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Introduction

This note is devoted to linear differential equations with finite Galois groups. It is a
famous conjecture due to A. Grothendieck that the finiteness of the differential Galois
group should be equivalent to the triviality of the p-curvature for almost all p (see for
example [8], [9]). The p-curvature is just the first integrability obstruction for the reduced
differential equation in characteristic p. In the case all such integrability obstructions
vanish in characteristic p we obtain a so-called iterative differential equation or iterative
differential module, respectively. For these a nice Picard-Vessiot theory has been developed
by M. van der Put and the author ([12],[13]). In particular, the differential Galois groups
are linear algebraic groups and there is a Galois correspondence.

Thus a natural question arises, whether there exists a reasonable reduction theory pre-
serving Galois groups etc. The corresponding objects in characteristic zero are iterative
differential modules over iterative differential rings. The latter are suitable Dedekind sub-
rings of algebraic function fields over number fields, here called global differential rings.
These and the corresponding global differential modules are studied in Chapter 1. Chapter
2 presents the construction of global iterative Picard-Vessiot rings (PV-rings) over global
differential rings and proves that such PV-rings are generated by globally bounded power
series as introduced by G. Christol. In Chapter 3 the reduction of global differential mod-
ules and their PV-rings is studied. The main result is that a global iterative PV-ring in
characteristic zero is algebraic if and only if for almost all primes p the reduced PV-ring is
algebraic. Moreover, for almost all p the reduced PV-ring and the PV-ring of the modulo
p reduced global differential module coincide. This proves the last conjecture stated in
[12].

According to Grothendieck’s p-curvature conjecture all global iterative PV-rings are al-
gebraic. Using the result above, this fact might be proven directly. This would already
imply a nice algebraicity criterion for formal power series over number fields used by G.
Eisenstein ([6], see also [2]) and could become a significant step towards the proof of
Grothendieck’s conjecture.

Acknowledgements I would like to thank J. Hartmann and A. Röscheisen for helpful
discussions on topics of the paper.
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1 Global Differential Modules

1.1 Global Differential Rings

Let K be a number field (of finite degree over Q) and let PK be the set of primes or
finite places of K, respectively. Then every p ∈ PK defines a nonarchimedean valuation
| · |p on K with valuation ring Op, valuation ideal Pp (or p for short) and with residue
field Kp := Op/p. In the case SK ⊆ PK is a finite subset of places we use the notation
P′K := PK \ SK and call the Dedekind ring

O′
K := OSK

:=
⋂

p∈P′
K

Op ⊆ K (1.1)

a global ring.

Now let F/K be a function field of one variable and t ∈ F transcendental over K. Then
F/K(t) is a finite extension. By extending the derivation ∂t := d

dt from K(t) to F , the
field F becomes a differential field (F, ∂F ). Moreover, every place p ∈ PK can be uniquely
extended to a place P or a valuation | · |P of K(t), respectively, by assuming

∣∣ n∑
i=0

ait
i
∣∣
P

= max{|ai|p
∣∣i = 0, . . . , n} (1.2)

(Gauß extension). The set of places PF of F lying over any such Gauß extension P of
p ∈ PK is denoted by

PF := Pt,F := {PF | PF |K(t) = P Gauß place over p ∈ PK}. (1.3)

and is called the set of t-extensions of PK . (In [10] this set is referred to as the set of
t-functional primes of F/K). Likewise we use the notation

SF := {PF ∈ PF | PF |K = p ∈ SK} (1.4)

and P′F := PF \ SF . Then the intersection

O′
F := OSF

:=
⋂

PF∈P′
F

OPF
⊆ F (1.5)

again is a Dedekind ring.

Throughout this note a subring O′
F of F with non trivial derivation ∂F |O′

F
is called a

global differential ring (global D-ring) if

∂F (O′
F ) ⊆ O′

F and ∂F (PF ) ⊆ PF for all PF ∈ P′F (1.6)

where ∂F is the given derivation on F . Further, O′
F is called a global iterative differential

ring (global ID-ring) if the conditions (1.6) are satisfied for the iterative derivation induced
by ∂F , i.e., if for all higher derivations ∂

(k)
F := 1

k!∂
k

∂
(k)
F (O′

F ) ⊆ O′
F and ∂

(k)
F (PF ) ⊆ PF for all PF ∈ P′F and k ∈ N. (1.7)

In the following the family of higher derivations is abbreviated by ∂∗F :=
(
∂

(k)
F

)
k∈N

and

accordingly a global ID-ring is denoted by (O′
F , ∂∗F ).
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1.2 Extensions of Global Differential Rings

The following proposition shows that global D-rings behaves well under unramified exten-
sions.

Proposition 1.1. Let K be a number field, let F/K be a function field of one variable with
derivation ∂F and let (L, ∂L)/(F, ∂F ) be a finite extension of differential fields. Suppose
O′

F ⊆ F is a global (iterative) D-ring and set

O′
L :=

⋂
P∈P′

L

OP with P′L := {P ∈ PL | P|F ∈ P′F }. (1.8)

(a) If O′
L/O′

F is unramified, i.e., if every P ∈ P′L is unramified in L/F , then (O′
L, ∂L)

is a global (iterative) D-ring.

(b) If in addition L/F is a Galois extension of fields, then O′
L/O′

F is a Galois extension
of rings with Gal(O′

L/O′
F ) ∼= Gal(L/F ).

Proof. For (a) it is enough to show that the assertion holds locally, i.e., for all completions
ÔPL

/ÔPF
where PL ∈ P′L and PF := PL|F with continuously extended derivations ∂̂L

and ∂̂F . Then with ÔL := ÔPL
, ÔF := ÔPF

, the extension (ÔL, ∂̂L)/(ÔF , ∂̂F ) is an
extension of local rings as studied in [11].

By the assumptions there exists an element y ∈ ÔL with ÔL = ÔF [y] ([15] §6, Prop.
12). Denoting by f(X) =

∑n
i=0 aiX

i the minimal polynomial of y over ÔF , we obtain the
identity

0 = ∂̂L(f(y)) = ∂̂F (f)(y) + ∂X(f)(y)∂̂L(y) (1.9)

with ∂X(f)(y) ∈ Ô×
L (by [15], §6, Cor. 2). Thus ∂̂L(y) belongs to ÔL since ∂̂F (f)(y) ∈ ÔL.

This entails ∂̂L(ÔL) ⊆ ÔL and ∂̂L(P̂L) ⊆ P̂L by [11], Prop. 1.1.

For the iterative part we use induction on k: By the induction hypothesis, in the identity

0 = ∂̂
(k)
L (f(y)) =

n∑
i=0

k∑
l=0

∂̂
(k−l)
F (ai)∂̂

(l)
L (yi) (1.10)

all terms with l < k belong to ÔL. Thus

n∑
i=0

ai∂̂
(k)
L (yi) =

n∑
i=0

ai

∑
P

lj=k

( i∏
j=1

∂̂
(lj)
L (y)

)
∈ ÔL. (1.11)

Here again all terms with lj < k belong to ÔL. We therefore conclude that

n∑
i=0

ai i yi−1∂̂
(k)
L (y) = ∂̂X(f)(y) ∂̂

(k)
L (y) ∈ ÔL (1.12)

which leads to ∂̂
(k)
L (y) ∈ ÔL as above and hence ∂̂

(k)
L (ÔL) ⊆ ÔL.
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In order to verify ∂̂
(k)
L (P̂L) ⊆ P̂L, for a y ∈ P̂L we can use an element z ∈ P̂F with

x · z = y and x ∈ Ô×
L . Then from

∂̂
(k)
L (y) = ∂̂

(k)
L (x · z) =

k∑
l=0

∂̂
(k−l)
L (x) ∂̂

(l)
F (z) (1.13)

we obtain ∂̂
(k)
L (y) ∈ P̂L since ∂̂

(l)
F (z) ∈ P̂F for all l ∈ N by assumption. This proves (a).

In case L/F is a finite Galois extension of fields with Gal(L/F ) = G, by its construction
the global D-ring O′

L is G-stable with ring of invariants (O′
L)G = O′

F . Since moreover
O′

L/O′
F is unramified, O′

L/O′
F is a Galois extension of (differential) rings by Definition

4.2.1 in [7] (including Remark (4)) with Gal(O′
L/O′

F )= G. Thus global D-rings fit well
into the concept of Galois ring extensions.

The most basic global (iterative) D-rings are the subring

Z(t) := {g

h
| g, h ∈ Z[t], cont(h) = 1} (1.14)

=
⋂

P∈PQ(t)

OP with PQ(t) = Pt,Q(t)

of Q(t) and its localisations Z(t)S for S ⊆ PQ(t) finite. Applying Proposition 1.1(a) then
shows that every function field F of one variable over a number field K contains (iterative)
D-subrings O′

F with Quot(O′
F )= F and which are unramified over some Z(t)S.

1.3 Integral Global Differential Modules

Now we start with a global D-ring (O′
F , ∂F ) as defined in Section 1.1. A free O′

F -module
M of finite rank is called a global differential module (global D-module) over O′

F if there
exists a derivation

∂M : M → M with ∂M (a · x) = ∂F (a) · x + a · ∂M (x) for a ∈ O′
F , x ∈ M. (1.15)

A global D-module (M,∂M ) over O′
F is called integral (or locally bounded) if in addition

for all P ∈ P′F and all l ∈ N there exists an O′
F -basis B

(l)
P of M with

∂M (B(l)
P ) ⊆ Pl ·M. (1.16)

This definition extends the definition of an integral (or bounded) local D-module given in
[11] in a natural way to the global case.

A global D-module (M,∂M ) over a global ID-ring (O′
F , ∂∗F ) is called a global iterative

differential module (global ID-module) over O′
F if, besides ∂M , the full family of higher

derivations ∂∗M =
(
∂

(k)
M

)
k∈N

, where ∂
(k)
M := 1

k!∂
k
M , maps M into itself. This defines an

iterative derivation

∂
(k)
M : M → M, x 7→ ∂

(k)
M (x) =

1
k!

∂k
M (x) for all k ∈ N. (1.17)

The next theorem shows that if O′
F carries the structure of an ID-ring, the notions of an

integral (locally bounded) and an iterative D-module coincide.
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Theorem 1.2. Let (M,∂M ) be a global D-module over a global ID-ring (O′
F , ∂∗F ). Then

the following are equivalent:

(a) (M,∂M ) is integral (locally bounded),

(b) (M,∂∗M ) is an iterative differential module.

Proof. The equivalence of (a) and (b) holds locally for p-adic D-modules by [12], Prop.
8.1. Thus Theorem 1.2 is true for the D-modules (M ⊗OF

ÔP, ∂M ⊗ ∂̂F ) for all P ∈ P′F .
But this implies the global equivalence of (a) and (b).

2 Global Picard-Vessiot Rings

2.1 Definition of Global PV-Rings

First we have to adapt the definition of a Picard-Vessiot ring to our situation: Let (M,∂M )
be a global D-module over a global D-ring (O′

F , ∂F ), where the derivation of M/O′
F is given

by a matrix A ∈ (O′
F )m×m with respect to some O′

F -basis B = {b1, . . . , bm} of M . Assume
K is the field of constants of F and O′

K = O′
F ∩K.

A D-ring (R, ∂R) ≥ (O′
F , ∂F ) is called a pseudo Picard-Vessiot ring (or PPV-ring for short)

for M over O′
F if

(1) R/O′
F is a O′

F -simple D-ring, i.e., R does not contain proper differential ideals P
with P ∩ O′

F = (0),

(2) there exists a fundamental solution matrix Y = (yij)m
i,j=1 ∈ GLm(R) with ∂R(Y ) =

A · Y ,

(3) R/O′
F is generated by the coefficients yij of Y for i, j = 1, . . . ,m and det(Y )−1,

(4) R/O′
F does not contain new constants, i.e., the ring of differential constants KR of

R coincides with O′
K .

A PPV-ring (R, ∂R) is called a Picard-Vessiot ring (or PV-ring) for M over O′
F if in

addition

(5) the ring of invariants of R under the group of differential automorphisms AutD(R/O′
F )

equals O′
F .

In the classical case where the ring of differential constants is an algebraically closed field,
condition (5) follows from conditions (1)-(4). In the more general situation here the notion
of a PV-ring is indeed stronger than the notion of a PPV-ring (compare [4] for examples).

In order to study first examples of global PV-rings, let (F, ∂F ) be a function field of one
variable over a number field K with derivation ∂F whose field of differential constants
coincides with K. Further let L/F be a finite Galois extension with group G without
new constants and let ∂L be the unique extension of ∂F to L. Then inside L we can find
a G-stable global D-Ring O′

L unramified over O′
F := O′

L ∩ F such that in addition O′
F
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is a principal ideal domain (by choosing the set SL of exceptional primes big enough).
Then by Proposition 1.1(b), O′

L/O′
F is a differential Galois extension of rings with group

G. Since by construction O′
L is a free O′

F -module of rank m :=#G, its dual M is a D-
module over O′

F with the dual derivation ∂M . More precisely, if y1, . . . , ym is an O′
F -basis

of O′
L with ∂L(yi) =

∑m
j=1 aijyj the derivation ∂M of M with respect to the dual basis

B = {b1, . . . , bm} is given by ∂M (b1, . . . , bm) = −(b1, . . . , bm) ·A with A = (aij)m
i,j=1. Then

obviously (O′
L, ∂L) is a D-ring containing a solution space of M and fulfilling conditions

(1)-(4). Thus (O′
L, ∂L) is a PPV-ring over O′

F for M . Since moreover all γ ∈ G commute
with ∂L, G is the group of differential automorphisms AutD(O′

L/O′
F ) and (O′

L)G = O′
F by

construction. Hence O′
L/O′

F is a PV-extension with the finite Galois group G ∼= Gal(L/F ).
Obviously all finite groups arise as differential Galois groups of global PV-extensions in
this way.

2.2 Construction of Global PV-Rings

Now we want to prove that for any global (iterative) D-module (M,∂M ) with a non singular
point of degree one over a global (iterative) D-ring (O′

F , ∂F ) there exist PPV-extensions
R/O′

F for M , where, in addition, (R, ∂R) is an iterative D-ring in the iterative case.

Here a point of degree one in O′
F means a place ℘ of O′

F /O′
K unramified in O′

F /O′
K(t) and

of residue degree one over O′
K . Then the completion F̂℘ coincides with the completion

K̂(t)(t−c) for some place (t − c) of degree one (or (t−1) resp.) in O′
K(t). Thus (t − c) is

a local parameter for ℘ and F̂℘
∼= K((t − c)). Further we have a Taylor map from the

valuation ring O′
℘ of ℘ inside O′

F

τ℘ : O′
℘ −→ K((t− c)), f 7−→

∑
k∈N

(
∂

(k)
F (f)

)
(℘)(t− c)k (2.1)

which uniquely extends to O′
F and defines a differential monomorphism τ℘ : O′

F −→
K((t − c)) over O′

K . The point ℘ is called non singular if it is a regular point for the
D-module M ⊗O′

K
K̄ over an algebraic closure K̄ of K, i.e., if M becomes trivial over

K̄((t − c)). Obviously any global D-module M over a global D-ring O′
F inside a rational

function field F = K(t) has infinitely many non singular points of degree one.

Theorem 2.1. Let (M,∂M ) be a global (iterative) D-module of rank m over a global
(iterative) D-ring (O′

F , ∂F ) with ring of differential constants O′
K . Let further ℘ be a non

singular point for M of degree one.

(a) There exists a PPV-ring (R, ∂R) over O′
F for M with fundamental solution matrix

Y ∈ GLm(R) which satisfies Y (℘) ∈ GLm(O′
K). In the iterative case R in addition

is equipped with an iterative derivation ∂∗R.

(b) The property Y (℘) ∈ GLm(O′
K) uniquely determines the PPV-ring (R, ∂R) or (R, ∂∗R),

respectively, up to (iterative) differential isomorphisms.

Proof. Let A ∈ (O′
F )m×m be a representing matrix of ∂M with respect to some O′

F -basis
of B of M . The construction of R follows the general line explained for example in [14],Ch.
1.3. Let

U := O′
F [GLm] = O′

F [xij ,det(xij)−1]mi,j=1 (2.2)
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be the coordinate ring of the general linear group GLm over O′
F . Since the elements xij

are algebraically independent over O′
F for i, j = 1, · · · ,m , the ring U becomes a D-ring

(U, ∂U ) when we define

∂U (X) = A · X for X = (xij)m
i,j=1. (2.3)

In case both O′
F and M are equipped with an iterative derivation, all matrices A(k) for ∂

(k)
M

belong to (O′
F )m×m and thus define an iterative derivation ∂∗U = (∂(k)

U )k∈N on U . If P is a
maximal differential ideal in U with P ∩ O′

F = (0), the quotient ring R := U/P becomes
an O′

F -simple (iterative) D-ring containing a fundamental solution matrix Y = (yij)m
i,j=1

with the images yij of xij in R. Obviously, R/O′
F is generated by the entries yij of Y and

by det(Y −1).

In order to find such a ring R without new constants we have to be more specific. By
assumption there exists a non singular point ℘ of degree one for M with local parameter
(t− c) ∈ O′

F . First we want to extend the Taylor map τ℘ : O′
F −→ K((t− c)) to U . For

this purpose we choose initial values xij(℘) ∈ O′
K with X(℘) = (xij(℘))m

i,j=1 ∈ GLm(O′
K),

for example xij(℘) = δij (Kronecker delta). Then from ∂
(k)
U (X) = A(k) · X we obtain

(∂(k)
U (xij))(℘) ∈ K for all k ∈ N by recursion. Since U/O′

F is generated by the xij , this
leads to an extension

τ℘ : U −→ K((t− c)), xij 7−→
∑
k∈N

(
∂

(k)
U (xij)

)
(℘)(t− c)k (2.4)

of τ℘ depending on the matrix of initial values X(℘) at ℘. By construction, τ℘ is a
differential homomorphism whose image in K((t−c)) is a τ℘(O′

F )-simple D-ring generated
by τ℘(xij). Thus the kernel of τ℘ defines a maximal differential ideal P �U with P ∩O′

F =
(0) and hence R := U/P gives one of the rings constructed above (with P depending on
X(℘)). Since the Taylor map τ℘ factors over R we have a Taylor map

τ℘ : R −→ K((t− c)), yij 7−→
∑
k∈N

(
∂

(k)
R (yij)

)
(℘)(t− c)k (2.5)

(still depending on X(℘)). Obviously, the image of the ring of differential constants KR

of R lies inside K. Because of R∩F = O′
F , this implies KR

∼= τ℘(KR) = O′
K , proving (a).

For (b), assume we have two fundamental solution matrices Y, Ỹ of M in some PPV-rings
R and R̃ of M , respectively, with Y (℘) ∈ GLm(O′

K) and Ỹ (℘) ∈ GLm(O′
K). By the

general theory of PV-rings there exists a matrix C ∈ GLm(K̄) such that Ỹ = Y · C. By
specializing t 7→ c we obtain Ỹ (℘) = Y (℘) ·C showing C ∈ GLm(O′

K). Thus R and R̃ are
(iterative) differentially isomorphic over O′

K .

The unique normalized PPV-ring for M constructed in Theorem 2.1 will be denoted by
RM in the sequel.

Corollary 2.2. If in Theorem 2.1 (M,∂∗M ) is an ID-module over an ID-ring (O′
F , ∂∗F ),

then the solution space V = O′
K〈yij |i, j = 1, ...,m〉 of M inside RM has the property

τ℘(V ) ≤ O′
K [[t− c]]. (2.6)
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Proof. We only have to observe that in this case aside from A(℘) := τ℘(A)|t=c, all matrices
A(k)(℘) := τ℘(A(k))|t=c belong to (O′

K)m×m.

2.3 Globally Bounded PV-rings

First let us recall the following definition introduced by G. Christol ([1], Ch. 4.1): A
formal power series y ∈ K[[t]] over a number field K is globally bounded if

(1) for all p ∈ P∗K the p-adic radius of convergence of y at 0 is positive and

(2) there exists a positive number n ∈ N such that y ∈ OK [ 1
n ][[t]].

Here P∗K is the union of the set of finite places PK and the set of archimedean places of
K.

In the following we call a global D-module M/O′
F and its PPV-ring RM/O′

F , respectively,
globally bounded if there exists a non singular point ℘ of degree one for M with local
parameter (t− c) such that some solution space τ℘(V ) of M inside K[[t− c]] is generated
by globally bounded power series in (t− c). Obviously, this definition does not depend on
the chosen non singular point and on the specific matrix of initial values Y (℘) ∈ GLm(O′

K).

Theorem 2.3. Let (M,∂M ) be a global D-module over a global ID-field (F, ∂∗F ). Then the
folllowing are equivalent:

(a) (M,∂M ) is globally bounded,

(b) M is a global ID-module over a suitable global ID-ring (O′
F , ∂∗F ) inside F .

Proof. By [3], Thm. 6.3 (or [11], Thm. 2.1, respectively) solutions of an integral (bounded)
p-adic differential module have radius of convergence rp = 1. By [11], Prop. 5.1, this
remains true for p-adic ID-modules and shows rp = 1 for p ∈ P′K . For all p ∈ PK the
values of the coefficients of the representing matrices A(k) of ∂

(k)
M are bounded by psk for

some s > 0 (depending on p). Thus for any p ∈ SK we obtain rp > 0. The same holds
for the archimedean places since the entries yij of a fundamental solution matrix Y are
analytic in an open disc around c. Hence Corollary 2.2 proves the implication (b) to (a).

Now let (M,∂M ) be a globally bounded D-module over F with solution space V ⊆ RM

and τ℘(V ) ≤ OK [ 1
n ][[t−c]] =: O′

K [[t−c]]. Then there exists a fundamental solution matrix
Y of M in RM with τ℘(Y ) ∈ GLm(O′

K [[t− c]]) and τ℘(∂(k)
R (Y )) ∈ O′

K [[t− c]]m×m by using
Taylor series. Hence for the representing matrices A(k) of ∂

(k)
M we find

τ℘

(
A(k)

)
= τ℘

(
∂

(k)
R (Y )

)
· τ℘

(
Y −1

)
∈ O′

K [[t− c]]m×m. (2.7)

But this implies A(k) ∈ O′
F where O′

F ⊆ F denotes a global ID-ring lying over O′
K , i.e.,

with O′
F ∩K ⊇ O′

K .

Combining Theorem 1.2 and 2.3, we see that over global ID-rings (O′
F , ∂∗F ) the notions of

locally bounded (= integral), globally bounded and iterative D-modules coincide.
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3 Reduction of global Differential Modules

3.1 Reduction of Global PV-Rings

Throughout this chapter (M,∂∗M ) is a global iterative (or integral) D-module over a global
ID-ring (O′

F , ∂∗F ), where the higher derivations ∂
(k)
M of M with respect to some O′

F -basis
B = {b1, . . . , bm} of M are given by suitable matrices A(k) ∈ (O′

F )m×m. Choosing p ∈ P′K
and P ∈ P′F above p, we obtain the residue fields

Kp := O′
K/p ∼= Fq and FP := O′

F /P, (3.1)

where FP is a finite extension of Fq(t) without new constants. Provided the existence of
a non singular place ℘ of degree one for M in O′

F , Theorem 2.1 proves the existence of
a normalized PPV-ring RM/O′

F without new constants. Dividing by the ideal PRM we
obtain the residue ring

R̃M := RM/PRM (3.2)

which is obviously an FP-algebra.

On the other hand for F := FP, an F-vector space M̃ with basis B̃ = {b̃1, . . . , b̃m}
together with an iterative derivation ∂∗

M̃
= (∂(k)

M̃
)k∈N given by ∂

(k)

M̃
(B̃) = −B̃Ã(k), where

Ã(k) are the residue matrices of A(k) ∈ (O′
F )m×m modulo P, defines an iterative D-module

(M̃, ∂∗
M̃

) as studied in [12] and [13], respectively. By loc. cit. Ch. 3 and 4, respectively,
there exists an iterative PV-ring for M̃⊗K K̄ at least over F̄ := K̄⊗KF . In case F contains
a non singular point ℘̃ of degree one for M̃ , an argument like the one given in the proof of
Theorem 2.1 shows that there indeed exists a normalized iterative PPV-ring RM̃ over F
without new constants. As before, RM̃ is uniquely determined up to iterative differential
isomorphisms by the property that a fundamental solution matrix Ỹ of M̃ in RM̃ at ℘̃ has
initial values in GLm(K).

The next proposition shows that the reduced PPV-ring R̃M and the PPV-ring of the
reduced D-module RM̃ coincide for P ∈ P′F .

Proposition 3.1. Let (M,∂∗M ) be a global ID-module over a global ID-ring (O′
F , ∂∗F ) with

a non singular point ℘ of degree one for M in O′
F . For P ∈ P′F , let (M̃P, ∂∗

M̃
) be the

reduced module over FP with reduced point ℘̃. Then the rings

R̃M
∼= ˜τ℘(RM ) ∼= τ℘̃(RM̃ ) ∼= RM̃ (3.3)

with M̃ = M̃P are isomorphic as iterative D-rings.

Proof. By assumption ℘ is a non singular point for M with local parameter (t − c), say.
Hence M is trivial over the field K((t−c)). Moreover, Corollary 2.2 shows that the Taylor
map τ℘ is an iterative differential monomorphism

τ℘ : RM → O′
K((t− c)) ≤ K((t− c)). (3.4)

Since by construction PRM is an iterative differential ideal of RM with PRM ∩ O′
K = p,

the Taylor map τ℘ sends y ∈ PRM on to τ℘(y) ∈ pO′
K((t− c)). Thus τ℘ commutes with

the reduction modulo P showing

R̃M = RM/PRM
∼= ˜τ℘(RM ) ≤ Kp((t− c)). (3.5)
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Now let Y ∈ GLm(RM ) be the fundamental solution matrix of M with Y (℘) = I (identity

matrix). Then the reduced Taylor image τ̃℘(Y ) belongs to GLm(Kp[[t− c̃]]) and its entries

together with det
(
τ̃℘(Y )

)−1 generate R̃M as a τ℘̃(FP)-algebra. Because of

˜τ℘

(
A(k)

)
= τ℘̃

(
A(k)

)
and ˜τ℘

(
A(k)(℘)

)
= τ℘̃

(
Ã(k)(℘̃)

)
(3.6)

τ̃℘(Y ) is a fundamental solution matrix of the reduced differential module M̃ := M̃P. Thus
M̃ becomes trivial over Kp((t− c̃)). Now let Ỹ be any fundamental solution matrix of M̃
in Kp((t− c̃)) with Ỹ (℘̃) ∈ GLm(Ky). Then by the general theory of iterative PV-modules

in [12] or [13], there exists a matrix C ∈ GLm(K̄) with τ̃℘(Y ) = Ỹ ·C. Reduction modulo
℘̃ shows C ∈ GLm(K). This proves

τ℘̃(RM̃ ) ∼= τ℘(R̃M ) and RM̃
∼= R̃M (3.7)

since τ℘̃ also is a differential monomorphism.

Corollary 3.2. Let (M,∂∗M ) be a global ID-module over a global iterative D-ring (O′
F , ∂∗F )

with non singular point of degree one. Then for almost all P ∈ P′F

dim(RM̃ ) = dim(RM )− dim(O′
F ) = dim(RM )− 1, (3.8)

where (M̃, ∂∗
M̃

) is the reduced ID-module modulo P.

Proof. This corollary follows from Grothendieck’s Generic Flatness Lemma. More pre-
cisely, by [5], Cor. 14.5, there exists an element 0 6= a ∈ O′

F such that for any prime ideal
P ∈ P′F with a /∈ P there are prime ideals Q � RM with Q ∩ O′

F = P, and that for any
such a pair

dim((RM )Q/P(RM )Q) = dim(RM )Q − dim(O′
F )P. (3.9)

For Q maximal over PRM this implies

dim(RM/PRm) = dim(RM )− dim(O′
F ) (3.10)

for almost all P ∈ P′F , which by Proposition 3.1 proves the assertion.

3.2 An Algebraicity Criterion

From Corollary 3.2, we obtain the following criterion for the algebraicity of PPV-rings of
global D-modules which has been conjectured in [12], p. 51. By abuse of notation (M,∂∗M )
is called algebraic over O′

F if RM/O′
F is algebraic.

Theorem 3.3. Let (M,∂∗M ) be a global ID-module over a global ID-ring (O′
F , ∂F ). Then

(a) M is algebraic over O′
F if and only if its reduction M̃P is algebraic over FP for

almost all P ∈ P′F .

(b) M has finite differential Galois group (scheme) GalD(M) = G if and only if its
reduction M̃P has iterative differential Galois group (scheme) GalID(M̃P) ∼= G for
almost all P ∈ P′F .
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Proof. Since statements (a) and (b) are preserved by finite extension of constants, we can
assume without loss of generality that O′

F contains a non-singular point of degree one for
M .

Obviously, an algebraic ID-module M over O′
F reduces to an algebraic ID-module M̃P

over FP for almost all P ∈ P′F . In case M is not algebraic over O′
F , we have dim(RM ) >

dim(O′
F ) = 1. Hence by Corollary 3.2, dim(RM̃P

) > 0 holds for almost all P ∈ P′F . Thus
RM̃P

/FP is not algebraic, which proves (a).

In case M has finite differential Galois group (scheme) GalD(M) then by [12], Prop. 8.10,
for almost all P ∈ P′F the reduced module M̃P has Galois group (scheme) GalID(M̃P) ∼=
GalD(M). If GalD(M) is not finite then RM/O′

F and thus almost all RM̃P
/FP are not

algebraic, thus proving (b).

3.3 The Link with Grothendieck’s Conjecture

Grothendieck’s p-curvature conjecture asserts that a global D-module M is algebraic if for
almost all primes p ∈ Z the p-curvature is zero, i.e., ∂p

M = p!∂(p)
M vanishes on the modulo

P reduced module M̃P for P above p.

According to Grothendieck’s conjecture the following conjecture should be true:

Conjecture 3.4. Any global ID-module (M,∂∗M ) over a global ID-ring (O′
F , ∂∗F ) is alge-

braic.

To prove Conjecture 3.4, by Theorem 3.3 it would be enough to show that reductions
modulo P lying in Kp((t)) of globally bounded solutions of linear differential equations at
a regular point are algebraic over Kp(t).

The truth of Conjecture 3.4 would already imply an interesting algebraicity criterion for
formal power series over number fields.

Eisenstein’s Algebraicity Criterion. Let f =
∑

k∈N akt
k be a formal power series over

a number field K. Then the following are equivalent:

(a) f is algebraic over K(t),

(b) f is regularly differentially finite and globally bounded.

Here an element f ∈ K[[t]] is called regularly differentially finite if it is a solution of a
linear differential equation over K(t), which is regular at 0. The proof that (a) implies (b)
is due to G. Eisenstein (reported in [6]). Eisenstein’s intention was to develop at least a
necessary condition for the algebraicity of solutions of differential equations. The converse
implication (b) to (a) would follow from Conjecture 3.4. Unfortunately the property being
globally bounded is not sufficient at singular points. Examples for this phenomenon are
presented, for example, in [16], Ch. 4(g).

The link with Grothendieck’s p-curvature conjecture would then be given by the following
second conjecture:

12



Conjecture 3.5. Let (M,∂M ) be a global D-module over a global D-ring (O′
F , ∂F ) with

vanishing p-curvature for almost all primes p ∈ Z. Then the solutions of M near a non
singular prime ℘ of degree one in F for M are given by locally bounded power series over
the field of constants K of F .

Obviously Grothendieck’s p-curvature conjecture follows from Conjecture 3.4 and 3.5.
Thus these two conjectures could indicate a way of approaching its proof.
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