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Abstract

The N-methyl-D-aspartate (NMDA) type of
glutamate receptor is a calcium-permeable ion
channel with important functions in the physi-
ology and pathology of the mammalian brain.
NMDA receptors are critical for long-lasting,
activity-induced changes in synaptic transmis-
sion, a process thought to be involved in learn-
ing and memory. NMDA receptors also control
neuronal survival and cell death. How can the
biological consequences of NMDA receptor
activation be so diametrically opposed? The
outcome of NMDA receptor activation appears
to be determined by its localization. Stimula-
tion of synaptic NMDA receptors (by synapti-
cally-released glutamate) activates gene ex-
pression mediated by the transcription factor,
cAMP-response element-binding-protein
(CREB) and induces pro-survival events. In
contrast, calcium flux through extrasynaptic
NMDA receptors overrides these functions,
shutting off CREB activity, and causing mito-
chondrial dysfunction and cell death. These
differences in the biological response are likely
due to differences in the intracellular signaling
complexes associated with synaptic vs. extras-
ynaptic NMDA receptors. As extrasynaptic
NMDA receptors are thought to be activated
following hypoxic/ischemic insults, specific
blockade of extrasynaptic NMDA receptors or
their signaling complex may efficiently reduce
neuron loss following stroke.
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The involvement of NMDA recep-
tors in neuron death

NMDA receptor antagonists have long been
known to reduce the early phase of post-ischemic
neuron death in rats (Minematsu et al., 1993a, b;
Simon et al., 1984). Brain ischemia causes
elevated glutamate levels in the extracellular
space (Benveniste et al., 1984; Stoffel et al.,
2002) largely due to the reverse function of
glutamate transporters (Rossi et al., 2000).
Ischemia can also cause astrocyte dysfunction,
necrosis and apoptosis, compromising the neu-
roprotective buffering of glutamate via the as-
trocyte specific glutamate transporter, GLT-1,
and the conversion of glutamate to inactive
glutamine in glial cells (Chen and Swanson,
2003; Schubert et al., 2000; Takuma et al.,
2004; Tanaka et al., 1997). Excess extracellular
glutamate and the resultant stimulation of iono-
tropic glutamate receptors is believed to be
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involved in subsequent excitotoxicity and ac-
tive cell death (commonly termed apoptosis)
leading to a penumbra of secondary neuron loss
surrounding the focal lesion site (Bramlett and
Dietrich, 2004; Lipton, 1999a).

Intervention with alpha-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid (AMPA)
or NMDA receptor antagonists is problematic
because they also block normal and vital gluta-
mate-mediated neurotransmission between non-
injured neurons, inducing behavioral (psychot-
omimetic) side-effects, sedation and amnesia
(Davis et al., 1997; Ikonomidou and Turski,
2002; Lees, 2000; Morris, 1989). More impor-
tantly, NMDA antagonists are known to induce
or exacerbate apoptosis and neurotoxicity (Bren-
neman et al., 1990; Ciani et al., 1997; Ikonomi-
dou et al., 1999, 2000; Low and Roland, 2004;
Snider et al., 2002). This cell death caused by
NMDA antagonists may be due to the inhibition
of cell survival pathways (Hardingham et al.,
2002; Yoon et al., 2003).

NMDA receptors have not been abandoned,
however, in current clinical strategies against
excitotoxicity as evidenced by the recent ap-
proval in the USA of memantine, an NMDA
open channel blocker, for the treatment of ad-
vanced Alzheimer’s disease (Farlow, 2004).
More specific and efficacious pharmaceutical
tools are needed, however, to prevent second-
stage damage following stroke, to dampen gluta-
mate-mediated excitation in epilepsy, and to
interfere with the complex biochemical path-
ways that lead to cell death in certain neurode-
generative diseases including Alzheimer’s dis-
ease, Huntington disease and AIDS (Kaul et al.,
2001; Lancelot et al., 1998; Lipton and Rosen-
berg, 1994). Selective intervention in the role of
NMDA receptors in these pathologies must
distinguish between the aspects of NMDA re-
ceptors mediating neurotoxicity and those which
protect against it.

NMDA receptor overview

NMDA receptors are glutamate-gated cation
channels whose activation contributes to depo-
larization by allowing sodium and calcium in-

flux. The presence of both NR1 and NR2 sub-
units are required to form functional channels
due to the presence of the glutamate binding
domain at their junction. Four distinct subtypes
(NR2A-D) of the NR2 subunit exist. A binding
site for glycine is found on the NR1 subunit
while the NR2B subunit possesses a polyamine
binding site where regulatory molecules can
modulate the activity of the NMDA receptor.

At resting membrane potentials, NMDA re-
ceptors are normally inactive due to a voltage-
dependent block of the channel pore by magne-
sium ions. Activation of the NMDA channel
occurs during simultaneous depolarization of
the post-synaptic cell and the binding of gluta-
mate and glycine. Bursting activity in a presy-
naptic glutamatergic cell can satisfy these con-
ditions through co-activation of postsynaptic
excitatory AMPA receptors. Alternatively, ac-
cumulation of extracellular glutamate follow-
ing ischemia is expected to activate both synap-
tic and extrasynaptic NMDA receptors.

NMDA and other glutamate receptors clus-
ter together in dendritic spines where they me-
diate synaptic transmission, with an adaptive
nature evident in long-term potentiation (LTP)
or long-term depression (LTD) involved in
memory formation and learning (Bear and
Malenka, 1994; Paulsen and Sejnowski, 2000).
NMDA receptors are also found at extrasynap-
tic sites (Clark et al., 1997; Rao and Craig,
1997; Rao et al., 1998; Rosenmund et al., 1995;
Tovar and Westbrook, 2002). NMDA receptor
clusters have been detected colocalized (ie.
synaptic) and non-colocalized  (ie. extrasynap-
tic) with presynaptic markers using immunocy-
tochemical methods in hippocampal and corti-
cal neurons (Aoki et al., 1994; Liao et al., 1999;
Pickard et al., 2000).

The distinguishing features responsible for
the striking differences in the biological re-
sponses induced by extrasynaptic and synaptic
NMDA receptors remain unclear. NMDA re-
ceptor activation in both cases leads to a calci-
um influx into post-synaptic cells, a signal
crucial for the induction of NMDA-receptor
dependent plasticity and learning on the one
hand and excitotoxic cell death on the other
(Bading, 2000; Hardingham and Bading, 2003).
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Such contrasting actions of NMDA receptors
may be due to differences in the downstream
signaling complexes linked to synaptic and
extrasynaptic NMDA receptors.

Signaling cascades regulating
survival and death

Calcium influx through NMDA receptors can
trigger LTP or LTD of synaptic connections,
and can send signals to the nucleus to activate
gene expression (Bading et al., 1993; Bito et al.,
1996; Fink and Meyer, 2002; Hardingham et al.,
1999, 1997; Malenka and Nicoll, 1999). These
processes are thought to play a role in memory
and learning as well as promoting cell survival
(Fig. 1). Calcium acts as a second messenger to
induce post-translational modifications includ-
ing the activation of calcium calmodulin-de-
pendent (CaM) kinases and the Ras–extracellu-

lar signal-regulated protein kinases (Ras-ERK1/
2) pathway which phosphorylate and inactivate
the pro-apoptotic protein BAD (Bonni et al.,
1999; Yano et al., 1998). ERK1/2 activation is
linked to both survival (Hetman and Gozdz
2004) and death pathway activation (Chu et al.,
2004). Synaptic NMDA receptor activation in
vivo also results in the transcription of several
immediate early genes (Cammarota et al., 2000;
Cole et al., 1989; Schulz et al., 1999; Wisden et
al., 1990), many of which are controlled, at least
in part, by the transcription factor cAMP-re-
sponse element-binding-protein (CREB).

CREB: A calcium regulated transcription
factor

Synaptic NMDA receptor-mediated calcium
signals activate DNA regulatory elements in-
cluding the serum response element (SRE),

Fig. 1. Depending on their localization, NMDA receptors mediate contrasting effects: calcium influx through synaptic
NMDA receptors triggers the activation of survival programs, while calcium influx via extrasynaptic NMDA receptors
couples to cell death pathways (Hardingham et al., 2002).
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which functions as a cytoplasmic calcium re-
sponse element, and the cAMP response ele-
ment (CRE) which responds to nuclear calci-
um signals (Hardingham et al., 1997). The
CRE interacts with CREB to regulate the ex-
pression of several genes including brain-de-
rived neurotrophic factor (BDNF) involved in
cell survival (Bonni et al., 1999; Finkbeiner,
2000; Ghosh et al., 1994; Hardingham et al.,
2002; Lonze and Ginty, 2002; Mantamadiotis
et al., 2002). Mice lacking CREB and its rela-
tive, the cAMP response-element modulator
(CREM), show extensive neuronal apoptosis
and progressive neurodegeneration (Manta-
madiotis et al., 2002). CREB may also be
important for long-term synaptic plasticity,
learning and memory (Barco et al., 2002; Cho
et al., 1998).

CREB is also activated by hypoxia or tran-
sient ischemia in vivo (Lonze and Ginty, 2002;
Mabuchi et al., 2001). Neurons that die follow-
ing ischemia show only transient CREB phos-
phorylation, whereas surviving  neurons have
sustained CREB phosphorylation and express
BDNF (Kokaia et al., 1995; Tanaka et al.,
1999b; Walton et al., 1996; Walton and Dragu-
now 2000).

There are two principal calcium signaling
pathways which can lead to CREB phosphor-
ylation at its activator site, serine 133 (Fig. 2).
One pathway involves the propagation of a
calcium signal from the synapse to the nucleus.
Nuclear calcium then activates calcium-cal-
modulin (CaM) dependent protein kinase IV, a
potent CREB kinase (Finkbeiner and Green-
berg, 1996; Hardingham et al., 2001b). The

Fig. 2. Synaptic NMDA receptors signal to the nucleus to regulate neuronal survival via two major communication routes:
a fast propagating calcium transient and a somewhat slower transduction mechanism involving ERK1/2 that translocate to
the nucleus following their activation by calcium signals in the immediate vicinity of synaptic NMDA receptors
(Hardingham et al., 2001a). Nuclear calcium activates CaM kinase IV, which leads to phosphorylation of CREB on Ser133,
activation of CBP, and stimulation of CREB/CBP-mediated transcription (Hardingham et al., 1997; Chawla et al., 1998;
Impey et al., 2002). ERK1/2 stimulate RSK2 (ribosomal S6 kinase 2) that can phosphorylate CREB on serine 133. The
ERK1/2-RSK2 cascade is not sufficient for inducing CREB-dependent gene transcription, however, it can prolong CREB
phosphorylation on serine 133 and thus serves as an auxiliary CREB activity-promoting pathway.
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second signaling pathway is slower and in-
volves ERK1/2 and RSK2 activation (Bading
and Greenberg 1991; Bading et al., 1993; Hard-
ingham et al., 2001a, 1999; Impey and Good-
man 2001; Ginty et al., 1993; Wu et al., 2001).

BDNF is involved in CREB-activated
survival

One of the target genes of CREB is BDNF
which can promote neuron survival (Ghosh et
al., 1994; Shieh et al., 1998; Tabuchi et al.,
2002). In Huntington disease models, a de-
crease in BDNF production has been linked to
the loss of striatal neurons while the expression
of BDNF promotes survival (Kells et al., 2004;
Zuccato et al., 2001). BDNF transcription is
induced by KCl-induced membrane depolari-
zation (activating L-type calcium channels) and
upon stimulation of synaptic NMDA receptors
(Ghosh et al., 1994; Shieh et al., 1998; Tao et al.,
1998; Hardingham et al., 2002). Increased
BDNF transcription leads to activation of TrkB,
the BDNF receptor (Hardingham et al., 2002).
The stimulation of TrkB receptors by BDNF
can also increase CREB activity suggesting a
cycle of positive feedback (Pizzorusso et al.,
2000). Other neurotrophins such as nerve growth
factor (NGF) may also exert their neuroprotec-
tive powers through the activation of CREB
(Riccio et al., 1999).

Whereas the activation of synaptic NMDA
receptors or L-type voltage-gated calcium chan-
nels can stimulate BDNF transcription, stimu-
lation of extrasynaptic NMDA receptors with
bath application of glutamate cannot (Hard-
ingham et al., 2002). This failure to activate
BDNF transcription most likely results from
the dephosphorylation of CREB on its activator
site serine 133 that is triggered by extrasynaptic
NMDA receptors (Hardingham et al., 2002;
Sala et al., 2000).

Extrasynaptic NMDA receptor
activation leads to death

Several conditions including the exposure of
neurons to hypoxic/low glucose media or the
stimulation of extrasynaptic NMDA receptors
with bath-applied glutamate causes rapid CREB
dephosphorylation of its activator site serine
133 (Hardingham et al., 2002). A similar CREB
dephosphorylation has also been observed fol-
lowing stroke in vivo (Tanaka et al., 1999a;
Walton and Dragunow, 2000). One possible
mechanism through which extrasynaptic
NMDA receptors lead to CREB-shut off in-
volves direct interaction with HDAC1 (histone
deacetylase 1, a class I HDAC), and protein
phosphatase 1 (PP1) (Canettieri et al., 2003).
PP1 is also part of a signaling complex consist-
ing of Yotiao, a scaffolding protein beneath the
NMDA receptor, and PKA (protein kinase A),
that is involved in regulating NMDA receptor
activity (Westphal et al., 1999). Although di-
rect evidence for PP1-induced cell death exists,
blockade of PP1 has also been shown to pro-
mote cell death in vitro (Jiang et al., 2000). This
points to a complex role of PP1, the precise
action of which may depend on cofactors and
the association with particular signaling com-
plexes.

Histone deacetylases can be divided into
class I and class II HDACs. A key to transcrip-
tional regulation by class II HDACs lies in the
control of their subcellular localization (de
Ruijter et al., 2003). Death-promoting stimuli
cause the caspase-dependent cleavage of class
II HDAC4 and translocation of the amino-
terminal fragment into the nucleus, which then
induces cell death (Paroni et al., 2004). In
contrast, synaptic activity in hippocampal neu-
rons promotes nuclear export of class II HDACs
(Chawla et al., 2003). One protein controlled by
class II HDACs is the transcription factor MEF-
2, which links the localization of HDACs to a
possible survival event (Mao et al., 1999). The
emerging view is that death-promoting stimuli
cause the import of class II HDACs into the
nucleus; this silences certain transcription fac-
tors and leads to the activation of death cas-
cades. Synaptic NMDA receptors can counter-
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act these mechanisms by inducing nuclear ex-
port of class II HDACs. This underscores the
opposing roles of synaptic and extrasynaptic
NMDA receptors in transcriptional regulation
and the promotion of cell survival/cell death
pathways.

ERK, JNK, and p38 MAP kinases

Many of the effects of NMDA receptor activa-
tion on gene transcription, survival and death
are mediated by protein kinases including CaM
kinases, ERK1/2 and the p38 MAP kinase

(Fig. 3). The ERK1/2-pathway as well as the
JNK (c-Jun N-terminal kinase) pathway have
been shown to mediate pro-survival events
(Dougherty et al., 2002; Li et al., 2003; Xia et
al., 1995), while the induction of apoptosis
correlates with the activation of the p38 MAP
kinase (Cheng et al., 2001; Kawasaki et al.,
1997; Xia et al., 1995). ERK1/2 may achieve
this by phosphorylating and inactivating the
pro-apoptotic factor BAD (Jin et al., 2002),
while JNK phosphorylates Bcl-2 (Deng et al.,
2001), which is able to inhibit efflux of cyto-
chrome C from mitochondria, thereby prevent-
ing apoptosis (Yang et al., 1997). The actions of

Fig. 3. Extrasynaptic NMDA receptors are thought to be activated by increases in glutamate concentrations in the
extracellular (non-synaptic) space, which occur following hypoxic/ischemic insults. Calcium entry though extrasynaptic
NMDA receptors leads to calcium uptake into mitochondria and to their depolarization; it also activates nNOS, and through
an unknown mechanism, leads to the shut-off of CREB function. Mitochondrial dysfunction and NO synthesis lead to the
production of reactive oxygen species that promote cell death.
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ERK1/2 on survival/death, however, remain
controversial. Evidence from animal models
indicates that the ERK1/2 pathway is activated
during focal cerebral ischemia and that its phar-
macological blockade could significantly re-
duce the focal infarct volume following a tran-
sient middle cerebral artery occlusion (Ales-
sandrini et al., 1999; Mori et al., 2002).

There is evidence for the involvement p38
MAP kinase in apoptosis (Bossy-Wetzel et al.,
2004; Cao et al., 2004; Xia et al., 1995). Apop-
tosis is attenuated in a dose-dependent manner
in cerebellar granule neurons by the p38 MAP
kinase inhibitors SB203580 and PD169316
(Nath et al., 2001). P38 MAP kinase is a down-
stream target of Fas-mediated apoptosis in cer-
ebellar granule neurons (Hou et al., 2002) and is
capable of activating nuclear factors, including
the pro-apoptotic factor Rb (Wang et al., 1999b).
Hyper-phosphorylation of Rb leads to its disso-
ciation from E2F1, a potent activator of apopto-
sis (Hou et al., 2000, 2001; O’Hare et al., 2000).
P38 MAP kinase is also activated in response to
neuronal stresses like glutamate toxicity (Ka-
wasaki et al., 1997) and cerebral ischemia (Bar-
one et al., 2001; Sugino et al., 2000).

The “source specificity” vs “calcium
load” hypotheses

Although calcium influx clearly is an initiator
of neurotoxicity, conflict exists as to the de-
pendence of toxicity on a particular route of
entry (the “source specificity” model) or whether
the calcium source is irrelevant and toxicity
relates simply to the intracellular calcium con-
centration (the “calcium load” hypothesis) (Ei-
merl and Schramm, 1994; Lu et al., 1996). The
degree of cell death evoked by persistent gluta-
mate or NMDA application is clearly related to
the duration and concentration of intracellular
calcium increases and the overload of mito-
chondria and their release of pro-apoptotic pro-
teins such as cytochrome C (Hartley et al.,
1993; Lu et al., 1996; Luetjens et al., 2000;
Pivovarova et al., 2004). However equivalent
calcium loads through L-type calcium channels
are not (or much less) toxic (Hardingham and

Bading, 2003; Sattler et al., 1998; Tymianski et
al., 1993). Furthermore, calcium influx evoked
by intense activation of synaptic NMDA recep-
tors in vitro is not toxic whereas similar calcium
loads following extrasynaptic NMDA receptor
stimulation promote breakdown of the mito-
chondrial membrane potential and cell death
(Hardingham et al., 2002).

Mitochondria

The close relationship between NMDA recep-
tors and mitochondria has been proposed to
explain the source specificity model (Peng and
Greenamyre, 1998). Calcium entry through
NMDA receptors is more rapidly absorbed by
mitochondria than calcium entry from kainate
activated or voltage dependent channels (Peng
and Greenamyre, 1998) and has a lower thresh-
old than that of L-type calcium channels for
inducing mitochondrial depolarization (Keelan
et al., 1999).

Mitochondria are closely linked to neurotox-
icity (Nicholls and Budd, 2000). Focal ischem-
ic lesions in vivo are associated with calcium
dysregulation and mitochondrial collapse
(Dirnagl et al., 1999) and the inhibition of
mitochondrial calcium uptake greatly attenu-
ates glutamate-induced cell death (Stout et al.,
1998). Calcium entering the cell through NMDA
receptors is absorbed by mitochondria through
a uniporter whose function depends on the
mitochondrial membrane potential. Collapse of
this potential results in calcium and cytochrome
C release, production of superoxides and final-
ly cell death (Luetjens et al., 2000). Cell viabil-
ity is also critically dependent on mitochondrial
respiration and maintenance of glucose levels,
achieved by glucokinase, which is regulated by
BAD, and dephosphorylation of BAD during
glucose-deprivation induces BAD-dependent
cell death (Danial et al., 2003). BAD is also
dephosphorylated by calcineurin (protein phos-
phatase 2B) after glutamate-induced calcium
influx (Wang et al., 1999a).
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PSD-95 and the coupling of NMDA
receptors to mitochondria and nNOS
production

NMDA receptors couple directly via their intra-
cellular carboxyl terminus of either the NR1 or
NR2 subunits to large complexes of cytoplas-
mic proteins including scaffolding, adaptor,
cell adhesion and cytoskeletal proteins, as well
as components of signal transduction pathways,
some of which are calcium regulated (Husi et
al., 2000; Pawson and Scott, 1997; Sheng and
Pak, 2000). A structure in the postsynaptic
membrane called the postsynaptic density (PSD)
binds several scaffolding proteins including
PSD-95, thereby linking NMDA receptors to
signaling molecules important for synaptic plas-
ticity (Migaud et al., 1998; Sheng and Kim,
2002). PSD-95 also links NMDA receptors to
nitric oxide (NO) production that plays a role in
NMDA-induced excitotoxicity (Sattler et al.,
1999). The toxic effects of NMDA receptor
activation may be mediated by a specific cou-
pling between PSD-95 and neuronal NO syn-
thase (nNOS) (Brenman et al., 1996) which
catalyzes NO production (Dawson et al., 1991)
leading to neurotoxicity (Lipton, 1999b). In
addition, the coupling of NMDA receptors to
the molecular machinery of the PSD may facil-
itate uptake of calcium into the mitochondria
(Peng and Greenamyre, 1998) which can also
lead to cell death (see above).

The deletion of the cytoplasmic carboxyl
terminus of either the NR1 or NR2A subunits
has been shown to reduce NMDA induced
toxicity in vitro (Anegawa et al., 2000; Rameau
et al., 2000). The disruption of the NR2B-PSD-
95 interaction with short peptides has also been
shown to partially protect from excitotoxicity
both in vitro and in vivo (Aarts et al., 2002).
While such treatments do not affect gating of
the NMDA channel (Aarts et al., 2002), they
may compromise or abolish NMDA receptor-
mediated intracellular signalling or alter the
localization or even surface expression of
NMDA receptors (Sans et al., 2003; Sprengel et
al., 1998; Steigerwald et al., 2000). Thus, either
changes in the localization or surface expres-
sion of the NMDA receptor or its dissociation

from NO production or mitochondrial calcium
uptake may underlie the neuroprotective effect
of disrupting the coupling between NMDA
receptors and PSD-95.

The prevalence of NR2B subunits
in extrasynaptic NMDA receptors

The subunit composition of NMDA receptors
varies with their location. While NR2A con-
taining receptors are predominantly confined to
synapses, NR2B containing receptors are pref-
erentially distributed extrasynaptically in rats
(Charton et al., 1999; Lopez de Armentia and
Sah, 2003; Tovar and Westbrook, 1999). Cur-
rent evidence indicates that native NR2C subu-
nit containing receptors are only present in
cerebellum and NR2D containing receptors are
not present within synapses in the brain (Brick-
ley et al., 2003; Cull-Candy et al., 2001, 1998;
Momiyama et al., 1996).

Electrophysiological evidence using NR2B
selective antagonists and the kinetic character-
istics of NMDA receptor currents has indicated
that NR2B and not NR2A-containing receptors
dominate NMDA receptor mediated synaptic
transmission in young rats. However, as NR2A
mRNA expression begins from around postna-
tal day 7, they begin contributing to, and by
postnatal day 30, dominating synaptic NMDA
currents. This developmental regulation of NR2
subunit distribution is qualitatively common to
most brain regions examined to date including
the hippocampus, cortex, cerebellum and later-
al (but not central) amygdala (Flint et al., 1997;
Lopez de Armentia and Sah, 2003; Monyer et
al., 1994; Stocca and Vicini 1998; Zhong et al.,
1995). Immunohistochemical and electrophys-
iological evidence has shown a similar redistri-
bution of NR2 subtypes also occurs during the
second and third weeks in cultured cortical
neurons (Li et al., 1998; Tovar and Westbrook,
1999). This developmental regulation of NR2A
and NR2B subunit distribution parallels the
contribution of each receptor subtype to LTP
induction (Kohr et al., 2003) and to the emer-
gence of synchronous neuronal activity in cor-
tical cultures (Opitz et al., 2002).
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NR2B-containing receptors and
neuronal death

Although NMDA receptor antagonists are
known to induce neuronal apoptosis, antago-
nists selective for NR2B subunit containing
receptors provide a degree of neuroprotection
against cell death in ischemic and glutamate
excitotoxicity models (Kundrotiene et al., 2004;
Reyes et al., 1998; Williams et al., 2003).
NMDA-induced apoptotic cell death appears to
increase in cells transfected with mutant hunt-
ington and the NR1/NR2B but not the NR1/
NR2A subunits (Zeron et al., 2001). In line with
this evidence, NR2B subunits are highly ex-
pressed in medium spiny neurons of the stria-
tum, the neuronal population selectively lost in
Huntington disease. Not surprisingly, a poten-
tial therapeutic role of NR2B antagonists is
currently emerging (Chazot, 2004).

It remains unclear whether the involvement
of NR2B-containing NMDA receptors in neu-
ron death relates to their localization, conduct-
ance characteristics or intracellular signaling
mechanisms. NR2B-containing receptors have
higher calcium permeability (Dingledine et al.,
1999), show less desensitization (Krupp et al.,
1996) and produce slower post-synaptic poten-
tials (Carmignoto and Vicini, 1992; Flint et al.,
1997; Vicini et al., 1998) than NR2A-contain-
ing receptors. The deactivation time constant
for currents mediated by NR1/NR2A assem-
blies comprises tens of milliseconds, compared
to hundreds of milliseconds for NR1/NR2B and
several seconds for NR1/NR2D receptors (Cull-
Candy et al., 2001; Monyer et al., 1994; Vicini
et al., 1998; Wyllie et al., 1998). Thus the
activation of NR2B-containing receptors will
carry substantially more calcium into the neu-
ron than would the activation of NR2A-con-
taining receptors. Increased calcium entry via
predominantly extrasynaptic NR2B-containing
receptors may generate high calcium concen-
trations in specific micro-domains that may
initiate death processes.

Conclusions

Synaptic and extrasynaptic NMDA receptors
have fundamentally different effects on neuro-
nal fate. Synaptic NMDA receptors promote
survival, whereas extrasynaptic NMDA recep-
tors trigger mitochondrial dysfunction and tran-
scription shut-off pathways, and lead to neuro-
nal degeneration and cell death. These findings
have wide-ranging clinical implications, in par-
ticular for acute brain injury, hypoxia/ischemia
and stroke during which extrasynaptic NMDA
receptors are being activated. The development
of drugs that specifically interfere with extras-
ynaptic NMDA receptors or their associated
signaling complexes could be a novel avenue
for therapeutic intervention in these pathologi-
cal conditions.
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