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Zusammenfassung

Proteine sind stiindig in Bewegung. Diese Beweglichkeit speist sich aus dem kom-
plexen Wechselspiel tausender Atome. Die experimentelle Struktur — mit ihren ex-
akten Koordinaten fiir jedes Atom — ist also in Wirklichkeit nur der Mittelwert ei-
ner vielféltigen Mischung von Konformationen. Bewegung ist oft das Bindeglied
zwischen Proteinstruktur und biologischer Funktion, erweist sich aber gleichzei-
tig als einer der am wenigsten verstandenen Aspekte der Strukturbiologie. In der
vorliegenden Arbeit untersuche ich die Dynamik von Proteinen "auf der Kippe",
also im Grenzbereich zwischen zwei Zustinden. Wie es scheint, kommt die in der
Struktur verborgene Vielfalt gerade dann zum Tragen, wenn sich das komplexe
Molekiil im Ungleichgewicht, im Ubergang oder, anders ausgedriickt, in biologi-
scher Aktion befindet.

Netzwerke aus in vielfacher Kopie aneinandergereihten Spektrindoménen ver-
leihen der Membran von Erythrozyten bemerkenswerte Elastizitit. Die Beweg-
lichkeit der Domine hinterldsst deutliche Spuren in mechanischen Entfaltungsex-
perimenten an einzelnen Molekiilen. Wie Simulationen zeigen, entscheiden zufil-
lige Fluktuationen, wie lange sich die Spektrindoméne mechanischer Belastung
widersetzt und ob nicht-native Strukturen die vollstandige Entfaltung aufthalten.
Diese Unschirfe der einzelnen Glieder, gemittelt tiber die gesamte Kette, bedingt
vermutlich eine gleichmiBige Riickstellkraft iiber einen sehr weiten Dehnungsbe-
reich. Experimente an gezielt veridnderten Spektrindominen unterstiitzen dieses
Bild. Die Elastizitit roter Blutzellen beruht also vielleicht auch auf der chaoti-
schen Bewegung einzelner Proteinabschnitte.

Die meisten Proteine agieren nicht allein, sondern finden sich eingebettet in
ein dichtes Netz von Wechselwirkungen. Fluktuationen der Struktur haben offen-
bar betrichtlichen Einfluss sowohl auf die Stabilitit von Proteinkomplexen als
auch auf die Geschwindigkeit ihrer Bildung. Das komplexe Zusammenspiel von
Proteindynamik und der Wechselwirkung zwischen Proteinen entzieht sich aber
bisher weitestgehend unserem Verstindnis. Ich vergleiche die Dynamik von 17
Proteinkomplexen und den daran beteiligten Partnern. Wie die umfangreichen Si-
mulationen enthiillen, sind freie Bindungsstellen deutlich flexibler als die restliche
Oberfliche des Proteins. Entgegen der iiblichen Annahme wird aber die allgemei-

vii



viii ZUSAMMENFASSUNG

ne Beweglichkeit der Proteine im Komplex nicht grundsitzlich eingeschrinkt. Die
Bindung kann sowohl mit dem Verlust als auch mit dem Gewinn von konformel-
ler Entropie einhergehen. Auch die Vorstellungen vom Erkennungsvorgang selbst
ziehen die Flexibilitdt von Proteinen bisher kaum in Betracht. Ich verkniipfe die
Simulationen mit einer systematischen Untersuchung der Passgenauigkeit zwi-
schen verschiedenen Konformationen der beiden Bindungspartner. Erkennung er-
fordert oft spezifische Varianten der freien Struktur. Mein erweitertes Modell fiir
den Mechanismus der Proteinbindung trigt dem Rechnung und erscheint besser
vereinbar mit theoretischen und experimentellen Daten.



Summary

Proteins move. Their incessant fluctuations are governed by a complex interplay
between thousands of atoms. Experimental structures, providing exact coordi-
nates for every atom, hence only represent the average of a diverse ensemble of
interchanging conformations. Molecular motion is often the barely understood
link between structure and biological function. The present work examines two
different processes that put proteins on the edge of moving from one global state
to another. At the moment of transition, perturbation or, indeed, biological action,
benign structure fluctuations can, it seems, turn into major forces.

Chains of spectrin repeats apparently rely on structure flexibility to achieve
a smooth response to external force. Single molecule atomic force microscopy
experiments on this domain, in accord with simulations, showed clear traces of
structure fluctuation. On the verge of disruption, thermal fluctuations decide how
much extension a spectrin repeat tolerates and whether or not unfolding is blocked
by intermediate non-native structures. This picture was supported by experiments
and simulations on mutated repeats. The elasticity of the membrane skeleton and,
for example, red blood cells, may thus to some extent depend on chaotic motions
within single protein domains.

Structure fluctuations also affect the process of protein-protein interaction, but
the interplay of protein flexibility and recognition remains far from understood.
I performed and compared molecular dynamics simulations on 17 protein com-
plexes as well as their free components. Free interaction patches turned out more
flexible than the remaining protein surface. However, contrary to common sense,
binding does not generally restrict protein flexibility and conformational entropy
may be lost but also gained in the process. Current models of recognition do not
account for overall protein flexibility or make assumptions that are incompatible
with kinetic observations. I combined the simulation data with systematic dock-
ing calculations and derived a new model for this process. Often, only subsets of
the two free structure ensembles were mutually compatible. A conformer selec-
tion step may thus impede the rate of recognition. Protein fluctuations seem to be
actively involved in the binding reaction and influence or even control the speed
of recognition as well as the stability of the complex.

ix



SUMMARY



Introduction

Proteins are the nanoscopic workhorses of life. Cells rely on proteins to break
down and build chemical compounds, to process information, and to withstand
or generate mechanical forces. These and a variety of other tasks are performed
by molecules that are chemically very much alike. All proteins are ultimately
made up from the same 20 amino acids' which are linked into polypeptide chains.
Depending on the order (sequence) of amino acids, polypeptide chains fold into
diverse three-dimensional structures. The individual spatial arrangement of their
atoms confers vastly different properties and functions to, from a pure chemist’s
point of view, very similar molecules. The first three-dimensional structure of a
protein, myoglobin, was determined in 1959 by John Kendrew et al. (1960). Since
then, structure was considered the missing link between the amino acid sequence
and the biological function of a protein. Max Perutz (Perutz 1970; Perutz et al.
1998) demonstrated in decades of work on hemoglobin how atomic structure gives

rise to physiological activity as well as disease.

Inspired by this work, a new scientific discipline — structural biology — took
on the task to explain life in terms of atomic structure. Yet, increasingly it became
clear that proteins don’t actually have a single structure. To some extend, this
was known from the outset, since already hemoglobin had been crystallized in
two different structural variants — one with and one without oxygen bound. Such
a ’switch” between conformations - bound and unbound, active and inactive or
(in case of prions) even benign and infective — is hallmark of many proteins and

crucial for enzymatic activity, signaling cascades, and various other aspects of cell

!some procaryotic and eucaryotic genes code for a rare 21* amino acid — Selenocysteine

Xi



xii INTRODUCTION

biology. Not surprisingly, the transition between distinct conformational states
received much attention.

However, even this description turned out to be oversimplified. The distinct
”conformational states” themselves are far from static. Proteins move. Experi-
mental protein structures are only the average of a dense ensemble of diverse and
rapidly interchanging subconformations (Frauenfelder et al. 1991). The stability
and ongoing movement of a protein molecule is governed by the complex mixture
of forces between its usually many thousand atoms which are further influenced
by many thousand solvent molecules. Transitions from “one” global conforma-
tional state to “another” thus require the collective action of many interacting
particles. The collective behavior of such many-body systems, especially out-
side equilibrium, is notoriously difficult to capture with physical theories, and one
must therefore resort to computationally expensive simulations. The dynamics
of protein structure thus rank among the most challenging problems to be under-
stood with current physical methods, next to atmospheric circulation, cosmic pro-
cesses, and the (entirely dispensable but probably better funded) design of nuclear
weaponsz. In fact, at the time of writing, of the two (officially) most powerful
computers worldwide, one is dedicated to climate and earth quake simulations
and the other to the simulation of protein folding.

The research on protein folding was perhaps the first field in structural biology
that fully embraced the new ensemble view on protein structure. The transition
from a disordered peptide chain to the folded protein had traditionally been de-
scribed by one-dimensional energy profiles with exact intermediate states. Long
debates about one or another folding intermediate were finally resolved by the
new model of an energy landscape that funnels a large variety of conformations
along many routes toward the native structure ensemble (Dill and Chan 1997).
Beyond the folding process, the implications of protein flexibility are, neverthe-
less, still somewhat ignored in several areas of structural biology. An isolated

structure is usually not enough to understand or predict the behavior of a protein.

2 Another obvious problem worth studying would be how societies of millions of interacting
people arrive at spending much of their resources on atomic or conventional bombs — of course
there is hardly funding for that kind of research.
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On the one hand, proteins work in the context of a cell where they are embedded
in a web of mutual interactions and modifications. On the other hand, the flexi-
bility of these complex macromolecules is without doubt crucial for many of their
functions. Both aspects constitute a missing link between protein structure and
function; both are touched in the following chapters.

In this work, I use established simulation techniques to study the dynamics
of proteins that are on the edge of moving from one global state to another. In
the first part (chapter 2) I analyze the response of a “mechanical” protein do-
main to external force. Structure diversity (or flexibility) leaves remarkable traces
in experiments that monitor the forced unfolding of single spectrin repeats. In
fact, these protein domains appear to utilize structure fluctuations at the atomic
level to achieve macroscopic elasticity. In other words, they translate flexibility
into biological function. The second part (chapter 3) examines the interplay of
protein flexibility and protein-protein interaction. Instead of analyzing a single
protein, this chapter follows a more comparative approach. I perform simulations
on several complexes as well as their free binding partners and extract trends that
may hold for protein-protein binding in general. Dynamic properties distinguish
free interaction patches from the remaining protein surface. However, contrary
to common sense, binding does not generally restrict protein flexibility and con-
formational entropy may be lost but also gained in the process. Current models
of the recognition process do not account for overall protein flexibility or make
assumptions that are incompatible with kinetic observations. I combine the simu-
lation data with systematic docking calculations and derive a new model for this
process. According to these results, protein fluctuations may be actively involved
in the binding reaction and influence or even control the speed of recognition as
well as the stability of the complex.

Chapter 2 is based on the joint publication with an experimental group (Alt-
mann et al. 2002) but puts our results into a somewhat sharper focus. Chapter 3
recapitulates another recent publication (Griinberg et al. 2004) and is extended by
yet unpublished data. The two parts are wrapped up by a concluding chapter. In
the beginning, I provide a brief introduction to methods and models for the study

of protein structure and dynamics.
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Chapter 1

Structures and ensembles

1.1 Introduction

Proteins usually adopt a defined, but not static, three-dimensional structure. A
complex interplay of compensating forces locks the chain (or chains) of bonded
amino acids into a small section of the vast space of conformational possibilities.
Protein atoms are held together by strong chemical bonds, many of which, how-
ever, are rotatible and hence leave large conformational freedom to the complex
molecule. This freedom is restricted by long reaching electrostatic interactions
(attractive or repulsive). It is further restricted by short range van der Waals (or
dispersion) forces which stem from temporary dipole moments that are mutually
induced in adjacent electronic shells. The system of protein and surrounding sol-
vent then adopts the state with the maximum number of energetically still accessi-
ble degrees of freedom. Entropy of solvent and solute are thus another important
component within the delicate balance of forces.

The following sections give a brief survey of the basic principles of, first, the
experimental and, second, the computational methods that are commonly used
for the study of protein structure and dynamics. The emphasis, especially of the
second section, rests with methods that have been relevant to my work. The de-
scription is by no means exhaustive — neither in coverage nor in depth. The chap-

ter ends with a short (and subjective) review of how ideas and models have been

1



2 CHAPTER 1. STRUCTURES AND ENSEMBLES

evolving to add more and more dynamics to our picture of protein structure and

function.

1.2 Experimental methods for the study of protein

dynamics

1.2.1 Structure determination

Structural biology depends on structures. X-ray crystallography was the first and
is until today the most frequently used method to obtain atomic structures of pro-
teins and other macromolecules. Other than visible light, X-rays have a short
enough wavelength (about 1 A) to probe molecules at atomic detail. However,
the direct ”X-ray microscopy” of a single molecule is not yet possible. The signal
would be too weak and the radiation would furthermore very quickly destroy the
object (planned free electron X-ray lasers may resolve both problems, see sec-
tion 1.2.2). The necessary information is hence collected from a large number of
molecules ”in phase”. In a crystal of molecules, X-rays are diffracted at the planes
that are formed by the repetitively arranged atoms. Monochromatic beams inter-
fere with each other if they are reflected from parallel planes. The interference is

destructive unless the Bragg condition is fulfilled:

nh = 2dsin (1.1)

If the staple of parallel planes, spaced evenly at distance d, is hit at Bragg
angle ¥, the beam travels exactly one or a multiple of its wave lengths A between
two planes and is hence amplified by positive interference. X-ray crystallography
hence roughly consists of (1) preparing a crystal of the protein and (2) recording
the diffraction pattern of an X-ray beam passing through this crystal at different
angles. The structure information is encoded by the intensities measured at the
various reflective angles. However, the pattern of intensities lacks any information
about the phase of the interfering waves. In a third step, this phase information

is reconstructed from homology models, or by using scattering from heavy metal,
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or selenium and sulfur atoms incorporated in the crystal. X-rays interact with
the molecule’s electrons and the diffraction pattern (plus phase information) can
hence be transformed into a three-dimensional electron density map. The covalent
protein structure is then modeled into this map, but, due to their low electron den-
sities, typically lacks the hydrogen positions. Protein expression and, especially,

crystallization usually constitute the main bottleneck of the procedure.

The second important method for structure determination examines molecules
directly in solution, without the need of protein crystals. Nuclear Magnetic Reso-
nance (NMR) spectroscopy measures the magnetization of atomic nuclei. Atomic
nuclei with a spin / different from zero have a magnetic moment y = yI that de-
pends on their gyromagnetic constant y. They have 2/ 4 1 energetically distinct
possibilities to align to a magnetic field. For example, 'H, '>C or N nuclei with
I = % can adopt two “orientations” that differ in their magnetic quantum number
my. This gives them two possible energy values E; when exposed to an external

magnetic field By:

1 1
Er=—uBo=YmBy, my=7,—= (1.2)
27 2
Transitions between these quantum states can be incited by an electromagnetic

pulse of the right frequency Vv to bridge the energy gap AE:

hv = AE = VB (1.3)

However, the resonant frequency not only depends on the external field By
(and the type of element) but is also influenced by the atom’s local environment.
This leads to a chemical shift of the atom’s resonant frequency and allows the
spectroscopist to distinguish, for example, the signals from the different hydrogen
atoms of a protein. The magnetization of covalently attached neighbors can fur-
thermore split an atom’s signal into multiple resonances. The extent of this spin
coupling depends on the angles of connecting bonds and thus yields first structural
information. However, most important for structure determination is the Nuclear
Overhauser Effect (NOE). The NOE is caused by the dipole — dipole coupling
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between nuclear spins, which transfers spin polarization between different nu-
clei. The intensity of this NOE depends on the spatial distance of the two atoms
involved (o< 7). The classic approach of NMR structure determination hence re-
quires first experiments that assign the observed frequencies Vv to individual atoms
of the molecule, followed by measurements that probe all of these atoms for NOEs
with the others. The result is a set of distance restraints which is combined with
a-priori knowledge of bond lengths, angles and atomic radii to obtain a structural
model of the protein.

Compared to X-ray crystallography, NMR has the advantage to study proteins
in solution and to circumvent the critical crystallization step. However, the spec-
trum of nuclear resonances becomes increasingly complex for larger molecules.
Isotope labeling, multi-dimensional experiments and other techniques help allevi-
ating this problem. Nevertheless, for full-fledged structure determination, NMR
remains largely restricted to proteins below 40 kD mass. On the other hand, the
method reveals a diverse set of additional information and is a versatile tool for
the study of protein dynamics. This will be discussed in the following section.

Protein structures can also be determined by other, less routinely employed,
techniques. Neutron diffraction, for example, operates on principles very simi-
lar to X-ray crystallography. In contrast to the latter, protein crystals are probed
with neutron radiation that interacts with atomic nuclei, and the diffraction pattern
hence yields atom density maps, rather than electron densities. The experiments
can be carried out at physiological temperatures and give the position of hydrogen
atoms (Engler et al. 2003). By contrast, X-ray diffraction often requires very low
temperatures to limit radiation damage and hydrogen positions usually have to be
“guessed” by a modelling program. This prediction is, in detail, often inaccurate
(Engler et al. 2003). However, among other technical issues, neutron diffraction
requires large protein quantities (i.e. large crystals) of high stability and relies on
expensive and rare neutron sources.

Several other experimental methods reveal partial structural information. The
approximate shape of macromolecules can be determined by neutron or X-ray
scattering in solution as well as by electron microscopy. Different spectroscopic

techniques add further valuable data.
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1.2.2 Dynamic properties

Standard X-ray crystallography reveals only very limited information about the
dynamics of a protein. B-factors are meant to quantify the atom’s mean square dis-
placement from the given (average) coordinate. However, apart from thermal mo-
tion, they are also influenced by other factors, namely partial disordering, whole
molecule or domain displacements, crystal defects, and inaccuracies of the model
building (Petsko and Ringe 1984). Furthermore, B-factors contain no information
about the time scale (or frequency) of the underlying vibrations.

Instead of irradiating it with monochromatic X-rays at different angles, pro-
tein crystals can also be probed by a polychromatic beam at one angle. This Laue
diffraction could theoretically shorten data collection to the length of a single X-
ray pulse (Zhong et al. 1999), about 100 ps on current synchrotron sources. Un-
fortunately, the intensity is not yet high enough and data have to be accumulated
over several pulses or with longer exposure times (Zhong et al. 1999). Never-
theless, Laue diffraction in combination with sophisticated synchrotron sources
allows for time resolved X-ray crystallography of down to nanosecond resolution
(Schlichting and Chu 2000). Yet, the resulting ’snapshots” still constitute an aver-
age over many billion molecules of the crystal. Rather than arbitrary nanosecond-
scale motions, the technique therefore only reveals movements that are followed
simultaneously by the whole ensemble. Such perfect synchronization cannot be
achieved but it has been for example possible to observe intermediate states of
enzymatic reactions (Schlichting and Chu 2000).

The arrival of free electron X-ray lasers may remove the obstacle of crystal-
lization from X-ray crystallography. X-ray pulses from anticipated new sources
should be bright enough to record diffraction data from single protein molecules
and short enough to do so before the destruction of the object (Neutze et al. 2000;
Miao et al. 2004). However, the method will probably still require averaging over
many molecules and it remains to be seen whether it can provide data on protein
dynamics.

Incoherent neutron scattering allows to measure atomic fluctuations, espe-

cially of hydrogen atoms, on time scales typically reaching up to 100 ps (Zac-
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cai 2000). The method yields the mean displacement of 'H atoms of a protein.
Deuterium labeling can be used to focus on sub-sets of atoms. The results are
not atom-specific but more accurate and direct then values extracted from X-ray

crystallographic B-factors, and the method does not require crystalline samples.

In contrast to the techniques described so far, spectroscopic methods give ac-
cess to both frequency and amplitude of certain molecular motions and thus con-

stitute an important tool for the study of protein dynamics.

Moessbauer spectroscopy was instrumental for early works on protein flexi-
bility (Keller and Debrunner 1980). Nuclei of several elements, for example >’Fe,
absorb and emit 'y rays at very defined wave lengths as long as the atom is part
of condensed matter, for example a protein crystal. Movements of the atom rela-
tive to the 7y source shift this wave length due to the Doppler effect. Moessbauer
spectroscopy measures fast vibrations of a particular atom very precisely, but is
naturally restricted to proteins that contain such a sensitive atom at a defined po-
sition.

Meanwhile, NMR relaxation spectroscopy has emerged as a primary tool for
the study of protein dynamics (reviewed by Bruschweiler (2003)). NMR relax-
ation experiments excite various of the protein’s nuclear spins and then observe
the decay of this magnetization over time. This spin relaxation is promoted by
internal protein motions but also by the rotational tumbling of the whole protein.
The relaxation falls into two different time ranges. Longitudinal relaxation times
(Ty) are modulated by motions on a nanosecond and subnanosecond time scale;
Transverse relaxation (T2) sheds light onto microsecond to millisecond dynamics.
T relaxation data are typically transformed into order parameters that character-
ize the mobility of certain bond vectors and can also be related to conformational
entropy. The peptide N-H bond is most accessible to this kind of measurements
and the backbone dynamics of many proteins have been characterized on a per-
residue basis. There are some caveats to these data and their analysis. The cal-
culation of order parameters is based on the assumption that overall and local
motions are separable and thus ignores the significant correlations that exist be-

tween the motions of different residues (Bruschweiler 2003). Moreover, as I will
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show in section 3.3.6, backbone dynamics appear not generally representative for
a protein’s overall mobility, at least not during protein-protein binding. On the
other hand, NMR relaxation experiments are increasingly extended to certain side
chain bonds and the formalisms for their analysis benefit from ongoing develop-
ment (Bruschweiler 2003).

In summary, different physical methods examine different time scales of pro-
tein motion. However, all of these methods reveal only indirect and partial infor-
mation. There is yet no single molecule “real-time imaging” technique. Simula-
tion techniques have thus become an important tool for connecting and interpret-

ing the patchwork of experimental data.

1.2.3 Single molecule experiments

Experiments are usually performed on systems comprising billions or trillions of
molecules and hence observe average properties of the whole ensemble. Molec-
ular simulations, on the other hand, examine single or very few molecules. The
comparison of simulation results with macroscopic and measurable quantities of-
ten turns out anything but straightforward. This gap is increasingly filled by a new
class of experiments that detect and manipulate single molecules.

Two fluorescing dyes with overlapping absorption frequencies can act as flu-
orescence donor and acceptor, that is the excitation of the donor dye leads to
the fluorescence of the acceptor. The efficiency of this fluorescence resonance en-
ergy transfer (FRET) depends on the distance between donor and acceptor and can
hence serve as a “molecular ruler” for distances between 10 and 75 A. Modern de-
tectors and optics measure the fluorescence transfer between single dye molecules.
It thus becomes possible to follow the distance of two dyes that are attached to a
single protein and, for example, to observe large-scale movements of subunits or
domains (reviewed by Weiss (1999)).

Another set of techniques goes one step further and allows not only to ob-
serve but also to manipulate single molecules. Atomic force microscopes (AFM)
(Binnig et al. 1986) as well as optical or magnetic tweezers (Ashkin 1987; Smith

et al. 1992) capture and move single proteins or micrometer-sized particles with
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Figure 1.1: Atomic force microscopy. [reproduced with kind permission from
Fisher et al. (1999)]

single proteins attached. In the case of optical tweezers, the particle is dragged
to the waist of a focused laser beam. Deviations from this position correspond
to picoNewton forces acting between laser beam and particle (reviewed by Mehta
et al. (1999)).

Atomic force microscopes measure the deflection of a nanoscopic cantilever
while it interacts with the sample. Figure 1.1 describes a typical experiment — a
single protein is, at one end, picked up by the tip of the AFM cantilever while it re-
mains fixed to a glass surface at the other end. The cantilever is then retracted from
the surface and thus uncovers the forces that counteract the directed unfolding of
the protein’s domains (Fisher et al. 1999). These forces lead to the temporary
deflection of the cantilever which is measured by laser interference. It remains
difficult to control which part of the molecule remains attached to the surface or
is picked up by the cantilever. For this reason, the technique is mostly applied to
linear proteins that, naturally or by design, fold into chains of multiple repeating
domains. Such an architecture is found in several “mechanical” proteins that have
to withstand forces in their cellular context. The experiment then reveals the se-
quential unfolding of the domains that are situated between surface and cantilever
(Rief et al. 1997; Kellermayer et al. 1997; Tskhovrebova et al. 1997; Rief et al.
1999). The atomic force microscope records a force-extension profile, that is the

protein’s force response at every point of elongation (see for example figure 2.3
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in the following chapter). The sequential and independent unfolding of several
domains leads to a typical saw-tooth pattern of force peaks alternating with the

relaxation afforded by each unfolding event.

Single molecule techniques do not provide the same atomic detail as some
of the more classic experiments described in the previous section. On the other
hand, they may reveal stochastic fluctuations and substates that are averaged out
in ensemble experiments. As I will show in chapter 2, atomic detail simulations
can be crucial for the interpretation of such results. Protein dynamics appear to
have much greater influence on the outcome of AFM experiments than has been

previously assumed.

1.3 Theoretical methods for the study of protein dy-

namics

1.3.1 Molecular mechanics models

The properties of protein structures have been modeled at many different resolu-
tions with different physical descriptions (Lazaridis and Karplus 2000). Insight
into protein folding, for example, was gained from idealized lattice models which
were, in early studies, not even meant to resemble any particular protein (Dill
et al. 1995). Quantum mechanical models, at the other end of detail level, capture
properties of individual electrons and can describe processes that involve chemical

reactions (Gogonea et al. 2001; Gao and Truhlar 2002).

For the study of protein dynamics, atomic molecular mechanic models (re-
viewed by Wang et al. (2001)) constitute at the moment the perhaps best compro-
mise between accuracy and computational cost. They are based on parameters that
are independent of a particular molecule. Molecules are represented by spherical
atoms of invariant radius and charge. A potential energy is then calculated de-
pending on the exact position of each atom with respect to all others (Wang et al.
2001):
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Equation 1.4 serves just as example. In detail, energy functions may differ be-
tween various simulation programs. However, they usually adhere to the general
form shown above and differences remain mostly restricted to the parametrization,
that is the exact combination of values for K, re4, 6.4, and the other parameters.
The total energy of the system is calculated as a sum of interactions between pairs
of atoms. The first three terms in equation 1.4 determine the internal energy of the
molecule. They penalize the deviation of chemical bonds from equilibrium length
Teq» €quilibrium bond angle 6,4, and equilibrium torsion angles, respectively (the
latter described by energy barrier V,,, number of maxima »n and offset y). Parame-
ters like rqq, 004, ¥, n and V,, or the spring constants” K;, Ky are usually derived
from small molecule experiments or quantum mechanical calculations and depend
on the types of atoms involved. Contrary to the previous three terms, the interac-
tions considered in the last term do not follow chemical bonds but extend through
space. They describe van der Waals (dispersion) and electrostatic attraction or

repulsion and are computationally the most expensive to calculate.

The overall combination of energy function and parameterization is referred
to as force field. Standard force fields make significant simplifications. The many
body interaction of all atoms with all others is approximated by a two-body ad-
ditive function. Furthermore, the constant charges centered on each atom reflect
only roughly the nonisotropic charge distributions calculated from quantum me-
chanical models. The directionality of hydrogen bonds or effects of aromatic I1
electrons are therefore not well reproduced. On the other hand, cooperative (many
body) effects can to some extent be included implicitly into the parameterization
of the energy function. After decades of development, different force fields are

converging to similar representations (Wang et al. 2001). They are now routinely
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applied to a variety of tasks with considerable success. Force fields are subject to
ongoing development and recent formulations introduce polarization effects, that
is they depart from the two body approximation (Cieplak et al. 2001; Kaminski
et al. 2002).

Absolute energy values calculated from equations like 1.4 have no practical
meaning but differences between them allow, for example, to compare different
conformations of one molecule, to rank different orientations of a protein-ligand
interaction or to (locally) optimize the geometry of a macromolecular structure.
The probably most common application of such energy functions is the sampling
of the conformational space that is available to a macromolecule. Molecular me-
chanical models are thus the primary computational tool for studying the dynam-

ics of protein structure.

1.3.2 Molecular dynamics simulations

Equation describes 1.4 the energy E of a molecular system as a function of the
atomic coordinates X. Driven by thermal fluctuations, the actual conformation
evolves over time ¢ across this potential energy surface and we would like to have
a function X (7) that describes this motion. The gradient of E(X) with respect to

the atom positions yields the forces acting on each atom:

F(X)=-VE(X) (1.5)

Newton’s law translates these forces into accelerations and hence describes

the dynamics of the molecular system:

d2
F(X)=M ;EI)

M is a diagonal matrix containing the mass of every atom. The solution of this

(1.6)

differential equation yields the trajectory X (z) of atomic positions over time. In
practice, equation 1.6 becomes of course fairly complex and X (¢) has to be deter-
mined numerically. In order to perform this integration, simulation programs take

a small step Ar in time, approximate the position x and velocity v of all atoms at
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the end of this step from the current positions x(z), forces () and velocities v(t),
and then recalculate these forces at the new positions. This task is for example

implemented with the ”Velocity Verlet” algorithm:

x(t 4+ Ar) = x(r) +v(t)Ar + %(At)2 (1.7)

(1) + f(r+Ar)
2m

v(t+At) =v(t)+ ! At (1.8)

Equations 1.7 and 1.8 are given for a single atom with mass m. The second
term of 1.8 averages the forces at time ¢ and ¢ + At which increases the stability
of the Verlet integrator. The whole procedure (1.7 and 1.8) is repeated until the
simulation reaches the desired (or rather the computationally still affordable) time
point. Accurate calculations require small time steps of 1 fs; Even a simulation
that covers only 1 ns of protein fluctuation hence requires in the order of 10°

iterations.

1.3.3 Different simulation regimes

In theory, the above equations fully describe the procedure of molecular dynamics
simulations. However, in practice further technical details have to be considered
to achieve a stable and efficient simulation. The van der Waals and electrostatic
interactions in equation 1.4 need to be calculated for all pairs of atoms and the
computational cost of this expensive cross term would thus increase exponen-
tially with the size of the system. Nevertheless, nearly linear scaling is achieved if
one ignores interactions between atoms that are separated by more than a certain
cutoff distance. Inaccuracies due to this distance cutoff and the numeric inte-
gration itself may lead to the spurious loss or gain of energy in the course of a
simulation whereas, in theory, the sum of kinetic and potential energy should re-
main conserved. This problem is often alleviated with a thermostat function which
monitors the kinetic energy and adapts velocities so that the system’s average tem-
perature remains constant (Berendsen et al. 1984).

The representation of the solvent is another difficult issue. Real proteins are
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surrounded by, and interact with, thousands of water molecules. Yet, for effi-
ciency, one needs to limit the number of simulated particles as much as possible.
Implicit solvent models offer one possible solution to this problem; Instead of
explicitly adding water molecules to the simulated system, they emulate solvent
effects by additional terms in the energy function (Roux and Simonson 1999). Al-
ternatively, one may chose to surround the simulated protein by a layer or sphere
of solvent molecules. The whole system is then subjected to stochastic friction
and collision forces. This “Langevin dynamics” regime (Izaguirre et al. 2001)
departs from the purely deterministic approach described so far but, at the same
time, substitutes for a thermostat function. The third and arguably most realistic
solvation strategy is based on a periodic boundary condition (PBC). The protein
is placed in a box of explicitly modeled solvent molecules. The box is treated as
the unit cell of a crystal. Particles crossing the boundary reappear on the opposite
side of the box. Thanks to the periodic setup, Ewald summation can then be used
for the calculation of long range electrostatic interactions between the particles in

all cells (particle mesh Ewald summation, PME) (Essmann et al. 1995).

The work I present in the following two chapters makes use of all three solva-
tion strategies. The unfolding of spectrin repeats was simulated with the general-
ized Born implicit solvent model (Bashford and Case 2000). It would have been
impractical to maintain an equilibrated layer or box of explicit water while the
protein’s length was increasing from 4 to 24 nm. Under these circumstances, the
implicit solvent model may well be more accurate than the less approximative ex-
plicit solvent methods; This will be further discussed in section 2.3.1. Moreover,
Simmerling et al. (2002) recently employed the generalized Born approxima-
tion to simulate the folding of a small protein domain and their prediction agreed
well with the subsequently solved experimental structure. Their work adds fur-
ther support to the fidelity of implicit solvent methods and molecular dynamics

simulations in general.

The conformational sampling of bound and free receptor and ligand proteins
described in chapter 3 was performed in a layer of water molecules using Langevin

dynamics. In this case, it was critical to find a realistic representation of the protein
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surface as I was interested in the process of protein-protein interaction. A solvent
layer with Langevin regime constitutes a compromise between the necessary de-
tail level and the computational efficiency required for the study of 50 different
(and often fairly large) proteins. This setup faired well for docking calculations
and a mostly qualitative comparison of protein flexibility but proved insufficient
for the reliable estimate of conformational entropies. I hence based the latter cal-
culation on much longer simulations using the periodic boundary condition and

PME treatment of electrostatics (see section 3.3.6).

1.3.4 Covariance analysis of simulations

Molecular dynamics simulations generate a wealth of data that needs to be ana-
lyzed. It may be instructive to simply watch the “movie” of atom movements but
often one wants to extract a specific information. The fluctuating coordinates of
several thousand atoms have hence to be translated into more manageable repre-
sentations or quantities. In chapter 2 I examine the unfolding of spectrin repeats.
I identified three important hinge regions within the molecule and the angles of
these three hinges provided three intuitive dimensions for describing the trajec-
tory.

However, often the coordinates of interest are much less obvious. Principle
Component Analysis (PCA) and related techniques allow to decompose the data
set into correlated motions and to reduce its dimensionality. The correlation of two
atomic positions x; and x; (i.e. to which extend the two atoms move in concert) is

measured by their covariance:

cov(xi,xj) = (6= () (3~ (1)) (19)

A covariance of 0 implies two uncorrelated variables, i.e. the fluctuation of
one atom is completely independent of the other’s. If cov(x; x;) > 0, atom  tends
to move into the same direction as atom j or, if cov(x;,x;) < 0, their movement
appears anti-correlated. From the simulated trajectory of atomic coordinates X (r)

we can derive a square covariance matrix C that contains the covariance of each
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atom coordinate with respect to each other coordinate:

Cij = cov(x;,x)) (1.10)

The covariance matrix is subsequently decomposed into pairs of eigenvectors E;
and eigenvalues A;, for each of which holds CE; = AE;. The eigenvector with
the largest eigenvalue is called the (first) principle component and describes the
direction of the largest collective motion within the system. The associated eigen-
value is a measure for how much of the molecule’s fluctuation occurs along this
important direction. More precisely, it quantifies the variance along this princi-
ple component. By concentrating on, for example, only the first two principle
components, one can reduce the complexity of a molecular dynamics trajectory
from 3N dimensions (i.e. the x,y,z coordinates of each atom) to the two artificial

dimensions that retain the largest amount of information.

1.3.5 Entropy estimates

At first glance, a flexible molecule of N atoms possesses 3N degrees of freedom
for moving through three dimensional space. However, in a protein, many atoms
are quite rigidly attached to some others (directly or indirectly), which limits the
degrees of freedom that are actually available to the molecule. The decomposition
of the covariance matrix will hence reveal “vanishing” eigenvectors that are not
independent and have an associated eigenvalue close to zero (i.e. zero variance).
The number and magnitude of non-vanishing eigenvalues is hence related to the
actual information content of the trajectory, which in turn is related to its entropy.

Statistical mechanics defines this entropy S as:

S=—kgy palnp, (1.11)
n

S hence depends on the number of microscopic states that are available to a system
of atoms as well as on the probability p, of each state. The more states exist and
the more evenly they are occupied, the higher is the entropy of the system. kp is

the Boltzmann constant. The sum over a finite number of discrete states can be
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replaced by the integral over a probability density function p(x):

S= —kB/p(x) Inp(x) dx (1.12)

The integral can be solved analytically under the assumption that p(x) is a 3N-
dimensional Gauss distribution. The appropriate Gaussian fluctuations can be
obtained by principle component analysis from a molecular dynamics trajectory.
An exact derivation is beyond the scope of this introduction (and its author). As it
turns out, the eigenvalue decomposition of covariance matrix C yields the solution

to the problem (Karplus and Kushick 1981):

1 1
§=skgln|C| =3

3N
5 kB;mxi (1.13)

Equation 1.13 should be extended by a correction factor (Schlitter 1993) that ac-

counts for quantum mechanical effects.

A similar but not identical relation can also be derived directly from the quan-
tum mechanical description of an harmonic oscillator. This ”quasiharmonic anal-
ysis” examines the inverse of C and hence analyzes motions by their frequencies
instead of amplitudes. Both methods utilize the (potentially rather anharmonic)
motions of a molecular dynamics simulation but put them into a context that is,
strictly speaking, only valid for harmonic vibrations. The simplification may be
taken one step further and the same analysis can also be carried out without per-
forming any simulation. Normal mode analysis constructs the Hessian matrix
from the molecular mechanics force field and a single structure which is supposed
to oscillate in a perfectly harmonic fashion (Case 1994). The covariance matrix
C is the inverse of the Hessian matrix and their eigenvectors are identical. Quasi-
harmonic and normal mode analysis would be equivalent, if the protein’s motions

were indeed only harmonic.

In practice, quasiharmonic analysis should be more accurate but, unfortu-
nately, it suffers from a sampling problem. The time scales accessible to com-
puter simulation are still far from capturing the “complete” structure ensemble of

a protein. A prolonged simulation will almost inevitably turn up additional con-
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formation states that haven’t been visited before and hence increase the calculated
entropy (Gohlke and Case 2004). Nevertheless, as I will show in chapter 3.3.6, the
entropy difference between free and bound state of a protein complex does indeed
converge on sufficiently short time scales. Quasiharmonic analysis can therefore

serve to estimate the conformational entropy lost or gained upon binding.

1.4 Function and dynamics — views in transition

1.4.1 Energy landscape of protein structure

Proteins fold into a unique ternary structure that is fully encoded in their amino
acid sequence and arguably constitutes the thermodynamic minimum of the pep-
tide chain within its solvent environment. This statement, Anfinsen’s dogma (Ep-
stein et al. 1963; Anfinsen 1973), could be considered one of the first important
results and at the same time a foundation of early structural biology. It was based
on the observation that some unfolded proteins could refold into their biologically
active conformation outside the cell. Thus this conformation was (path)way inde-
pendent. It could not rely on any specific process or information in the cell and
must constitute a thermodynamic minimum. The latter conclusion was countered
by Levinthal’s paradox (Levinthal 1968): A unique protein structure could not be
reached by a simple random search. Thus protein folding must follow a sequence
of events, one or several pathways, and the native conformation could still con-
stitute a local minimum, a kinetically trapped state. This dilemma captured the
interest of many structural biologists who tried to delineate folding pathways to
unique protein structures.

Another line of research focused on the structural basis of protein function,
especially the mechanism of enzyme specificity, catalysis and regulation. This
study of proteins “in action” increasingly abandoned the notion of a unique protein
structure. Koshland (1958) postulated protein flexibility and introduced the idea
of an induced fit to explain the recognition between enzymes and their substrates.

Monod et al. (1965) explained the cooperative regulation of multimeric enzymes
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by two distinct protein conformational states with different affinities for each other
as well as for the substrate. Kinetic experiments on the binding of substrate to
enzyme (Kirschner et al. 1966) or carbon monoxide to myoglobin (Austin et al.
1975) supported the assumption of distinct conformational substates. The study of
atomic fluctuations with crystallographic B-factors and Mdéssbauer spectroscopy
added further diversity to the picture and revealed different motional regimes.
Beyond a transition temperature of about 200 K, mostly vibrational fluctuations
are superseded by larger scale anharmonic movements and the latter are required
for protein function (Parak et al. 1982). Proteins appear to explore a continuum
of conformations rather than a finite set of states.

This modern view is summarized by the concept of a 3N-dimensional energy
landscape (Frauenfelder et al. 1991). A system of N protein (and solvating) atoms
moves through a hyperspace of free energy wells and barriers. The landscape
is rough at every level of resolution — there are wells within wells within wells
(Ansari et al. 1985). At the same time, it is sufficiently biased toward the na-
tive state to ensure protein folding (Dill and Chan 1997). Wells and barriers are
organized in hierarchical fashion. The global folding funnel may lead to sev-
eral functional substates, which are separated by high free energy barriers but are
themselves exploring a collection of subconformations (Fenimore et al. 2004).
The concept of an energy landscape thus reunited the research on protein fold-
ing with the the study of protein function and dynamics. It resolved Levinthal’s
paradox without violating Anfinsen’s dogma.

Rather than as single structure, proteins should hence be thought of as ensem-
ble (or distribution) of structures. The origin and implications of protein motions
are a matter of ongoing research (Fenimore et al. 2002; Fenimore et al. 2004). To
which extent is protein function influenced by molecular fluctuations? For some
proteins, the connection between function and dynamics is evident — for example,
molecular motors have the very purpose of implementing large scale movements
(Howard 1997) and their mechanism of action involves molecular fluctuations on
many scales (Astumian and Bier 1994; Schief and Howard 2001). However, in

most other cases, such a connection is less obvious and not well understood.
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1.4.2 Directed unfolding of proteins

Experiments on the forced unfolding of single molecules were early on accompa-
nied by molecular dynamics simulations (Lu et al. 1998; Krammer et al. 1999;
Lu and Schulten 1999; Marszalek et al. 1999; Paci and Karplus 1999; Paci and
Karplus 2000; Lu and Schulten 2000; Best et al. 2001). One could hence expect
protein flexibility to be well considered in our understanding of force-induced un-
folding. Yet, as I will discuss in section 2.1.2, the experiments and consequently
also simulations had initially concentrated on one family of highly resistant pro-
tein domains that unfold in a singular well defined event. Such regular behavior
was subsequently also expected from other proteins. For this reason, results of
atomic force microscopy experiments were generally interpreted with models that
assumed single-step unfolding along a unique unfolding pathway. Studies were
mainly concerned with the connection between (static) molecular architecture and
unfolding route. Atomic fluctuations seemed less relevant.

This static framework was put into question by atomic force microscopy ex-
periments on a different mechanical protein domain. The (controversial) force
response of a spectrin repeat suggested different types of unfolding events and
contradicted single pathway, all-or-none unfolding. Chapter 2 describes these ex-
periments and corresponding simulations. An ensemble view on protein structure
turns out to be instrumental for the understanding of spectrin behavior and func-

tion.

1.4.3 Protein-protein binding

Binding processes were among the first to reveal the importance of molecular fluc-
tuations for protein function. Fast kinetic studies of glyceraldehyde-3-phosphate
dehydrogenase activity, for example, showed that substrate binding is influenced
by a (comparatively) slow exchange between different conformational states of
the protein (Kirschner et al. 1966). Myoglobin provides another example for
the obvious necessity of molecular movement. Its binding site for oxygen and

carbon monoxide lies buried within the molecule and lacks any opening to the
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solvent. Austin et al. (1975) analyzed the temperature dependence of CO binding
and attributed one (out of four) free energy barriers to the equilibrium between
many conformational states. Later, Ansari et al. (1985) identified a hierarchy
of relaxation motions during the dissociation of CO from myoglobin. Similar
observations were also made for the interaction between proteins and antibodies
(e.g. Lancet and Pecht (1976), Foote and Milstein (1994)). Molecular dynamics
simulations were in some cases used to examine the free energy profile for the
force-induced dissociation of small molecules from proteins (Izrailev et al. 1997;
Balsera et al. 1997) and Heymann and Grubmiiller (2001) provided an explicit
estimate for the conformational entropy along such an unbinding trajectory.
Nevertheless, the interplay between structural dynamics and protein-protein
recognition is still poorly understood. In general, it remains unclear to which ex-
tent protein flexibility affects the kinetics and thermodynamics of binding. Com-
putational descriptions of protein-protein interaction treat the binding partners as
completely or mostly rigid bodies. Common kinetic models for the binding pro-
cess are based on the same assumption. Furthermore, there are conflicting results
and predictions as to the influence of conformational diversity (and thus entropy)
on the thermodynamic stability of protein-protein complexes. The effective treat-
ment of flexibility is currently also the highest obstacle to the reliable prediction of
protein complexes from their single components. Chapter 3 (in particular sections

3.1.2 to 3.1.4) provides an in-depth discussions of these issues.

1.5 Conclusion

Proteins are not static but constantly on the move. The complex dynamics of
these molecules is often the missing link between structure and function. Its study
requires the integration of various experimental and theoretical data. The follow-
ing two chapters describe how a detailed view on protein dynamics can, on the
one hand, provide insight into individual protein function and, on the other hand,

improve our understanding of a fundamental biological process.



Chapter 2

Forced unfolding of spectrin repeats

2.1 Introduction

2.1.1 The spectrin repeat — a domain under stress

Twenty five thousand billion red blood cells circulate through several hundred
kilometers of human capillary network. With their diameter of 7 um they have to
squeeze through capillaries that are only 3 to 5 um wide. The ability to accommo-
date large reversible deformations is hence a crucial property of erythrocytes. This
remarkable elasticity is conferred by the membrane skeleton — a two-dimensional
protein mesh work that lines the inner face of the plasma membrane (Discher and
Carl 2001) (figure 2.1A). Most cell types rely on this membrane skeleton to sta-
bilize and spatially organize membranes while a three-dimensional cytoskeleton
secures their shape integrity (De Matteis and Morrow 1998). However, the elastic
erythrocytes lack a rigid actin-based cytoskeleton and their membrane skeleton
thus also maintains the cell’s overall shape (Elgsaeter et al. 1986; Hansen et al.
1996). The same holds for the outer hair cells of the ear whose function also

crucially depends on shape elasticity(Raphael et al. 2000).

The predominant component of the membrane skeleton is spectrin, an elon-
gated multi-domain protein composed of two o and two P subunits (figure 2.1B).

Experimental evidence and theoretical calculations indicate that these o3, te-

21
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Figure 2.1: Spectrin tetramers are the “connectors” of the two-dimensional mem-
brane skeleton underneath the plasma membrane. A) Electron micrograph of
the erythrocyte membrane skeleton (courtesy of Daniel Branton). B) Schematic
view of the spectrin tetramer. Boxes mark the dimerization (outer rectangles) and
tetramerization (inner rectangle) sites, respectively. [reproduced with kind per-
mission from Byers and Branton (1985) (A) and Pascual et al. (1997) (B)]

tramers are the elastic part of the network (Byers and Branton 1985; McGough
1999; Lee and Discher 2001). Both subunits are largely made up from a series of
spectrin repeats, each of which typically contains 106 amino acids. Each spectrin
repeat (figure 2.2) is built from three anti-parallel a-helices, which are separated
by loops and fold into a left-handed coiled-coil (Pascual et al. 1997; Djinovic-
Carugo et al. 1999; Grum et al. 1999).

The spectrin repeat is one of the most abundant domains in the human genome.
About 500 spectrin repeats can be found, most commonly in actin filament asso-
ciated proteins such as spectrin itself, dystrophin, utrophin, and alpha-actinins
(Pascual et al. 1997). The domain usually occurs in stretches of 4-40 repeats. In-
terestingly, many of the proteins containing spectrin repeats are found in locations
that are regularly subjected to mechanical stress, not only in the membrane skele-
ton but, for instance, also the muscle Z band and muscle-basement membrane
contacts (Pascual et al. 1997).

Part of spectrin’s elasticity could be explained by the network it forms and
by modest shifts in its connectivity (Lee and Discher 2001). Changes in the su-
per coiling of spectrin’s o and B subunits could provide elasticity on the level of

the single tetramer (McGough 1999). Changes in the interactions between par-
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Figure 2.2: Structure of the spectrin repeat R16. C, atoms of the two residues
substituted in the AA mutant are highlighted in green. The disulfide bond intro-
duced into the CC mutant is marked in blue. Blue lines describe the three angles
that will be used to represent hinge movements in figures 2.5 and 2.10.

ticular domains are very likely contributing another level of elasticity and there
is evidence of stabilizing interaction between neighboring spectrin repeats (Mac-
Donald and Pozharski 2001). Less clear is whether and how the single repeat may

contribute to the mechanical properties of proteins containing it.

2.1.2 Forced unfolding of spectrin repeats and other domains

Already before the onset of our collaboration, the lab of Heinrich Horber had stud-
ied the mechanical properties of the spectrin repeat using atomic force microscopy
(AFM, briefly introduced in section 1.2.3). They had engineered constructs con-
sisting of four identical copies of the 16" repeat of ai-spectrin and stretched single
molecules of this type between a surface and the tip of an AFM cantilever (Lenne
et al. 2000). Some of their results were at odds with the behavior commonly
expected for the forced unfolding of “mechanical” protein domains.

Since the original work by Rief et al. (1997) on titin it had become widely
accepted that single domains of such linear proteins will unfold in an all-or-none

fashion when subjected to the directed force of the AFM. However, most of these
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studies (Carrion-Vazquez et al. 1999; Li et al. 2000; Oberhauser et al. 2001;
Carrion-Vazquez et al. 1999) had focused on only two domains that have to sus-
tain high forces in their physiological environment. Both immunoglobulin (Ig)
type I domains and the fibronectin type III (FnIIT) domain are all-f proteins and
have a similar (Ig-like) topology. Both domains are found in the giant muscle pro-
tein titin. Another well studied example, the extracellular matrix protein tenascin
(Oberhauser et al. 1998), also consists mainly of FnlIl domains. Molecular dy-
namics (MD) simulations performed on these B-sandwich structures of Ig-like
domains reinforced the notion that globular protein domains support only little
deformation under external force. A catastrophic event then transforms the pro-
teins rapidly into an unordered polypeptide peptide chain with little or no higher
structure left (Krammer et al. 1999; Lu et al. 1998; Lu and Schulten 1999; Lu
and Schulten 2000). This view was revised by Marszalek et al. (1999) who
suggested that Igl domains may display a transient kinetic intermediate during
constant speed forced unfolding, based on experimental data supported by MD
simulations. However, since this intermediate occurred immediately before the
catastrophic event after only a few A of deformation, it did not really pull the
notion of all-or-none unfolding into question (Lu and Schulten 2000).

The observations of Lenne et al. (2000) on spectrin repeats stood out from
this previous work on Ig-like domains in three respects: Firstly, the forces needed
for the disruption of single spectrin repeats were markedly lower than the forces
measured for Igl and FnllIl domains. Typical forces ranged between 50 and 80 pN
compared to 200 pN in the case of, for example, Igl. Secondly, and perhaps most
surprising, Lenne et al. reported two distinct populations of unfolding events.
Apart from the expected extension by 32 nm which corresponds to the complete
unfolding of a single spectrin repeat, they found a number of events in which
the molecule gained only about 15 nm length. They suggested that these events
could represent the break up of a putative unfolding intermediate. Thirdly, the
unfolding lengths recorded by Lenne et al. varied broadly around the 32 and
15 nm average values and also the rupture forces were subject to considerable
variation. Ig-like domains, by contrast, showed nearly constant extensions and

rupture forces in previous studies (Carrion-Vazquez et al. 1999; Oberhauser et al.
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1998; Rief et al. 1997). Indeed, such behavior was considered standard to the
extend that the established AFM protocol prescribed the filtering of experimental
force-extension profiles for regular peak spacing (Rief et al. 1999).

The results of Lenne et al. thus contradicted assumptions commonly made by
AFM experimentalists. However, the universal validity of all-or-none unfolding
was also questioned by one later experimental and two concurrent theoretical stud-
ies. Best et al. (2001) demonstrated in a study on forced unfolding of barnase that
such regular behavior could not necessarily be expected from “non-mechanical”
proteins. Moreover, simulations by Paci and Karplus (1999, 2000) showed that [3-
sandwich as well as a a-helical structures could theoretically create stable forced

unfolding intermediates at much larger extensions.

2.1.3 Our approach

The study of Lenne et al. attracted critics because it arrived at unexpected results
using unconventional methods. An unfolding event at 15 nm extension implied an
intermediate that was either 15 nm longer than the intact — or 15 nm shorter than
the completely stretched domain. Both possibilities reduce to a position in the
middle of complete unfolding (which yields 32 nm). It was difficult to imagine,
how the simple topology of the spectrin repeat should support a metastable state
that was roughly 6 times longer than the native fold. Furthermore, Lenne et al.
did not filter their force curves for regular peak spacing (which would have ruled
out the detection of unfolding intermediates) but tried to exclude experimental
artifacts with a different protocol.

In this situation, the groups of Matti Saraste, Heinrich Horber and Michael
Nilges entered a collaboration to study the problem by a combination of experi-
mental and computational methods. Jari Yldnne and Kristina Herbert expressed
and purified two constructs containing mutated spectrin repeats. Pierre-Francois
Lenne, with the assistance of Stephan Altmann, subjected wild-type and mutant
spectrin repeats to AFM experiments. I examined the forced unfolding of wild-
type and mutant spectrin repeats with molecular dynamics simulations and tried

to relate experimental and theoretical results.
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The comparison with simulations could indeed explain the main aspects of the
experimental unfolding data. The lower rupture forces were traced to the a-helical
composition of the spectrin repeat and the fact that unfolding breaks atomic inter-
actions in a step by step manner. The broad variation of experimental unfolding
lengths was mirrored by a surprisingly variable rupture point of the simulated
domain. Across different simulations, the native fold unraveled at very different
extensions that were often several nm apart. The simulations also showed poten-
tial unfolding intermediates of appropriate length. These intermediates arose from
non-native topologies and depended on a pronounced kink of helix B in the cen-
ter of the molecule. My collaborators engineered a variant of the spectrin repeat
with a strengthened helix B and this mutation indeed prevented the occurrence of
unfolding intermediates.

Both a “fuzzy” breaking point and metastable “blocks” along some unfolding
pathways can sum up to a smooth and elastic response to external force — if we
consider that spectrin repeats always occur in a series of many replicas. Each
domain is moving through conformational space and none of the replicas have
exactly the same structure at any given moment. The same force can thus pro-
voke different responses from perfectly identical domains. This ensemble effect
appears to be the key to understanding both the experimental results and the bio-
logical function of the spectrin repeat.

The following sections first describe the experiments and simulations on wild-
type spectrin repeats. I then discuss and explain the peculiarities of the experimen-
tal results using the molecular picture gained from the simulations. Support for
this interpretation is subsequently drawn from the examination of the two modi-
fied spectrin repeats. Finally, I compare our results with previous studies on the
matter. The chapter concludes with a summary putting the outcome of our work

into the biological context of spectrin function.
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Figure 2.3: Forced unfolding experiments on the wild-type spectrin repeat. A
peptide chain made up of 4 identical repeats was stretched and the restoring force
measured. A) A fraction of curves display regular unfolding lengths around 32
nm. B) The majority of curves show varying unfolding lengths with both interme-
diate and full-length peak-to-peak distances. C) Distribution of elongation lengths
from 250 unfolding experiments.

2.2 Forced unfolding of wild-type spectrin repeats

2.2.1 Atomic force microscopy experiments

In AFM experiments, a single protein is stretched between a surface and the tip of
an microscopic cantilever and the elongations as well as the forces necessary for
the deformation are measured in real time down to the millisecond time-scale. A
peak in the AFM force-extension profile marks the break-up of a stable conforma-
tion of the peptide chain. In a protein construct with multiple identical domains,
the repeated saw-tooth pattern in the AFM force-extension curve is an indication
of repeated unfolding events, specific for the domains contained in the construct.
The spacing between peaks corresponds to the gain in length due to the unfolding
of a part of the protein chain.

As before, P--F. Lenne and S.A. Altmann performed their experiments with
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a protein construct containing 4 identical copies of the 16" repeat from chicken
a-spectrin. They used an elongation speed of 0.3 nm ms~!. To rule out any in-
teraction between the domains, the repeats were each separated by an additional
(presumably a-helical) linker of 17 amino acids. The new measurements con-
firmed the original findings of Lenne et al. (2000). The distribution of rupture
forces was quite broad and peaked between 50-80 pN (data not shown). Exam-
ples of force curves are given in figure 2.3. As indicated, my collaborators ob-
served consecutive unfolding events with various peak-to-peak distances. They
did find regular curves that represent the sequential unfolding of complete do-
mains each yielding 32 nm (figure 2.3A). However, the majority of experiments
showed significant variation of peak-to-peak distances. The histogram in figure
2.3C highlights this variation. Two representative examples are given in figure
2.3B. Five unfolding events were counted in the second curve, i.e. one more than
the number of domains in the construct, while the total length of unfolding is less
than the maximum stretched length of the construct. As Lenne et al. (2000) al-
ready reported and as figure 2.3B illustrates, shorter peak-to-peak distances were
often detected in the beginning of the experiments.

The force-extension profiles revealed a complex unfolding behavior of the
tetrameric spectrin construct. The wide and bi-modal distribution of peak-to-
peak distances could not be explained by independent all-or-none unfolding of
complete spectrin domains. On the contrary, single force curves already exhib-
ited variations from the average distance that appeared beyond experimental error
and the histogram of peak-to-peak distances (figure 2.3C) indicated a significant

fraction of partial unfolding events.

2.2.2 Steered molecular dynamics simulations

I simulated the mechanical unfolding of the wild-type spectrin repeat with a con-
stant extension rate of 0.2 A ps~! (2x 107 nm ms~!) by molecular dynamics. The
molecule was extended to a distance ryc between the N and C termini of about
24 nm which corresponds to an elongation of the native structure by 20 nm. This

value is smaller than the molecule’s maximal extension as I was mainly interested



2.2. UNFOLDING WILD-TYPE REPEATS 29

wt simulationg ‘ wt simulation |
500 o, 1 o o 1500
400 ] ? {400
300 : {300
200 1 {200
100 1 {100
z 0 0
£ _100 ‘ ‘ -100
3 wt simulation h o —c
S 500 o — o —d —i {600
e o) | o o —e —j |
400 O B> 0 o —f 500
300 1 0602 5% — ! J400
200 {300
100 {200
0 {100
-100 0

50 100 150 200 250 50 100

extension r, c (A)

Figure 2.4: Force-extension profiles from unfolding simulations with the wild-
type spectrin repeat. Three profiles are shown in detail. The complete data
recorded at 0.5 ps resolution are drawn in blue. Black is a running average with
50 ps window size. The running averages of all simulations are presented in the
lower right plot (note the shifted force scale). Force peaks within 10% of a trajec-
tory’s maximum force are marked with circles and are included for all simulations
in the lower right plot. They illustrate the variance of extensions sustained by the
repeat.

in the rupture of the tertiary structure. I calculated 11 trajectories of 1 ns each.
Unfolding was enforced by a time-dependent harmonic distance restraint between
N- and C terminus. The molecule’s resistance toward unfolding is illustrated in
the force extension profiles of figure 2.4. In analogy to the displacement of the ex-
perimental cantilever, restoring forces were calculated from the deviation between

rnc and the target value to which it was restrained.

The maximum force recorded in each trajectory showed a broad variation from
400 to 645 pN with an average of 475 pN (£65 pN). In contrast to other systems
studied by AFM and MD (Paci and Karplus 1999; Lu and Schulten 2000; Lu
and Schulten 1999), the extension at which this peak force occurred was not well

defined. It varied between 6.5 and 16 nm ryc. Moreover, several peaks of sim-
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ilar force were often observed at different extensions. In figure 2.4, I arbitrarily
marked all forces within 10% of each trajectory’s maximum. The varied position-
ing of such peaks at extensions up to 11 nm apart has important implications for

the variation of unfolding lengths in AFM experiments.

Unfolding was typically initiated by a gradual stretching of the two outer he-
lices A and C, with varying restoring forces. Hence, the native triple-helical coiled
coil topology sustained considerable elongations. This phase culminated in the
disruption of the native fold, marked by a drop in the force extension profile. Sev-
eral unfolding trajectories proceeded without further pronounced resistance (sim-
ulations d, i, 1, and m; see figure 2.4). However, six simulations exhibited distinct
force peaks after the initial unfolding event and, in two cases (e.g., simulation
h) such peaks constituted the maximum force of the whole simulation. The late
force peaks were caused by compact but non-native folds that provided interim

mechanical stability at various extensions.

In order to describe the origin of these potential intermediates I focus on shifts
in the molecule’s topology rather than analyzing the complex atomic detail of
my simulations. The native spectrin repeat consists of three secondary structure
elements — helices A, B and C — which are connected by two loops — AB and BC
(figure 2.2). The two loops are the obvious hinge points in the repeat’s topology
that need to open up to completely unfold the molecule. Before that, however, the
simulations showed a limited melting of helix B near Pro62 in the center of the
molecule. Increasing a naturally occurring bend in this position, the central helix
was effectively divided into two. Only this additional hinge allowed the repeat to

evade complete unfolding beyond lengths of about 13 nm ryc.

In figure 2.5 the status of each of these three hinges is described by a sepa-
rate axis. Each conformation of a given trajectory corresponds to a point in this
three-dimensional graph. Transitions along axis AB indicate opening of loop AB,
transitions along axis BC show the disruption of loop BC and the third axis B
describes the closing and opening of the additional hinge in helix B. We can thus
follow the topology of the repeat in the course of each trajectory. In addition, I

color-coded the smoothed force profile from figure 2.4 onto each trajectory trace
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Figure 2.5: Topology and force resistance of the unfolding wild-type spectrin
repeat. Trajectories are described by three hinge movements (see figure 2.2). The
complete recording is shown on the left where trajectories are colored as in figure
2.4. For the right plot angles and forces were averaged over a 50 ps window
and forces then color-coded onto the smoothed topology traces. Conformations
exhibiting high restoring forces are prominent around the native structure (a) and
the completely stretched end point (k). Moreover, I observed two force resistant
non-native topologies (d, g and e, f). Structure snapshots for each topology region
are marked with letters and given in figure 2.6.
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Figure 2.6: Characteristic topologies of the unfolding spectrin repeat. Snapshots
were chosen to describe prominent regions of topology from figure 2.5. Structures
marked with * are directly corresponding to force peaks. Simulations started from
the NMR structure a. Snapshots b and ¢ were taken from simulation g; f, f’, k from
simulation j; g and h from simulation h. The detailed force profiles of these three
simulations are given in figure 2.4. The structures have the following lengths (ryc¢
inA):a42,b71,c135,d126,e 173, f 191, f> 205, g 158, h 175, 1 143, 192, k
241.
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(blue for lowest forces; red for highest forces). From the resulting plot one can
easily pick out (1) topologies which exhibited pronounced force resistance and (2)

how often these topologies were visited in the 11 simulations.

Two main routes emerge from a variety of paths through the simplified topol-
ogy landscape. Along these routes I identified 4 regions of distinct topologies.
Example structures for each of these topologies are marked with letters and shown
in figure 2.6. The first region (illustrated by snapshots a, b, and c) portraits the
native fold of the spectrin repeat. This native topology resisted unfolding over a
wide range of elongations. A prominent second region of force resistant topolo-
gies is depicted by snapshots d and g. It features the sharp kink in helix B and
appears hence shifted along axis B in figure 2.5. Due to this kink, compact struc-
tures formed from the remaining part of helix C, the two halves of helix B, and
a distorted but still persisting loop AB. In terms of extension this region partly
overlaps with the longest observed native folds. Snapshots ¢ and d provide an ex-
ample of this extension range where high unfolding resistance could stem from a
still native-like topology in one simulation whereas similar resistance was evoked

by the non-native arrangement in 5 other simulation runs.

The two remaining regions of prominent topology belong to the two dominant
unfolding pathways. In three trajectories loop BC was disrupted first and the kink
in helix B was straightened. Loop AB persisted over a considerable range of
extensions (snapshot j) but this conformation displayed only moderate resistance
to further unfolding. In the other, most frequent pathway, loop AB opened up first.
The kink in helix B allowed for pronounced force peaks from a helix-loop-helix
element (snapshot e) consisting of the remaining parts of helix B and C locked
together by the native BC loop. The longest intermediate observed originated
from this structure and had its maximum unfolding resistance at 21 nm ryc. In
this particular case, the helix-loop-helix element was tightly folded back onto the
N terminal half of helix B and the resulting (non-native) fold resembled spectrin’s
native triple helical coiled coil (snapshot f”). The detailed force profile of this

simulation (j) is given in figure 2.4.

Three trajectories followed neither of the two pathways strictly but left the
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initially chosen main route by a premature opening of loop BC. I prolonged two
simulations to complete extension of the molecule, marked by a steep linear in-
crease of restoring forces (not shown). In experimental reality, unraveling do-
mains can only be extended up to the disruption of the next folded structure, that
is the weakest element of the chain. In my simulations I assumed this to be the
case if a running average of restoring forces (as shown in figure 2.4) surpassed
a threshold of 300 pN. The resulting maximal distances between N and C termi-
nus were 35.8 and 35.9 nm with the actual numbers being rather insensitive to
the choice of definition or force threshold. Due to the initial distance between N
and C termini (4 nm) this would correspond to a length gain of 32 nm in AFM

experiments.

2.3 From experiment to simulation and back

2.3.1 Translating between simulation and experiment

There are certain difficulties in comparing the simulations and AFM experiments.
First, because of the variability encountered, 11 simulations for the wild type
repeat seem not sufficient to obtain statistics comparable to the experiment. Sec-
ond, I only simulated a single domain and in a polymer of 4 spectrin repeats used
in the AFM experiments the status of the completely or partially folded but pre-
stretched domains is undefined at the time of single-domain rupture. Furthermore,
itis unknown to which extent the partially distorted domains refold when the force
drops. Third, similar to other studies (Krammer et al. 1999; Lu et al. 1998; Lu
and Schulten 1999; Lu and Schulten 2000; Best et al. 2001; Craig et al. 2001),
elongation speeds of experiment and simulation differ by 8 orders of magnitude
(3x1077 versus 20 m s~ !). Despite this discouraging gap between experimen-
tal and computationally accessible time scale, MD simulations have already been
instrumental for the interpretation of unfolding experiments and, in various in-
stances, provided results consistent with AFM data (Li et al. 2000; Marszalek

et al. 1999). Simulations, in general, reproduce an unfolding scenario regardless
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of pulling speed or force and formulation of the restraint (Lu and Schulten 1999;
Paci and Karplus 1999; Izrailev et al. 1997). Even quantitative statements about
the height of energy barriers have been attempted (Izrailev et al. 1997) which
took into account that simulations operate much further away from equilibrium
than AFM experiments (Balsera et al. 1997).

Lu and Schulten (2000) criticized the application of implicit solvent models
(such as the generalized Born continuous solvent model I employed) to unfolding
simulations since they cannot describe the detailed mechanism of (concurrent)
hydrogen bond breaking. On the other hand, Paci and Karplus (1999) have argued
that an implicit solvent model alleviates artifacts of high unfolding speeds in the
simulation since it mimics equilibrated water at each step of the simulation. Apart
from practical considerations (size of the water bath necessary to simulate the
complete unfolding of a spectrin repeat, necessary CPU time) the approximation
may well be an advantage since a slow step in the unfolding (equilibration of water
around the unfolding protein) is not simulated. The generalized Born model has
been demonstrated to be a good approximation to explicit solvent simulations of
proteins; see, for example, Cornell et al. (2001).

In summary, despite of the difficulties in direct comparison between AFM
experiments and MD simulations, lower unfolding forces and the broad distribu-
tion of force peak positions could be seen in both. Moreover, MD simulations
suggested unfolding pathways and provided a way to experimentally test these

pathways. This is further discussed below.

2.3.2 Low unfolding forces

As already mentioned, the work on mechanical properties of proteins had so
far largely concentrated on the muscular protein titin (reviewed by Linke and
Granzier (1998)). In titin, Igl and FnlIll domains appear to unfold only at high
forces above the physiological range, as they may occur, for example, in over-
stretched muscle filaments (Linke and Granzier 1998). Although the matter is still
under debate (Minajeva et al. 2001), individual Ig-like domains seem to function

mostly as “emergency reserve” rather than as elastic elements. The molecular
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architecture of Igl and Fnlll domains reflects this function. A “seal” of several
hydrogen bonds (6 in the best studied case) between two anti-parallel B-sheets
protects the native fold from extension by force (Lu and Schulten 2000). Unfold-
ing requires the simultaneous rupture of these hydrogen bonds and is hence only
achieved by high forces.

By contrast, spectrin is built exclusively from a-helices arranged parallel to the
force axis. Backbone hydrogen bonds are hence connecting neighboring residues
only and can be disrupted one after the other. This step-wise unfolding (and in
some simulations also partial refolding) of the outer helices buffers the impact
of an external force on the spectrin fold. Peak forces of the simulations are as-
sociated with the complete or partial disruption or re-arrangement of the native
helix arrangement. The native fold is stabilized by 3 clusters of hydrophobic side
chains, each of which connects the 3 helices perpendicular to the force axis. Inter-
actions of this type are, compared to the hydrogen bond patch of Igl, weaker but
also more tolerant to re-arrangements. The peak forces of spectrin simulations are
thus lower than the forces from similar simulations on Ig-like domains (Marszalek
et al. 1999; Paci and Karplus 1999; Craig et al. 2001) — in line with the experi-
mental observations. However, forces vary with unfolding speed and simulation
conditions. For exact statements one would need to compare the unfolding of the
different domains with identical simulation setup. Paci and Karplus (2000) have
performed such simulations and showed that spectrin repeats unfold at forces be-
low Igl and FnlIl domains but above the restoring forces of an a-helical domain

without mechanical function.

2.3.3 The variation of unfolding lengths

Peaks or rather the sudden drop of force in AFM experiments mark the break-up of
a single domain (Carrion-Vazquez et al. 2000). In a chain consisting of identical
repeats, all of them should likewise be on the verge of breaking at the time of an
unfolding event. Hence, the distance between two force peaks in the experiment
corresponds to the gain of length due to unraveling of the folded content of a

pre-stretched domain (as pointed out by Lu and Schulten (1999)).
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Figure 2.7: Stability of wild type and mutant spectrin repeats. A) CD spectra of
spectrin repeats at room temperature: wild type (WT), double alanine (AA) and
the double cysteine mutants without (CC) and with 10 mM DTT (CC DTT). B)
Percentage of unfolded values during a temperature ramp monitored at 222 nm
for these repeats. The thermal denaturation was not reversible.

A common feature of all AFM experiments was the broad distribution of these
peak-to-peak distances. Such variation might be, in part, attributed to the low
force needed for a single unfolding event (50-80 pN) which required my collabo-
rators to work close to the sensitivity limit of the AFM instrument. A modification
of the spectrin repeat allowed them to test the actual sensitivity of the AFM exper-
iments: Jari Yldnne and Kristina Herbert replaced two amino acids of the native
domain by cysteine residues in order to connect helices A and C with an artificial
disulfide bond as shown in figure 2.2. Correct folding of this mutant was indicated
by circular dichroism (CD) experiments shown in figure 2.7A. AFM experiments
yielded forces similar to those measured during the unfolding of the wild type
spectrin repeat. However, as shown in figure 2.8 A, the unfolding length was now
typically around 14 nm, i.e. 18 nm shorter than the length gained from the com-
plete unfolding of a native repeat. The wild-type pattern of unfolding lengths
was re-established under reducing conditions (10 mM DTT) that disrupt disulfide
bonds (figure 2.8B).

How exactly should the designed disulfide bond affect the unfolding lengths
of the repeat? I derived a model for the double cysteine mutant from the water-
refined NMR structure and calculated five unfolding trajectories, each covering

0.75 ns. The connection of helix A and B limited unfolding to a maximal exten-
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Figure 2.8: Forced unfolding of spectrin repeats containing a non-native disulfide
bond. The distribution of elongation events is given for the unfolding of mutated
tetrameric constructs in oxidized c) and reduced form d) (n=96). The lines in c)
and d) each correspond to a fit by a normalized sum of two Gauss functions.

sion ryc of about 19.5 nm. Employing the same conditions as before, I observed a
linear force increase at extensions beyond 17 nm. The maximal extension, deter-
mined as described in section 2.2.2, was on average 18.1+0.1 nm ryc, i.e. 17.7 nm
shorter than in case of the wild-type repeat. The AFM experiments thus detected
the expected shortening of the cross-linked double cysteine mutant with remark-
able accuracy. This sub-nanometer precision indicated that the broad variation of

particular unfolding lengths did not stem from experimental error.

The force profiles from simulations on the wild-type repeat (figure 2.4) sug-
gest a rather different origin of the experimental variance. In simulations, ini-
tial force peaks were spread seemingly at random between elongations (from the
NMR structure) of 1.5 up to 11 nm. This implies a random pre-stretching of the
domain in AFM experiments. The precise unfolding length would be, in this sce-
nario, obscured by the undefined pre-stretching of both the unfolding domain and
of its replicas in the protein chain. However, what is the source of such remark-
able “fuzziness”? The 11 pulling simulations were started from different time
points of the same unperturbed deterministic simulation (without randomization
of velocities) and were subject to identical conditions in all other respects. Their
very different outcome in terms of pre-stretching and unfolding route is thus a

pure effect of variations within the protein’s native structure ensemble. This en-
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semble effect puts thermal fluctuations into the position of a random generator for

selecting the actual pre-stretching and force resistance of a particular domain.

2.3.4 Pathways and intermediates

The fluctuating topology of the simulated spectrin repeat depended mainly on the
status of three hinge regions: loop AB, loop BC and a potential kink in helix B,
and these three parameters provide a concise view on the trajectories (figure 2.4).
One non-native force-resistant topology partly occurred at extensions which were
still sustained by native-like folds in other simulations. It would hence further blur
the distribution of unfolding lengths but should not show up as distinct unfolding
event in AFM experiments.

However, other force-resistant topologies appeared at extensions that could
well explain the additional experimental peak (snapshot e and f ). Disruption
of these topologies would result in length gains of 15 nm or more. All these
force-resistant topologies (d, g, and e, f in figures 2.5 and 2.6 critically depended
on the additional hinge inside helix B. To test the role of B helix bending in the
unfolding pathways, my collaborators introduced two mutations that stabilized the
central region of this helix. Like many spectrin repeats, R16 contains a proline
and a glycine residue toward the middle of helix B. Yari Yldnne replaced this
proline 62 and glycine 66 each by an alanine residue which increased the helix
propensity at the putative hyphenation point. Indeed, the double alanine mutant
proved thermally more stable than the native spectrin repeat, as is evident from
the higher transition temperature during CD-monitored thermal unfolding shown
in figure 2.7B. Pierre-Francois Lenne and Stephan Altmann studied the unfolding
behavior of the mutant repeat with AFM.

The unfolding forces measured in the AFM were distributed broadly with a
maximum between 40-70 pN (data not shown) and were thus again similar to those
for the wild-type. However, significantly less curves displayed short peak-to-peak
distances. The majority of peak-to-peak distances corresponded to complete un-
folding events in the wild-type measurements (e.g. figure 2.3A). The resulting

histogram of peak-to-peak distances is given in figure 2.9. The distribution of
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Figure 2.9: Probability distribution of elongations after unfolding events of double
alanine spectrin constructs (n=120). The peak at 15 nm, present for the wild
type in figure 2.3C has almost completely diminished. A single Gauss fit gives a
maximum at 31 nm.

elongations peaks around 31 nm, similar to the second peak of the wild-type dis-
tribution in figure 2.3C. In contrast to the wild-type, the peak-to-peak distribution
did not contain a statistically significant peak at 15 nm.

This result was corroborated by simulations. I modeled the double alanine
mutant from the wild-type NMR structure and subjected it to 5 unfolding simula-
tions employing identical conditions as before. No assumptions were made as to
the influence of the mutations on the protein’s backbone conformation. Neverthe-
less, during equilibration helix B straightened, and unfolding started, on average,
with helix B angled at 134.5° (£3.8), compared to 122.4° (+4.9) in case of the
native repeat. The maximum force observed during unfolding was on average
483£22 pN and thus similar to the native spectrin repeat. However, the trajec-
tories exhibited fewer force peaks and, with one exception, all of them occurred
before disruption of the native fold. In terms of topology, all trajectories closely
followed either of the two main unfolding pathways which had already emerged
from the wild-type simulations. However, figure 2.10A reveals that the relative
importance of the two routes had reversed. In all but one trajectory loop BC was

disrupted first and unfolding proceeded via the topology depicted by snapshot j
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Figure 2.10: Unfolding pathways of mutated spectrin repeats. Hinge movements
are defined in figure 2.2. Restoring forces are color-coded onto the smoothed
angle traces as described in figure 2.5. Right: double alanine mutant, Left: double
cysteine mutant. The hinge movement of helix B is restricted in the double alanine
mutant and unfolding is steered away from the pathway that was most frequent in
simulations of the wild type repeat.

in figures 2.5 and 2.6. In one case, such a topology caused high restoring forces
around 22 nm ryc, a possibility that I had not observed before. By contrast, wild-
type simulations had shown two other regions of non-native topology with high
resistance against unfolding. Only one trajectory of the double alanine mutant
followed the formerly most important route and visited these topologies, which,
however, unraveled without pronounced resistance. In summary, the two muta-
tions in helix B appeared to disfavor structures that depended on the proposed
hinge. Consequently, they steered unfolding away from the topologies that had
produced all long forced intermediates in the wild-type simulations.

The outcome of experiments and simulations on the double alanine mutated
spectrin repeat thus supports the proposed unfolding pathways with hinge-bending
of helix B. Nevertheless, one can not yet exclude alternative roles of the replaced
proline in a particular intermediate. However, a more general perturbation of
the wild type would not explain our results since the mutations actually stabi-

lized the native structure thermodynamically and did not alter the observed rup-



42 CHAPTER 2. FORCED UNFOLDING OF SPECTRIN REPEATS

ture forces. Forced intermediates around an average extension of 15 nm are, in
summary, supported by several observations: (1) AFM measurements of wild-
type repeats featured a second prominent unfolding event around 15.5 nm gain
of length. (2) Force resistant structures of appropriate length formed in MD sim-
ulations, thanks to a hyphenation point in the center of the molecule. (3) Two
point mutations eliminated the short unfolding event by stiffening this hyphen-
ation point. (4) More than four peaks were observed in some force curves, but
within the expected maximum stretched length (compare figure 2.3B), and “half”
unfolding events occurred mainly in earlier extension states at, on average, lower
forces (Lenne et al. 2000).

2.4 Comparison with previous studies

Regular peak spacing and nearly constant rupture forces (200 pN at 1 m ms~ ')
found in many studies on Ig-like domains from titin and fibronectin have estab-
lished a standard for the type of results commonly expected from such experi-
ments (Rief et al. 1997; Oberhauser et al. 1998; Carrion-Vazquez et al. 1999).
In these studies, force curves were fitted to the worm-like chain model (Rief et al.
1997; Rief et al. 1998), implying a singular well defined rupture that transforms
the native fold at once into a completely disordered protein chain held together
by purely entropic effects. MD studies provided consistent mechanisms that con-
vincingly supported such a defined all-or-none unfolding of domain 127 from titin
(Marszalek et al. 1999). Similar predictions were initially made for FnlIl do-
mains although initial pre-stretching by 1-2 nm has now been suggested from
more recent simulations (Craig et al. 2001) and two-step unfolding was observed
in another simulation study (Paci and Karplus 1999).

Our experimental and theoretical results show that spectrin repeats react to
an external force very differently than the Ig-like domains: (1) spectrin repeats
can be stretched to varying extensions before the rupture of the triple-helical fold
and (2) several unfolding pathways exist and some of them may lead to force-

resistant non-native intermediate folds. For both reasons, the worm-like chain
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model and, especially, the filtering of AFM results for regular peak spacing was
not appropriate to describe the unfolding behavior. Experimental artifacts such
as pickup of multiple molecules or surface interactions could be ruled out due to

special experimental procedures described earlier (Lenne et al. 2000).

Two experimental as well as two computational studies previously examined
forced unfolding of spectrin repeats, and on both sides there remained disagree-
ment about whether two-step unfolding (i.e. forced intermediates) can occur or
not. Rief et al. (1999) were the first to study unfolding of spectrin repeats with
AFM. They used a hexameric construct of non-identical repeats and analyzed
their data with the worm-like chain model. Concerned about pickup of multiple
molecules, they only considered force curves with evenly spaced peaks. Conse-
quently, they concluded that the repeat has a wider unfolding barrier than Ig-like
domains but, nevertheless, unravels in a single step. By contrast, Lenne et al.
(2000) studied the described tetrameric construct of identical repeats and used
different criteria to filter out multiple pickups. They found both complete and half
unfolding events and also reproduced this bi-modal distribution with Rief et al.’s

hexameric construct.

On the theoretical side, Paci and Karplus (2000) subjected the spectrin repeat
to MD unfolding simulations. Compared to our work, they used a different force
field model, a rather different formulation of the pulling restraint, a faster un-
folding regime, and a more approximate model of solvation. Nevertheless, their
simulations seem to resemble our results in that they lack a singular well-defined
force peak. The published average force profile also indicates high initial restoring
forces distributed between 5 and ca. 15 nm ryc. They suggested an intermedi-
ate to sometimes occur before this destruction of the original helix arrangement.
Although I could not reproduce their suggested B-hairpin structure, I did observe
similar force resistant structures at the described length. Snapshot ¢ in figure 2.6
shows such a state that caused a near-maximum force peak at 13.5 nm ryc. Paci
and Karplus did not report later intermediates which, however, are necessary to

explain the observation of peaks separated by about 15 nm.

Klimov and Thirumalai (2000) obtained predictions from a much more simpli-
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fied computational model. They compared the native interactions between com-
plete secondary structure blocks (in this case helices A, B and C) which they
assumed to each unfold in all-or-none fashion. According to this model a spectrin
repeat would unravel starting with helix A, without exhibiting any intermediates.
They assumed that it is mainly the native topology that defines a protein’s reaction
to external force — a picture supported by previous simulations of forced (Lu and
Schulten 1999; Paci and Karplus 2000) and thermal (Gsponer and Caflisch 2001)
unfolding. Their pathways predicted for the unfolding of two Ig-like domains
agree with MD simulations done on those systems. For spectrin, however, their
predictions contradict our experiments and simulations. As a model is often most
interesting when it fails, this one illustrates key findings of our collaborative ef-
fort: In case of spectrin, helix B can not be considered as a single structural block

and forced intermediates can, in fact, arise from non-native topologies.

2.5 Conclusion

Spectrin is a mechanical protein. It has to withstand large deformations and re-
sponds elastically to external forces. Previous studies have shown that spectrin’s
structure is geared toward this function in many aspects. The topology of its
global two-dimensional mesh work (Lee and Discher 2001), variable supercoil-
ing of a and B subunits within the long tetramer (McGough 1999), and interac-
tions between neighboring domains (Grum et al. 1999; MacDonald and Pozharski
2001) are apparently all contributing to elasticity. However, isolated spectrin do-
mains react to external force in a manner that does not resemble the well defined
and regular response commonly expected from “mechanical” protein domains.
Hence, some authors (dis-)regarded the single repeat as “force compliant” (Paci
and Karplus 2000; Carrion-Vazquez et al. 2000). By contrast, I suggest that this
kind of behavior is yet another adaptation toward elasticity. Under mechanical
stress the repeat choses between a variety of unfolding pathways. Each confers
a different tolerance to forced elongation and some pathways proceed through

non-native globular folds that may block unfolding even in the middle of com-
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plete extension. This programmed fuzziness leads to an unusually large variation
of unfolding lengths in AFM experiments and it multiplies with each additional
spectrin repeat hooked to a chain of its Doppelgdngers. It is certainly no coin-
cidence that the domain mostly occurs in tandem with several replicas. A chain
of many repeats should show nearly constant (if moderate) resistance to further
unfolding at virtually any point along a very wide range of extension. Non-native
intermediate states would increase the fuzziness gained per repeat and multiply
the “working range” of this molecular spring, that is defer its “over stretching”.
In my simulations such intermediate states arose from a hyphenation point in
the central helix of the domain. Spectrin repeats often feature proline and glycine
residues at this or neighboring positions and the helix is kinked in six out of seven
known structures. The specific stiffening of this proposed hyphenation point did
indeed abolish partial unfolding in AFM experiments. Moreover, forces measured
by my collaborators are in the physiological range observed on erythrocyte ghosts
(Sleep et al. 1999) and recent experiments on intact spectrin networks of erythro-
cytes tentatively suggested unfolding of single repeats (Lee and Discher 2001).
Our combined data from single molecule experiments and MD simulations pro-
vide an intriguing glimpse on a molecule that may be optimized for elasticity on
all scales of its architecture: from the structure of its cell-spanning network down
to predetermined hyphenation points in its individual domains. At the level of the
single spectrin repeat, elasticity appears to arise from a programmed diversity of
unfolding pathways. Spectrin seems to translate thermal fluctuations of atomic
structure into a smooth response to external force. The molecular dynamics of

this protein is thus the link between structure and function.

2.6 Methods

2.6.1 Experimental methods

A detailed description of my collaborators’ experiments is given in our joint pub-

lication (Altmann et al. 2002). The experiments were performed with repeat 16
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from Gallus gallus non-erythroid o-spectrin (Wasenius et al. 1989), accession
number PO7751. I use amino acid residue numbering 1-116 for the chicken alpha

spectrin residues 1762-1877, respectively.

2.6.2 Molecular dynamics simulations

Simulations were performed with the Amber 6.0 program package using the mod-
ified all-atom force field parm96 (Cornell et al. 1995; Kollman et al. 1997). Bond
lengths involving hydrogen atoms were fixed with the SHAKE algorithm allowing
for an integration time step of 2 fs. A cutoff of 15 A was applied to non-bonded
interactions. The temperature was controlled with the Berendsen coupling algo-
rithm using a “coupling constant” of 5 ps. Effects of solvation were emulated with
the generalized Born model and a tension term proportional to the molecule’s sur-
face area, both implemented in Amber 6.

The simulations were based on the solution structure of the 16" repeat of
chicken non-erythroid a-spectrin (Pascual et al. 1997) which had been subjected
to an additional refinement in explicit water. The molecule was minimized and
heated to 300 K with a linear temperature increase over 30 ps while atomic veloc-
ities were re-assigned from a Maxwell distribution every 2.5 ps. An equilibration
for 250 ps was followed by the 1 ns production MD which yielded 11 restart files
spaced 100 ps apart. Unfolding was initiated from these restart files by imposing a
harmonic distance restraint (force constant 5.9616 kcal (mol A)*l) on the system
which forced N and C termini apart at a constant velocity of 0.2 A ps~!. This ap-
proach was chosen for its ease of implementation and because the molecule can be
assumed to align to an external force vector prior to any recorded unfolding events
(Lu and Schulten 2000). Mutations were introduced into the water-refined struc-
ture without changes to the backbone geometry. In case of the double cysteine
mutant, WhatIf (Vriend 1990) was used to suggest rotamers for the introduced
cysteine side chains. The altered structures were subjected to the same protocol
as the wild type but equilibration was extended to 500 ps before the generation of
the first starting configuration for unfolding.

Trajectories were inspected with VMD (Humphrey et al. 1996). Angles and
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distances were extracted with ptraj (included in the Amber package) and visu-
alized in MatLab (The MathWorks, Inc.). Structure figures were prepared with
Molscript (Kraulis 1991) using secondary structure assignments from Rasmol
(Sayle and Milner-White 1995).
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Chapter 3

The dynamics of protein-protein

binding

3.1 Introduction

3.1.1 Networks of interacting proteins

Proteins hardly ever work alone. Over the last years, novel proteomic and genetic
experiments (reviewed by Drewes and Bouwmeester (2003)) and sequence-based
prediction methods (Valencia and Pazos 2002) have identified or suggested an
increasing wealth of protein interactions. From the current data, it is estimated that
there are in the order of 20.000 connections among the about 6300 yeast proteins
(Bader and Hogue 2002). On average, each protein thus seems to team up with 6
partners. The situation becomes likely even more complex in the human proteome
with 30.000 genes and a higher prevalence of alternative splicing (Figeys 2003).
Yet, even for yeast, the available interaction maps are still far from complete and
contain sizable rates of false positives (Bader and Hogue 2002). Furthermore, the
data usually don’t tell anything about the spatial arrangement of the two proteins,
not even whether they are indeed in direct contact or only belong to the same

macromolecular assembly.

On the other hand, protein complexes are difficult targets both for X-ray crys-

49
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tallography and NMR experiments. Systematic structure determination efforts
mostly concentrate on single proteins or domains (Zhang and Kim 2003). We
are thus quickly accumulating data about large interaction networks and are also
increasingly able to assign atomic structures to many of their components. Yet,
unfortunately, we usually cannot piece the puzzle together — the structure of pro-
tein assemblies remains elusive. Even though selected protein complexes and
their structures have been studied since decades, it seems, we haven’t sufficiently
understood the process of protein-protein binding.

Static properties of protein complexes, such as size (Lo Conte et al. 1999),
amino acid composition (Jones et al. 2000) and shape of interfaces (Jones and
Thornton 1997) have already been scrutinized in quite detail. However, little is
known about the interplay between protein-protein binding and dynamics, except
the fact that structures differ between free and bound state (Betts and Sternberg
1999; Lo Conte et al. 1999). Ironically, it was experiments on binding (of small
ligands to selected proteins) that first established an effect of structure dynamics
on protein function in general (Kirschner et al. 1966; Austin et al. 1975; Lancet
and Pecht 1976). Thus, the proper treatment of molecular dynamics may well be

the missing link in our description of the binding process.

3.1.2 Current models of protein recognition

Our current understanding of protein recognition is caught in a contradiction: On
the one hand experimental rates of association suggest that, in many cases, almost
every collision between two partner proteins leads to the formation of a complex
(Northrup and Erickson 1992). On the other hand, even if we know the atomic
structure of both proteins, we often fail to predict the structure of the complex
because the free partners simply do not fit sufficiently well. Over the last two
decades the computational solution of this protein-protein docking problem has
been an area of intense research (reviewed by Halperin et al. (2002)). Advances
in docking methods often went hand in hand with new insights into the binding
mechanism.

Structures of protein complexes reveal intricate shape complementarity be-
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Figure 3.1: How can two proteins recognize each other if they don’t fit in first
place? The extent of protein flexibility is illustrated by two structure ensembles
obtained from (PCR-MD) simulations of the enzyme glycosyltransferase (left)
and its small inhibitor tendamistat (front right). The native arrangement of the
enzyme (purple) and inhibitor (golden) in their complex hovers as a solid sur-
face model in the background and is surrounded by several alternative but wrong
orientations of the ligand.
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tween the binding partners, which seemingly confirms Emil Fischer’s (1894) key-
lock model of biomolecular interaction. However, the free (unbound) receptor and
ligand structures are often much less complementary and show significant devia-
tions from their bound conformation (Betts and Sternberg 1999; Lo Conte et al.
1999). Consequently, early rigid-body docking algorithms could re-dock known
complexes but were unable to predict them from the free components (Kuntz et al.
1982; Goodford 1985). The key-lock model may hold for the final protein com-

plex but it cannot explain the process of recognition between the free molecules.

Daniel Koshland’s (1958) induced fit model acknowledges a certain plasticity
of proteins and postulates a mutual adaptation of the two structures. It offers a
valid description of recognition if we assume that this process is driven by forces
that do not require good shape complementarity to start with. However, protein-
protein recognition seems to be controlled, to a large extent, by short range elec-
trostatics (Frisch et al. 2001), desolvation entropy (Camacho et al. 2000), and
van der Waals interactions (Gray et al. 2003), which all depend to various de-
grees on shape complementarity. Induced fit may be appropriate for describing
the transformation of receptor and ligand after recognition has occurred, but it

cannot explain the process of recognition itself (Bosshard 2001).

A third model, conformational selection, is inspired by the MWC mechanism
of allosteric regulation (Monod et al. 1965) and is more compatible with short
range interaction forces. Experimental protein structures are only the average of
many conformational states (Frauenfelder et al. 1991). The model postulates
"recognition" conformers that are hidden in the two structure ensembles and se-
lect each other upon binding. Early on, experiments corroborated the MWC model
(Kirschner et al. 1966). Later experiments on antibodies showed that, in several
cases, binding of an antigen was influenced by an equilibrium of different anti-
body conformations (e.g. Lancet and Pecht (1976),Foote and Milstein (1994)).
Experimental evidence was also provided for the inverse case — the selection of
antigen conformers by antibodies (Leder et al. 1995; Berger et al. 1999). Ku-
mar et al. (2000) then suggested conformational selection as a mechanism for

protein-protein interaction in general. They explicitly postulated that bound con-
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formations of receptor and ligand are part of their free structure ensembles and
that recognition occurs between the two bound conformers. Thus, recognition
and (apparent) structural adaptation could be explained simultaneously. Evidence
for a preexisting equilibrium between free and bound conformations is hard to
come by. Recent experimental structures are interpreted in this direction (Goh
et al. 2004). However, at closer examination they confirm the existence of distinct
conformations in free and bound structure ensembles but only very few suggest
overlaps between the two. Since it usually leaves no traces in free crystallographic

or NMR structures, the bound conformation, if it is present, must be a rare state.

3.1.3 The Kkinetics of interaction

The elegance of the preexisting equilibrium hypothesis stems from its combina-
tion of the modern ensemble view of protein structure with a simple key-lock
mechanism for recognition. However, the model is challenged by the usually very
fast pace of protein-protein recognition, which does not leave room for many un-
successful collisions (Northrup and Erickson 1992). Recognition conformations
must be frequent enough to occur simultaneously for both receptor and ligand
within the short time window during which they are properly aligned in the course
of a single random collision. Northrup and Erickson describe a protein encounter
as a series of micro collisions at different orientations. Estimates for the length of
a (possibly correctly) aligned micro collision range from 400 ps as lower bound
to 10 ns as upper bound (Northrup and Erickson 1992; Janin 1997). The preex-
isting equilibrium hypothesis thus implies a certain minimum frequency of bound
conformations. After all, this conformation has to occur simultaneously in both
the receptor and ligand ensemble during the short time of random encounter. A
rough calculation highlights this problem:

The recognition probability R of a correctly aligned micro collision should
depend on the average frequencies (fr) of recognition conformations in the two

free ensembles. The probability of recognition failure can be estimated as:

|—R= (1—<fr)2)N, G.1)
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where N is the number of distinct conformations sampled in the course of the
correct alignment. The frequency of recognition conformations which is needed

for a certain recognition rate is then

(fr) = \/l—expw. (3.2)

N depends on the lifetime T of the alignment and on our definition of distinct
conformations. The short recognition time will only allow for fairly limited sam-
pling in the flat energy landscape of protein structures. For the sake of simplicity,
I assume that N depends linearly on the recognition time T and that the "recogniz-
ability" of a given protein structure changes every 1 ps (N = 1/ps). According to
this rough estimate, bound conformations must represent 4% of both free ensem-
bles in order to achieve a 50% recognition success within a 400 ps time window.
Even a fairly unrealistic recognition time of 10 ns still requires a frequency close
to 1%.

A valid model of protein-protein association needs to explain not only the ob-
vious difference between free and bound protein structures, but must also be com-
patible with kinetic data. So far, the two problems are usually addressed in iso-
lation. The detailed theoretical studies on the kinetic mechanism of binding have
focused on the diffusion of proteins that are rigidly locked into their bound con-
formation (Northrup and Erickson 1992; Janin 1997; Camacho et al. 1999; Selzer
and Schreiber 2001; Zhou 2001). These models can reproduce the kinetics of
diffusion-controlled protein-protein associations with some success (Gabdoulline
and Wade 2002) but regard structural transitions only as a passive induced fit after

recognition has occurred.

Likewise, protein-protein docking algorithms rely on rigid body, rigid seg-
ment (Schneidman-Duhovny et al. 2003) or rigid backbone simplifications and
regularly fail in the face of backbone motions (Gray et al. 2003). The effective
treatment of overall protein flexibility is now the largest obstacle both to our un-

derstanding and to the reliable prediction of protein-protein association.
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3.1.4 The thermodynamics of interaction

Fixing one binding partner to the other evidently comes with a significant cost of
(translational and rotational) entropy. For two proteins, this entropy loss should
amount to about 100 calmol ~'K~! (Janin 1995). From the analysis of crystalline
proteins, Finkelstein and Janin (1989) estimated that it is in part compensated by
residual motions of the two partners within the complex. Such motions should
contribute in the order of 50 calmol 'K ~! and improve the overall entropy bal-
ance from -100 to about -50 calmol 'K~!. However, this still corresponds to a
free energy difference of 15 kcalmol ™! in favor of dissociation.

Intuitively, binding is usually assumed to also restrict the flexibility of both
proteins and, as a consequence, to claim an additional cost of conformational
entropy. Both the idea of induced fit and the preexisting equilibrium model imply
that the complex has less conformational freedom than the unbound components.
However, the extent of this entropy loss, or whether it is a loss at all, remains
controversial.

Computational studies often estimate the conformational entropy loss from the
restriction of side chain rotameric states (e.g. Janin (1995)). By contrast, Tidor
and Karplus (1994) concluded from normal mode analysis that the dimerization
of insulin is actually promoted by an 23 calmol~'K~! increase of conformational
entropy. Subsequent calculations on different complexes using different methods
generally estimated an overall conformational entropy loss (Vifials et al. 2002;
Gohlke and Case 2004; Hsu et al. 2004) but gains were reported for one compo-
nent of a complex (Hsu et al. 2004).

Experimental studies arrived at mixed results. Thermodynamic experiments
such as microcalorimetry cannot separate changes of protein conformational en-
tropy from the entropic contributions of the solvent. However, NMR relaxation
studies are able to measure the fluctuations of selected backbone and side chain
atoms (see 1.2.2 on page 5). Several groups estimated changes of conformational
entropy from such (incomplete) data. A significant loss of conformational entropy
was derived for the interaction of specific peptides with calmodulin (Lee et al.
2000), troponin C (Mercier et al. 2001), and the c¢-Src SH3 domain (Wang et al.
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2001). However, the converse was found for other interactions. The binding of a
small ligand to mouse major urinary protein (Zidek et al. 1999), the association
between inhibitor TIMP-1 and the catalytic domain of stromelysin 1 (Arumugam
et al. 2003), as well as the recognition of an anchoring protein by the D/D domain
of cyclic-AMP dependent protein kinase (PKA) (Fayos et al. 2003), all appear to
proceed with a substantial gain of conformational entropy. Forman-Kay (1999)
summarized the data available at that time and concluded that upon binding mo-
tions can increase, decrease or stay the same. She suggested that increased motion
may in some cases deliver a critical supplement to the free energy of binding.
Protein motions clearly have considerable influence on the stability of protein
complexes. However, calculations and experiments find no overall trend even for
the sign of this contribution. The common assumption, that binding generally
restricts flexibility and occurs at the expense of conformational entropy, appears
not justified by current data. Yet, both calculations and experiments suffer from
some serious shortcomings. The NMR studies cited, with the exception of Lee
et al. (2000), based their estimates solely on the measurement of backbone amide
fluctuations. Computational approaches consider the whole protein but rely on
other critical simplifications. Normal mode calculations ignore any anharmonic
motions of the protein. The alternative analysis of molecular dynamics simula-
tions encounters convergence problems due to insufficient sampling (Gohlke and
Case 2004; Hsu et al. 2004). Furthermore, the available experimental and theoret-
ical studies focussed each on a single interaction. A consistent picture of how the

thermodynamics of binding is influenced by protein motions has yet to emerge.

3.1.5 Our approach

In this chapter I examine the interplay of overall protein flexibility and protein-
protein binding (figure 3.1). I selected a set of 17 protein complexes for which the
three-dimensional structures of both free components and the complex are avail-
able. For each of these 51 molecules I performed short (10 x 50 ps) molecular
dynamics simulations in explicit water. I find that uncomplexed binding interfaces

are more flexible than the remaining surface and that they loose conformational
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freedom upon complex formation. Nevertheless, in the majority of cases bind-
ing does not restrict the overall motion of the proteins. I calculated the change
in conformational entropy from longer simulations (10 x 1 ns) on the free and
bound state of 7 complexes. Two small complexes and an antibody-antigen sys-
tem exhibited a significant loss, whereas three larger complexes showed increased
or unchanged conformational entropy.

I then combined the molecular dynamics based sampling with systematic rigid
body docking. I applied shape-driven docking to all combinations of representa-
tive snapshots from the free structure ensembles of the 17 receptor and 16 ligand
proteins. I compared the success of this extended but still manageable search with
the simple docking of the experimental structures. Already very sparse structure
ensembles contained several combinations of receptor and ligand conformers that
generated more and better near-native solutions. Remarkably, the docking perfor-
mance of a given combination of receptor and ligand structure was largely uncor-
related with their similarity to the bound conformation. Based on these results, I
extend and combine the up to now conflicting models of protein-protein binding.
I suggest a 3-step mechanism of diffusion, free conformer selection and refolding
as working model for flexible recognition.

Most of this work results from a close collaboration with Johan Leckner, who
performed his postdoctoral research in our lab. For many parts, it is difficult to dis-
cern his from my contributions. Johan Leckner compiled the set of 17 complexes
and benchmarked various docking programs. In general, he was more responsible
for the docking aspects of this project, whereas I focused more on the molecular
dynamics simulations. The analysis of flexibilities was largely, the study of en-
tropies entirely my assignment. Together, we built up a library of programs that
became instrumental for the automation of calculations as well as their analysis
and visualization. Two other colleagues, Michael Habeck and Wolfgang Rieping,
contributed algorithms to this library. They also helped with mathematical prob-
lems, especially the statistical formulation of docking specificity (section 3.4.5).
Moreover, Michael Nilges provided protocols for X-Plor simulations and helped
with their implementation. Many of the following sections are kept in ”we” nar-

rative as they present collaborative work. In most cases, this "we” should be
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translated to “Johan Leckner and I”.

I divided this chapter into three parts. First, I examine the dynamics encoun-
tered before binding, that is to which extent the flexibility of free binding patches
differs from the remaining surface. Second, I focus on the situation after binding
has occurred; I compare the flexibility of free and bound state and, after resolving
some technical issues, estimate the entropic contribution to the stability of several
complexes. The last part examines the process of recognition itself. It is a rep-
etition of the joint publication with Johan Leckner (Griinberg et al. 2004). The
figures of this section were mostly prepared by Johan Leckner; The original text,

including the proposed model, was mostly written by myself.

3.2 The flexibility of free binding interfaces

3.2.1 Current notions of flexibility

Sundberg and Mariuzza (2000) concluded from a review of experimental studies,
that increased flexibility may have advantages, in particular, for proteins that need
to recognize different ligands at a single binding site. Halperin et al. (2002) ex-
tended this argument. They predicted higher flexibilities also for "normal” binding
sites, as a way to facilitate recognition and better adapt to mutations in the interac-
tion partners. Luque and Freire (2000) used unfolding simulations to analyze the
stability of 16 proteins with binding sites for small molecules. They found that
binding sites comprised regions of low next to regions of high structural stabil-
ity. Such a dual character with high and low flexibility was also suggested by Ma
et al. (2003) from the study of residue conservation. In contrast, Cole and War-
wicker (2002) examined the flexibility of side chains in protein-protein interfaces
(the rotamers available after separating the complex) and concluded that binding
patches were generally less flexible than the remaining surface. They expected
that a reduced flexibility would limit the entropic cost of binding.

Hence, free binding interfaces have been suggested to be more flexible, more

rigid or of dual character. All three variants can be motivated with certain models
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of recognition in mind. The cited predictions were based on the study of bound
structures (taken from the complex) with different approximate models. In the
following, we subject a set of 33 uncomplexed proteins to molecular dynamics
simulations in explicit water. All of these proteins are involved in transient in-
teractions, that is they exist independently, but we also know their structure in
a protein-protein complex. We can hence identify the free binding interface and

compare its dynamics to the remaining surface.

3.2.2 Structural data

We selected a set of 17 protein-protein complexes for which the structures of both
the free components and the complex are available. Table 3.1 gives a description
of these complexes. The set is based on docking benchmarks from Graham Smith
(http://www.bmm.icnet.uk/docking/systems.html) and Chen et al. (2003). From
these benchmarks, we excluded complexes with large non-protein ligands to fa-
cilitate the mostly automated modeling procedure. Only the free structures and
molecular dynamics ensembles derived from them were used for the analysis of
surface flexibility. The structure of receptor and ligand solved as a complex served

for the definition of the binding patch.

3.2.3 Conformational sampling

Rather than by a static structure, proteins are best described by an ensemble of in-
dividual conformations (Frauenfelder et al. 1991). This section examines protein
flexibility before the onset of binding and thus concentrates on conformational en-
sembles of free receptors and free ligands. Molecular dynamics (MD) simulations
offer a way to generate such ensembles (Frauenfelder and Leeson 1998). How-
ever, even long and computationally expensive simulations cannot insure com-
plete sampling. We performed simulations on 33 different proteins (receptors and
ligands; c06 and cO8 share one ligand) and later extended the analysis to the 17
bound ensembles (see section 3.3). The calculation of 50 ensembles requires a

compromise between computational cost, sampling coverage and accuracy.
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Table 3.1: Protein-protein complexes examinded in this study.

ID' Receptor / Ligand PDB codes, chain identifier Residues
rec lig com rec lig

c0l  Trypsin/ Amyloid B-protein IBRA  1AAP IBRC 223 56
precursor inhibitor domain A E:1

c02  a-chymotrypsinogen / 2CGA  1HPT 1CGI 245 56
Pancreatic secretory trypsin A E:l
inhibitor

c03 Kallikrein A / Pancreatic trypsin ~ 2PKA  5PTI 2KAI 232 58
inhibitor AB AB:I

c04 Kallikrein A / Pancreatic trypsin =~ 2PKA  5PTI 2KAI 232 58
inhibitor AB AB:I

c04  Subtilisin BPN / Subtilisin 1SUP 3SSI 2SIC 275 108
inhibitor E:1

c05 Tissue factor extracellular 1FGN 1BOY 1AHW 248 211
domain / Antibody Fab 5G9 LH AB:C

c06 Humanized anti-lysozyme Fv IBVL  3LTZ IBVK 224 129
/ Lysozyme AB AB:C

c08  Anti-lysozyme antibody 1DQQ 3LTZ 1DQJ 424 129
Hyhel-63 / Lysozyme AB AB:C

cll Barnase / Barstar 1A19 1A2P 1BSG 108 89

A A AE

c13  Ribonuclease inhibitor 2BNH  7RSA 1DFJ 456 124
/ Ribonuclease A E:l

cl4  Acetylcholinesterase IVXR  IFSC 1FSS 532 61
/ Fasciculin-II A A:B

cl5 HIVB-1 NEF/FYN tyrosin 1AVV 1SHF 1AVZ 99 59
kinase SH3 domain A B:C

cl6  Uracil-DNA glycosylase 1AKZ  1UGI IUGH 223 83
/ Inhibitor A E:1

cl7 RAS activating domain IWER 5P21 IWQ1 324 166
/ RAS R:G

cl9 Glycosyltransferase 1PIF 2AIT IBVM 495 74
/ Tendamistat 1 P:T

c20 CDK2 cyclin-dependant kinase 2 1HCL 1VIN 1FIN 294 252
/ Cyclin A A:B

c21 CDK2 cyclin-dependant kinase 2 1B39 1FPZ 1FQI 290 176
/ KAP A A A:B

c22  Heteromeric G-protein 1TBG 1TAG 1GOT 408 314
/ Transductin Gt-o AE A:BG

IComplex identifier used throughout the chapter (retained from www.bmm.icnet.uk/docking-

/systems.html)
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For each protein, we calculated 10 independent trajectories of 50 ps length
each, with the structure embedded in a 9 A layer of explicit water. The use of mul-
tiple short instead of a single long trajectory is expected to increase sampling by a
factor of 2 (Caves et al. 1998). Besides, protein-protein recognition is assumed to
occur in a short time window of about 400 ps (Northrup and Erickson 1992; Janin
1997). Our simulations should thus cover motions on the time scale relevant to
recognition. For simulations on spectrin (chapter 2), I had used an implicit solvent
model to reduce computational cost and to alleviate artifacts of the high unfolding
speed. However, for the study of protein recognition, we depended on a realistic
representation of surface dynamics. The incorporation of explicit water was there-
fore important and the Langevin regime constituted a good compromise between
expense and accuracy (Izaguirre et al. 2001). Several of the comparatively short
simulations were backed up by longer (10 x 1 ns) simulations using a different
force field and periodic boundary conditions. A description of these calculations

follows in section 3.3.1.

3.2.4 Definition of flexibility

Flexibility can be measured in several ways. In the following, I define flexibility
as the average distance between the snapshots of a conformation ensemble. The
snapshots were taken in regular intervals from the second half of mutually inde-
pendent simulations, that is I did not compare snapshots stemming from the same
trajectory (see 3.6.4 for details). The mean of the distribution of pairwise dis-
tances characterizes the diversity (flexibility) of a structure ensemble. The width
of the distribution (which I denote ”spread” of diversity) describes the range of
similarities and would indicate if the mean was distorted by distinct subpopula-
tions of closely related structures. The evaluation of pairwise distances eliminates
the need to choose an arbitrary reference structure for the whole ensemble. The
focus on snapshots from independent simulations diminishes the influence of the
sampling interval. Otherwise, the generally higher similarity of neighboring snap-
shots would create a subpopulation of small distances and distort mean as well as

width of the overall distribution.
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A serious drawback of root mean square (rms) distances is their dependency
on the size and shape of a structure. It would be misleading to simply compare
rms distances between snapshots of the binding patch with rms distances of snap-
shots from the whole surface. For this reason, I divided the protein surface into
random patches, each having the same number of atoms as the binding interface.
These random patches provide the appropriate reference flexibility along with an
estimate of its common variation across the non-binding surface of a given pro-

tein.

3.2.5 Surface flexibility

Free binding interfaces are more flexible than the remaining surface of the pro-
tein. Figure 3.2 compares the flexibility of binding interfaces with the mobility
of random surface patches from the same molecule. At least on the short time
scale simulated, the ensembles of binding patches are always more diverse (gray
bars) than the conformations of the average non-binding patch (solid line). In
most cases, the difference surpasses also the standard deviation of random patch
flexibilities (error bars) and is thus significant even for the single protein.

Studies of protein-protein recognition often pay special attention to the dy-
namics of amino acid side chains in the context of a rigid protein backbone (Na-
jmanovich et al. 2000; Kimura et al. 2001; Cole and Warwicker 2002; Rajamani
et al. 2004). However, the distinction between backbone and side chain dynam-
ics is dictated by technical constraints and lacks a physical basis. Side chain and
backbone torsions are correlated (Schrauber et al. 1993). Upon binding, side
chain and backbone atoms are equally involved in conformational changes (Betts
and Sternberg 1999; Lo Conte et al. 1999). Furthermore, also backbone confor-
mations display significant variations across independently determined structures
(Chothia and Lesk 1986) and deformations on this scale can already affect dock-
ing results (Ehrlich et al. 2005). From this point of view, such a thing as side
chain flexibility does, strictly speaking, not exist.

This view is confirmed by the analysis of surface flexibility. As shown in figure

3.3 the higher mobility of binding interfaces extends well to the protein backbone
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Figure 3.2: Free binding interfaces are more flexible than random surface patches.
Each complex is represented by a bar for receptor (left) and ligand (right), respec-
tively. The flexibility of binding patch snapshots (gray bars) is compared to the
average flexibility (average of average pairwise rmsd) of random surface patches
with the same number of atoms (solid line). Error bars describe the confidence of
this average flexibility (+ and - 1 std. dev.). Open bars quantify the spread (stan-
dard deviation) of pairwise distances; the associated broken line and error bars
indicate the spread averaged over the random patches.

(Cp atoms were included because their motion is tightly linked to backbone fluctu-
ations). Thus, the high flexibility cannot be attributed to a special diversity of side
chain conformations but constitutes a property of the whole interface. Residues of
particular functional importance quite definitely exist (Yao et al. 2003) and their
dynamics is worth studying. However, the artificial separation of side chain and
backbone motions is certainly not improving the description of protein-protein
recognition.

For 7 complexes and their components, I performed additional simulations of
10 x 1 ns length with a more elaborate treatment of solvation and electrostatics.
The flexibility of binding patches is significantly increased also in most of the
longer simulations. Some differences emerge in detail. In particular, the binding
patch of barstar (c11 ligand) turns out more rigid when compared to the remaining
surface. Interestingly, the other differences between the two simulation regimes
diminish, if I only consider shorter sections from the beginning of the long tra-
jectories (data not shown). The high mobility of the binding patch might be more
pronounced on the short time scale relevant to recognition than on longer time

scales (where it could impair the thermodynamic stability of the complex).
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Figure 3.3: The higher mobility of binding interfaces also holds for the protein
backbone. See figure 3.2 for a detailed description. In difference to figure 3.2,

pairwise distances were calculated only between C, N, O, Cq, and Cg atoms of
binding and random patches.
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Figure 3.4: Surface flexibilities on a longer time scale. The mobility of binding
interfaces and random surface patches is determined from the second half of more
elaborate simulations over 10 x 1 ns. The representation is the same as in figure

3.2. The trend of higher binding patch mobility is confirmed although differences
emerge in detail (see text).
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The spread (range) of diversity shows no distinctive features of binding inter-
faces. It mostly scales with the overall higher mobility. Spacious ’key side chains”
in interaction interfaces were suggested to preferably occupy very few mutually
distinct subconformations (Rajamani et al. 2004). The existence of pronounced
subpopulations in a structure ensemble should manifest itself as a combination
of low or average flexibility and large spread. In other words, the normally bell
shaped distribution of pairwise distances should become bimodal or otherwise
broadened. Such a trend is not evident. At least on the global scale examined
here, binding interfaces show no particular tendency to ”jump” between distinct
conformations.

A dual character of binding interfaces with more rigid and more flexible parts
existing side by side, is more difficult to determine and would require an in depth
analysis of sub-patches or residue-centered motions. The overall increased mobil-
ity of the whole binding region presumably complicates the detection of any such

trend.

3.3 Free and bound structure ensembles

3.3.1 Extended conformational sampling

For 21 molecules (7 complexes and their free components) the short simulations
described above were backed up by 10 x 1 ns simulations in a solvent box us-
ing periodic boundary conditions, particle mesh Ewald treatment of electrostatic
forces (Essmann et al. 1995) and a different force field (Cornell et al. 1995;
Kollman et al. 1997).

The overall diversity of the different structure ensembles correlated well be-
tween the two very different simulation setups, besides the fact that it was of
course generally higher in the longer simulations. In the previous section, I had
quantified diversity or flexibility by the average of pairwise distances between
the members of a structure ensemble. I had also introduced a measure for the

“spread” of similarity, which was simply the standard deviation of the pairwise
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distances. I compared the flexibility calculated from the last 10 x 30 ps of the
short simulations with the same value calculated from the last 10 x 500 ps of the
long trajectories. The correlation was best for the diversity and spread (R=0.95
and R=0.97, respectively) of the free ensembles, albeit after the removal of one
outlier (c17 receptor). The two simulation regimes agreed somewhat less on the
flexibility and spread of the 7 protein complexes. The flexibility correlated with
R=0.77, the spread of diversity with R=0.88, and the latter value again excludes
one outlier (c15 complex).

The short simulations did not adequately sample the slow residual intermolec-
ular motions of receptor and ligand in protein complexes (which will be discussed
in section 3.3.6) and did not sufficiently converge for the calculation of entropies.
Nevertheless, the structural flexibility correlated surprisingly well between the

two setups. The less elaborate simulations are thus sufficient for the study of this

property.

3.3.2 Flexibility before and after binding

The highly mobile binding interfaces loose their conformational freedom upon
formation of the protein complex. This is shown in figure 3.5, which presents the
average over the flexibilities of all 33 proteins. Outside the contact region, sur-
face atoms often experienced moderate gains of mobility (this is not an artifact
of superpositioning, also the conformations of the complex were fitted separately
for receptor and ligand). Surprisingly, the overall flexibility of a protein could
both rise or fall; There was no general trend in either direction. The common as-
sumption that binding restricts the flexibility of proteins, seems, in this generality,
to be wrong. This absence of a trend would confirm the picture emerging from
experimental studies (Forman-Kay 1999).

However, our set of 17 protein complexes is probably not representative. In
fact, it appears difficult to define any “representative” set of complexes. A sub-
set of the 17 protein complexes, showed the same overall (absence of a) trend
in the longer, more elaborate simulations (figure 3.6). The 7 protein complexes

were not selected to mirror the flexibility of the whole set. They thus are a non-
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Figure 3.5: The flexibility of 33 proteins before and after binding. The values are
averaged over all 33 proteins (receptors and ligands of 17 complexes). Binding
surfaces generally loose, the non-contact surface often gains flexibility. The flexi-
bility of the overall protein appears, on average, unaffected by binding. Note, that
flexibilities cannot be compared between the different protein parts, because the
rmsd measure also depends on size and shape of the selected region.

representative subset of a non-representative selection.

In general, the formation of transient protein-protein complexes severely re-
stricts the flexibility of the binding interface. However, other parts of the protein
appear often to compensate for this loss of mobility. This could, in fact, should
have consequences for the entropy cost or gain of binding. How does protein flex-
ibility influence the stability of the complex? Unfortunately, out of the different
components of free energy, conformational entropy is currently the most difficult
one to calculate (Gohlke and Case 2004). The following three sections address
some of the technical problems involved. Sections 3.3.6 and 3.3.7 then extract
estimates from the simulation data. As it turns out, conformational entropy has a

considerable impact on the thermodynamics of protein-protein binding.
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Figure 3.6: The flexibility of 14 proteins, simulated on a longer time scale, before
and after binding. The set of 14 proteins is not representative for the set of 33
proteins in figure 3.5.

3.3.3 Quasiharmonic analysis and conformational entropy

The conformational entropy of proteins is commonly estimated from normal mode
calculations on single structures in gas phase. The quasiharmonic analysis of
molecular dynamics simulations offers a promising alternative, as it incorporates
effects of anharmonic motion and solvation (Teeter and Case 1990). The method
was briefly introduced in section 1.3.5 on page 15. So far, two simulation stud-
ies have attempted to apply quasiharmonic procedures to the analysis of protein-

protein interaction. Both groups effectively discarded the approach.

Hsu et al. (2004) examined the binding of HIV-1 protein gp120 to its recep-
tor CD4. They performed three 10 ns simulation and used an heuristic formula
(Schlitter 1993) to estimate conformational entropies. However, they did not cal-
culate the entropy of the complex but only compared the diversity of the individ-
ual components in free and bound state. Entropies did not converge over the 10 ns
simulation. Therefore, they derived entropy differences from the heuristic con-

catenation of free and bound trajectory segments (along the time axis). By adding
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up the individual change of gp120 and CD4, they arrived at an overall change of
conformational entropy that agreed with an experimental measurement. However,
as they note, the experimental value contains the contribution from desolvation,
which was not at all considered in the calculation. This contribution should be
large and the agreement is thus rather curious.

Gohlke and Case (2004) studied the interaction between H-Ras and the Ras-
binding domain of C-Rafl by three 12 ns simulations. They employed the more
strictly “quasiharmonic” approach, which is based on the quantum mechanical
analysis of the inverse covariance matrix (Case 1994). Other than Hsu et al.,
they directly subtracted the absolute entropies of the two free proteins from the
absolute entropy of the complexed system. They compared this method to nor-
mal mode calculations and noted that (1) absolute entropies did not converge over
the time of the simulation, (2) their values were sensitive to the scheme used for
the superpositioning of snapshots, and (3) the calculated overall loss of confor-
mational entropy exceeded the harmonic estimate by 780 calmol 'K~! (a free
energy difference of 234 kcalmol~!) and was clearly unreasonable. Gohlke and
Case diagnosed insufficient sampling and questioned the general applicability of

the quasiharmonic approach.

3.3.4 The caveat of quasiharmonic analysis

As it turns out, the problem of Gohlke and Case is more related to the method than
to the length of sampling. Using the same protocol, I derived absolute entropies
Srecs Stig and S¢op from the 10 x 1 ns ensembles of 7 free receptors, ligands and
their complexes. Subtracting free from bound state should yield the change of

conformational entropy induced by binding, that is
ASconf = Scom — (Srec +Slig) .

However, as in the example described by Gohlke and Case, the difference turned
out far too negative for all 7 protein complexes (data not shown). Thus the method

either systematically overestimates the entropy of the two free proteins or it sys-
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Figure 3.7: Spurious correlations between independent simulations. The trajec-
tory of a free receptor is artificially combined with the trajectory of a free ligand.
The correlation matrix of this large system of two independent molecules shows
the expected intramolecular correlations in the lower left and upper right quad-
rant but also reveals unphysical correlations between the independent simulations
(upper left quadrant). For comparison, the lower left quadrant shows real cross-
correlations of the two molecules in the simulation of the protein complex. Data
are taken from the last 500 ps of 3 single 1 ns simulations of c15. For space
reasons, the plot only considers the x-coordinates of every 4" atom.

tematically underestimates the entropy of the complex. The systematic nature of
the error escaped the notice of Gohlke and Case, who examined a single protein
complex.

There was only one difference between the calculations on free and complexed
state that consistently applied to all 7 cases: The entropy calculated from one large
system (the complex) was always compared to the value derived from two smaller
systems (receptor and ligand). In order to eliminate this factor, I combined the
two independent trajectories of free receptor and free ligand side by side into the
single trajectory of an artificial complex. The artificial construct represented the

free state but was the exact counterpart of the bound trajectory, both in terms of
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length (10 x 1 ns) and number of atoms (size of receptor plus ligand). In theory,
the conformational entropy Sscom, determined from the covariance matrix of this
fake complex must be exactly equal to the sum S, + ;¢ of the independently cal-
culated values. After all, there was never any exchange of information between
the receptor and ligand ensemble, which were simply put next to each other. Nev-
ertheless, in practice, S rcom always turns out much lower, S com < Syec +Siig- The
reason for this puzzling result are spurious correlations between the independent

simulations of receptor and ligand that, in principle, defy physical laws.

Figure 3.7 shows the normalized covariance matrix of two artificially com-
bined trajectories. The lower left quadrant is identical to the covariance matrix
obtained from the simulation of the free receptor. The atoms of this molecule ex-
hibit correlated (yellow to red) as well as anti-correlated (blue) fluctuations. Both
kinds of correlations reduce the entropy S,... The same holds for the covariance
matrix of the free ligand simulation, which ends up in the upper right quadrant of
the combined matrix. Surprisingly, the matrix also reveals (impossible) correla-
tions between the independent molecules (upper left quadrant). These correlations
lower the value of Syc.,. Their position in the matrix varies if different starting
points or trajectories are chosen. Therefore they average out to some extent, but
not completely, if the covariance matrix is constructed from 10 trajectories instead
of 1. They are also lowered by longer simulation times, albeit to a lesser degree.
Interestingly, the unphysical correlations disappear completely if I shuffle the time

order of one molecule in the fake complex, that means S fcom_shuff = Srec + Siig-

Spurious correlations are probably an artifact of characteristic oscillations that
are common to any protein. Vibrations of peptide planes, amide groups, or helix
segments, to name only a few, are frequent throughout every deterministic simu-
lation. In order to give a correlation, two coordinates have to move (1) at the same
frequency and (2) in phase. Criterion (2) should prevent correlations across inde-
pendent simulations. Yet, if some frequencies are indeed highly common, atoms
moving at this pace in one simulation will often find atoms in another simulation
(even of a different protein) that not only move at the same frequency but, by

chance, also in phase. Surprising is the extent of such random correlations and
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their persistence even in nanosecond simulations.

The entropy calculations described further below were based on a covariance
matrix constructed from the last 300 ps of 10 independent 1 ns simulations. In this
setup, spurious correlations lower S s¢,, by several 100 cal mol~'K~!, about 4%
to 5% of the absolute value. Unfortunately, several 100 calmol ~'K~! will always
make a huge difference to the calculation of relative entropies between free and

bound state.

3.3.5 Calculation of conformational entropies

The systematic underestimate of conformational binding entropies AS,, s is caused
by spurious fluctuations between receptor and ligand in the complex (bound) tra-
jectory, which are not considered if Sy and §j;, are calculated independently for
the free state. The problem is solved by calculating also the free entropies of
receptor and ligand in a fake complex, that is ASco,r = Scom — Sfcom- The strat-
egy implies that the amount of spurious correlations remains the same for free
and bound trajectories. Fortunately, this assumption can be tested. Any correla-
tions that occur between the separately fitted receptor and ligand from two inde-
pendent bound trajectories are nonphysical. The entropy Sc,m_gnif: Of this fake
complex (with receptor and ligand split along the interface and shifted by 1 ns)
can be compared to the value Sy + Sy, calculated separately for the bound
receptor and ligand ensemble. Sy, + Spjig cannot contain any spurious correla-
tions between receptor and ligand. Spurious correlations thus perturb the bound
state by S;‘;erious = Scom_shift — (Sbrec + Spiig). As described above, the spurious
correlations in the fake complex of the free state can be directly quantified as
S{;L(jf;ous = Sfcom — (Srec + Slig)-

Indeed, the amount of spurious correlations in free and bound state is very
similar for all protein complexes. For control, the difference ASs, ious 1S given
along with the 7 entropy estimates in table 3.3. In summary, it appears justified
to compare the entropy of a fake complex, assembled from the two free simula-

tions, with the entropy of the real complex. I thus estimate the overall change of
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conformational entropy as

ASconf = Scom — Sfcom .

There remains the problem of convergence. 10 x 1 ns simulations presumably
provide better sampling of conformational space than the single 10 or 12 ns sim-
ulations used previously. Nevertheless, more or longer simulations could always
turn up an additional region in conformational space that severely influences the
entropy of the system. Several of the 10 x 1 ns simulation sets contained singular
1 ns trajectories that (judged by the rmsd to the start or end structure) kept di-
verging, whereas the remaining 9 trajectories appeared equilibrated over the last
500 ps. I excluded such “outlier” trajectories with an automatic procedure. In line
with previous observations (Gohlke and Case 2004; Hsu et al. 2004), the absolute
entropy of free or bound state did not converge. It generally increased with the
adding of further simulation data — be it additional frames of a constant time seg-
ment (inset figure 3.8) or frames that covered a longer time (inset figure 3.9). By
contrast, the entropy difference between bound and free state showed sufficient
convergence. This concerns the density of sampling, shown in figure 3.8, as well
as the necessary time coverage, shown in figure 3.9. Nevertheless, I should cau-
tion that the convergence backward in time could under some circumstances be
more easily achieved than convergence with time.

For each complex, I selected a time segment and sampling interval, that in-
sured a converged difference between bound and free entropy. For most com-
plexes I settled on 10 x 300 ps coverage (taken from the simulation end) and 0.2 ps
sampling interval. The largest complex, c20, was only sampled every 0.3 ps. The
entropy calculated for complex c17 did not converge, the value given below was
obtained from the last 10 x 500 ps with 0.3 ps sampling interval.

The quantification of spurious correlations already required the calculation of
5 additional entropies (Syec, Siigs Shrec> Shlig» Scom_shifr) that were not needed for
determining the overall change of conformational entropy. One more calculation
provides further valuable information. The separate superpositioning of recep-

tor and ligand in the complex trajectory (giving S¢om_spiir) destroys the residual
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Figure 3.8: Dependency of conformational binding entropies on the sampling in-
terval. Differences of bound and free conformational entropy were calculated for
the last 10 x 200 ps (c17: 300 ps, c20: 100 ps) of simulations covering 10 x 1 ns
but using different offsets between the snapshots (from 0.1 to 1 ps).
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Figure 3.9: Convergence of binding entropies with simulation time. Absolute
entropies of free or bound state do not converge (inset). However, the difference
of entropies converges reasonably well for most protein complexes. Values were
calculated as described for different time segments from the end of 10 x 1 ns
simulations of free and bound state. For example, 100 ps translates to 10 segments
covering the range 0.9-1 ns, 200 ps corresponds to 10 x 0.8-1 ns, and so on.
Snapshots were taken every 0.2 or (c06, c17, c20) 0.3 ps.
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Table 3.2: Protocols used for entropy calculations.

protocol MD! analyze’ fit? pair* order’
rec free rec r

lig free lig 1

fcom free  rec+lig rlll 2 intact
fecom_shuff  free  rec+lig rlll 2 shuffied
brec com rec r

blig com lig 1

com com rec+lig r+1 1 intact
com_split com rec+lig rlll 1 intact
com_shift com rect+lig rlll 2 intact
com_shuff com  rec+lig rlll 1 shuffied

Isource simulation: free receptor and/or ligand (free), complex

(com); 2consider receptor (rec) and/or ligand (lig); *fit trajectories on
reference rec (r) and lig (1), seperately (r Il 1), or as single molecule
(r+1); “rec and lig taken from same (1) or two independent (2) simu-
lations; >time order of ligand coordinates;

motion of the two molecules. It therefore reveals the entropy content of these in-
termolecular fluctuations (denoted rec?lig in table ). The remaining correlations
across the binding interface are uncovered if the complex trajectory is moreover
divided into receptor and ligand and reassembled from two independent bound
trajectories (Scom_snifr described above). The difference between S¢op_spiir and
Scom_shif+ (denoted recxlig in table ) yields the negative entropy contribution from
correlated motions between receptor and ligand. Table 3.2 summarizes the differ-
ent entropy values calculated for each complex.

The analysis of 10 independent 1 ns trajectories instead of one 10 ns simula-
tion allows for a strict error estimate. I repeated all entropy calculations 5 times,

excluding different tiers of three trajectories from the analysis.

3.3.6 Conformational entropy of binding

Table 3.3 provides the total conformational entropy of binding, AS¢.,, calculated

for 7 protein complexes. The values cover a wide range from stark entropy loss



3.3. FREE AND BOUND STRUCTURE ENSEMBLES 7

Table 3.3: Conformational binding entropy and its decomposition calculated from
quasi-harmonic analysis. All values are for bound - free state in cal/mol/K.

all heavy atoms backbone’
AScon f 6 AScon f 6

1

rec lig?

recllig?  recxligh Afpmous

c02 20 £37 -46£18 461 -11 +£0 2443 19 £44 | 19 £22
c06 | -196 £43 31 £20 551 -8.2%1 43£2 -101 £34 | 12 £12
cll | -115£35 -123 £33 55£3 -89+0 3.6£2 -157 41 | -27 £14
cl5 | -55+£24 -103+£22 70+£2  -6.6%0 3.0£1  -60£25 | 1248
cl6 75 £15 -144 £17 45 £1 -13 +1 30£2 -0.7£13 | 4045
cl7 | -61 £40 -149 £23 59+£3 -13#£1 5545 -1224+40 | 7.0£14
c20 | -149 £18 104 £16 60+2  -14 *+1 4.4%7 43 £23 | 17 £9

Ireceptor only; “ligand only; entropy gain from rigid body motions of receptor against ligand;
4entropy loss from motions correlated across the binding interface; difference between spuri-
ous correlations in free and bound state (see text); ®total change of vibrational entropy; ’only
considering carbonyl C and O

(-157 calmol~'K~!) to substantial gain (43 calmol~!'K~!). The two smallest
complexes, c11 and c15 exhibit a large entropy loss, as does the antibody antigen
system (c06). The largest assembly, c20, yields the highest gain of conformational
entropy. Two other comparatively large systems, c02 and c16, give a moderately
positive or unchanged entropy. Another large complex, c17, seems to assemble
at a high cost of conformational entropy. However, the latter value has to be
treated with caution. The entropy calculations of c¢17 did not converge and the
receptor ensemble constituted an outlier in the analysis of flexibilities (see 3.3.1 on

page 65).

Table 3.3 also gives the (pseudo) entropy difference between bound and free
state of the isolated receptor and ligand proteins. The individual partners can both
gain or loose conformational entropy upon binding. Nevertheless, a loss of con-
formational entropy seems to be more common than perhaps expected from the
analysis of conformational diversity (section 3.3.2). On the other hand, the se-
lection of 7 complexes was, from the beginning, biased toward reduced flexibility
of the bound state (compare figures 3.6 and 3.5). There appears to be a trend to-

ward entropy compensation between receptor and ligand. The three complexes
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with positive or unchanged AS,,s always combine the large entropy gain of one
protein with a sizable loss of entropy on the other side.

Nevertheless, the simple summation of receptor and ligand values does not
yield the overall conformational entropy of binding. The simplistic approach ig-
nores an important component: Even in the complex, the two molecules move
with respect to each other. This intermolecular motion translates into a substan-
tial entropy gain (rec?lig in table 3.3) of, generally, about 50 calmol 'K~! or
more. The value is in remarkable agreement with a ”guess” (Janin 1995) made
by Finkelstein and Janin (1989) over 15 years ago. The simple summation of
receptor and ligand entropies also ignores the negative contribution arising from
correlations of motion across the binding interface (recxlig in table 3.3). Com-
pared to other contributions, there is only moderate crosstalk between receptor
and ligand fluctuations. The smallest complex “looses” 6.6 calmol 'K !, the
largest 14 calmol~'K~! to such correlations.

The large error margin of AS,,,r in table 3.3 testifies to the deficiencies of con-
formational sampling. Interpreted on a positive note, the margin may thoroughly
capture this deficiency because it stems from the comparison of truly independent
simulations. Moreover, the error estimate was calculated with a 30% smaller data
set than the reference value, and should thus be on the conservative side. Errors
of about +30 calmol~'K~! would introduce an uncertainty of 9 kcalmol ! K~!
to calculations of binding free energies. However, the total stability of protein
complexes typically ranges only from 6 to 15 kcalmol ! K~!. The accuracy of
the method must thus be substantially improved before it can serve practical pur-
poses.

Despite many uncertainties, my calculations demonstrate that the change of
conformational entropy should have a considerable influence on the overall stabil-
ity of protein complexes. It is too early, perhaps even fundamentally impossible,
to make general statements as to the sign of this contribution. Protein associa-
tion can not only deplete but also boost conformational entropy. Especially larger
complexes seem sometimes able to compensate for the loss of diversity occurring
in the binding region.

It would be helpful to cross-check the predicted change of conformational
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Table 3.4: Computational estimates and (where available) experimental
measurements of overall binding entropies. All values are for bound -
free state in cal/mol/K.

ASeons'  AS; ;% ASson’ ASiorat*  ASexp>  AresS  ref’
c02 19 +44  -100 334 253 +44 0
c06  -101 £34  -105 135 71 £34  (-34)8 0 [1]
cll  -157 +41  -101 242 -12 +41 -1 2 2]
cl5 -60 £25 -98 207 49 425 20 2 [3]
cl6 0.7 +13  -103 422 318 +13 -1
cl7  -122+40 -108 587 357 £40 -4
c20 43 £23  -109 556 490 +23 12

Itotal change in conformational entropy; 2loss of rotational and translational entropy;
3change in solvent entropy estimated from buried accessible surface; *total entropy
change calculated (1+2+3); “measured entropy change where available; ®number
of residues that are disorded in the free and ordered in the bound (-, vice versa);
literature for 5: [1] (Bhat et al. 1994; Schwarz et al. 1995; Sundberg et al. 2000),
[2] (Frisch et al. 1997), [3] (Arold et al. 1998); 8measured for a related molecule

entropies with experimental values. Direct measurements of conformational en-
tropy are often attempted by determining order parameters of the peptide bond
plane from NMR relaxation experiments. For comparison, table 3.3 also provides
the change of conformational entropy that I calculate if only the fluctuations of
backbone carbonyl carbon and oxygen are considered. Changes of overall and
backbone entropies can differ substantially. They are correlated with R=0.8 and
the backbone calculation is strongly biased toward gains of entropy. Backbone
atoms seldom make direct contacts with the other binding partner and are hence
less likely to loose mobility upon binding. They nevertheless benefit just like
side chain atoms from flexibility gains outside the contact interface. Measure-
ments that are only based on backbone atoms have thus to be interpreted with
care. Unfortunately, there is no dependable experimental reference quantity for

conformational entropy changes.
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3.3.7 The overall entropy cost (or gain) of binding

Overall entropy changes due to binding can be reliably measured by calorimetry.
Corresponding data are available for the binding of Barnase to Barstar (c11) as
well as HIV-1 Nefp;_57 to the SH3 domain of Fyn (c15). Data have also been
published for the interaction between the mouse antibody fragment FvD1.3 and
hen egg white lysozyme but not for the variant studied here (c06) which involves
an artificial hybrid of FvD1.3 and human antibody segments (Holmes et al. 1998).
The comparison of experimental and theoretical entropies of c11 and c15 is com-
plicated by unresolved residues in the structures of both systems. 18 terminal and
30 non-terminal residues of the free as well as 15 terminal and 31 non-terminal
residues of the bound Nefp;_57 are disordered and hence not present in my sim-
ulations. The putative disorder-order transition of effectively two residues of
Nefa;_s7 and two terminal residues within the Barnase / Barstar complex is also
not reflected in my entropy calculations. Salt concentrations, different protonation

states and other details may introduce further inaccuracies.

In contrast to my calculations, the experimental values include the entropic
contribution from the solvent. The change of solvent free energy is commonly
estimated from the accessible surface area AASA buried upon folding or binding
(Brady and Sharp 1997): AGgopvenr = YAASA. 1t is assumed to be largely of en-
tropic nature (Sharp et al. 1991). I here used y =47 cal mol A2 (Sharp et al.
1991; Noskov and Lim 2001). Table 3.4 combines the changes of vibrational,
rotational and translational entropies given in table 3.3 with the estimated gain of
solvent entropy and compares this overall value with the three available experi-
mental binding entropies. For Barnase / Barstar (c11) the experimental value falls
well within the (broad) 68% confidence interval of the calculated entropy. For
c06 the computed value is about one standard deviation below- and for c15 1.2
standard deviations above the experimental observation. However, compared to
mouse FvD1.3, the humanized antibody requires additional conformational ad-
justments to bind its target (Holmes et al. 1998) and the entropy loss of c06 may
be indeed larger than measured for the complex of mouse FvD1.3. Moreover, to

ignore the putative ordering of two residues upon binding may have overestimated
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the values computed for c11 and c15. The same applies almost certainly to c23
(lacking a experimental reference).

Also the estimate of solvation free energies may be prone to significant er-
ror. The proportionality constant vy is derived from the distribution of model com-
pounds between polar and unpolar solvents (Brady and Sharp 1997). Early works
put it at lower values and other studies considered only the change of unpolar
surface. Jackson and Sternberg (1995) argued that the molecular surface is a bet-
ter measure than the accessible surface. More recently, Kyte (2003) showed that
solvation free energies of small molecules correlate better with the number of
exposed hydrogen-carbon bonds rather than with a surface based measure. He de-
rived a value of 20 KJ mol~'C-H~! but did not elaborate on how to divide exposed
from buried hydrogen-carbon bonds in larger molecules. Considering the exposed
surface of a CH, moiety, his method translates again to about 50 cal mol 'A—2
but, depending on the surface composition, it may give different overall estimates.

In spite of many uncertainties, my calculations are at least compatible with the
experimentally observed binding entropies. It remains to be seen whether such
agreement of experiment and theory (at very low level of precision) also holds for

other complexes.

3.4 Recognition between structure ensembles

3.4.1 Definition of ensembles

In the following, we try to incorporate the additional dimensions of receptor and
ligand variability into the picture of the protein-protein recognition process. This
recognition starts from the unbound components and we therefore once more con-
centrate on the conformational ensembles of the free receptor and the free ligand.

As explained in section 3.2.3, we had probed the motion of all 33 unbound pro-
teins with short (10 x 50 ps) molecular dynamics simulations (see section 3.2.3).
Unfortunately, large-scale correlated motions usually escape the sampling of MD

simulations (Balsera et al. 1996). We therefore calculated a second set of 33 en-
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sembles with identical protocol except of a weak restraint alleviating this problem.
Large-scale correlated motions typically occur along small gradients in the energy
landscape. They are hence slow but, on the other hand, can be boosted by small
interventions. As described previously (Abseher and Nilges 2000), the restraint
acts on the ensemble of 10 concurrent trajectories as a whole and increases the
variability along the major principal components of motion. The computational
cost of this principal component restrained simulation (PCR-MD) is similar to the
classic approach above but the ensemble is considerably more diverse.

We performed c-means fuzzy clustering for each of the two structure ensem-
bles and selected 2 x 10 representative conformations for combinatoric rigid body
docking. A representative example of these discretized structure ensembles from
the unrestrained (MD) and the restrained (PCR-MD) simulation is shown in fig-
ure 3.10. The snapshots capture considerable variation. Table 3.5 lists the average
(rms) deviation between the members of each docking ensemble and their distance

to the free and the bound structure.

3.4.2 Ensemble docking

We tried to mimic the recognition between two flexible molecules by a combi-
natoric docking of all snapshots from the receptor ensemble against all snapshots
from the ligand ensemble. Each of the docking ensembles was supplemented with
the free (experimental) structure. Using the docking program HEX (Ritchie and
Kemp 2000), we performed 121 rigid body dockings for each complex and MD
strategy. HEX represents receptor and ligand by a soft 3D surface skin model
and calculates the volume of water that is expelled from the protein surfaces as
they come together. In addition there is a penalty for steric overlap. Both terms
are combined in a pseudo energy that depends solely on the atomic and water
probe radii and is interpreted as an approximation of the desolvation and van der
Waals component of the free energy of association. We did not employ any addi-
tional (e.g. electrostatic) potentials and dealt therefore only with the contribution
of short range, geometry dependent, effects to the interaction free energy. HEX

performs a systematic search over all 6 rigid body degrees of freedom and ranks
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Figure 3.10: Receptor and ligand ensembles used for the docking of ¢20. (A) The
10 receptor (right) and 10 ligand (left) snapshots selected from the unrestrained
simulations. (B) The 10 snapshots from the principle component restrained simu-
lations (PCR-MD) cover a wider range of conformations. The receptor and ligand
snapshots have been oriented as in the native complex, but are separated horizon-
tally. Side chains have been omitted for clarity.



CHAPTER 3. THE DYNAMICS OF PROTEIN-PROTEIN BINDING

84

Table 3.5: Average rmsd of structure ensembles.
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in the order of 1009 trial orientations by this interaction energy.

From each of the 121 HEX dockings we analyzed the 512 top ranking solu-
tions provided by default. Since we did not apply any clustering and there was no
random element in the search, the amount and quality of near-native orientations
within the set of top-ranking solutions effectively depended on: (1) how well the
two protein conformations matched each other geometrically near the native ori-
entation, (2) how tolerant this steric match was to deviations from the optimum
orientation, and (3) how many non-native alternative orientations with comparable

geometric match existed and competed with the correct arrangement.

3.4.3 Measuring the quality of docking solutions

We analyzed and compared 2,106,368 solutions from 4114 rigid body docking
calculations between 693 conformations of 33 different proteins (c06 and c08
share a ligand). To this end we needed a single metric for the quality of a given
solution, that is to which extent it resembles the native arrangement of receptor
and ligand in the complex. Rmsd-based measures are inappropriate for our pur-
poses because they depend on the size and shape of the binding interface and,
furthermore, would also be influenced by the conformational variations in our re-
ceptor and ligand ensembles. Criteria based on residue-residue contacts (Mendez
et al. 2003) suffer from ambiguity introduced by bulky side chains in the inter-
face. We therefore used a measure based on atom contacts. We define a fraction of
native atom contacts (fnac) as the number of pairs of non-hydrogen receptor and
ligand atoms that are within a 10 A distance both in the native and the predicted

orientation, divided by the total number of such pairs in the native complex.

3.4.4 Complementarity across ensembles

Discrimination by shape complementarity alone is usually sufficient to predict the
native arrangement of the bound receptor and ligand. In figure 3.11A the docking
of the bound structures from c19 (glycosyltransferase / tendamistat) is shown as

a representative example. The free structures, on the other hand, are generally
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Figure 3.11: Selected docking results for c19. Each panel shows the result of
a single shape-driven rigid body docking experiment. The similarity to the true
complex is measured for the 512 predictions that rank highest in surface comple-
mentarity. Data are shown for (A) bound docking, (B) free docking and (C) the
highest scoring of the ensemble dockings (see table 3.6).
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much less complementary. For example, the majority of top-ranking solutions
from the docking of free glycosyltransferase and tendamistat (figure 3.11B) re-
produce no, or only few, native contacts. However, figure 3.11C shows the fhac
(quality) of top-ranking solutions from the docking of the same free receptor struc-
ture against one of the alternative inhibitor conformations from the PCR-MD sim-
ulation. Clearly, this combination of structures had a better geometric fit in near
native orientations. In figure 3.12A we show the amount and quality of near native
solutions for all cross-dockings between the simulation-derived ensembles of the
two proteins. Several conformer combinations performed better than the docking
of the two experimental structures, both in terms of quantity (indicated by the size
of the circle) and quality (indicated by the color). The gain was yet even more
pronounced for the cross-docking of the ensemble that had been calculated with
the PCR-MD technique (figure 3.12B).

As a second example we present similar results for the complex between
CDK2 and cyclin A (c20). This complex is one of the difficult docking test cases
as the receptor undergoes large structural changes moving from the free to the
bound state (Cq, displacements of up to 20 A). All 512 solutions from the docking
of the two experimental structures stayed below a fnac of 10%. Nevertheless, as
shown in figure 3.12B and C there were many combinations of MD or PCR-MD

snapshots that yielded better solutions with fnac values up to 30%.

The results of all 17 test complexes are provided in supplemental figure S3
and summarized in table 3.6 and figure 3.6. We selected 2 dockings each from
the cross-docking of MD and of PCR-MD ensembles: The one that generated
the single highest fnac within the 512 top-ranking orientations and the one with
the best compromise between quantity and quality of near-native solutions. We
quantify this "compromise" docking performance with the sum of squared fnac

values above 10%, i.e. a simple score strongly biased toward high fnac ranges.

The cross-docking of ensemble snapshots always found more and, in all but
one case, also better near native solutions than the docking of the free conforma-
tions alone. There were usually several combinations of simulation snapshots, or

snapshot and free structure, with better complementarity near the native orienta-
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Figure 3.12: Quantity and quality of near-native solutions in 4 selected ensemble
dockings. The cross-docking of 11 receptor and 11 ligand conformations gener-
ates 121 sets of 512 docking solutions. The amount and quality of near native
solutions among each set is shown for the ensemble dockings of c19 (A and B)
and c20 (C and D). The area of each contour is proportional to the number of
solutions (see the separate size legends). The color of a contour indicate solutions
above a certain fnac-value (see the color legend). Several conformer-combinations
perform better than the traditional docking of the free structures.
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Figure 3.13: Quantity and quality of near-native solutions in all test cases. The
amount of solutions above a certain quality (fnac) level (see color legend) is given
for selected docking runs of all 17 test complexes. Data for each complex are
presented using groups of five bars. The first bar describes the free docking (512
orientations), the second and fourth bar show the data for all cross dockings (11 x
11 x 512 orientations). Bars three and five show the data for the best performing
conformer-combination (512 orientations) from the MD and PCR-MD ensemble,
respectively (see table 3.5). The upper plot (A) depicts solutions with fnac above
10%, while the lower plot (B) uses a 1% fnac threshold.

tion. Moreover, we can assume that even better fits remained hidden due to the
fact that our docking ensembles were artificially sparse. The insufficient shape
complementarity between many of the free receptor and ligand pairs could be an

artifact of the rigid body or rigid backbone simplification.

3.4.5 Specificity of docking success

For every complex, we generated 10 random orientations that were distinct both
from each other and the native (no contact overlap). We re-analyzed all docking
solutions using these random orientations as reference. This allowed us to quan-
tify the probability that the score of the free docking and the best score from the
ensemble docking did not occur at random (table 3.6). All of the best performing
conformer pairs reproduced the native complex better than the docking of the free
experimental structures. In 9 out of 17 cases, the profound enrichment of high

quality solutions from the docking of selected conformer pairs is also specific to
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the native orientation. In the remaining cases, the improvement is substantial but
not significantly higher than what would be expected for a random orientation. We
have indications that more specific results can be achieved for some of the 8 latter
complexes if the HEX energy function is extended with an electrostatic term.

It should be noted that the consideration of 512 solutions each from 121 dock-
ing runs combined with the soft and simplistic energy function provoke a high
level of "noise", i.e. similarities to a random orientation. The evaluation of fewer
solutions with more detailed energy functions would most likely improve the dis-
crimination. However, the technical (and challenging) problem of scoring docking

solutions is not subject of this work.

3.4.6 Recognition conformations

Our simulations cover a time window that, at least, resembles but probably ex-
ceeds the estimated duration of a micro-collision. Already the use of multiple
trajectories is expected to increase sampling by a factor of 2 (Caves et al. 1998).
The fast equilibration, the method of solvation and, especially, the introduction
of principle component restraints further enhance diversity (Abseher and Nilges
2000). We did not find a global transition from free to bound interface confor-
mation in any of our 2 x 33 ensembles. There was nevertheless notable variation
in the structure ensembles and some conformers were necessarily closer to the
bound than others (compare table 3.5). Binding could be promoted by such shifts
toward the bound state (Kumar et al. 2000). In figure 3.14A we relate the distance
from the bound state of a given pair of conformers and its performance in docking.
There is no obvious correlation between similarity to the interface of the bound
structure and docking performance. This picture remained the same when we ex-
pressed the distance between structures as Contact Area Difference (Abagyan and
Totrov 1997) (data not shown) and is therefore not an artifact of the rmsd measure.

In figure 3.14B and C we focus only on those pairs of conformations that
yielded the best docking result (score) for each complex. As apparent from ta-
ble 3.6, the experimental structure was over-represented among these pairs, albeit

only on the side of the larger binding partner. This bias was unique to the native
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Figure 3.14: Docking performance and structural changes in the interface. In
panel (A) the combined distance of the receptor and ligand interface regions from
their respective bound conformation is expressed as (rmsd,e. + rmsd,;,)/2 and is
plotted against the pair’s docking performance. Both values are given relative to
the docking of the free conformation pair. Data is shown for each combination of
receptor and ligand conformers (11 x 11 x 34). A solid line describes the distri-
bution of rmsd values (distances to the bound structure). Panels (B) and (C) show
only the best performing pairs of each ensemble docking. The rmsd of the receptor
(triangle) and ligand (square) interface to the free (B) and to the bound structure
(C) 1s given relative to the respective average value of the 10 simulation-derived
conformers. High performing conformations seem to be shifted both toward the
bound and the free structure. This trend is largely caused by free (experimental)
structures (open symbols) that are over-represented on the receptor side of high-
performing conformer pairs. Free structures are excluded from the distribution of
rmsd shifts (solid lines).
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orientation and absent from the conformer pairs with the highest similarity to a
random reference (data not shown). Compared to the average ensemble member,
experimental conformations (open symbols in figure 3.14B and C) are also closer
to the bound structure since the ensembles were moving away from the free with-
out systematically moving toward the bound conformation. The short simulation
time sometimes aggravates the effect as it may cause uneven sampling of the con-
formational space around the starting structure. The preference of experimental
receptor structures might be an artifact of the docking protocol being optimized
for free and bound crystallographic rather than simulation derived structures —
not only in general but actually using the very same test complexes. After ex-
cluding experimental structures from the conformations of best complementarity
no obvious trend remains, neither to the free experimental nor to the bound state
(histogram in figure 3.14B and C).

Indeed, the systematic dependency on a single, for example bound, recogni-
tion conformation would impede fast binding. Protein structures move on a flat
energy landscape that probably requires milliseconds or even seconds for ade-
quate sampling (Brooks III et al. 1988). The time window for recognition is
short by comparison (Northrup and Erickson 1992; Janin 1997; Camacho et al.
2000). Nevertheless, we often observe deviations between the experimental free
and bound structures that can only be bridged by large scale correlated motions,
which, in turn, are unlikely to occur spontaneously within this short recognition
time.

Our extensive data show that short range forces can drive recognition even
where this is not evident from the free structures. Due to the simplistic energy
function used we can only speculate that the conformations of highest comple-
mentarity are related to actual recognition conformers. Our results nevertheless
suggest that different such conformers coexist and can be sampled within the short
window of opportunity. The cross-docking of simulation-derived structure en-
sembles indicates that shape-driven recognition does not, or at least not generally,
depend on systematic transitions from free to bound structures. This allows us to

refine and combine the current models of the protein-protein binding process.
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3.4.7 An ensemble model of flexible recognition

Gabdoulline and Wade (2002) recently criticized the mutual inconsistency of cur-
rent models for protein-protein association. Disputed are the nature of the rate-
limiting step (diffusion or induced fit), the shape of the association energy land-
scape (broad funnel or tight channel), and the mechanism of conformational changes
(preexisting equilibrium or induced fit). Most of these inconsistencies can be re-
solved if we describe binding as a 3-step process of diffusion, free conformer
selection, and refolding or "induced fit", as shown in figure 3.15.

Association starts with the diffusional encounter of the two free structure en-
sembles (R¢ and L¢) which, at rate ki, leads to a micro-collision with approxi-
mately correct orientation of receptor and ligand (R¢---L¢). The lifetime of this
aligned encounter complex allows for gradual desolvation and it could, poten-
tially, be prolonged by random complementarities between sub-populations of the
two structure ensembles. Apart from such an unspecific "pre-selection", the struc-
ture of the two proteins is still characterized by their free conformation ensem-
bles. This is the point where short range forces and internal dynamics become
important for recognition. Specifically matching conformations will select each
other from the free conformation ensembles of the two proteins and form a recog-
nition complex (RFL{). The recognition complex will quickly be stabilized by
progressive desolvation as well as short range electrostatic and van der Waals in-
teractions. At this stage the receptor and ligand structure cannot any longer be
considered independent. They are now moving in concert through a potential that
has changed from the free to the bound energy landscape. The equilibration into
this new landscape requires the transition from the (free) recognition conforma-
tions to the more dominant states of the bound structure ensemble (RyLy,). This
is potentially a time consuming step, depending on the distance between free and
bound structure (or the probability of the recognition conformations in the context
of the bound energy landscape) and may be considered a folding process.

In figure 3.15 we attempt to give a schematic view on the free energy pro-
file and the forces that are involved, and compensate each other, at the proposed

stages of protein-protein association. This reaction scheme extends earlier 3- and
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Figure 3.15: A working model for flexible protein recognition. Protein-protein
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schematically, the forces involved at the different stages and the resulting free
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4-state models (Camacho et al. 2000; Frisch et al. 2001; Schreiber 2002) and
combines them with the idea of conformer selection (Monod et al. 1965; Kumar
et al. 2000; Gabdoulline and Wade 2001). Existing 4-state models (Camacho
et al. 2000; Schreiber 2002) distinguish between the formation of an unspecific
(randomly aligned) encounter complex on one side and its correct orientation on
the other. For the sake of clarity, we combine these two steps into one. The search
for this correctly aligned encounter complex (R¢---L¢) was considered the rate
limiting barrier in the previous models. We introduce an additional step of free
conformer selection that separates the diffusive search for a correct orientation
from the conformational search for the bound state. Both diffusive and confor-
mational search are well studied in isolation - the former by simulations and ex-
periments on diffusion-controlled associations (Gabdoulline and Wade 2002) and
the latter by decades of research on protein folding (Dill and Chan 1997). Con-
former selection has been observed in experiments (e.g. (Lancet and Pecht 1976;
Foote and Milstein 1994; Leder et al. 1995; Berger et al. 1999)) and our results
suggest the specific recognition via a subset of free conformations. Moreover, the
mechanism does not rely on the ad-hoc assumption of preexisting bound confor-
mations and is compatible with the time scale and typical rates of protein-protein
association.

The scheme contains the previous models as border cases among several pos-
sible kinetic regimes: If the free energy cost of selecting matching conformers is
much lower than the cost of finding the correct orientation (k| < k), the model
reverts to the previous 3- or 4-state descriptions (with- or without induced fit, re-
spectively) of a diffusion-controlled reaction. If, on the other hand, we assume
that recognition requires bound conformers, the refolding barrier (III in figure
3.15) would be absent (ko < k3) and we would revert to the preexisting equilib-
rium model. The proposed 3-step model is the general description of an interac-
tion that can be diffusion controlled, recognition controlled, refolding controlled,

or be influenced by a mixture of the three rates.
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3.4.8 Implications of the model

Diffusion-controlled associations have been studied experimentally and relative
rates for a given system under different conditions can in many cases be repro-
duced by Brownian Dynamics simulations (Gabdoulline and Wade 2002). An
issue with simulations is that association rates are usually overestimated, even if
binding is assumed only for orientations very close to the native. Gabdoulline and
Wade (2001) showed that this overestimation was different for 5 different protein
complexes and concluded that association can be influenced by non-diffusive ef-
fects. For the binding of fasciculin-II to acetylcholinesterase in particular, they
suggested a mechanism of "conformal gating" by two distinct conformations of a
loop.

Our working model of diffusion, selection and refolding offers a similar, more
general explanation. The recognition barrier (barrier II in figure 3.15) differs from
the free energy of the encounter complex ensemble R¢- - - L¢ by a loss of conforma-
tional entropy because it can only be crossed by a sub-set of free conformations.
A mixed control by diffusion and recognition should lower observed association
rates by a systematic factor (related to the frequency of recognition conformers),
such as described by Gabdoullin and Wade. Predominant control by recognition
and/or refolding, on the other hand, would uncouple the observed rate from con-
ditions like ionic strength, charge, and viscosity — which they demonstrated for
another of the tested complexes.

The 3-step model also helps to refine our description of the transition state
ensemble(s) in protein-protein association. Both theoretical (Janin 1997; Cama-
cho et al. 2000) and experimental studies (Frisch et al. 2001) conclude that the
transition state closely resembles the structure of the final complex. Less clear
is whether or not desolvation is necessary for recognition. According to Cama-
cho et al. (1999, Camacho et al. (2000) partial desolvation is important for the
correct positioning and initial stabilization of the encounter complex. However,
Frisch et al. (2001) measured activation entropies close to zero for the association
of barnase and barstar. They hence assumed that the activated complex remains

mostly solvated. This discrepancy may testify to a "special” nature of the barnase
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— barstar interface (featuring many charged residues and structural waters). It may
on the other hand also result from underlying conformer recognition. Following
our 3-step model, recognition occurs at the cost of conformational entropy. A low
activation entropy does not rule out desolvation effects but could rather reflect a
balance between conformational entropy loss and solvent entropy gain. Our com-
parison of free and bound MD simulations shows that bound structure ensembles
are not generally less diverse than free ones (see 3.3.2 and 3.3.6). One can hence
speculate that the refolding phase of binding is accompanied by the re-gain of
conformational entropy. A mixed control by diffusion and recognition implies a
structurally constrained transition state ensemble that is close to the bound ori-
entation on the one hand, but resembles the two free conformations on the other
hand.

3.5 Conclusion

Conformal motions seem to make a considerable impact on the process of protein-
protein binding. Already before binding, free interaction interfaces are more flex-
ible than most of the remaining protein surface. Depending on its time scale,
the increased mobility may facilitate but also hinder the search for matching con-
formations and could thus influence the kinetics of protein-protein recognition.
Free structure ensembles apparently contain several of these recognition confor-
mations. Recognition, it seems, does not depend on structure transitions from the
free to the bound state but occurs between typical members of the free ensem-
ble. I suggest to describe the whole process by a 3-step scheme of diffusion, free
conformer selection, and refolding.

The high mobility of binding interfaces could have a negative impact on the
thermodynamics of binding. Indeed, the systematic comparison of free and bound
structure ensembles shows that binding interfaces loose conformational freedom
upon formation of the complex. Nevertheless, in the majority of cases, binding
does not restrict a protein’s overall motion. Often, the complex gains flexibility in
other places. The thermodynamic effect of this loss, gain or redistribution of mo-

tion remains difficult to estimate. Entropy calculations are hindered by insufficient
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sampling of conformational space and turn out to be distorted by spurious corre-
lations between deterministic simulations. The latter artifact can be eliminated
and I calculated the entropy differences for a subset of protein complexes. During
binding, conformational entropy can be both lost or gained. In most cases, this
entropic contribution should have an important effect on the overall free energy of
binding.

Structure fluctuations should thus exert influence both on the speed of recogni-
tion and the thermodynamic stability of protein-protein complexes. This interplay
of protein flexibility and recognition remains far from understood. Most theo-
retical but also experimental studies have so far focused on diffusion-controlled
interactions without large changes in the binding interface. It is now time to move
on to systems where association is either depending on or followed by large-scale

structural rearrangements.

3.6 Methods

3.6.1 Short conformational sampling

Simulations were performed with a modified version of X-PLOR (Briinger 1992;
Abseher and Nilges 2000) using the CHARMM19 force field (Brooks et al. 1983)
and an electrostatic cutoff of 12 A with force shifting (Steinbach et al. 1991).
The coordinates of the 51 molecules (table 3.1) were retrieved from the Protein
data bank (Berman et al. 2002). An automated procedure removed duplicate pep-
tide chains and all hetero atoms (but not waters), converted non-standard amino
acids to their closest standard residue and identified disulfide bonds. Missing
atoms, including polar hydrogens were added and briefly minimized. The protein
was surrounded by a 9 A layer of TIP3 water molecules and the solvent briefly
equilibrated. 10 copies were starting point for parallel simulations of 50 ps length
summing up to 500 ps total simulation time per system. SHAKE constraints (van
Gunsteren and Berendsen 1977) were put on all bonds to hydrogens and on all
TIP3 waters. Each copy was heated from 100 K to 300 K in 50 K steps of 1 ps
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each, followed by additional 5 ps of equilibration with continued re-assignment
of velocities every 1 ps. The temperature was kept constant by explicit coupling
to a heat bath via Langevin dynamics and a friction coefficient of 20 ps~! for wa-
ter oxygens and between 0.5 and 5.5 ps~! for protein atoms dependent on their
solvent accessible area. A time step of 2 fs was used. The simulation scripts are
available upon request.

A second set of simulations was performed with identical setup but adding
an additional force onto the potential acting along the principle components of
motion, basically as described by Abseher and Nilges (2000). In difference to the
published method we re-defined the principal components iteratively during the
calculation.

For the docking ensembles (section 3.4), 100 snapshots spaced 5 ps apart were
taken from each 10 trajectories. The snapshots were fitted to their average struc-
ture and divided into 10 groups by c-means fuzzy clustering (Gordon and Somor-
jai 1992) over the coordinates of backbone carbonyl carbon and every second side
chain carbon. The clustering method is similar to the simple k-means but gives
each item a continuous membership to each cluster instead of a binary member-
ship to one. From each cluster the structure nearest to the center was selected for

docking.

3.6.2 Extended conformational sampling

Extended simulations were performed with the Amber 7.0 program package us-
ing the modified all-atom force field parm98 (Cornell et al. 1995; Kollman et al.
1997). They were based on the automatically processed structures described
above. The following protocol was consistently applied to all 21 protein struc-
tures. Hydrogens and waters were stripped off, and the proteins subjected to
a Whatlf hydrogen bond network optimization (Vriend 1990) that adjusted the
protonation state of histidines and flipped carboxylamide moieties of certain Glu-
tamine and Asparagine residues. Chain breaks and premature ends of peptide
chains (due to unresolved residues in the original structure) were capped with

a N-methylamine or Acetyl group but no attempts were made to model missing
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residues. Hydrogens were added with the tleap program (part of the Amber suite).
The protein was surrounded by a rectangular box of TIP3P water models keep-
ing a minimal distance of 10 A between protein and border of the solvent box.
Any net charge of the protein was neutralized with Sodium or Chlorine ions. The
solvent was minimized while keeping all protein coordinates restrained.

The following simulation protocol was applied to 10 independent copies of the
system. Bond lengths involving hydrogen atoms were fixed with the SHAKE al-
gorithm (van Gunsteren and Berendsen 1977). Periodic boundary conditions were
applied with a direct-space non-bonded cutoff of 9 A and particle mesh Ewald
(PME) treatment of long-range electrostatic forces (Essmann et al. 1995). The
solvent was heated to 300 K over a 10 ps constant volume MD and equilibrated
with a 10 ps constant pressure MD at 300 K keeping the protein coordinates har-
monically restrained (K = 50 kcal mol A1) and applying an integration time
step of 1 fs together with temperature coupling to a heat bath (time constant 0.5 ps)
(Berendsen et al. 1984). Restraints on the solute were then stepwise released dur-
ing a final 20 ps constant pressure MD. Over the whole 40 ps equilibration phase,
temperatures were reassigned every 1.01 ps from a Maxwell distribution. A pro-
duction MD of 1 ns was then performed using an integration time step of 2 fs under
NVT conditions at 300 K controlled by the Berendsen coupling algorithm with the
default time constant of 1 ps. Structure snapshots were saved every 100 fs. The
complete protocol of minimization, equilibration and simulation was automated,
parallized and applied in identical fashion to all 21 proteins.

This resulted in 10 single 1 ns trajectories for each free receptor, free ligand
and complex, respectively. I calculated the trace of mean Cg, distance to the last
structure for each single 1 ns simulation and determined the gradient of this dis-
tance over the last 500 ps by a linear least-squares fit (excluding the last 50 ps).
I classified single trajectories as (non-equilibrated) “outliers” if their gradient fell

1.5 standard deviations below the average of all 10 simulations.
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3.6.3 Surface patches

All atoms not present in both free and bound receptor or ligand structure were
removed before performing the analysis. Whatlf was used to calculate the ac-
cessible surface area of each atom relative to the total exposure possible (Vriend
1990). The protein surface was defined as any atom with more than 5% relative
accessible surface area (in the free structure). The binding patch was defined as
any atom within 6 A of the other molecule (in the structure of the complex). Ran-
dom surface patches comprising the same number of atoms as the binding patch
(n) were generated by picking a random surface atom and assigning the n nearest
surface atoms to the new patch. The patch was discarded if more than 25% of its
atoms overlapped with another random or the binding patch. The procedure was
repeated 50 times and yielded different numbers of random patches, depending on

the size of the binding patch and the remaining surface.

3.6.4 Flexibility

Flexibility was defined as the average pairwise distance between simulation snap-
shots. Snapshots were extracted from the last 30 ps of the 10 x 50 ps simulations
in an interval of 2 ps. I then calculated the root mean square (rms) distance (after
individual least-squares fitting) between every pair of structures that did not stem
from the same 50 ps trajectory. The flexibility of a certain protein or part of a pro-
tein is thus the average of 20250 rms values between 150 simulation snapshots.
The same procedure was applied to the 10 x 1 ns simulations. Here, snapshots
were taken in an interval of 5 ps from the last 500 ps of each 1 ns trajectory. Water
molecules, hydrogens and any atom not present in both free and bound structure
were removed prior to the analysis. The calculation of pairwise distances was

parallized and distributed to between 30 and 90 processors of a Linux cluster.

3.6.5 Entropy calculations

Entropy differences were determined from a combination of several quasihar-

monic calculations applied to both free and bound trajectories using different pro-
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tocols for the superposition and re-arrangement of coordinate frames. Each single
protocol consisted of the following steps: (1) Adjusting the number of trajecto-
ries: Certain single trajectories were excluded from the calculation either because
they were classified as outliers (see section 3.6.2) or in order to estimate errors.
Further trajectories were removed arbitrarily so as to adjust receptor, ligand, and
complex ensembles to the same number of independent trajectories. In most cases,
9 trajectories were used. (2) Adjusting the atom content: I removed all hydrogens
and non-protein atoms, as well as any atom that was not present in both free and
bound structures. (3) Adjusting the frame order: For the analysis of real and spu-
rious correlations across the binding interface, receptor coordinates were in some
protocols paired up with ligand coordinates from an independent trajectory. The
relative time order of ligand frames was retained or shuffled. (4) Iterative rms-
fitting: The single trajectories were iteratively fitted to their respective average
until the rms distance between the last and the previous average structure fell be-
low 10 A and then transformed “en-block” onto the bound state. To shorten
the number of iterations, coordinate frames were initially superimposed onto the
experimental starting structure. (5) The modified set of coordinate frames was ex-
ported into Amber file format and passed to the ptraj program for the calculation of
the mass-weighted covariance matrix and determination of vibrational, rotational
and translational entropies. I automated steps (1) through (5) and parallelized the
calculation of the different protocols.

A set of complete and disassembled entropy changes such as given in table
3.3 required the analysis of free and bound trajectories with 10 protocols. The
protocols differed in (1) the source of the coordinate data i.e. simulation of free
receptor, free ligand, or complex; (2) Which part of the structure was analyzed
i.e. receptor, ligand, or both; (3) The superpositioning of receptor and ligand
frames i.e. separately or as single molecule; (4) Whether receptor and ligand data
were from the same (complex) trajectory or from independent simulations; (5)
The order of ligand frames i.e. left intact or shuffled with respect to the receptor
data. The 10 protocols are summarized in table 3.2. The change of complete
vibrational entropy was determined by comparing the entropies calculated with

protocols ’com’ and *fcom’ (see table 3.2).
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For each complex, I evaluated the convergence of free vs. bound entropy dif-
ferences by repeating the 10 calculations using different starting frames and dif-
ferent frame offsets. Errors were estimated by repeating all calculations 6 times
while excluding 3 different single trajectories from the ensembles of receptor, lig-
and, and complex simulations. For example, an absolute entropy calculated from
the coordinates of 9 independent 1 ns trajectories was recalculated after remov-
ing trajectories (1,2,3), (4,5,6), (7,8,9), (1,4,7), (2,5,8) or (3,6,9). The standard
deviation o for the difference of two absolute entropies with standard deviations
o1 and 62 was then calculated as A = (G% + G%)l/ 2. Variances stem thus from
calculations on less data than used for the reference value (e.g. 6x1 ns instead of

9x1 ns) and constitute a conservative (high) estimate.

3.6.6 Docking

All protein-protein docking calculations were performed with HEX version 4.2
(Ritchie and Kemp 2000). Orientations were discriminated by shape complemen-
tarity only. For all protein independent parameters the default values provided by
HEX were used with the exception of the distance range step, which was set to
0.5 A and the receptor and ligand samples which were set to 720 (Ritchie and
Kemp 2000). The initial molecular separation and the distance range to be sam-
pled were calculated from the maximal and minimal distance from the center of
mass to any surface atom (any atom with an exposure >95% as determined by
Whatlf (Vriend 1990)). In the 7 cases where the receptor had a radius larger than
35 A HEX "macro docking" was performed with default parameters, i.e. the pro-
gram docked the ligand to several overlapping fragments of the receptor (Ritchie
2003). The 512 highest scoring solutions were retained from each docking, thus
the combination of 11 x 11 conformations always produced 61952 orientations.
The docking of a single conformer pair took in the order of 15 min on a dual

2.4 GHz Xeon computer but lasted about 8 h for the "macro docking" cases.
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3.6.7 Randomized reference complexes

For each ligand we generated 100 transformation matrices with randomized Eu-
ler angles and a random translation onto a sphere around the receptor’s center
of mass. These randomized orientations were each subjected to 100 steps of
rigid body minimization using a soft van der Waals potential and a NOE restraint
pulling the two centers of mass together (X-PLOR script available upon request).
We removed all orientations having any atom contact in common with the native
complex (fnac > 0) and performed a hierarchical clustering by the pairwise over-
lap of atom contacts. The clustering will be described in detail elsewhere. For
the present purpose, we applied a clustering threshold of 0.0001 and obtained a
set of cluster centers without mutual contact overlap. We selected 10 at random
and re-calculated the "fnac" of all HEX solutions with respect to each of the 10
random complexes. From these values we estimated the probability of the score
(for reproducing the native complex) being a random observation. The necessary
random distribution cannot be deduced from 10 values. However, score values
were by definition positive and usually small. A lognormal distribution was hence

the least biased assumption.

3.6.8 Specificity estimate for docking scores

Based on 10 random scores and the assumption that docking scores follow a log-
normal distribution, the “specificity” of a docking result can be estimated. The
following solution to this problem was worked out by Michael Habeck and Wolf-
gang Rieping. Given is the score s for the success of a docking experiment to
reproduce the native complex and the scores r; .. g to reproduce 10 non-native
random complexes. We assume random scores to follow a lognormal distribution.
The lognormal density function f(x) can be estimated from the mean o and the

standard deviation [ of the 10 log-transformed random scores.
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3.6.9 Miscellaneous analysis

All atoms not present in both free and bound receptor or ligand structure were
removed before performing any comparative analysis. The binding interface of a
protein was defined as any atom within 6 A of the other binding partner. This
gives patches of similar size as the more traditional residue based definition that
considers any residue having, at least, one atom within 4.5 A from the other
molecule. For consistency with docking studies the latter definition was used in
section 3.4. Many calculations (including docking and analysis) were automated
and distributed to between 30 and 90 processors of a Linux cluster. The compu-
tation time spent for this chapter would translate, very roughly, to more than 25
years on a single 2.4 GHz CPU.
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3.6.10 Figures

Figure 3.1 was prepared with VMD (Humphrey et al. 1996). Figure 3.10 was
prepared with MOLMOL (Koradi et al. 1996). Figures 3.2 through 3.9, as well
as 3.11 and 3.12 were created using Biggles (biggles.sourceforge.net). Figures
3.13 and 3.14 were created with IgorPro (www.wavemetrics.com). For figure
3.7, I made use of an extension to Biggles, programmed and kindly provided by
Wolfgang Rieping. All figures of section 3.4 were devised together with — and
ultimately prepared by Johan Leckner.
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Chapter 4

Conclusion

4.1 Proteins on the edge

The unfolding of a single molecule and the recognition between two proteins are
two rather different events. However, both processes push a complex system of
interacting atoms from one conformation ensemble/state to another. This reminds
to some extend of certain “phase transitions” described by statistical physics al-
though the concept does not apply in a strict sense (Ball 1999). Second order
phase transitions, for example the change from a liquid / gas two-phase system to
a single fluid phase, proceed through a singularity, the “critical point”, where the
many-body system of interacting particles complies with neither of the two states.
In the vicinity of this point, microscopic fluctuations have increasing influence on
macroscopic properties until the system is on all scales abandoned to this random
variation. Proteins between free and bound or folded and unfolded state are like-
wise “on the edge”. Benign thermal fluctuations may thus exert major effects on
the whole process (and the parallel with phase transitions may or may not end
there).

However, for a protein, “being on the edge” does not constitute an anomaly.
Life itself operates off equilibrium and a cell or organism at thermodynamic equi-
librium is dead. On the one hand, most proteins may move most of the time

through some equilibrated structure ensemble — bound or free, active or inactive,
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waiting for their signal, target, substrate or destruction. On the other hand, this
state may be scientifically rather irrelevant; Function is defined in action, when a
protein is recognizing, catalyzing, switching, folding or unfolding. The previous
chapters have examined two different such processes and structure flexibility turns
out to play a decisive role in both.

Chains of spectrin repeats apparently rely on structure flexibility to achieve a
smooth response to external force. Single molecule experiments on this domain,
in accord with simulations, show clear traces of structure fluctuation and this pic-
ture is supported by experiments on mutated repeats. On the verge of disruption,
thermal fluctuations decide how much extension a spectrin repeat tolerates and
whether or not unfolding is blocked by intermediate non-native structures.

Structure fluctuations may both complicate and facilitate the interaction be-
tween two proteins. In many of the cases that I studied, only a subset of the two
free structure ensembles was mutually compatible. A conformer selection step
may thus impede the rate of recognition. Interaction sites turned out to be more
flexible than normal protein surfaces, which might hinder this selection further.
However, recognition most likely requires only an approximate fit. Increased
flexibility may as well facilitate the selection of recognition conformers within
the short time of a protein collision. Somewhat surprisingly, the formation of a
complex did not necessarily restrict the diversity of structure ensembles. Overall
conformational entropy could rise as well as fall. Even the entropic cost of fixing
one protein to another was in part recovered by new motions between the binding
partners. Thus, structure fluctuations exert a considerable influence on both the

formation and the stability of protein-protein complexes.

4.2 Next?

The results and ideas presented throughout my thesis are incomplete in several
respects and leave many questions unanswered.
The atomic force microscopy experiments of my collaborators provide only

indirect support to the detailed pathways that I proposed for the unfolding of spec-
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trin repeats. Convincing evidence would require further experiments. Recently,
Sarkar et al. (2004) succeeded to simultaneously measure fluorescence and force
response of a single molecule. This could put a new generation of experiments
into the realm of possibility, that combine atomic force microscopy with the mea-
surement of (distance dependent) fluorescence resonance energy transfer. Such
a simultaneous observation of intra-domain distances and unfolding lengths and
forces would be a very elegant way to prove or disprove the suggested pathways
and intermediates of spectrin unfolding. The role of pre-stretching and structure
diversity for the overall elasticity of spectrin networks could perhaps be examined
with similar experiments that monitor the distance between neighboring repeats in
the unfolding spectrin chain. Moreover, it would be interesting to study the func-
tion of spectrin repeats in proteins other than spectrin itself. Finally, with some
imagination, spectrin repeats might even find applications as molecular shock ab-
sorber in future nanotechnological devices.

Also our understanding of protein-protein interaction would benefit from fur-
ther experiments and simulations. Most of the complexes, for which we have
detailed structural data (of free and bound state), lack any information about the
kinetics and thermodynamics of binding. Theoreticians and experimentalists often
work on different proteins and rarely reconcile their results. Joint efforts should
therefore concentrate on a common set of interactions. This set should be as di-
verse as possible and should also include complexes that exhibit large structural
rearrangements upon binding. Another priority could be the development of single
molecule experiments that aim at the complexities of structure fluctuations during
protein-protein recognition. It remains to be seen to which extent structure fluctu-
ations indeed influence the kinetics and thermodynamics of binding and whether
the three-step model proposed in section 3.4.7 constitutes a suitable framework
for these studies. A related question concerns the level of detail that is necessary
for recognition — how close has to be the match between recognition conformers
and to which extent is conformer selection also a cooperative process, more in line
with the classic idea of induced fit?

Better representations of protein dynamics are obviously necessary for the pre-

diction of protein complexes from separate structures. Johan Leckner and I are
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currently experimenting with protein flexibility at several stages of a protein dock-
ing pipeline. Section 3.4 already described our strategy to extend the sampling of
orientations by a combinatorial cross-docking of simulation snapshots. We are
also testing the effect of short molecular dynamics simulations on the refinement
and evaluation (scoring) of docking solutions.

Protein interaction networks receive a large share of the renewed interest in
’systems biology” (Kitano 2002) and it’s not all buzz — we have seen remarkable
advances in the large scale detection of such interactions (Gavin et al. 2002).
At the same time, structural genomics efforts turn out ever increasing numbers
of independent protein structures (Zhang and Kim 2003). Efficient methods and
sound theories for the structural study of protein interactions are, evidently, in

high demand.

4.3 Complexes of complex molecules in complex cells

of complex organisms in a complex environment

Mache die Dinge so einfach wie méglich — aber nicht einfacher.!
Albert Einstein

Life seems like a rather complicated matter. Every living cell is built from many
thousands of different molecules that interact and create and modify each other.
Every human being comprises billions of cells that somehow self-organize into
tissues and repair, destroy and nurture one another. Human beings, as any other
animal, are themselves embedded in a web of dependencies, competition, and
cooperation with their living environment. On each of these layers we see com-
plex traits and sophisticated behavior emerging from interactions between simpler
entities.

Underlying complexity is often most apparent when the system moves from
one state to another. The study of growth and development tells more about cel-

lular interactions and signals than the momentary layout of the adult organism.

'Make everything as simple as possible — but not simpler.
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Static “wiring diagrams” of biochemical pathways are informative but not suffi-
cient for proper understanding of metabolism. Long standing textbook knowledge
about the regulation of glycolysis, for example, is disproved by the analysis of the
metabolic flux through this cascade of enzymes (Teusink et al. 1998; Bakker et al.
1999). Gene regulatory networks illustrate the same point. The low concentration
of transcription factors renders genetic regulation prone to stochastic fluctuations
(McAdams and Arkin 1999). Regulatory circuits have to suppress this noise but
can, in some instances, also utilize it to achieve variability in a population of cells.
Random concentration fluctuations may thus decide over the fate of a cell on the
edge between two genetic programs (McAdams and Arkin 1999).

In this work, I have examined fluctuations at the level of atoms in single
molecules. Parallels appear between effects of structure dynamics and the role
of concentration fluctuations one detail level further up. Just like cells need to
suppress stochastic concentrations, proteins need to recognize each other in spite
of atomic fluctuations. And like cell diversity may be based on concentration
noise, the elasticity of the membrane skeleton may, to some extent, go back to
thermal fluctuations of protein structure.

As Richard Feynman put it, “everything that living things do ... can be de-
scribed as the wiggling and jiggling of atoms.” Will we hence need to know the
position and vibration of each atom before we can understand and predict the be-
havior of a cell? Would this knowledge actually make us understand? The answer
to both question is probably No. Life has evolved to be robust to noise and change
and it has evolved to evolve. This process has shaped functional modules into hi-
erarchical layers of complexity like, for example, protein domains, gene cassettes,
cells, and organisms (Csete and Doyle 2002). Lower level detail will probably not
be relevant for many higher level functions. Yet, at the moment of perturbation
or transition, the hidden complexity of lower layers may turn into a dominating
force. Hence, we need to study and understand complexity at each level of detail.
We need to generalize our complicated results and translate them into trends. The
challenge will be to integrate this knowledge and to find the level of detail that
is relevant for a given question. The jiggling and wiggling of atoms in proteins
has to be part of this global picture and certainly holds some surprises for future

research.
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