)M̄ has the form R×W , where W is the gen-

eralized kernel of Λ̃ÃB|Λ̃Rn .

If (σ, φ1(·)) is a solution of system (2.24) then

(σ, φ(·)) = (σ, φ1(·) + g(σ, φ1(·)))

is a solution of system (2.22).

Hence, the set

M = {(σ, φ) | ∃φ1 ∈ M̄ with φ = φ1 + g(σ, φ1)}(2.25)

is a locally invariant manifold for system

σξ = 0, φξ = V (σ, φ).

If (σ, φ1 + g(σ, φ1)) ∈ Bδ(0) ∩ (R× E) for δ small enough then

Λ̂(σ, φ1)Λ̃Λ̃σV (σ, φ1 + g(σ, φ1)) = 0,
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and it follows (σ, φ1) ∈ M̄ (due to (i)).

On the other hand, we conclude: If (σ, φ) ∈ Bδ(0)∩ (R×E) then (σ, φ) ∈ Γ̃,
i.e. there exists φ1 with

(σ, φ) = (σ, φ1 + g(σ, φ1)).

Hence, for δ small enough, (σ, φ) ∈ Bδ(0) ∩ (R× E) implies

(σ, φ) = (σ, φ1 + g(σ, φ1)),

where (σ, φ1) ∈ M̄.

Therefore, (σ, φ) ∈ Bδ(0) ∩ (R× E) implies (σ, φ) ∈ M.

Hence, claim (1) of the theorem is true for the manifold M.

Recall definition (2.25) of M.

As D(σ,φ1)g(σ, φ1)|(σ,φ1)=0 = 0, the tangent space T(0,0)M is equal to T(0,0)M̄,

i.e. it has the form R ×W , where W is the generalized kernel of Λ̃ÃB|Λ̃Rn

(due to (ii)).

In other words: Claim (2) of the theorem is true for the manifold M.

If φξ(ξ) = V (σ, φ(ξ)) and (σ, φ(ξ)) ∈ M then it holds

A(σ, φ(ξ))φξ(ξ) = A(σ, φ(ξ))V (σ, φ(ξ)) =

= lim
(σ̄,φ̄)∈S∩Γ̃,(σ̄,φ̄)→(σ,φ(ξ))

A(σ̄, φ̄)A−1(σ̄, φ̄)Q(φ̄) = Q(φ(ξ)).

Hence, the fact that M is a locally invariant manifold for system

σξ = 0, φξ = V (σ, φ)

implies that M is a locally invariant manifold for system (2.20), and due to
σξ = 0, the section Mσ = M∩ Γ̃σ is invariant.
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Note that T0M0 = {0} × P̂(0)Rn.

There exists a C1 - function ησ : P̂(σ)Rn → (I−P̂(σ))Rn such that for each
φ with (σ, φ) ∈ Mσ it holds

φ = ψσ + ησ(ψσ),(2.26)

where ησ(0) = 0 and Dη0(0) = 0.

Note that P̂(σ)A−1(σ, 0)B(I − P̂(σ)) = A−1(σ, 0)BP̂(σ)(I − P̂(σ)) = 0 and

Dησ(·) ≡ (I − P̂(σ))Dησ(·)

because of (I − P̂(σ))ησ ≡ ησ.

Hence, P̂(σ)A−1(σ, 0)BDησ(0) = P̂(σ)A−1(σ, 0)B(I −P̂(σ))Dησ(0) = 0 and
P̂(σ)Dησ(·) = P̂(σ)(I − P̂(σ))Dησ(·) ≡ 0.

After plugging (2.26) into the second equation in (2.20), multiplication of
P̂(σ)A−1(σ, ψσ+ησ(ψσ) from the left and taking into account that P̂(σ)A−1(σ, 0)BDησ(0) =
0 and P̂(σ)Dησ(·) ≡ 0 we get:

ψσξ = P̂(σ)A−1(σ, 0)Bψσ +O(|ψσ|2)(2.27)

Claim (3) of the theorem for the manifold M follows from taking into account
the signature of P̂(σ)A−1(σ, 0)B|P̂(σ)Rn . 2

2.3.2 Generalized kernel of linearization

Recall the definiton of Λ̃ in the last section.

Define Ã to be the generalized inverse of −λpIn +
∑d

j=1Aj(0) corresponding
to its nonvanishing eigenvalues.

Due to Proposition (2.3.1), there exists a locally invariant manifold with tan-
gent space {0} × V , where V is the generalized kernel of Λ̃ÃB|Λ̃Rn, if the
invariant manifold Γ̃ in Proposition (2.3.1) exists.
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We will prove the existence of such a locally invariant manifold Γ̃ in section
2.4.

In this section we will analyze the generalized kernel of Λ̃ÃBΛ̃, i.e. we will
prove the following theorem

Theorem 2.3.4 If the weakened structural condition holds, then the follow-
ing claims are true:

1. It holds ker(Λ̃ÃB|Λ̃Rn) = P−1(Rn−r × {0}) and

range(Λ̃ÃB|Λ̃Rn) ∩ ker(Λ̃ÃB|Λ̃Rn) = P−1 (ker(A11) × {0}) .

2. The generalized kernel of Λ̃ÃB|Λ̃Rn is the linear space

P−1
(Rn−r ×

(

S−1A21 (ker(A11))
))

.

3. The normal form of Λ̃ÃBΛ̃ has no Jordan block to eigenvalue zero of
order larger than two.

If the invariant manifold Γ̃ in Proposition (2.3.1) exists, then, due to claim
(2) in Proposition (2.3.1), the tangent space T0M0 is the generalized kernel
of Λ̃ÃBΛ̃, and we can make the following remark:

Remark 2.3.5 If the invariant manifold Γ̃ in Proposition (2.3.1) exists then
claim (1) of the main theorem is a direct consequence of Theorem (2.3.4).

Proof of Theorem (2.3.4):

We can assume that P = In, i.e. B = diag(0, S).

For general P our claims follow via linear transformation by P .

Repeat from the weakened structural condition that

l(r)A12S
−1A21r 6= 0 ∀r ∈ ker(A11) \ {0}(2.28)

with the block decomposition (1.8) for A, where l(r) is defined in (1.10).
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Let Λ̃(σ) be the projector commuting with 1
σ

(

Π + σÃ
)

B corresponding to

its eigenvalues which are uniformly bounded with respect to σ for σ small.

Define A(σ) := 1
σ

(

ΠB + σÃB
)

Λ̃(σ), A := limσ→0,σ 6=0 A(σ) = Λ̃ÃBΛ̃.

As zero is a semisimple eigenvalue of ΠB the last relation follows due to
relation (2.3) in Theorem (2.1.3).

Due to Theorem (2.1.3), the matrices A(σ) and Λ̃(σ) have an analytic ex-
tension up to σ = 0.

This implies that, if y ∈ ker(A|Λ̃Rn), then it holds for y(σ) = Λ̃(σ)y

lim
σ→0,σ 6=0

A(σ)y(σ) = Ay = 0,

and it follows for A(σ) = A+ σΠ the relation

0 = lim
σ→0,σ 6=0

A(σ)A(σ)y(σ) = lim
σ→0

By(σ) = By.

As B = diag(0, S) and S ∈ GL(R, r) this implies yII = 0.

We can conclude:

y ∈ ker(A|Λ̃Rn) ⇒ yII = 0.(2.29)

On the other hand, if yII = 0 then 1
σ

(

Π + σÃ
)

By = 0 for each σ 6= 0, i.e. y

is in the kernel of 1
σ

(

Π + σÃ
)

B which implies that Λ̃(σ)y = y for each σ 6= 0.

Hence, we can conclude that

yII = 0 ⇒ lim
σ→0,σ 6=0

1

σ

(

Π + σÃ
)

BΛ̃(σ)y = Ay = 0 and Λ̃y = y.

From this conclusion and (2.29) it follows

y ∈ ker(A|Λ̃Rn) ⇔ yII = 0.(2.30)

This is the first part of claim (1) in the theorem for P = In.
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Let y ∈ V = Λ̃Rn be such that z = Ay 6= 0, A2y = 0, set y(σ) = Λ̃(σ)y and
z(σ) = A(σ)y(σ).

Obviously, it holds y = limσ→0,σ 6=0 y(σ), z = limσ→0,σ 6=0 z(σ).

After multiplication of A(σ) = A + σΠ from the left to A(σ)y(σ) = z(σ)
and A(σ)z(σ) for σ 6= 0 (using A(σ)A(σ) = B) and taking into account that
limσ→0,σ 6=0 A(σ)z(σ) = Az = A2y = 0 we get:

By = lim
σ→0,σ 6=0

By(σ) = lim
σ→0,σ 6=0

A(σ)z(σ) = Az, Az = 0.

These relations imply (recalling the notation in (1.8)):

A11z
I + A12z

II = 0, A21z
I + A22z

II = SyII, Az = 0.(2.31)

From the third equation in (2.31) and (2.30) we see that zII = 0. Because of
the first equation it is zI ∈ ker(A11), and we can conclude that

range(A|V ) ∩ ker(A|V ) ⊂ {z ∈ V | zI ∈ ker(A11), z
II = 0}.(2.32)

As z 6= 0 and zII = 0 it follows zI ∈ ker(A11) \ {0}.

Due to (2.28), it follows A21z
I 6= 0.

The second equation in (2.31), zII = 0 and A21z
I 6= 0 imply

yII = S−1A21z
I 6= 0.(2.33)

Taking (2.30) into account it follows for P = In

ker(A2|V ) ⊂ Rn−r ×
(

S−1A21 (ker(A11))
)

.(2.34)

On the other hand assume there is a vector ỹ ∈ V such that Aỹ 6= 0, A2ỹ 6= 0
and A3ỹ = 0. Set y = Aỹ and z = Ay. The above argument shows

yII = S−1A21z
I 6= 0 with zI ∈ ker(A11).(2.35)

We obtain

A(σ)ỹ =

(

yI

S−1A21z
I

)

+O(σ).

44



Multiplication of A(σ) to the last relation from the left for σ 6= 0 and per-
forming the limit σ → 0 give Bỹ = diag(0, S)ỹ = Ay.

We get (Ay)I = 0, or in other words (using relation (2.35)):

A11y
I + A12S

−1A21z
I = 0, zI ∈ ker(A11).

From z̄IA11 = 0 for z̄I = l(zI) (with l(·) defined in (1.10)) we conclude:

z̄IA12S
−1A21z

I = 0.(2.36)

Because of (2.28) it holds l(r)A12S
−1A21r 6= 0 ∀r ∈ ker(A11) \ {0}, where

l(r) is defined in (1.10) .

Hence, relation (2.36) implies zI = 0.

On the other hand, it is zI 6= 0 because of (2.35). This is a contradiction, and
we conclude: The normal form of Λ̃ÃBΛ̃ has no Jordan block to eigenvalue
zero of order larger than two.

This is claim (3) of the theorem.

For z ∈ Rn with zI ∈ ker(A11), z
II = 0 set y with yI = 0 and yII = S−1A21z

I .

Then the relations in (2.31) hold, i.e. Az = By, Az = 0.

We conclude that By = limσ 6=0,σ→0 A(σ)z, and it follows

lim
σ 6=0,σ→0

A−1(σ)By = lim
σ 6=0,σ→0

(Ã+
1

σ
Π)By = z, Az = 0.

Hence, limσ 6=0,σ→0 σA
−1(σ)By = ΠBy = 0, and it follows y ∈ ker(ΠB), i.e.

y = Λ̃y, and we conclude that

lim
σ 6=0,σ→0

BΛ̃(σ)y = BΛ̃y = By = lim
σ 6=0,σ→0

A(σ)z.

Hence,

z = lim
σ 6=0,σ→0

A−1(σ)BΛ̃(σ)y = lim
σ 6=0,σ→0

1

σ
(Π + σÃ)BΛ̃(σ)y = Ay.(2.37)
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We obtain z = Ay, Az = 0, where y = Λ̃y.

Together with (2.32), this implies

{zI ∈ ker(A11), zII = 0} = range(A|Λ̃Rn) ∩ ker(A|Λ̃Rn).

This is the second claim of claim (1) in the theorem for P = In.

Furthermore, it followsRn−r ×
(

S−1A21 (ker(A11))
)

⊂ ker(A2|V ).(2.38)

As the normal form of Λ̃ÃBΛ̃ has no Jordan block of order larger than two,
claim (2) of the theorem follows from (2.34) and (2.38) for P = In. 2

2.3.3 Signature of real parts of nonvanishing eigenval-

ues

Remember the notation introduced in chapter 1, where l∗1, · · · l∗m ∈ ker(A∗
11)

and r1, · · · rm ∈ ker(A11) are chosen such that lirj = δij .

First, we assume that A ∈ GL(n,R).

For σ ∈ R and

Ri =

(

rili 0
0 0

)

, R =

m
∑

i=1

Ri

define

A(σ) := A + σP−1RP.(2.39)

Let P̂(σ) be the projector commuting with A−1(σ)B corresponding to the
eigenvalues of A−1(σ)B which tend to zero for σ → 0.

We will prove the following theorem:

Theorem 2.3.6 If the weakened structural condition is fulfilled and A ∈
GL(n,R) then it holds:
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If σ > 0 (resp. σ < 0) then the sum of the algebraic multiplicities of eigenval-
ues of P̂(σ)A−1(σ)B with strictly negative (resp. strictly positive) real part
is equal to dim(ker(A11)) for σ small enough.

Before we prove this theorem we tell how we obtain claim (2) of the main
theorem for invertible A.

Consider

A(σ, σ̃) = (A+ σP−1RP + σ̃(In − P−1RP ))−1B.

Theorem (2.3.6) says that the change of the sum of algebraic multiplicities of
the eigenvalues of P̂(σ)A(σ, 0) with strictly negative (resp. strictly positive)
real part under change of the sign of σ is equal to dim(ker(A11)).

We will see that we can repeat the proof of the theorem forA+σ̃(In−P−1RP )
instead of A as long as σ̃ is small enough.

Hence, the change of the sum of algebraic multiplicities of the eigenvalues of
A(σ, σ̃) with strictly negative (resp. strictly positive) real part under change
of the sign of σ is equal to dim(ker(A11)) for σ̃ small enough.

On the other hand, the sum of algebraic multiplicities of the eigenvalues
of A(0, σ̃) with strictly negative (resp. strictly positive) real part does not
change under variation of σ̃ as long as σ̃ is small enough. In fact, the dimen-
sion of the generalized kernel of A(0, σ̃) does not change under variation of σ̃:
Analogously as in the proof of Theorem (2.3.4) we can show: The generalized
kernel of A(0, σ̃) is equal to

P−1(Rn−r × (S−1A21(σ̃)(ker(A11(σ̃)))))

with the well-known notation for the blocks Aij(σ̃).

We conclude that the change of the sum of algebraic multiplicities of the
eigenvalues of A(σ, σ) = (A + σIn)

−1B with strictly negative (resp. strictly
positive) real part under change of the sign of σ is equal to dim(ker(A11)).

Hence, we can make the following remark:
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Remark 2.3.7 If the invariant manifold Γ̃ in Proposition (2.3.1) exists then,
for invertible A, claim (2) of the main theorem is a direct consequence of
Theorem (2.3.6).

We will treat the case of non-invertible A in this section later.

Proof of Theorem (2.3.6):

Because of

A−1B = P−1PA−1P−1PBP−1P = P−1

(

A11 A12

A21 A22

)−1

diag(0, S)P

the matrix

(

A11 A12

A21 A22

)−1

diag(0, S) is similar to A−1B, and we can assume

P = In.

Set for each σ where A(σ) ∈ GL(R, n)

T (σ) :=
(

A(σ)−1B
)

22
.(2.40)

Denote by P̄ (σ) the projector commuting with T (σ) corresponding to its
eigenvalues tending to zero for σ → 0 and set P̄ = P̄ (0).

We will prove the following claims:

(i) ker(T (0)) = S−1A21 (ker(A11)), ker(T
∗(0)) = A∗

12 (ker(A∗
11))

(ii) Zero is a semisimple eigenvalue of T (0).

(iii) rank(P̄ (∂σT (σ)) |σ=0P̄ ) = m

(iv) For 0 6= r =
∑m

j=1 αjrj and l =
∑m

j=1 αjlj it holds: If 0 6= λ ∈
spec

(

P̄ ∂σT (0)P̄
)

, then sign(Re(λ)) = −sign(Re(lA12S
−1A21r)) 6= 0.

(v) The changes of the sum of the algebraic multiplicities of eigenvalues
with strictly negative (strictly positive) real part of A(σ)−1B and T (σ)
under variation of σ are equal.

48



Assume the claims above are true.

Due to (ii), zero is a semisimple eigenvalue of T (0), and it follows due to
Theorem (2.1.3) (after multiplication of σ to relation (2.3)):

T (σ)P̄ (σ) = σP̄T (1)P̄ + o(σ) for T (1) = (∂σT (σ)) |σ=0.

Claims (iii) and (iv) imply that, with σ changing from a strictly negative
value to a strictly positive value, m eigenvalues of T (σ) (i.e. whose sum
of multiplicities is equal to m) change from a strictly positive value (resp.
strictly negative value) to a strictly negative value (resp. a strictly positive
value) if Re(lA12S

−1A21r) is strictly negative (resp. strictly positive), and
the claim of the theorem follows from (v).

It remains to prove claims (i) - (v):

ad (i):

(

A−1B
)

22
v = 0 ⇔ ∃y ∈ Rn−r with A−1B

(

0
v

)

=

(

y
0

)

⇔ ∃y ∈ Rn−r with

(

0 0
0 S

)(

0
v

)

=

(

A11 A12

A21 A22

)(

y
0

)

⇔ ∃y ∈ Rn−r with A11y = 0, Sv = A21y

⇔ ∃y ∈ ker(A11) with v = S−1A21y.

Hence, it follows

ker(T (0)) = S−1A21(ker(A11)).

If y∗A11 = 0 then it follows from

(

A11(A
−1)12 + A12(A

−1)22

)

S =
(

AA−1
)

12
S = (In)12S = 0
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the relation

y∗A12T (0) = y∗A12

(

A−1B
)

22
= y∗A12(A

−1)22S = 0.

Hence, it follows

A∗
12(ker(A

∗
11)) ⊂ ker(T ∗(0)).

As

dim(ker(T (0))) = dim(ker(T ∗(0)))

and

dim(A∗
12(ker(A

∗
11))) = dim(S−1A21(ker(A11)))

claim (i) follows.

ad (ii):

Assume there exists w ∈ Rr such that

(

A−1B
)

22
w 6= 0,

(

A−1B
)2

22
w = 0.(2.41)

From (i) it follows that there exists v ∈ Rr \ {0} of the form

v = S−1A21r 6= 0, r ∈ ker(A11)(2.42)

such that

∃y ∈ Rn−r with A−1B

(

0
w

)

=

(

y
v

)

.(2.43)

Choose α1, · · · , αm such that r =
∑m

j=1 αjrj and set l =
∑m

j=1 αjlj.

Multiplication with

(

l∗

0

)∗

A from the left to (2.43) gives

(

l∗

0

)∗(
0 0
0 S

)(

0
w

)

=

(

l∗

0

)∗(
A11y + A12v
A21y + A22v

)

.

Using lA11 = 0 gives for the first entry
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0 = lA12v = lA12S
−1A21r = 0.

Hence, it follows r = 0, a contradiction to (2.42).

ad (iii) and (iv):

From

(∂σT (σ))|σ=0 =
(

(∂σ(A+ σR)−1)|σ=0B
)

22
= −

(

A−1RA−1B
)

22
,

and B = diag(0, S) we get

(∂σT (σ))|σ=0 = −(A−1)21R11(A
−1)12S.(2.44)

Set

T̃ = S−1A21R11A12 =
m
∑

i=1

S−1A21riliA12.(2.45)

Assume that λ is a nonvanishing eigenvalue of T̃ .

After an appropriate choice of {r1, · · · , rm} we can assume that S−1A21r1 is
an eigenvector of T̃ to eigenvalue λ, i.e. ljA12S

−1A21r1 = 0 for j 6= 1 and
λ = l1A12S

−1A21r1, and we get sign(Re(λ)) = sign(Re(l1A12S
−1A21r1)).

As S−1A21r1 can be assumed to be the multiple of an arbitrary eigenvector of
T̃ we conclude that the signs of the real parts of the nonvanishing eigenvalues
of T̃ are equal to the sign in (1.11).

Remember that P̄ is the projector onto ker(T (0)) commuting with T (0).

Due to (i), ri ∈ ker(A11) and l∗i ∈ ker(A∗
11) it holds for i = 1, · · · , m

P̄S−1A21ri = S−1A21ri and liA12P̄ = liA12.

Hence, it follows

P̄ T̃ = T̃ P̄ = T̃ .(2.46)
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Obviously it holds

R11A12(A
−1)21 = R11

(

A11(A
−1)11 + A12(A

−1)21

)

=(2.47)

= R11

(

AA−1
)

11
= R11

and

(A−1)12A21R11 =
(

(A−1)11A11 + (A−1)12A21

)

R11 =(2.48)

=
(

A−1A
)

11
R11 = R11.

Using these identities we get

m ≥ rank(T̃ ) ≥ rank((A−1)12ST̃ (A−1)21) = rank(

m
∑

i=1

rili) = m.

Taking into account relation (2.46) and using the identities (2.44), (2.45),
(2.47) and (2.48) it is not hard to verify the relation

P̄ T̃ P̄ ∂σT (0)P̄ T̃ P̄ = T̃ ∂σT (0)T̃ = −S−1A21R11A12 =(2.49)

= −T̃ = −P̄ T̃ P̄ .

Multiplication of the generalized inverse of −P̄ T̃ P̄ (corresponding to its non-
vanishing eigenvalues) to (2.49) from the right gives

−P̄ T̃ P̄ ∂σT (0)P̄ = −P̄ ∂σT (0)P̄ T̃ P̄ = P̄ .(2.50)

Relation (2.50) implies that P̄ T̃ P̄ = T̃ is the generalized inverse of −P̄ (∂σT (σ))|σ=0P̄
corresponding to the nonvanishing eigenvalues of P̄ ∂σT (0)P̄ , and we can
write

−P̄ ∂σT (0)P̄ =
1

2πi

∫

Γ

ζ−1(ζ − T̃ )−1dζ,

where the curve Γ encircles the nonvanishing eigenvalues of T̃ in counter-
clockwise direction and does not enclose the origin.
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The real part of each nonvanishing eigenvalue of T̃ is strictly negative (resp.
strictly positive) if and only if each nonvanishing eigenvalue of P̄ ∂σT (0)P̄ is
strictly positive (resp. strictly negative).

Remembering that rank(T̃ ) = m and that the signs of the real parts of the
nonvanishing eigenvalues of T̃ are equal to the sign in (1.11), claims (iii) and
(iv) follow.

ad (v):

If T̄ (σ) is a transformation such that T̄−1(σ) (A(σ)−1B)22 T̄ (σ) has Jordan
normal form then it holds for T̄(σ) = diag(In−r, T̄ (σ))

T̄(σ)−1A(σ)−1BT̄(σ) =

(

In−r 0
0 T̄ (σ)−1

)(

0 (A−1(σ)B)12

0 (A−1(σ)B)22

)(

In−r 0
0 T̄ (σ)

)

=

=

(

In−r 0
0 T̄−1(σ)

)(

0 (A(σ)−1B)12 T̄ (σ)
0 (A(σ)−1B)22 T̄ (σ)

)

=

(

0 (A(σ)−1B)12 T̄ (σ)
0 T̄ (σ)−1 (A(σ)−1B)22 T̄ (σ)

)

.

Hence, the changes of the sum of algebraic multiplicities of eigenvalues with
strictly negative and strictly positive real part of (A(σ)−1B)22 and A(σ)−1B
under variation of σ are equal and we are ready with the case of invertible
A. 2

Now we treat the case of noninvertible A. We can assume that P = In.

Set A(δ, σ) = A + δdiag(0n−r, Ir) + σR.

We use the following lemma:

Lemma 2.3.8 There exists a real number C > 0 such that for 0 < |δ| < C
the inverse A(δ, 0)−1 exists.

Before we prove this lemma, we tell, how we conclude for the case of nonin-
vertible A.

As for δ 6= 0 small enough the matrix A(δ, 0) is invertible we can repeat the
proof above for A(δ, 0) instead of A.

53



Remember relation

−P̄ T̃ P̄ ((∂σA(σ)−1B)22)|σ=0P̄ = −P̄ ((∂σA(σ)−1B)22)|σ=0P̄ T̃ P̄ = P̄

for the case that A is invertible, where P̄ is the commuting projector onto
ker(T (0)) and T̃ is given in (2.45).

This relation together with P̄ T̃ P̄ = T̃ implies

−P̄ ((∂σA(σ)−1B)22)|σ=0P̄ =
1

2πi

∫

Γ

ζ−1(ζ − T̃ )−1dζ,

where Γ encircles the nonvanishing eigenvalues of T̃ in counterclockwise di-
rection and does not enclose the origin.

If A is not invertible, we can conclude in an analogous way for invertible
A(δ, 0):

−P̄ ((∂σA(δ, σ)−1B)22)|σ=0P̄ =
1

2πi

∫

Γ

ζ−1(ζ − T̃ )−1dζ.

Remembering B = diag(0n−r, S) and taking into account that T̃ does not
change under variation of A22 (due to representation (2.45)), we conclude
that the matrix P̄ ((∂σA(δ, σ)−1B)|σ=0)22P̄ is independent of δ.

In other words: The change of the signature of T (δ, σ) = (A(δ, σ)−1B)22 un-
der change of σ is independent of δ as well as the change of the signature of
A(δ, σ)−1B.

Hence, it remains to prove Lemma (2.3.8):

We have to show that A(δ)v = 0 implies v = 0 for δ 6= 0 small enough.

Relation A(δ)v = 0, δ 6= 0 implies

ΛA(δ)ΛvI + δΛdiag(0n−r, Ir)Πv
II = 0,(2.51)

Πdiag(0n−r, Ir)Λv
I + Πdiag(0n−r, Ir)Πv

II = 0.(2.52)

We will show later that
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rank(Π) = rank(Πdiag(0n−r, Ir)Π).(2.53)

Hence, relation

vI = −δ M1v
II , vII = −M2v

I(2.54)

is equivalent to (2.51) and (2.52) for

vI = Λv, vII = Πv, M1 =
1

2πi

∮

Γ

ζ−1 (ζ − ΛA(δ)Λ)−1 dζ Λdiag(0n−r, Ir)Π

and

M2 =
1

2πi

∮

Γ

ζ−1 (ζ − Πdiag(0n−r, Ir)Π)−1 dζ Πdiag(0n−r, Ir)Λ

where Γ is a simple closed curve which does not enclose the origin and sur-
rounds the nonzero eigenvalues of ΛA(δ)Λ and Πdiag(0n−r, Ir)Π in counter-
clockwise direction.

Plugging the second equality for vII in (2.54) into the first one yields

vI = δM1M2v
I .(2.55)

If |δM1M2| < 1 then vI = 0, the second equality in (2.54) implies vII = 0
and Lemma (2.3.8) has been proven, and it remains to show relation (2.53).

As zero is a semisimple eigenvalue of Πdiag(0n−r, Ir) (due to the weakened
structural condition), there holds

rank
(

(Πdiag(0n−r, Ir))
2
)

= rank(Πdiag(0n−r, Ir)).(2.56)

Hence, relation (2.56) together with

rank
(

(Πdiag(0n−r, Ir))
2
)

= rank (Πdiag(0n−r, Ir)Πdiag(0n−r, Ir)) ≤

≤ rank (Πdiag(0n−r, Ir)Π) ≤ rank (Πdiag(0n−r, Ir))

implies
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rank(Πdiag(0n−r, Ir)) = rank (Πdiag(0n−r, Ir)Π) .(2.57)

Assume that

rank(Π) > rank(Πdiag(0n−r, Ir)).

Hence, for v1, · · · , vn being the n row vectors of Π, there exists v ∈ span(v1, · · · , vn)
with

vI 6= 0 and vII = 0,(2.58)

where vI denotes the row vector with the first n − r entries of v and vII

denotes the row vector with the last r entries of v.

On the other hand, due to vA = 0, it holds: (vA)I = vIA11 = 0 and
(vA)II = vIA12 = 0.

Remembering the notation in (1.11), let r be the element ker(A11) with
l(r) = vI .

Due to (1.11), vIA11 = 0 implies vI = 0, a contradiction to (2.58).

Hence, we conclude that

rank(Π) = rank(Πdiag(0n−r, Ir)),(2.59)

and, together with (2.57), relation (2.53) follows.
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2.4 Center manifold reduction

Before we turn to the details, we introduce the following convention for this
section: ’smooth’ means ’of class C2’.

In this section we will prove the existence of the invariant manifold Γ̃ of
Proposition (2.3.1).

Recall that the traveling wave system reads as

(−(σ + λp)φ+

d
∑

j=1

ωjFj(φ))ξ = Q(φ) =

(

0
q(φ)

)

,(2.60)

where Fj and Q are of class C5.

Without loss of generality we can assume for the matrix P (U) in (1.5) that
P (0) = In, i.e.

Qφ(0) = B(0) = B =

(

0 0
0 S(0)

)

,

where S(0) is invertible.

Define the nonlinear transformation

ψ(φ) =

(

φI

S−1(0)q(φ)

)

.(2.61)

As qφII (0) = S(0) is invertible the transformation ψ = ψ(φ) has an inverse
φ = φ(ψ) for φ close to 0.

For Āj(ψ) = φ−1
ψ (ψ)Fjφ(φ(ψ))φψ(ψ), B̄(ψ) = diag(0n−r, S

−1(0)qφII (φ(ψ))S(0))
and

Ā(σ, ψ) = −(σ + λp)In +
d
∑

j=1

ωjĀj(ψ)(2.62)

system (2.60) augmented by the equation for σ can be written in the form

σξ = 0, Ā(σ, ψ)ψξ = B̄(ψ)ψ.(2.63)
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We remark that Ā(·, ·) and B̄(·) are matrix valued functions of class C4.

Obviously it holds B̄(0) = B = Qφ(0), and, due to φ(0) = 0 and φψ(0) = In,
we conclude

Ā(0, 0) = −λpIn +
d
∑

j=1

ωjDFj(0) = A.(2.64)

If A is invertible, the existence of the locally invariant manifold Γ̃ for system
(2.60) in Proposition (2.3.1) is straightforward: Due to Remark (2.3.3), Γ̃ is
an open subset of Rn+1.

In this section we want to prove the existence of the invariant manifold Γ̃ for
the case that zero is an eigenvalue of A with algebraic multiplicity one.

Obviously, the invariant manifold Γ̃ exists, if we have proven the existence
of a locally invariant manifold for system (2.63) fulfilling the conditions in
Proposition (2.3.1).

As long as no misunderstanding will be caused we denote this locally invari-
ant manifold by Γ̃, too.

If zero is a simple eigenvalue of A = Ā(0, 0), then the eigenvalue λ(σ, ψ) of
Ā(σ, ψ) with λ(0, 0) = 0 is a function of class C4 in a neighborhood of (0, 0).

Remembering (2.62) we can write

λ(σ, ψ) = −σ + µ(ψ),(2.65)

where µ is of class C4 for ψ close to (0, 0).

Set

Π̄(σ, ψ) =
1

2πi

∫

Γ

(

ζ − Ā(σ, ψ)
)−1

dζ,

where Γ is a curve which surrounds the origin in counterclockwise direction
and does not enclose the nonzero eigenvalues of A. For (σ, ψ) close to (0, 0),
the operator Π̄(σ, ψ) is the projector commuting with Ā(σ, ψ) corresponding
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to the eigenvalue λ(σ, ψ).

Set

Ã(σ, ψ) =
1

2πi

∫

Γ̄

ζ−1
(

ζ − Ā(σ, ψ)
)−1

dζ,(2.66)

where Γ̄ is a curve which surrounds the nonvanishing eigenvalues of A =
Ā(0, 0) in counterclockwise direction and does not enclose the origin.

Define

S = {(σ, ψ) | ∃Ā−1(σ, ψ)}.

As long as (σ, ψ) 6= (0, 0) is contained in S, we can write

Ā−1(σ, ψ) = Ã(σ, ψ) + λ−1(σ, ψ)Π̄(σ, ψ) = Ã(σ, ψ) +
1

µ(ψ) − σ
Π̄(σ, ψ).

We will prove that S ∩ Γ̃ is dense in Γ̃.

After scaling

λ(σ, ψ)dτ = dξ

we get from (2.63)

στ = 0, ψτ =
(

λ(σ, ψ)Ã(σ, ψ) + Π̄(σ, ψ)
)

B̄(ψ)ψ.(2.67)

The right-hand-side of system (2.67) is of class C4.

Set

Λ̃(σ, ψ) =
1

2πi

∫

C

(

ζ − Π̄(σ, ψ)B̄(ψ)
)−1

dζ,(2.68)

Π̃(σ, ψ) = In − Λ̃(σ, ψ),(2.69)

where C is a curve which surrounds the origin in counterclockwise direction
and does not enclose the nonvanishing eigenvalue of ΠB = Π̄(0, 0)B̄(0). It
holds
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Λ̃(σ, ψ)Π̄(σ, ψ)B̄(ψ) =
1

2πi

∫

C

ζ
(

ζ − Π̄(σ, ψ)B̄(ψ)
)−1

dζ.(2.70)

As assumed in the the weakened structural condition, each nonvanishing
eigenvalue of ΠB = Π̄(0, 0)B̄(0) has nonvanishing real part and zero is a
semisimple eigenvalue of ΠB. Moreover, it holds

rank(ΠB) = rank(Πdiag(0n−r, S(0))) = rank(Πdiag(0n−r, S(0))diag(In−r, S
−1(0))) =

= rank(Πdiag(0n−r, Ir)) = rank(Π) = 1.

The fourth identity follows from (2.59).

Therefore ΠB has only one eigenvalue with nonvanishing real part.

Hence, for (σ, ψ) close to (0, 0),

rank(Π̄(σ, ψ)B̄(ψ)) = rank(Π̄(σ, ψ)) = 1,

and Π̄(σ, ψ)B̄(ψ) has only one eigenvalue with nonvanishing real part.

These facts imply that, for (σ, ψ) close to (0, 0), zero is a semisimple eigen-
value of Π̄(σ, ψ)B̄(ψ).

From Lemma (2.1.7) it follows that, for (σ, ψ) close to (0, 0), zero is a simple
singularity of

ζ 7→
(

ζ − Π̄(σ, ψ)B̄(ψ)
)−1

.

We conclude that ζ 7→ ζ
(

ζ − Π̄(σ, ψ)B̄(ψ)
)−1

has an analytic extension
throughout the region encircled by C, and it follows for (σ, ψ) small enough:

1

2πi

∫

C

ζ
(

ζ − Π̄(σ, ψ)B̄(ψ)
)−1

dζ = 0.

Hence, relation (2.70) implies for (σ, ψ) small enough:

Λ̃(σ, ψ)Π̄(σ, ψ)B̄(ψ) = 0.(2.71)
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Set E = {B̄(ψ)ψ = 0}.

We are ready to prove the following theorem about the existence of a locally
invariant manifold Γ̃ for system (2.63):

Theorem 2.4.1 Assume that λ(0, 0) is a simple eigenvalue of Ā(0, 0) and
that the weakened structural condition is fulfilled.

Then there exists a locally invariant C3 - manifold Γ̃ ⊂ R × Rn for system
(2.63) of dimension n such that for each σ small enough the section Γ̃σ =
Γ̃∩{(σ̄, ψ) | σ̄ = σ} is a locally invariant C3 - manifold of dimension n− 1
containing (0, σ). Furthermore, S ∩ Γ̃ is dense in Γ̃ and Ā−1(σ, ψ)B̄(ψ)ψ
defined for (σ, ψ) ∈ S ∩ Γ̃ has a C2 extension throughout Γ̃. There exists
δ > 0 with the following property: If (σ, ψ) ∈ Bδ(0)∩(R×E) then (σ, ψ) ∈ Γ̃.

Proof:

Write system (2.67) in the form

στ = 0, ψτ = Π̄(0, 0)B̄(0)ψ +R(σ, ψ),(2.72)

where D(σ,ψ)R(0, 0) = 0.

Note that the right-hand-side of system (2.67) is of class C4.

Remember that, due the weakened structural condition, it holds for the ma-
trix ΠB = Π̄(0, 0)B̄(0): Zero is a semisimple eigenvalue and each nonvanish-
ing eigenvalue has nonvanishing real part.

Furthermore, we know that rank(ΠB) = 1 and that Λ̃(0, 0) commutes with
ΠB and maps onto ker(ΠB).

Application of the center manifold theorem gives the existence of an n - di-
mensional locally invariant C3 - manifold Γ̃ ⊂ R× U for system (2.67) with
T(0,0)Γ̃ = R× Λ̃(0, 0)Rn.

Furthermore, we conclude from the center manifold theorem that there exists
δ > 0 such that the following claim is true: If (σ, ψ) ∈ Bδ(0) ∩ (R× E) then
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(σ, ψ) ∈ Γ̃.

In particular, it follows (σ, 0) ∈ Γ̃ for σ small enough.

Let e1 ∈ Rn+1 be the vector whose first entry is equal to one and whose other
entries are zero.

From (2.65) it follows that ∇(σ,ψ)λ(0, 0) · e1 = −1 6= 0.

Hence, due to e1 ∈ T(0,0)Γ̃, the set

S ∩ Γ̃ = {(σ, ψ) ∈ Γ̃ | λ(σ, ψ) 6= 0}

is dense in Γ̃.

It follows for each (σ, ψ) ∈ S ∩ Γ̃: The vector

(0, (λ(σ, ψ)Ã(σ, ψ) + Π̄(σ, ψ))B̄(ψ)ψ) = (0, λ(σ, ψ)Ā−1(σ, ψ)B̄(ψ)ψ)

is contained in the tangent space of Γ̃ at point (σ, ψ) if and only if the vec-
tor (0, Ā−1(σ, ψ)B̄(ψ)ψ) is contained in the tangent space of Γ̃ at point (σ, ψ).

The manifold Γ̃ is invariant with respect to system (2.67), i.e.

(0, (λ(σ, ψ)Ã(σ, ψ)+Π̄(σ, ψ))B̄(ψ)ψ) = (0, λ(σ, ψ)Ā−1(σ, ψ)B̄(ψ)ψ) ∈ T(σ,ψ)Γ̃

for each (σ, ψ) ∈ S ∩ Γ̃.

Hence, it follows for V (σ, ψ) = Ā−1(σ, ψ)B̄(ψ)ψ:

(σ, ψ) ∈ S ∩ Γ̃ ⇒ (0, V (σ, ψ)) ∈ T(σ,ψ)Γ̃.(2.73)

Now we show: The map (σ, ψ) 7→ V (σ, ψ) has a smooth extension from S ∩ Γ̃
throughout Γ̃.

For (σ, ψ) ∈ S ∩ Γ̃ write V (σ, ψ) in the form

V (σ, ψ) =
(

Ã(σ, ψ) + λ−1(σ, ψ)Π̄(σ, ψ)
)

B̄(ψ)ψ,(2.74)
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where Ã(σ, ψ) is defined in (2.66) and Π̄(σ, ψ) is the projector commuting
with Ā(σ, ψ) corresponding to eigenvalue λ(σ, ψ).

Multiplication of Λ̃(σ, ψ) to (2.74) from the left and taking into account
relation (2.71) give

Λ̃(σ, ψ)V (σ, ψ) = Λ̃(σ, ψ)Ã(σ, ψ)B̄(ψ)ψ(2.75)

for each (σ, ψ) ∈ S ∩ Γ̃.

From T(0,0)Γ̃ = R× Λ̃(0, 0)Rn it follows for W = {(σ, v) ∈ R×Rn | σ = 0}:

W ∩ T(0,0)Γ̃ = {0} × Λ̃(0, 0)Rn.

The spaces T(0,0)Γ̃ and W are transversal to each other and the dimension of
their intersection is equal to n− 1.

Let w1(σ, ψ), · · · , wn−1(σ, ψ) be (n − 1) families of vectors being smooth
in (σ, ψ) such that {w1(σ, ψ), · · · , wn−1(σ, ψ)} is a base of W ∩ T(σ,ψ)Γ̃ for

(σ, ψ) ∈ Γ̃ small enough.

Obviously it holds for i ∈ {1, · · · , n− 1} and (σ, ψ) ∈ Γ̃ small enough:

wi(σ, ψ) = (0, w̄i(σ, ψ)), where w̄i(σ, ψ) ∈ Rn.(2.76)

The vectors w̄1(σ, ψ), · · · , w̄n−1(σ, ψ) are linearly independent, and, for i ∈
{1, · · · , n− 1}, the map (σ, ψ) 7→ w̄i(σ, ψ) is smooth for (σ, ψ) small enough.

There exists a smooth family of projectors (σ, ψ) 7→ Π̂(σ, ψ) such that

Π̂(0, 0) = Π̃(0, 0)(2.77)

and that for any (σ, ψ) ∈ Γ̃, (σ, ψ) small enough the following claim is true:

(0, v) ∈ T(σ,ψ)Γ̃ ⇔ Π̂(σ, ψ)v = 0.(2.78)

Namely it holds

span(w̄1(0, 0), · · · , w̄n−1(0, 0)) = Λ̃(0, 0)Rn = ker(Π̃(0, 0)),

and we conclude
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(0, v) ∈ T(σ,ψ)Γ̃ ⇔ (0, v) ∈W ∩ T(σ,ψ)Γ̃ = span(w1(σ, ψ), · · · , wn−1(σ, ψ)) =

= {0}×span(w̄1(σ, ψ), · · · , w̄n−1(σ, ψ)) ⇔ v ∈ span(w̄1(σ, ψ), · · · , w̄n−1(σ, ψ)).

As (σ, ψ) 7→ w̄i(σ, ψ) is smooth for i ∈ {1, · · · , n−1}, it holds due to Lemma
(2.1.8):

There exists a family of projectors (σ, ψ) 7→ Π̂(σ, ψ) being smooth in (σ, ψ)
for (σ, ψ) small enough such that

Π̂(0, 0) = Π̃(0, 0) and ker(Π̂(σ, ψ)) = span(w̄1(σ, ψ), · · · , w̄n−1(σ, ψ)).

Hence, taking into account that

(0, v) ∈ T(σ,ψ)Γ̃ ⇔ v ∈ span(w̄1(σ, ψ), · · · , w̄n−1(σ, ψ)),

a smooth family of projectors (σ, ψ) 7→ Π̂(σ, ψ) fulfilling relations (2.77) and
(2.78) exists.

Due to (2.73) and (2.78), it follows for each (σ, ψ) ∈ S ∩ Γ̃:

Π̂(σ, ψ)V (σ, ψ) = 0.(2.79)

The matrix T (σ, ψ) = Λ̃(σ, ψ) + Π̂(σ, ψ) is invertible for (σ, ψ) small enough
because of T (0, 0) = In (remember Π̂(0, 0) = Π̃(0, 0) and (2.69)).

Adding (2.75) and (2.79) and multiplication of T−1(σ, ψ) from the left give

V (σ, ψ) = T−1(σ, ψ)Λ̃(σ, ψ)Ã(σ, ψ)B̄(ψ)ψ,(2.80)

if (σ, ψ) ∈ S ∩ Γ̃.

As (σ, ψ) 7→ T−1(σ, ψ)Λ̃(σ, ψ)Ã(σ, ψ)B̄(ψ)ψ has a smooth extension from
S ∩ Γ̃ throughout Γ̃, it follows from (2.80) that the map (σ, ψ) 7→ V (σ, ψ) =
Ā−1(σ, ψ)B̄(ψ)ψ has a smooth extension from S ∩ Γ̃ throughout Γ̃.
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Hence, the claim of the theorem about the smooth extension has been proven.

In the following, denote the smooth extension of V (·, ·) by V (·, ·), too.

Relation (0, V (σ, ψ)) ∈ T(σ,ψ)Γ̃ for each (σ, ψ) ∈ S∩Γ̃ implies that (0, V (σ, ψ)) ∈
T(σ,ψ)Γ̃ for each (σ, ψ) ∈ Γ̃.

Hence, Γ̃ is a locally invariant manifold for system

σξ = 0, ψξ = V (σ, ψ).

If ψξ(ξ) = V (σ, ψ(ξ)) and (σ, ψ(ξ)) ∈ Γ̃ then it holds

Ā(σ, ψ(ξ))ψξ(ξ) = Ā(σ, ψ(ξ))V (σ, ψ) =

= lim
(σ̄,ψ̄)∈S∩Γ̃,(σ̄,ψ̄)→(σ,ψ(ξ))

Ā(σ̄, ψ̄)Ā−1(σ̄, ψ̄)B̄(ψ̄)ψ̄ = B̄(ψ(ξ))ψ(ξ),

i.e.

Ā(σ, ψ(ξ))ψξ(ξ) = B̄(ψ(ξ))ψ(ξ).

Hence, Γ̃ is a locally invariant manifold for system (2.63), and, due to σξ = 0,
the section Γ̃σ is a locally invariant manifold for system (2.63). 2

65



Chapter 3

Moment closure systems

3.1 Derivation

A standard mathematical model describing the kinetic particle density f(x, t, v)
of rarefied gases at the position-time-velocity point (x, t, v) ∈ Rd ×R+ ×Rd

is the Boltzmann equation

∂tf + v · ∇xf = C(f),(3.1)

where C(f) = 1
ǫ

∫

(ω,v′)∈Sd−1×Rd(f∗f
′
∗ − ff ′)B(ω, v, v′)dωdv′, ǫ is proportional

to the mean free path, f∗ = f(x, t, v∗), f ′
∗ = f(x, t, v′∗), f ′ = f(x, t, v′) with

v∗ = v − ω · (v − v′)ω, v′∗ = v′ + ω · (v − v′)ω

and dω denotes the normalized measure on the unit sphere Sd−1.

The collision kernel B = B(ω, v, v′) is positive almost everywhere and fulfills
the symmetry properties

B(ω, v, v′) = B(ω, v′, v) = B(ω, v∗, v
′
∗).(3.2)

First, we recall the identity (see [C])

4

∫

φ(v)(f∗f
′
∗ − ff ′)Bdωdv′dv(3.3)

=

∫

(φ+ φ′ − φ∗ − φ′
∗)(f∗f

′
∗ − ff ′)Bdωdv′dv
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for any continuous function φ = φ(v).

Set E = span{1, v1, · · · , vd, |v|2}.

Mass, momentum and energy are the only collision invariants: For continuous
φ it holds (see [C]):

φ+ φ′ = φ∗ + φ′
∗ ⇔ φ(v) ∈ E.(3.4)

Define the linear space M = span{c1, · · · , cn},(3.5)

where c1, · · · , cn ∈ L1
loc(Rd) and set c = (c1, · · · , cn).

Furthermore, assume

c1 ≡ 1, c2(v) = v1, · · · , cd+1(v) = vd, cd+2(v) = |v|2.

By Mk we denote the space of polynomials up to k - th order.

Multiplying (3.1) with ck(v) and integrating with respect to v ∈ Rd leads to
n equations

∂t

∫

ckfdv + ∇x ·
∫

vckfdv =

∫

ck(f∗f
′
∗ − ff ′)Bdωdv′dv.(3.6)

Maximization of entropy

H(f)(x, t) = −
∫Rd

f(v, x, t) (ln(f(v, x, t)) − 1) dv

under the constraints

Ii(f)(x, t) =

∫Rd

f(x, t, v)ci(v)dv, i = 1, · · · , n

leads to the necessary condition

∫Rd

[

−ln(f(x, t, v)) +

n
∑

i=1

αi(x, t)ci(v)

]

φ(v)dv = 0 ∀φ ∈ C∞
0 (Rd)
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where αi(x, t) (i = 1, · · · , n) is the Lagrange multiplier to constraint Ii(f)(x, t).

We get the exponentially based distribution

f = f(x, t, v) = exp (c(v) · α(x, t)) ,(3.7)

where c(v) · α(x, t) denotes
∑n

k=1 ck(v)αk(x, t).

Define η̄, qj,Q by

η̄(α) =

∫

exp (c(v) · α) dv, qj(α) = η̄αj+1
(α) =

∫

vjexp (c(v) · α) dv,

and the n−vector Q(α) = (Q1(α), · · · ,Qn(α))T with entries

Qi(α) =

∫

ci(v)
[

ec∗(v)·α+c′
∗
(v)·α − ec(v)·α+c′(v)·α

]

Bdωdv′dv.

Then plugging (3.7) into (3.6) results in a first-order PDE system for the
n−vector α = α(x, t):

∂η̄α(α)

∂t
+

d
∑

j=1

∂qjα(α)

∂xj
= Q(α).(3.8)

3.2 Structural conditions on moments fulfill-

ing the Galilean invariance property

For strictly positive γ define

Mγ = {α ∈ Rn | η̄(α) ≤ γ}(3.9)

We formulate the conditions on moment closure systems fulfilling the Galilean
invariance property:

Condition 3.2.1 The functions c1, · · · , cn are linearly independent and con-
tained in L1

loc(Rd), and it holds

c1 ≡ 1, c2(v) = v1, . . . , cd+1(v) = vd, cd+2(v) = |v|2.(3.10)
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For each γ > 0, the interior int(Mγ) is nonvoid, and Q ∈ C∞(clos(Mγ),Rn)
(i.e. each derivative of Q has a continuous continuation up to the boundary
of Mγ). Furthermore, the Galilean invariance requirement is fulfilled, i.e.

p ∈M⇒ p(O · +τ) ∈M ∀ τ ∈ Rd, O ∈ SO(n).(3.11)

As we will show in the appendix, the Galilean invariance property implies
that c1, · · · , cn are polynomials.

It holds Q ∈ C∞(clos(Mγ),Rn) for the following classes of intermolecular
forces:

1. B ∈ L1
loc(S

d−1,Rd,Rd) fulfilling the following growth condition:

B(ω, v, v′) ≤ C1 + C2|v − v′|γ,(3.12)

2. B resulting from an inverse kth-power force for k > d (see the proof in
[T-M], p. 315 f. for the case d = 3 and prove analogously for general
d).

Relation (3.12) holds in the classical case of the hard-spheres model, where

B(ω, v, v′) = |(v − v′) · ω|.

3.3 Smooth extension

If the highest-order polynomial of M is of order larger than two then the set
of Maxwellian states

E = {α ∈ Rn | c(v) · α ∈ E, αd+2 < 0}

is contained in the boundary of the domain of definition of η̄.

If we bring system (3.8) into the form of a relaxation system with certain Fj
and Q having the form given at the beginning of chapter ”Structural condi-
tions and main results”, this means that the equilibrium manifold E of this
relaxation system is contained in the boundary of the domain of definition
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U of Fj and Q.

On the other hand, it is assumed that the equilibrium states are contained
in the interior of U .

We will resolve this problem by means of Whitney’s Extension Theorem
([W2], [W1], [A-R]):

Theorem 3.3.1 Let W be a Banach space, M ⊂ Rn a closed subset, and
f : M → W . By Lks(Rn,W ) denote the Banach space of symmetric k - linear
maps from Rn to W . Then the following claims are true:

1. f extends to a Cr (r ≥ 0) function F : Rn → W provided that there
exist f0, · · · , fr with f0 = f, fk : M → Lks(Rn,W ), (k = 0, · · · , r), and
for k = 0, · · · , r, the following condition is satisfied: If Rk : M ×M →
Lks(Rn,W ) is defined by

fk(y) =
∑

i≤r−k

fk+i(x)

i!
(y − x)i +Rk(x, y)(3.13)

for x, y ∈M , then for each x0 ∈M,

|Rk(x1, x2)|
|x1 − x2|r−k

→ 0(3.14)

as x1, x2 → x0 in M , i.e., for every ǫ > 0 there exists δ > 0 such that
for all x1, x2 ∈M ,

|Rk(x1, x2)| < ǫ|x1 − x2|r−k(3.15)

whenever |x1 − x0|, |x2 − x0| < δ.

2. The extension F of f may be chosen so that DkF |M = fk for all ap-
propriate k.

For α1, α2 ∈ Mγ and t1 ∈ [0, 1] we obtain from exp being convex

η̄(t1α1 + (1 − t1)α2) =

∫Rd

exp ((t1α1 + (1 − t1)α2) · c(v)) dv ≤
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≤
∫Rd

t1exp (α1 · c(v)) + (1 − t1)exp (α2 · c(v)) dv =

= t1η̄(α1) + (1 − t1)η̄(α2) ≤ γ,

i.e. Mγ is convex.

Due to the structural conditions (3.2.1) the interior int(Mγ) is non-void.

For any α ∈ int(Mγ) and multi-index β the derivative has the form

Dβ η̄(α) =

∫

pβ(v)exp(c(v) · α)dv,

where pβ is a polynomial.

For any R ∈ (0,∞) and any multi-index β, the derivative Dβ η̄(·) is uniformly
bounded on int(Mγ) ∩ BR(0).

Hence, for any multi-index β, the derivative Dβ η̄(·) has smooth extension
throughout Mγ.

In particular, η̄|Mγ
is continuous.

Hence, if limn→∞ αn = α and αn ∈ Mγ ∀n ∈ N, then limn→∞ = η̄(αn) =
η̄(α) ≤ γ, i.e. α ∈ Mγ, and we conclude that Mγ is closed.

From Theorem (3.3.1) it follows:

Corollary 3.3.2 For each m ∈ N and γ ∈ (0,∞) the function η̄ may be
extended from Mγ throughout Rd as a function of class Cm.

3.4 The modified moment closure system

In this section we modify system (3.8) by means of Whitney’s extension the-
orem and bring it into the form of a relaxation system, where the equilibrium
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set is in the interior of the domain of definition of Fj and Q.

We assume that the structural conditions (3.2.1) are fulfilled.

Let η̃ be a C7 extension of η̄ from Mγ throughout Rn which exists according
to Corollary (3.3.2).

For αe ∈ E ∩Mγ let G be an open neighborhood of αe such that α 7→ U =
η̃α(α) defines a C5 bijection from G to an open set G.

As η̃αα(αe) = η̄αα(αe) is positive definite (because c1, · · · , cn are linearly in-
dependent), this neighborhood exists.

Furthermore, we can assume that

γ = 2η̄(αe).(3.16)

As η̃α(αe) 6= 0, we can assume that

η̃(α) ≤ γ ⇒ η̃(α) = η̄(α)(3.17)

for each α ∈ G, if we choose G small enough.

For U ∈ G set

η(U) = α(U) · U − η̃(α(U)).

We see that the inverse function α(U) is equal to ηU(U).

Set

Fj(U) := η̃αj+1α(ηU(U)) and Q(U) := Q̃(ηU(U)),

where Q̃ is a C5 extension of Q from Mγ throughout Rn, where the first
d+ 2 entries of Q̃ vanish identically.

As η̃ is of class C7, Fj is of class C5 as assumed at the beginning of the
chapter ”Structural conditions and main results”.

We consider the following first-order PDE system
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∂η̃α(α)

∂t
+

d
∑

j=1

∂η̃αj+1α(α)

∂xj
= Q̃(α),(3.18)

which is equivalent to the following system of balance laws:

Ut +

d
∑

j=1

Fj(U)xj
= Q(U).(3.19)

Note that system (3.18) is equivalent to system (3.8) as long as η̃(α(x, t)) =
η̄(α(x, t)).

For each αe ∈ E, the kinetic particle density f(v) = exp(c(v) · αe) can
be expressed in terms of the density ρ, the macroscopic velocity ū and the
temperature θ via

exp(c(v) · αe) =
ρ

(2πθd/2)
exp

(

−|v − ū|2
2θ

)

.(3.20)

Consider the reduced system to (3.19) (remembering the notation in section
”Traveling waves for simple shocks”):

ut +
d
∑

j=1

fj(u, h(u))xj
= 0.(3.21)

We can write u = u(ρ, ū, θ) = u(ρ, ū1, · · · , ūd, θ).

As we will show in the appendix, the d+ 2 eigenvalues of

Âi = ∂ufi(u(ρ, ū, θ), h(u(ρ, ū, θ)))

are

λi1 = ūi − ā(θ), λi2 = · · · = λid+1 = ūi, λid+2 = ūi + ā(θ),(3.22)

where ā(θ) =
(

2+d
d

)1/2
θ1/2.

Furthermore, we will show in the appendix the existence of a shock curve
such that the strict entropy condition is fulfilled.
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3.5 The entropy condition

In order to introduce an easy-to-check sufficient condition for the stability
and dissipativity condition for system (3.19), we introduce the so-called en-
tropy condition introduced by Yong in [Y4].

Remembering the notation of the chapter ”Structural conditions and main
results” this condition reads as follows:

Condition 3.5.1 (i). qv(U) is invertible.

(ii). There is a strictly convex smooth function η(U), defined in a convex
compact neighborhood G of Ue ∈ E such that ηUU(U)FkU(U) is sym-
metric for all U ∈ G and all k.

(iii). There is a positive constant cG, depending on the compact neighborhood
G, such that for all U ∈ G,

[ηU(U) − ηU(Ue)]Q(U) ≤ −cG|Q(U)|2.

(iv). The kernel of the Jacobian QU(Ue) contains no eigenvectors of
∑d

k=1 ωkFkU(Ue)for
each ω = (ω1, · · · , ωd) ∈ Sd−1.

If the entropy condition is fulfilled, then the stability condition and the dis-
sipativity condition are fulfilled (see [Y3], Prop. 5.6 and [Y4], Theorem 2.1).

Due to Proposition (1.1.7), we can make the following remark

Remark 3.5.2 If the entropy condition holds, then the weakened structural
condition (1.1.6) is fulfilled.

3.6 Existence of smooth shock profiles

3.6.1 Checking of weakened structural condition

In this section we prove that for system (3.19) the weakened structural con-
dition is fulfilled and that traveling wave solutions represent solutions of the
Boltzmann equation.

74



In order to do this we first consider the relaxation system (3.19) and prove
that this system fulfills the entropy condition (3.5.1).

As for the reduced system the strict entropy condition is fulfilled, it follows
due to Remark (3.5.2) that the assumptions of Theorem (1.3.1) are fulfilled.

In the last step we will prove that the shock profiles, which exist due to
Theorem (1.3.1), represent solutions of the Boltzmann equation.

For system (3.19) repeat the notation for A and A11 given in the section
”Structural conditions” in the chapter ”Structural conditions and main re-
sults”.

Furthermore, let λp be one of the simple eigenvalues of A11 for which the
strict entropy condition (shown in the appendix) is fulfilled.

The purpose of this section is the proof of the following theorem:

Theorem 3.6.1 If the structural conditions (3.2.1) are fulfilled and M3 ⊂M, then for system (3.19) the entropy condition (3.5.1) is fulfilled. In partic-
ular, the weakened structural condition is fulfilled. Furthermore, if A− λpIn
is invertible or zero is a simple eigenvalue of A−λpIn, then there exist smooth
shock profiles which represent solutions of the Boltzmann equation.

Proof:

First we will check the conditions (i) - (iv) of the entropy condition (3.5.1).

In order to check condition (i) remember that we assume that the distribution
f is exponentially based, i.e.

f(x, t, v) = exp(c(v) · α(x, t)).

It follows that

∂Qk

∂αj
|Mγ

=

=
1

4

∫

(ck + c′k − ck ∗ − c′k ∗)
((

cj ∗ + c′j ∗
)

(f∗f
′
∗) |Mγ

−
(

cj + c′j
)

(ff ′) |Mγ

)

Bdωdv′dv.
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Remember that

E = {α ∈ Rn | c(v) · α ∈ E, αd+2 < 0}.

From (E ∩Mγ) ⊂ ∂Mγ and (f∗f
′
∗)|E = (ff ′)|E we conclude that

∂Qk

∂αj
|E∩Mγ

=

= −1

4

∫

(ck + c′k − ck ∗ − c′k ∗)
(

cj + c′j − cj ∗ − c′j ∗
)

(ff ′) |E∩Mγ
Bdωdv′dv.

Hence, we can write Qα|E∩Mγ
in the form

Qα|E∩Mγ
= −1

4

∫

(c+ c′ − c∗ − c′∗) ⊗ (c+ c′ − c∗ − c′∗) (ff ′) |E∩Mγ
Bdωdv′dv

and see that Qα|E∩Mγ
is symmetric.

In addition, let y ∈ Rn. Then it is easy to see that

−4y∗Qα(α)|Ey =

∫

|(c+ c′ − c∗ − c′∗) · y|2(ff ′)|EBdωdv′dv ≥ 0.

Hence, Qα(α)|E is nonpositive.

Furthermore, y∗Qα(α)|Ey = 0 if and only if (c + c′ − c∗ − c′∗) · y = 0 almost
everywhere.

Due to (3.4) it follows that y∗Qα(α)|Ey = 0 if and only if (c+c′−c∗−c′∗)·y ∈ E.

It follows that y∗Qα(α)|Ey = 0 if and only if y ∈ span(E).

On the other hand, since Qα(α)|E is symmetric nonpositive, it is elementary
that y∗Qα(α)|Ey = 0 if and only if Qα(α)|Ey = 0. Hence,

ker(Qα(α)|E) = span(E)(3.23)

and rank(Qα(α)|E) = n− dim(span(E)) = n− d− 2.
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As Qα(αe) is symmetric nonpositive and the first d + 2 entries of Q are
identically equal to zero, it follows for αe ∈ E that Qα(αe) has the form
Qα(αe) = diag(0d+2, H̃(αe)), where H̃(αe) is negative definite.

We calculate for αe = ηU(Ue)

QU(Ue) = Qα(ηU(Ue))ηUU(Ue) = diag(0d+2, H̃(αe))ηUU(Ue) =

=

(

0 0

∗ H̃(αe)ηvv(Ue)

)

.

As H̃(αe) is negative definite and ηvv(Ue) is positive definite, the matrix

qv(Ue) = H̃(αe)ηvv(Ue)

is invertible (remembering the notation for v at the beginning of chapter
”Structural conditions and main results”, where r = n− d− 2).

Hence, there exists an open neighborhood G of Ue such that qv(U) is invert-
ible if U is contained in G, and (i) follows.

(ii) is a direct consequence of

ηUU(U)Fk U(U) = ηUU(U)η̃αk+1 αα(ηU(U))ηUU(U) = F T
k U(U)ηUU (U).

ad (iii):

For αe ∈ E the matrix Qα(αe) is symmetric and nonpositive, so that for Ue
with ηU(Ue) = αe it follows

([ηU − ηU(Ue)]Q)UU (Ue) = ηUU(Ue)QU(Ue) +QU(Ue)
∗ηUU(Ue) =(3.24)

= 2ηUU(Ue)Qα(ηU(Ue))ηUU(Ue) ≤ 0.

The last (n − d − 2) entries of ηU(Ue) and the first (d + 2) entries of Q are
zero, so that
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ηU(Ue)Q(U) = 0 ∀(Ue, U) ∈ E ×G.(3.25)

Due to Theorem 2.1 and Proposition 2.2 in [Y4], (iii) is implied by (i), (ii),
(3.24) and (3.25).

Condition (iv) is fulfilled if

ker

(

−sη̄αα(αe) +
d
∑

j=1

ωj η̄αj+1αα(αe)

)

∩ ker(Qα(αe)) = {0}

for each αe ∈ E and (s, ω) ∈ R× Sd−1.

As ker(Qα(αe)) = E this is equivalent to the following condition:

For each αe ∈ E and (s, ω, ᾱ) ∈ R × Sd−1 × (E \ {0}) there exists α̃ ∈ Rn,
such that

α̃T

(

−sη̄αα(αe) +

d
∑

j=1

ωj η̄αj+1αα(αe)

)

ᾱ =

= α̃T
∫Rd

(ω · v − s) c(v) ⊗ c(v) exp(αe · c(v))dv ᾱ 6= 0.

Hence, the dissipativity condition is equivalent to that for each αe ∈ E and
(s, ω, p̄) ∈ R× Sd−1 × (E \ {0}) there exists p̃ ∈M such that

∫Rd

(ω · v − s) p̃(v) p̄(v) exp(αe · c(v))dv 6= 0.

After eventual rotation and translation we can assume ω · v = vd and

exp(αe · c(v)) = const exp(−C|v|2),

where const 6= 0, C > 0.

Define on M the scalar product

〈p, q〉 :=

∫Rd

p(v)q(v)exp(−C|v|2)dv(3.26)
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denoting the induced norm with ‖ · ‖.

Then the dissipativity condition is equivalent to that for each (s, p̄) ∈ R ×
(E \ {0}) there exists p̃ ∈M such that 〈lsp̃, p̄〉 6= 0, where ls(v) = vd − s.

In other words: We have to show:M3 ⊂M ⇒ (for each (s, p̄) ∈ R× (E \ {0}) ∃p̃ ∈M : 〈ls p̄, p̃〉 6= 0) .

There holds lsp̄ ∈M3 ⊂M for each (s, p̄) ∈ R× E.

For p̃ = lsp̄ we get 〈ls p̄, p̃〉 = ‖lsp̄‖2 6= 0, and condition (iv) has been shown.

We have shown that the entropy condition is fulfilled.

Due to Remark (3.5.2), the weakened structural condition is fulfilled.

As the weakened structural condition is fulfilled and the first and (d+2) - th
eigenvalue are simple and fulfill the strict entropy condition, Theorem (1.3.1)
applies, if A− λpIn is invertible or zero is a simple eigenvalue of A− λpIn.

Then, for ξ = −st+
∑n

j=1 ωjxj there exists a solution α = α(ξ) of

−s∂η̃α(α(ξ))

∂ξ
+

d
∑

j=1

ωj
∂η̃αj+1α(α(ξ))

∂ξ
= Q(α(ξ))(3.27)

with α(−∞) = α− = αe and α(∞) = α+, if |α− − α+| is small enough.

We remark that α+ corresponds to a point of the Rankine-Hugoniot curve
through α− corresponding to shock speed s.

It remains to show that α represents a solution of the Boltzmann equation,
if |α+ − α−| is small enough.

In order to do this we show that there exists a real number γ > 0 such that

η̃(α(ξ)) ≤ γ ∀ξ ∈ R,(3.28)

if |α+ − α−| is small enough.
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Remember that, if condition (3.28) is fulfilled, then, due to (3.17), it holds

η̃(α(ξ)) = η̄(α(ξ)) ∀ξ ∈ R,
and α represents a solution of the Boltzmann equation.

Due to rotational invariance, we can assume that system (3.27) has the form

∂η̃α2α(α(ξ))

∂ξ
− s

∂η̃α(α(ξ))

∂ξ
= Q(α(ξ)).(3.29)

Remember that c(v) = (1, v1, · · · , vd, |v|2, cd+3(v), · · · , cn(v)).

Due to translational invariance, we can assume that in (3.22) it is u1 = 0, so
that (remembering α− = αe)

η̃1
α2α(α−) =

∫Rd

v1exp (c(v) · α−) dv = 0,(3.30)

where superscript 1 means taking the first entry.

Note that the first d+ 2 entries of Q are identically equal to zero.

After integration of (3.29) from −∞ to ξ, taking (3.30) into account and
noting that η̄1

α(α) = η̄(α), we get

η̃1
α2α(α(ξ)) − sη̃(α(ξ)) = −sη̄(α−) ∀ξ ∈ R.(3.31)

There exists a real number R > 0 such that

|η̃1
α2α

(α)| ≤ |s|
2
η̃(α) ∀α ∈ BR(α−),(3.32)

if |s−λ1
1(α−)| or |s−λ1

d+2(α−)| is small enough, where λ1
1 and λ1

d+2 are given
in (3.22).

Such an R exists due to the continuity of η̃1
α2α, due to (3.30) and λ1

d+2(α−) 6=
0, because we have u1 = 0 and a(θ) 6= 0 in (3.22).

Furthermore, the values |s−λ1
1(α−)| (resp. |s−λ1

d+2(α−)|) are small enough,
if the point α+ on the Rankine-Hugoniot curve through α− is close enough
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to α−.

Due to (3.31) and (3.32), we obtain:

η̃(α) ≤ 2η̄(α−) ∀α ∈ BR(α−),

and due to assumption (3.16) (remembering that α− = αe) we conclude that

α(ξ) ∈ BR(α−) ∀ξ ∈ R ⇒ η̃(α(ξ)) ≤ γ ∀ξ ∈ R.
Due to (3.17), we conclude that

α(ξ) ∈ BR(α−) ∀ξ ∈ R ⇒ η̃(α(ξ)) = η̄(α(ξ)) ∀ξ ∈ R.
As for |α+−α−| small enough it holds α(ξ) ∈ BR(α−) ∀ξ ∈ R, the last claim
of the theorem has been proven. 2

3.6.2 Checking of simplicity condition for a special case

It remains to check that for system (3.19) zero is an eigenvalue of

−λpIn + A = −λpIn +

d
∑

i=1

ωiFiU(Ue)

with multiplicity less than or equal to one for Ue ∈ E if for λp(·) the strict
entropy condition is fulfilled (remembering the notations and definitions of
section ”Traveling waves for simple shocks”).

Writing λp = λp(αe) and taking into account that system (3.18) is equivalent
to system (3.19) we have to show that for αe with η̃α(αe) = Ue zero is an
eigenvalue of

−λp(αe)η̃αα(αe) +

d
∑

i=1

ωiη̃αi+1αα(αe) =

= −λp(αe)
∫

c(v)⊗c(v)exp(αe·c(v))dv+
d
∑

i=1

ωi

∫

vic(v)⊗c(v)exp(αe·c(v))dv
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with multiplicity less than or equal to one.

Due to rotational invariance we can assume that ω = (1, 0, · · · , 0).

For each αe ∈ E, the kinetic particle density f(v) = exp(c(v) · αe) can
be expressed in terms of the density ρ, the macroscopic velocity u and the
temperature θ via

exp(c(v) · αe) =
ρ

(2πθd/2)
exp

(

−|v − u|2
2θ

)

.(3.33)

Note that can write ρ = ρ(αe), u = u(αe) and θ = θ(αe).

Due to translational invariance (in the velocity space) we can assume that
u = 0.

For τ = (2θ)1/2 substitute v = τ v̄. Then it holds exp(c(v) ·αe) = exp(−|v̄|2).

There exists an invertible matrix T (τ) such that

c(v) ⊗ c(v) = c(τ v̄) ⊗ c(τ v̄) = T t(τ)c(v̄) ⊗ c(v̄)T (τ).(3.34)

Furthermore, from (3.22) it easily follows that for ᾱe with

−|v|2
2θ

= c(v) · αe = c(v̄) · ᾱe = −|v̄|2

it holds

λp(αe) = (2θ)1/2λ(ᾱe) = τλ(ᾱe).(3.35)

Due to v1 = τ v̄1 and relations (3.34) and (3.35) and it suffices to show that
zero is an eigenvalue of

−λp(ᾱe)
∫

T t(τ)c(v̄)⊗c(v̄)T (τ)exp(−|v̄|2)dv̄+
∫

v̄1T
t(τ)c(v̄)⊗c(v̄)T (τ)exp(−|v̄|2)dv̄ =

= T t(τ)

(

−λp(ᾱe)
∫

c(v̄) ⊗ c(v̄)exp(−|v̄|2)dv̄ +

∫

v̄1c(v̄) ⊗ c(v̄)exp(−|v̄|2)dv̄
)

T (τ)
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with multiplicity less than or equal to one.

After multiplication by T−t(τ) from the left and by T−1(τ) from the right
it remains to prove that zero is an eigenvalue with multiplicity less than or
equal to one for

M =

∫

v̄1c(v̄) ⊗ c(v̄)exp(−|v̄|2)dv − λp(ᾱe)

∫

c(v̄) ⊗ c(v̄)exp(−|v̄|2)dv.

Taking (3.22) into account and noting that θ(ᾱe) = 1
2

we derive that the strict
entropy condition is fulfilled for the eigenvalues λp(·) with λp(ᾱe) = (d+2

2d
)1/2

and λp(ᾱe) = −(d+2
2d

)1/2.

Hence, it remains to prove that zero is an eigenvalue with multiplicity less
than or equal to one for

M =

∫

v1c(v) ⊗ c(v)exp(−|v|2)dv −
(

d+ 2

2d

)1/2 ∫

c(v) ⊗ c(v)exp(−|v|2)dv

(resp. M =

∫

v1c(v)⊗c(v)exp(−|v|2)dv+
(

d+ 2

2d

)1/2 ∫

c(v)⊗c(v)exp(−|v|2)dv).

For d = 3 and c(v) = (1, v1, v2, v3, |v|2, v2
2, v

2
3, v1v2, v1v3, v2v3, v

3
1, v

3
2, v

3
3, v

2
1v2, v

2
1v3,

v1v
2
2 , v

2
2v3, v1v

2
3, v2v

2
3, v1v2v3, |v|4) we get by elementary calculation:

M̃ = π−3/2M =
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,

where a = −(5
6
)1/2 (resp. a = (5

6
)1/2).

For M̃ we get

det(M̃) =
301/2 · 625

300578991243264

(resp. det(M̃) = − 301/2 · 625

300578991243264
).

Hence, the matrix M is invertible.

We have calculated the determinant by Maple (version 9.01).

3.7 Appendix

3.7.1 Strict entropy condition

For the phase space density f define the density ρ, the macroscopic velocity
field ū and the temperature θ by the relations
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ρ =

∫Rd

f(v)dv, ū =

∫Rd

vf(v)dv,(3.36)

1

2
ρ|ū|2 +

d

2
ρθ =

∫Rd

1

2
|v|2f(v)dv.

Here and in the following, we suppress the notation of the (x, t)-dependence
for reasons of convenience, i.e. instead of ρ(x, t) =

∫Rd f(x, t, v)dv we write
ρ =

∫Rd f(v)dv.

For a Maxwellian density

f(v) =
ρ

(2πθd/2)
exp

(

−|v − ū|2
2θ

)

,(3.37)

the local fluxes can be written as

∫Rd

vvTf(v)dv = ρūūT + ρθId(3.38)

and

∫Rd

1

2
|v|2vf(v)dv =

1

2
ρ(ūT ū)ū+

d+ 2

2
ρθū.(3.39)

Plugging the relations
∫Rd

c̄(v) (f∗f
′
∗ − ff ′)Bdωdv′dv = 0

for

c̄1(v) ≡ 1, c̄i+1(v) = vi (i = 1, · · · , d), c̄d+2(v) = |v|2

into (3.6) yields the Euler equations

∂tρ+ ∇x · (ρū) = 0,(3.40)

∂t(ρū) + ∇x · (ρūūT ) + ∇x(ρθ) = 0,(3.41)

∂t(
1

2
ρ|ū|2 +

d

2
ρθ) + ∇x · (

1

2
ρ|ū|2ū+

d+ 2

2
ρθū) = 0.(3.42)
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We can write these equations in the form (for the case d = 1 see [KRR], p.
278ff.)

∂tρ+ ∇x · (ρū) = 0,(3.43)

∂t(ρū) + ∇x · (ρūūT ) + ∇xp = 0,(3.44)

∂te+ ∇x · (ū(e+ p)) = 0,(3.45)

with p = ρθ and e together with the equation of state

p =
2

d
(e− ρ

2
|ū|2).(3.46)

We claim that in the variable u = (ρ, ū1, · · · , ūd, p)T , with a(ρ, p) = ( (2+d)
d

p
ρ
)1/2

and with

Âi(u) = ūiId+2 + ρe1e
T
1+i +

1

ρ
e1+ie

T
d+2 + ρa2ed+2e

T
1+i(3.47)

(where ei denotes the ith canonical base vector) for i = 1, · · · , d, the equations
(3.43), (3.44) and (3.45) can for smooth solutions u = u(x, t) be brought into
the form

ut +
d
∑

i=1

Âi(u)uxi
= 0.(3.48)

These are d+ 2 equations for u = (ρ, ū1, · · · , ūd, p)T .

The equations for (u1, · · · , ud+1) = (ρ, ū1, · · · , ūd) in (3.48) trivially follow
from (3.43) and (3.44), the equation for ud+2 = p follows by differentiation
of

e =
d

2
p +

ρ

2
|ū|2

with respect to t and applying ∇x· to

(p+ e)ū =

(

2 + d

2
p+

ρ|ū|2
2

)

ū.
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We obtain using (3.45) and the equation for (u2, · · · , ud+1) = (ū1, · · · , ūd) in
(3.48):

∂te =
d

2
∂tp−

1

2

(

|ū|2ū · ∇xρ+ 3ρ|ū|2∇x · ū+ 2ū · ∇xp
)

,

∇x · ((p+ e)ū) =
2 + d

2
(p∇x · ū+ ū · ∇xp) +

1

2
∇x · (ρ|ū|2ū).

Now we add these two equations and obtain the equation

∂tp+ ρa2∇x · ū+ ū · ∇p = 0

for ud+2 = p in (3.48).

The eigenvalues of Âi(u) are

λi1(u) = ūi − a(ρ, p), λi2(u) = · · · = λid+1(u) = ūi,(3.49)

λid+2(u) = ūi + a(ρ, p).

For the corresponding right eigenvectors

ri1(u) = ρe1 − a(ρ, p)e1+i + ρa(ρ, p)2ed+2,(3.50)

rid+2(u) = ρe1 + a(ρ, p)e1+i + ρa(ρ, p)2ed+2,

rij(·) ≡ ej−1 for 2 ≤ j ≤ i+ 1,

rij(·) ≡ ej for i+ 2 ≤ j ≤ d+ 1

there holds

∇uλ
i
j(u) · rij(u) = 0 for j ∈ {2, · · · , d+ 1},(3.51)

∇uλ
i
1(u) · ri1(u) = −d + 1

d
a(ρ, p) 6= 0,
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∇uλ
i
d+2(u) · rid+2(u) =

d+ 1

d
a(ρ, p) 6= 0.

Hence, for the first and the (d+ 2)th eigenvalue the strict entropy condition
is fulfilled.

These properties are independent of the choice of the coordinates:

If u = u(v) is an invertible smooth transformation, we can write system
(3.48) in the form

vt =

d
∑

j=1

u−1
v (v)Âj(u(v))uv(v)vxj

= 0.

For the eigenvalues λ̄ij(v) = λij(u(v)) and the right eigenvectors r̄ij(v) of

u−1
v (v)Âj(u(v))uv(v) it holds (noting that ∇vλ̄

i
j(v) and ∇uλ

i
j(u(v)) are row

vectors):

∇vλ̄
i
j(v) = ∇uλ

i
j(u(v))uv(v), r̄ij(v) = u−1

v (v)rij(u(v)).

Hence,

∇vλ̄
i
j(v) · r̄ij(v) = ∇uλ

i
j(u(v)) · rij(u(v)).

3.7.2 Conclusions from Galilean Invariance

Now, we will prove that for n linearly independent locally integrable func-
tions c1, · · · , cn the translational invariance plus the integrability of density
exp(α · c(·)) for each α contained in non-void open set O ⊂ Rn already imply
that they are polynomials.

Indeed, the ci’s have to be distributions only.

Hence, we can leave aside the assumption that the derivative has to exist at
one point (cp. [J-U]).
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First we fix some notation (for further details see [Y]):

The set C∞
0 (Rd) becomes a locally convex space through the family of semi-

norms

pK,r(u) =
∑

|α|≤r

supx∈K |Dαu|, r ∈ N0, K ⊂ Rd compact.

Let D denote this space and D′ the linear space of continuous linear func-
tionals on D and (·, ·) : D ×D′ → R the dual pairing.

The partial derivatives ∂xk
, k = 1, · · · , d in direction ek and the translation

D′ → D′, ψ 7→ ψ(· + τ)

for τ = (τ1, · · · , τd) ∈ Rd are defined in the distributional sense, i.e.

(v, ∂xk
w) = −(∂xk

v, w), (v, w(·+ τ)) = (v(· − τ), w).

The embedding L1
loc(Rd) →֒ D′ is defined via (φ, g) =

∫Rd g(x)φ(x)dx.

With this notation we prove the following theorem:

Theorem 3.7.1 Assume that c1, · · · , cn ∈ D′ are linearly independent and
that for each τ ∈ Rd there exists a matrix Λ(τ) ∈ Rn×n such that

ci(· + τ) =

n
∑

i=1

Λi
j(τ)ci.(3.52)

Then there exist matrices Ω1, · · · ,Ωd ∈ Rn×n commuting with each other such
that c can be represented as a smooth vector-valued function of the form

c(x) = c(x1, · · · , xd) =
(

Πd
k=1exp(xkΩk)

)

c(0).

If, furthermore, the density exp(α · c(·)) is integrable for each α on a nonvoid
open set in Rn, then the functions c1, · · · , cn are polynomials.

Proof:
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First, let’s remark that c1, · · · , cn being linearly independent implies the ex-
istence of φ1, · · · , φn ∈ D fulfilling the relations

(φi, cj) = γij, i = 1, · · · , n,(3.53)

such that Γ = (γij)1≤i,j≤n is invertible.

For Aij(τ) = (φj, ci(· + τ)) relation (3.53) yields

Aij(τ) =

n
∑

k=1

Λk
i (τ) (φj , ck) =

n
∑

k=1

Λk
i (τ)γ

j
k, i.e. Λ(τ) = A(τ)Γ−1.(3.54)

The derivatives in τ = (τ1, · · · , τd) of Λi
j at 0 have the form

∂τkΛ
i
j(0)

(3.54)
=

n
∑

m=1

(−∂xk
φj, cm) (Γ−1)im,(3.55)

so that we conclude (using A(0)
(3.54)
= Λ(0)Γ−1 for the initial value) that the

IVP

Λ(0) = In, ∂τkΛ(τ1, · · · , τd) = ΩkΛ(τ1, · · · , τd), k = 1, · · · , d

have a unique solution where Ωk = limτk→0
(Λ(τkek)−Λ(0))

τk
is the generator of

the semigroup to Λ in the parameter τk which is given by relation (3.55).

From definition (3.52) of Λ it follows using the commutativity of the group
of translations

Λ(τkek)Λ(τlel) = Λ(τlel)Λ(τkek)

that the matrices Ωk, k = 1, · · · , d commute with each other.

For each l ∈ {1, · · · , d} and i ∈ {1, · · · , n}, there exist real numbers λ1, λ2, λ3

such that g(xl) = ci(x1, · · · , xl, · · · , xd) has the form

g(xl) = exp(λ1xl)sin(λ2 + λ3xl)p(xl) = exp(λ1xl)sin(λ2 + λ3xl)

(

k
∑

i=0

αix
i
l

)

.
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If λ1 6= 0 it holds limxl→∞ g(xl) = 0 or limxl→−∞ g(xl) = 0, so that limxl→∞ exp(g(xl)) =
1 or limxl→−∞ exp(g(xl)) = 1.

In this case it holds: exp(g(·)) 6∈ L1(R).

If λ1 = 0, λ3 6= 0 denote by Jk the set

Jk := {xk ∈ R | sin(λ2 + λ3xl)αk > |αk|/2.}.

Then it holds |p(xl)| ≥ |αk| for |xl| > R, R > 0 large enough

|sin(λ2 + λ3xl)p(xx)| > |αk|/2 for |xk| > R, xk ∈ Jk.

As meas(Jk \BR(0)) = ∞ it holds exp(g(·)) 6∈ L1(R).

In other words:

λ1 6= 0 or λ3 6= 0 implies exp(g(·)) 6∈ L1(R).

Hence, the function ci is polynomial. 2
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Notation

The void box 2 denotes the end of proof.

If M1 andM2 are two sets then we denote by M1∪M2 their union, by M1∩M2

their intersection and by M1 \M2 their set - theoretic difference.

The product M1 × M2 is defined as the set of (x1, x2) with x1 ∈ M1 and
x2 ∈M2.

If M is a subset of a metric space we denote by ∂M (resp. int(M) (resp.
M̄)) its boundary (resp. its interior (resp. its closure)).

By N we denote the set of strictly positive integers, by N0 the set of nonneg-
ative integers, by R the set of real numbers, by C the set of complex numbers.

By Rn×m (resp. Cn×m) we denote the set of real (resp. complex) n×m matri-
ces where the first index is the row index and the second one is column index.

In ∈ Rn×n denotes the identity (n × n) - matrix, i.e. the matrix with ones
on the diagonal and zeroes elsewhere.

By GL(R, n) we denote the set of invertible matrices M ∈ Rn×n.

For M ∈ Cm×n let M∗ ∈ Cn×m be the transpose of M , i.e.

(M∗)ij = M ji,

where ζ denotes the complex conjugate of ζ .

For Mi ∈ Rni×ni, i = 1, · · · , m the matrix diag(M1, · · · ,Mm) ∈ Rn̄×n̄, n̄ =
∑m

i=1 ni denotes the block diagonal square matrix with blocks M1, · · · ,Mm

along the main diagonal.

Sometimes we denote the transpose byM t orMT instead ofM∗ ifM ∈ Rm×n.

For M ∈ Cn×n let spec(M) ⊂ C denote the set of eigenvalues of M , i.e. the
set of complex numbers λ such that M − λIn is not invertible.
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As generalized eigenspace to λ ∈ spec(M) we denote the space corresponding
to the Jordan blocks of M − λIn whose diagonal entries are zero.

We set Rn := Rn×1 equipped with the Euclidean norm

|x| =
√
xtx.

For a strictly positive number ρ define

Bρ(x̄) = {x ∈ Rn | |x− x̄| < ρ}, Kρ(x̄) = ∂Bρ(x̄).

Set Sn−1 = K1(0).

If U ⊂ Rm is non-void and open then Ck(U ,Rn) denotes the linear space of
functions f : U → Rn whose kth derivative exists and is continuous.

By fx, ∂xf or sometimes Dxf we denote the derivative of f in the variable
x.
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