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Abstract— The efficient computation of large eddy current
problems with finite elements requires adaptive methods and
fast optimal iterative solvers like multigrid methods. This paper
provides an overview of the most important implementation
aspects of an adaptive multigrid scheme for time-harmonic eddy
currents. It is shown how the standard multigrid scheme can be
modified to yield an O(N) complexity even for general adaptive
refinement strategies, where the number of unknowns N can
grow slowly from one to the next refinement level. Algorithmic
details and numerical examples are given.

I. INTRODUCTION

The computational work to solve time harmonic eddy
current problems with finite element methods (FEMS) is
dominated by the solution of the resulting linear systems
of equations. For this reason, fast iterative solving strategies
becomes necessary.

One of the currently fastest methods is the multigrid method
that operates on a hierarchy of grids. Moreover, this method
can be designated as “natural” in some sense, if one thinks
of another key feature of an efficient electromagnetic compu-
tational software: Adaptivity, which allows the resolution of
strongly local effects and enables the automatic generation of
adequate meshes. The subsequent application of a posteriori
error estimation and local mesh refinement in the adaptive
computation will create the very hierarchy of grids a multigrid
scheme operates on.

In this paper we will focus on the various algorithmic
aspects to realize an efficient adaptive multigrid scheme,
yielding a computational software tool for time harmonic eddy
current problems.

The outline of the paper is as follows. In the next section,
the (variational) eddy current formulation based on the electric
field is introduced. In section three, we look at important
aspects of the applied edge finite elements and details of the
adaptive red-green-refinement scheme, as well as the error
estimator and refinement strategy. Section four is devoted
to the construction of the local multigrid scheme for time
harmonic eddy currents including detailed implementation
aspects. Finally, in the last section convergence and robustness
of the proposed local multigrid scheme is examined when

applied to several time-harmonic eddy currents examples,
including a realistic gas insulated switchgear (GIS) with non-
trivial geometry.
1. E-BASED EDDY CURRENT FORMULATION
The eddy current model is a magneto-quasistatic approxi-
mation of the full Maxwell-equations. It reads
curlE = —iwrv'H

curlH=js+cE

in O (1)
in Q, @)

where  is a three-dimensional bounded domain with exterior
normal vector field n on its boundary I". As usual, w denotes
the angular frequency, E and H stand for the electric and
magnetic field, respectively, and js is the imposed current
density (generator current). The material coefficients o and
v are L>°(Q)-fields and denote the conductivity and the
magnetic reluctivity, respectively. We denote the part of the
domain where o > 0 by Q¢ and its complement by Q;, where
we assume o = 0.

The eddy current model is reasonable if two conditions are

met, see [1] for a proof:

1) The frequency is low enough, such that the wavelength
is much larger than the spatial region of interest, i.e.
w\/l/_/e < 1.

2) The conductivity is high enough, such that no space
charges need to be taken into account in the conductive
region, i.e. we/o < 1.

Equations (1) and (2) have to be supplemented by appropri-

ate boundary conditions on T". We assume electric boundary
conditions on the part I'p C I" of the boundary,

nxE=g, 3)

and magnetic boundary conditions on the remaining part T"y,

nxH=0. 4

Note that the restriction to zero magnetic boundary conditions
is only for simplicity, since none of the examples presented
later has non-zero magnetic boundary conditions.



There are two dual ways to cast Eq. (1)- (4) into a varia-
tional formulation, see e.g. [2]. Here, we chose the “electric”
formulation, using Eqg. (1) in strong and Eq. (2) in weak form.

Defining the space

Ug) :={ueH(cur; Q) nxu=gonIp},

the variational formulation reads: Find E in U(g), such that

/chrlE~curlE’dx+iw/JE~E’dx

Q Qc

_ fiw/jc,wE’dx VE' € U(0). (5)
Q

Note that (5) does not uniquely define E in whole 2—an
electrostatic component in € still needs to be fixed. However,
since this can easily be done in a post-processing step by
solving a Poisson problem in 7, this is not a restriction, see
e.g. [3]. Moreover, curl E, and thus the magnetic field H, the
currents and the Ohmic losses are uniquely defined, which are
of primary interest in the majority of modeling situations.

I1l. ADAPTIVE FINITE ELEMENTS

Solutions of time harmonic eddy current problems usually
show strongly local phenomena due to the skin effect or edge
and corner singularities at material jumps and boundaries. In
order

« to minimize the computational resources (time and mem-
ory) or
« to compute a solution with maximal accuracy for given
computational resources,
it is necessary to construct optimal meshes which resolve these
local effects without being extremely fine everywhere in Q.
These optimal meshes will be automatically constructed
with the aid of an a posteriori error estimator, as shown in
the algorithm in Fig. 1.

procedure Adaptive Computation
{
repeat
{
assemble discretization
solve system
estimate error
if (error < tolerance or no resources available)
then stop
adapt mesh

Fig. 1. Adaptive computation.

In the following we will look at the discretization, error es-
timation and mesh adaptation in more detail, whereas solving
the linear system of equations will be postponed to section IV.

A. Discretization

To discretize problem (5) we rely on H(curl; 2)-conformal
lowest order edge elements on simplicial meshes 7, often
called Whitney-1-forms, referring to the very structure the
edge elements are embedded in—the Whitney complex. One
important consequence of this structure is the existence of dis-
crete potentials, which are important e.g. for the construction
of appropriate smoothers, see [4].

The simplicial meshes 7;, cover Q"—an adequate polyhe-
dral approximation of {2—and are assumed to be consistent,
i.e. for two distinct simplices T € 7, and T’ € T, their
intersection T'N T is either empty, a node, an edge or a face
of 7. Thus, no hanging nodes exist.

Denoting the edge element function associated to the edge
with index ¢ by &, we will end up with the complex symmetric
system

Ax=Db,

where the matrix and right hand side vector coefficients read

Ay = /chrlfi -curl§; dx—&—iw/a{i -, dx
Qh Qh
b = —iw/jg €, dx.
ok,
The dimension of the system is the number of edges in
the mesh. In case the (geometrically approximated) Dirichlet-

boundary T'% is non-empty, the system can be reduced to the
“free edges” with non-prescribed voltages as usual.

B. Local Error Estimator

To apply the algorithm in Fig. 1, we use the residual based
error-estimator presented in [5].

Let E;, be the discrete solution. The error estimate has been
shown to be reliable and efficient, i.e. for the error E — E,
we have

cn<|E-Eyu| <Cn,

with constants ¢, C. Furthermore, n has a local sum represen-

tation,
"= (6)
TeTh

which can be used to indicate the error distribution.
The ny are computable element-wise with low cost using
low order quadrature rules and consists of three parts,

nr =\ )2 + ()2 + ()2

which measure the different aspects of the error in Ampeére’s
law, Eq. (2). (Remember that, using an electric formulation,
Faraday’s law is satisfied pointwise, whereas Ampeére’s law is
satisfied only “mesh-weakly”, i.e. for h — 0.)



We list the estimated error components for completeness,
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where by [-] 7 we denote the jump along an element face, 7 (T)
is the set of faces bounding element 7" and material coefficients
indexed by 7" and F' denote the limit from the element 7" and
from the neighbor element at face F', respectively.

Particularly, since for Whitney-1-forms we have H =
const. element-wise, curlH;, = 0 in every T, (n) mea-
sures the deviation from Ampére’s law in the interior of
the elements. The terms (n3)? and (n%)2 measure the jump
of the tangential magnetic field and the normal jump of
currents across element faces, respectively, where Ampére’s
law implies zero jumps in both cases.

C. Mesh Adaptation

1) Selection Strategy: Given the local errors {nr}rer,
several strategies exists to decide which elements shall be
refined, see e.g. [6]. In this paper, we use a simple maximum
strategy, as shown in the algorithm in Fig. 2, where typical
values for £ are £ = 0.25 or £ = 0.50.

procedure SetRefinementMarks(7,, {nr}r, ¢ € (0,1))
{
Nmaxz < ,lr%a;rxh (nT)
forall (T € 73,) do
if (N7 > &€ Nimae) then mark T for refinement

Fig. 2. Simple selection strategy.

2) Red-Green Refinement: The marked elements will be
regularly refined, e.g. by the so called “red-rule”, where in
2D a triangle is subdivided into for congruent triangles, see
[7], and in 3D a tetrahedron is split into 8 son-elements in a
special way, see e.g. [8]. These son-elements are associated to
three similarity classes.

Consequently, since the number of generated similarity
classes stays bounded, the subsequent application of the reg-
ular refinement rule will not detoriate the element-quality, i.e.
regular refinement is a stable refinement.

However, not all elements are usually marked for refine-
ment. Thus, in order to avoid “hanging nodes”, so-called
“green closure” elements are introduced, which connect the
regularly (“red”) refined elements. Finally, unrefined elements
are copied to the next refinement level, usually called “yellow

copy-elements”. Remember that, in order to apply the geo-
metrical multigrid techniques presented in the next section,
a hierarchy of grids {7;};, 7o = 7y, will be generated, i.e.
after refinement, the father elements still exist in memory. An
example situation with “red”, “green” and “yellow” elements

is shown in Fig. 3.

Fig. 3.  Two cubes build of tetrahedra grid (left), Red-Green refined grid
(right), where the very left tetrahedron has been refined by the red rule. The
tetrahedra of the right cube are not refined, they are yellow copy elements.
The green closure connects the refined and unrefined elements in a consistent
manner.

The green-refinement, however, is not stable, i.e. subse-
quent application of the described refinement in the following
adaptive passes may generate elements with decreasing quality
(more and more obtuse angles).

This problem can be solved by

1) the rule “only red elements can be refined”—note that

on the initial grid 7, all elements are red by definition—

2) and by making use of the hierarchical structure.

This means, that the red-green refinement is not a mere
map between two grids 7, — 741, but between two
grid-hierarchies (“multi-grids”) {7;}o<i<z — {7, hi=o<i< 1/,
where 7, = 7, and usually (but not necessarily) L > L.

The global red-green refinement used works as follows: First
the refinement-marks are restricted to the lower mesh-levels
and, if already possible, green closure elements are introduced
(top-down-phase). Then, at every level, starting with the lowest
level (bottom-up-phase)

« green closure elements are removed if necessary,

« new red elements are inserted,

o new green elements are inserted (closure computation)

« and other elements are copied to the finer level.

By doing so, green elements, that otherwise would be refined
again, are replaced by regular refined elements and the result-
ing global refinement algorithm is stable. For more details, see
[8] and [9].

Finally, we note that there are several ways to compute the
green closure. One possibility is to use a complete rule set,
which enables the refinement algorithm to connect every pat-
tern induced by the refined region to every pattern induced by
the unrefined region. Such a complete set of rules is avaliable
for simplices in the software-package /G, see [10], where
the 242 non-regular refinement rules has been automatically
generated to prevent programming errors. Additionally, and
also for non-simplex elements, it is possible to use a rule-set
that will be computed at run-time, see [9, Chapter 6.9], and
also guarantees the closure of the refined region in one element
layer.



Note that generally using an incomplete set of rules, where
regular refinement is used if the rules do not apply, may lead
to unintended large refined regions.

IV. LoCcAL MULTIGRID METHODS

The hierarchy of grids {7;}; and the edge element dis-
cretization on each level induce a hierarchy of linear systems
of equations

Ale:bl l:O,...,L.
This hierarchy will be used by the multigrid method to solve
the actual problem at level L efficiently with optimal amount
of work, i.e. the computational work (time and memory) grows
only linear in the number of unknowns Ni.

The main idea of multigrid is to use a classical iteration
on each level (e.g. a Gauss-Seidel scheme) that can easily
remove oscillatory error components and is therefore called
a smoother, but cannot efficiently damp non-oscillatory error
components. Then the problem is restricted to a coarser grid
where it is solved resulting in a coarse grid correction that
reduces the smooth error components. The idea can be applied
recursively. For details, see [11].

The optimality of the multigrid method depends on two
conditions:

1) The convergence rate is independent of the number of
unknowns uniformly bounded away from one— roughly
speaking the number of iterations will not grow for more
unknowns.

2) The computational work for one iteration is O (Ny,).

The second condition implies a geometrical growth of the
number of unknowns,
Ni>qNi—1,

l=1 L

for some ¢ > 1, hence the amount of work for one multigrid
iteration can be bounded by O(F‘IlNL).

Using uniform refinement, this condition is easily met.
However, in case of strongly locally refined grids, the condi-
tion can be violated. In the following subsections, we explain
how condition two can be recovered even for these situations
by using the concepts of local grids and vector classes.

A. The Active Set

Applying a multigrid sweep we think of a linear correction
scheme defined by the matrix B; of the form

x;T! = x| +cj with ¢; = Bydj and d} = b, — A; x] .

The underlying idea is to restrict the correction to an active
set A;, which is defined by all degrees of freedom located
at refined elements (i.e. red and green elements). Note that
similar ideas go back to [12] and [13].

B. Vector Classes and Local Grids

In addition to the restriction of the multigrid correction to
the active set, we require that the computation of the defect d;
and the smoothing can be performed on every level without
communication to lower levels.

These goals can be achieved by local grids 7,'c C 7;
which can be defined by introducing a vector class class)(p) €
0,1,2,3 for every degree of freedom p € P;, where P; is the
set of all degree of freedoms on level .

We define

3, if pisin the active set A;,

2, if class)(p) # 3 and there isa T € 7;,
such that p,q € P;[T]

with class)(¢) = 3,

classi(p) == q 1, if class)(p) # 3, class(p) # 2,
and there isa T € 7;,

such that p,q € P;[T]

with class)(q) = 2,

0 otherwise,

where P;[T] denotes the degree of freedoms at element 7T'.

The vector class of a degree of freedom is its distance to
the active set defined by the matrix graph. A correction of a
degree of freedom p with classi(p) = 3 changes the defect
for all p with class;(p) > 2. In order to compute these, the
solution is necessary for p with class(p) > 1.

The introduced vector classes directly leads to the definition
of a local grid at level [,

T'°¢ .= {T € Tj| class)(p) > 2 for at least one p € P[T]} .

Since at level 0 classg(p) = 3 for all p € Py, it follows
zz'oloc — 7—0

Only the local grids 7;'°>—not the global 7;—exist as
objects in memory. This is important, because otherwise the
memory requirement may not increase geometrically during
the adaptive refinement, thus violating the second condition
for the optimality of multigrid. Fig. 4 exhibits the difference
between local and global grids by means of a 2D-grid hierar-
chy created by local refinement.

C. Hierarchical Consistency

We will write shortly x!°c, A!°° for the restriction of
vectors and matrices on the local grid. In order to com-
pute the defect and the right hand side indeed on local
grids, the correction- and the solution-vector, which are
usually distributed over several levels, must be (hierarchi-
cally) consistent: A family of local vectors {xfoc}lzo ,,,,, I IS
called hierarchically consistent, if x!¢[p] = x/°¢ [p]
P, with classj(p) < 3, [ =1...,L. Inthe same manner,
a family of local matrices {A}*°};—o.. . is called hier-
archically consistent, if Al°°[p,q] = Al°°[p.q] Vp,q €
P, with class(p),classi(q) <3, I=1...,L.



Fig. 4.

2D-hierarchy of global (left) and local (right) grids.

In contrast to the solution vector, the defect is not consistent,
but can be reconstructed from the local defects recursively by

il = dgoc[p] if clas?,l(p) >2 I=1.....L.
d;°%[p] otherwise

(8)

In the same way, the right hand side vector b is defined.

Therefore, one has to take care that only d/°¢[p] will be

restricted with
p € NDM, := {q € Pi|q & P41 or class;11(p) > 2},

NDM, is called new-defect-set. Note that the prolongation of
the correction does not need such a restriction.

D. Local Multigrid Cycle

Now we are in the position to write down the algorithm
of a local multigrid cycle, where Si°¢(cl¢, dl°¢) denotes the
application of a local smoothing sweep, including an update
of the defect, see Fig. 5.

procedure MGC°¢ (i, cloc, d'o¢)

{
if (I = 0) then solve AL cloc = dloe
else {
{
for (1 <i <) do Slo¢(cloe, dlee)
dj*[p] — ri*[p,-]d}*° Vp e NDM;_,
o —0
for (1 <i<+)doMGC (I —1,clog,dl9)
W%OC - péoc Céo_c1
d%oc - d%oc _ AéOC W%OC
C%oc - C%OC + Wéoc
for (1< i < vy) do Slee(cloe, o)
}
}

Fig. 5. Local multigrid cycle.

Finally, we note that for the smoothing of problems in
H(curl; Q), standard smoothing procedures will not work due

to the large kernel of the curl operator. Special smoothers have
been designed by Hiptmair [4] and Arnold Falk and Winther
[14]. These smoothers need slightly enlarged local grids, see
[1]. These enlarged local grids can be seen in some of the
examples in the next section.

V. NUMERICAL EXAMPLES

The described concepts and algortithms have been im-
plemented in the adaptive finite element software EMyG
(electromagnetics on unstructured grids), which is based on
the simulation toolbox /G, see [1], [10]. In this section EM;,G
will be used to compute several problems. We will start with
some simple academic examples to study the basic behaviour,
then we will move on to a TEAM benchmark problem. Finally,
a realistic gas insulated switch-gear (GIS) will be computed.

A. Uniformly Refined Cube

In this example we study the iterative application of a
V(1,1)-multigrid cycle using the Hiptmair-smoother with sim-
ple Gauss-Seidel sweeps.

The domain is the unit-cube Q = (0,1m)? with Dirichlet
boundary conditions n x E = 0 and zero excitation. Conse-
quently, zero is the solution of the problem. The initial grid,
see Fig. 6, will be uniformly refined using the red-rule.

Here, we are interested in the asymptotic convergence
speed which is defined by the maximum eigenvalue of the
iteration matrix of the multigrid cycle. A good and computable
approximation for this value is the mean reduction-rate or
measured convergence-rate

d(m)H m
(L
0 )
|27

where d(Lm) is the mth defect on level L.

The iterations have been started with a random solution
vector x(9). To minimize the dependence of the measured
convergence-rate d{™ on the initial solution x(®

« the iteration is not terminated until the initial defect has

been reduced by the large factor 10%° and

« the experiment is repeated several times and the mean

value of the measured convergence rates will be taken as
final value.
The resulting measured convergence rates are displayed in
Tab. | for varying scaling 5 := w o /v. Clearly, the convergence
rates are practically uniformly bounded away from one and the
scheme is robust in the relative scaling of the coefficients.

TABLE |
CONVERGENCE RATES OF THE UNIFORMLY REFINED CUBE

Bm > L=1[L=2]L=3[L=4]L=5

0.01 0.15 0.27 0.35 0.38 0.40
1.00 0.14 0.28 0.35 0.38 0.40
100.00 0.20 0.31 0.34 0.37 0.39
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Fig. 6. Grid 7o, 72 and 74 of the uniformly refined cube.

B. Locally Refined Cube

Now, we modify the previous experiment by starting with
the uniformly refined grid hierarchy at level L = 3, but then
we subsequently refine the cube at one corner locally, see
Fig. 7. Note that the non-colored elements in Fig. 7 are not
part of the local grids as described in Sec. 1V and do not need
any additional memory on the displayed grid level.

Fig. 7.

Grid 73, 74, and 75 of the locally refined cube.

Table Il shows the convergence rates applying the local
multigrid method to this model problem. Comparing the
convergence rates with the convergence rates of the uniformly
refined cube in Tab. I, one can recognize a drop in the
convergence rate from level 3 to level 4 for the locally refined
cube. This can be explained by the lower mesh quality of
the green closure that will be computed for the first time
at level 4. During the following refinement the mesh-quality
does not further detoriate because of the stability of the red-
green-refinement. In addition, the convergence rates are still
uniformly bounded away from one and are robust w.r.t. the
relative scaling of the coefficients.

TABLE Il
CONVERGENCE RATES OF THE LOCALLY REFINED CUBE

B/m > [[L=3]L=4]L=5]L=6]L=7

0.01 0.35 0.43 0.42 0.41 0.41
1.00 0.35 0.44 0.40 0.40 0.40
100.00 0.34 0.43 0.41 0.41 0.41

C. Local Multigrid Pre-conditioner and Jumping Coefficients

The proposed local multigrid cycle can be used as a pre-
conditioner, i.e. it can be accelerated by Krylov subspace
methods like GMRES, BiCGStab [15] or TFQMR [16]. Here,
we study the performance of a BiCGStab solver with local

V(1,1)-multigrid pre-conditioner in case of jumping coeffi-
cients.

The computational domain is again the cube Q = (0, 1m)3.
The domain is subdivided into two disjoint subsets ; :=
(3m, 2m)3 and Q, := Q\ Q. The initial triangulation is
displayed in Fig. 8(a). It is constructed by 12 hexahedra, each
divided into 6 tetrahedra. The initial triangulation has been
locally refined with the aid of the error estimator, see Sec. IlI.

In the refinement-strategy & = 0.25 has been used.
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Fig. 8. Coarse grid 7o and 7 for the interior cube occupied by a highly
permeable material (last line in Tab. I11).

The coefficients are non-constant. We set

if x S Ql s
otherwise,,

if x € Ql s
otherwise

and vary vy and oy, while w = 1s~!. The initial solution is
zero. The excitation is realized by inhomogeneous Dirichlet
boundary conditions n x E = e, at the cube faces x = const.
and y = const. At the other two faces homogenous Neumann
boundary conditions n x v curl E = 0 are applied.



The number of BiCGStab-iterations using the local V(1,1)-
multigrid pre-conditioner for a reduction of the defect by a
factor of 102° are shown in Tab. Ill, the associated number of
unknowns for the finest meshes are shown in Tab. IV.

TABLE 1l
NUMBER OF ITERATIONS FOR JUMPING COEFFICIENTSUSING LOCAL MG

Vi [ o01/(S/m) [L=1 [ =2 [ L=8 [ L=4 [ L=5 [ L=6

1 1 22 27 26 28 - -

1 10% 26 25 29 35 37 36

1 10~% 26 24 24 26 25 28

10% 1 26 24 23 26 25 28

10~% 1 26 27 31 37 38 39
TABLE IV

NUMBER OF UNKNOWNS ON THE FINEST MESH FOR JUMPING
COEFFICIENTSUSING LOCAL MG

o/ /) [ e,

1 1 1438398
1 10* 522210
1 1074 711500
10% 1 709 934
1077 1 590 678

A drop in the convergence speed can be observed if
woy > 1 (highly conductive interior cube) or if v; < 1
(highly permeable interior cube). In both cases singularities
at edges and corners of 21 will arise, limiting the regularity
of the solution. However, the number of iterations does not
practically depend on the number of unknowns. The magnetic
field and the final mesh for the second case is visualized in
Fig. 9 and Fig. 8(b), respectively.
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Fig. 9. ReH (left) and Im H (right) along a cut if the interior cube is

occupied by a highly permeable material (last row in Tab. 1ll), L = 5. There
are singularities along the edges and corners of the interior cube.

D. TEAM 7 Benchmark Problem

To validate the proposed algorithms and their implementa-
tions for a more realistic situation, we consider the TEAM
benchmark problem 7 (see [17]). The problem consists of
an aluminum plate (¢ = 3.526 107 S/m) with a hole and an
excitation coil above the plate with a time-harmonic driving
current of 2742 A. The driving current reaches the maximum

TABLE V
NUMBER OF ITERATIONS AND GRID SIZE OF THE TEAM7 BENCHMARK

[ L=0 [ L=1] L=2 [ L=3 [ L=4] L=5

Nt || 5.610° | 4.510% | 7.210% | 8.010% | 1.610° | 3.810°
Nge 6.710% | 5.310% | 8.810% | 1.010° | 2.010° | 4.710°
er [ — [ 15 [ 15 [ 16 | 15 | 16

at wt = 0. The computational domain Q was artificially
restricted to a cube with 1m edge length with boundary
conditionsn x E=0on T.
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Fig. 10. Coarse grid 7o of the TEAM 7 benchmark problem. The grid of
the surrounding air is not displayed.

To generate a hierarchy of grids we start with the base-level
grid 7y, see Fig. 10, and refine uniformly once yielding 7;. The
grid levels [ > 1 are generated by adaptive local refinement
using the residual error estimator. Grids up to level 5 are
generated.

For the solution of the linear systems of equations, again,
we apply BiCGStab with a local V(1,1)-MG-pre-conditioner
with a Hiptmair-smoother.

In contrast to the previous examples, the TEAM 7 bench-
mark problem also consists of non-conductive regions (the
complement of the aluminum plate). This means that using
the singular formulation (5) the solution E is not unique in
the non-conductive region, whereas the magnetic field is well
defined. Thus, during a MG solution procedure, the L2-norm
of components in the kernel of the curl curl-operator can
reach very large values, possibly leading to cancellation errors.
To prevent this, an approximate orthogonal projection to the
complement of the kernel is applied after each multigrid-
sweep. This can be done at low costs by an additional
multigrid-sweep on a Poisson problem. For more details,
see [18].

Table V shows that the number of iterations remains con-
stant during the refinement. Hence, the local multigrid pre-
conditioner works very well for the benchmark problem.

The results at level 5 are displayed in Fig. 11-13 and exhibit
good agreement with measured data.
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TEAM 7 benchmark problem compared with measured values.

E. Gas Insulated Switchgear

The final example is a realistic model of a gas insulated
switchgear (GIS). It mainly consists of an aluminum casing
and three interior conductors, see Fig. 14(a). For simplicity
the casing is assumed to be perfect conductive. This turns the
original problem with an unbounded domain into an interior
one with electric boundary conditions n x E = 0.

The conductivity of the interior conductors is 26—
32 - 10°S/m, depending on temperature. For the simulation
we take the mean value.

In contrast to the TEAM 7 benchmark problem, the cur-
rents in the conductive regions are not induced currents, but
impressed currents. In each of the three conductors a time
harmonic current of 4000 A at frequency 50 Hz is prescribed,
with a phase shift of ¢ = %” between each conductor current
(three-phase current). The excitation is realized by thin current
sources at the terminals on one side of the GIS.

For the solution we apply a local V(2,2)-multigrid solver
with a symmetric Gauss-Seidel Hiptmair-smoother. In order to
obtain some typical convergence rates for realistic complicated

(b) Re H at cut plane

(c) Im H at cut plane

Fig. 13.
problem.

Local grid and magnetic field results of the TEAM 7 benchmark

geometries, Krylov subspace acceleration is not used for this
experiment.

The initial and the final grid after an adaptive computation
are shown in Fig. 14. Due to the already large initial grid, there
are only two levels of refinement. The resulting convergence
rates and the mesh sizes are displayed in Tab. VI. The number
of complex unknowns is 900k for the finest mesh.

TABLE VI
CONVERGENCE RATES AND MESH SIZES OF THE GIS-MODEL

[ L=0 ] L=1] L=2

Nr 78107 [ 6.310° | 7.510°
Ne¢ 9.310% | 7.410° | 9.010°
) — 0.58 0.59

It can be observed that the convergence rate is not as good
as in the previous academic examples, although we used a
V(2,2)-cycle in the GIS experiment, whereas in the academic
examples we used only a V(1,1)-cycle-MG. The reason is
that for complicated realistic problems it is much harder to
generate initial meshes with high quality which has a strong
influence on the MG convergence. Nevertheless, even for this
realistic example, acceptable convergence rates are obtained,
see Tab. VI.

In Fig. 15 the resulting magnetic field and the current
density are displayed along cuts through the GIS geometry.



V1. CONCLUSION

The multigrid method has been used to solve large sparse
complex symmetric linear equations arising from time har-
monic eddy current modelling with finite elements based on
a singular electric formulation.

The multigrid method features optimal complexity and is
one of the fastest available solution strategies. However, the
application of local adaptive mesh refinement may lead to a
growth in the number of unknowns from one refinement level
to next, that is too small to preserve the optimality of standard
multigrid with global smoothing. It has been shown how this
problem is overcome by a local multigrid method, that has
been implemented by the concepts of local grids and vector
classes. These concepts naturally

1) restrict the amount of memory to store locally refined
grids and
2) localize the smoothing to the refined region at each level.

The investigation of several numerical examples has demon-
trated the validity of the presented local multigrid scheme and
its implementation, even for realistic eddy current applications
with very complicated geometry. Furthermore, it has been
shown, that the presented local multigrid method works well
with or without Krylov subspace acceleration.
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Fig. 14. CAD geometry of the GIS model, grids on level 0 and 2.
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