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Summary 
This work evaluated the efficacy of parvoviral vectors expressing human IP-10 or mouse TNFα 

as tools against subcutaneous glioblastoma tumors in two animal models. 

First, new recombinant MVMp- and H1- based vectors expressing human IP-10 or 

mouse TNFα were constructed. It was shown that parvoviral vectors could effectively infect both 

human and murine glioblastoma cells. High amounts of the transgene proteins were produced 

upon infection with particular vectors. All tested cell lines were sensitive to wild type 

parvoviruses. 

Two animal models were established: murine Gl261 glioma cells were used for inducing 

subcutaneous tumors in C57/Bl6 mice and human U87 glioblastoma cells produced 

subcutaneous tumors in cd1 swiss nude mice. The antitumoral effects mediated in vivo by 

recombinant and wild type parvoviruses (MVMp and H1) were investigated in these animal 

models. 

High efficacy of IP-10 and TNFα-encoding parvoviral vectors could be demonstrated in 

both models.  

Infecting tumor cells with recombinant parvoviruses encoding IP-10 or TNFα as well as 

treating established tumors with these vectors provided conditions to observe antitumor effect.  

In nude mice combined IP-10/TNFα expression resulted with significant tumor growth delay, 

reduced tumor volume and prolongation of animal survival. This effect was not dependent on 

angiogenesis inhibition. It is possible that NK cells participate in observed antitumoral effects.  

The best therapeutic effect – complete tumor eradication – could be demonstrated in 

immunocompetent animals. This effect was reached when both types of virus (IP-10 and TNFα-

expressing) were administered simultaneously. Histological analysis and MRI study showed that 

antitumoral effects in this system (tumor growth delay, reduced tumor volume and prolongation 

of animal survival) were not dependent on the inhibition of angiogenesis. 

We were able to show that intact immune system is necessary to obtain a strong 

antitumor effect. Rechallenged animals are protected from tumor growth. Gl261 glioma cells can 

be specifically recognized by host spleenocytes. The data from the literature suggest that the 

main effectors in the antitumoral response could be CD8+ T cells. TNFα - expressing vector 

demonstrated the ability to support dendritic cell maturation. 

In the systems investigated here the effectiveness of wild type H1 and MVMp viruses 

could not be demonstrated. 

Taken together, the data obtained in this work are promising and suggest that 

recombinant parvoviruses are good candidates for gene therapy of glioma.  

In the future, antitumoral effects of these vectors should be investigated in the 

intracranial system like well-described Gl261 model. 
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Zusammenfassung 
Diese Dissertation wertet die Wirksamkeit parvoviraler Vektoren, die menschliches IP-10 oder 

TNFα der Maus exprimieren, als Hilfsmittel gegen subkutane Glioma in zwei Tiermodellen aus. 

Zuerst wurden neue rekombinante MVMp- und H1- basierte Vektoren, die menschliches IP-10 

oder TNFα der Maus exprimieren, konstruiert. Es wurde gezeigt, dass parvovirale Vektoren 

sowohl die menschlichen, wie auch die Glioma der Maus wirkungsvoll infizieren können. Nach 

der Infektion mit bestimmten Vektoren wurden hohe Mengen von transgenen Proteinen erzeugt. 

Alle getesteten Zelllinien waren zum Wild-Typ-Virus sensitiv. 

Es wurden zwei Tiermodelle eingerichtet: Mit Gl261 Gliomazellen der Maus wurden 

subkutane Tumore bei C57/BI6 Mäusen induziert und menschliche U87 Glioblastomazellen 

erzeugten subkutane Tumore in cd1 swiss Nacktmäusen. Die antitumoralen Effekte, die in vivo 

durch rekombinante und Wildtypparvoviren (MVMp und H1) vermittelt wurden, wurden in diesen 

Tiermodellen untersucht. 

Die hohe Wirksamkeit von  IP-10 und TNFα-transduzierenden Parvoviren konnte in 

beiden Modellen gezeigt werden. 

Das Infizieren der Tumorzellen sowohl mit IP-10 und TNFα-transduzierenden 

Parvoviren, als auch die Behandlung erzeugter Tumore mit diesen Tumoren schufen die 

Bedingungen, den antitumoralen Effekt zu beobachten. In Nacktmäusen erzeugte die 

kombinierte IP-10/TNFα- Exprimierung eine signifikante Tumorwachstumsverzögerung, 

verringertes Tumorvolumen und ein verlängertes Überleben des Tieres. Dieser Effekt war nicht 

abhängig von der angiogenetischen Inhibition. Es ist möglich, dass NK-Zellen einen Anteil an 

den beobachteten antitumoralen Effekten haben. 

Den besten therapeutischen Effekt – die vollständige Vernichtung des Tumors – konnte 

an immunokompetenten Tieren gezeigt werden. Dieser Effekt wurde erreicht, als man beide 

Typen des Virus (IP-10 und TNFα- exprimiert) gleichzeitig verabreichte. Die histologische 

Analyse und die MRI-Studie zeigten, dass der antitumorale Effekt in diesem System 

(Tumorwachstumsverzögerung, verringertes Tumorvolumen und ein verlängertes Überleben 

des Tieres) nicht abhängig sind von der Inhibition der Angiogenese. 

Wir konnten zeigen, dass ein intaktes Immunsystem notwendig ist, um eine starke 

antitumorale Wirkung zu erhalten.  Tiere, die zum zweiten Mal mit Tumorzellen infiziert wurden, 

waren vor Tumorwachstum geschützt. Gl261 Gliomazellen können besonders durch 

Wirtsmilzzellen erkannt werden. Angaben aus der Literatur lassen vermuten, dass der 

Hauptverursacher der antitumoralen Antwort CD8+ T-Zellen sein könnten. Der TNFα-

exprimierte Vektor demonstrierte die Fähigkeit, die Reifung dendritischer Zellen zu unterstützen. 

In dem hier untersuchten System konnte die Wirksamkeit des Wildtyps H1 und des MVMp-

Viruses nicht nachgewiesen werden. 
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Zusammenfassend gesagt sind die Daten, die in dieser Arbeit erzielt wurden, viel versprechend 

und legen nahe, dass rekombinante Parvoviren gute Kandidaten für die Gentherapie bei 

Gehirntumoren sind. 

In der Zukunft sollte der antitumorale Effekt dieser Vektoren im intrakranialen System, wie 

in dem gut beschriebenen Gl261-Modell, untersucht werden. 
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1 Introduction 

1.1 Gliomas 

Gliomas are primary central nervous system tumors that arise from astrocytes, 

oligodendrocytes or their precursors. Gliomas can be classified into several groups 

according to their histological characteristics; the most malignant of the gliomas is 

glioblastoma multiform (GBM). Malignant gliomas are characterised by biological 

features that make them intractable diseases. These include uncontrolled tumor cell 

proliferation, invasion into normal brain parenchyma, induction of tumor angiogenesis, 

inhibition of apoptosis and suppression of the immune system (Okada H. et al. 2001).  

Gliomas are refractory to most standard therapies, including surgical resection, radiation 

therapy and chemotherapy. Nearly all glioma patients die of their disease with a mean 

survival of one year. Despite of established treatments these tumors will recur and 

cause neurological deterioration and death (Dai C. et al. 2001). 

The new WHO Classification of Tumors affecting the Central Nervous System: 

In 1993 the WHO ratified a new comprehensive classification of neoplasms affecting the 

central nervous system. The classification of brain tumors is based on the premise that 

each type of tumor results from the abnormal growth of a specific cell type. To the 

extent that the behaviour of a tumor correlates with basic cell type, tumor classification 

dictates the choice of therapy and predicts prognosis. A shortened classification is 

provided below (Kleihues P. et al. 1993). 

 

Neuroepithelial Tumors of the CNS Other CNS Neoplasms 

Astrocytic tumors Tumors of the Sellar Region 

Oligodendroglial tumors   Hematopoietic tumors 

Ependymal cell tumors Germ Cell Tumors 

Mixed gliomas Tumors of the Meninges 

Neuroepithelial tumors of uncertain origin Non-menigothelial tumors of the meninges 

Tumors of the choroid plexus Tumors of Cranial and Spinal Nerves 

Neuronal and mixed neuronal-glial tumors Local Extensions from Regional Tumors 

Pineal Parenchyma Tumors Metastatic tumors 

Unclassified Tumors Tumors with neuroblastic or glioblastic 

elements (embryonal tumors) Cysts and Tumor-like Lesions 
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1.1.1 Molecular mechanisms involved in glioma development 

Molecular studies have identified some of the genetic changes that underlie the 

pathologic differences among astrocytic tumors; progression in tumor grade is 

associated with an ordered accumulation of mutations. Approximately 33% of low grade 

infiltrating astrocytomas have mutations detected in the p53 gene on chromosome 17p. 

Overexpression of PDGF (platelet-derived growth factor) and its receptors occurs in all 

grades of gliomas.  Low-grade astrocytomas (WHO grade 2) are characterised by 

overexpression of VEGF (vascular endothelial growth factor), TGFβ (transforming 

growth factor β) and chromosomal loss (parts) of 13q what results in RB 

(retinoblastoma) gene disorders. Amplification of cell cycle regulators (CDK4, MDM2) as 

well as protease overexpression occurs (Mentlein R. et al. 2003). Anaplastic 

astrocytomas (WHO grade 3) - whether found in preexistent low grade astrocytomas or 

detected de novo - have a similar incidence of p53 mutations but, in addition, show a 

loss of heterozygosity on chromosome 19q in more than 40% of cases. Progression 

from astrocytoma to anaplastic astrocytoma also involves mutations in other tumor 

suppressor genes including the retinoblastoma gene on chromosome 13q. Finally, 

glioblastomas have the same incidence of these genetic aberrations and in addition 70 

percent have lost heterozygosity for chromosome 10 and one third have amplification of 

the epidermal growth factor receptor (EGF-R) gene. High-grade gliomas show often 

overexpression of platelet-derived growth factor (PDGF) gene and expression of 

angiogenic factors such as vascular endothelial growth factor (VEGF) (Castro M.G. et 

al. 2003, Kyritsis A.P. et al. 1993). Glioma patients are often immunosuppressed. 

Molecules like transforming growth factor-β (TGF-β), IL-10 and prostaglandin E2 are 

reported to be involved in down-regulation of the cellular immune response in glioma 

patients. It can be manifested by induction of growth arrest and apoptosis in immune 

cells, suppression of MHCII expression and by inhibition of the development cytotoxic T 

lymphocytes (Castro M.G. et al. 2003). 

 

1.1.2 Glioma-directed therapy (standard therapies) 

Currently, the standard of care for the treatment of patients with high-grade malignant 

glioma is resection followed by focal radiotherapy (RT). Even when treated with 

aggressive combined surgery, chemotherapy and radiotherapy, in patients with gliomas 

recurrence occurs between 6 and 12 months. 
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1.1.2.1 Surgery 

For patients in whom surgical resection is possible, total resection should be the goal; 

the extent of tumor resection may be a decisive prognostic factor. However, complete 

resection is not possible in the majority of patients due to the lack of a defined tumor 

edge or localization in the critical areas of the brain. An aggressive removal of 

macroscopic tumor could influence early re-growth from tumor remnants and possibly 

influence survival. (Giese A. et al. 2001). Even partial resections improve body 

functions, relieve pressure in the brain and disrupt the brain-blood barrier. It also 

provides the space for tumor growth and growing cells are more sensitive to radiation 

and chemotherapy. The biopsies of inoperable tumors provide information for possible 

implementation of other therapies (Castro M.G. et al. 2003).^ 

 

1.1.2.2 Adjuvant therapy 

1.1.2.2.1 postoperative radiation therapy: 

Adjuvant therapy increases survival in patients with high-grade malignant glioma. It has 

become the standard adjuvant treatment for these patients. (Brandes A.A. 2003). 

Radiotherapy is necessary because extensive tumor infiltration into normal brain 

structures makes resection of the entire primary tumor impossible (DeAngelis L.M. 

2003). Stereotatcic surgery allows delivering high radiation doses directly to tumor 

mass, minimizing the exposure of normal brain tissue. Interstitial radiation therapy uses 

radioactive pellets implanted within the tumor. Hyperthermia is used to enhance the 

response of the tumor to the radiation and to the chemotherapy. Radiosensitizers and 

radioprotectors are drugs used either to sensitize tumor mass or to protect normal 

tissue (Castro M.G. et al. 2003). 

1.1.2.2.2 adjuvant chemotherapy: 

Patients treated with RT plus adjuvant chemotherapy had a survival advantage. BCNU 

(bischloroethyl nitrosourea; carmustine), PCV (the combination of procarbazine, 

carmustine and vincristine) and temozolomide are the most commonly used 

chemotherapy regimens in patients with recurrent glioma. BCNU and temozolomide are 

lipid-soluble agents that cross the blood-brain barrier. Systemic delivery of commonly 

used medicaments may cause haematological toxicity, skin reactions, hepatic toxicity 

and pulmonary toxicity. Meta-analyses have suggested that adjuvant chemotherapy, 
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specifically with nitrosurea-based regimens, is associated with improved survival. 

(Giese A. et al. 2001). Nevertheless, chemotherapy of brain tumors is not curative and 

the goals of the treatment are mainly to control the growth of the tumor and to maintain 

good performance and quality of life for the patient for as long as possible (Castro M.G. 

et al. 2003). 

 

Several strategies of local treatment were established. 

a) local chemotherapy 

- supraselective intra-arterial delivery. This method is based on the placement of 

microcatheters into branches of the midcerebral artery.  

- intralesional deposition of biodegradable polymers. Implanting biodegradable 

polymers, which show slow-release of encapsulated drug (for example BCNU) 

increases its concentration within the tumor. This strategy spares systemic 

toxicity. 

- convection-enhanced delivery. Convection-enhanced drug delivery is obtained by 

placing catheters into non-resectable tumors followed by a positive pressure 

infusion.  

b) radiation therapy 

Local radiation has very strict limitations regarding the size of treatable lesion. As 

radionuclides, iridium as well as iodine-125 has been used, with I-125 as 

temporary high-energy implants or permanent low-activity implants. Radiation 

point source can be also inserted stereotactically and left in place for a short 

period of a few minutes and removed after application of the total dose (Giese A. 

et al. 2001). 

 

1.2 Gene Therapy 

New approaches are developing very dynamically; for the moment they are used as 

adjuvant strategies complementing current strategies (surgery, radiation, 

chemotherapy). The resistance of brain tumors to the attempts at conventional therapy 

have made them particularly attractive for gene therapy trials.  
“Gene therapy” can be defined as the transfer of genetic material into a patient’s 

cells for therapeutic purposes. Such a definition includes a variety of therapeutic 

approaches. Over the last 10 years, more than 300 protocols for cancer and genetic 
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diseases have been initiated worldwide (Bansal K. et al. 2000). Genetic material can be 

introduced through direct delivery into the target organ (in vivo technique). This is the 

most common case for patients with brain tumors. Therapeutic agent is applied at the 

time of tumor resection or by means of stereotactic injections. Another method of 

genetic material delivery is ex vivo technique, where the cells are initially outside of the 

host and then implanted into affected area. Commonly used methods of delivering 

genes into cells are: 

- plasmid DNA injections  

- calcium phosphate transfection  

- electroporation  

- cationic liposomes  

- viral vectors (Bansal K. et al. 2000). 

Using the broad definition, gene therapy approaches fall into several categories:  

- gene transfer-based immunotherapy  

- enzyme/prodrug therapy  

- transfer of the therapeutic transgenes into cells  

- antisense strategies  

- viral vectors 

 

1.2.1 Gene transfer-based immunotherapy 

Attempts at gene therapy for boosting the activity of the immune system against cancer 

cells have often focused on activating cell-mediated immunity. It includes:  

- induction of increased immunogenicity of glial tumor cells by enhancement of the 

immune response using cytokines, for example by inducing the production of IL-

2,  IL-4 or GM-CSF within the tumor  (Okada H. et al. 1999) 

- reversal of tumor derived immunosuppression by enhancement of T cell 

activation (by upregulation MHC I on the tumor cell surface, upregulation of 

tumor antigenes, upregulation of B7 costimulatory antigens) (Parney I.F. et al. 

1997) 

- ex vivo manipulation of effector cells, for example manipulation of dendritic cells 

as tool for brain cancer immunotherapy by stimulating them with specific antigens 

or promoting their maturation (Aoki H. et al. 2001) 

- antibodies-coupled compounds delivery, for example anti-CD44 directed 

antibodies conjugated with isotopes or immunotoxines (Breyer R. et al. 2000) 
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- local application of activated tumor-infiltrating lymphocytes or NK cells. The 

interactions between activated lymphocytes and glial cells are still poorly 

understood, what makes such approaches unclear and risky (Ishikawa E. et al. 

2004) 

 

1.2.2 Enzyme/prodrug therapy 

In GDEPT (Gene-Directed Enzyme Prodrug Therapy) a gene encoding an enzyme that 

converts a nontoxic product into a toxic drug is delivered and expressed in tumor cells. 

The patient is then treated with a prodrug, and when it reaches the tumor cell, it is 

converted into toxic drug by the newly introduced enzyme. For malignant glioma, most 

interest has focused on inserting the herpes simplex virus thymidine kinase gene, 

followed by treatment with the prodrug ganciclovir. Thymidine kinase phosphorylates 

the ganciclovir, creating a toxic nucleotide analogue, which blocks the function of DNA 

polymerase, leading to the death of target cell. A variety of vectors have now been used 

to transfer the thymidine kinase gene, including retrovirus, adenovirus, herpes simplex 

virus, and direct injection into the tumor (Bansal K. et al. 2000). Herpes simplex 

thymidine kinase gene (HSV-tk) transfer followed by ganciclovir treatment as adjuvant 

gene therapy is reasonable and appears to be satisfactorily safe as an adjuvant to the 

surgical resection of recurrent glioblastoma, but any benefit appears to be marginal 

(Shand N. et al. 1999). 

 

1.2.3 Transfer of the therapeutic transgenes into cells 

Such strategy involves replacement gene therapy and/or induction of beneficial 

proteins. Replacement gene strategy intends to incorporate a functional gene, such as 

tumor suppressor gene into the cells of the patient because the gene of interest is 

defective or absent. For gliomas it could be a restoration of normal p53 function. This 

protein normally causes growth arrest in the G1 phase of the cell cycle in case of DNA 

injury. This gives the time for DNA repair. If DNA injury exceeds a critical repair 

threshold, p53 induces apoptosis.  Another example is RB protein that inhibits 

progression of the cell cycle. Adenoviral vectors to deliver genes coding for RB protein 

have demonstrated antitumor effects in animal models (Riley D.J. et al. 1996). 

Tumor angiogenesis can be targeted by gene transfer-mediated expression of 

anti-angiogenic agents.  In this approach an expression of beneficial protein is induced, 
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even if that protein is not actually deficient. An example is viral-mediated transfer of anti-

angiogenic peptide platelet factor 4 to inhibit endothelial proliferation (Tanaka T et al. 

1997). 

 

1.2.4 Antisense strategies 

The target of antisense therapy is to block the expression of cancer genes. Antisense 

constructs hybridize in an anti-parallel orientation to mRNA of intrest. During triple-helix 

formation process antisense constructs bind to double stranded DNA in the nucleus. 

Two main antisense strategies have been employed:  

- transfection of cells with antisense cDNA;  

- treatment of cells with the shorter antisense oligodeoxynucleotides (ODNs). 

For brain tumors therapy antisense constructs against the following genes were used: 

basic fibroblastic growth factor (bFGF), protein kinase C, isotype α (PKCα), insulin-like 

growth factor 1 (IGF-1), transforming growth factor β (TGFβ), vascular endothelial 

growth factor (VEGF) and many others. Antisense ODNs have been used successfully 

to block glioblastoma gene expression in vitro and expression of multiple genes within 

the CNS of experimental animals (Engelhard H.H. 1998). 

 

1.2.5 Viral vectors 

They can be used as effective vectors for transferring foreign genes into the cells in the 

approaches boosting the activity of the immune system, in the enzyme/prodrug therapy 

and in the transfer of therapeutic transgenes. Very often they are also used as direct 

oncolytic factors. 

Gene therapy using viral vectors for the treatment of brain tumors has proven to be a 

promising novel treatment modality. One of the first available reports instituting a 

relationship between viral infection and cancer regression appeared in 1912 when a 

woman suffering from cervical cancer was bitten by a dog, injected with the attenuated 

Pasteur’s viral vaccine and subsequently showed tumor regression. The properties of 

an ideal viral vector should include:  

- selectivity to neoplastic cells  

- minimal toxicity to normal tissue  

- systematic killing of tumor tissue  

- high efficacy.  
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The quantity of replication-competent viruses could potentially increase after 

inoculation; this benefit is not offered by any existing cancer treatments. Any viral-based 

gene therapy vectors to be useful in patients must be safe, potent against tumors and 

complement or ever synergize with existing standard therapies (Shah A.C.et al.2003).  

To the most studied viruses proposed for the use in the brain tumor gene therapy 

belong: 

 

1.2.5.1 Herpes simplex virus-1 (HSV-1) 

HSV-1 is a nuclear replicating, icosahedral, enveloped DNA virus. The HSV-1 genome 

is a linear, double stranded DNA duplex 152 kbp in length. It is non-integrating, 

neurotropic virus whose essential and non-esential genes have been identified. Genes 

involved in neurovirulence of HSV-1 are separate and distinct from those that confer 

oncolytic properties, such that deletion of the neurovirulence genes allows selective 

targeting to glioma cells without elimination of its oncolytic abilities. Furthermore, up to 

30 kbp of the HSV genome can be replaced with foreign DNA while still retaining the 

virus’ ability to replicate. The first engineered mutant of HSV-1 was a tk (thymidine 

kinase) deletion mutant. This mutation restricted viral replication to mitotic cells, which 

supply tk necessary for the replication. Another mutant of HSV-1, G207, retains its 

susceptibility to standard ani-HSV therapies like acyclovir, since the tk gene is intact. 

G207 passed some studies that confirmed its safety for the use in patients. HSV1716 is 

a single-mutant replication-selective virus with attenuated ability to replicate in neurons 

of the CNS (Shah A.C.et al.2003). 

In the clinical studies the safety of G207 and HSV1716 vectors was evaluated. 

G207 was moved into Phase I clinical trials in 2000. This dose-escalation study was 

intended to determine the maximally tolerated dose (MTD) and any dose-limiting 

toxicities of G207. The results showed the safety of vector administration. Injecting up to 

3x109 PFU did not cause any toxicity; there was no evidence of encephalitis or any 

major inflammatory reactions observed (Markert J.M. et al. 2000).  

HSV1716 underwent clinical trials to evaluate its toxicity in patients with recurrent 

malignant glioma. The study showed that at least up to 1x105 PFU of the vector could 

be administered without signs of side effects. Again, no MTD was established because 

the highest dose administered in the study was well tolerated (Rampling R. 2000). In 

2002 the Glasgow group reported a second clinical trial appraising the efficacy of 
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HSV1716 virus and suggesting that replication occurs in at least some of the high-grade 

gliomas treated with the intratumoral injections (Papanastassiou V. et al 2002). 

HSV-1 mutants serve not only to kill tumor cells vie infecting, replicating and 

lysing them, but also by functioning as vectors to deliver antitumor agents. Engineered 

HSV-1 that express IL-4 and IL-2 can increase antitumor efficacy in syngenic murine 

models of brain tumors over treatment with oncolytic HSV-1 that does not express these 

cytokines (Andreansky S. et al. 1998). 

 

1.2.5.2 ONYX-015 

Adenoviruses are non-enveloped viruses with a single, linear, double-stranded DNA 

genome of approximately 36-38 kbp in size. ONYX-015 is an adenovirus that selectively 

replicates in and lyses neoplastic cells with defects in p53 or the p53 pathway. A 

deletion in the 55 kD protein E1B resulted in its selective phenotype (Bischoff J.R. et al. 

1996). ONYX-015 has joined G207 and HSV1716 as the third selective, oncolytic and 

replication-competent virus to be investigated in a clinical trial for the treatment of 

malignant glioma. A Phase I study in patients with a malignant glioma demonstrated 

that injection of ONYX-015 into glioma cavities is well tolerated at doses up to 1010 PFU 

(Chiocca E.A. et al. 2004). Prior to this, the safety and potential efficacy of ONYX-015 

was evaluated in the treatment of head and neck cancers both in Phases I and II trials. 

In patients no dose-limiting toxicity was observed (the highest administered dose was 

1x1011 virus particles) and the adverse symptoms included mostly low-grade flu-like 

symptoms. In Phase II combining ONYX-015 with chemotherapy showed much greater 

efficacy and potential (Khuri F.R. et al. 2000), so a Phase III has been undertaken for 

head and neck cancer. 

01/PEME is another adenovirus engineered to replicate in a p53-dependent 

fashion. When infecting cells with intact p53, the virus prevents its own replication. 

CN706 has been genetically modified from the parent strain by the insertion of a 

prostate-specific enhancer, targeting the virus to prostate cancers. Ad5lucRGD 

adenovirus expresses a recombinant RGD fiber (Arg-Gly-Asp) sequence that interacts 

with aV integrins, which are abnormally expressed in many cancers (Suzuki K. et al 

2001). 

In human trials, adenoviral vectors caused inflammatory reactions, formation of 

antibodies to adenoviruses and transient fever, but they have not been linked to any 

human malignancies (Ylä-Herttuala S. et al. 2003). However, the first gene therapy-
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associated death occurred when a high dose of adenovirus vector was given 

intraportally into a patient who suffered from a genetic defect causing ornithine 

transcarbamylase deficiency. In retrospect, the death seems to have been a result of 

toxicity caused by the adenoviral vector in conjunction with the underlaying disease 

(Lehrman S. 1999). 

 

1.2.5.3 Newcastle disease virus (NDV) 

It belongs to avian paramyxoviruses (PMV). Nine members of this family have a single 

stranded, linear RNA. The total genome is roughly 16kbp. Replication of the virus takes 

place in the cytoplasm of the host cell. NDV was found to have increased replication 

efficiency in cancer cells compared to non-neoplastic human cells. Because it replicates 

in the host cell cytoplasm with strong cell-binding properties and exhibits great 

properties as an adjuvant, NDV was shown to be very potential as a cancer vaccine 

therapy. NDV-infected cells exhibit enhanced recruitment and activation of NK cells and 

TC cells. The hemagglutin-neuraminidase molecule expressed on the surface of infected 

cells has great costimulatory function. NDV facilities recognition of tumor cells via its 

strong induction of the cytokines TNFα and IFNγ (Zorn U. et al. 1994). 

A Phase I trial in the US looked at the safety of utilizing PV701, an oncolytic 

NDV, for 79 patients with various advanced solid cancers. The most common adverse 

event in this trial was fever and other flu-like symptoms. However, some serious 

adverse events were noted, with one death that may have been associated with virus 

administration (Pecora A.L. et al. 2002). A progressive shrinking of glioblastoma tumor 

was demonstrated in a patient treated with NDV vaccine (Csatary L.K. et al. 1999). 

NDV-infected cells have been investigated as cancer vaccines through treatment 

with both oncolysates and whole-cell vaccine. Oncolysate immunotherapies have been 

used in four clinical trials (one Phase I and three Phase II) in the US against advanced 

melanoma and in two Phase II clinical trials in Germany against advanced renal cell 

carcinoma. For the melanoma trials, two of the Phase II trials showed benefit of 

oncolysate vaccine use whereas the last showed no significant benefit (Shah A.C. et al. 

2003). Several clinical trials (Phase I and Phase II) have been conducted in the 

treatment of breast, ovarian, renal cell and colorectal carcinomas. Clinical trials of 

antitumor vaccination with an autologous tumor cell vaccine modified by virus infection 

demonstrated improvement of patient survival based on improved antitumor immune 

memory (Schirrmacher V. 2004). 
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1.2.5.4 Reovirus 

Reoviruses are non-enveloped viruses with a segmented, double-stranded RNA 

genome. Total genome is 18-30 kbp long. When reoviruses infect the cell, double-

stranded RNA can activate the host protein kinase (PKR), which shuts down protein 

synthesis to protect the cell from viral infection. Upregulation of Ras pathway interferes 

with PKR signalling. Therefore tumors with Ras mutation permit successful infection of 

reoviruses. In malignant gliomas Ras mutations can be rare. However, EGFR and 

PDGFR are commonly overexpressed in gliomas, what leads to overexpresion of Ras 

and up-regulation of the Ras signalling pathway (Wilcox M.E. et al. 2001). This property 

makes reoviruses interesting tool against tumors with functional p53 expression, which 

are resistant to adenoviruses like ONYX-015. Preclinical studies demonstrate that 

reovirus is a promising oncolytic agent for primary brain tumors in experiments in vitro, 

in vivo and ex vivo. 

The company Oncolytics reported about completed Phase I clinical study with 

reovirus (REOLYSIN ). The study examined the administration of escalating dosages 

of REOLYSIN® directly into subcutaneous tumors. No serious adverse events were 

attributed to the administration of the virus and no dose-limiting toxicity was reached 

(March 21, 2002 - Oncolytics Biotech Inc. Announces REOLYSIN® Phase I Clinical 

Trial Results -- Study indicates potential anti-cancer agent is safe for human use). 

In spring, 2002, Oncolytics initiated a clinical trial examining the use of 

REOLYSIN® in cancer confined to the prostate gland. Patients were treated with a 

single injection of REOLSYIN® directly into the prostate gland. Final results showed 

evidence of apoptotic tumour cell death in four of six patients, with no safety concerns 

(March 31, 2003 - Oncolytics Biotech Inc. Reports Presentation of Results from Interim 

Assessment of T2 Prostate Cancer Trial). 

A Phase I/II Clinical Trial to Evaluate Dose Limiting Toxicity and Efficacy of 

Intralesional Administration of REOLYSIN® for the Treatment of Patients with 

Histologically Confirmed Recurrent Malignant Gliomas was announced in 2002. Positive 

safety results of the Phase I study could be demonstrated (December 23, 2002 - 

Oncolytics Biotech Announces Positive Interim Safety Results from REOLYSIN® Phase 

I Malignant Glioma Study). 

In May 2004, the Company announced that the first patient had been enrolled in 

its systemic administration trial in the United Kingdom. The primary objective of 

Oncolytics' first systemic administration study is to determine the safety of REOLYSIN® 
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when administered intravenously. The secondary objective is to observe tumour and 

immune system response to intravenous infusion of REOLSYIN®, which will help to 

determine dosage levels in subsequent clinical studies (May 26, 2004 - Oncolytics 

Biotech Starts Patient Treatment in UK Phase I Cancer Trial Investigating Systemic 

Delivery of REOLYSIN®) 

 

1.2.5.5 Poliovirus-derived viruses 

An intergeneric poliovirus PV1 is an attenuated version of poliovirus. Polioviruses are 

non-enveloped RNA viruses that cause illnesses from minor infection to paralytic 

poliomyelitis as a consequence of acute neurovirulence. Intergeneric poliovirus PV1 

showed promising effects as anti-glioma factor in animal experiments. Poliovirus 

replicons are alternative candidates derived from poliovirus for the use in therapy of 

malignant glioma. They are replication-incompetent particles; due to deletion of capsid 

gene (P1) they cannot form progeny virions. The capsid gene can be substituted with a 

gene of interest such as the carcinoembrionic antigen, TNFα, IL-1 (Bledsoe A.W. et al. 

2000). 

Animal studies demonstrated that live-attenuated poliovirus has potent oncolytic 

activity against human neuroblastomas in vitro and in vivo and it may be useful for the 

treatment of advanced and refractory neuroblastomas, however, further studies are 

necessary to evaluate the safety of the method (Toyoda H. et al. 2004). 

Poliovirus replicons have been administrated to non-human primates with no 

consequent deleterious effects according to Replicon Neurothechnologies, Inc. (URL:     

http://www.replicontechnologies.com/Technology.htm). Replicon Technologies Inc. 

(RTI) announced that the National Cancer Institute (NCI) and Small Business Innovation 

Research Program (SBIR) have awarded RTI a Phase II grant of more than $750,000 to 

develop replicons (modified viruses that seek out and destroy cancer cells) as brain 

tumor therapies (Business Wire,  Nov 6, 2001 ). 

 

1.2.5.6 Vaccinia virus 

Vaccinia virus is a member of the Poxviridae family of viruses, and has also been 

studied as a possible virus for the use as an anti-tumor agent. The recombinant vaccinia 

virus expressing p53 was tested in combination with radiation therapy as an anti-tumor 

vector for the C6 rat glioma model, a p53-deficient tumor cell line. Antitumor effect can 
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be also obtained by the administration of vaccinia viruses expressing IL-2 and IL-12. 

Deletion of tk gene or vaccinia growth factor genes allows targeting the vector to 

neoplastic tissue (Shah A. et al. 2003) 

Vaccinia virus vectors have been applied for a few cancer therapy trials. The 

prostate-specific antigen expressed from vaccinia virus vectors in a phase I study on 

patients with advanced prostate cancer (Eder J. et al. 2000). Stable antigen levels and 

disease inhibition were obtained in some patients. In another study on mesothelioma 

tumors replication-restricted vaccinia virus expressing IL-2 was used for the intratumoral 

treatment. The study showed minimal toxicity and the expression of IL-2 lasted 2 up to 3 

weeks (Mukherjee S. et al. 2000). In a study on metastatic breast cancer the patients 

received repeated intramuscular injections of an attenuated vaccinia virus expressing 

the human MUC1 gene and the IL-2 gene. Partial tumor regression (>50%) was 

observed in 2 patients and stable disease in 15 patients (Scholl S. et al. 2003). 

Among current and terminated trials, retroviruses are the most frequently used 

(28%), closely followed by adenoviruses (26%). Poxviruses represent 3,4%, herpes 

simplex viruses 2,8% and AAV 2,1% of the trials (Lundstrom K. 2004). 

Once the safety and efficacy of these nonintegrating viruses through simple 

oncolysis has been proven, along with their utility in conjunction with standard therapies, 

these agents can be considered as potential gene delivery vectors. Many of these 

viruses can be genetically engineered to express therapeutic genes to further enhance 

efficacy profiles. Collectively, the clinical trials conducted thus far, as well as the results 

of ongoing preclinical studies involving the use of novel ‘virotherapy’ agents, have 

served to invigorate and expand the enthusiasm for cancer biotherapy, justify further 

clinical studies, and will hopefully soon succeed in extending the time and quality of the 

lives of terminally ill patients with malignant gliomas. The ultimate proof of the 

significance of oncolytic viral therapy in the treatment of glioma, either alone or in 

combination with other therapies, will require the successful performance of Phases II 

and III trials. 

1.3 Parvoviruses 

The first parvoviral isolates were derived from tumors and tumor cell lines (Kilham L. et 

al 1959). These facts initially brought parvoviruses into the class of oncogenic viruses, 

but this was not confirmed since parvovirus infections did not correlate with higher 

tumor incidence. On the contrary, later investigations revealed that parvoviruses could 
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prevent the formation of tumors in animal models (Dupressoir T. et al. 1989; 

Rommelaere J. et al. 1991).  

The Parvovirus Family subdivides into two subfamilies. The insect parvoviruses 

are classified in the Densoviridae subfamily and the vertebrate parvoviruses - in the 

Parvovirinae subfamily (see Table 1). 

Dependoviruses or adeno-associated viruses (AAV) require a coinfection with a 

helper virus for efficient productive infection. In the absence of such, they integrate into 

the host chromosome in a site-specific manner. When a latently- infected cell is 

superinfected with a helper virus (adeno-, herpes simplex-or human papilloma- virus), 

the AAV genome rescued, and replicates, leading to a productive infection. AAV capsid 

can package minus or plus single-strand genomes with equal efficiency. Humans often 

carry an asymptomatic AAV infection (Cheung A.K. et al. 1980). 

Family Subfamily Genus Characteristic Representatives

Parvoviridae      Parvovirinae     Autonomous PV

Parvovirus MVMi

FPV, CPV, PPV, 

Erythrovirus

Helper-dependent PV

Dependovirus

Densovirinae    Densovirus JcDNV
Iteravirus BmDNV
Contravirus AaDNV

Family Subfamily Genus Characteristic Representatives

Parvoviridae      Parvovirinae     Autonomous PV

Parvovirus H-1

KRV,
LuIII, GPV, ADV, BPV 

Erythrovirus B19, V9, SPV

Helper-dependent PV

Dependovirus AAV-1, AAV-2, AAV-3, AAV-4, 
AAV-5, AAV-6

Densovirinae    Densovirus JcDNV
Iteravirus BmDNV
Contravirus AaDNV

MVMp,MPV,

MPV – mouse parvovirus, MVM – minute virus of mice (prototype (p) or immunosupressive (i) strain), 
H-1 – H-1 parvovirus, KRV – Kilham‘s rat virus, FPV – feline panleukopenia virus, CPV – canine 
parvovirus, LuIII – LuIII virus, GPV – goose parvovirus, ADV – aleuthian mink disease virus, 
BPV – bovine parvovirus, SPV – simian parvovirus, B19 – parvovirus B19, V9 – human erythrovirus V9, 
AAV – adeno-associated virus, JcDNV – Junonia coenia desendovirus, BmDNV – Bombyx mori 
desendovirus, AaDNV – Aedes aegypti desendovirus

Family Subfamily Genus Characteristic Representatives

Parvoviridae      Parvovirinae     Autonomous PV

Parvovirus MVMi

FPV, CPV, PPV, 

Erythrovirus

Helper-dependent PV

Dependovirus

Densovirinae    Densovirus JcDNV
Iteravirus BmDNV
Contravirus AaDNV

Family Subfamily Genus Characteristic Representatives

Parvoviridae      Parvovirinae     Autonomous PV

Parvovirus H-1

KRV,
LuIII, GPV, ADV, BPV 

Erythrovirus B19, V9, SPV

Helper-dependent PV

Dependovirus AAV-1, AAV-2, AAV-3, AAV-4, 
AAV-5, AAV-6

Densovirinae    Densovirus JcDNV
Iteravirus BmDNV
Contravirus AaDNV

MVMp,MPV,

MPV – mouse parvovirus, MVM – minute virus of mice (prototype (p) or immunosupressive (i) strain), 
H-1 – H-1 parvovirus, KRV – Kilham‘s rat virus, FPV – feline panleukopenia virus, CPV – canine 
parvovirus, LuIII – LuIII virus, GPV – goose parvovirus, ADV – aleuthian mink disease virus, 
BPV – bovine parvovirus, SPV – simian parvovirus, B19 – parvovirus B19, V9 – human erythrovirus V9, 
AAV – adeno-associated virus, JcDNV – Junonia coenia desendovirus, BmDNV – Bombyx mori 
desendovirus, AaDNV – Aedes aegypti desendovirus

 
Table 1 Taxonomy of parvoviruses 

 

Only one member of the Erythrovirus Genus - B19 is known to be pathogenic to 

humans. Acute infection causes fifth disease in children, polyarthropathy syndromes in 

adults or chronic anemia due to persistent infection in immunocompromised patients. 

Infection in pregnancy can lead to hydrops fetalis with possible fetal loss or congenital 
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infection (Cassinotti P. et al. 1994). Autonomous parvoviruses cause infectious 

pathology in some animal species but none of them has been associated with human 

diseases (Rommelaere J. et al. 2001).  

 

1.3.1 Structure and properties of the parvoviral particle 

Parvoviruses are small (18 to 26 nm), nonenveloped, nuclear-replicating viruses. The 

parvoviral capsid packages a single-stranded DNA genome of about 5000 nucleotides. 

Full parvoviral particles have a density of 1.39-1.4 g/cm3 in CsCl gradients. They are 

stable in the pH range of 3 to 9, for 60 min at 56°C and can survive storage for a very 

long period of time without significant loss of infectivity. MVM is the best-studied 

member of autonomous parvoviruses up to date. Its particle has an icosaedrical shape.  

The capsids consist of three structural proteins VP1 (83-86 kDa), VP2 (64-66 

kDa) and VP3 (60-62kDa) with VP2 being the most prominent (80%). VP3, a cleavage 

product of VP2, is present in small, varying amounts in DNA-containing virions 

(Agbandje-McKenna M. et al. 1998). 

 

1.3.2 Gene expression 

The two promoters upstream of each of the two large ORFs at map units 4 and 38 are 

named P4 and P38, respectively. Two P4 transcripts, R1 (4.8kb) and R2 (3.3kb), are 

generated upon splicing and encode the two nonstructural proteins NS1 and NS2 (L, Y, 

R isoforms). The P38 transcript R3 (3.0kb) produces the VP-1 and VP-2 proteins after 

differential splicing (Morgan W.R. et al. 1986). 

Transcription from the P4-directed promoter is regulated by TATA and GC boxes 

localized between nucleotides 180 and 150 from the left end. The transcription factors 

TFIID and Sp1 bind to the viral TATA and GC boxes, respectively. The activity of the P4 

promoter is regulated in a cell cycle-dependent manner at the G1/S-phase transition, 

through E2F. P4 is repressed in confluent noncycling cells (contact inhibition), while 

transformation of cells with several oncogenes including ras and following uncontrolled 

proliferation, correlates with an increase in the activity of this promoter (Deleu L. et al. 

1998). 

 

P38 is a weak promoter directing transcription from localised nt 2005. It 

comprises a TATA and GC boxes, as well as a transactivation response region (TAR) 
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localised at nt –145 to –115. P38 has a low basal activity but can be transactivated by 

the viral NS1 protein. NS1 is binding sequence-specifically to an ACCA motif, which 

occurs at multiple positions through the parvoviral genome (Cotmore F. et al. 1995). 

 

1.3.3 Parvoviral proteins 

NS1 is an 83 kDa multifunctional protein. It is relatively stable with a half-life of 

approximately 6 hours (Miller C.L. et al. 1995). Some of its functions include NTP-

binding, helicase activity, nuclear targeting, homo- and hetero-oligomerization, DNA 

binding, site-specific DNA nicking. NS1 is the only viral DNA protein being essential for 

DNA replication in all cell types tested. It has also a transcription-activating domain in its 

C-terminal region (Krady K.J. et al. 1995). 

NS1 can also inhibit DNA replication from heterologous origins. For instance, 

SV40 ori-driven replication of hybrid plasmids was reduced in the presence of NS1 

when sequences from SV40 and either B19 (Beard C. et al. 1989) or MVMp 

(Tenenbaum L. et al. 1993) parvovirus were combined. NS1 expression was found to 

disregulate transcription driven by various nonparvoviral (including cellular) promoters 

like SV40, the Harvey-ras promoter and HIV I LTR promoter (Rhode S.L.III et al. 1987). 

A productive parvoviral infection may be associated with cell death, for which NS1 is 

considered to play a major role (Vanacker J.M. et al. 1995). H-1 parvovirus has been 

reported to induce apoptotic cell death in rat glioblastoma cells (Ohshima T. et al. 1998) 

and human leukemic U-937 cells. In the last system induction of apoptosis can be 

assigned to the cytotoxic non-structural proteins (Rayet B. et al. 1998). 

Minute virus of mice NS1 protein is a multifunctional phosphoprotein endowed 

with a variety of enzymatic and regulatory activities necessary for progeny virus particle 

production. To regulate all of its different functions in the course of a viral infection, NS1 

has been proposed to be modulated by posttranslational modifications, in particular, 

phosphorylation. NS1 is a target for PKClambda phosphorylation in vivo and that this 

modification is essential for the helicase activity (Nuesch J.P. et al. 2003). PKCeta 

phosphorylates NS1 and in consequence is able to activate the viral polypeptide in 

concert with PKClambda for rolling circle replication (Lachmann S. et al. 2003). 

 

NS2 is a small protein with a molecular weight of 23-25kDa. In contrast with NS1, NS2 

has a predominantly cytoplasmic localisation. In vitro and in vivo experiments point to 

the fact that NS2 of MVMp is essential for a productive viral infection in mouse (the 
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natural host) cells (Naeger L.K. et al. 1993). NS2 from MVMp interacts with 14-3-3 

protein family members (Brockhaus K. et al. 1996) and nuclear export factor CRM1 

(Bodendorf U. et al. 1999). It was also shown that the NS2 proteins of MVMp are 

required for efficient nuclear egress of progeny virions in mouse cells (Eichwald V. et al. 

2002). 

VP proteins are derived from differentialy spliced R3 transcripts. The VP1/VP2 ratio is 

about 1:5, and this is the proportion in which they appear in the capsid. However, empty 

capsids can be assembled from VP2 alone. The role of the VP proteins is first to 

assemble into empty capsids. The interaction between VP proteins and the 3‘ terminal 

hairpin end of RF (replicative form) DNA has been suggested to be involved in the 

subsequent displacement and packaging of single-stranded progeny DNA (Willwand K. 

et al. 1991). VP2 is necessary for the accumulation and encapsidation of virus progeny 

single-stranded DNA. VP1 is dispensable for these functions but is required to produce 

an infectious virion. Virus that lacks VP1 binds to cells as efficiently as wild-type minute 

virus of mice but fails to initiate a productive infection (Tullis G.E. et al. 1993). 

The virion of CPV (canine parvovirua) contains a potential nuclear localization 

signal as well as a phospholipase A(2) like domain in N-terminus of VP1. Permeability 

of endosomal membranes apparently changes during CPV infection, probably due to 

the PLA(2) activity of the virus. These results suggest that parvoviral PLA(2) activity is 

essential for productive infection and presumably utilized in membrane penetration 

process of the virus (Suikkanen S. et al. 2003). 

Parvovirus DNA replication and packaging occur in the nucleus. The process involves 

three different steps: the synthesis of the viral complementary (positive) strand 

(conversion) leading to the generation of a monomer length replicative form (mRF), 

DNA amplification through the formation of multimeric RFs, the subsequent packaging 

of single-stranded progeny DNA into preformed capsids and release (Cotmore S.F. et 

al. 1995).  
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1.3.4 Oncosuppressive effects of parvoviruses 

Persistent or latent infections with parvoviruses may significantly protect against 

spontaneous tumorigenesis. Epidemiological studies showed that hamsters that have 

survived parvovirus H-1 infections at birth, without a syndrome, had a fivefold lower 

cancer incidence than their uninfected siblings. When parvoviruses were used to infect 

tumor cells, which were subsequently implanted into rodents or dogs, inhibition of tumor 

development was observed in the recipient animals (Toolan H.W et al. 1967). 

Many human and murine cell lines of in vitro transformed cells of fibroblastic and 

epithelial origin were shown to be much more sensitive to viral infection than the normal 

cells from which they derive. Transformation by physical and chemical carcinogenes, as 

well as viral oncogenes (such as large T antigen of SV40, middle T antigen of 

polyomavirus, v-src, Ha-ras), correlates with an increased cytopathic effect of 

parvoviruses (Rommelaere J. et al. 1991). Conversely, the functional inactivation of the 

tumor suppressor gene product p53 was shown to correlate with a sensitisation of rat 

cells to H-1 virus infection (Telerman A. et al. 1993). It seems that the cell 

transformation coincided with the stimulation of an intracellular step(s) in the parvoviral 

life cycle, in particular viral DNA amplification and/or viral gene expression. 

Similarly to the in vitro transformed cells, many human cell lines established from 

various tumors (fibrosarcoma, epidermoid and mammary carcinomas, gastric cancer, 

hepatoma and lymphoma) are more susceptible to killing by MVMp or H-1 virus than the 

corresponding normal cells (for a review see Cornelis J.J. et al. 2001). Humans are 

hosts for a number of parvoviruses like the autonomous B19 as well as AAV-2, AAV-3 

and AAV-5. This gives hope of including some of these viruses or their components, in 

the arsenal of anticancer therapeutic agents. It should be stated however that tumors 

might arise in autonomous parvovirus-infected organisms (as shown, for instance by the 

isolation of parvoviruses from human tumor material implanted in animals). The 

antitumor response could be limited by the initial quantity of virus present at the site, by 

inefficient local production of new particles or by the host’s immune response. Hence, 

there is still need for optimizing the oncosuppressive activity of parvoviruses. Our 

approach to this end involves the development of parvoviral vectors combining the 

intrinsic parvoviral anticancer properties with the additional therapeutic effect of a 

transgene.  
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1.3.5 Vectors derived from autonomous parvoviruses 

Vectors have been derived from the autonomous parvoviruses MVMp, H-1 and LuIII. 

The development of vectors derived from MVMp and H-1 viruses has been hampered 

by low titres and contamination with replication-competent virus (RCV) that ist 

generated through homologous recombination with helper plasmids. Several 

approaches have been used to avoid recombination between vectors and helpers (for a 

review see Brandenburger A. et al. 2004). 

Kestler et al. demonstrated that the production of H1 viral vectors by 

cotransfection of recombinant clones and helper plasmids providing the structural 

proteins (VPs) in trans, drastically decreased when more than 800 bp was removed 

from the VP transcription unit (Kestler J. et al. 1999). To minimise recombination 

between the vector and helper genomes a cell line in which the MVM helper functions 

are inducibly expressed from a modified MVM genome that is stably integrated into the 

host cell chromosome can be used. Using this MVM packaging cell line, MVM vector 

stocks that contained no detectable helper virus could be reproducibly generated 

(Brandenburger A. et al. 1996). 

Dupont et al. have developed a second-generation MVMp-based vector system 

specifically designed to reduce the probability of RCV generation by homologous 

recombination. They constructed a new MVMp-based vector and a new helper genome 

with minimal sequence overlap. The generation of contaminating viruses in medium-

scale rMVMp preparations was substantially reduced (approximately 200 x), but not 

completely eliminated. The contaminating viruses arising from the new packaging 

system cannot initiate secondary infection rounds (so they are not RCVs) (Dupont F. et 

al. 2001). A new vector/helper system has been presented that takes advantage of the 

similarity between MVMp and H-1 (Wrzesinski et al. 2003). Viral sequences 

downstream of the transgenes were exchanged between MVMp and H-1 vectors. RCV 

production was greatly reduced in the chimeric vector stocks but it was not altogether 

abolished at least for the MVMp-based vector. Packaging an MVMp vector into an H-1 

capsid, and vice versa, abolished the generation of RCV after cotransfection. 

(Wrzesinski et al. 2003). 
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1.3.6 Autonomous parvovirus-mediated tumor therapy 

The anti-cancer effect of H-1 or MVM vector-mediated transduction of various 

cytokines/chemokines was evaluated by monitoring the formation of tumors following 

the implantation of human or mouse neoplastic cells in recipient mice (for a review see 

Cornelis J.J. et al. 2004). 

 

Tumor cells Parvovirus 
backbone 

Therapeutic 
product 

References 

H-1 human IL-2 Haag A. et al. 2000 

H-1 human MCP-3 Wetzel K. et al. 2001 

 
HeLa 
(human cervical carcinoma) 

H-1 human MCP-1 Haag A. et al. 2000 

K1735 (mouse melanoma) MVMp human IL-2 El Bakkouri K. et al. 2000 

B78/H1 (mouse melanoma) MVMp human MCP-3 Wetzel K. et al. 2000 

H5V (mouse endothelioma) MVMp mouse IP-10 Giese N. A. et al. 2002 

 
Table 2  Anti-tumor effect of parvoviral vectors transducing immunomodulating products in 

animal experiments (according to Cornelis J.J. et al. 2004) 
 

First experiments were carried out using interleukin 2 (IL-2). The formation of tumors 

from HeLa cells infected in vitro with H-1/IL-2 vector prior to implantation in nude mice 

was reduced by 90% compared with mock-infected cells (Haag A. et al. 2000). IL-2 – 

transducing MVMp was also found to be endowed with a strong antitumor activity in 

immunocompetent animals (El Bakkouri K. et al. 2000). 

An H-1 virus - based vector expressing the human monocyte chemotactic protein 

3 (MCP-3) was also evaluated for its capacity to suppress HeLa tumors in nude mice. 

The MCP-3 - transducing vector had only a modest antitumor effect which was shown to 

be mediated by macrophages and NK cells (Wetzel K. et al. 2001). In contrast, a 

complete tumor suppression was observed after the subcutaneous implantation of in 

vitro MVMp/MCP-3 – infected B78/H1 mouse melanoma cells in immunocompetent 

mice (Wetzel K. et al. 2000).  

A mouse chemokine, interferon γ - inducible protein 10 (IP-10) was also 

expressed from an MVMp – based vector. MVMp/IP-10 proved to have potent 

anticancer effects in the mouse hemangiosarcoma H5V (Giese N.A. et al. 2002). 

A full cure from established thymomas was achieved by the injection of 

recombinant MVMi transducing the co-stimulatory molecule B7-1 (Palmer G.A. et al. 

2000). 
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Altogether, the pilot pre-clinical studies described above are very encouraging, 

since low doses of parvoviruses were given per animal and no deleterious effects could 

be detected even after repeated virus injections. 

 

1.4 Angiogenesis 

Mammalian cells require oxygen and nutrients for their survival and are therefore 

located within 100 to 200 µm of blood vessels – the diffusion limit for oxygen. Vessels in 

an embryo are assembled from endothelial precursors (vasculogenesis). Subsequently, 

this primitive network expands by sprouting or intussusception (angiogenesis) (Jain R.K. 

2003). These processes are regulated by a balance between pro- and antiangiogenic 

molecules and are derailed in various diseases, especially cancer. Tumor vessels 

develop by sprouting or intussusception from pre-existing vessels. Circulating 

endothelial precursors shed from the vessel wall or mobilized fro the bone marrow, can 

also contribute to tumor angiogenesis. In addition, tumor cells can co-opt existing 

vessels (Carmeliet P. et al. 2000). 

Various signals that trigger the “angiogenic switch” have been discovered. These 

include metabolic stress (low pO2, low pH or hypoglycaemia), mechanical stress 

(pressure generated by proliferating cells), immune/inflammatory response (the cells 

that have infiltrated the tissue), and genetic mutations (activation of oncogenes or 

deletion of tumor-suppressor genes that control production of angiogenesis regulators).  

Pro- and antiangiogenic molecules can emanate from cancer cells, endothelial cells, 

blood and the extracellular matrix.  

Several molecules have been implicated in these processes. During sprouting 

angiogenesis, vessels initially dilate and become leaky in response to VEGF. Ang1 and 

the junctional molecules VE-cadherin and platelet-endothelial cell-adhesion molecule 

(PECAM) tighten vessels and their action needs to be overcome during angiogenesis. 

Ang2 and proteinases mediate dissolution of the existing basement membrane and the 

interstitial matrix. Numerous molecules stimulate endothelial proliferation, migration and 

assembly, including VEGF, Ang1 and bFGF (Ferrara N. et al 2003). Cell-matrix 

receptors such as the αvβ3 and α5 integrins mediate cell spreading and migration. 

Maturation of nascent vessels involves formation of a new basement membrane and 

investment of new vessels with pericytes and smooth muscle cells. PDGF-BB recruits 

smooth muscle cells, whereas signalling by TGF-β1 and Ang1/Tie2 stabilizes the 
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interaction between endothelial and smooth muscle cells. Proteinase inhibitors (for 

example, PAI-1) prevent degradation of the provisional extracellular matrix around 

nascent vessels. VEGF, bFGF, granulocyte macrophage-colony stimulating factor (GM-

CSF), IGF-1 and angiopoietins have been implicated in the mobilization of endothelial 

precursors, angiopoietins are also important in vessel co-option (Carmeliet P. et al. 

2000). 

The structure and function of tumor blood vessels is different then normal 

vessels. 

They have chaotic architecture and blood flow. Vascular permeability is high. 

Vascular endothelium expresses non-uniform surface markers. Very often a functional 

lymphatic is missing.  

Gliomas are particularly highly vascularized and, therefore, serve as a model to 

elucidate the process of tumor angiogenesis and to investigate new antiangiogenic 

therapies. The microvessels in brain tumors characteristically lose their normal blood-

brain properties and leak fluid into the brain. A cerebral oedema is a consequence.  The 

proteins building tight junctions are downregulated in these tumors what results in the 

opening of the blood-brain barrier. VEGF seems to be the most important angiogenic 

factor in gliomas. Its mRNA and also the protein are abundant.  High-grade gliomas 

(WHO grade 4) produce more VEGF than low-grade astrocytomas (Ferrara N. et al. 

2003). VEGF targets predominantly endothelial cells. It induces their migration and the 

expression of several genes involved in extracellular matrix degradation. VEGF 

increases also vascular permeability. Expression of VEGF is regulated by hypoxia and 

growth factors/cytokines. This protein plays a key role in the transformation of normal 

glial cells to malignant glioma cells (Mentlein R. et al. 2003). 

To the most important angiogenic pleiotropic factors produced by glioma cells 

belong PDGF, bFGF, PTN and TGFβ. PDGF and bFGF are growth factors that act like 

VEGF – on tyrosine kinase receptors. This results in a mitogenic response as well as 

the transcription of responsive genes (e.g. VEGF). Both factors act also on perivascular 

cells. PTN (pleiotrophin) is another growth factor. It is produced by glioma cells, but not 

by normal glial cells. It is not only a mitogen and a chemoattractant for endothelial cells, 

but also for microglial cells/monocytes that invade tumors. TGFβs belongs to the family 

of proteins that regulate cell growth, differentiation, morphogenesis, 

immunosuppression and apoptosis. TGFβs contribute to tumor angiogenesis by their 

chemotactic effect on endothelial cells, stimulation of extracellular matrix protein 
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formation, on which endothelial cells adhere and spread as well as by increasing VGFE 

and VEGFR expression (Breier G. et al. 2002) 

Several endogenous angiostatic factors are known. These include proteins and 

peptides, e.g. angiostatin, endostatin, pigment epithelium-derived factor (PEDF), 

somatostatin, interferons, chemokines, and lipids, e.g. retinoids and some steroids, also 

other substances such as nitric oxide. Antiangionetic approaches find use in the 

treatment of vascular malformations, heart and lung diseases, obesity and cancer. 

These trials are based on strategies that:  

- interfere with angiogenic ligands, their receptors or downstream signalling 

(inhibiting VEGF expression by antisense constructs or protein neutralization by 

the antibodies)  

- upregulate or deliver endogenous inhibitors (angiostatin and endostatin delivered 

by gene transfer)  

- directly target tumor vasculature (thalidomide-mediated matrix breakdown) 

(Mentlein R. et al. 2003). 

 

1.4.1 IP-10 as an antiangiogenic factor 

There are at least four families of chemokines, but only two have been extensively 

characterized. CXC chemokines attract neutrophils and lymphocytes, whereas 

chemokines belonging to the CC family act primarily on monocytes, but they can also 

attract lymphocytes, basophils, eosinophils, dendritic and NK cells. The CXC chemokine 

family of cytokines appear to have proinflammatory and reparative activities. These 

cytokines are basic heparin-binding proteins less than 10 kDa, and have four highly 

conserved cysteine amino acid residues with the first two cysteines separated by one 

non-conserved amino acid residue. These chemokines are all clustered on human 

chromosome 4 and exhibit between 20% to 50% homology on the amino acid level.  To 

CXC family belong: IL-8, GRO-α, β, γ (growth-related oncogene, PF4, PBP (platelet 

basic protein), βTG (beta-thromboglobulin), NAP-2 (neutrophil-activating peptide) and 

epithelial-derived NAP (ENA)-78, IP-10 (interferon-inducible protein 10), Mig (monokine 

induced by gamma-interferon) and ITAC (interferon inducible T cell α chemoattractant). 

Human interferon-inducible protein 10 (IP-10), a member of the α chemokine 

family (CXC chemokines), inhibits bone marrow colony formation, has antitumor activity 

in vivo, is chemoattractant for human T cells, and promotes T cell adhesion to 
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endothelial cells. IP-10 inhibits neovascularization in vivo. Addition of IP-10 to Matrixgel 

impregnated with bFGF resulted in marked reduction in the number of endothelial cells 

invading the plug and the absence of blood vessels. In the presence of IP-10, the 

endothelial cells formed small aggregate structures, but they were not differentiating into 

tubelike structures (Angiolillo A. et al. 1995). IP-10 can effectively inhibit IL-8 or bFGF-

induced angiogenesis (by inhibiting endothelial cells proliferation) (Strieter R.M et al. 

1995). 

In all members of the CXC chemokine family that activate neutrophils a sequence 

Glu-Leu-Arg (the ELR motif) is highly conserved. It plays a role in ligand/receptor on 

neutrophiles. The members of CXC family that lack ERL motif (PF4, IP-10, Mig), in 

contrast to members that contain these three amino acids (IL-8) are angiogenesis 

inhibitors (Strieter R.M. et al. 1995b). 

CXCR3 (CD183) receptor binds IP-10, Mig and interferon-inducibleT cell α 

chemoattractant (I-TAC) with high affinity. It is highly expressed in IL-2 activated T 

lymphocytes, but not detectable in resting T lymphocytes, as well as on B lymphocytes, 

monocytes, granulocytes, NK cells and vascular pericytes. It mediates Ca2+ mobilization 

(transient rise of the cytosolic free Ca2+ concentration) and chemotaxis in response to 

IP-10 and Mig (Loetscher M. et al. 1996).  

CXCR3 ligands activate Ras/ERK, Src, and the PI3K/Akt pathway, thereby 

regulating critical cellular functions such as cell proliferation and migration.  CXCR3 

activates all the components of the ERK cascade, including Ras, Raf-1, and MEK. 

Activation of both ERK and PI3K contributes to the cell chemotaxis and proliferation 

mediated by CXCR3 (Bonacchi A. et al. 2001). 

Endothelial cell receptors for IP-10 and Mig have not yet been identified and the 

mechanisms responsible for the effect of these chemokines on angiogenesis are still 

unclear. CXCR3 is expressed by a small percenrage of microvascular endothelial cells 

in several human normal (thymus, liver, kidney, thyroid, gut) and pathological tissues. 

IP-10 can inhibit DNA synthesis and proliferation of endothelial cells. Anti-CXCR3 

monoclonal antibody effectively inhibited antiproliferative effect of IP-10 (Romagnani P. 

et al. 2001). 

Examination of CXCR3 and its ligands also demonstrated an important role for 

these molecules in acute encephalitis. IP-10 and its receptor are expressed by the CNS 

and by CNS infiltrating lymphocytes, only in patients with ongoing CNS inflammation, 

suggesting an important role for these molecules in the pathogenic process. IP-10 is 
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essential for the recruitment of T-lymphocytes into the CNS during development of 

encephalitis. However, IP-10 expression alone is not sufficient to induce pathology 

(Klein R. 2004). 

 

1.4.2 Cytokines and antitumor immunity 

The cytokine milieu plays an important role in tumor progression. It can be manipulated 

in order to upregulate antitumor immune responses. Despite recent progress in the 

understanding of the cytokine network there is still no complete picture of how cytokines 

work under different in vivo conditions and in combinations with other 

synergistic/antagonistic cytokines. However, a variety of potential cytokine-related 

strategies will have wide applications in the future. 

It is well known that cell-mediated immunity is suppressed in patients with 

neoplastic diseases.  One critical determinant of host immunity is the 

cytokine/chemokine milieu in the tumor microenvironment. A critical component thereof 

is likely to be the cytokine interleukin (IL) 10, which has been shown to hinder a number 

of immune functions, i.e. T lymphocyte proliferation, Th1 type cytokine production, 

antigen presentation, and lymphokine-activated killer cell cytotoxicity. High plasma level 

of IL-10 correlates with bad prognosis for patients with melanomas, haematological 

malignancies, nasopharyngeal carcinoma and other solid tumors (Fortis C. et al. 1996). 

TGFβ is also well established as a multifunctional immunosuppressive cytokine. 

Produced by tumors, significantly reduces the potency of DC/tumor fusion vaccines. It 

stimulates on autocrine and paracrine way the production of VEGF at the transcriptional 

level, contributing to the malignant phenotype. Circulating IL-6 is associated with worse 

survival in patients with metastatic breast cancer and is correlated with the extent of the 

disease (Müller L. et al. 2003). 

Since the cytokines play a critical role in regulating antitumor immune response, 

modulation of the cytokine network should be therapeutically exploitable. Tumor cells 

express tumor-associated antigens, which can be recognized by the immune system, 

but mostly of them, represent self-proteins and as a result of tolerance are poorly 

immunogenic. Immunomodulation with cytokines may break tolerance and allow tumor-

reactive T cells to eradicate tumor cells. Many cytokines, including IL-12 and IL-2 have 

demonstrated their immunomodulatory activities. IL-12 is known to be a crucial cytokine 

for inducing a T cell-mediated immune response. As reported for breast cancer, 



INTRODUCTION 
 

26

melanoma, renal cancer and neuroblastoma, a combination of IL-2 and IL-12 in vitro 

may strongly enhance the development of tumor specific CTLs. Synergistic effects of IL-

4 with IL-12 on IFNγ production by DCs have also been shown (Fukao T. et al. 2000). 

Dendritic cells are the most potent of the antigen presenting cells, capable of acitivating 

both CD4+ and CD8+ cells. DCs can be generated from peripheral blood by culture in 

GM-CSF and IL-4, then maturation by TNFα, and employed as vaccines well able to 

present a range of naturally processed epitopes as well as synthetic peptides.  

Cytokine-induced DCs can be effectively used for the peptide presentation in vivo 

(Allavena P. et al. 2000). 

In humans, immunotherapy with cytokines is an established but still largerly poor-

effective method for treatment of cancer. IL-2 and IFNα are the main immunobiological 

agents used in the therapy of melanoma, renal cell carcinoma and haematological 

malignancies (Müller L. et al. 2003). GM-CSF and IL-4 may provide a mechanism for 

increasing the number and function of antigen presenting cells in patients with cancer. 

Combination cytokine immunotherapy and chemotherapy may offer some advantages 

over either alone. The immunotherapy with cytokine infusions requires large amounts of 

material to be injected over extended periods of time. It is necessary due to the very 

short plasma half-life of most cytokines. Systemic administration may cause serious 

side effects. To avoid this, it has been attempted to complex cytokine with antibodies or 

to use implantation of genetically engineered cytokine-secreting cells. There may be 

significant advantages associated with a gene therapy approaches using cytokines. 

Cytokine gene transfer to tumor cells has been demonstrated to induce tumor rejection 

in different murine models suggesting that vaccination with tumor cells producing 

cytokines is an attractive strategy to enhance antitumor responses also in patients 

(Müller L. et al. 2003). In multiple murine models, GM-CSF proved to be the most potent 

immunostimulatory product. It enhances recruitment of DCs and macrophages, 

stimulates T cells and antibodies mediated immunity. Transfection of murine cells with 

IL-12 significantly reduced their tumorogenicity and metastatic potential and generated 

protective CTL response. Intraperitoneal vaccination with irradiated IL-1β - secreting 

melanoma cells results in protection against subsequent subcutaneous challenge. Use 

of IL-15 – secreting cells resulted in no metastatic tumor growth (Meazza R. et al. 

2000). 

The mechanism by which anti-tumor activity is produced varies with the 

transduced cytokine and the haematopoietic and immune effector cells recruited. These 



INTRODUCTION 
 

27

mechanisms include generation of CTLs, which specifically recognize tumor cells, 

enhancement of antigen presentation, and recruitment of non-specific cytotoxic cells 

such as eosinophils and neutrophils. It was demonstrated that tumor cells transfected to 

mediate overexpression of a cytokine gene activate immunologic effector cells for an 

improved proliferation rate and significantly higher antitumoral cytotoxic activity. The 

strategies strategies include gene delivery into tumor cells and into cellular components 

of the immune system, including cytotoxic T cells, NK, macrophages and dendritic cells. 

Transducing cytokine genes into tumor cells enhances haematopoietic and immune 

system defence against tumor.  

 

1.4.3 TNFα (tumor necrosis factor α) 

The cytokines are proteins regulating proliferation and differentiation of the cells by 

binding to the specific receptors on the cell surface. TNFα (tumor necrosis factor α) is a 

pleiotropic cytokine produced mainly by activated monocytes and macrophages. 

However, at certain conditions, almost all the cells, with the exception of erythrocytes, 

are able to synthesise TNFα (Nagata S.1997). 

TNFα mediates both physiological and pathological effects. It plays a role in 

normal physiological processes like: embryogenesis, haematopoiesis, inflammation, 

and protection against infections. TNFα influences the hormonal regulation – for 

example insulin activity, it plays a role in cachexia, anorexia and obesity. Pathological 

effects mediated by TNFα appear upon stress, which generally increases TNFα 

production. Well known is TNFα contribution to the induction of sepsis, arthritis, 

pancreas inflammation and ischemia (Reimold A. M. 2003). 

TNFα is both a stimulator and an inhibitor of cell growth. It acts on autocrine and 

paracrine manner on the growth of different tumors and tumor cell lines (leukaemia, 

neuroblastoma, and ovarian cancer) as well as normal cells (B lymphocytes and 

macrophages differentiation, growth of the fibroblasts, astrocytes and thymocytes) 

(Aggarwal B.B et al. 1996). 

TNFα gene is located in the MHC region of the human chromosome 6 and 

murine chromosome 17. Its expression is regulated on the transcriptional, translational 

and posttranslational level. Mature human protein contains 157 amino acids (mouse, rat 

and rabbit 156 amino acids). In the active form TNFα is a trimeric protein of molecular 

weight 45 kDa. Trimer formation is necessary for the effective receptor binding and 
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signal transduction. TNFα shows biological activity as a transmembrane protein as well 

as a soluble one.  Production of the soluble form is mediated by membrane 

metalloproteinase (Grell M. 1995). TNFα production can be induced by gram-positive 

and gram-negative bacteria, yeast, mycoplasma, viruses, tumor cells, cytokines and 

mitogens. Many drugs, UV, fever and stress induce TNFα production as well. TNFα 

gene expression can be downregulated by such stimuli as steroids, prostaglandin 

inhibitors, immunosuppressive drugs, some viruses and cytokines. Some cellular 

signalling pathways playing a role in the stimulation of TNFα production may participate 

in its inhibition.  

TNFα is cytotoxic for many transformed cell lines and may cause hemorrhagic 

necrosis of the tumors in vivo (Lans T.E. et al. 2004). Depending on the target cell and 

metabolic inhibitors TNFα can induce apoptotic or necrotic call death.  Due to the 

potential use in the cancer therapy, antitumor properties (tumor growth suppression) of 

TNFα are being intensively studied now. TNFα-mediated antitumor effect is often 

depending on the dose, however, high doses of this cytokine result with systemic 

toxicity. For many cell lines TNFα is only cytostatic, but not cytolytic and many lines are 

totally resistant to its cytotoxic activity. Some tumors undergo regression upon 

combined treatment (TNFα applied with IFNγ or with cytostatic drugs). Up to now there 

is no known mutation in TNFα gene that would result on oncogenic transformation. 

Cellular receptors belonging to the TNF receptor family are key mediators of the 

immune response both in the normal or pathological conditions. Trimeric TNFα is 

binding to the specific receptor and inducing its trimerization.  TNFα receptors (TNF-R) 

are present on all the cell types and their number varies from 100 to 10000 per cell. Two 

TNF-Rs were identified: TNF-R55 (TNF-R1/CD120a/p55/p60) and TNF-R75 (TNF-

R2/CD120b/p75/p80).  The present model of the events leading to the apoptosis is 

described below: 

- ligand binding to the transmembrane receptor, aggregation and internalization of 

the receptor 

- interaction of cytoplasmatic receptor domain with adaptor proteins 

- signal transduction to the effector proteins (Zhang S.Q. et al. 2000). 
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TNFα is widely studied in different antitumor approaches: as direct antitumor 

agent or as immunostimulatory molecule (enhancer of DCs maturation or TIL (tumor 

infiltrating lymphocytes) – mediated cytotoxicity) (Zhang W. et al. 2002; Itoh Y. et al. 

1995). 

In this work we cloned IP-10 or TNFα in the parvoviral vectors. This allows taking 

advantage of the properties of parvoviruses (NS1 cytotoxicity) as well as of the intrinsic 

transgene properties (antiangiogenesis and immunestimulation for IP-10 and 

immunestimulation, antiangiogenesis and toxicity for TNFα).  
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1.5 Aims of work 

 
Malignant gliomas are refractory to most standard therapies, including resection, 

radiation therapy and chemotherapy. A variety of different gene therapy approaches 

was done within the last decades. For glioma treatment there are many viral vectors 

being currently under test. Gliomas are described as particularly well vascularized and 

immunosuppressing tumors. Thus, we constructed new recombinant MVMp- and H1 – 

based vectors expressing human IP-10 or mouse TNFα in order to test their 

antiangiogenic and immunostimulatory properties in two animal subcutaneous 

glioblastoma models. 

 In vitro experiments have been planned to evaluate the efficacy of parvovirus-

transduced transgene production in different human (A172, U87, U373 and U138) and 

mouse (MT539 and Gl261) glioblastoma cell lines as well as the sensitivity of different 

glioma cell lines to parvoviral infection. 

 In vivo studies consist of establishing subcutaneous mouse models allowing 

evaluation of antitumoral effects of parvoviruses on glioma-derived tumors and testing 

the antitumoral effects mediated by recombinant and wild type parvoviruses (MVMp and 

H1) in the animal models. Human U87 and murine Gl261 cell lines were chosen for in 

vivo investigations. 

 Our study is based on the hypothesis that antitumoral effects of recombinant 

parvoviruses could be based on their intrinsic cytotoxic properties combined with 

antiangiogenic/immunestimulatory properties of IP-10 and immunestimulating, 

antiangiogenic and cytotoxic properties of TNFα. 

To evaluate the molecular mechanisms of antitumoral effects in vivo we decided to 

perform histological analyses and MRI measurement showing changes in treated 

tumors. Investigation of morphological changes upon therapy with recombinant 

parvoviruses has been planned to get knowledge about therapy consequences. 
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2 Materials and Methods 

2.1 Microbiological Methods 

2.1.1 Culture and Cryopreservation of Escherichia coli  

Bacteria were growing over night at 37°C on agar plates or as suspension culture 

(shaked 200 rpm). At these conditions after 14-16 h the bacteria were in lag growth 

phase. In order to amplify the plasmid DNA a chloramphecnicol was added (to final 

concentration 34 µg/l) and the bacteria were cultured for further 6 h. 

For the cryopreservation to 1 ml of bacteria culture 0,5 ml of 50% sterile glycerol 

was added and obtained glycerol stock was stored at -80°.  

 
Bacterial strains E. coli SURE (Stratagen, Germany) 

E. coli XL-1Blue (Stratagen, Germany) – pBK-CMV_VP  

(H1 helper plasmid) 

E. coli JM109 (Invitrogen, Germany) – pcDNA1-1_VP  

(MVMp helper plasmid) 

LB medium  5g NaCl 

   5g yeast extract 

   5g bacto-trypton 

   ad 1000 ml H2O, pH 7,0, autoclaved 

LB agar  LB medium with 1,5% bacto agar 

Antibiotics  100 µg/ml ampicilin 

   12,5 µg/ml tetracycline 

   25 µg/ml kanamycin 

 

2.1.2 Culturing of Electro Competent Bacteria 

An overnight E.coli (SURE strain, Stratagene) culture was diluted 1:100 in 1 l LB 

medium and cultured at 200 rpm, 37°C to OD600 0,6-0,8. Afterwards the culture was 

cooled down on ice and centrifuged in pre-cooled rotor 10 min. at 6000 rpm. 

Subsequently the cells were washed with 500 ml ice-cold water and centrifuged again 

(10 min. at 6000 rpm). 

Then the pellet was resuspended in 2-3 ml of LB medium with 10% w/v glycerol 

and 200 µl aliquots were frozen at -80°. 
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2.1.3 Transformation of E.coli with Plasmid DNA – Electroporation 

A stock of electro competent bacteria was thawn on ice. 40 µl of bacteria suspension 

were mixed with 1-2 µl (10-100 ng) DNA solution and transferred in an ice-cold 

electroporation cuvette. The sample was than placed in an E.coli pulser (Biorad) and 

electroporated at 200Ω, 1,8 kV and 25 MFd. Subsequently, 1 ml of antibiotic-free LB 

medium was added to the sample and the bacteria were incubated for 40 min. at 37°C, 

200 rpm. Then the bacteria were centrifuged for 1 min. at 8000 rpm., resuspended in 

100 µl LB medium, transferred on LB agar plates containing selective antibiotics and 

cultured over night at 37°C. 

 

2.2 Molecular Biology Methods 

2.2.1 DNA Purification, Analysis and Modification 

2.2.1.1 Plasmids 

Plasmid name Description Restriction 
enzymes 

Fragments (bp) 

Chi-H1/∆800 H1/MVMp chimeric vector 
without transgene 

XbaI 
AflIII 

1474, 4945 
120, 225, 984, 1410, 1732, 
1948 

Chi-H1/EGFP Expression vector, EGFP in 
basic vector CIII∆800 

NcoI 
AflIII 

567, 964, 1071, 4583 
120, 225, 984, 1732, 1913, 
2200 

Chi-H1/IP-10 Expression vector, human  
IP-10 in basic vector CIII∆800 

BglII 
PstI 

610, 1932, 4234 
1714, 5105 

Chi-H1/TNF Expression vector, murine 
TNF in basic vector CIII∆800 

SpeI 
ScaI 

760, 2280, 3380 
669, 2266, 4184 

Chi-MVMp/∆800 MVMp/H1 chimeric vector 
without transgene 

EcoRI/BamHI 
BglII 

1836, 4784 
584, 6036 

Chi-MVMp/EGFP Expression vector, EGFP in 
basic vector C4∆800 

AflIII 
NcoI 

225, 1491, 2716, 2924 
967, 1638, 4751 

Chi-MVMp/IP-10 Expression vector, human  
IP-10 in basic vector C4∆800 

BglII 
HpaI 

548, 6036 
1555, 5429 

Chi-MVMp/TNF Expression vector, murine 
TNF in basic vector C4∆800 

SpeI 
ScaI 

2280, 4304 
669, 2101, 4514 

pBK CMV 
VP(H1) 

Helper plasmid for H1 
recombinants 

NcoI 
AflIII 

289, 703, 1373, 1904, 2718 
1031, 2924, 3032 

pCMV VP 
(MVMp) 

Helper plasmid for MVMp 
recombinants 

SpeI 
HpaI 

1000, 1700, 5000 
1815, 5885 
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2.2.1.2 Mini-, Maxi- and Mega-Isolation and Purification of Plasmid DNA  

Plasmid DNA isolation and purification from 5, 250 or 1000 ml bacteria culture was 

performed with Qiagen Mini, Maxi or Mega Kit (Qiagen), respectively, according to the 

instructions of the manufacturer. 

 

2.2.1.3 DNA Quantification Using UV Spectrophotometer 

The DNA concentration is obtained by multiplying the absorbance at 260nm by a 

constant. The DNA purity is measured by dividing the absorbance at 260nm by the 

absorbance at 280nm.  

DNA at a concentration of 50 ug/ml has an Absorbance260 = 1. Solving this 

equation for unknown concentration, the concentration (ug/ml) = A260 x 50. To 

conserve DNA and to get accurate readings, the original sample was diluted, e.g. 1:20 

in 1X TE. Hence, the final concentration equation is:  
DNA concentration (ug/ml) = A260 x Dilution Factor x 50 

A260:A280 ratio: phenol absorbs light at 270 nm. Its spectrum has a slight shoulder that 

appears at approximately 272 nm. Proteins, which possess tyrosine residues, absorb 

light at 280 nm. If the sample is contaminated with any of these molecules, the 

absorbance at 280 nm will increase. The calculated ratio of A260 over A280 for pure 

DNA should fall between 1.75 - 2.10. 

 

2.2.1.4 Restriction Digestion of Plasmid DNA 

DNA can be specificly fragmented by restriction enzymes. This process is used for 

quality control of plasmid DNA or for further isolation of the fragment of interest.  

A general rule of is to use 0,5 µg DNA/20 µl in the final digest reaction mix.  

 
Reaction mix   2,0 µl 10x enzyme buffer 

   1,0 µl 1 unit restriction enzyme 

   x    µl 0,5 µg DNA 

   ad 20 µl with sterile dH2O 

 

Digestion process was taking place for 1h at 37°C (heating block or water bath), and 

then stopped by transferring the sample to -20°C. Afterwards the digest has been 

visualized on an ethidium bromide-stained agarose gel. 
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2.2.1.5 PCR (Polymerase Chain Reaction) 

The polymerase chain reaction (PCR) is a method for oligonucleotide primer directed 

enzymatic amplification of a specific DNA sequence of interest. This technique is 

capable of amplifying a sequence 105 to 106-fold from nanogram amounts of template 

DNA within a large background of irrelevant sequences (e.g. from total genomic DNA).  

The PCR product was amplified from the cDNA templates (see also 2.2.3) using 

a heat-stable DNA polymerase from Thermus aquaticus (Taq DNA polymerase, 

Invitrogen) and using an automated thermal cycler to put the reaction through 35 cycles 

of denaturing, annealing of primers, and polymerization. After amplification by PCR, the 

products were separated by agarose gel electrophoresis and were directly visualized 

after staining with ethidium bromide. 

 
 Reaction mix  5,0 µl 10x PCR enzyme buffer (Invitrogen) 

   0,2 µl Taq DNA polymerase (Invitrogen) 

   4,0 µl specific primer mix        pro 10 µl DNA sample 

   4,0 µl 2,5 mM dNTP mix (Sigma) 

   3,0 µl 2,5M MgCl2 (Invitrogen) 

   26 µl H2O 

Reaction conditions: 4 min. 95°C, 30 sec. 94°C, 30 sec anneling temp., 1 min. 72°C, 7 

min. 72°C, hold 4°C  

PCR product was stored at -20°C. 
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Primer Sequence 5’-3’ 

sens/antisens 
Anneling 
temp. (°C) 

PCR 
product 

length (bp) 
β actin murine CACGTCACACTTCATGATGG 

ATGTTTGAGACCTTCAACAC 
58 489 

NS1  CTGAATGGAAAAGATATCGGATGGAATAG 
GCCTCCGTCTCTTGGTGG 

58 569 

IP-10 human TCTAGAACCGTACGCTGTACCTGC 
CTGGTTTTAAGGAGATCTTTT 

58 230 

TNFα murine ATGAGCACAGAAAGCAGTATCCGC 
CCAAAGTAGACCTGCCCGGACTC 

58 700 

Perforin GGTGGAGTGGAGGTTTTTGTACC 
CAGAATGCAAGCAGAAGCACAAG 

58 486 

CD64 TGCAAAGGAAGTCTAGGAAGG 
GCAGAAGAGTCTTGAGTTGGG 

60 510 

iNOS  CATGGCTTGCCCCTGGAAGTTTCTCTTCAAAG 
GCAGCATCCCCTCTGATGGTGCCATCG 

60 828 

Granzyme A CCTGAAGGAGGCTGTGAAAGAATC 
CCCTGCACAAATCATGTTTAGTCC 

60 526 

Granzyme B ACTCAAACACGCTCAAAGA 
ATCCAGGATAAGAAACTC 

58 253 

IFNγ CAAGGCTGTGAGAAGGAAACC 
CCCATGATAAAGAATAGTAGA 

60 237 

NK1.1 CTACCTCGGTTTAAAGCCACC 
GAAGCACAGCTCTCAGGATCAC 

60 576 

 

 

2.2.2 RNA Isolation and Analysis 

2.2.2.1 Total RNA Isolation from Tissue 

For the isolation of total RNA a tissue fragment of interest was transferred into the 

matrix-tube (Lysing Matrix D, Qbiogene) and treated with Trizol (Invitrogene). To 

resuspend the tissue, the sample was placed in tissue disrupter (Qbiogene) for 3 x 20 

sec. cycles at speed 5. Subsequently, per 1 ml Trizol, 0,2 ml chlorophorm  (Sigma) was 

added, mixed and the sample was incubated at RT for 2-3 min. Afterwards the sample 

was centrifuged for 15 min. at 13000 rpm at 4°C. The upper phase, containing RNA, 

was collected in another tube and the same amount of isopropanol was added in order 

to precipitate RNA. After 10 min. incubation the sample was centrifuged 10 min. at 

11000 and the supernatant was discarded. RNA pellet was washed with 70% ethanol, 

centrifuged 10 min. at 1100 rpm and air-dried for 10 min. 

The pellet was then diluted in 200 µl 1mM EDTA and stored frozen at -80°C. 
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2.2.2.2 RNA Quantitation Using UV Spectrophotometer and Agarose Gel Analysis 

After isolation a small aliquot of RNA sample (10 µl) was diluted 1:20 with 1mM EDTA 

buffer, transferred into a UV cuvette (Eurogenetec) and spectrophotometer 

measurement was done. RNA at a concentration of 40 ug/ml has an Absorbance260 = 

1 (see also 1.4.3). For the electrophoresis 10 µl RNA (or 5µl+5µl EDTA) +2 µl loading 

buffer was runned shortly on 1,5% agarose gel. For not degraded RNA sample two 

bands – 18S and 28S RNA could be observed. 

 

2.2.2.3 RT-PCR (Reverse Transcription- Polymerase Chain Reaction) 

RT-PCR (reverse transcription-polymerase chain reaction) is the most sensitive 

technique for mRNA detection and quantification currently available. It allows detecting 

the expression of a gene of interest.  In this method, RNA will be first transcribed into 

complementary cDNA and then DNA will be multiplied. 

As a first step 1 µg RNA was treated with 1U DNaseI (Invitrogen) in provided 

buffer (Invitrogen) for 10 min. at RT in order to eliminate contaminating DNA molecules. 

Total sample volume was 10 µl (adjusted with sterile dH2O). The reaction was stopped 

by addition of 1,5 µl 25mM EDTA per sample. Then the probe was incubated 5 min. at 

70°C and placed on ice to deactivate DnaseI. During the step of reverse transcription 

RNA was transcribed into cDNA. 

  
Reaction mix  5,0 µl 10x RT enzyme buffer (Promega) 

   1,0 µl 1 unit RT enzyme (Promega) 

   1,0 µl oligo dT primer (Invitrogen)          pro 10 µl RNA sample 

   0,5 µl 0,5U Rnasin (Promega) 

   2,5 µl 2,5 mM dNTP mix (Sigma) 

 
Reaction conditions: 60 min. at 37°C, 5 min. at 90°C, kept at 4°C. 

Ready cDNA sample was diluted 1: 10 with H2O and stored at -20°C. 

2.3 Biochemical Methods 

2.3.1 Protein Isolation from Mammalian Cells 

For the detection of viral NS1 and VP proteins a protein extract from 1x106 cells 

cultured in 10 cm dish was prepared. The medium was removed; cells were washed 

with PBS and subsequently lysed with RIPA buffer. The lysate was collected, 
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transferred into a 1,5 ml eppendorf tube and placed on ice for 30 min. After that the 

sample was centrifuged for 10 min. at 14000 rpm in a table centrifuge. The supernatant 

was transferred into a fresh tube and stored at -20°C. 

 
RIPA buffer  10 mM Tris pH 7,5 

  150 mM NaCl 

  1 mM EDTA pH 8,0 

  1% NP-40 

  0,5% Na-Deoxycholate 

  0,1% SDS 

 

2.3.2 Protein Determination by the Bradford Assay 

The assay is based on the observation that the absorbance maximum for an acidic 

solution of Coomassie Brilliant Blue G-250 shifts from 465 nm to 595 nm when binding 

to protein occurs. Both hydrophobic and ionic interactions stabilize the anionic form of 

the dye, causing a visible color change 

10 ul of protein extract was diluted with 990 µl of Bradford assay reagent 

(BioRad). 

The absorbance was read at 595 nm and readings were compared to a standard curve 

produced using protein concentrations ranging from 2 to 14 µg/µl. 

 

2.3.3 SDS Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

Sodium dodecyl sulphate (SDS) is an anionic detergent which denatures proteins by 

"wrapping around" the polypeptide backbone - and SDS binds to proteins fairly 

specifically in a mass ratio of 1.4:1. In so doing, SDS confers a negative charge to the 

polypeptide in proportion to its length - i.e.: the denatured polypeptides become "rods" 

of negative charge cloud with equal charge or charge densities per unit length. It is 

usually necessary to reduce disulphide bridges in proteins before they adopt the 

random-coil configuration necessary for separation by size: this is done with 2- 

mercaptoethanol or dithiothreitol. In denaturing SDS-PAGE separations therefore, 

migration is determined not by intrinsic electrical charge of the polypeptide, but by 

molecular weight. Determination of molecular weight is done by running a known 

molecular weight marker (Rainbowmarker, Amersham) along with the protein.  
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A desired amount of protein extract (containing 20 µg, 40 µg of total proteins) 

was mixed 1:1 with loading buffer, denaturated 5 min. at 95°C and placed on ice. After 

loading on a gel, electrophoresis was performed over night at 70V, 100mA. 

 
Stacking gel   (5% acrylamide) 

   1,9 ml Tris 0,5M pH 6,8 

   2,25 ml acrylamide 30% (BioRad) 

   10,7 ml H2O 

   150 µl 10% SDS 

   150 µl 10% APS (BioRad) 

   15 µl TEMED (BioRad) 
Resolving gel   (10% acrylamide) 

   12,5 ml Tris 1,5M pH 8,8 

   16,7 ml acrylamide 30% (BioRad) 

   19, ml H2O 

   500 µl 10% SDS 

   500 µl 10% APS (BioRad) 

   20 µl TEMED (BioRad) 

Electrophoresis 192 mM glycine  

buffer    0,1% (w/v) SDS  

   25 mM Tris-HCl pH 8,3 

   made by diluting a 10x stock solution 

Sample buffer  125 mM Tris-HCl pH 6,8 

   10% 2-mercaptoethanol 

   10% SDS 

   10% glycerol 

   0,1% bromophenol blue 
 

2.3.4 Western Blot Analysis 

Western blot analysis contains of following working steps. The proteins were separated 

of using SDS-polyacrylamide gel electrophoresis. A nitrocellulose membrane was 

placed on the gel and, and using electrophoresis (2h at 0,4mA), the negatively charged 

protein bands were driven onto the nitrocellulose membrane. This gave a nitrocellulose 

membrane that is imprinted with the same protein bands as the gel. The membrane was 

blocked with blocking buffer at RT for 1h. The nitrocellulose membrane was incubated 
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with a primary antibody over night at 4°C. The membrane was washed 3x 10 min. with 

washing buffer. The membrane was incubated 1 h at RT with a secondary antibody (an 

antibody-enzyme conjugate). The washing 3x 10 min. with washing buffer was 

performed. ECL (enhanced chemiluminescence) reaction was done with ECL-kit 

(Amersham). The membrane was exposed of to an x-ray film (Kodak). 

 
Blocking solution 5% skim milk powder 

   0,5% Tween in PBS 

Washing solution  0,5% Tween in PBS 

Transfer buffer 50 mM Tris 

   380 mM glycin 

   0,1% SDS 

   20% methanol 

Primary antibodies 

  Anti NS1 : SP8 (polyclonal, rabbit)  Faisst et al., 1995 

  Anti VP : αH1 peptide (polyclonal, rabbit) Kestler et a. 1999 

Secondary antibodies  

  goat anti rabbit (HRP conjugated)  BioRad 

 

2.4 Cell Culture Methods 

2.4.1 Maintenance of Cell Lines 

Mammalian cells (human and murine) were maintained as monolayer cultures – all used 

cell lines are adherent. The cells were growing on 10 cm cell culture plates (Greiner or 

Nunclon) at 37°C, 5% CO2 and 90% humidity. Dependently on the growth rate the cells 

were splited 1 or 2 times per week. The medium was removed; cells were washed with 

PBS and treated with trypsin (Invitrogen). When a single cell suspension has been 

obtained, 5 times volume of complete media as trypsin solution was added. 5-10% of 

cell suspension was transferred into a new dish and supplemented with appropriate 

medium to 10 ml total volume. Before use, trypsin and media were warmed up in 37°C 

water bath. The media were supplemented with fetal bovine serum (Gibco) and 100 

µg/ml penicilin/streptomycin (Invitrogen). 
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Cell line Description Medium 

A9 murine fibroblastic cells  
(Littlefield J.W. 1996) 

MEM 5% FBS 

NB324K human fetal kidney cells, transformed 
with SV40 (Corsini J. 2004) 

MEM 5% FBS 

A172 MG human gliblastoma 
(Balzarotti M. 2004) 

DMEM 10% FBS 

U87 MG human gliblastoma 
(Goldbrunner R.H. 2000) 

DMEM 10% FBS 

U373 MG human gliblastoma 
(Palma C. et al. 2000) 

MEM 10% FBS 

U138 MG human gliblastoma 
(Jiang Z. 2004) 

RPMI 10% FBS 

Gl 261 murine gliblastoma 
(Seligman A.M., Shear M.J. 1939) 

DMEM 10% FBS 

MT539 murine glioblastoma 
(Hughes B.W. 1998) 

DMEM (low glucose) 
10% FBS 

293T human kidney cells, transformed with 
SV 40 and Ad5 (Teramoto H. 1996) 

DMEM 10% FBS 

 

2.4.2 Freezing and Thawing Mammalian Cells 

For freezing, the cells from the confluent culture were collected using trypsin, 

centrifuged and resuspended in FBS containing 10% w/v DMSO (Sigma). The cell 

suspension was transferred into cryovials (Nunclon) and frozen in a cell freezing box 

(Nalgene) at -80°C. 

For thawing, a cryovial was kept at 37°C until the content was melt. The cell 

suspension was transferred into a 15 ml falcon tube containing 10 ml proper medium. 

Cells were centrifuged at 1500 rpm for 10 min. The supernatant was removed, cells 

resuspended in 10 ml fresh medium and placed in a cell culture dish in the incubator. 

2.4.3 Methods of Assessing Cell Proliferation and Viability 

2.4.3.1 Trypan blue staining 

Trypan blue is the most common stain used to distinguish viable cells from nonviable 

cells; only non-viable cells absorb the dye and appear blue and may also appear 

asymmetrical. Conversely, live, healthy cells appear round and refractive without 

absorbing the blue-coloured dye. The use of this stain, however, is time- sensitive. 

Viable cells absorb Trypan blue over time, and can affect counting and viability results. 

A small sample of the cell suspension was diluted in 0.4% (w/v) Trypan blue. The 

number of cells per millilitre and total number of cells was determined using the 

following calculations:  
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cells/ml = # of cells counted in a square x 104 x dilution factor  

total cells = cells/ml x vol. of original cell suspension 

 

2.4.3.2 AlamarBlueTM Reduction 

AlamarBlueTM is a safe, non-toxic aqueous dye that is used to assess cell viability and 

cell proliferation. The internal environment of the proliferating cell is more reduced than 

that of non-proliferating cells. Specifically, the ratios of NADPH/NADP, FADH/FAD, 

FMNH/FMN, and NADH/NAD, increase during proliferation. Compounds such as 

tetrazolium salts and alamarBlueTM, which can be reduced by these metabolic 

intermediates, are useful in monitoring cell proliferation because their reduction is 

accompanied by a measurable shift in color. As alamarBlueTM accepts electrons from 

these compounds, it changes from the oxidized indigo blue, non-fluorescing state to the 

reduced fluorescent pink state. The cytotoxicity tests with alamarBlueTM were done on 

96-well plates (Nunclon). For the measurement, 10 µl of alamarBlueTM were added per 

1 well (to 100 µl of total volume), incubated at 37°C in 5% CO2. The absorbance was 

measured after 3-5 h (depending on the cell line) at double wavelength 540 and 620 

nm. 

 

2.4.3.3 Neutral Red Staining  

Neutral Red stains viable cells. This dye is absorbed by viable cells and is concentrated 

in the lysosomes. Quantitation of Neutral Red staining therefore has utility in monitoring 

cytotoxicity assays . Determination of percentage Neutral Red staining requires only a 

light microscope. In this work neutral red staining has been used for plaque assay. 3% 

NR (Sigma) solution was mixed with 1,7% or 2% agar and staining buffer and applied 

on the agar surface. Staining was performed for 8 to 10h. 

 

2.4.3.4 Crystal Violet Inclusion 

Crystal violet inclusion detects cell lysis. This dye stains viable cells that adhere to their 

culture vessel. Lysed cells simply fall away from their vessel surface and are not stained 

by this dye. In this work crystal violet inclusion was used for clonogenicity assay. After 

removing the medium, the cells were washed with ice-cold acetic acid-ethanol mixture 

(1:3) and fixed for 20 min. at 4°C. Then the cells were incubated with ethanol for 20 min. 
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at RT and following washed with water. Incubation with crystal violet solution took place 

for 30 min. at RT. Afterwards the cells were washed with water and visible, violet-

coloured cell clones could be counted (see also 4.4.3.5). 

 

2.4.3.5 Clonogenicity Assay 

The cells were seeded 2,5 x 106 cells/6 cm plate in 4 ml medium. One day later the 

infection was performed as usually, then the cells were incubated at least 4 hours. After 

this time, all the cells were harversted, diluted to the desired concentration and desired 

amount of cells (10000, 4000, 2000, 1000, 500) was seeded on the cell culture dish and 

supplemented with proper medium. Incubation took 5 – 14 days (depending on the 

efficiency and speed of colony forming). Afterwards the crystal violet staining was 

performed. 

 

2.5 Cell Biology Methods 

2.5.1 FACS (Fluorescence Activated Cell Sorting) 

FACS is a powerful method used to study and purify cells. It has a wide application in 

immunology and cell biology and other fields of biology.  

Individual cells held in a thin stream of fluid are passed through one or more laser 

beams cause light to scatter and fluorescent dyes to emit light at various frequencies. 

Photomultiplier tubes (PMT) convert light to electrical signals and cell data is collected. 

Cell sub-populations are identified and sorted at high purity (~100%). FACS instruments 

generate three types of data: 1) Forward scatter (FSc) - approximate cell size 2) Side or 

Orthogonal scatter (SSc) - cell complexity or granularity 3) Fluorescence - fluorescent 

labeling is used to investigate cell structure and function. In this work, FACS was used 

to detect gene expression in cells infected with recombinant viruses containing a 

reporter gene of EGFP (Enhanced Green Fluorescing Protein). At different time points 

after infection the cells were collected, washed once with PBS, passaged through a 

nylon mesh and fixed with 1% formaline solution in PBS. For one sample, 1x106 cells 

were investigated (Flow Cytometry FACSort, Becton Dickinson and Co.). A Cell 

QuestTM computer program has been used for data collection and anlysis (Becton 

Dickinson and Co.).  
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2.5.2 Cytotoxicity Assay 

The cells were applied on a 96-well plate (Nunclon); 2x104 cells in 100 µl medium per 

well. 24 h later serial dilutions of TNFα (Sigma) (0,1-104 U/ml) were added to the cells 

and incubated for 24 or 48 h. Cells not treated with TNFα were positive survival control. 

3h before the end of the test AlamarBlueTM was added to the cells and after this 

incubation time the results were read with an ELISA reader (see also 4.3.2). 

 

2.5.2.1 Cytotoxicity Assay in the Presence of Cycloheximide 

The cells were applied on a 96-well plate (Nunclon); 2x104 cells in 100 µl medium per 

well. 24 h later serial dilutions of TNFα (Sigma) (0,1-104 U/ml) and cycloheximide 

(Sigma) at concentration 2µg/ml or 20µg/ml were added to the cells and incubated for 

20h. Cells not treated with TNFα, but treated with cycloheximide (2 or 20µg/ml) were 

positive survival control. 3h before the end of the test AlamarBlueTM was added to the 

cells and after this incubation time the results were read with an ELISA reader (see also 

4.3.2). 

 

2.5.3 In Vitro Generation of Mouse Dendritic Cells from Bone Marrow 

Bone marrow was isolated from the femurs and tibias of hind legs 7-12 weeks old 

C57Bl/6 female mice. The erythrocytes were removed by incubation of the cell pellet 

with 0,84% solution of ammonium chloride for 5 min. at RT. After washing with 

RPMI+10% FBS medium, cells were incubated with anti-CD34+ antibodies (MEC14.7) 

for 1h at 4°C. Subsequently, the cells were mixed with magnetic MiniMACS microbeads 

anti-rat IgG (Miltenyi Biotec) according to the manual and incubated for 30 min. at 4°C. 

Afterwards, CD34+ cells were separated with assistance of MS columns (Miltenyi 

Biotec) according to the manual. Purified cells were transferred on 6-well plate (~3x105 

cells in 3 ml/well). DC were cultured in complete RPMI medium (5% FBS, 40 ng/ml GM-

CSF, FLT-3L 100 ng/ml) at 37°C in 5% CO2 atmosphere. 
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2.5.4 Measurement of FITC-Dextran Uptake 

Efficient accumulation of FITC-dextran is a specific property of cultured DC, which is not 

shared by other cell types such as macrophages, monocytes, fibroblasts and 

lymphocytes. FITC-dextran appears to be taken up by the mannose receptor. The ability 

to uptake dextran decreases with the maturation of DC. 

Cells were resuspended in RPMI+5% FCS. FITC dextran (MW 40000, Sigma) 

was added at a final concentration of 1 mg/ml. Cells were then incubated either at 0°C 

and 37°C, washed two times with cold PBS, fixed in PBS +1% formaline and analysed 

on a flow cytometer (see also 5.1). 

The experiments with dendritic cells were performed in collaboration with Dr. A. 

Vecchi and Dr. S. Sozzani at the Pharmacological Institute Mario Negri Milano, Italy. 

 

2.6 Virological Methods 

2.6.1 Production of Recombinant Viruses 

Recombinant viruses were produced in 293T cells upon transfection with calcium 

phosphate. For 1 production cycle 1x108 cells were seeded on 20 15 cm cell culture 

dishes (Greiner) (5x106 cells/dish). For the transfection per 1 dish 7,5 µg of viral 

genome DNA and 15 µg of capside protein genome was used. DNA was mixed with 

CaCl2 solution (250mM in H2O) in 459 µl of total volume (per 1 dish). The same volume 

of 2xHBSS buffer was added dropwise to DNA/CaCl2 solution. After 10 min. incubation 

precipitates were added to the cell culture medium and by rocking spread over all the 

cells. The cells were collected 3 days after transfection by scraping and centrifugation 

for 5 min. at 1500 rpm. The supernatant was removed and cell pellet resuspended in 10 

ml of VTE buffer. Subsequently, 3 freeze-thaw cycles were performed in order to 

release the virus from the cells. The cell debris were centrifuged down for 10 min. at 

3500 rpm and virus-containing supernatant was collected in a falcon tube and stored at 

4°C (so called crude extract). 10 ml of VTE buffer were added to the pellet and the 

freeze-thaw cycles were repeated for additional 2 times. Obtained crude extracts were 

pooled together (total volume 20 ml) and stored at 4°C. 
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2 x HBSS  1,5 mM Na2HPO4    

  10 mM KCl     

  280 mM NaCl  

  12 mM glucose  

  50mM Hepes  

  add water to 500 ml pH 7,05 

VTE buffer 50mM Tris-HCl pH 8,7 

  0,5mM EDTA pH 8,7 

 

2.6.2 Production of Wild Type Viruses 

Wild type MVMp virus has been produced upon infection of A9 cells. Therefore,  

6,6 x 107 cells were seeded on 20 10 cm cell culture dishes. The cells were infected 

with MOI 3 x 10-3 (MVMp wt virus). At least 4 h after infection the cells were trypsinized 

and the content of one 10 cm dish was transferred to one 15 cm dish. The harvesting of 

progeny viruses took place at day 3-5 after infection, when a visible cytolysis occurred. 

Scraping and centrifugation for 5 min. at 1500 rpm collected the cells. The supernatant 

was removed and cell pellet resuspended in 10 ml of VTE buffer. Subsequently, 3 

freeze-thaw cycles were performed in order to release the virus from the cells. The cell 

debris was centrifuged down for 10 min. at 3500 rpm. and virus containing supernatant 

was collected in a falcon tube and stored at 4°C (so called crude extract). 10 ml of VTE 

buffer were added to the pellet and the freeze-thaw cycles were repeated for additional 

2 times. Obtained crude extracts were pooled together (total volume 20 ml) and stored 

at 4°C. 

 

2.6.3 Purification and Concentration of Virus Stocks 

2.6.3.1 Caesium Chloride Density Gradient 

This method has been used for the purification of wild type virus stocks. In one 

centrifuge tube (Beckmann) 5 ml of CsCl (density 1,4 g/cm3) was applied followed by 1 

ml 1M saccharose (in VTE) solution. The gradient was covered by 5 ml of crude extract. 

The centrifugation was performed for 20h at 39000 rpm at 10°C. Subsequently, a 

content of the gradient was fractioned and the optical density of every single fraction 

was examined by refraction measurement of 2 µl of each sample. The density was 

calculated according to the following formula:  
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ρ=10,5416xn-13,059 [kg/l] (where n=refraction). The full viral particles are in the 

fractions of density ranging between 1,38-1,42 g/cm3. The presence of virions in 

particular fractions was verified by hemaglutination assay. Afterwards the samples were 

dialysed against VTE buffer and virus stocks were stored at 4°C. 

 

2.6.3.2 Iodixanol Density Gradient 

This method has been used for purification of recombinant virus stocks.  

Iodixanol, C35H44I6N6O15; molar mass: 1550,31 g/mol (all chiral centres R) is an 

iodinated, water-soluble, nonionic dimeric radiographic contrast medium. OptiPrep™ 

(Sigma) is a 60% (w/v) iodixanol solution in water (g=1,32 g/cm3). For the gradient, the 

phases were applied in a 40 ml centrifuge tube (Beckmann) as follows: 20 ml of crude 

extract, 7 ml of 15% iodixanol solution, 5 ml of 25% iodixanol solution, 4 ml of 40% 

iodixanol solution, 4 ml of 60% iodixanol solution. As diluting medium for iodixanol PBS-

MK was used. For the differentiation (colouring) of particular phases a phenol red 

solution was used (0,01 µg/ml). The gradient was centrifuged for 2h at 50000 rpm at 

10°C. The full virions accumulate in the 40% phase, which after centrifugation was 

isolated with the assistance of syringe with needle. The purified virus suspension was 

stored at 4°C. 
 

PBS-MK 500 ml 1x PBS 

  500 µl 1M MgCl2 

  500 µl 2,5M KCl 

 

2.6.3.3 Virus Stock Concentration 

This method was used for concentrating of iodixanol stocks in order to receive a high 

concentrated stock diluted in PBS, what was crucial for the use of virus for the animal 

experiment. The iodixanol virus stock was diluted at least 1:4 with PBS and applied in a 

Vivaspin® (Vivascience) 20 ml centrifugal concentrator (pore size 10K). This 

concentrator contains twin vertical filtrating polythersulfone membranes. After filtration 

and washing steps concentrated virus was recovered from the tube and diluted in PBS 

to the desired amount. 
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2.6.4 Hemaglutination Assay 

The hemaglutination assay was performed in order to verify the presence of virions in 

particular fractions of CsCl density gradient (see also 6.2.1). This assay is based on the 

property of parvoviruses to inhibit the sedimentation of diluted guinea pig erythrocytes. 

In a V-shaped microtiter plate a series of 1:2 dilutions of virus fraction with 2% 

erythrocytes solution (in PBS) was done. The plate was incubated 1-2h at 4°C. When 

the erythrocytes were mixed with virus- containing fraction, hemaglutination occurred. In 

the virus-free fraction erythrocytes sedimented in the middle of the well. 

 

2.6.5 Virus Titration Methods 

2.6.5.1 Infection of Adherent Cells 

The cells were always seeded one day before infection was taking place. The virus was 

diluted to desired amount in MEM medium with antibiotics, without serum. Per one 6 cm 

cell culture dish 0,4 ml inoculum was used, per one 10 cm cell culture dish – 1 ml. For 

the titration, serial dilutions of virus stock were prepared (10-4-10-8). When the titer was 

known, the cells were infected at certain MOI (Multiplicity Of Infection). MOI is a number 

of replication competent viruses per one cell. It is calculated according to the formula: 

MOI = (ml of virus stock x titer/ml)/ cell number 

For infection, the cell culture medium was removed and the inoculum was applied on 

the cell monolayer. The dishes were placed in the incubator and gently rocked every 10 

min., what allowed the inoculum to spread over the whole dish. After 1 hour the cells 

were supplied with usual cell culture medium and placed in the incubator. 

 

2.6.5.2 Hybridization Assay 

Virus titration was always performed on reference cell lines. For the MVMp-based 

viruses (and for the MVMp wild type) mouse A9 cells were used. For the H1-based 

viruses (and for the H1 wild type) human NB324K were used. In the hybridization assay 

a replication of viral DNA was detected and the titer was expressed in replication units 

per millilitre (RU/ml). Per 6 cm cell culture dish 2,5x105 A9 or 5x105 NB324 cells was 

seeded. The cells were infected with serial dilutions of virus stock ranging from 10-4 to 

10-8. After 48h the medium was removed, cells were washed with PBS and a 

nitrocellulose membrane filter (Schleicher&Schüll) was put on every dish. The filters 
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(with fixed on their surface cells) were described and subsequently put upside down on 

a Whatman paper satiated with denaturating solution. After 5 min. the filters were 

transferred on a Whatman paper satiated with neutralizing solution. Then DNA was 

fixed on the filters by backing for 2h at 80°C. To avoid an unspecific hybridization the 

filters were blocked for 1h at 65°C with 0,2 ng of denaturated herrings sperm DNA 

(Roche). The radioactive DNA probe was produced on the base of NS1-containing DNA 

sequence of the viral genome. This fragment was obtained by digestion of viral DNA 

(H1 or MVMp chimeras) with EcoRV (cuts at 381) and SpeI (cuts at 915) enzymes, 

agarose gel electrophoresis and following purification with Qiagen Gel Extraction Kit 

(Qiagen). The fragment had a length of 534 nt and could be used for titration H1-based 

as well as MVMp-based viruses. The genomes of H1-based and MVMp-based 

recombinant viruses have identical sequence from nt 1 to nt 991. The radioactive 

labelling of desired amount of the fragment (25 ng) was obtained through its incubation 

with random oligomers, dNTPs, 32P-dCTP and 2U of Klenow polymerase (Megaprime™ 

DNA Labelling System, Amersham) in the provided buffer for 1h at 37°C. Not bound 

nucleotides were removed by a passage of the probe through a Sephadex50 column 

(centrifugation for 10 min. at 2000 rpm). Subsequently, the probe was denaturated for 5 

min. at 95°C. and added to the filters for over night incubation. After that, the filters were 

washed twice for 30 min., one time with washing solution 1 and one time with washing 

solution 2. The filters were transferred into a photo cassette and exposed to an X-ray 

film (Kodak) for 48h at -80°C. 

Every black point was considered as one replication centre. The titer of the virus 

stock was calculated according to the formula: titer (RU/ml)= a number of replication 

centres x 7,5 (a ratio filter surface/dish surface) x proper dilution. 
 

Hybrydization solution 20 x SSC  150 ml     

    10% SDS  100 ml   

    0,5M EDTA  10 ml  

    100 x Denhardts  100 ml     

    H2O   to 1000 ml  

 

Denhardts x 100  2% bovine serum albumine  10g 

    2% Ficoll 400             10g 

    2% PVP   10 g 

    H2O    to 500 ml 
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Washing solution 1  20 x SSC 150 ml (3x) 

    10% SDS 100 ml (1%) 

    H2O  to 1000 ml 

 

Washing solution 2  20 x SSC 15 ml (0,3x) 

    10% SDS 100 ml (1%) 

    H2O  to 1000 ml 

 

2.6.5.3 Plaque Assay 

Plaque assay is a quantitative infectivity assay; it determines the number of infectious 

particles. This is a standard method for the titration of wild type viruses; it can be used 

as well for the detection of RCV (Replication Competent Viruses) in recombinant stocks. 

The method is based on the property of parvoviruses to lyse the infected cells. After 

that, progeny viruses are released, infect neighbouring cells and lyse them. Several 

cytolytic cycles lead to a formation of round clear areas within the cell monolayer. These 

areas are called plaques. They can be visualised by a neutral red staining (see 4.3.3). 

The spreading of progeny viruses is restricted to the surrounding cells by use of a half-

solid medium, which is applied on the cell monolayer directly after initial infection with 

diluted virus stock. The recombinant viruses are not able to form plaques, because they 

do not give progeny virions. 

One day before infection, 5x105 NB324K or 2,5x105 A9 cells per 6 cm cell culture 

dish were sown. On the next day the cells were infected with serial dilutions of virus 

stock. Per one dilution step two dishes were used. After infection time the inoculum was 

removed and the cells were covered with MEM/agar mixture. After the medium got 

solid, the cells were placed in the incubator for 6 days. On the day 6 the neutral red 

staining was performed and the plaques were counted. Every single plaque was 

considered as coming from one viral particle. The titer was calculated according to the 

formula: 

 

pfu/ml=(number of the plaques for one dilution step x dilution)/inoculum volume 

pfu (plaque forming unit) 
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overlay medium A9  MEM2x, complete: agar 2% = 4:3 

overlay medium NB324 MEM2x, complete: agar 1,7%=5:3 

    agar was pre-warmed at 48°C, MEM2x complete at 37°C 

MEM2x complete  MEM2x (Gibco) 77% 

    FBS 17% 

    L-glutamine 2% 

    Nystatine 2% 

 

2.7 Immunological Methods 

2.7.1 ELISA (Enzyme-Linked Immunosorbent Assay) 

Cytokine sandwich ELISA is sensitive enzyme immunoassay that can specifically detect 

and measure the concentration of soluble cytokine and chemokine proteins. The basic 

cytokine sandwich ELISA method makes use of highly purified anti-cytokine antibodies 

(capture antibodies), which are noncovalently adsorbed (“coated” – primarily as a result 

of hydrophobic interactions) onto plastic microwell plates. After plate washings, the 

immobilized antibodies serve to specifically capture soluble cytokine proteins present in 

samples that were applied to the plate. After washing away unbound material, the 

captured cytokine proteins are detected by biotin-conjugated anti-cytokine antibodies 

(detection antibodies) followed by an enzyme-labeled avidin or streptavidin stage. 

Following the addition of a chromogenic substrate-containing solution, the level of 

coloured product generated by the bound, enzyme-linked detection reagents can be 

conveniently measured spectrophotometrically using an ELISA plate reader at an 

appropriate optical density (OD). By including serial dilutions of a standard cytokine 

protein solution of known concentration, the sandwich ELISA supports the development 

of standard curves. 

Standard curves (“calibration curves”) are generally plotted as the standard 

cytokine protein concentration (typically ng or pg of cytokine/ml) versus the 

corresponding mean OD value of replicates. The concentrations of the putative 

cytokine-containing samples can be interpolated from the standard curve. 
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2.7.1.1 Mouse TNFα ELISA 

Concentration of mouse TNFα in the cell culture supernatants was determined with 

assistance of the Mouse TNFα Module Set BMS607MST (Bender MedSystems) 

according to the manual. 96-well MaxiSorp (Nunclon) plates were used. For data 

evaluation SoftMax Pro Software (Molecular Devices) was used. 

 

2.7.1.2 Human IP-10 ELISA 

Concentration of human IP-10 in the cell culture supernatants was determined in the 

collaboration with Dr. S. Stryuf and Prof. Jo Van Damme (Rega Institute in Leuven, 

Belgium). 

 

2.7.2 ELISPOT Technique 

ELISPOT (Enzyme-Linked ImmunoSPOT) technique was originally used to enumerate 

antibody secreting B cells. In the current technique, cells are deposited onto a 

membrane coated with one antibody specific for a protein followed by an appropriate 

incubation period. Subsequently, the protein of interest is detected in the environment 

immediately surrounding the cell secreting it, with another antibody specific for a 

different epitope of the protein. The signal detected by the HRP enzyme/substrate 

results in a colorimetric footprint of the cells and can be quantitated by visual scoring or 

specialized plate-readers. For cytokines, ELISPOT may in general be more sensitive 

than sandwich ELISA, since it takes advantage of the higher concentration of the 

secreted cytokine close to its source. In addition, ELISPOT allows quantitation of 

cytokine secretion on a per cell basis. ELISPOT plate (Millipore) was coated with 

antibodies: rαm IFNγ diluted in PBS (final conc. 200 µg/µl), 100 µl/well and left over 

night at +4°C. The antibodies were removed and the plate was washed 1x with 

PBS+0,05% Tween. Afterwards the plate was blocked 1-2h with RPMI 10%FCS 1%PS 

medium in the incubator (374°C, 5% CO2). Medium was removed and proper dilutions 

of spleen cells to designated wells were applied. The plate was incubated for 20h. 

Subsequently the cells were removed and plate washed 6x with PBS+0,05% Tween. 

Antibodies: rαm IFNγ - biotin diluted in PBS (final conc. 200 µg/µl), 100 µl/well were 

applied and the plate was placed over night at +4°C. On the next day the antibodies 
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were removed and the plate washed 4x with PBS+0,05% Tween. Streptavidine Alkaline 

Phosphatase (SAP) (final conc. 200 µg/µl), 100 µl/well was applied and incubated 2h at 

RT. The wells were washed 4x with PBS+0,05% Tween. Afterwards the substrate was 

applied: BCIP/Nitro Blue – 50 µl/well and developed approx. 5 min. in the darkness. 

When the points were visible, the plate was rinsed well with tap water. The plate was 

drying over night at RT in the darkness and at the next day the measurement was done. 

 

2.7.3 Immunohistochemistry  

Tumor tissue was isolated, fixed with TissueTec (Sakura) and frozen immediately in 

liquid nitrogene. Tissue was stored at -80°C. For paraffin sections tumor material was 

fixed with 4% paraformaldehyde over night, washed 2 times with PBS and finally stored 

in 70% ethanol at 4°C.  For immunohistochemistry frozen sections were cut and fixed 

with ice cold 4% paraformaldehyde. After 2 washing steps (5 min. PBS) the slices were 

blocked with 1% in PBS normal swine serum (10 min). The first antibodies (αCD31, rat 

α mouse, Pharmingen) at the dilution 1:200 were applied on the tissue and incubated at 

37°C for 1 hour. After 2 washing steps (5 min. PBS) secondary antibodies (biotynylated 

α rat Ig, Pharmingen) were applied on the slice at the dilution 1:100 (in PBS) and 

incubated for 30 min. at 37°C. Subsequently the tissue was washed 2 times (5min.) with 

Tris buffer (50mM, pH 7,6). Sterptavidin-coupled alkalic phosphatase was applied on 

the tissue and incubated for 20 min at 37°C. The enzyme was diluted 1:150 in Tris 

buffer containing 1mM Levamisol (an inhibitor of endogenous alkalic phosphatase). 

Afterwards 3 washing steps (5 min.) with Tris buffer were performed. The substrate for 

alkalic phosphatase, Neufuchsin (DAKO) was applied on the sections. The staining took 

place for 2 min. and washing with Tris buffer stopped the reaction. The sections were 

counterstained with hematoxylin according to Mayer’s protocol. After 2 washing steps (5 

min. aqua dest.) the slices were dried and coverslipped using Mounting medium 

(DAKO). 

Necrotic areas were determined by morphological changes via hematoxylin 

staining. The largest cross-sectional diameter of each tumor was evaluated. The 

different sections of the tumor section were traced manually. The percentage of necrotic 

tumor area was calculated as the ratio of the necrotic area to the total tumor area x 100.  
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The cross-sectioned vessels were quantified counting CD31-postive vessels 

(CD31 is a surface marker endothelial cells that are present in the lumen of blood 

vessels).  

The vessels were visually identified at 20-fold magnification and manually 

counted.  Using a custom-developed computer-aided image analysis device for 

assistance the area of each slide preparation was determined. 

The vessel density was manually determined for each slide preparation, and 

expressed as vessel number per mm2. 

The author, who was “blinded” to the subtype of the tumors, performed all counts. 

Immunohistochemistry was done at the Department of Anatomy III, University of 

Heidelberg under the supervision of Dr. Ralf Kinscherf. 

2.8 MRI Analysis 

Magnetic resonance imaging (MRI) is a non-invasive imaging modality, which yields 

high spatial resolution and excellent soft tissue contrast. Especially in tumors, MRI is a 

powerful tool to visualize vessel morphology and function.  

 

2.8.1 Measurement technique 

All MRI measurements were performed at a clinical 1.5 T MR scanner (Magnetom 

Vision, Siemens, Erlangen, Germany) (Fig. 1a) using a home-built animal resonator 

(Figure 1b). For morphological imaging six transversal slices were acquired at a spatial 

resolution of (0.2×0.2×2.0) mm³ (Figure 1c) using a T2-weighted spinecho sequence 

(TR/TE=4000ms/96ms). Physiological parameters were assessed by dynamic contrast-

enhanced magnetic resonance imaging (DCE MRI). Using a T1-weighted spoiled 

gradient echo sequence (TR/TE/α=46ms/7ms/40°) two transversal slices of 

(0.3×0.3×2.0) mm³ resolution were acquired. Reaching an imaging time of 7 s the 

measurement was repeated successively in order to cover a total measurement time of 

10.5 min. After the third repetition a gadolinium-based contrast agent (Omniscan®, 

Amersham) was injected into the tail vein at a dose D = 0.1 mmol/kg body weight over 

an infusion time of  τ = 5 s. Before imaging, each mouse was anesthetized by inhalation 

of 3% isofluorane in a NO/O2 mixture (1:2) and an intravenous catheter was inserted 

into the tail vein for contrast agent administration. 
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This work was performed in collaboration with Dr. M. Heilmann and Dr. F. 

Kießling at the Department of Radiology DKFZ Heidelberg. 

 

     

Figure 1 MRI measurements were performed at a clinical 1.5 T MR scanner (a) using a home-built 
animal resonator (b). Tumor morphology was imaged resulting in transversal sections of the whole mouse 
body including the tumor (c). 

 

2.8.2 Data Analysis 

DCE MRI data were analyzed by assuming a bidirectional contrast agent (CA) 

exchange between blood (plasma volume) and tissue (extravascular extracellular 

space) compartment (Figure 2a). In the MR images for each pixel signal intensity was 

measured during course of time yielding a signal-time-course. Figure 2b shows a 

schematic represenetation of signal-time-course. For each image pixel, the contrast 

agent enhancement in tumor tissue was determined by calculating the parameters 

amplitude A (relative signal enhancement with respect to the pre-contrast value) and the 

exchange rate constant kep, which is a mixture of CA exchange velocity and tissue 

perfusion.  
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a)  b) 

    

Figure 2 MRI data were analyzed by assuming a bidirectional contrast agent (CA) exchange between 
blood (plasma volume) and tissue (extravascular extracellular space) compartment (a). In the MR images 
for each pixel signal intensity was measured during course of time yielding a signal-time-course (b). 
Based on this, CA enhancement in tissue was determined by calculating the relative signal enhancement 
(ampliutde A) and the velocity of CA exchange (exchange rate constant kep). 

 

For comparison of treated with untreated animals, an averaged signal-time-course of 

the whole tumor was measured in order to calculate amplitude (A) and exchange rate 

constant (kep). Finally, average and standard deviaton values of A and kep were 

determined for each group (mock, IP-10) and compared to each other. 

 

2.9 Animal Techniques 

2.9.1 Experimental Animals 

Experimental animals were obtained from Charles River Wiga Company (Sulzbach, 

Germany). Mice represented strains C57Bl/6 and Swiss cd 1 nu/nu. 5-6 weeks old 

female mice were grouped up to 5 animals per cage. The cages were placed in the 

isolator at 21-24°C, 40-60% humidity. All animals were housed under the same 

conditions (food and water ad libitum throughout the experiment, 12 h dark-light). 

Animals were sacrificed by an overdose of CO2. The Referat Veterinärwesen at the 

Regierungspräsidium Karlsruhe, Germany approved the animal studies. 

 

2.9.1.1 Injection of In Vitro Infected Tumor Cells 

Infection of the tumor cells was done like described previously (see 6.4.1). Four hours 

after infection the cells were trypsinized, collected, washed two times with Dulbecco’s 

PBS and counted. Desired amount of cells was resuspended in proper amount of PBS. 

100 µl of cell suspension was injected subcutaneously in the right flank of each animal. 
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Growing tumors were examined and measured every 2-3 days. Animals were 

sacrificed when the tumor volume exceeded 1,5-2,0 cm3 or in case of necrosis.  

 

2.9.1.2 Injection of Virus Suspension 

For the injections virus stock was diluted to desired concentration of viral particles in 

Dulbecco’s PBS containing calcium. Virus suspension was injected in the tumor 

surrounding to avoid mechanical damage of the tumor. 100 µl of virus suspension was 

applied in 2-3 injections. Growing tumors were examined and measured every  2-3 

days. Animals were sacrificed when the tumor volume exceeded 1,5-2,0 cm3 or in case 

of necrosis. 

2.9.1.3 Tumor Volume  

For the evaluation of tumor volume tumors’ length, breadth and height were measured 

2-3 times per week with the assistance of a caliper. Tumor volume was calculated for an 

ellipsoid according to the formula V= π/6 *L*B*H. 

Animals were sacrificed when the tumor volume exceeded 1,5-2,0 cm3, in case of 

necrosis or any other disorders. 

 

2.10  Statistical Methods 

Statistical analyses were performed using Sigma Stat (SPSS, Chicago, USA) and 

MedCalc (MedCalc Software, Mariakerke, Belgium) software packages. Statistical 

differences were determined using the Student’s t test, the nonparametric Mann-

Whitney rank sum test and the longrank test for trend. A P<0.05 was considered 

significant.
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3 List of Abbreviations 
 

α anti 

AAV  adeno-associated virus 

APC  antigen presenting cell 

BCNU  bischloroethyl nitrosourea 

bFGF  basic fibroblast growth factor   

BSA  bovine serum albumin 

βTG  beta-thromboglobulin 

CNS  central nervous system 

CTL  cytotoxic T lymphocyte 

DC  dendritic cell 

DMEM Dulbeco’s Minimum Essential Medium 

ds DNA double stranded DNA 

ECL  enhanced chemiluminescence 

EDTA  ethylendiamintetraacetic acid 

EGFP  enhanced green fluorescent protein 

EGF-R epithelial growth factor receptor 

ELISA  enzyme-linked immunosorbent assay 

ENA  epithelial-derived NAP 

EtBr  ethidiumbromide 

FACS  fluorescence activated cell sorter 

FCS  foetal calf serum  

FITC  fluorescein isothiocyanate 

GBM  glioblastoma multiforme 

GDEPT   gene-directed enzyme prodrug therapy 

GM-CSF granulocyte-macrophage colony stimulating factor 

GRO  growth-related oncogene 

HBSS  Hank’s buffered salt solution 

HSV  herpes simplex virus 

HSV-tk herpes simplex virus thymidinkinase 
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IGF-1  insulin-like growth factor 1 

IL  interleukin 

iNOS  inducible nitric oxide synthase 

INFγ  interferon γ 

IP-10  interferon γ-inducible protein 

ITAC   interferon inducible T cell α chemoattractant 

kb  kilobases 

kD  kilodalton 

LB   Luria-Bertani medium 

LPS  lipopolysaccharide 

mA  miliamper 

MCP  monocyte chemotactic protein 

MEM  minimum essential medium eagle 

MHC  major histocompatibility complex 

MOI  multiplicity of infection 

MTD  maximally tolerated dose 

MVMp  minute virus of mice prototype strain 

NAP  neutrophil-activating peptide 

NDV  Newcastle disease virus 

NK  natural killer cells 

NS  non-structural protein 

OD  optical density 

ODNs  oligodeoxynucleotides 

PBP  platelet basic protein 

PF  platelet factor 

PBS  phosphate buffered saline 

PCV   procarbazine, carmustine, vincristine 

PDGF  platelet-derived growth factor 

PFU  plaque forming unit 

PKC  protein kinase C 

PMV  paramyxovirus 

PTN  pleiotrophin 
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RB  retinoblastoma 

RCV  replication competent virus 

RF  replicative form 

rpm  rotation per minute 

RT  room temperature 

s.c.  subcutaneous 

SDS  sodium dodecyl sulphate 

SEM  standard error of the mean 

ssDNA single stranded DNA 

TGFβ  transforming growth factor β 

TNFα  tumor necrosis factor α 

VEGF  vascular endothelial growth factor 

VP  viral protein 

WHO  World Health Organisation 

  



RESULTS 
 

60

4 Results 

4.1 Characterization of parvoviral infection in glioblastoma cells  

4.1.1 Sensitivity of glioblastoma cells to the infection with wild type 
parvoviruses 

In order to evaluate whether glioma cells might be used as tumor models for cancer 

therapy with parvoviruses, the cells of four different human (A172, U87, U138 and 

U373) and two mouse (Gl261 and MT539) glioblastoma cell lines were examined for 

their sensitivity in vitro to wild type parvoviruses. Human cells were infected with H1 

virus (rat virus) and mouse cells with MVMp virus. Figure 1 shows growth curves of cells 

infected at different multiplicies of infection (MOI) compared to control (not infected) 

cells. 
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Figure 1 Sensitivity of glioblastoma cells to wild type parvoviruses. 
a) 4x105 cells were infected with H1 virus at MOI 2 or 5 (human cells) or MVMp virus at MOI 2 or 8 
(murine cells). The number of alive cells was obtained using the Trypan Blue exclusion method. 
b) 4x105 cells were infected with H1 virus at MOI 0,1 (human cells) or a MVMp virus at MOI 0,1 (murine 
cells). The number of alive cells was obtained using the Trypan Blue exclusion method. 
 

The cells of examined lines showed to be different in their sensitivity to the infection. 

The growth of cell population slows down (A172, MT539); number of cells stays at the 

same level (U87) or significantly decreases (U138, U373, Gl261) in comparison to non-

infected control cells. A complete damage of U373, U138 and Gl261 cell populations 

can be observed at day 4 post infection. There is no difference between effects 

observed at MOI 2 and 5 (see Figure 1a). Infection at MOI 0,1 has either no effect on 

cell population growth (A172, U87, MT539) or slightly slows down the growth of the 

most sensitive cells (U138, U373, Gl261) (see Figure 1b). 
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For murine cells a clonogenicity assay was performed in order to discriminate between 

the cytotoxic and cytostatic effect of MVMp virus on cell survival. The results show a 

high sensitivity of Gl261 cells to the viral infection – colony formation dropped to 1% 

(compared to non-infected cells), which suggest a high mortality or strong due to 

infection. This confirms the results shown with Figure 1a. For MT539 cells an only 50% 

reduction on colony formation can be observed (see Table 1). 

 
Gl261 survival    MT539 survival     
MOI 2    4x103   cells 0,1%  MOI 2 56% 

MOI 2    1x104  cells 1,09%  MOI 8 42% 

MOI 5    4x103   cells 0,2% 

MOI 5    1x104  cells 0,6% 

 
Table 1 Clonogenicity assay on Gl261 and MT539 cells. 
 

4.1.2 Production of progeny wild type viruses by infected glioblastoma 
cells 

Production of progeny viruses by infected tumor cells must be considered individually 

for each cell line because there are big differences even between the cells of the same 

origin (Kayser T. 2004). The production of new viruses upon infection can increase the 

cytotoxic effect of the virus by allowing secondary infections.  

In the majority of tested cell lines the amount of virus measured 5 days post infection 

was lower than or similar to the amont of input virus. This means that those cells do not 

produce progeny viruses. A degradation of the input virus in those cells might take 

place. U373 and Gl261 samples show an increased amount of the virus compared to 

the input, thus indicating that they are potent for the production of progeny virions (see 

Figure 2).  
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Figure 2 Progeny virus production in glioblastoma cells. 
4x105 cells were infected with the wild type parvovirus (H1 – human cells; MVMp – mouse cells) at MOI 2; 
5 or 0,1. After five days the cells with the medium were collected and 3 freeze-thaw cycles were 
performed. Virus amount in obtained supernatant was evaluated by plaque assay. 
 

4.1.3 Infectability of glioblastoma cells 

In order to determine the efficiency of transduction after infection of glioma cells with 

parvoviral vectors, infection with the vector expressing a reporter gene was performed. 

Infectability can be estimated by determining the expression of a marker gene, for 

example encoding EGFP. The percentage of cells positive for EGFP expression was 

measured by FACS  (see Figure 3). 

 



RESULTS 
 

64

EGFP expression

0

5

10

15

20

25

30

35

40

45

MT539 Gl261 A172 U87 U373 U138

%
 o

f p
os

iti
ve

 c
el

ls

EGFP expression

0

5

10

15

20

25

30

35

40

45

MT539 Gl261 A172 U87 U373 U138

%
 o

f p
os

iti
ve

 c
el

ls

 
Figure 3  FACS analysis of the cells infected with EGFP-expressing vector. 
Glioblastoma cells were infected at MOI 2 with a Chi-hH1/EGFP or a Chi-MVMp/EGFP virus. 2 days post 
infection the cells were collected and FACS analysis was done. 
 

The percentage of EGFP-positive cells was variable between the cell lines. The best 

infectable among murine cells are Gl261. Among human cells the highest percentage of 

EGFP-positive cells could be measured for U373 cells (see Figure 3). The results show 

that all the tested cell lines are permissive for parvoviral infection. 
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4.2 Cloning of the transgenes into the parvoviral vectors 

4.2.1 Basic vectors 

Basic parvoviral vectors used in this work are MVMp- and H1- based chimeras –  

Chi-MVMp/∆800 and Chi-hH1/∆800. Chimeric recombinant vector genomes were 

designed by replacing the right-hand region of the H-1 virus DNA with that of the closely 

related MVMp virus DNA and conversely Wrzesinski et al., 2003). Genes coding for the 

capsid proteins (VP) have been partially deleted and may be replaced by different 

transgenes. 
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Figure 4 Schematic presentation 
of chimeric vectors used in this 
work 

 

 



RESULTS 
 

66

The transgenes used in this work are human IP-10 and murine TNFα and were cloned 

as 400 bp and 700 bp inserts into BamHI/ClaI and NotI/BamHI sites, respectively. 

 

4.2.2 Cloning of human IP-10 

Human IP-10 was chosen due to its antiangiogenic and immunostimulatory properties. 

The levels of IP-10 in cell culture supernatants could be monitored by ELISA. Human 

IP-10 ELISA measurements were performed in collaboration with Dr. S. Stryuf and Prof. 

J. Van Damme who established an appropriate system (Abu El-asrar A. M. et al. 2004). 

Repeated restriction digestions controlled the quality of the plasmid of origin and 

basic vectors. 3 µg of plasmid DNA was digested with BamHI/ClaI enzymes to obtain a 

400 bp insert. The insert was separated on 1% agarose gel, purified, and its 

concentration was estimated by comparing it to a DNA marker. 4 µg of Chi-MVMp/∆800 

and 4 µg of basic Chi-hH1/∆800 plasmids were digested with BamHI/ClaI enzymes. 

Digested plasmids were separated on 1% agarose gel, purified, and their concentration 

was estimated by comparing them to a DNA marker. 90 ng of basic vector was mixed 

with 50 ng of insert and ligated over night at 12°C. Sure bacteria were transformed with 

obtained constructs. Restriction digestions confirmed the presence of an insert in 

parvoviral vectors. 

 

4.2.3 Cloning of mouse TNFα 

Mouse TNFα was chosen as a potent immunestimulatory and potentially antiangiogenic 

factor. These properties are of advantage in glioma treatment, which are described as 

well-vascularized tumors demonstrating immunesupressing features.  

Repeated restriction digestions controlled the quality of the plasmid of origin. 10 

µg of plasmid DNA was digested with SalI enzyme to obtain a 998 bp insert. The insert 

was separated on 1% agarose gel, purified, and its concentration was estimated by 

comparing it to a DNA marker. The maximal insert length for parvoviral vectors is 800 

bp. For that reason and to avoid the insertion of plasmid DNA sequences of 

pSV23SMTNFinto the viral genome, it was necessary to design specific primers to 

synthesize by PCR a 700 bp cDNA fragment with NotI-BamHI linkers for the insertion 

into parvoviral vectors. 
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NotITNF primer  
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The viruses were produced by cotransfection of 293T cells with vector DNA and the 

corresponding helper plasmid, using the calcium phosphate procedure. Virus stocks 

were harvested 72 h posttransfection by removing the medium, washing the cultures, 

and lysing the cells by three rounds of freezing and thawing as previously described 

(Haag A. et al. 2000). Cell debris was removed by low-speed centrifugation, and viruses 

were purified by nonionic iodixanol gradient centrifugation (a modified version of the 

method described by Zolotukhin, S. et al. 1999). Virus stocks were diluted with medium 

or PBS before use. The titers of viral stocks ranged from 1x106-1,5x107 RU/ml for 

MVMp-based vectors and 2,4x106-2,4x107 RU/ml. The titers of pseudotyped vectors 

varied between 4,6x106-1x108 RU/ml. Recombinant parvoviruses used in this work are 

presented in Table 2. 

 
Virus  Characteristics 

Chi-MVMp/∆800 MVMp-based chimeric vector (Wrzesinski C. et al. 2003) 

Chi-MVMp/EGFP MVMp-based chimeric vector with EGFP sequence  

(Wrzesinski C. et al. 2003) 

Chi-MVMp/IP-10 MVMp-based chimeric vector with human IP-10 sequence  

Chi-MVMp/TNF MVMp-based chimeric vector with murine TNFα sequence  

Chi-hH1/∆800 H1-based chimeric vector (Wrzesinski C. et al. 2003) 

Chi-hH1/EGFP H1-based chimeric vector with EGFP sequence  

(Wrzesinski C. et al. 2003) 

Chi-hH1/IP-10 H1-based chimeric vector with human IP-10 sequence  

Chi-hH1/TNF H1-based chimeric vector with murine TNFα sequence  

Chi-MVMp/∆800(H1) MVMp-based chimeric genome in H1 capsid  

Chi-MVMp/IP-10(H1) MVMp-based chimeric genome with human IP-10 sequence  

in H1 capsid  

Chi-MVMp/TNF(H1) MVMp-based chimeric genome with murine TNFα sequence 

in H1 capsid  

 
Table 2 Recombinant parvoviruses used in this work 
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4.2.4 RCV contamination 

By the production of recombinant vectors due to a homologous recombination between 

a helper plasmid and a recombinant genome the formation of replication competent 

viruses (RCVs) is possible. RCVs are able to build the capsids and produce progeny 

virions. For safety reasons the purity of recombinant stocks should be controlled. This 

can be done using the plaque assay method. At least 3 independently produced stocks 

of each recombinant virus were tested for the presence of RCVs. A variable amount of 

RCVs could be detected, ranging from 0,002% to 0,0026% for the chimeric vectors and 

from 0,13% to 1,7% for the pseudotyped vectors (MVMp-based genomes packaged in 

H1 capsid). 
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4.3 Major viral protein NS1 expression in glioblastoma cells 

4.3.1 Major viral protein NS1 expression  

NS1 is a 83 kDa, cytotoxic, multifunctional nuclear protein with nickase, helicase and 

ATPase activities (Palmer G.A. 2000). H-1- and MVMp – based vectors developed in 

our laboratory remain the early promoter P4 and the sequences encoding the NS 

proteins. The transgene is expressed under control of the internal P38 promoter that is 

strongly activated by the vector-encoded NS1 protein (Wetzel K. et al. 2001). NS1 

expression is necessary for the transgene induction. NS1 expression in glioblastoma 

cells was analyzed by Western blot. 

 
 
Figure 6 NS1 expression in glioblastoma cells 
1x106 cells per experimental point were infected at MOI 1. For the combination of a Chi-MVMp/IP-10virus 
with a Chi-MVMp/TNF virus or a Chi-hH1/IP-10 virus with a Chi-hH1/TNF virus the combination MOI 0,5 
and MOI 0,5 was used. Cells infected with recombinant viruses were collected 2 days post infection. 
U373 and U138 infected with H1wt virus were collected 2, 3 and 4 days post infection. 20 µg of protein 
extract was applied on each lane. 
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As shown in Figure 6, NS1 expression can be detected in mouse Gl261 and MT539 

cells infected with all recombinant virus stocks. The NS1 amount is similar for each 

recombinant virus as well as for the combination. In human A172, U87, U373 and U138 

cells two NS1 bands (hyperphosphorylated and non-phosphorylated forms) are visible. 

For the recombinants the NS1 levels were similar.  

U373 and U138 cells infected with wild type H-1 virus represent different 

accumulation of NS1 protein. No NS1 was detectable when the cells were infected with 

recombinant viruses at MOI1 and collected after 2 days. Infection with the H1wt at MOI1 

and MOI5 does not lead to NS1 expression detectable after 2, 3 or 4 days post 

infection. At these time points the NS1 expression is detectable only when the cells 

were infected with MOI20 (see Figure 6). 

It is possible that in these cells NS1 protein undergoes rapid degradation and 

infection at MOI 1 or MOI5 does not lead to the accumulation of NS1 protein at 

detectable levels. 

Obtained data demonstrate that infection with recombinant MVMp-, H1- based 

vectors or H1wt virus results with NS1 protein expression in cells of all tested glioma 

lines. This suggests that upon infection with recombinant vectors NS1 would facilitate 

amplification of the recombinant genome, increasing the copy number of the transgene 

and transactivate P38 promoter to drive expression of the transgene. NS1 expression 

could not be demonstrated while U373 and U138 cells were infected with recombinant 

vectors at MOI1 (data not shown). Nevertheless, as shown in Figures 7a-b, infection at 

MOI1 with vectors encoding IP-10 or TNFα lead to efficient transgene production. 
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4.4 Transgene expression in glioblastoma cells 

4.4.1 Transgene expression evaluated by ELISA 

An effective transgene expression is, besides the sensitivity of the cells to the virus, an 

important parameter for the gene therapy of cancer. A high transgene expression (a 

high concentration of the secreted protein in a cell culture medium) is desired. In order 

to evaluate the efficacy of transgene expression in glioblastoma cells upon infection with 

parvoviral vectors containing a human IP-10 or a mouse TNFα transgene, glioblastoma 

cells were infected with the virus at MOI 1. Cell culture supernatants were collected and 

examined by ELISA. 

NBK and A9 cells are reference cell lines - NBK for human cells, A9 for mouse cells. 

Cells of these lines are highly infectable and produce a high amount of proteins by 

means of parvovirus-mediated transduction. The amount of secreted protein for each 

glioblastoma cell line was high, especially for murine cells Gl261 (up to 1 µg IP-10 per 

2x105 cells at day 3 post infection) (Figure 7c). A production peak may be observed 

usually at day 2 post infection (see “daily production”). Proteins seem to be stable in a 

cell culture medium up to day 4 post infection (reduction of the protein level can not be 

observed; see “accumulation”). A transgene expression upon infection with a 

pseudotyped virus (TNFps) was at least as efficient as an expression reached upon 

infection with a Chi-hH1/TNF construct (a pseudotyped virus is a Chi-MVMp/TNF 

genome in hH1 capsid.) Endogenous production of TNFα in tested cells did not reach a 

measurable level (Figures 7b and 7d). 

The human IP-10 transgene expression evaluated by ELISA was done by the 

group of Professor Jo Van Damme (Leuven, Belgium) (see Figures 7a-d) in the frame of 

EU scientific collaboration. 
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Figure 7a Human glioblastoma cells produce high amount of transgene protein (IP-10) 
2x105 cells were infected at MOI 1 with a Chi-hH1/IP-10 virus. In order to obtain an “accumulation” 
measurement the cell culture supernatant was collected each day. For a “daily production” the 
supernatant from two selected plates was collected and replaced with a fresh medium every day. 
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Figure 7b Human glioblastoma cells produce high amount of transgene protein (TNFα) 
2x105 cells were infected at MOI 1 with a Chi-hH1/TNF or a TNF ps virus. In order to obtain an 
“accumulation” measurement the cell culture supernatant was collected each day. For a “daily production” 
the supernatant from two selected plates was collected and replaced with a fresh medium every day. 
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Figure 7c Mouse glioblastoma cells produce high amount of transgene protein (IP-10) 
2x105 cells were infected at MOI 1 with a Chi-MVMp/IP-10 virus. In order to obtain an “accumulation” 
measurement the cell culture supernatant was collected each day. For a “daily production” the 
supernatant from two selected plates was collected and replaced with a fresh medium each day. 
 
Figure 7d Mouse glioblastoma cells produce high amount of transgene protein (TNFα) 
2x105 cells were infected at MOI 1 with a Chi-MVMp/TNF virus. In order to obtain an “accumulation” 
measurement the cell culture supernatant was collected each day. For a “daily production” the 
supernatant from two selected plates was collected and replaced with a fresh medium each day. 
 

Obtained data demonstrate that upon infection with recombinant parvoviruses 

expressing IP-10 or TNFα cells of all tested glioblastoma lines produced transiently high 

amounts of recombinant proteins. However, obtained levels were variable and different 

for particular cell lines. 

Transgene expression induced by parvoviral vectors is transient, since the 

genome of autonomous parvoviruses does not integrate in the host cell genome and the 

expression is limited in time, as shown previously (Wetzel K. et al 2001).  
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Cytotoxic NS1 protein whose expression is maintained in the vectors might 

contribute to cell death and in this way may limit the time of transgene expression. High, 

but transient expression of the chemokines or cytokines is an advantage for cancer 

therap

arvoviruses 

 addition to the expression of transgenes, the influence of infection with recombinant 

viruses on cell population growth was monitored. After the supernatant was collected, 

method (see Figures 8 a-d).  

 

igure 8c). When a Chi-MVMp/TNF virus was used there was a clear cytotoxic 

y, because their permanent expression might disrupt chemokine milieu and lead 

to severe side effects (Carmeliet P. 2000). 

 

4.4.1.1 Cytotoxic effect of recombinant p

In

living cells were counted using the Trypan Blue exclusion 

At MOI 1 a Chi-hH1/IP-10 virus seemed not to have a cytotoxic effect (defined as a 

decrease in the number of living cells) on human A172, U87 and U138 glioblastoma 

cells. A slight difference between the number of infected and non- infected cells in the

case of NBK and U373 could be caused by a higher sensitivity of these cells to the viral 

infection, in particular to the cytotoxic activity of the NS1 protein (see Figure 8a). When 

a TNF-expressing virus was used, the number of infected cells for all tested lines 

remained similar to the number of non-infected cells. Again, the difference between 

mock-treated and infected cells (observed for NBK and U138) might be caused by a 

high sensitivity of these cells to the viral infection itself. There was no difference 

between U87 cells treated with a Chi-hH1/TNF or a TNF pseudotyped virus (see Figure 

8b).  

For mouse cells a cytotoxic effect of the Chi-MVMp/IP-10 viruscould not be observed. A 

growth delay for Gl261 and reference A9 cells might be an effect of the NS1 protein 

(see F

effect for Gl261 and A9 cells. Many dead cells could be observed in the culture. It was 

probably caused by the additive toxicity of the NS1 protein and the transgene. A9 and 

Gl261 cells are sensitive to cytotoxic action of TNFα (see Figure 9b). There was no 

decrease in the number of MT539 cells upon infection. These cells are also sensitive to 

TNF, but less infectable than Gl261 and also much faster growing. Taken together it 

could be that a high number of cells that have not been infected have overgrown and 

masked the cytotoxicity caused by a transgene expression. (see Figure 8d). 
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a) 

Figure 8a Growth curves of human glioma cells infected with Chi-hH1/IP-10 virus  
2x105 cells were infected at MOI 1 with a Chi-hH1/IP-10 virus. The cells were counted every day using 
the Trypan Blue exclusion method 
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Figure 8b Growth curves of human glioma cells infected with Chi-hH1/TNF virus  
2x105 cells were infected at MOI 1 with a Chi-hH1/TNF virus. The cells were counted every day using the 
Trypan Blue exclusion method 
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c)                                                               d) 

I 1 with a Chi-MVMp/IP-10 virus. The cells were counted every day using 
the Trypan Blue exclusion method 
 

Figure 8d Growth curves of mouse glioma cells infected with Chi-hH1/TNF virus  
2x105 cells were infected at MOI 1 with a Chi-hH1/TNF virus. The cells were counted every day using the 
Trypan Blue exclusion method 
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Figure 8c Growth curves of mouse glioma cells infected with Chi-hH1/IP-10 virus  
2x105 cells were infected at MO
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4.5 Sensitivity of the glioblastoma cells to TNFα 

One of the transgenes expressed by recombinant parvoviruses generated in this work is 

the mouse TNFα. This cytokine is known to have cytotoxic activity with different tumor 

cells and potential immunostimulatory properties (Aggarwal,B.B. 1996). A possible 

antitumoral effect in vivo could be directly caused by cytotoxic activity of TNFα or by an 

antitumor immune response and/or by antiangiogenesis stimulated by this cytokine  

 

4.5.1 Cytotoxicity tests 

To evaluate glioblastoma sensitivity to TNFα cytotoxicity assays were performed. For 

each cell line, 2x104 cells per well were seeded on a 96-well plate and cultured in the 

presence of serial dilutions of TNFα for 24 or 48 hours. Human cells were treated with a 

human recombinant cytokine produced in bacteria, mouse cells with a mouse 

recombinant TNFα. Cells that were incubated in the medium only were set as 100% 

survival. The assays were developed using the AlamarBlueTM reduction method (see 

Figures 9a-d). 



RESULTS 
 

81

8 0

vi G l

0

2 0

4 0

6 0

0 0 ,1 1 1 0 1 0 0 10 00 10 0 00

T N F  (U /m l)

%
 c

el
l v

ia
b

U 3 7 3

U 1 3 8

m o u se  ce lls  4 8  h

0

6 0

1 00

1 20

T N F  (U /m l)

%
ab

M T

h um an  ce lls  4 8h

10 0

12 0

8 0

vi G l

8 0

vi G l

0

2 0

4 0

6 0

0 0 ,1 1 1 0 1 0 0 10 00 10 0 00

T N F  (U /m l)

%
 c

el
l v

ia
b

U 3 7 3

U 1 3 8

0

2 0

4 0

6 0

0 0 ,1 1 1 0 1 0 0 10 00 10 0 00

T N F  (U /m l)

%
 c

el
l v

ia
b

U 3 7 3

U 1 3 8

m o u se  ce lls  4 8  h

0

6 0

1 00

1 20

T N F  (U /m l)

%
ab

M T

m o u se  ce lls  4 8  h

0

6 0

1 00

1 20

T N F  (U /m l)

%
ab

M T

h um an  ce lls  4 8h

10 0

12 0
h um an  ce lls  4 8h

10 0

12 0

m ou se  ce lls  2 4 h
1 20

m ou se  ce lls  2 4 h
1 20

m ou se  ce lls  2 4 h
1 20

0

2 0

4 0

6 0

1 00

0 0 ,1 1 10 1 0 0 1 00 0 10 0 00
T N F  (U /m l)

%
 c

el
l 

ab
ilit

y

M T

0

2 0

4 0

6 0

1 00

0 0 ,1 1 10 1 0 0 1 00 0 10 0 00
T N F  (U /m l)

%
 c

el
l 

ab
ilit

y

M T

0

2 0

4 0

6 0

1 00

0 0 ,1 1 10 1 0 0 1 00 0 10 0 00
T N F  (U /m l)

%
 c

el
l 

ab
ilit

y

M T

8 0

ilit
y 8 0

ilit
y 8 0

ilit
y

h um a n  ce lls  2 4 h

8 0

10 0

12 0

ilit
y

A 1 7 2

U 8 7

2 0

4 0

0 0 ,1 1 10 1 0 0 1 00 0 10 0 00

 c
el

l v
i

G l

h um a n  ce lls  2 4 h

8 0

10 0

12 0

ilit
y

A 1 7 2

U 8 7

h um a n  ce lls  2 4 h

8 0

10 0

12 0

ilit
y

A 1 7 2

U 8 7

2 0

4 0

0 0 ,1 1 10 1 0 0 1 00 0 10 0 00

 c
el

l v
i

G l

2 0

4 0

0 0 ,1 1 10 1 0 0 1 00 0 10 0 00

 c
el

l v
i

G l

 
Figure 9 Sen
a) 24 hour cy
serial dilution
reduction me
b) 48 hour cy
serial dilution
reduction me
c) 24 hour c
incubated wi
AlamarBlue
d) 48 hour c
incubated wi
AlamarBlue
d)
c)
b)
a)
0

2 0

4 0

6 0

8 0

0 0 ,1 1 1 0 1 0 0 10 00 10 0 00

T N F  (U /m l)

%
 c

el
l v

ia
bi

lit
y

A 1 7 2

U 8 7

U 3 7 3

U 1 3 8

0

2 0

4 0

6 0

8 0

0 0 ,1 1 1 0 1 0 0 10 00 10 0 00

T N F  (U /m l)

%
 c

el
l v

ia
bi

lit
y

A 1 7 2

U 8 7

U 3 7 3

U 1 3 8

0

2 0

4 0

6 0

8 0

0 0 ,1 1 1 0 1 0 0 10 00 10 0 00

T N F  (U /m l)

%
 c

el
l v

ia
bi

lit
y

A 1 7 2

U 8 7

U 3 7 3

U 1 3 8

sitivity of the glioblastoma cells to TNFα 
totoxicity test on mouse glioblastoma cells. 2x104 Gl261 or MT539 cells were incubated with 
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Murine glioblastoma cells are sensitive to cytotoxic activity of TNFα. In the presence of 

104 U/ml cell viability was reduced to 55-70% after 24h and to 50% after 48h. This result 

explains also the reduction in cell number during the transgene production experiment 

(see 3.1.1 Figure 7d). For in vivo experiments this means that TNFα cytotoxicity might 

contribute to an antitumoral effect.  Human cells used in this study are not sensitive to 

TNFα. Cell viability amounts to 100% for all tested cytokine concentrations during 24 

and 48 hours. This suggests that the sensitivity of human cells to murine TNFα is 

unlikely because this cytokine from different species is known to have a reduced activity 

(Aggarwal,B.B. 1996).  Thus, An antitumoral effect, in vivo, should not be caused by 

direct transgene toxicity, but by stimulated immune response and/or antiangiogenesis. 

 

4.5.1.1 Human cells are not susceptible to TNFα even in the presence of 

protein synthesis inhibitor. 

Cycloheximide, a protein synthesis inhibitor, is known to sensitize some kinds of tumor 

cells to TNFα cytotoxicity (Kaszubowska L. et al. 2001). The sensitization of human 

glioblastoma cells could produce the advantage of intrinsic antitumoral properties of the 

transgene. 

Reference cells, A9, are sensitive to TNFα alone only at the highest concentration 

tested (104 U/ml). Cell viability is around 75%. In the presence of cycloheximide  

(2 µg/ml or 20 µg/ml) the cells become sensitive to TNFα at every concentration.  

Cytotoxic effect is dependent on the dose of cycloheximide; more pronounced at higher 

concentrations (see Figure 10a). 

Human glioblastoma cells do not become sensitive to TNFα at any tested 

cycloheximide concentration. Decrease of cell viability can be observed neither at 2 

µg/ml, nor at 20 µg/ml of protein synthesis inhibitor (see Figures 10b and c). The used 

urvival up to 50-80% compared to cells concentration of cycloheximide decreased cell s

incubated with medium only. For that reason higher concentration of cycloheximide or a 

prolonged incubation time was not tested. 
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b) 2x10  A172, U87, U373 or U138 cells were incubated with serial dilutions of human TNFα (10 -10  

ated with serial dilutions of human TNFα (10-1-104 
/ml) in the presence of cycloheximide (20 µg/ml) for 20 hours. Test was developed using the 
lamarBlue reduction method. 

 

In conclusion these data suggest that in vivo sensitization of human glioma cells to 

cytotoxic action of TNFα by the use of cycloheximide would be not possible. An 

antitumoral effect in vivo would then result from the stimulation of the immune system or 

 
Figure 10 Cytotoxicity test in the presence of cycloheximide 
a) 2x10  A9 cells were incubated with serial dilutions of human TNFα (10 -10  U/ml) in the presence of 
cycloheximide (2 µg/ml or 20 µg/ml) for 20 hours. Test was developed using the AlamarBlue reduction 
method. 

4 -1 4

U/ml) in the presence of cycloheximide (2 µg/ml) for 20 hours. Test was developed using the 
AlamarBlue reduction method. 
c) 2x104 A172, U87, U373 or U138 cells were incub
U
A
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inhibition of angiogenesis, rather than direct killing of tumor cells by parvovirus-delivered 

NFα. 

 

4.5.2 Endogenous expression of TNFα by glioblastoma cells 

e showed that glioma cells were not sensitive to TNFα added in the medium (see 

igure 10). Yet, many cell types can secrete TNFα. A potential endogenous secretion of 

is cytokine would interfere with a vector-transduced cytokine release. In order to 

valuate if human glioblastoma cells can secrete significant amounts of TNFα, cell 

culture supernatants were collected and then applied on reference cells A9. The assay 

was done in the presence of cycloheximide, which makes A9 cells susceptible to human 

NFα.  
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Figure 11 A9 cells do not die upon incubation with human glioblastoma cells supernatants  

a) 2x104 A9 cells per well were sown on a 96-well plate. A9 cells were cultured with human TNFα in the 
presence of cycloheximide (2 µg/ml) for 20 hours. Test was developed using the AlamarBlue reduction 
method. 
b) glioblastoma supernatants were obtained from 1x106 cells after 48 hours culturing. Dilutions were 
prepared in MEM 5% FBS medium. A9 cells were cultured with supernatants in the presence of 
cycloheximide (2 µg/ml) for 20 hours. Test was developed using the AlamarBlue reduction method. 
 

Control A9 cells incubated with serial dilutions of human TNFα in the presence of 

cycloheximide (2 µg/ml) were sensitive to its cytotoxic activity. Cell viability dropped up 

to 10% at the highest cytokine concentration (see Figure 11a). The survival of A9 cells, 

incubated with dilutions of glioblastoma supernatants, remained unchanged even when 

undiluted supernatants were used (see Figure 11b). This suggests that tested human 

glioma cells do not secrete detectable (or any) amounts of TNFα.  

A172

U87

U373

U138

a) 

b)

 

not diluted              1:2                      1:4                 1:8 

supernatant dilutions 
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We observed that upon infection with recombinant parvoviruses expressing TNFα 

glioma cells expressed high amounts of this cytokine (see Figures 7a-d). Since 

endogenous expression of TNFα could not be detected, potential antitumoral effects in 

vivo would be mediated by vector-transduced expression of this cytokine. 
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4.6 Animal experiments 

 

4.6.1 Analysis of growth of human cells in nude mice 

We showed in vitro that different glioblastoma cells were efficiently infected by 

parvoviruses (see Figure 3) and expressed high amounts of transgene proteins upon 

infection with recombinant vectors (see Figures 7 a-d). 

We performed animal experiments in order to evaluate the potential use of parvoviruses 

in the gene therapy of glioblastoma. The initial characterization of parvoviral infection in 

glioblastoma cells was done by in vitro experiments. Four human cell lines were 

characterized: A172, U87, U373 and U138. Their high sensitivity to the parvoviral 

infection was shown by high percentage of infected cells and high transgene production. 

Among them U373and U138 cell lines were especially sensitive and therefore 

considered promising for animal experiments. First of all we wanted to find out the 

tumorigenicity of subcutaneously injected cells and identify the cell lines for use in gene 

therapy experiments. 

 

4.6.1.1 U373 cells in nude mice 

U373 is a human glioblastoma cell line obtained from a patient with a grade III brain 

tumor. This line was a good candidate for use in animal experiments due to its positive 

in vitro characteristics (high sensitivity to H1 wild type virus, high infectability and high 

levels of produced transgenes). 2x105, 5x105, 1x106 and 2x106 cells per animal were 

injected subcutaneously into the right flank of cd1 swiss nu/nu mice. Tumor formation 

and growth was monitored every 2-3 days. 
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ome animals did not develop tumors. The growth rate of tumors between individual 
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ery variable and lead to the development of small tumors (see Figure 12a). An 
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umor growth. A strong inflammatory reaction, a few days post implantation, could be 

bserved. It caused a rapid increase in tumor volume. After the inflammatory reaction 
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disappeared, the tumors systematically decreased in size until they disappeared (see 

Figure 12b). An increase in the mean tumor volume for the “1x107” group was caused 

by rapid tumor growth in only one animal. One month after the implantation of tumor 

cells, almost all animals from all groups had lost their tumors. The remaining tumors 

showed a decrease in volume.  

Although the U373 line could be an attractive model, the lack of effective tumor 

formation in nude mice excludes the use of these cells in animal experiments. 

 

4.6.1.2 U138 cells in nude mice 

In vitro characteristics: high sensitivity to the virus, high percentage of infected cells and 

igh transgene production, made the U138 cell line another potentially promising 

candidate for animal experiments. 

 nu/nu 

als per 

6 6 7

7

h

U138 in nude mice

0

20

40

60

80

100

120

0 5 10 15 20 25 30

day

tu
m

or
vo

lu
m

e 
(m

m
3 )

U138 3x106

U138 6x106

U138 1x107

U138 in nude mice

0

20

40

60

80

100

120

0 5 10 15 20 25 30

day

tu
m

or
vo

lu
m

e 
(m

m
3 )

U138 3x106

U138 6x106

U138 1x107

Tumor Volume (Mean SEM)±
 
Figure 13 Tumor growth following subcutaneous injection of human U138 cells in cd1 swiss
mice 

6 6 73x10 , 6x10  or 1x10  cells per mouse were injected subcutaneously into the right flank. 5 anim
group were used. 
 

An injection of 3x10 , 6x10  or 1x10  tumor cells did not lead to tumor growth. Tumor 

volume shortly after injection was large due, not yet to the tumor, but to the injected 

cells. Glioblastoma cells are relatively large and 1x10  cells formed a cluster under the 

animal’s skin that could be measured. However, a few days after injection the tumor 

volume started to reduce in size; within 3 weeks it was gone (see Figure13). The lack of 

effective tumor formation in nude mice excludes the use of the U138 cell line in animal 

experiments. 
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4.6.1.3 A172 and U87 cells in nude mice 

After U373 and U138 cell lines were discovered not to be useful for animal experiments, 

A172 and U87 tumor growth in nude mice was tested. 
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 Tumor growth following subcutaneous injection of human A172 or U87 cells in cd1 
nu mice 
5x106or 1x107 A172 cells per mouse were injected subcutaneously into the right flank. 5 
r group were used. 

5x106or 1x107 U87 cells per mouse were injected subcutaneously into the right flank. 5 animals 
were used. 
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Injection of A172 and U87 cells subcutaneously into nude mice caused tumor growth. 

ps were visible from day 35. The 

most intensive tumor growth was observed in the “5x106” group, but not the “1x107” 

group, so there was no correlation between growth rate and the number of injected 

tumor cells (see Figure 14a). The time factor also plays an important role. It takes too 

long to see the differences between the groups and too long before the animals are to 

be sacrificed. Transgene expression induced by parvoviral vectors is transient, thus at 

this low growth ratio it would be difficult to see its effect. The A172 cell line, therefore, is 

considered not to be the optimal one for animal experiments. 

An injection of U87 cells lead to a required, moderate tumor growth. The enlargement 

ratio was proportional to the number of implanted cells (see Figure 14b). Tumor 

development was similar for the animals belonging to one group. No inflammatory 

reaction was observed. 

Based on these results the U87 cell line was considered for future animal studies where 

5x106 cells per animal should be implanted. 

 

4.6.2 Antitumor effect of recombinant parvoviruses on human U87 
glioblastoma cells implanted subcutaneously in nude mice 

1.) For the evaluation of the antitumor effect of parvoviral vectors expressing IP-10 or 

TNFα, an animal experiment with in vitro infected cells was performed. Human U87 

glioblastoma cells were infected with Chi-hH1/IP-10, Chi-hH1/∆800, and H1 wt or with 

the combination Chi-hH1/IP-10+TNFα pseudotype at MOI2. For the combination 

MOI1+MOI1 was used. Infection was performed according to the usual protocol. At 4 

hours post infection the cells were collected, washed twice with PBS, diluted to the 

esired number and volume in PBS and injected subcutaneously into the right flank of 

the animal. The control group (“mock”) was injected with non-infected tumor cells. Eight 

d1 swiss nu/nu mice per group were used. Figure 15 illustrates the results.  

A172 tumors grew very slowly. All animals injected with these cells survived up to day 

72 post injection. The first differences between the grou

d

c
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llowing subcutaneous injection of human U87 cells infected in vitro 

5x10  U87cells per mouse were injected subcutaneously into the right flank. 4 hours prior to injection the 
, H1 wt or with the combination Chi-hH1/IP-10+TNF 

seudotype at MOI2 (for the combination MOI1+MOI1). 8 animals per group were used. 

ed for all 

groups, which received cells, infected with different types of virus. An intermediate 

reduction of growth rate appeared for “Chi-hH1/IP-10 “, “Chi-hH1/∆800” and for “H1 wt” 

groups. Expression of the therapeutic transgene (IP-10) had no effect on tumor growth 

for the “mock” group. The mean tumor volume for “Chi-hH1/IP-10+TNF ps.” was also 

significantly lower then the value for “Chi-hH1/ 800” and “H1 wt” groups. 

with different H1-based vectors. 
6

cells were infected with Chi-hH1/IP-10, Chi-hH1/∆800
p
 

In comparison with the mock group, a slower tumor growth may be observ

compared to animals treated with a vector that does not express any transgene (“Chi-

hH1/∆800”). The effect of the wild type H1 virus was very similar to the Chi-hH1/∆800 

vector (see Figure 15), mediated probably by cytotoxic action of NS1 protein. Parallel 

expression of IP-10 and TNFα had the best therapeutic effect, defined here as the 

reduced rate of tumor growth. At day 29 the mean tumor volume for “Chi-hH1/IP-

10+TNF ps.” and “Chi-hH1/∆800” group was significantly lower then the mean volume 

∆
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Animal survival was slightly prolonged in the groups injected with infected cells. There 

was no significant difference between “Chi-hH1/∆800”, “Chi-hH1/IP-10” and “H1 wt” 

groups. The most pronounced survival prolongation was observed for the  

“Chi-hH1/IP-10+TNFps” group (see Figure 16). 
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Figure 16 Animal survival after subcutaneous injection of human U87 cells infected in vitro with 

ifferent H1-based vectors. d
5 se were injected subcutan
cells were infected with Chi-hH1/IP-10, Chi-hH1/∆800, H1 wt or with the combination Chi-hH1/IP-10+TNF 
pseudotype at MOI1 (for the combination MOI1+MOI1). 8 animals per group were used. 
 

Despite the fact that a strong reduction of tumor growth was observed in the “Chi-

hH1/IP-10+TNFps.” group, all animals developed tumors.  The clumps of injected cells 

under the skin could be observed at the very beginning, and tumors started to grow very 

rapidly. Infection of the cells with different viruses had no effect on tumor formation but 

reduced their growth rate. 

 

 
Figure 17 Subcutaneous U87 tumors in nude mice 
a) tumor-bearing animal b) subcutaneously localized U87-derived tumor c) U87-derived tumor after 
dissection 
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2.) The animal experiment with in vitro infected cells was repeated. Human U87 

glioblastoma cells were infected with Chi-hH1/IP-10, Chi-hH1/TNF, Chi-hH1/∆800, H1 

wt or with the combination Chi-hH1/IP-10+ Chi-hH1/TNF at MOI3. For the combination 

med according to the usual protocol. At 

4 hours post infection the cells were collected, washed twice with PBS, diluted to the 

desired number and volume in PBS and injected subcutaneously into the right flank of 

the animal. The control group (“mock”) was injected with non-infected tumor cells. Eight 

cd1 swiss nu/nu mice per group were used. 
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Figure 18 Tumor growth following subcutaneous injection of human U87 cells infected in vitro 
with different H1-based vectors. 
1x106 U87cells per mouse were
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previous experiment, the effect of the wild type H1 virus is very similar to the 
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a moderate effect on the tumor growth whereas IP-10 alone did not show any influence 

on tumor progression (see Figure 18). 

24 days post tumor cell implantation the animals were sacrificed; the tumors isolated 

and underwent a histological examination (see chapter “Evaluation of the antitumoral 

mechanism”). At the end of the study the mean tumor volume for “Chi-hH1/IP-10+Chi-

hH1/TNF” group was significantly lower then for “mock” and “Chi-hH1/∆800” groups. 

 

4.6.2.1 In vitro study with U87 cells 

arallel to the animal experiment the viruses used for the animal study were used for in 

vitro study in order to check if cytotoxic effect in vitro corresponds to antitumoral effect 

in vivo. 2x105 U87 cells per experimental point were infected in vitro at MOI2 with the 

virus stocks used for the animal experiment. Viable cells were counted with the Trypan 

blue exclusion method.  
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Figure 19 U87 cell growth after infection with different H1-based vectors 
52x10  cells were infected with different H1-based vectors at MOI2. Chi-hH1/IP-10+TNFps. was infected at 

MOI 0,5+MOI 0,5. Viable cells were counted with the Trypan blue exclusion method. 
 

Recombinant vectors at MOI2 seem not to be toxic for U87 cells. Cell number remained 

comparable to the number of non-infected cells (“mock”) up to day 6 post infection. This 

stays in agreement with other observations (see Figures 8a-b), where cytotoxic effect of 

IP-10 or TNFα could not be observed. The number of cells infected with the wild type 

H1 virus decreases from day 4 to day 6. In comparison to other experimental points, the 

number of cells in the “H1 wt” group, at day 6, is around 2,5 times lower. Although the 

H1 wt virus has a cytotoxic effect in vitro, in the animal experiment it has no effe
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Probably in vivo conditions provide factors (growth factors, components of extracellular 

matrix), which support tumor formation by cells that were not infected by the virus. 

6 ted 

t MOI2), were seeded on a 10 cm dish and cultured under normal conditions for 4 

days. Afterwards the supernatants were collected and analyzed, by ELISA, for the 

 

4.6.2.2 Transgene release in U87 cells 

The cells that remained, after the animals were injected with 5x10  U87 cells (infec

a

presence of IP-10 and TNFα. 

 
 

sample 
IP-10 conc. 

(ng/2x105 cells) 
TNFα conc. 

(ng/2x105 cells) 

mock not detected not detected 

Chi-hH1/ 800 ∆ not detected not detected 

Chi-hH1/IP-10 >500 not detected 

Chi-hH1/IP-10+TNFps. 98 >100 

H1 wt not detected not detected 

 
Table 3 IP-10 and TNFα concentrations in supernatants of U87 cells used for animal experiment. 
 

Cells infected with the combination of IP-10 /TNFα expressing viruses secreted both 

transgene proteins (see Table 3). Cells infected with either IP-10- expressing virus 

secreted high amount of IP-10. Neither H1 wild type virus nor basic ∆800 vector were 

able to induce IP-10 or TNFα expression in U87 cells. Obtained results suggest that 

transgene expression in vivo was not impaired. 
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4.6.3 Antitumoral effect of recombinant parvoviruses on mouse Gl261 
glioblastoma cells implanted subcutaneously into immunocompetent 
mice 

f recombinant parvoviruses expressing IP-

tive to the infection with MVMp wild type virus (see Figure 

; Table 1), are infectable to a high percentage (see Figure 3), and produce transgene 

proteins in high level (see Figure 7  aside G come from a well-

defined genetic background – the C train

 

4.6.3.1 Gl261 cells in C57/Bl6 mice 

The Gl261 e was originally es m C57  1939 by chemical 

arcinogenesis (Seligman A.M., Shear M.J. 1939). We determined how many tumor 

, 

x105 or 1x106 cells per mouse were injected subcutaneously into the right flank and 

 
    Tumor Volume (Mean±SEM) 
 
Figure 20 Tumor growth following subcutaneous injection of Gl261 cells into C57/Bl6 mice 
5x104, 2x105, 5x105 or 1x106 cells per mouse were injected subcutaneously into the right flank. 5 animals 
per group were used  

In order to assess the antitumoral potential o

10 or TNFα animal experiments were performed. The characterization of parvoviral 

infection in glioblastoma cells was done by in vitro experiments. Among characterized 

mouse cell lines Gl261 seems to be the appropriate one for use in animal experiments. 

Cells of this line are very sensi

1

s  c-d). This l261 cells 

57/Bl6 mouse s . 

cell lin tablished fro /Bl6 mice in

c

cells, injected subcutaneously, would lead to moderate tumor growth. 5x104, 2x105

5

tumor growth was monitored (see Figure 20). 
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All injected tumor cell doses lead to tumor growth. It was slow for the group injected with 

growth

number of injected tumor cells and the growth rate can be concluded. For future animal 

5x104 cells. 2x105 and 5x105 injected cells lead to a similar, moderate effect. The fastest 

 could be observed for the “1x106” group. Therefore the correlation between the 

experiments 2x105 and 5x105 cells per animal seems to be the most appropriate.  
 

 
Figure 21 Subcutaneous Gl261-derived tumors in C57/Bl6 mice 
a) tumor-bearing animal b) subcutaneously localized Gl216-derived
dissection 

 tumor c) Gl261-derived tumor after 

s infected in vitro at MOI1 

bination MOI 0,5+MOI 0,5 was used.) 

Infection was performed according to the usual protocol. The cells, 4 hours post 

infection, were collected, washed twice with PBS, diluted to the desired number and 

volume in PBS and injected subcutaneously into the right flank of the animal. A control 

group (“mock”) was injected with non-infected tumor cells. Eight C57/Bl6 mice per group 

were used. 

 

4.6.3.2 Animal study with Gl261 cell

Having established the conditions where all the animals developed tumors after 

injection of Gl261 cells, we wanted to evaluate the antitumoral effect of recombinant 

MVMp-based vectors. Mouse glioblastoma Gl261 cells were infected in vitro with Chi-

MVMp/IP-10, Chi-MVMp/TNF, Chi-MVMp/∆800 or with the combination Chi-MVMp/IP-

10+Chi-MVMp/TNF at MOI1. (For the com
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Figure 22 Tumor growth following subcutaneous injection of mouse Gl261 cells infected in vitro 
with different MVMp-based vectors. 

rs prior to injection 
the cells were infected with Chi-MVMp/IP-10, Chi-MVMp/TNF, Chi-MVMp/∆800 or with the combination 

were used. 

IP-10+Chi-MVMp/TNF” groups. It is therefore likely that, the main role in 

reduced tumor expansion was due to the IP-10 expression since Chi-MVMp/TNF alone 

had only marginal effect. Although tumors derived from cells treated with transgene-

containing vectors started to grow later then control tumors, in general, tumor growth 

rates were similar for all experimental groups (see Figure 22). It may be due to the fact 

that, at MOI1 expression of the therapeutic transgene did not reach a level that was 

high enough to mediate a strong antitumor effect in vivo. Indeed at MOI3 the antitumor 

effect was much more pronounced, including inhibition of tumor development and 

growth (see Figure 28). 

3x105 Gl261cells per mouse were injected subcutaneously into the right flank. 4 hou

Chi-MVMp/IP-10+Chi-MVMp/TNF at MOI1 (for the combination MOI 0,5+MOI 0,5). 8 animals per group 

 

The antitumoural effect of recombinant vectors was moderate. The control vector, Chi-

MVMp/∆800, had no effect on tumor expansion. The growth rate of tumors derived from 

Chi-MVMp/∆800 infected cells was the same as for tumors derived from non-infected 

cells (“mock” group). 

A delay in the tumor growth could be observed for “Chi-MVMp/IP-10”, “Chi-MVMp/TNF” 

and “Chi-MVMp/IP-10+Chi-MVMp/TNF” groups. This effect was less pronounced for the 

“Chi-MVMp/TNF” group. Tumor enlargement was similar for the “Chi-MVMp/IP-10” and 

“Chi-MVMp/
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Infection of tumor cells had no pronounced effect on early tumor development. Tumors 

appeared in all groups over a similar time period. Only in the “Chi-MVMp/TNF” group 

tumors appeared later and 3 out of 8 animals remained tumor-free. In the “mock” group 

1 animal remained tumor-free, in the “Chi-MVMp/IP-10” group 1, in the “Chi-MVMp/IP-

10+Chi-MVMp/TNF” group 1, and in the “Chi-MVMp/∆800” group 2 (see Figure 23). 

 

Chi-MVMp/IP-10+Chi-MVMp/TNF at MOI1 (for the combination MOI 0,5+MOI 0,5). 8 animals per group 

 

Although in “Chi-MVMp/IP-10” and “Chi-MVMp/IP-10+Chi-MVMp/TNF” groups almost 

all animals developed the tumors (7 out of 8 and 8 out of 8, respectively), they grew 
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Figure 23 Tumor development after subcutaneous injection of mouse Gl261 cells infected in vitro 
with different MVMp-based vectors. 
3x105 Gl261cells per mouse were injected subcutaneously into the right flank. 4 hours prior to injection 
the cells were infected with Chi-MVMp/IP-10, Chi-MVMp/TNF, Chi-MVMp/∆800 or with the combination 

were used. 

The pattern of tumor development does not correspond to the later tumor growth. 

slower compared to the other groups. In “Chi-MVMp/TNF” group 3 out of 8 animals 

remained tumor free, but other animals developed rapidly growing tumors. 
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Animals injected with cells infected with recombinant vectors survived longer than the 

control group (see Figure 24). There are no statistically significant differences in survival 

among treated groups (p>0.05). Generally, infecting tumor cells at MOI 1 prior to 

subcutaneous implantation prolongs animal survival, slightly, compared to the control 

group.  

 

Gl261 MOI1

Survival

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

day

%
 li

vi
ng

 a
ni

m
al

s

mock

Chi-MVMp/IP-10

Chi-MVMp/TNF

Chi-MVMp/IP-10+ 
Chi-MVMp/TNF
Chi-MVMp/∆800

Gl261 MOI1

Survival

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

day

%
 li

vi
ng

 a
ni

m
al

s

mock

Chi-MVMp/IP-10

Chi-MVMp/TNF

Chi-MVMp/IP-10+ 
Chi-MVMp/TNF
Chi-MVMp/∆800

mock

Chi-MVMp/IP-10

Chi-MVMp/TNF

Chi-MVMp/IP-10+ 
Chi-MVMp/TNF
Chi-MVMp/∆800

Figure 24 Animal survival after subcutaneous injection of mouse Gl261 cells infected in vitro with 
different MVMp-based vectors. 
3x105 Gl261cells per mouse were injected subcutaneously into the right flank. 4 hours prior to injection 
the cells were infected with Chi-MVMp/IP-10, Chi-MVMp/TNF, Chi-MVMp/∆800 or with the combination 
Chi-MVMp/IP-10+Chi-MVMp/TNF at (the) MOI1 (for the combination MOI 0,5+MOI 0,5). 8 animals per 
group were used. 

4.6.3.2.1 In vitro study with Gl261 cells 

5

ere counted 

with the Trypan blue exclusion method (see Figure 25). 

 

In order to compare the antitumor effects observed in the animals with the effects 

induced in the cell culture 2x10  Gl261 cells per experimental point were infected in vitro 

at MOI1 with the virus stocks used for the animal experiment. Viable cells w
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Figure 25 Gl261 cell growth after infection with different MVMp-based vectors. 
2x105 cells were infected with different MVMp-based vectors at MOI1. Chi-MVMp/IP-10+Chi-MVMp/TNF 
was infected at MOI 0,5+MOI 0,5. Viable cells were counted with the Trypan blue exclusion method. 
 

Recombinant vectors at MOI1 have different effects on the growth of Gl261 cells in vitro. 

Chi-MVMp/IP-10 and Chi-MVMp/∆800 did not seem to be toxic. Cell number is similar 

whether cells were virus-infected or not (“mock”) up to day 6 post infection (with a slight 

decrease for Chi-MVMp/IP-10 at day 6). The number of cells infected with the Chi-

MVMp/TNF virus or with the combination Chi-MVMp/IP-10+Chi-MVMp/TNF decreases 

from day 2 to day 6. Infection with Chi-MVMp/IP-10 alone had no cytotoxic effect, so it 

seems likely that cell death is caused by the Chi-MVMp/TNF infection. This may be 

trong antitumoral effect. It is possible that TNFα produced in vivo diffused within the 

tumor mass and tumor surrounding and therefore its local concentration was not high 

enough to mediate strong antutumor effect. In vivo conditions could also provide factors 

In order to verify if surviving animals developed immunity against tumor cells, a 

challenge experiment was performed. After the implantation of tumor cells some 

animals remained tumor-free: 

because Gl261 cells begin to produce high amounts of TNFα 2 days post infection (see 

Figure 7d) and these cells are TNFα-sensitive (see Figure 9 a-b). Although Chi-

MVMp/TNF virus had a cytotoxic effect in vitro, in the animal experiment it had no 

s

(growth factors, components of extracellular matrix), which supported tumor growth. 

 

4.6.3.2.2 Challenge experiment 
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“mock”      1 animal 

“Chi-MVMp/IP-10”     1 animal 

“Chi-MVMp/TNF”     3 animals 

“Chi-MVMp/IP-10+Chi-MVMp/TNF”  1 animal 

“Chi-MVMp/∆800”     2 animals 

57 days after the first injection these animals were challenged with 3x105 Gl261 cells 

implanted subcutaneously into the left flank (opposite to the first implantation). As a 

control group 8 untreated animals from the same delivery were used. 

Animals were challenged with 3x10  Gl261 cells implanted subcutaneously into the left flank. Control 

 

None of the challenged animals developed tumors. They remained tumor-free over 187 

days from the second injection. This suggests a long-lasting antitumoral activity in these 

animals, probably due to the development of tumor-reactive clones, what was 

subsequently verified by ELISpot analysis. 3 out of the 8 control animals were also 

tumor-free. The animals were sacrificed and the spleens, used for ELISpot analysis.  

 

4.6.3.2.3 ELISpot analysis 

The secretion of IFNγ after the stimulation of spleen cells with tumor cells (or tumor 

antigens) demonstrates that the cells specifically recognized tumor cells and exerted 

specific antitumoral activity. The splenic lymphocytes were separated for ELISpot 

analysis. The spleenocytes were cultured with irradiated tumor cells (Gl261) on the anti-

IFNγ antibody-coated ELISpot plate at 37°C for 20 hours. 
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Figure 26 Challenge experiment  
5

animals received 3x105 Gl261 cells subcutaneously into the right flank. 
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Figure 27 Number of IFNγ-producing cells for challenged animals 
Spleenocytes of single animals from different groups were used for ELISpot analysis. As specific stimulus 
2x104 irradiated Gl261 cells were used. 
 

The number of cells that secrete IFNγ upon stimulation with Gl261 cells was different for 

particular animals. Control animals (injected once with tumor cells) showed a higher 

number of specifically stimulated cells than challenged animals (which were injected 

twice with tumor cells). Even though the challenged animals belong to different groups 

between the numbers of IFNγ-secreting cells for each 

veloped immune cells that 

cognize Gl261 tumor cells. 

rst 

ontact with tumor cells were 6 weeks old. It is possible that in adult animals the 

more efficient than in young animals. 

there was no big difference 

group. The results demonstrated that, C57/Bl6 mice de

re

Formation of antitumoral clones might be higher when naive animals are treated with 

tumor cells for the first time. It looks unlikely that a second administration of tumor cells 

would lead to an increase in the number of detectable antitumoral clones. 

The age of the animals can also have some influence. Control animals, which received 

tumor cells for the first time, were 40 weeks old. Challenged animals during the fi

c

formation of tumor-reactive clones is 
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4.6.3.3 Animal study with Gl261 cells infected in vitro at MOI3 

1.) In the previously described study tumor cells were infected at MOI 1 prior to 

implantation. To increase the antitumoral effect, in the second experiment of this type, 

tumor cells were infected at MOI 3. Mouse glioblastoma Gl261 cells were infected with 

Chi-MVMp/IP-10, Chi-MVMp/TNF and Chi-MVMp/∆800 or with the combination Chi-

MVMp/IP-10+Chi-MVMp/TNF at MOI 3. For the combination MOI 1,5+MOI 1,5 was  

used. Infection was performed according to the usual protocol. 4 hours post infection 

the cells were collected, washed twice with PBS, diluted to the desired number and 

volume in PBS and injected subcutaneously into the right flank of the animal. A control 

ight C57/Bl6 mice per group group (“mock”) was injected with non-infected tumor cells. E

were used. 
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fected in vitro 
with different MVMp-based vectors at MOI 3. 
3x105 Gl261cells per mouse were injected subcutaneously into the right flank. 4 hours prior to injection 
the cells were infected with Chi-MVMp/IP-10, Chi-MVMp/TNF, Chi-MVMp/∆800 or with the combination 
Chi-MVMp/IP-10+Chi-MVMp/TNF at MOI3 (for the combination MOI 1,5+MOI 1,5). 8 animals per group 
were used. 
 

As expected, antitumoral effect of recombinant vectors was more pronounced than in 

the case of infection at MOI1. A delay in tumor growth could be observed for “Chi-

MVMp/∆800”, “Chi-MVMp/TNF” and “Chi-MVMp/IP-10” groups. The control vector  

day
Tumor Volume (Mean±SEM)
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Figure 28 Tumor growth following subcutaneous injection of mouse Gl261 cells in
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(Chi-MVMp/∆800) had the weakest effect and can be assigned to the cytotoxicity of the 

ounced delay of 

mal 

49 mean tumor volume for “Chi-MVMp/IP-10+Chi-MVMp/TNF” group was 

significantly lower compared to “Chi-MVMp/IP-10” and “Chi-MVMp/TNF” groups, 

respectively. 

As shown on Figure 29, tumors appeared in all groups over a similar time period. 

All animals injected with non-infected cells (“mock”) developed tumors. A number of 

animals remained tumor-free: in the “Chi-MVMp/∆800” group 1, in the “Chi-MVMp/IP-

10” group 2 and in the “Chi-MVMp/TNF” group 1. In the combination “Chi-MVMp/IP-

10+Chi-MVMp/TNF” group 4 out of 8 animals developed tumors early after the 

implantation of cells. Afterwards, the number of tumor-bearing animals in this group was 

variable, but never higher than 4. Two months after cell implantation tumors in this 

group started to disappear and the last measurement was done 72 days post injection. 

All the animals in this group remained tumor-free for more than 140 days post 

implantation (see Figure 29). 

vector. Vectors containing therapeutical transgenes caused a more pron

tumor growth. For the “Chi-MVMp/TNF” group this effect was stronger than for the “Chi-

MVMp/IP-10” group. Strikingly, almost complete inhibition of tumor growth was 

observed for the “Chi-MVMp/IP-10+Chi-MVMp/TNF” group. 4 out of 8 animals 

developed very small tumors that disappeared by day 72 post injection (see Figure 28). 

The parallel expression of IP-10 and TNFα in tumor cells could provide opti

conditions for the development of antitumoral immunity and/or antiangiogenesis. 

At the day 27 the mean tumor volume for “mock” group was significantly higher 

compared to all another groups. At the day 34 this value for “Chi-MVMp/∆800” was 

significantly higher compared to “Chi-MVMp/TNF” and “Chi-MVMp/IP-10” groups. At the 

day 41 and 
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Figure 29 Tumor development after subcutaneous injection of mouse Gl261 cells infected in vitro 

5  per mouse were injected subcutaneously into the right flank. 4 hours prior to injection 
fected with Chi-MVMp/IP-10, Chi-MVMp/TNF, Chi-MVMp/∆800 or with the combination 

Chi-MV
were us

This striking effect observed in the group treated with the combination of IP-10- and 

TNFα-expressing viruses could be mediated both on the stage of tumor formation (4 out 

of 8 animals did not develop the tumors) and later (tumors disappeared within 72 days). 

To the best of our knowledge, this is the first example where recombinant viruses 

expressing a cytokine and a chemokine induced regression of established tumors. 

Mp/IP-10+Chi-MVMp/TNF at MOI3 (for the combination MOI 1,5+MOI 1,5). 8 animals per group 
ed. 
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This was reflected on the survival of animals as shown on Figure 30. 

p/IP-

10+Chi-MVMp/TNF” group) (see Figure 30). Survival curve for “mock” group differs 

significantly from all other groups (p=0.001). Infection with recombinant parvoviruses at 

MOI3 prolonged animal survival, although the less pronounced effect could be observed 

for the control vector. Statistically significant difference was also measured between the 

curve for “Chi-MVMp/IP-10+Chi-MVMp/TNF” group and all other curves (vs “mock” 

p=0.001; vs “Chi-MVMp/IP-10” p=0.002; vs “Chi-MVMp/TNF” p=0.005;  

vs “Chi-MVMp/∆800” p=0.004). Treatment with the combination of IP-10- and TNFα-

expressing vectors at MOI3 strikingly prolonged animal survival. 
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Figure 30 Animal survival after subcutaneous injection of mouse Gl261 cells infected in vitro with 
different MVMp-based vectors at MOI 3. 

53x10  Gl261cells per mouse were injected subcutaneously into the right flank. 4 hours prior to injection 
the cells were infected with Chi-MVMp/IP-10, Chi-MVMp/TNF, Chi-MVMp/∆800 or with the combination 
Chi-MVMp/IP-10+Chi-MVMp/TNF at MOI 3 (for the combination MOI 1,5+MOI 1,5). 8 animals per group 
were used. 
 

The survival of animals injected with cells infected with the control vector (Chi-

MVMp/∆800) was slightly prolonged compared to the control group (“mock”). More 

pronounced survival prolongation was observed for the “Chi-MVMp/IP-10” and “Chi-

MVMp/TNF” (and “Chi-MVMp/IP-10”) groups. The “Chi-MVMp/IP-10+Chi-MVMp/TNF” 

group showed 100% survival over 140 days post injection (showed the “Chi-MVM
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4.6.3.3.1 In vitro study with Gl261 cells 

As for the experiment performed at MOI1 (see Figure 25) the viability of Gl261 cells 

infected at MOI3 was evaluated in vitro. Viable cells were counted with the Trypan blue 

exclusion method (see Figure 31). 

 

l261 cell growth after infection with different MVMp-based vectors. 
x105 cells were infected with different MVMp-based vectors at MOI3. The combination Chi-MVMp/IP-

4.6.3.3.2 Clonogenicity assay 

As suggested by the results described in Figure 31, impaired tumor formation in the 

“Chi-MVMp/IP-10+Chi-MVMp/TNF” group could be caused by a high mortality of the 

cells infected with the virus combination. To exclude this possibility, a clonogenicity 

Figure 31 G
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2
10+Chi-MVMp/TNF was infected at MOI 1,5+MOI 1,5. Viable cells were counted with the Trypan blue 
exclusion method. 
 

The virus toxicity was more pronounced at MOI 3 than at MOI 1. The number of viable 

cells infected with the control vector (Chi-MVMp/∆800) was less (about 2 fold) in 

comparison to non-infected cells (“mock”). It is likely to be due to the cytotoxic 

properties of the NS1 protein. The number of Chi-MVMp/IP-10 - infected cells was 

about 4 times less than the non-infected cells. However, cell populations infected with 

Chi-MVMp/TNF or Chi-MVMp/IP-10+Chi-MVMp/TNF viruses dropped dramatically from 

day 2 post infection. This could be explained by a high TNF release upon infection with 

the Chi-MVMp/TNF vector and sensitivity of Gl261 cells to the cytotoxic action of TNFα. 
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assay was done. Gl261 cells were infected at MOI 3 with Chi-MVMp/IP-10, Chi-

,5) with the combination Chi-MVMp/IP-

  Virus   Colony formation 

 

   Chi-MVMp/IP-10  26%* 

   Chi-MVMp/TNF  28% 

   Chi-MVMp/IP-10+ 

Chi-MVMp/TNF  32% 

   Chi-MVMp/∆800  44% 
Figure 32 Colony formation by infected tumor cells 
*The number of colonies formed by non-infected cells was set at 100%  
 

es was reduced 

ies formed by Chi-MVMp/IP-10+Chi-MVMp/TNF – infected cells was 

not lower than in other groups. In this case, due to the low cell number TNFα 

concentration produced upon infection might be not high enough to mediate cytotoxic 

effect like illustrated with Figure 31. These data suggest that on the single cell level 

infection with the combination of IP-10- and TNFα-expressing viruses does not affect 

cell survival.  This suggests that, the strong antitumoral effect observed in vivo was 

caused by an immune response against tumor cells rather than by direct killing of the 

tumor cells. 

 

.6.3.3.3 Challenge experiment 

 developed immunity against tumor cells, a 

challenge experiment was performed. After the implantation of tumor cells 12 animals 

“Chi-MVMp/IP-10”     2 animals, 

“Chi-MVMp/TNF”     1 animal, 

“Chi-MVMp/IP-10+Chi-MVMp/TNF”  8 animals and 

“Chi-MVMp/∆800”     1 animal. 

MVMp/TNF, Chi-MVMp/∆800 and at (MOI 1,5+1

10+Chi-MVMp/TNF. The cells formed clones 14 days post infection. After staining with 

crystal violet, the clone number for each group was evaluated (see Figure 32). 

 

 

Colony formation of Gl261 cells infected with recombinant parvovirus

when compared to non-infected cells (100%) and amounted to approximately 30%. The 

number of colon

4

3 In order to verify if surviving animals

remained tumor-free: 
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172 days after the first injection (100 days after the last tumor disappeared) these 

animals were challenged with 1x106 normal Gl261 cells implanted subcutaneously into 

the left flank (opposite to the first implantation). As a control group 4 untreated animals 

from the same delivery were used. 

Only one (from “Chi-MVMp/IP-10+Chi-MVMp/TNF” group) out of 12 challenged animals 

over 100 days after the 

econd injection. This suggests a long-lasting antitumoral activity in these animals. 1 out 

als were sacrificed and the 

4.6.3.3.4 ELISpot analysis 

d, they received 1x105 Gl261 cells. The 

e the frequency of tumor-

reactive immune system cells. 4 days after this injection the animals were sacrificed and 

the spleenocytes isolated. 

Spleen cells were restimulated in vitro (co-cultured with irradiated Gl261 cells) for 6 

days in order to multiply the tumor-responding cells. The anti-IFNγ antibody-coated 

developed a tumor. The other animals remained tumor-free for 

s

of 4 control animals also remained tumor-free. The anim

spleens used for ELISpot analysis. 

 

At day 105 after the animals were challenge

cells were applied to immunize the animals and increas

ELISpot plate was incubated with restimulated cells at 37° for 20 hours (see Figure 33). 
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 for challenged animals 

Spleenocytes of single animals from different groups were used for ELISpot analysis. As specific stimulus 

 

trol animal (which received tumor cells only once) showed a 

against Gl261 tumor cells.

 

2.) To confirm the antitumoral effect of IP-10/TNF combination in Gl261 model the 

experiment with infected at MOI3 tumor cells was repeated. In order to evaluate the 

mechanisms of antitumoral response, parallel to immunocompetent animals nude mice 

were used. The study included 4 experimental groups: control “immunocomp. mock” – 

C57/Bl6 mice that received 5x105 bufffer-treated Gl261 cells; “nude mock” – cd1 swiss 

nu/nu mice that received 5x105 bufffer-treated Gl261 cells; “immunocomp. IP-10/TNF” - 

C57/Bl6 mice that received 5x105 Gl261 cells infected with the combination Chi-

MVMp/IP-10+Chi-MVMp/TNF at MOI 3 (MOI 1,5+ MOI 1,5) and “nude IP-10/TNF” - cd1 

swiss nu/nu mice that received 5x105 Gl261 cells infected with the combination Chi-

MVMp/IP-10+Chi-MVMp/TNF at MOI 3 (MOI 1,5+ MOI 1,5). 

4 hours post infection the cells were collected, washed twice with PBS, diluted to the 

desired number and volume in PBS and injected subcutaneously into the right flank of 

the animal. Eight animals per group were used. 

Figure 33 Number of IFNγ-producing cells

2x104 irradiated Gl261 cells were used. 

The number of cells that secrete IFNγ upon stimulation with Gl261 cells was special for 

particular animals. The con

higher number of specifically stimulated cells than the challenged animals (which were 

injected with tumor cells twice). All tested animals developed a specific response 
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Figure 34 Tumor growth following subcutaneous injection of mouse Gl261 cells infected in vitro 
with MVMp-based vectors at MOI 3. 
5x105 Gl261cells per mouse were injected subcutaneously into the right flank. 4 hours prior to injection 
the cells were infected with the combination Chi-MVMp/IP-10+Chi-MVMp/TNF at MOI3 (MOI 1,5+ 

 
MOI 1,5). 8 animals per group were used. 

umor development in nude mice was faster then in immunocompetent animals. The 

 cell – dependent. 

or sizes of “nude mock” and “nude IP-

10/TNF” groups.  

T

tumors were growing very aggressively; reaching a big volume within short period of 

time and at day 19 of the study the animals of “nude mock” group had to be sacrificed. 

Compared to “nude mock” group, animals of “nude IP-10/TNF” group developed smaller 

tumors. In those groups all the animals developed tumors, similarly in the “imunocomp. 

mock” group. In contrast, only 3 out of 8 immunocompetent animals that received the 

cells infected with the combination Chi-MVMp/IP-10+Chi-MVMp/TNF developed the 

tumors that remained very small, showing a strong antitumoral effect of combined IP-

10/TNF expression in immunocompetent animals. In contrast to immunocompetent 

animals, transgenes expression in nude mice did not mediate such pronounced effect 

(see Figure 34). The results suggest that this effect may be T

At day 19 of the study the mean tumor volume for “nude mock” group was significantly 

higher then for both groups of immunocompetent animals. However, there was no 

statistically significant difference between the tum
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“Nude IP-10/TNF” group mean tumor volume was also was significantly bigger than for 

both groups of immunocompetent animals. At day 30 this value for “immuncomp. IP-

10/TNF” group was significantly lower compared to “immunocomp. mock” group. 
 

The tumors appeared in all the groups over a similar period of time.  In “nude mock”, 

“nude IP-10/TNF” and “immunocomp. mock” all the animals developed tumors. In the 

“immuncomp. IP-10/TNF” in the first phase 7 out of 8 animals developed tumors but 4 

tumors regressed so that finally 5 out of 8 animals remained tumor free (see Figure 35). 

 

 

Figure 35 Tumor development after subcutaneous injection of mouse Gl261 cells infected in vitro 

3x10  Gl261cells per mouse were injected subcutaneously into the right flank. 4 hours prior to injection 

ls from 

crifice these animals was not the tumor size, but advanced tumor 

necrosis. These animals developed tumors of moderate sizes, which underwent  
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with different MVMp-based vectors at MOI 3. 
5

the cells were infected with Chi-MVMp/IP-10, Chi-MVMp/TNF, Chi-MVMp/∆800 or with the combination 
Chi-MVMp/IP-10+Chi-MVMp/TNF at MOI3 (for the combination MOI 1,5+MOI 1,5). 8 animals per group 
were used. 
 

Due to the tumor development the animals have been sacrificed at different time points 

for particular groups. At first the animals belonging to the “nude mock” group (day 19), 

because the tumors were growing very aggressively and reached huge volumes in a 

short time. At the same time point “nude IP-10/TNF” animals were sacrificed. The 

tumors have been smaller than in the control group, however, a histological analysis 

was planned and tumor isolation at the same time point was desired. All anima

daydayday

the “immunocomp. mock” group were sacrificed at day 30 of the study. Animals form the 

“immuncomp. IP-10/TNF” group demonstrated prolonged survival. Two out of 3 tumor-

bearing animals were sacrificed at day 44 and 48, respectively. We should mention that 

the criterion to sa
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massive necrosis. The animals were sacrificed because of progressing hemorrhage and 

skin injure. Third tumor-bearing animal developed a very small tumor without necrosis 

symptoms. Its size remained stable up to the day 51 of the experiment; finally the 

nimal was sacrificed at day 81 because of increased tumor volume and necrosis a

development. 
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4.6.3.4 In vivo treatment of Gl261-derived tumors 

 

It was previously shown in our laboratory that MVMp-based genomes with H1 capsids 

(pseudotyped viruses) retained the properties of recombinant MVMp but may be useful 

when successive injections are needed (Wrzesinski C. et al. 2003, Lang S. 2003). 

Indeed neutralizing antibodies are produced after 14 days in the mice, making rpeated 

injections of recombinant virus unefficient. Yet, antibodies against H1 capsids do not 

cross-react with those against MVMp. Therefore the application of pseudotyped 

recombinant virus (MVMp-based genomes with H1 capsids) makes possible prolonged 

virus injections without neutralizing it by circulating antibodies. In this study the effect of 

pseudotyped recombinant parvoviruses (MVMp-based chimeric genome in H-1 capsid) 

on established subcutaneous tumors was established.  

Mice received 1x106 Gl261 cells in the right flank. After the tumors were visible (2-3 

mm3 at day 5 post implantation), 6 virus injections were given: at day 5, 6, 7, 9, 11, and 

13 after tumor cell implantation. Each animal received 1x106 RU per injection. The 

combination group was injected with 0,5x106+0,5x106 RU. Control (“mock”) animals 

were injected with 100 µl PBS. Tumor growth was monitored every 2-3 days (see Figure 

36). 
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Figure 36  Growth curves of subcutaneous established tumors treated in vivo with repeated virus 
injections. 
Animals received subcutaneously 1x106 Gl261 cells. At day 5, 6, 7, 9, 11 and 13 virus injections were 
given. 8 animals per group were used. 
 

In all animals the sizes of the tumors were comparable at the time when the first virus 

injections were done (day 5 up to day 10). After day 10 the mean tumor size became 

different for particular groups and the growth curves started to diverse between the 

different groups. There was a delay in tumor expansion and the growth rate in the 

groups treated wit vectors expressing a therapeutical transgene. The control vector, 

∆800 ps. cause only a moderate effect. There was no difference in the tumor growth 

between “IP-10 ps.”, “TNF ps.” and “IP-10 ps. + TNF ps.” groups (see Figure 36). At day 

20 and 22 the mean tumor volume for ”IP-10 ps.”, “TNF ps.” and “IP-10 ps.+TNF ps.” 

groups was significantly lower compared to “mock” group. Notably, there was no 

influence of the wild type MVMp virus on the tumor growth. Gl261 cells are very 

sensitive to the killing effect of this virus in vitro (see Figure 1; Table 1), but in in vivo 

conditions MVMp wt did not inhibit tumor growth. Virus injection in the tumor 

surrounding might be not as effective as infection of the cells in culture. 

The treatment with recombinant vectors expressing therapeutical transgenes 

significantly prolonged animal survival comparing to the animals treated with MVMp wild 

type virus (vs IP-10  ps. p=0.007; vs TNF ps. p=0.04; vs IP-10/TNF ps. p=0.03).  
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Treatment with the IP-10-expressing virus significantly prolonged the survival also 

Figure 37; IP-10 ps. vs mock 

=0.003). 

6 injections of IP-10 ps., TNF ps., 800 ps. viruses (1x10  RU) or the combination IP-10 ps.+TNF ps. 

pared to cells infected in vitro (MOI1 and MOI3 used for above-described animal 

studies) a dose of 1x106 RU used for in vivo treatment is low. At day 5, when the 

treatment started, tumor mass might contain approximately 8x106 cells. Beside this, in 

in vivo conditions tumor cells are not easily accessible to the infection (virus injected in 

the surrounding of the tumor, tumor cells form a compact structure). Nevertheless, 

therapeutic effects (tumor growth delay and prolonged survival) of recombinant 

parvoviruses expressing IP-10 or TNFα could be demonstrated, showing the promising 

antitumor potential of this approach. 

This experiment initially started with 11 animals per group. 10 days after tumor cell 

implantation (3 days after the third virus injection) 3 animals per group were sacrificed; 

the tumors isolated and underwent histological examination (see chapter “Evaluation of 

the antitumoral mechanism”). 

comparing to the “mock” group (treated with PBS) (see 

p
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Figure 37 Animal survival after in vivo treatment of subcutaneously implanted Gl261 cells 
1x106 Gl261cells per mouse were injected subcutaneously into the right flank. After tumors appeared,  

∆ 6

(0,5x106+0,5x106 RU) were given. 8 animals per group were used. 
 

Com

dayday
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4.7 Dendritic cells and parvoviruses in gene therapy 

endritic cells (DCs) are one of the most potent cells of the immune system. They 

ollect and process antigens for presentation to T cells, directing them to different types 

f immune response or to tolerance (Banchereau J. et al. 2000). 

 promising strategy would consist in stimulating DCs by virus-infected tumor cells. 

uch an approach would also be the first assay for the development of a vaccination. 

Cs co-cultured with infected tumor cells would stimulate T cells to act against infected 

mor cells. Direct infection of DCs with parvoviral vectors could lead to the presentation 

f viral antigens and, again, direct T cells to the response targeted by the virus tumor 

ells. 

 this study we wanted to take advantage of the expression of TNFα by recombinant 

ectors. Indeed TNFα is known as inducer of DCs maturation (Banchereau J. et al. 

000). 
reliminary experiments to evaluate the potential use of recombinant parvoviruses in 

egri”, Milano, Italy).  
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DC-directed antitumor response were done in cooperation with the scientific group of 

Dr. Annunciata Vecchi and Dr. Silvano Sozzani (Pharmacological Institute “Mario 

N

 

4.7.1 Stimulation of DCs with infected tumor cells 

Two approaches were investigated: stimulation of DCs with tumor cell lysates and co-

culture of DCs with tumor cells. 

a) Stimulation with tumor cell lysates 

2x10  Gl261 cells were infected at MOI3 with the Chi-MVMp/∆800 or the Chi-

MVMp/TNF virus. 3 days post infection the cells were collected, supernatants discarded 

and the cell pellet frozen in a 0,5 ml fresh medium. One freeze-thaw cycle was 

performed and the lysates stored at -20°C. 2x106 DCs were stimulated for 24 hours with 

the lysate obtained from 1x105 tumor cells. Afterwards phenotype characteristisc of DCs 

and a pinocytosis assay were performed. The maturation of DCs can change the 

expression profile of certain surface markers and decrease their pinocyto

b) Stimulation with whole tumor cells (co-culture) 
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1x105 Gl261 cells were infected with the Chi-MVMp/∆800 or the Chi-MVMp/TNF virus at 

MOI3. One day post infection tumor cells were collected and co-cultured with DCs at the 

ratio 1:10 (Gl261: DCs) for 24 hours. As in the above-described approach, phenotype 

haracteristics of DC and a pinocytosis assay were performed.  

 

4.7.1.1 Changes in the pinocytotic activity of DC 

For the evaluation of pinocytotic activity DCs were incubated with FITC-coupled dextran 

(1,5x105 cells per sample). The samples were analysed by FACS. 

 

After stimulation 1,5x10  DCs were tested for their pinocytotic activity (1 hour incubation with FITC-

 

One of the parameters describing mature dendritic cells is the decrease of their 

pinocytotic activity. After stimulation with infected tumor cells or their lysates such an 

effect could be observed for DCs stimulated with Chi-MVMp/TNF-infected tumor cells. 

Co-culture was as effective as stimulation with the cell lysate. Non-infected Gl261 cells 

also decreased the pinocytotic activity of DCs, but this effect was not observed when 

DCs were stimulated with the lysate of non-infected cells. A slight effect was observed 

for Chi-MVMp/∆800 infected tumor cells and their lysates (see Figure 38). 

c

 
Figure 38 Changes in the pinocytotic activity of DCs after stimulation with infected tumor cells or 
their lysates 
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4.7.1.2 Changes in the expression profile of surface markers 

xpress these markers 

5

 

 

 

 

 

 

 

 

 

Figure

a) diffe
intensit

Changes in the expression profile of surface markers indicate the status of DCs. A 

mature DC characteristic is characterized by an increase in the expression of CD80, 

CD86, DEC205 and MHCII. In a mature population more cells e

and an increased expression on the single cell level can be observed. For a phenotype 

characterisation DCs were stained with different antibodies against cell surface 

markers: anti CD86, CD80, DEC205 and MHCII (3x10  cells per sample). In order to 

distinguish DCs from Gl261 cells the CD11b marker was used. The samples were 

analysed by FACS. 
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Stimulation with whole tumor cells moderately influenced the number of mature marker-

positive cells. A slight expression increase was noticed for the DEC205 and MHCII 

markers, after stimulation with infected or non-infected tumor cells. The number of 

CD86 expressing cells notably increased upon stimulation with non-infected Gl261 cells 

ee Figure 39a). Co-culture promoted MHCII expression on the single cell level. 

Compared to non-stimulated DCs, the number of MHCII molecules on those cells 

 Figure 39b). Infection had no 

 a TNFα-expressing 

ector. Yet, CD86 expression is also promoted by non-infected tumor cells as well as by 

cells infected with the control vector (Chi-MVMp/∆800) (see Figure 39b).  

Obtained results suggest that tumor cells infected with TNFα-expressing parvoviral 

vectors promote DC maturation more than non-infected cells. This finding may have a 

potential therapeutical implication. 

(s

cultured with Gl261 cells increased by a factor of 2 (see

effect on the expression level. CD80, CD86 and DEC205 expression on single cells 

increased after stimulating the DCs with Gl261 cells infected with

v
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The influence of lysates derived from infected tumor cells on the maturation of DCs was 

less pronounced than for whole tumor cells (see Figure 40). 
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 stimulation with Chi-MVMp/∆800- or Chi-MVMp/TNFα-infected cell lysates 

reased the percentage of DCs positive for CD86 and DEC205 markers. DC 

mulation with Chi-MVMp/∆800- or Chi-MVMp/TNFα-infected cell lysates increased 

 mean fluorescence intensity for the MHCII marker (see Figure 40). Stimulation with 

ge of CD86-expressing cells and an increased level of MHCII expression). 
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ates derived from non-infected tumor cells did not have any effect on the expression 

ofile, whereas such an effect could be observed for intact cells (an increased 

rcenta
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It may suggest that tumor cells alone release a factor that influences the maturation of 

DCs. 

Viral infection may contribute to this process by transgene delivery (TNFα) and also by 

some other factors (infection with a control vector has promoted some maturation 

parameters as well). 
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4.8 Evaluation of the antitumoral mechanisms 

Two approaches have been used in order to evaluate antitumoral mechanisms 

mediated by recombinant parvoviruses in Gl261 and U87 tumor models. One of them 

as a histological examination of tumor tissue isolated from experimental animals. The 

xt  of tumor necrosis and the number of blood vessels was evaluated. 

Immunohistochemistry was done at the Department of Anatomy III, University of 

eidelberg under the supervision of Dr. Ralf Kinscherf. 

The other approach was a measurement of blood vessel density done by 

agnetic Resonance Imaging. This work was performed in collaboration with Dr. M. 

eilmann and Dr. F. Kießling at the Department of Radiology DKFZ Heidelberg.   

.8.1 The influence of recombinant parvoviruses on tumor necrosis 

olid tumors have several distinguishing characteristics from normal tissues, chief 

mongst them are an under-developed vasculature that delivers much of the oxygen 

nd nutrients to those cells located in the periphery of the tumor. A nutrient-poor 

nvironment in the centre soon accompanies the growth of any solid tumor over a 

olume of 1 mm3. This generally leads to a large number of necrotic (dead and dying) 

ells at the centre of any solid tumor. Simply measurement of tumor volume might not 

ccurately assess the response to the treatment. The investigation of entire tumor 

ssue sections identifies regional changes after treatment with different viral vectors. 

 of animal study with Gl261 cells infected in vitro at MOI1 

 tumor cells (MOI1) were subcutaneously implanted into the fight flank of the 

animals. Tumor growth was monitored and when the longest tumor diameter reached 
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4.8.1.1 Evaluation

Infected

17 mm the animals were sacrificed, the tumors isolated and fixed. Histological 

examination of counterstained sections was done. 
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necrotic area 

normal tumor tissue 

Gl261 tumor section 

Figure 41  
Representative  
hematoxylin-eosin stained 

 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 42 The percentage of necrotic area in tumor sections 
The largest cross-sectional diameter of each tumor was evaluated. The percentage of necrotic tumor area 
was calculated as the ratio of the necrotic area to the total tumor area x 100. 

Tumors were obtained from Gl261 cells infected at MOI1. 
 
The highest percentage of necrotic area was found in tumors of animals belonging to 

“Chi-MVMp/IP-10+Chi-MVMp/TNF” group. Compared to “mock” and “Chi-MVMp/∆800” 

groups the differences were statistically significant (see Figure 42). In the animal 

experiment the most pronounced tumor growth delay was observed for “Chi-MVMp/IP-

10” and “Chi-MVMp/IP-10+Chi-MVMp/TNF” groups (see Figure 22). For “Chi-MVMp/IP-

10+Chi-MVMp/TNF”, but not for “Chi-MVMp/IP-10” group, necrosis appearance is 

corresponding to the tumor growth delay. 

 

4.8.1.2 Evaluation of in vivo treated Gl261-derived tumors 

Established Gl261-derived subcutaneous tumors were treated in vivo with virus 

injections. In this study the effect of pseudotyped recombinant parvoviruses was  
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established (MVMp-based chimeric genome in H-1 capsid). 6 virus injections were 

given. 

 

 

 

 

sis 

ppearance corresponds with delayed tumor growth for “TNF ps.” and “IP-10 ps.+TNF 

 

the “IP-10 ps.” group (see Figure 36). However, increased tumor necrosis was not 

observed in this group. 

ral effect (tumor growth delay) when 

the animals were treated with TNF – expressing virus or with the combination of TNF 

with IP-10 expressing vectors. 

In both experiment the animals were sacrificed at several time points. This could 

influence the extent of tumor necrosis incidence due to the different age of tumors at the 

day of the isolation. In the experiment where pseudotyped vectors were used, the 

survival as well as antitumoral effect was very similar for 3 groups: “IP-10 ps.”, 
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Figure 43  The percentage of necrotic area in tumor sections 
The largest cross-sectional diameter of each tumor was evaluated. The percentage of necrotic tumor area 
was calculated as the ratio of the necrotic area to the total tumor area x 100. 

Gl261-derived tumors were obtained from the animals treated in vivo with pseudotyped (ps.) vectors 
injections. 
 

Increased necrosis incidence was observed for “TNF ps.” and “IP-10 ps.+TNF ps.” 

groups. In the “TNF ps.” group the the percentage of necrotic area was significantly 

higher when compared to “mock”, “∆800 ps.” and “MVMpwt” groups, and for the “IP-10 

ps.” group when compared to “∆800ps.” (see Figure 43). Increased necro

a

ps.” groups. Notably, the same effect of tumor expansion delay was observed also for

Concluding from both animal experiments it is possible to say that tumor necrosis 

appearance positively corresponds to the antitumo
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 “TNF ps.” and “IP-10 ps. +TNF ps.”  Independently from that, increased tumor necrosis 

.” and “IP-10 ps.+TNF ps.” This means that 

process. In the Gl261 glioblastoma model 

is development. 

4.8.1.3 Evaluation of animal study with U87 cells infected in vitro at MOI3 

fected at MOI3 tumor cells were subcutaneously implanted into the fight flank of the 

nimals. Tumor growth was monitored and as the longest tumor diameter reached 17 

m the animals were sacrificed, the tumors isolated and fixed. Histological examination 

f counterstained sections was performed. 

was present only in the two groups “TNF ps

the type of transgene plays a key role in this 

TNFα seems to mainly c necros

 

ontribute to tumor 
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normal tumor tissue 

necrotic area 
Figure 44 
Representative 
hematoxylin-eosin stained 
U87 tumor section 
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The largest cross-sectional diameter of each tumor was evaluated. The percentage of necrotic tumor area 

U87 cells infected at MOI3. 

10

40

70

100

n
ea

Chi-H1/∆800

H1 wt

Mean±SEM ∗ p<0.05 vs IP-10/TNF  • p<0.05 vs ∆800                                        
.                    ## p<0.01 vs H1 wt and ∆800

10

40

70

100

n
ea

Chi-H1/∆800

H1 wt

Mean±SEM ∗ p<0.05 vs IP-10/TNF  • p<0.05 vs ∆800                                        
.                    ## p<0.01 vs H1 wt and ∆800

Figure  45 The percentage of necrotic area in tumor sections 

was calculated as the ratio of the necrotic area to the total tumor area x 100.Tumors were obtained from 
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Tumor tissue was isolated form all the animals at day 24 post implantation of tumor 

cells. This allows avoiding the inconvenience of analyzing the samples collected over 

nger period of time. At day 24 a significant antitumoral effect was observed for the 

roup “Chi-H1/IP-10+Chi-H1/TNF” in comparison to other experimental groups (see 

igure 18). The percentage of necrotic area was reduced in “Chi-H1/IP-10+Chi-H1/TNF” 

roup and significantly smaller than in “mock”, “Chi-H1/∆800” and “H1 wt” groups (see 

igure 45). In “Chi-H1/IP-10” group necrosis incidence was significantly reduced 

ompared to “Chi-H1/∆800” group. 

 the U87 system antitumoral effect (reduced tumor growth) negatively corresponds to 

e tumor necrosis development. It is possible, that in this model blood vessel network 

 not affected by the transgene expression and necrosis development simply 

orresponds to the tumor size. 

s on tumor vascularisation 

ave immunostimulatory 

nd a potent antiangiogenic factor. TNFα is a pleiotropic activator of the immune 

4.8.2.1 Evaluation of in vivo treated Gl261-derived tumors 

In this in vivo study the effect of pseudotyped recombinant parvoviruses was tested 

rimental setting should allow to determine the influence 

lo
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4.8.2 The influence of recombinant parvoviruse

The transgenes delivered by means of recombinant viruses h

and antiangiogenic properties. IP- 10 is well described as a chemoattractant for T cells 

a

response and, depending on the model, a stimulator or inhibitor of the blood vessels 

development. Direct inhibition of blood vessel formation or the influence on this process 

caused by the transgene proteins would be a critical procedure in the formation and 

growth of glioblastoma tumors, which are known to be especially highly vascularized 

among the tumors of different origin. 

 

(MVMp-based chimeric genome in H-1 capsid). 6 virus injections were given. 

Animals under test were divided into two cohorts. The first one contained 3 animals per 

group, which were sacrificed at day 10 of the study, i.e. three days after the third virus 

injection was applied. This expe

of pseudotyped vectors on early tumor angiogenesis. 

The second cohort contained 8 animals per group, which received 6 virus injections. 

Tumor growth was monitored until the animals were sacrificed. Tumor tissue was  
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isolated, fixed and analysed. This experimental setting should reveal the influence of 

pseudotyped vectors on late tumor angiogenesis. 

 

 
Figure 46 Anti-CD31-stained Gl261 tumor sections 

 

 

 

 

 

 

 

 

 
Figure 47 The density of blood vessels in tumor sections 

l261-derived tumors were obtained from the animals treated in vivo with pseudotyped vectors injections. 
he cross-sectioned vessels were quantified counting CD31-positive vessels. The CD31 immunoreactive 
r) number of vessels was computer assisted morphometrically quantified and expressed as vessel 
umber per mm2. 

10 days after tumor cell implantation the number of blood vessels was lower in “∆800” 

and “MVMp” groups compared to “mock”, “IP-10 ps.”, “TNF ps.” and  “IP-10 ps.+TNF 

ps.” groups. However, this difference is statistically significant only versus “TNF ps.” 

group (see Figure 47).  Comparing to the untreated “mock” group, transgenes do not 

etween the “mock”, “IP-10 ps.”, “TNF ps.” and “IP-10 ps.+TNF 

ps.” groups. The tumors treated with MVMp wt virus or with the control ∆800 vector 

revealed a decreased number of blood vessels. 
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show any antiangiogenetic properties at this stage of tumor development. There are no 

significant differences b
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 The tumors from the second cohort were isolated at the end of the experiment. Tumor 

growth was delayed in “IP-10 ps.”, “TNF ps.” and “IP-10 ps.+TNF ps.” groups compared 

to  “mock”, “MVMp” and “∆800 ps.” groups (see Figure 36). 
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sels per mm2 in “mock”, “IP-10 ps.”, “TNF ps.” and 

P-10 ps.+TNF ps.” groups.  At the end of the experiment the density was similar for all 

the groups and between 10 and 15 vessels per mm2. 
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Figure 48  The density of blood vessels in tumor sections 
Gl261-derived tumors were obtained from the animals treated in vivo with pseudotyped vectors injections. 
The cross-sectioned vessels were quantified counting CD31-postive vessels. The CD31 immunoreactive 
(ir) number of vessels was computer assisted morphometrically quantified and expressed as vessel 
number per mm2. 
 

The number of CD31 immunoreactive blood vessels was comparable among all groups 

under test. 

Generally, at the early stage of tumor development (day 10) blood vessel density 

was higher and amounted to ~40 ves

“I

Although transgene induction suppresses, to some extend, tumor d

not seem to have any influence on the blood vessels formation. Because blood vessel 

density remains similar in all experimental groups, probably not angiogenesis

factors, induces the antitumoral effect in the Gl261 model  
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4.8.2.2 Evaluation of animal study with U87 cells infected in vitro at MOI3 

fected at MOI3 tumor cells were subcutaneously implanted into the fight flank of the 

animals. At the day 24 of the experiment the animals were sacrificed, the tumors 

isolated and fixed. Histological examination of anti-CD31-stained sections was 

performed. 

 

In

 
Figure 49 

The tumors were obtained from the cells infected in vitro with H1-based chimeric vectors at MOI3. The 

number of vessels was computer assisted morphometrically quantified and expressed as vessel number 

Anti-CD31-stained U87 tumor sections 
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Figure 50  The density of blood vessels in tumor sections 

cross-sectioned vessels were quantified counting CD31-postive vessels. The CD31 immunoreactive (ir) 

per mm2. 
 

In the animal experiment the mean tumor volume was significantly smaller for the “Chi-

H1/IP-10+Chi-H1/TNF” group compared to “mock” and “Chi-H1/∆800” groups. Tumor 

volume for “Chi-H1/TNF” group was marginally lower compared to these two control 
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groups. For other groups no reduction of tumor growth at this time point was observed 

(see Figure 18). 

Density of CD31-immunoreactive blood vessels was significantly reduced in the “Chi-

1/TNF” group in comparison to the “mock” and “Chi-H1/∆800” groups. The number of 

D31-immunoreactive blood vessels was also reduced in both IP-10-treated groups. 

∆800” groups in comparison to the untreated 

ock” group there was no reduction of CD31-immunoreactive vessels observed.  

Combined IP-10 and TNFα expression revealed the best therapeutic effect in 

87 model. This effect does not seem to appear exclusively due to the inhibition of  

ngiogenesis, because combined expression of both transgenes only moderately 

ecreased the density of the blood vessels. Inhibition of blood vessel development by 

NFα expression did not significantly reduce tumor growth. 

H
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fter the tumors were visible (2-3 mm3 at day 6 post implantation), 6 Chi-

VMp/IP-10 virus injections were given: at day 6, 7, 8, 10, 12, and 14 after tumor cell 

implantation. Each animal received 1x106 RU per injection. Control (“mock”) animals 

were injected with 100 µl PBS. Tumor growth was monitored every 2-3 days. 

 

 
Figure 51  Subcutaneou
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nimals received subcutan
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ver the time period w
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ompared to buffer-tre

4.8.3 MRI analysis of Gl261-derived tumors vascularization 

In order to investigate the influence of Chi-MVMp/IP-10 virus treatment on tumor 

angiogenesis an in vivo study was performed. Mice received 1x106 Gl261 cells in the 

right flank. A
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s established tumors were treated with repeated Chi-MVMp/IP-10 virus 

eously 1x106 Gl261 cells. At day 6, 7, 8, 10, 12 and 14 virus injections were 
were used. 

hen the virus injections were done (up to day 15), tumor growth 

groups. No difference between PBS-treated and virus-treated 

n tumor size became different for 

ated animals. However, at day 22 (the day of animal sacrifice) the 

rved. After day 15 the mea

 therapeutical effect of Chi-MVMp/IP-10 virus could be observed.  

tumor expansion and the growth rate for the virus-treated group 

 tumor volume remained statistically insignificant.  

t MRI measurement 15 and 22 days post implantation of tumor 

nwards the difference in the mean tumor volume for particular 
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groups could be noted (tumors treated with Chi-MVMp/IP-10 virus remained smaller 

then control tumors) (see Figure 51). 

 

nt 

ge in 

signal 

s a 

ed and overlaid on the 

morphological MR images to reveal parameter maps (see Figure 52). 

Magnetic resonance imaging was performed using a clinical 1.5 T whole-body MRI-

system and a custom-made radio-frequency-(rf) coil (“animal resonator”) for rf excitation

and signal reception. After infusion of the contrast agent, an exchange of contrast age

between intra- and extravasal compartments was assumed, described by the rate 

constant kep. Another functional parameter was the amplitude A, the relative chan

intensity after the contrast agent injection relative to precontrast values. While 

amplitude A predominantly reflects the plasma volume, the rate constant kep i

compound parameter highly influenced by the vessel permeability but also by blood 

flow, and capillary exchange surface. 

Amplitude and kep were calculated pixelwise, color-cod
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Figure 52  Amplitude (A) and exchange rate constant (kep) maps for Gl261-derived tumors 
The maps are shown for one represen tive animal from each group. Transversal sections of the whole 

detected in the 

Figure 41). 

one represen tive animal from each group. Transversal sections of the whole 

detected in the 

Figure 41). 

ta
mouse body including the tumor are shown. Tumor area is indicated. 

ta
mouse body including the tumor are shown. Tumor area is indicated. 
  

Amplitude maps (A) correspond to blood volume and indicate the areas of different 

vascular density. The maps demonstrate the highest blood volume at the periphery of 

the tumors (very well visible for the “mock” animal at day 22). The centre of the tumor 

typically shows low vascular density (“mock” animal days 15 and 22). Changes in the 

tumor vascularization could be demonstrated with the example of Chi-MVMp/IP-10 – 

treated animal. At day 15 the signal was observed both on the periphery and in the 

centre of the tumor (see “IP-10” day 15). At day 22 there was no signal 

Amplitude maps (A) correspond to blood volume and indicate the areas of different 

vascular density. The maps demonstrate the highest blood volume at the periphery of 

the tumors (very well visible for the “mock” animal at day 22). The centre of the tumor 

typically shows low vascular density (“mock” animal days 15 and 22). Changes in the 

tumor vascularization could be demonstrated with the example of Chi-MVMp/IP-10 – 

treated animal. At day 15 the signal was observed both on the periphery and in the 

centre of the tumor (see “IP-10” day 15). At day 22 there was no signal 

tumor centre (see “IP-10” day 22), what could illustrate tumor necrosis development.  

Histological analysis showed central tumor necrosis for Gl261-derived tumors (see 

tumor centre (see “IP-10” day 22), what could illustrate tumor necrosis development.  

Histological analysis showed central tumor necrosis for Gl261-derived tumors (see 
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The exchange rate constant (kep) maps illustrate the ratio of contrast agent exchange 

between intra- and extravascular space and correspond to the vessel permeability. High 

 
Figure  53  Signal intensity curves  
MRI measurement was performed at day 15 (a) and 22 (b) post tumor cell implantation. Signal intensity 
curves illustrate contrast agent uptake by tumor tissue within 11,3 minutes after its application (s: signal, 
a.u.: arbitrary units) 

kep values were calculated for the periphery of the tumors, confirming the presence of 

vascular network in these areas both for control and treated tumors. 

Small pictures included for the day 22 show tumor morphology. 

Following contrast agent injection, signal intensity-time curves were recorded. Signal 

intensity curves illustrate contrast agent uptake by tumor tissue within 11,3 minutes after 

its application (see Figure 53).  
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At day 15 post tumor cell implantation there was no effect of Chi-MVMp/IP-10 virus on 

tumor growth observed. The signal intensity measured for both groups remained very 

similar (see Figure  53a). The uptake of the contract agent within the acquisition time 

did not demonstrate differences between control “mock” and treated “Chi-MVMp/IP-10” 

animals. This data suggest that at this time point the density of functional vessels in 

treated tumors did not decrease although potentially antiangiogenic factor has been 

applied. 

At day 22 a therapeutic effect for “Chi-MVMp/IP-10” group was observed. Enhancement 

of signal intensity after injection of the contrast agent was for both groups lower 

compared to day 15. It might be due to developing tumor necrosis and decrease in the 

number of blood vessels. Contrary to day 15, a difference between experimental groups 

was observed. The values reached within the acquisition time were significantly lower 

for “Chi-MVMp/IP-10” animals (p=0.05) (see Figure 53b). Observed tendency suggests 

that the density of functional vessels in treated tumor might be lower compared to 

control tumors. 

After the second measurement the animals were sacrificed, tumor tissue isolated, fixed 

and analysed. Histological examination evaluated the number of CD31-immunoreactive 

blood vessels in tumor slices and the percentage of necrotic areas. Necrosis 

development was similar for both groups. Percentage of necrotic area in control tumors 

amounted to 21% and in virus-treated tumors – to 24%. Density of CD31-

immunoreactive blood vessels density was in “mock” group 21 vessels/mm2 and for 
2 both in 

owever, histological data correspond to the results obtained with MRI measurement 

“Chi-MVMp/IP-10” group 18,4 vessels/mm . The differences between the values 

case of necrosis and vascular density evaluation remain statistically insignificant.  

H

and show that there is a slight tendency for the decreased blood vessel density in Chi-

MVMp/IP-10 treated tumors.  
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5 Discussion 
 

5.1 The effects mediated by parvoviruses on glioblastoma cell 
cultures 

ornelis J.J. et al. 2004). Constructing parvoviral vectors 

encoding therapeutic products has been already reported. Such vectors were 

successfully used against different types of experimental tumors (Haag A. et al. 2000, 

Wetzel K. et al. 2001, Giese N.A. et al. 2002).  

In this work, human IP-10 and mouse TNFα cDNA were cloned into basic 

chimeric vectors in order to evaluate their antitumoral potential against glioblastoma. 

The effects mediated by the parvoviruses are strictly dependent on the cell line. Even 

cells from the same origin (e.g. melanoma) show different permissiveness to the virus, 

different transfection efficacy and different levels of transgene production (Kayser T. 

2004). In this work 6 glioblastoma cell lines were examined: 4 human (A172, U87, U373 

and U138) and 2 murine ones (Gl261 and MT539). Human cells were treated with H1 

wild type virus or its derivatives and mouse cells – with MVMp wild type virus or its 

derivatives. 

High infectability (many cells get infected) is desired for gene therapy with viral 

vectors. The number of infected cells usually correlates with the efficiency of transgene 

production by the cell population and increases the chances for effective cancer 

therapy. Infectability of glioma cells was determined by infecting the cells with a virus 

containing in its genome a gene coding for EGFP (Enhanced Green Fluorescing 

Protein). Cells of all tested lines expressed the reporter gene upon infection. When 

infected with the wild type viruses (as well as with different recombinant constructs) the 

major viral NS1 protein was detectable in cells of all lines. MVMp and H1 viruses 

produced cytotoxic effect in glioblastoma cell cultures even when cells were infected at 

low MOIs. 

lines of rat and human origin and on short-term/low-passage cultures 

of human glioblastoma cells were evaluated (Herrero Y Calle M. et al. 2004). An 

efficient and dose-dependent killing of all glioma cell cultures at low MOI was observed. 

Autonomous rodent parvoviruses and recombinant derivatives are promising candidate 

antitumor vectors (reviewed by C

In other study, the effects of the parvovirus H1 on different established 

glioblastoma cell 
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In proposed treatment models parvoviral vectors should not only directly kill 

tumor cells but first of all serve as effective transgene transducers. IP-10 expression 

could reduce tumor angiogenesis and stimulate antitumoral immune response. TNFα 

expression could stimulate immune response against tumor cells and possibly 

contribute to the antiangiogenesis. ELISA tests done on supernatant collected from cell 

cultures infected with transgene-expressing vectors proved high effectiveness of 

transgene protein production in glioma cells. The IP-10 and TNFα concentrations were 

g vectors resulted in a dramatic decrease in the number of living cells 

virus-transduced TNF  is a fully biologic active protein. 

Many cell types need a “sensitizer” to become susceptible to TNFα-mediated 

killing. A cycloheximide may be such a factor (Kaszubowska L. et al. 2001). Cytotoxicity 

tests on human glioma cells were repeated in the presence of different cycloheximide 

concentrations. No sensitizing to cytotoxic action of TNFα could be observed. 

In mouse gliomas we could observe TNFα-induced toxicity at very low MOI 

(MOI1). Similarly, Moriuchi and co-workers could induce cytotoxicity in rat gliosarcoma 

9L model at low MOIs. Replication-defective HSV vectors expressing herpes simplex 

virus thymidine kinase (HSV-TK) and Escherichia coli cytosine deaminase (CD) were 

used in the “sucide” gene therapy protocol. In cell culture experiments at MOI 0,1 and 

MOI3, combined expression of the two genes along with exposure to the matching 

prodrugs (ganciclovir and 5-fluorocytosine) showed increased cytotoxicity compared 

with exposure to either prodrug alone (Moriuchi S. et al. 2002).  

relatively high for all tested cell lines and accumulated up to 4-5 days post infection, 

indicating that the transduced proteins remained stable in the cell culture supernatants. 

The peak of transgene production was reached at day 2-3 post infection, what is a 

typical picture of transgene release after cell infection with parvoviral vectors (Wetzel K. 

2001, Kayser T. 2004). 

Infection with IP-10-expresing virus did not seem to affect cell survival. This was 

expected since IP-10 was not reported to have cytotoxic properties. Infection with 

TNFα-expressin

and massive cell death in Gl261 cell culture.  TNFα is known as cytotoxic agent for 

many different tumor cell lines. In order to verify if tested glioblastoma cells are sensitive 

to TNFα, cytotoxicity tests with recombinant cytokine were performed. 

Murine cells but not human glioblastoma showed dose-dependent sensitivity to 

TNFα. It explains the observed cell death upon infection with TNF-expressing vector. 

Transgene-related toxicity contributes to cell death in vitro and shows in addition that 

α
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Others demonstrated apoptosis induction in 9L and C6 rat glioma cells in culture 

ccinia virus vectors expressing p53 protein. A prolonged p53 

rotein production was measured in the supernatants of glioma cells infected with 

vaccinia virus expressing p53 (VV-TK-53) on day 5 to 7 after infection (Timiryasova 

replication-deficient. Inactivation of viral DNA replication was obtained by treatment with 

optotic cells could be detected (Shah K. 

et al. 

on 

cultures. Maleniak and co-workers compared the results of gene therapy 

with th

notypic cultures are simulating in vivo conditions better then cell cultures. 

Vesicu

upon infection with va

p

T.M. et al. 2001). Analogous to our vectors, vaccinia virus used in this work was 

psoralen and UV irradiation. 

The same transgene induced by means of different viral vectors can produce 

contradictory effects. Apoptosis induced in human glioma cell culture (Gli36) was 

reported for herpes simplex-derived TRAIL (tumor necrosis factor-related apoptosis-

inducing ligand). Within 24 hours of infection ap

2003). Infection of human malignant glioma cell lines with an adenoviral vector 

encoding full length human TRAIL (Ad/TRAIL) resulted in strong transgene expressi

and the release of full-length TRAIL into the cell culture medium. However, Ad/TRAIL 

was a poor inducer of cell death, even in the presence of inhibitors of protein synthesis. 

The adenovirally encoded full-length TRAIL is not a suitable molecule for glioma cancer 

gene therapy (Naumann U. et al. 2003). 

Next to the studies performed in the established cell lines there are reports about 

studies completed in the short term cultures obtained from brain tumor biopsies or 

organotypic 

e chemosensitivity in short-term human glioma cell cultures derived from surgical 

biopsies. Expression of herpes simplex virus type 1-thymidine kinase followed by 

gancyclovir treatment, induced apoptosis in all of the glioma cell cultures studied. 

Expression of murine Fas ligand also induced cell death in four of the five cell cultures 

studied. The results suggest also that sensitivity to chemotherapeutic agents does not 

necessarily correlate with the sensitivity to gene therapy treatments. Recombinant 

adenoviruses expressing therapeutic gene products in human glioma cell cultures are 

able to induce apoptosis even in some cells that are resistant to a commonly used 

chemotherapeutic agent (Maleniak T.C. et al. 2001). 

Orga

lar stomatitis virus (VSV) has been used as direct oncolytic agent in the 

organotypic brain tissue slice-glioma coculture system. Both replication-competent and 

replication-restricted recombinant VSV vectors were evaluated. The tissue slices still 

showed signs of cytopathology when exposed to rVSV-wt. In contrast, pretreatment with 
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IFNβ 

l may produce vectors demonstrating ability to kill glioma cells 

under 

to cell population 

death 

 

A wide variety of different animal models have been established in neurooncology over 

the last decades. Murine, canine and feline models have been described (Castro M.G. 

et al. 2

and inoculation with a replication-restricted vector with its capsid glycoprotein 

gene deleted effectively destroyed rat C6 and human U87 glioma cells in the coculture, 

without causing detectable damage to the neuronal integrity and electrophysiological 

properties of the healthy tissue in the culture (Duntsch C.D. et al. 2004). It is an 

interesting observation and may have some implications also in the parvovirus-treated 

glioma models. Our vectors induce immunestimulatory molecules and are replication-

deficient, similarly like those presented in the work of Duntsch and co-workers. 

In the majority of research in gene therapy of glioblastoma modified viruses were 

employed. Due to the safety reasons the viruses are often deprived of the property to 

form progeny particles. As reviewed above cloning into the viral vectors a death ligand, 

cytokine or chemokine sequence or an enzyme sequence suitable for certain 

enzyme/prodrug protoco

cell culture conditions. 

The above-mentioned examples of the use of viruses as vectors in the gene 

therapy of glioblastoma clearly demonstrate that the choice of the vector and transgene 

plays a key role. Recombinant parvoviral vectors designed in this work seem to posses 

the most desired features for the gene therapy of glioblastoma. They could effectively 

infect different and human cells. The infection at low MOI leads either 

or delayed growth (for wild type viruses). A high but transient therapeutic 

transgene production was reached for all tested cell lines upon infection with 

recombinant vectors at MOI1. One of the transgenes of choice (TNFα) exploited its 

cytotoxic activity against mouse glioma cells in culture. 

5.2 Glioblastoma animal models 

003); however, the most widely used experimental animals are rats. It should be 

recognized that no currently available animal tumor model exactly reproduces human 

brain tumor growth and vascularization. The question whether a syngenic 

immunocompetent animal model (like Gl261 cells in the C57/Bl6 strain) or human 

xenografting into immunocompromized hosts (like U87 cells in the cd1 swiss nu/nu 

strain) is closer to the human in situ situation cannot be answered definitely. 

Nevertheless, animal models have several characteristics that make them good test 
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system

l. obtained tumor growth upon subcutaneous injection of 

2x107 

imal were implanted, a tumor formation and 

growth

et al. 2000). These cells can be 

implan

s, including defined and reproducible location of tumor formation, rate of tumor 

growth and time to death. 

In this work the growth of tumours derived from 4 human established cell lines in 

nude mice was tested. 

Subcutaneous implantation of U373 cells did not lead to tumor growth. Injection 

of 1x107 cells per animal caused an inflammatory reaction and tumor development only 

in a few animals. Palma et a

U373 cells into the flanks of female nude mice (Palma C. et al. 2000). In another 

work mouse NK (natural killer) cells, monocytes and fetal thymocytes were inhibited by 

an intraperitoneal antibodies injection prior to subcutaneous tumor cell implantation. 

This potentiated tumor growth by inhibiting the rejection. 6x106 U373 cells per animal 

were used (Li C. et al. 2000). It seems possible to obtain U373-derived tumors in nude 

mice at special conditions but in our hands it remained unsuccessful.  

The U138 cell line is used for many in vitro but not in vivo studies. It is commonly 

used for experiments in cell cultures (for example apoptosis studies, Jiang Z. et al. 

2004) but there is no data about the use of these cells in animal experiments. Under our 

conditions, although 1x107 cells per an

 was not obtained. 

A172 cells are widely used in in vitro research. For example, with U373, U138 

and U87 cell lines it was used for the investigation of the effect of the chemotherapeutic 

agent – temozolomide – in cultured glioblastoma cells in culture (Balzarotti M. et al. 

2004). For in vivo experiments A172 cells were described as nontumorigenic and 

noninvasive in the subcutaneous and in the tracheal graft system in scid mice 

(Mercapide J. et al. 2003) as well as in the intracranial nude rat model (Finkelstein, S.D. 

et al. 1994). A172 cell implantation induced tumor growth, which, however, was very 

slow and did not correlate with the number of injected cells. For this reason this cell line 

was not considered for future experiments.  

U87 is the most commonly used among human glioma-derived established cell 

lines, both in vitro and in vivo (Goldbrunner R.H. 

ted subcutaneously in nude mice as a suspension (Wang H. et al. 2004) or as 

third generation xenografts (Huang P. et al. 1995). Intracranial models in nude or scid 

mice are also employed (Zhang Y. et al. 2004). 

At our conditions subcutaneous implantation of these cells in cd1 swiss nu/nu 

mice lead to a desired, moderate tumor growth. The tumor enlargement ratio was 
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proportional to the number of implanted cells. Tumor development was similar for the 

animals belonging to one group. No inflammatory reaction was observed. 1x105 and 

5x105 cells per animal were chosen as the optimal cell number for the animal studies.  

 

5.3 Recombinant parvoviruses demonstrate antitumor effect in U87 
glioblastoma model 

 

son xenografting in the immunocompromized animals 

seems

 available MRI technique) and 

olation. The choice of the subcutaneous model is also a consequence of the moderate 

effectiveness of recombinant parvovirus production. Infecting adherent cells in culture 

concentration. Applying a reasonable number 

5.3.1 Subcutaneous localisation of glioblastoma-derived tumors 

The subcutaneous nude mice U87 model used in this work has several advantages as 

well as disadvantages. Animal glioma models poorly resemble the human glioma 

growth pattern. For that rea

 to be an optimal approach for studying the biology of human-derived tumors. In 

contrast to this big advantage, nude mice do not provide conditions to modulate and 

evaluate entire antitumor immune response.  

Human brain tumor growth and vascularisation can only be stimulated in an 

orthotopic model. There is a general consensus that the invasive growth pattern of 

human glioma is a result of complex interactions of glioma cells with the brain cells and 

the brain-specific extracellular matrix (Goldbrunner R.H. et al. 2000). Therefore, the 

biggest inconvenience of using this model is the subcutaneous localisation of the tumor; 

however, it allows its easy monitoring (also with the

is

can be performed with virus stocks of low 

of viral vectors intracranially would require highly concentrated stocks, which are 

currently not available.  

Using cell suspension allows also precisely defining the ratio between tumor cells 

and viral particles. It is required for the preliminary experiments. Such a control is not 

possible when tissue pieces are used; however, transplant physiology remains closer to 

natural tumor development and vascularisation.  
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5.3.2 Antitumoral effects 

IP-10 and TNF are known for their immune stimulating and antiangiogenic properties 

(Angio

s of IP-10 and TNFα - transducing parvoviruses could be 

media

3) neither VP-deleted basic vector Chi-H1/ 800 nor H1 wild type virus was 

demonstrating a therapeutic effect. This means that the transgene expression achieved 

by cell infection with recombinant vectors is critical for the antitumoral response. Very 

low MOIs were used in order to distinguish between toxicity of the vector (mediated 

through NS1 protein) and the therapeutic effects of transgenes. Since low MOIs were 

shown to be effective without producing side effects in vivo, it is still possible to increase 

These data suggest that parvoviral vectors are very suitable for IP-10 and TNFα 

delivery in the model described. In case of gene therapy with chemokines/cytokines 

transient expression that can be obtained after infection with parvoviral vectors is an 

advantage. Overdoses of such proteins could cause deleterious side effects. If 

necessary, prolonged expression of therapeutic transgene could be reached upon 

repeated administration of parvoviral vectors. Another advantage of parvoviral system is 

that high levels of therapeutic transgene can be reached upon infection at low MOI. 

Parvoviruses are weakly immunogenic what allows repeated administration without side 

effects and does not lead to a strong immune response. Finally, autonomous 

parvoviruses do not integrate into the host genome and do not belong to potentially 

oncogenic viruses. 

In contrast to our data, Huang and co-workers observed a significant antitumoral 

effect of exclusive TNFα administration in subcutaneous U87 model (Huang P. et al. 

Nα per animal for 7 days 

(appro

lillo A.L. et al. 1995; Grell M. et al. 1995). Our study was based on the hypothesis 

that antitumoral effect

ted both thorough the activation of the host immune response and 

antiangiogenesis. Taking advantage of these properties is a critical point in the use of 

recombinant parvoviruses expressing IP-10 and TNFα against glioblastoma. In the 

nude mice an antitumoral effect could be observed when simultaneous expression of 

these proteins was produced in U87 cells. None of them alone was demonstrating 

therapeutic effects. At the MOIs that were used for the animal studies (MOI 2 and MOI 

∆

the doses of recombinant vectors.  

1995). The animals received intraperitoneally 3,8 µg TF

ximate TNFα expression from parvovirus-infected cells reached approximately 

1µg/day). A higher cytokine dose and its systemic administration could explain the 
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differences in tumor development observed between parvovirus- and recombinant-

protein- treated animals. 

Although in our system the production of two immunostimulating transgenes 

producibly resulted in significant antitumoral effects, there was no animal cure. 

for IL-4 – treated subcutaneous tumors. The mixture of U87 and stably transfected 

plasmocytoma cells (LT-1) expressing high levels of IL-4 was implanted subcutaneously 

r intracranially.   In the intracranial model IL-4 expression resulted in a significant 

al. 1993). 

Modulation of immune response seems to be effective in the treatment of gliomas. 

observed for Burkitt lymphoma subcutaneous tumors upon treatment with IP-10 alone. 

Purified human chemokine was administered intratumorally over a period of 30 to 35 

effect (Sgadari C. et al. 1996). 

Our study hypothesizes that both immunostimulating and antiangiogenic 

properties of IP-10 and TNFα could generate antitumoral effects. There exist several 

studies showing that successful treatment of U87-derived tumors could be achieved by 

antiangiogenic therapy alone or by combining antiangiogenic factors with another one 

(Abdollahi A. et al. 2003, Kirsch M. et al. 1998, Bello L. et al. 2001, Lund E.L. et al. 

2000). 

A combination of a “direct” and an “indirect” antiangiogenic component – 

endostatin (affecting endothelial cells) and SU5416 (a VEGFR2 receptor kinase 

inhibitor) respectively – was used for the treatment of subcutaneous U87 tumors. Tumor 

growth was significantly delayed by each therapy alone; however, the combination 

demonstrated the best therapeutic effect (Abdollahi A. et al. 2003).  

Human angiostatin produced from human plasma was used for the treatment of 

second generation xenografts derived from U87 cells. Applying 1 mg of angiostatin by 

intraperitoneal injections every 12 hours over a period of 21 days resulted in tumor 

weight reduction to 16% of the control tumor mass (evaluated at day 22 of the 

experiment) (Kirsch M. et al. 1998). We demonstrated with recombinant parvoviruses a 

significant tumor volume reduction at day 24 after tumor cell implantation. At our 

conditions a transient expression of the nanogram amounts of IP-10 and TNFα was 

sufficient to produce such an effect. 

re

Complete tumor regression upon induction of an immunomodulator was demonstrated 

o

survival prolongation and increased eosinophil infiltration (Yu J.S. et 

Similarly to our data, no complete regression or inhibition of tumor growth was 

days. Despite of continuous application, IP-10 alone did not demonstrate antitumor 
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We combined an antiangiogenic and immunostimulatory molecule (IP-10) with an 

rvoviral vectors expressing IP-10 or TNFα are very 

promis

Tumor necrosis is a result of blood vessel damage, usually progressing from the tumor 

center. Such morphological changes could be a result of both IP-10 and TNFα action 

either directly on endothelial cells or indirectly by changing the cytokine milieu within the 

tumor and in its surroundings (Huang P. et al. 1995; Sgadari C. et al 1996). Because 

vascular changes were expected in the tumors derived from cells expressing these 

proteins, a histological examination was performed to evaluate the necrotic area and the 

density of blood vessels. 

Analyzing tumor tissues collected at the same time point (U87 cells infected at 

immunostimulator (TNFα) what resulted with the most pronounced therapeutical effect. 

In another approach recombinant human PEX (a fragment of matrix metalloproteinase-

2) was used as an antiangiogenic factor that has been combined with low-dose 

chemotherapy. This treatment improved survival of the animals and reduced glioma 

growth in vivo (U87 cells implanted intracranially) compared to each therapy alone 

(Bello L. et al. 2001). 

TNP-470 is an inhibitor of endothelial cell proliferation. Subcutaneous U87 

xenografts were treated with irradiation, TNP-470 or their combination. Both irradiation 

and TNP-470 significantly inhibited growth of the tumors and a significantly enhanced 

effect was obtained by the combination of the treatments (Lund E.L. et al. 2000). 

Taken together, different experimental data obtained in U87 animal model 

suggest that modulating immune response is a promising approach in the therapy of 

glioblastoma. Inhibiting angiogenesis and especially combining antiangiogenic factors 

with other approaches like immunostimulation, chemotherapy or radiation seems to be 

very accurate method in the treatment of glioblastoma tumors. 

The results obtained with pa

ing, comparing to the literature data. Our approach reduced tumor growth and 

prolonged animal survival although very low amounts of the vectors were used, inducing 

nanogram levels of therapeutic proteins. 

 

5.3.2.1 Antitumoral effect is independent from tumor necrosis 

MOI3; animals sacrificed at day 24) demonstrated differences in necrotic area. 

Surprisingly, expression of IP-10 and especially IP-10/TNF combination seems to 

reduce necrosis development. Although IP-10/TNFα expression significantly reduced 
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the tumor volume, it was not corresponding to necrosis development. The percentage of 

necrotic area of 5% was the smallest among the groups under test. This result was 

signific

 the 

author

monstrated 20-70% necrosis whereas no necrosis was 

observ

he influence of another immunomodulator on tumor necrosis was analysed by 

Yu and

ays post tumor cell 

implan

antly lower - 30%, 55% and 30%, respectively - than in tumors of groups “mock”, 

“Chi-H1/∆800” and “H1 wt”.  

In contrast to our results, there are several reports in the literature describing 

TNFα and IP-10 and factors that promote tumor necrosis development however in other 

tumor models (Huang P. et al. 1995, Sgadari C. et al. 1996). 

Animals bearing third generation U87 subcutaneous xenografts were treated with 

systemic TNFα administration. Tumors in TNFα-treated mice were significantly more 

necrotic compared to untreated animals. As hypothetical antitumoral mechanisms

s proposed NK cells stimulation and blood vessel damage (Huang P. et al. 1995). 

IP-10 may also participate in tumor necrosis development. In the work of Sgadari 

et al. established Burkitt lymphoma subcutaneous tumors (in nude mice) were treated 

with continuous (30 to 35 days) intratumoral injections of purified human IP-10. 

Chemokine - treated tumors de

ed in control tumors. There was a tendency for vessel disruption (elastin fiber 

fragmentation) in IP-10 treated tumors but no clear antitumoral effect (Sgadari C. et al. 

1996). This data suggests that depending on the system IP-10 can demonstrate 

different effects on tumor physiology, although they are not always connected with 

tumor regression or growth inhibition. 

T

 co-workers. IL-4 was induced in subcutaneously and intracranial U87 tumors.   3 

or 4 days post tumor cell implantation the tissue was isolated and analyzed for necrosis 

development. The group reported that IL-4-expressing tumors developed necrosis in 

contrast to untreated tumors (both subcutaneously and intracranially). (Yu J.S. et al. 

1993). Nevertheless, histological analysis of tumor samples 3 to 4 d

tation remains controversial.  

TNFα can modulate the haemostatic properties of endothelial cells, antigen 

expression and is able to directly kill endothelial cells. It can lead to hemorrhages and 

blockage of tumor blood vessels and, consequently, to tumor necrosis (Robak T. 1995), 

also in the U87 subcutaneous model (Huang P. et al. 1995). It is possible that tumor 

cells infected at MOI3 do not provide cytokine concentration sufficient to induce 

necrosis in the examined system. Transient transgene expression might also be not 

adequate to cause such an effect. 
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IP-10 expression does not promote necrosis in the subcutaneous U87 model as 

well.  

Reduced tumor necrosis observed in the TNFα/IP-10 group might simply 

correspond to the reduced tumor size and other physiological statuses of small tumors 

compared to big ones. Tumor necrosis induction does not seem to be the key 

mechanism of observed for a TNFα/IP-10 - combination antitumoral response. 

 

In the model we used TNFα expression by parvoviruses had only a moderate effect on 

tumor growth, but it significantly reduced blood vessel density. IP-10 expression (either 

alone or in combination with TNFα) only moderately decreased the blood vessel 

number (the differences are not statistically significant). 

α

hibition of angiogenesis. 

treatment, as was also shown with the U87 model. The use of antiangiogenic factors 

often succeeds with the decrease of the blood density in treated tumors. There exist 

f the right antiangiogenic factor plays a pivotal 

role. Synergistic effects of combined methods might be observed. 

A reduction of blood perfusion was observed after treatment either with 

er reduction in 

 angiostatin significantly decreased the microvessel count in 

U87 s

5.3.2.2 Antitumoral effect is independent from angiogenesis inhibition 

Only a combined IP-10 and TNF  expression has a therapeutic effect in the U87 

model. This effect does not seem to be due exclusively to the in

Nevertheless, antiangiogenic approaches can be effective in the glioma 

several studies showing that the choice o

endostatin or SU5416. The combination treatment resulted in a furth

tumor blood perfusion. It corresponded to the antitumoral effect. In the intracranial 

window model of the A549 lung carcinoma there was no difference in tumor growth, 

although, functional vessel density was significantly decreased for the combined 

therapy (Abdollahi A. et al. 2003). These data stay in agreement with our results, where 

reduced blood vessel density was found in TNFα - treated tumors. Nevertheless, this 

phenomenon was not corresponding to antitumoral effect. 

The treatment with

ubcutaneous tumors (Kirsch M. et al. 1998). Such an effect could be also 

observed when U87 intracranial tumors were treated with combined administration of 

low-dose chemotherapy plus antiangiogenic treatment (human PEX - a fragment of 

matrix metalloproteinase-2 was - used as an antiangiogenic factor). These tumors 
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showed the lowest microvessel count, similar to that observed for antiangiogenic 

treatment alone (Bello L. et al. 2001). 

TNP-470 is an inhibitor of endothelial cell proliferation. Subcutaneous U87 

xenografts were treated with irradiation, TNP-470 or their combination. After 1 week of 

TNP-4

on mice with intracranial 

tumors

an im

red with the subcutaneous tumors (Roberts W.G. 

et al. 1

iogenetic effects could be demonstrated only when 

TNFα-

me extraordinary effects in vivo. 

70 treatment, no significant difference in vascular density was seen between 

treated and control tumors, despite a pronounced growth-retarding effect of TNP-470. 

Similar treatment schedules with TNP-470 had no effect 

, given alone or in combination with irradiation. This discrepancy might reflect 

differences in tumor vessels due to differences in the tumor microenvironment (Lund 

E.L. et al. 2000). 

In our work combining antiangiogenic and immunostimulating factor (IP-10) with 

munomodulator (TNFα) - that could in parallel demonstrate antiangiogenetic 

properties as well - did not result in decreased blood vessel density. TNFα appears to 

be the exclusive factor that inhibits blood vessel formation in subcutaneous U87 model.  

The work of Lund et al. provides evidence that an antitumoral effect might be 

tightly linked to the tumor microenvironment. This thesis is strongly supported by the 

results of Roberts et al. who showed that vascular density was increased in U87-derived 

intracranial tumors compared to subcutaneously localized tumors (by a factor of 2). 

Intracranial tumors had drastically reduced the percentage of vessels with fenestrated 

endothelium and opened gaps compa

998). 

Notably, antitumoral effects (tumor growth delay and prolonged survival) 

mediated by antiangiogenic factor (TNP-470) do not always correspond to the reduction 

of blood vessel density (Lund E.L. et al. 2000) and decreased blood vessel formation 

does not always result in therapeutic effects (Abdollahi A. et al. 2003; Sgadari C. et al. 

1996, this work). 

In this work significant antiang

expressing vector was used alone. In order to obtain combined IP-10/TNFα 

expression tumor cells were infected with both vectors at MOI 1,5 for each. This could 

result in a lower expression of TNFα compared to the expression reached upon 

infecting tumor cells with a single vector at MOI3. It might be the reason for the lack of 

antiangiogenic effects for an IP-10/TNFα combination. IP-10 is not known to modulate 

TNFα expression (Sgadari C. et al. 1996). Both factors show individual properties and 

their combination might produce so
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TNFα is a major inflammatory cytokine and also regulates angiogenesis. 

However, studies on the antiangiogenetic properties of TNFα yield contradictory results. 

TNFα 

NFα can 

duce angiogenesis; at a high concentration TNFα promotes endothelial cell death 

(Chen J.X. et al. 2003). It is possible that infection with the recombinant vector at MOI3 

ts.  

 expressing antisense uPAR 

(urokin

recom

5.3.2.3 Antitumoral effect might be NK cell-dependent 

effect of NK cells is not MHC-restricted (Jakobisiak M. et al. 2000). Nude mice have 

elevated levels of both macrophages and NK cells, which might play an important role in 

the antitumoral response in these animals (Research Animal Review 1(2) 1996). 

The analysis of an antiangiogenic mechanism of IL-12 in the Burkitt lymphoma 

nude mice model showed that this process is NK cell-dependent. IL-12 stimulated IP-10 

γ

detected at the same sites (Yao L. et al. 1999). 

induces angiogenesis in vivo and stimulates endothelial cell migration in vitro. It 

can inhibit the action of factors such as VEGF and bFGF in endothelial cell growth in 

vitro. Angiogenetic properties of this cytokine might be mediated through a variety of 

secondary factors like PDGF, VEGF, IL-8 and bFGF. At a low concentration, T

in

produced TNFα levels that were high enough to switch on the antiangiogenic effec

TNFα and IFNγ can individually inhibit MMP-2 expression in human glioblastoma 

cells (U251 and CRT) (Quin H. et al. 1998). Human glioma cells SNB19 are able to 

induce the formation of capillary-like structures by human endothelial cells. When tumor 

cells were infected with a recombinant adenovirus

ase plasminogen activator) Ad-uPAR at a MOI of 100 this process was inhibited 

by approximately 50%. Around 80% inhibition of capillary formation was observed with 

binant adenovirus expressing antisense MMP-9 (matrix metalloproteinase), Ad-

MMP-9, at a MOI of 10.  Treatment of established subcutaneous U87 tumors with 

intratumoral injections of the vector expressing simultaneously antisense uPAR and 

antisense MMP-9 resulted in 80% growth reduction compared to the control vector 

(Lakka S.S et al. 2003).  

Taken together, these data suggest that TNFα expression with parvoviral vectors 

might inhibit angiogenesis by decreasing matrix metalloproteinases. 

 

NK cells are able to eliminate tumor cells without previous immunization. The cytotoxic 

expression (upon the activation of IFN  production). This might account for the 

presence of NK cells at the sites of inhibited vascularization, since IP-10 was also 
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In a work published by Ahmed and co-workers, 2001, nude mice bearing 

subcutaneous U87-derived tumors were treated with recombinant adenoviral vector 

expres

expression of both proteins by recombinant parvoviruses provides 

optima

hours)

ffects of the vectors on the U87 cell culture 

Infectio

decreased at day 6 post infection. H1 wild type virus has a cytotoxic 

effect 

sing human interferon α2b. Intratumoral and intravenous administration 

significantly reduced tumor growth (Ahmed C.M. et al. 2001). IFNα and IL-12 are potent 

stimulators of NK cell activity. IL-12 was earlier described as an NK-cell stimulating 

factor (NKSF). 

 

Both TNFα and IP-10 act chemotactically on monocytes and NK cells and 

increase the cytotoxic activity of NK cells (Jakobisiak M. et al. 2000). It is possible that 

mutual, transient 

l conditions for the development of an antitumoral response against U87-derived 

tumors in nude mice. Data from the literature suggest that this process could be NK cell-

dependent and mediated both indirectly through angiogenesis inhibition (Yao L. et al. 

1999) and directly through increased lysis of tumor cells. TNFα-treated (100 U/ml, 48 

 U87 cells have increased susceptibility to lysis by NK cells and this effect is 

dependent on the increased expression of ICAM-1 molecules by target cells. TNFα at 

concentrations ranging between 1 and 100 U/ml was not cytotoxic to tumor cells; similar 

to our conditions (Kondo S. et al. 1994). 

 

5.3.3 The e

n of U87 cell culture provides a slightly different pattern of virus-mediated effects 

from those observed in the animals. At MOI2 Chi-H1/∆800, Chi-H1/IP-10 and the 

combination Chi-H1/IP-10+TNFps. did not influence cell culture growth in comparison to 

the growth of non-infected culture. H1 wild type virus–infected cells were growing slower 

and their number 

on U87 cells in culture, but not on in vivo implanted cells.  

Yamini and co-workers observed a relationship between in vitro and in vivo 

effects in U87 model. The cells were infected with adenoviral vector encoding for TNFα 

at MOI 100 (50 times higher compared to our vector) and subsequently treated with 

temozolamide. Compared to each treatment alone cell viability was significantly 

reduced. Combined treatment resulted in vivo with significant reduction of subcutaneous 

tumors volume. Induction of apoptosis contributed both to cell death in vitro and 

antitumoral effect in vivo (Yamini B. et al. 2004). 
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In our system cell death in culture did not correspond to the antitumor effect 

observed in vivo (H1 wild type virus). Combined IP-10/TNFα expression did not affect 

cell culture growth but produced antitumoral effect in the animals. Probably in vivo 

conditions provide special factors, which allow developing tumors to overcome virus-

related toxicity. Secreted therapeutic proteins are obviously interacting with the host 

environment, since their expression inhibits tumor growth in vivo but does not affect cell 

growth in vitro. 

 

5.4 Recombinant parvoviruses display antitumor effect in Gl261 
glioblastoma model 

Seligman and Shear induced “glioma 261” in 1939 by chemical carcinogen implantation 

into brains of mice (Seligman A.M., Shear M.J. 1939). Since they were established, 

Gl261 cells are used for inducing both intracranial (Ausman J.I. et al. 1970; Ehtesham 

M. et al. 2002; Saito R. et al. 2004) and subcutaneous (Miyatake S. et al. 1997; 

Schueneman A.J. et al. 2003) tumors. It is an interesting intracranial model, because it 

recapitulates many of the histopathological and biological features of human high-grade 

glioma including both necrosis and invasion of the brain adjacent to the tumor 

(Newcomb E.W. et al. 2004). In this study it was shown that Gl261 cells injected 

 

5.4.2 Antitumor effects in the animals 

illing is 

possib

 survival was observed for animals that 

 

5.4.1 Gl261 subcutaneous model 

subcutaneously induce tumor growth.  

Our study was based on the hypothesis that antitumoral effects of IP-10 - and TNFα - 

transducing parvoviruses may be mediated both through the activation of the host 

immune response and antiangiogenesis. Direct parvovirus-mediated tumor cell k

le and since Gl261 glioma cells are very sensitive to parvoviral infection in vitro, 

this may also participate in the antitumoral effect in vivo. 

In vitro infection of tumor cells prior their subcutaneous implantation in the 

animals resulted with the antitumoral effect that was dependent on the MOI and the 

transgene. Delayed tumor growth and prolonged
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receive

o experiments the effect of recombinant parvoviruses on established 

ubcutaneous Gl261 tumors was also investigated. Repeated virus injections into the 

tumor 

 the initially implanted amounts of tumor cells 

OI 50 000 was used. In our studies the total amount of the virus used ranged between 

MOI 1 and 14. However, similar effects in vivo could be observed. The survival for IFNγ- 

out differences among 

could be established in 

anothe

. These vaccines were produced by 

d tumor cells infected with the vectors expressing therapeutic transgenes. 

Combined expression of IP-10 and TNFα upon infection with MOI 3 lead to complete 

tumor growth inhibition or tumor regression in 80% of animals under test.  

If nude mice were used, no such effects could be observed, demonstrating that 

the antitumoral responses in Gl261 model require an intact immune system. 

In in viv

s

surrounding resulted in delayed tumor growth and prolonged survival for animals 

that received the vectors expressing therapeutic transgenes while wild type MVMp virus 

did not produce any therapeutic effect. This suggests that the transgene expression 

achieved by cell infection with recombinant vectors is critical for the antitumoral 

response. 

Our data show high effectiveness of parvoviral-transduced combined IP-10 and 

TNFα expression in subcutaneous Gl261 tumors. Ehtesham and co-workers 

demonstrated high efficacy of adenoviral-induced TNFα expression combined with 

expression of another immunestimulatory molecule (IFNγ) in the treatment of 

intracranial GL26 glioma. 5x108 PFUs were administered intracranially 4 days post 

implantation of tumor cells. Comparing to

M

TNFα- and IFNγ/TNFα - treated groups was prolonged but with

these groups (noted also for IP-10, TNFα and IP-10/TNFα combination) (Ehtesham M. 

et al. 2002). These results suggest that parvoviral transgene delivery system is very 

efficient compared to the adenoviral vectors. 

GL261 intracranial tumors may be also successfully treated with another 

imunemodulator: adenoviral – induced IL-12, what was demonstrated by Liu et al. (Liu 

Y. et al. 2002). Antitumoral effect upon retroviral gene delivery 

r glioma models. Retroviral vectors stably transduced human GL15 and rodent 

9L and C6 cells with murine angiostatin, endostatin and IFNγ what resulted in reduced 

volume of tumors derived from angiostatin- and IFNγ-transduced cells (De Boüard S. et 

al. 2003) 

Lumniczky and co-workers used Gl261 intracranial model for evaluating the 

efficacy of therapeutic vaccination. Mice bearing Gl261-derived brain tumors were 

treated with subcutaneous therapeutic vaccines
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infectin

I 10) had therapeutic effect similar to GM-CSF – producing vaccine 

lone (Lumniczky K. et al. 2002). 

more effective using recombinant parvoviruses. At day 2 post infection done at MOI 1 

Gl261 cells secreted 5000 ng IP-10/1x106 cells or 375 ng TNFα/1x106 cells. 

Another gene therapy approaches that have been reported to be successful in 

ions. A cancer treatment is described in which 

al examination showed that 

transg

g Gl261 cells with adenoviral vectors encoding IL-4, IL-6, IL-7, GM-CSF or 

TNFα. Vaccines expressing IL-6, IL-7 and TNFα were inefficient to prolong the survival 

of glioma-bearing mice when produced at MOI 10, 50, 100 or 200. GM-CSF-expressing 

vaccine was the most effective at MOI 10 (10 ng of GM-CSF/1x106 cells/24 h). IL-4 – 

expressing vaccine was effective when cells were transduced at MOI 100 with the 

adenoviral vector (50 ng of IL-4/1x106 cells/24 h). Combined vaccine (IL-4 MOI 100 with 

GM-CSF at MO

a

Compared to the above data, transgene induction in Gl261 model seems to be 

Gl261 glioma model are DNA applicat

intramuscular injection of plasmid DNA encoding murine interferon α lead to potent 

antitumor effect demonstrated in subcutaneous B16F10 and Couldman melanoma and 

Gl261 glioma models (Horton H.M. et al. 1999). Kircheis and co-workers employed 

polycation-based DNA complexes encoding murine TNFα against subcutaneous 

Neuro2a tumors. The use of polycation-based DNA complexes resulted in high level 

tumor-specific TNFα expression without its systemic toxicity (Kircheis R. et al. 2002). 

Applying molecules like TNFα, interleukins or chemokines may result with 

morphological changes in treated tumors. As a consequence necrosis development and 

vascular changes could be observed. 

 

5.4.3 Antitumoral mechanisms 

5.4.3.1 Morphological changes 

5.4.3.1.1 Necrosis development corresponds to the antitumor effect 

Animal study with in vitro infected Gl261 cells (MOI1) provided tumor tissue that has 

been analyzed for necrosis development. Histologic

ene expression corresponds to increased necrosis appearance. Combined IP-

10/TNFα expression significantly supported necrotic areas development (compared to 
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mock- and control vector- treated groups). It was not observed for IP-10 expression 

alone although tumor growth delay and animal survival were similar for both groups. 

Analyzing tumors collected after the in vivo study supported the observation that 

in Gl2

cularly with 

the ex

del produced by TNFα. Intravenous injection of the polycation-based DNA 

comple

tor of angiogenesis, it may also promote 

vascul

n of these antingiogenic factors did not cause visible vascular damage and 

increa

61 model tumor necrosis development corresponds to the antitumoral effect. 

Treatment with transgene-expressing vectors increased necrotic areas, parti

pression of TNFα alone or in combination with IP-10. Since IP-10 alone did not 

cause such pronounced effect it is possible that in this model TNFα is the main factor 

responsible for vascular damage and tumor necrosis development. Both transgenes 

alone as well as their combination had very similar therapeutical effects in animals but 

necrosis occurrence was strictly dependent on TNFα expression. 

Others have also shown tumor necrosis development in subcutaneous murine 

glioma mo

xes encoding this murine cytokine inhibited tumor growth and induced 

hemorrhagic tumor necrosis. More than 80% of TNFα-treated animals developed tumor 

necrosis, whereas this was not found in control animals (Kircheis R. et al. 2002). This 

example illustrates that, independently of the transduction mode, TNFα might induce 

vascular damage and necrosis development of glioma tumors in mice.  

It was shown that tumors treated with AdTNFα and a combination of AdTNFα 

and AdmIFNγ may develop necrotic areas in the tumor center in contrast to the tumors 

treated with AdmIFNγ alone or with control vector (AdLacZ) (Ehtesham M. et al. 2002). 

Similarly, in our studies (both implantation of infected cells and in vivo treatment) tumor 

necrosis was induced when TNFα-expressing vector were used (either alone or in the 

combination with IP-10-expressing viruses).  

Although IP-10 is a well known inhibi

ar damage, and, as a consequence, tumor necrosis (Sgadari C. et al. 1996). Yet 

this was not observed in our experiments.  

Another angiogenesis inhibitor, angiostatin, was reported as antitumor factor in 

human GL15 and rodent 9L and C6 cells. Angiostatin-expressing tumors were 

significantly smaller then the controls, however, without reduced vascularization or signs 

of necrosis (De Boüard et al. 2003). Taken together, these results suggest that the 

expressio

sed tumor necrosis.  
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5.4.3.1.2 Antitumoral effect does not depend on tumor vascularization 

In the in vivo study the experimental settings allowed analysing tumor vascularisation at 

two time points. The animals were divided into two cohorts. The first one contained 3 

animals per group and was sacrificed at day 10 of the study. The second cohort 

contained 8 animals per group and was monitored until the end of experiment.  

At day 10 tumor volume remained similar for all the groups. Compared to the 

buffer-treated group, the expression of transgenes did not show any antiangiogenetic 

properties at this stage of tumor development. Surprisingly, tumors treated with MVMp 

wt viru

The tumors from the second cohort were isolated at the end of experiment. 

between the groups. 

Although IP-10 or TNFα transgene expression suppressed, to some extend, 

tumor development, it did not seem to have any influence on the blood vessels 

formation. Because blood vessel density remained similar in all experimental groups, 

probably not antiangiogenesis, but another mechanism, participates in the antitumoral 

effect observed in Gl261 tumor model. 

De Boüard and co-workers also showed tumor growth suppression without 

reduced vascularity. They used retroviral vectors to stably transduce human GL15 and 

rodent 9L and C6 cells with murine angiostatin, endostatin or IFNα. Angiostatin-

expressing tumors were significantly smaller then controls, however, without reduced 

vascularization. IFNα-expressing tumors were much smaller then controls and 

nsity of blood vessels. Necrosis of tumor centre 

could be observed. Antiangiogenic effect of this cytokine seems to be the main 

 et al. 2003). 

umor 

vascular density was observed upon treatment with the combination of murine IFNγ and 

human TNFα. There was no significant decrease in tumor vascular density in any of the 

treated mice compared to the control upon adenoviral vectors administration (Ehtesham 

M. et al. 2002). Similarly, we also did not notice antiangiogenic effect of our parvoviral 

vectors (apart from the decrease of blood vessel density measured at day 10 of the 

experiment for MVMp wt- and ∆800 ps. –treated tumors). 

s or with the control ∆800 vector demonstrated decreased number of blood 

vessels. However, it did not yield a therapeutic effect in the later phase of tumor 

expansion. 

Analyzed tissue samples did not demonstrate any differences in tumor vascularization 

demonstrated drastically reduced de

antitumor mechanism (De Boüard S.

Tumor growth suppression and tumor necrosis without decrease in t
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Both in the intracranial GL26 model treated with adenoviruses expressing IFNγ or 

TNFα (or with their combination) and in the subcutaneous Gl261 model treated with 

parvov

le, connective tissue) 

found 

that the same 

antian

gent in Gl261 subcutaneous model 

Animals bearing established tumors treated either with parvovorus-delivered IP-10 or 

with PBS were submitted twice to MRI measurement. At the earlier time point (day 15) 

there were no differences in the tumor volume observed. During the second 

measurement (day 22) mean tumor volume for Chi-MVMp/IP-10 treated animals was 

smaller then for control animals. For the second measurement the signal intensity was 

found to be lower for Chi-MVMp/IP-10 - treated animals. It suggests that functional 

vessel density for this group could be lower compared to the untreated group. However, 

histological analysis showed similar CD31 – positive blood vessel density and necrosis 

development for both Chi-MVMp/IP-10 and PBS-treated group.  Intravenous injection of 

the contrast agent allows its spreading exclusively in the functional (opened) blood 

iruses expressing IP-10 or TNFα (or with their combination) inhibition of 

angiogenesis did not contribute to an important antitumor effect. 

Blouw et al. investigated in parallel the antitumor effects of HIF-1α (hypoxia-

responsive transcription factor 1) deletion in subcutaneous and intracranial 

environment. The subcutaneous space has a number of intrinsic peculiarities that set it 

apart from sites elsewhere in the mammalian body. These include a lack of spatial 

constraints in the form of matrix or skeletal elements, relatively sparse vascularisation, 

and the interface of a number of different tissue types (fat, musc

immediately under the skin. Subcutaneous environment is poorly vascularized, in 

contrast with highly vascularized brain parenchyma. 

The lack of HIF-1α impaired astrocytoma growth subcutaneously, but increased 

proliferative and invasive properties of astrocytomas in the brain. Intracranial tumors 

were not necrotic but well vascularized. Subcutaneously, these tumors were poorly 

vascularized and necrotic. They did not coopt existing vessels in subdermis like they did 

in the brain (Blouw B. et al. 2003). This study demonstrates 

giogenic approach used in different environments can either inhibit or support 

blood vessel formation. Nevertheless, TNFα transduced by different viral vectors either 

intracranialy (adenoviruses; Ehtesham M. et al. 2002) or subcutaneously (parvoviruses; 

this work) in the glioma tumors supports vascular damage. 

 

5.4.3.1.3 IP-10 as an antiangiogenic a
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vessels. Anti-CD31 staining allows detection of all existing blood vessels independently 

 both as 

signal-

vascularity of intracerebrally implanted Gl261 cells. MRI measurements of 

relative

 angiogenesis could be demonstrated. Histological analysis 

confirm

ces between these environments as mentioned 

above

s. TNFα expression alone seemed to 

promo

on their functional status. Even collapsed (closed) vessels (typical for necrotic tumors) 

would be detectable in histological analysis. This may explain the discrepancy observed 

between in vivo measurement and tumor slice examination. MRI and histology data 

correspond for tumor necrosis. Necrotic areas were defined in the tumors centre

negative regions on the colour maps obtained for signal amplitude and exchange 

parameter and as hematoxilin-negative regions on the tumor slices. The influence of 

parvovirus-induced IP-10 and TNFα on functional vessel density requires further 

investigations. 

The group of Cha and co-workers developed an MRI protocol to evaluate the 

growth and 

 cerebral blood volume (rCBV) were compared to histological assessments of 

microvascular density (MDV). In late tumors (3-4 weeks post implantation) both central 

tumor necrosis and

ed these data (Cha S. et al. 2003). In this model angiogenesis is indeed a late 

event in tumor progression and first occurs close to the stage when the mouse dies of 

tumor mass (Zagzag D. et al. 2000). 

Direct comparison of angiogenesis induced in subcutaneous and intracerebral 

models is not possible due to differen

 (Blouw B. et al. 2003). However, the studies done on intracerebral Gl261 model 

suggest that, also in the case of a subcutaneous model, angiogenesis could be a later 

event. Indeed, tumor necrosis, which is believed to accompany angiogenesis in this 

model, was observed in many animals 3-4 weeks after implantation of tumor cells. In 

our studies we delivered an antiangiogenic factor (IP-10) at the early stages of tumor 

development. The fact, that in the Gl261 model angiogenesis is a later event might 

explain why we were not able to observe any differences in histologically investigated 

tumor vascularization between experimental group

te vascular damage, but not inhibition of angiogenesis. Nevertheless, 

independently of angiogenesis, in our model, combined expression of parvovirus-

transduced IP-10 and TNFα potentiated the antitumor effect observed with TNFα and 

IP-10 alone, and which could be mediated by immune system components. 
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5.4.4 

ediated exclusively by 

TNFα-

arvovirus-produced cytokine was 

captur

5.5 Antitumoral immune response 

The effects of recombinant parvoviruses delivering IP-10 and TNFα 

effects are different in vivo and in vitro 

In vitro studies performed on the Gl261 cell cultures in parallel to the animal studies 

demonstrated that pronounced cytotoxic effect in vitro was m

expressing vector. 

Despite of mediating a strong cytotoxic effect in vitro infection of cells with TNFα 

- expressing vector prior implantation in the animals did not yield pronounced 

antitumoral effect both at MOI1 (no therapeutic effect) or MOI3 (tumor growth delay). 

Under cell culture conditions tumor cells were submitted to the action of TNFα 

accumulated for 6 days in the medium. Under in vivo conditions the secreted protein 

was distributed in the tumor surrounding. Since a great variety of cell types are able to 

express TNF-receptors it is possible that the p

ed by other cells and/or diluted in biological fluids. TNFα amounts remaining 

within the tumor mass could be not sufficient to mediate antitumor effect through a 

direct cytotoxic action on Gl261 cells. 

Conversely, IP-10 expression in vitro did not affect cell culture growth but its 

expression in vivo produced an antitumor effect that was significantly increased by 

TNFα co-expression. This suggests that the co-expression of virus-delivered agents 

indeed modulate host antitumoral response through chemoattraction and activation of 

the immune system cells. 

 

5.5.1 Experimental animals develop immune response against tumor cells 

Viral vectors could modulate development of the immune response against tumors, first, 

by providing viral components, second, by providing the expression of 

immunomodulating proteins and/or inducing the expression of specific cellular genes. 

Performed rechallenges proved that animals, which survived initial tumor 

implantation, were protected from the tumor formation upon second injection of Gl261 

cells. This protection was not dependent on the presence of therapeutic transgene. 

ELISpot assays showed a specific recognition of tumor cells by host cells obtained from 

the spleen. Which cell subset contributed to this effect remains unknown. From the 

literature it is not clear which cells, CD4+ or CD8+, play the major role in antitumoral 
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immune response (Segal B. M. et al. 2002, Lumniczky K. et al. 2002, Horton H.M. et al. 

1999, Yang S.Y. et al. 2004). 

Segal and co-workers reported that protective immunity against Gl261 glioma 

subcutaneous tumors can be obtained by intraperitoneal injection of irradieted Gl261 

cells. CD4+T but not CD8+ T cells were necessary to reject implanted tumor cells. In 

agreement with this, CD8+T cells purified from the spleens of Gl261-vaccinated mice 

failed to lyse glioma targets in chromium release assay (Segal B. M. et al. 2002). 

In a therapeutic vaccination approach against intracranial Gl261-derived tumors 

depletion of either CD4+ or CD8+ lymphocytes equally prevented the antitumor effect of 

the va

+ 

quired for antitumor response. Depleting CD8+ or 

CD4+ 
+

+

+ +

l261 model 

infected with parvoviruses expressing IP-10 and/or TNFα. Yet, we performed an 

xperiment that proved the key role of T cells in tumor growth suppression in our 

system. A study with in vitro infected Gl261 cells was done in parallel in 

ccine (Lumniczky K. et al. 2002). 

On the contrary to the above-mentioned results other authors showed that the 

antitumor effect in experimental glioma models is rather CD8 cell – dependent. 

A treatment is described in which intramuscular injection of plasmid DNA 

encoding murine interfernon α lead to potent antitumor effect demonstrated in 

subcutaneous B16F10 and Couldman melanoma and Gl261 glioma models. The same 

therapy performed in nude mice (T cell deficient) and beige-nude mice (NK- and T cell – 

deficient) showed that T cells are re

cell subsets in immunocompetent animals showed that therapeutic effect was 

CD8  - dependent (Horton H.M. et al. 1999). 

In the Gl26 intracranial model the treatment with adenoviral-induced IL-12 

demonstrated therapeutic effect. IL-12 – treated animals with a long-time survival were 

rechallenged intracranially. They did not develop the tumors suggesting that long-lasting 

protection was obtained. Tumor infiltrating leukocytes (TILs) isolated from IL-12 - 

treated animals displayed increased cytotoxicity against Gl26 cells (Liu Y. et al. 2002).  

Functional analyses demonstrate that CD8  cells seem to play the major role in 

the antitumoral response in glioma models. Histological data may support this 

hypothesis. A strong infiltration of rat brain tumors with CD4  and especially CD8  cells 

could be observed when human embryonal neural stem cells engineered to release IL-

12 were implanted intratumorally (Yang S.Y. et al. 2004). 

Additional studies must be performed to answer the question which lymphocyte 

subset plays a major role in the antitumoral response in the subcutaneous G

e
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immunocompetent and nude mice. The cells were infected with the combination of I

d TNFα- expressing vectors at MOI3. The results showed that intact immune 

P-

10- an

o-expression induced stronger antitumor effects in the 

imuno

ay 

can be

+

+

+

. et al. 2002). 

5.5.2 TNFα-expressing vector promotes maturation of dendritic cells in 

Dendritic cells (DCs) are one of the most potent cells of the immune system. They 

 

e 

promis

system suppress tumor growth (mock-treated tumors were growing slower in 

immunocompetent animals) and is necessary for transgene-induced antitumoral 

response (IP-10/TNFα c

competent animals). In the immunocompetent animals subcutaneous tumors 

derived from cells infected with recombinant vectors (IP-10/TNFα combined expression) 

could be completely eradicated, whereas in the nude mice only a tumor growth del

 observed.  Since nude mice are deprived of T cells, the effect induced by IP-

10/TNFα combination is likely to be T cell – dependent. Further experiments are 

necessary in order to investigate if the main cellular subsets participating in antitumor 

response are CD8  T cells, as suggested by literature data. Challenge experiments in 

immunocompetent animals also suggest a key role of CD8  cells. Tumor regression was 

a long process, taking part over 70 days, arguing also for a role of CD8  cytotoxic 

memory cells. 

The CD8+ cytotoxic memory cells (CTL) are major components in sustaining 

immunological memory. Memory CD8+ cells are defined by their ability to persist for a 

long time in larger numbers and respond more rapidly to antigen than naive CD8+ T 

cells. Memory CTL are generated from effector CTL and are maintained by different 

cytokines (Fernando G.J.P

vitro 

collect and process antigens for presentation to T cells, directing them to different types

of immune response or to tolerance (Banchereau J. et al. 2000). 

It would be of great potential advantage if DCs could be stimulated by virus-

infected tumor cells rather than by non-infected cells. Such a situation would also b

ing for the development of a therapeutic vaccine. DCs co-cultured with infected 

tumor cells would stimulate T cells to act against infected tumor cells. Direct infection of 

DCs with parvoviral vectors could lead to the presentation of viral antigens and, again, 

direct T cells to the response targeted against the virus-infected tumor cells. 

In our studies, changes in DCs pinocytotic activity and expression profile of surface 

markers upon infection were monitored. Tumor cells infected with TNFα-expressing 
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vector significantly promoted dendritic cell maturation compared to non-infected cells. 

Viral infection itself could also contribute to this process, since infection with a control 

vector

Gl261 

It was demonstrated that dendritic cells pulsed with Gl261 cell extracts and 

admin

animals survival. Cured animals showed an increased delayed-type hypersensitive 

response to Gl261 cells and survived when rechallenged with intracranial tumor cells 

implantation (Ni H.T. et al. 2001). 

In order to increase effectiveness of the pulsation with Gl261 tumor cell extracts 

the cationic liposomes were used (Aoki H. et al. 2001). In the animals treated with DCs 

pulsed by tumor extracts, tumor progression was inhibited. The group treated with DCs 

pulsed by tumor extract and liposomes showed substantial tumor volume reduction in all 

the mice. CD8  - positive cytotoxic T cells were recognized among tumor cells. The 

CTLs showed a specific antitumor activity for Gl261 cells (Aoki H. et al. 2001). The 

same group used gene therapy combined with immunotherapy against intracranial 

Gl261 tumors. IFNβ gene entrapped in cationic liposomes was applied intracranially. 

This treatment was followed by subcutaneous administration of dendritic cells that have 

been pulsed with Gl261 cell lysates. Compared with each treatment alone combined 

therapy, when repeated, inhibited tumor growth and prolonged animal survival. Strong 

1 cells prolonged the survival 

of intra
+

overcome the negative effects of tumor cells on DCs. Therefore, it is possible that 

, devoid of any transgene, partially supported maturation as well. 

Dendritic cells are professional APC (antigen presenting cells) that have unique 

capability for activating T cells. DCs express high levels of MHC, adhesion and 

costimulatory molecules (Saito R. et al. 2004). Application of dendritic cells as 

immunostimulatory agent is a widely studied and promising approach, also in the 

glioma model (reviewed below). 

istrated intraperitoneally to the mice bearing intracranial Gl261 tumors prolonged 

+

infiltration of CD8+ positive cells into the tumors treated with IFNβ was detected (Saito 

R. et al. 2004).  

It was shown that dendritic cells injected intracranially are able to migrate to the 

lymph nodes. Inoculation of both DCs and irradiated Gl26

cranial Gl261 tumor-bearing mice compared to the animals treated with either 

dendritic cells or irradiated tumor cells alone. Depletion of NK cells and especially CD8  

T cells resulted in the reduction of the antitumor effect (Kikuchi T. et al. 2002).  

Glioma cells suppress maturation of dendritic cells (Kikuchi T. et al. 2002). 

Engineering or stimulating DCs with certain agents like TNFα or IFNγ may be needed to 
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infecting tumor cells with viruses expressing immunostimulating factors like TNFα and 

IP-10 could contribute to develop antitumor immunity. Morover, maturation of DCs can 

be induced by phagocytosis of necrotic or apoptotic cells. Gl261 are sensitive to the 

cytotoxic action of TNFα and viral NS1 protein. It is possible that parvoviral-mediated 

TNFα expression would both induce tumor cell death and DCs maturation. 

Virally-delivered TNFα may support development of the antitumoral immune 

response, what could be shown in several different models. Kianmanesh and co-

workers demonstrated that intratumoral administration of low doses (107 PFU) of an 

adenovirus encoding TNFα (AdTNFα) together with syngenic dendritic cells acts 

synergistically to suppress preexisting tumors without systemic toxicity. Administration 

of AdTNF and dendritic cells into tumors elicited tumor-specific cytotoxic T cells and 

protected animals against subsequent challenge with the same tumor, suggesting that 

adaptive host immune response was obtained. Such effect could be observed in colon, 

melanoma and prostate tumor models. Experiments evaluated in nude mice, SCID mice 

and SCID-beige mice supported the concept that a fully intact immune system is 

necess

ic cells against the tumors of central nervous 

system (Aoki H et al. 2001). A phase I clinical study evaluated safety and bioactivity of 

ma 

multiforme and anaplastic astrocytoma. This approach was safe and no evidence of 

or control patients (Yu 

J.S. et

The data obtained in this work suggest that it may be especially efficient to use 

parvoviral vectors in order to stimulate dendritic cell maturation. Preliminary data are 

promising; however, further investigations are necessary. 

g IP-10 or 

ary to mediate the low-dose AdTNFα and dendritc cell - mediated suppression of 

tumor growth. In the colon tumor model CD8+ T cells mediate the antitumor effect in this 

therapy (Kianmanesh A. 2001). 

Recent advances in immunology have led the possibility and efficacy of 

immunotherapy using peripheral dendrit

tumor lysate – pulsed dendritic cell vaccination to treat patients with glioblasto

autoimmune disease was detected. A significant CD8+ T cell infiltrate was noted 

intratumorally. Tumor lysates – pulsed vaccination was associated with a 133-week 

median survival as compared with a 30-week median survival f

 al. 2004). 

The infection of tumor cells with recombinant parvoviruses encodin

TNFα as well as treating established tumors with these vectors provides safe conditions 

for the development of an antitumor effect. The best therapeutic effect – complete tumor 
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eradication - was reached when both types of virus were administered simultaneously. 

Histological analysis showed that this effect was not dependent on the inhibition of 

angiogenesis. 

We also showed that intact immune system is necessary to obtain strong 

antitumor effect. Rechallenged animals are protected from tumor growth. Gl261 glioma 

cells can be specifically recognized by host spleenocytes. From the literature it is 

suggested that the main effectors in the antitumoral response could be CD8+ T cells. 

TNFα - expressing vector demonstrated the ability to support dendritic cell maturation.  

arvovirus-induced IP-10/TNFα expression 

o

Although the CNS has been characterized as an immune privileged site, it is also 

a site of inflammation, either in response to exogenous antigens (infection) or as a 

result of disrupted peripheral tolerance to self-antigens (autoimmunity). The CNS-

endogenous cells may initiate, regulate and sustain an immune response (Becher B. 

2000). Brain immunity must be considered when viral vectors expressing 

immunostimulating molecules like IP-10 and TNFα are thought to be used in glioma 

gene therapy. 

Microglia are well described as potent immunocompetent cells, recognizing 

pathogens and initiating an inflammatory cascade. Early response cytokines produced 

by microglia include proinflammatory cytokines (IL-1β, TNFα, IL-6), that can 

permeabilize the BBB (blood-brain-barrier) as well as chemokines (MIP-1α, IP-10) 

(Beche α

 

Taken together, the data obtained during this work are promising and suggest 

that recombinant parvoviruses are good candidates for gene therapy of glioma. 

 

5.6 Possible influence of p

n brain immunology  

r B. 2000). Local TNF  administration achieved by parvoviral vectors may 

support immune response against tumor cells. The presence of viral components in 

infected tumor cells could additionally stimulate microglia activity. However, in the CNS 

TNFα may demonstrate dual effects, leading either to escalation of the brain 

inflammation or inhibiting the development of the disease (Lampson L.A. 2003).

In vitro study performed by Kimura et al. investigated the cytotoxic effect of 

TNFα, IL-1β, IL-6 and IL-8 on cultured cerebral microvascular endothelial cells. TNFα 

induced apoptosis in these cells through the caspase activation (Kimura H. 2003). This 
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effect could be an advantage when affecting the tumor vasculature only, while keeping 

the normal endothelial cells intact.  

TNFα and IFNγ can also kill tumor cells directly. Intracerebral injection of IFNγ or 

TNFα can safely increase extravasation of activated T cells and monocytes from the 

blood, presumably by increasing expression of relevant adhesion molecules on cerebral 

endoth

xpression alone is not sufficient to direct lymphocytes 

cross the intact BBB and to induce pathology (Klein R.S. 2004). 

IP-10 participates both in innate and adaptive immune response by contributing 

to cell migration and activation. Trifilo and co-workers demonstrated that IP-10 played a 

pivotal role in inducing innate immune response within CNS against mouse hepatitis 

virus (MHV). IP-10 mediated its protective effect (reduced animal mortality, reduced 

viral replication) by coordinating the infiltration and activation of NK cells into the brain. 

No chemokine yet has been shown to exert a clearly defined role in coordinating an 

innate immune response following viral infection of the CNS. In addition, it was shown 

that NK cells can exert an antiviral protective effect within the CNS (Trifilo M.J. 2004). 

Intracerebral administration of IP-10-expressing adenoviral vector resulted in 

rapid a

. 

elial cells (Lampson L.A. 2003). 

In vitro study on the regulation of human IP-10 gene expression in astrocytoma 

cells by inflammatory cytokines showed that, when present together, IFNγ and TNFα 

induced robust accumulation of hIP-10 mRNA. Synergistic effect of the cytokines 

resulted from an increased rate of IP-10 transcriptional initiation (Majumder S. 1998). 

During the last years IP-10 has been an intensively studied chemokine due to its 

possible role in autoimmune brain inflammation. IP-10 and its receptor CXCR3 are 

expressed by the CNS and by CNS infiltrating lymphocytes in patients with ongoing 

CNS inflammation, suggesting an important role for these molecules in the pathogenic 

process. Different studies identified IP-10 as a potential therapeutic target for the 

treatment of the lymphocyte recruitment into the CNS during inflammation. The reports 

about its role (increasing or decreasing inflammatory process) remain contradictory. 

However, it seems that IP-10 e

nd prolonged infiltration of both CD4+ and CD8+ T cells. Despite increased T cell 

infiltration, production of proinflammatory chemokines was moderate and mice 

developed only a limited neuropathology (Trifilo M.J. 2003)

Side effects linked to the inflammatory response in brain may be decreased by 

developing a vector encoding truncated version of IP-10. IP-10 is processed by a 

specific membrane-bound protease CD26. It results in reduced CXCR3-binding 
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properties, loss of calcium signaling capacity through CXCR3, and more than 10-fold 

reduced chemotactic potency. Truncated IP-10 retained its ability to inhibit the 

angiogenic activity of IL-8 in the rabbit cornea micropocket model (Proost P. 2001). 

Such m

 

activation of the immune system. While similar mechanism would be observed 

intracerebrally, immunostimulating properties of IP-10 should be retained. Truncated 

chemokine, deprived of its chemotactic potential, would not be able to induce 

ntitumoral response. 

Up to now the influence of parvoviruses or parvovirus-based vectors on brain 

gliom  dangerous due to possible occurrence of severe side 

effects

ntricular compartment, viruses may avoid priming the adaptive immune 

respon

e brain 

cells, 

odified chemokine may still demonstrate antiangiogenic activity in the brain but 

without inducing adverse immune response. This would be an advantage in the 

glioblastoma treatment. However, in the subcutaneous glioma system investigated in 

this work, IP-10 did not demonstrate any antiangiogenetic properties. Antitumor effect 

observed upon parallel expression of IP-10 and TNFα seem to be mediated through

a

immunology was not investigated. The use of viruses and viral vectors in the therapy of 

a is considered as potentially

 like brain tissue damage or uncontrolled inflammation. 

The immune response imposes limitations on viral-based gene transfer into the 

brain. It was demonstrated, that viral vectors injected into the brain’s ventricular system 

elicit innate and adaptive immune responses. However, when injected directly into brain 

parenchyma, they elicit only transient inflammation owning to the absence of dendritic 

cells. If viruses are delivered carefully into the brain parenchyma, and care is taken not 

to inject the ve

se, such both the gene therapy and the brain could remain unharmed. The 

absence of immune priming suggests that gene therapy using viruses might turn out 

safer than predicted (Lowenstein P.R. 2002). 

High efficacy of IP-10 and TNFα-encoding parvoviral vectors could be 

demonstrated in two subcutaneous glioblastoma models. In the future antitumoral 

effects of these vectors should be investigated in the intracranial system such as the 

well-described Gl261 model. Intensive studies should be performed in order to identify 

the processes taking part in treated brain (immune response, antiangiogenesis, 

necrosis development) and to define potential side effects (possible toxicity on th

healthy brain tissue damage). However, literature data reviewed in this chapter 

suggests that intracranial application of IP-10 and TNFα-encoding parvoviral vectors 

could result in significant antitumoral response. 
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