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Quintessenz Kosmologie

Zusammenfassung

In dieser Arbeit diskutieren wir kosmologische Modelle in denen ein skalares Quintessenz

Feld die dunkle Energie im Universum beschreibt. Nach einer kurzen Einführung in die

bekannte Kosmologie erweitern wir unsere Analyse und diskutieren Störungsrechnung

in der Allgemeinen Relativitätstheorie. Wir leiten ’Isocurvature’ Anfangsbedingungen

für die primordialen Fluktuationen her. Im Falle von ’tracking quintessence’ gibt es

keine zusätzliche Isocurvature Mode durch das Quintessenz Feld. Weiterhin diskutieren

wir den Einfluss von ’früher Quintessenz’ auf das CMB Spektrum und vergleichen

dies mit den Daten des WMAP Satelliten. Schliesslich untersuchen wir die Folgen

einer Veränderung der fundamentalen Konstanten auf die Vorhersagen der Urknall

Nukleosynthese, wobei das Quintessenz Feld für die Zeitabhängigkeit der Koppelungs-

konstanten verantwortlich ist.

Quintessence Cosmology

Abstract

In this thesis we will analyze cosmological models containing a scalar field instead of

a cosmological constant to account for the dark energy component of the universe.

First, we will give a brief introduction to the background cosmology. We will then

extend our analysis to perturbation theory in General Relativity. We determine possible

isocurvature initial conditions for primordial perturbations. In tracking quintessence

scenarios, no additional isocurvature mode is introduced by a quintessence field. After

that, we discuss the influence of early quintessence energy density on the CMB spectrum

and compare this to the first year WMAP data. Finally, we investigate the possible

influence of a variation of the fundamental constants on the predictions of Big Bang

Nucleosynthesis calculations. Quintessence comes into play as the driving field for the

time evolution of the fundamental constants.
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Chapter 1

Introduction

How to start the introduction of a subject like cosmology, which covers so many different

fields of physics? Let’s do it by imagining something very simple: It is a moonless night,

we are sitting in the open and the sky is filled with millions of stars. Who could resist

asking the simplest and most obvious questions? Where does all of this come from?

What is the nature of the universe, the reason behind it, what are the laws that describe

this beauty?

Cosmology tries to answer this question and describe the universe as we observe it

today in a scientific language. In theoretical physics it sometimes happens that the

beauty of nature is hidden within the equations but don’t forget – it is nevertheless

there.

We will demand the freedom of assigning the birthdate of modern cosmology to the

formulation of the theory of general relativity by Einstein [1–3] at the beginning of the

20th century. Of course people have looked into and pondered about the nature of our

universe for thousands of years. The observational means by which this happened did

improve quite a lot with time but it was the geometrical description of gravitational

interactions that formed our present understanding of the universe.

At the beginning of the 20th century people thought of the universe to be static.

This is also apparent in the fact that Einstein wrote down his equations including a

constant term allowing for such a static universe to be a solution of the equations. The

first one to actually observe the contrary, namely that the universe was expanding,

was Edwin Hubble in the 1920’s. He found that all galaxies are drifting away from us

with a velocity that is proportional to their distance. It is hard not to overestimate

the importance of this observation, for that it paved the way for physicists to think of

the universe to be evolving and dynamic in nature. From that moment on the static

universe was history and scientists were asking questions as to how the universe came

into being and what its fate will be. These question are part of the general quest in

cosmology, that is to find a suitable description of our universe that will answer (most)
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of our questions about the universe we live in.

The next milestone in the development of modern cosmology clearly was the (acci-

dental) detection of the Cosmic Microwave Background (CMB) by Arno Penzias and

Robert Wilson [4] in 1965, which had been predicted by George Gamow some years

earlier. It seemed as if we had glimpsed at the very light of creation, the afterglow of

the Big Bang! Suddenly we had a window into the very early universe and could test

our hypothesis about the evolution of the universe against observations.

It was not much later that physicists realized that this remarkable observation can-

not be explained by ”simple” Big Bang cosmology because we cannot explain the ob-

served isotropy of the CMB. This was the first of several discrepancies between theory

and observation that would lead to a more sophisticated model of cosmology.

1.1 The Standard Cosmological Model

It is only in the past decade that physicists started started to think of a standard

cosmological model. In the preceding years scientists tried to solve separate problems

and the idea that it could be combined together to provide a consistent picture of our

universe seemed far away. The cosmological ”standard model” is not to compare with

the standard model of particle physics. It rather is a collection of different mechanisms

and processes that scientists believe must have been involved in the evolution of our

universe. This model explains many of our observations but also leaves open questions.

Owing to the fact that we see the universe is expanding today, the standard model

in cosmology assumes that at the beginning of the universe there must have been

something comparable to the Big Bang, an initial singularity from which spacetime

suddenly came into being and expanded since. This might have happened only once or

the universe entails some kind of cyclic mechanism of Big Bang, expansion and then

recollapsing into a singularity again.

After this act of creation the universe is governed by Planck-scale physics about

which we now nothing at all. It would require the knowledge of a Theory of Everything

(ToE) which we don’t know. We are nevertheless sure that shortly after that epoch the

process of inflation [5–7], driven by one or more inflaton fields, must have taken place.

During this very brief moment the universe expands by at least 55-65 e-folds so that the

particle horizon from the time of inflation is larger than our observable universe today.

Hence the observable universe has been in causal contact and that is the reason why the

Cosmic Microwave Background (CMB) we observe today is so extremely homogeneous

and isotropic – it was a patch of the early universe that was in thermal equilibrium

before inflation. As a side effect the curvature of spacetime, if there was one, is driven

beyond our horizon and the universe appears to be flat.
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Following this inflationary phase the inflaton field decays and produces particles

and entropy. Further expansion now cools down the universe. As our universe contains

mostly particles and no antiparticles something must have disturbed this equilibrium.

We therefore need CP and baryon number violating processes in the standard model

of particle physics so that the universe contains mostly particles after the electroweak

phase transition. There are several different possible mechanism proposed to explain

this phase transition but to rule out all but one of those scenarios is beyond our present

knowledge. The same statement holds for the process of inflation.

The universe is still expanding and cooling down to a temperature where the first

nuclei are not immediately torn apart, i.e. a temperature in the range of nuclear binding

energies. This Big Bang Nucleosynthesis (BBN) is quite well understood, owing to

the fact that one can do nuclear physics experiments in the laboratory and measure

nuclear reaction cross-sections. This nucleosynthesis leads to the production of mainly

deuterium, helium, lithium-7 and beryllium. The predicted abundances of helium,

deuterium and lithium fit the measured abundances fairly well while the remaining

uncertainties leave space for speculation. The higher elements like carbon, oxygen,

nitrogen etc. are only synthesized in very small amounts and are mostly produced later

in the interior of stars – and yes, it is true, we are all made up of stardust. The universe

is still to hot for the nuclei to bind electrons and form atoms, therefore the mean free

path of the photons is very short because of all the unbound electrons and the universe

is opaque to photons.

Eventually the temperature drops below ∼ 0.4eV and the atoms recombine. The

photons can now travel freely without being scattered. This is the ”emission” of the

Cosmic Microwave Background (CMB) radiation, containing much information about

the universe at that time. As this radiation travels through space it gets more and more

redshifted due to universal expansion but is still bearing the imprint of the fluctuations

in the baryon photon plasma when it was emitted. In addition the radiation picks up

traces of physical effects that change the pattern of fluctuations until it finally reaches

us today and helps to improve our understanding of the early universe.

Following the last scattering of the CMB photons, nothing happens for a while, the

universe is pretty dark until the first stars are formed. Driven by gravitational collapse

the baryonic matter forms the first generation of stars which are so massive that they

are very hot and have a very short lifetime. Their existence leads to a reionization

of the universe which in turn leads to scattering of the CMB photons on the free

electrons, an imprint which astronomers and cosmologists are able to determine in the

CMB observations. Further gravitational collapse leads to the formation of galaxies

and galaxy clusters out of the initial density fluctuations.

Finally the universe should (according to the theory) end up as we observe it today.

Very clumpy with huge empty regions in it, lots of stars in lots of galaxies, no signs of
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anti-matter and a surprisingly homogeneous and isotropic cosmic background radiation.

In the remarks above the ”history” of the universe as understood by the standard

cosmological model is sketched. But what are the open questions concerning the physics

behind this? The ingredients came from the standard model of particle physics together

with a theory of gravity. The most puzzling questions that remain to be explained in

cosmology are the questions about the nature of dark matter and dark energy.

1.2 Dark Matter and Dark Energy

Many observations cannot be explained by the physics we know and therefore lead to

the introduction of new concepts in physics. The first of such problems the astronomers

discovered was that the rotational characteristics of galaxies were different from what

they expected. If one looks edge on (or at a small angle) onto a galaxy one can see part

of this galaxy rotating away and the other part rotating towards the observer. From

the relative redshift one can infer the rotation velocity at different distances from the

center and plot the result. If we think of the galaxy as a bunch of stars that orbit

around the center we would expect (in a simplified case) the rotation velocity to drop

of like v ∼ r−1/2. Instead we observe an almost constant rotation velocity extending

into the halo of the galaxy – if Newtonian dynamics still hold there must be much

more matter rotating than we can observe. This non-luminous matter is termed dark

matter is seen in most galaxies and also in the rotation velocities of galaxies in galaxy

clusters. When regarding the whole universe this dark matter is much more abundant

than baryonic matter, it amounts to roughly 30 percent of the total energy and matter

content of the universe (Ωdm ≈ 0.3) whereas the baryons only contribute Ωb ≈ 0.05.

The question about the nature of dark matter has jet to be answered. Brown dwarfs,

MACHOS and by now also neutrinos have been ruled out while particle physics still

provide quite a lot of candidates including axions, axinos, other LSSP and many more.

The quest continues and may be (!) solved once the LHC at CERN is fully operational.

The second big mystery in cosmology is that of dark energy. The isotropy of the

CMB is the origin of a chain of arguments that lead to the postulation of this myste-

rious dark energy. When we look at the sky in different directions we look at CMB

radiation that originated from parts of the universe that have never been in causal

contact and could therefore not have established thermal equilibrium. Yet the radi-

ation is so isotropic that it is inconceivable that this isotropy is not due to thermal

equilibrium. The answer to this puzzle is provided by inflation. As mentioned above,

we assume that at some very early time the universe must have undergone a period of

inflationary expansion that blew up the universe so that our observable universe today

originates from a patch of the universe that has been in thermal equilibrium before
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inflation occurred. This mechanism also leads to the observable universe being flat (or

close to it) because any curvature that it might have possessed has also been driven

beyond our horizon. At a given expansion rate and a given size of the universe we

can use the Friedmann equations to calculate the critical energy density that would be

needed to make the universe flat. Summing up the tiny fraction of baryons and the

dark energy we realize that the largest contribution towards Ωtotal = 1 must come from

some homogeneously distributed dark energy with Ωde = 0.6 − 0.7. The simplest and

most straight forward way to handle this dark energy would be to attribute it to some

constant vacuum energy density, the cosmological constant Λ. 1 It fits the available

data very good but it is – from a theoreticians point of view – not very satisfying.

Another model for the dark energy is the scalar quintessence field proposed by C.

Wetterich [8] and Ratra and Peebles [9]. The quintessence scenario will be discussed in

more detail later.

1.3 Structure of the Thesis

We will briefly introduce the basic concepts of cosmology in Chapter 2. That in-

cludes a short description of the Einstein equations and a discussion of the background

cosmology. We will introduce the Friedmann equations and analyze them in some well-

known cases. The basic parameters in cosmology are introduced. The problems of dark

matter and dark energy are described and a summary of suggested solutions is given.

Also, the idea of a quintessence field is explained and motivated and some examples of

quintessence potentials are provided.

In Chapter 4 we will describe the most important observations concerning cosmology.

This especially entails a description of the CMB and the various effects that can be

described in the CMB spectrum. Also, recent supernovea, LSS and other observations

are mentioned. Current constraints on cosmological parameters arising from those

experiments are quoted.

After this introductory part (which will hold only few things the informed reader

will not be familiar with) we will turn to perturbation theory in cosmology. In Chapter

5 the gauge problem is discussed and a gauge-invariant formalism is developed. The

derivation follows the existing literature and is presented as a self contained chapter.

In Chapter 6 we explore perturbation theory to derive possible non-adiabatic initial

conditions for the primordial perturbations. The analyzed universe contains baryons,

cold dark matter, radiation, neutrinos and a quintessence field.

1As is common knowledge, Einstein wanted his equations of GR to allow for a static universe solution

and therefore he already introduced a cosmological constant, though for a different reason than we

do today.
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After this we are going to take a closer look at the CMB spectrum. This is done

in Chapter 7. The results of the first year WMAP data are interpreted in terms of a

possible presence of dark energy at the level of a few percent at an earlier epoch rather

than a k-dependent spectral index as proposed by the WMAP collaboration.

Finally, we will discuss the possible influence a change of the fundamental couplings

has on the abundance predictions from Big Bang Nucleosynthesis. To do this a semi-

analytical estimate for the primordial helium abundances is calculated. This work is

found in Chapter 8.

The work presented in this thesis, especially the Chapters 6-8, was undertaken in

close collaboration with Michael Doran, Christian M. Mueller and Christof Wetterich

as can also be verified from the publications on the various subjects.



Chapter 2

Background Cosmology

Throughout this thesis we will work in units where c = ~ = 1. For the metric we will

use the convention η = diag(−1,+1,+1,+1). Latin indices denote space dimensions

i = 1..3 whereas Greek indices run from µ = 0..3. We use the subscript ’de’ for dark

energy in general, ’q’ for quintessence and ’m’ to denote matter (dark matter plus

baryonic matter). A superscript 0 denotes quantities measured today.

2.1 Riemannian Geometry

This section is a short overview over the aspects of Riemannian geometry we need as

well as an introduction to the Einstein field equations. All of it is well known to the

reader and is just repeated for completeness.

For the theory of general relativity the most important question is how to handle the

curved spacetime. Fortunately Einstein didn’t have to come up with a theory himself

but could rely on the work that was done in the 19th century by Georg Friedrich

Bernhard Riemann (1826-1866). Instead of going into details we will just mention the

important points. First, we will define the covariant differentiation (which assures that

the derivative of a tensor of rank (n) is a tensor of rank (n + 1)) given as

DAµ

dxν
≡ Aµ

;ν =
∂Aµ

∂xν
+ Γµ

λ νA
λ (2.1)

where the Christoffel symbols are

Γµ
λ ν =

1

2
gµ κ(gλ κ, ν + gκ ν,λ − gλ ν,κ). (2.2)

According to variational principle particles moving in a curved space do so along

geodesics, for which the defining equation reads

d2xµ

ds2
+ Γµ

λ κ

dxλ

ds

dxκ

ds
= 0. (2.3)



8 Background Cosmology

With the help of this equation we can now calculate the trajectory of a particle moving

in a spacetime given a specific metric without telling us how to obtain this metric. The

tensor describing the curvature of the manifold is the Riemann tensor Rµ
ν κ λ. If we

contract two of the indices we obtain the Ricci tensor

Rµ ν = Rρ
µ ρ ν . (2.4)

Further contraction leads to the curvature scalar R = gµ νRµ ν .

2.2 Einsteins Field Equation

The central idea in the theory of general relativity is that matter and energy influence

the geometry of spacetime. Therefore we search for a field equation relating the energy

momentum tensor to the geometry described by the Riemann tensor. The important

question is what do the field equations look like? The Einstein Equation can be obtained

from the action principle if one minimizes the action S = SEH + SM with respect to

the metric gµν . The action contains the Einstein-Hilbert part SEH describing gravity

and the part from the normal matter fields SM . They are given by

SEH = − 1

16πG

∫

d4x
√−g (R + 2Λ) (2.5)

and

SM =

∫

d4x
√−g LM (2.6)

respectively. Calculating δS/δgµν = 0 yields the Einstein Equation

Gµ
ν ≡ Rµ

ν − 1

2
δµ

νR = 8πGT µ
ν + δµ

νΛ. (2.7)

The equation contains a cosmological constant term Λ dating back to Einstein. We will

discuss later why scientists nowadays reintroduced this constant term.

We could have also tried to simply write down the field equation and worry about

the Lagrangian later. This may serve as a little motivation if one does not trust the

action appearing so suddenly. So lets guess the vacuum field equation. For instance

one could try Rµ
ν κ λ = 0 but it would imply that the spacetime in vacuum is always

flat, i. e. no gravitational field. The better guess would be to choose Rµ ν = 0. This

does not imply Rµ
ν κλ = 0 and also delivers 10 equations for the 10 unknowns of gµ ν .

Extending this to the matter field equations we relate the curvature of spacetime to the

energy momentum tensor Tµ ν . We could therefore write Rµ ν = −8πGTµ ν . But energy

and momentum are conserved and therefore T µν
;ν = 0, whereas Rµν

;ν 6= 0. Instead we

can try to find invariants that obey the above relation and quickly find one of the most

simple ones, the Einstein tensor

Gµ
ν = Rµ

ν − 1

2
δµ

νR (2.8)



2.3 FRW Metric and Friedmann Equations 9

with G ;ν
µ ν = 0. It is very fortunate that the (man made) Einstein Hilbert action gives

the same result for the field equation as we obtained by just guessing them.

2.3 FRW Metric and Friedmann Equations

We can now start looking for solutions of Eq.(2.7). This is not an easy task because the

field equations are non-linear. The first solution was put forward by Schwarzschild in

1915 and it is a vacuum solution describing the metric around a spherically symmetric,

static mass distribution – the well known Schwarzschild metric.

For the purpose of cosmology we invoke two assumptions in order to find a solution

to Eq.(2.7), namely that the universe is homogeneous and isotropic on large scales and

that it is expanding. This leads us to the Friedmann-Robertson-Walker metric

ds2 = c2dt2 − a2(t)

[

dr2

1 − kr2
+ r2(dθ2 + sin2 θdφ2)

]

, (2.9)

where the scale factor a(t) plays the important role of leading to universal expansion of

space and is related to the Hubble parameter via H = ȧ/a. The coordinates (t, r, θ, φ)

are referred to as comoving coordinates, that means an observer initially at rest stays

at rest and the time t is the proper time of an observer in that coordinate system.

From this solution we can determine the dynamical equations of cosmology. In order

to determine the left hand side of Eq. (2.7) we need to calculate the non-vanishing

Christoffel symbols. Assuming the energy density of the universe is that of a perfect

fluid, the energy momentum tensor reads

T 0
0 = −ρ, T 0

i = T i
0 = 0 and T i

j = pδi
j . (2.10)

We therefore obtain

T µ
ν = (ρ + p)uµuν + pδµ

ν . (2.11)

Writing out the 0 − 0 component of Einstein field equations yields

(

ȧ

a

)2

+
k

a2
=

8πG

3
ρ +

Λ

3
, (2.12)

and the i − i component gives

2
ä

a
+

(

ȧ

a

)

+
k

a2
= −8πGρ + Λ. (2.13)

These are the two Friedmann equations describing the dynamics of the background in a

homogeneous, isotropic and expanding universe. In fact the energy density is comprised

of the different particle species and radiation in the universe, i. e. ρ =
∑

i ρi. Usually

one writes Ωi = ρi/ρc, where

ρc = 3H2/8πG (2.14)
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is the critical energy density. With the definition Ωk = −k/H2a2 we can rewrite

Eq. (2.12) as

1 − Ωk =
∑

i

Ωi = Ωtotal. (2.15)

The Friedmann equations are usually quoted without the cosmological constant term

and we will also drop it because it just corresponds to a contribution towards ρ with

an equation of state w = −1.

The third equation follows from the conservation of energy and momentum T ;ν
µ ν = 0

as

ρ̇ + 3(ρ + p)
ȧ

a
= 0. (2.16)

Note that Eqns. (2.12), (2.13) and (2.16) are not independent of each other. The

parameter k indicates the geometry/future expansion of the universe. Inspecting Eq.

(2.12) we see that if k < 0 then ȧ can never be zero, i. e. the expansion never stops. For

k > 0, ȧ can be zero at k = 8πG
3 ρa2. The limiting case k = 0 allows ȧ to become zero

as a → ∞. Usually one assumes a rescaling of the coordinates so that k takes on the

discrete values k = −1, 0,+1. These three different cases are termed open (k = −1),

flat (k = 0) and closed (k = +1) universes.

2.4 Evolution of a and ρ in a flat Universe

We can now investigate the dynamics of the universe for several so-called Friedmann

models. In order to solve the equations we need to know the equation of state w = p/ρ

relating the energy density to the pressure. In a flat universe (k = 0) we differentiate

Eq. (2.12) with respect to time and combine it with Eq. (2.16). We then obtain

ä = −4πG

3
(1 + 3w)ρa. (2.17)

Again inserting this in Eq. (2.13) yields the relation

ρ̇

ρ
= −3(1 + w)

ȧ

a
, (2.18)

i. e.

ρ ∝ a−3(1+w). (2.19)

Likewise, the behavior of a is given as

a ∝ t2/3(1+w) (2.20)

Putting it in this form has the advantage that we can investigate the different scenarios

according to the equation of state that is dominating the dynamics. For the radiation

dominated universe we have w = 1/3 and accordingly ρ ∝ a−4, whereas for the matter
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dominated universe the pressure and hence the equation of state is zero, leading to

ρ ∝ a−3. The classical interpretation of this result is straight forward. The energy

density of matter drops of with the cube of the length scale because space is expanding

and the energy gets distributed over a bigger volume. For radiation, the redshift due

to space expansion results in an additional factor ∝ a−1 depleting the energy density.

If in the other hand the cosmological constant dominates over matter and radiation

we obtain the interesting result

a(t) = a0e
(Λ

3 )
1/2

t , (2.21)

where H = (8πGρvac/3)
1/2 = (Λ/3)1/2 and hence

a ∼ eHt. (2.22)

A constant vacuum energy density leads to the so-called Einstein-de Sitter phase in

which the universe is exponentially expanding. It is the same mechanism that, ac-

cording to the cosmological standard model, lead to inflation. Although the exact

dynamics depend on the shape of the potential of the inflaton field the mechanism is

similar. Shortly after the Big Bang the inflaton has a non-zero vacuum expectation

value and therefore drives the universe in the de Sitter phase of exponential expansion.

The late time behavior of our universe, if dominated by a cosmological constant, will

also be de Sitter like.

A way of classifying accelerated expansion can be seen from Eq. (2.17). In a flat

universe containing only matter (wm = 0) and dark energy (wde) we can find

− ä

ȧ
= 1 + 3wdeΩde. (2.23)

For an accelerated expansion we require ä/ȧ > 0 and hence we obtain

wdeΩde < −1

3
(2.24)

as a condition for the universe to undergo accelerated expansion.

2.5 Cosmological Parameters and the Age of the Universe

Space is expanding and hence radiation being emitted and traveling through space gets

redshifted. The redshift in wavelength is defined as

λ − λ0

λ
= z, (2.25)

where λ is the observed wavelength and λ0 is the wavelength measured in a laboratory.

This relates to the scale factor a as

a−1 = 1 + z, (2.26)
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with the value of the scale factor today normalized to a0 = 1. The deceleration param-

eter is defined as

q0 = − ä0

H2
0a0

. (2.27)

By integrating the Friedmann equation (2.12) and using the definition above we can

find an expression for the age of the universe as

t0 = H−1
0

∫ 1

0
[1 − 2q0 + 2q0/x]−1/2dx, (2.28)

which can be more conveniently written as

t0 = H−1
0

∫ 1

0
[1 − Ωm − ΩΛ + Ωm/x + ΩΛx2]−1/2dx. (2.29)

In a flat universe, for a purely radiation dominated universe this would result in t0 =
1
2H−1

0 while in a matter dominated universe would be given by t0 = 2
3H−1

0 .

The luminosity distance is defined as

d2
L =

L
4πF , (2.30)

where L is the absolute luminosity of an object and F is the measured flux. A more

familiar form would be

dL(z) = (1 + z)

∫ z

0

dz′

H(z′)
. (2.31)

In a matter dominated universe this can be written as

H0dL = q−2
0

(

zq0 + (q0 − 1)
(

√

2q0z + 1 − 1
))

. (2.32)

For small z we can expand Eq. (2.32) to recover Hubble’s law

H0dL = z +
1

2
(1 − q0)z

2 + .. . (2.33)

Objects are receeding faster from us observers the more distant they are. This ob-

servation lead Hubble to infer universal expansion and abandon the notion of a static

universe.



Chapter 3

Dark Matter and Dark Energy

3.1 Dark Matter

That the universe contains some form of non-luminous matter was first discovered in

1933 by observing the dispersion velocities of the coma cluster [10]. This dark matter

could also be detected by measuring the rotation curves of single galaxies, for which one

example is shown in Figure 3.1. It was observed that the rotation curves of galaxies do

not show the behavior expected from Newtonian dynamics, i.e. the rotation velocity

does not drop off v ∼ r−1/2 but rather stays constant far beyond the optical radius

of the galaxy. These observations confirmed that galaxies and galaxy clusters contain

much more dark matter then luminous matter. So the question is: what can it be?

One possible explanation to the nature of CDM is the existence of a huge abundance

of massive compact halo objects (MACHO’s) in the galactic halos. With the help of

microlensing effects between the large magellanic cloud and us these postulated brown

dwarfs or massive planets have been constraint to a number density which is by far not

sufficient to explain the galactic rotation curves [12,13]. Another serious problem with

MACHO dark matter is that primordial abundance measurements and the theory of

BBN predict Ωb ≈ 0.04.

The alternative is to invoke particle physics to find elementary particles that can

constitute the dark matter. Depending on the mass of the particle it is usually differ-

entiated between hot dark matter (particles which are relativistic at decoupling with

masses around mx ≤ 30eV) and cold dark matter (particles that are non-relativistic

with masses above several GeV). Within this classification mixed dark matter scenarios

are also possible and are investigated.

Many candidate particles have been suggested. The cold dark matter particle has

to be very weakly interacting, that is why historically the neutrino (with unknown rest

mass at that time) was a prominent dark matter candidate. We know that the formation

of small scale structure is suppressed by hot dark matter like light neutrinos because
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Figure 3.1: Rotation curves for a sample of spiral galaxies [11]. Ropt denotes the radius

encompassing 83% of the total I-band luminosity and is comparable to the optical

radius of the galaxy. MI denotes the I-band absolute magnitude. One can clearly see

effect of the dark matter halo which extends much farther than the luminous part of

the galaxy. Figure taken from [11].

they are not pressureless, hence the hot dark matter scenario is seriously constraint by

structure formation calculations. A variety of CDM particle candidates are presented

in the literature. The existence of weakly interacting massive particles (WIMP’s) was

inferred, which merely is a description of the properties a CDM particle should have,

namely sufficient weak interactions to have been able to avoid detection in modern

particle detectors as well as enough mass to account for Ωc ≈ 0.3.

One of the first proposed particles was the axion, which arises in the solution of the

strong CP problem in particle physics [14]. Some of the more prominent possibilities

arise from the supersymmetric extension of the standard model. If in supersymmetric

theories R-parity is conserved the lightest supersymmetric particle (LSSP) is stable

against decay and can therefore constitute the CDM. On the other hand, if it is not

stable a lifetime of the Hubble time would be necessary for this particle to contribute

significantly to Ωc. As an example of the suggested CDM particles the axino, the

superpartner of the axion, can fit the CDM constraints with a mass m ≈ 100keV and

a reheating temperature of 106K as has been shown in [15].

The DAMA collaboration has claimed [16] to have detected an annual modulation

of the signal and attributed it to dark matter particles recoiling in the DAMA detector.

They conclude that the neutralino mass lies in the range 30GeV ≤ mx ≤ 130GeV at

the 1-σ confidence level. This signal could not be detected in the recent experiments
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like CDMS II [17] or EDELWEISS [18].

Direct upper limits for the WIMP mass cannot be given without the specification of

a cross-section (which is model dependent). For current exclusion limits in the mass–

cross-section plane see [18]. The question what the dark matter particle might be has

not been answered yet.

In this work we will mostly ignore this lack of knowledge and assume that the dark

matter is comprised of particles which constitute pressureless cold dark matter with an

equation of state wCDM = 0.

3.2 Dark Energy

As already mentioned in the introduction, the isotropy of the CMB poses a mayor

theoretical problem which is solved by introducing the mechanism of inflation. One

of the consequences of this model is that the universe is flat and hence its energy

density exactly equals the critical energy density ρc today. Considering the amount of

luminous matter that we can observe and adding the dark matter that we can deduce

from observations there is still a fraction of ΩDE ∼ 0.6 − 0.7 missing. Furthermore,

observations of supernovae by the Hubble Space Telescope suggest that the universal

expansion is accelerating in the recent history [19]. That is only possible if the dark

energy component has a negative equation of state today and is dominating the energy

density content of the universe (as was demonstrated with Eq. 2.24).

In some models the dark energy is identified with the aforementioned cosmological

constant Λ. The theoretical implications of this are serious. We think of the vacuum

energy as the zero point energy of some quantum theory of gravity it would be given

by

ρΛ ∝
∫ ∞

0

√

k2 + m2 k2dk. (3.1)

This integral is ultraviolet divergent ∝ k4. To obtain a finite value we can regularize

with a cutoff scale which in this case would be the Planck scale ∼ MP̄ . We therefore

expect the energy density to be of order ρΛ ∼ M4
P̄
. This is roughly 120 orders of

magnitude bigger than the measured value of ρΛ. It would require an absolute ridiculous

amount of fine tuning in the theory to get such a small vacuum energy density. Having

a lower cutoff scale like the QCD scale or some supersymmetry breaking scale would

also not solve the issue but only shift it to a discrepancy of, say, 60 orders of magnitude.

Another question that is raising doubts about a cosmological constant is the so-

called coincidence problem. Why does the cosmological constant become important

only recently at the same epoch where structure formation takes place? It is extremely

unlikely that a constant that is completely negligible in the past and will dominate the

future of the universe is observed by us to be of the order of the matter contribution.
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3.2.1 Possible Solutions to Dark Energy and Modifications of General

Relativity

First of all we can try to explain the observed features that we described as dark

energy with physical arguments within the theory of General Relativity. One of the

first explanations proposed was a network of topological defects. They would exhibit a

negative equation of state w = −1/3 [20] but are nowadays ruled out by observations

because w < −0.76 at 95 % confidence level [19]. The same argument holds for domain

walls which predict w = −2/3 [21] but are equally well ruled out.

The next step is to think about a modification or extension of the theory of General

Relativity. Whether this modification is purely phenomenologic in nature or motivated

by higher dimensional physics is of no importance as any justification would need to

involve a more fundamental theory of nature. This overview over possible dark energy

scenarios does not claim to be complete but covers the prominent scalar field theories

and some other models.

3.2.2 Brans-Dicke Theories

Dating back to 1961, Brans and Dicke proposed a scalar field modification to GR [22].

The concept is to invoke a non-minimal coupling between a scalar field φ and gravity.

We can write the Lagrangian for that theory as

LBD =
√−g

(

φR − ω

φ
∂µφ∂µφ − 2V (φ)

)

, (3.2)

where ω is the Brans-Dicke parameter. The field φ can be regarded as the inverse of

Newton’s constant and hence this theory predicts a time dependence of the gravitational

interaction strength.

By minimizing the action w.r.t the metric we can now find the modified Einstein

equation. This altered Einstein equation leads to different Friedmann equations for a,

φ and ω. We combine Eq. (3.2) with a FRW metric Eq. (2.9) and obtain [23]

H2 + H
φ̇

φ
− ω

6

φ̇2

φ2
− V

3φ
=

ρ

3φ
, (3.3)

2
ä

a
+ H2 +

φ̈

φ
+ 2H

φ̇

φ
+

ω

2

φ̇2

φ2
− V

φ
= − p

φ
(3.4)

and

φ̈ + 3Hφ̇ =
(ρ − 3p)

2ω + 3
(2V − φV ′(φ)). (3.5)

Using the equations above one can now study the dynamics in Brans-Dicke theory

Eq. (3.2) is given in the Jordan frame where free falling test particles follow

geodesics. For a more convenient representation in which the gravitational sector of
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the action is written in the usual way we can Weyl scale the metric according to

gµν = eσ/σ∗ ḡµν , eσ/σ∗ = 16πGφ, σ∗ =

√

2ω + 3

16πG
. (3.6)

Now the the Lagrangian reads

LBD =
√−ḡ

(

1

16πG
R̄ − 1

2
∂µσ∂µσ − U(σ)

)

, (3.7)

where the potentials are related by

U(σ) = 2e−2σ/σ∗V (φ(σ)). (3.8)

This scalar-tensor theory is the inspiration for most scalar field cosmologies as well as

many other theories concerning the modification of gravity on large scales. It also bears

a strong connection to coupled quintessence theories which we will mention later.

3.2.3 Quintessence

One of the promising attempts to extend standard GR to explain the fine tuning and

coincidence problems is a minimally coupled scalar field ϕ called quintessence proposed

by Wetterich [8] and Ratra and Peebles [9] in 1988. The energy density of this field

is obviously time dependent and accounts for the dark energy. It was pointed out by

Zlatev, Steinhard and Wang [24, 25] that a whole class of those models shows similar

behavior, the so-called tracking quintessence models. The equation of state of the

tracking quintessence will follow the behavior of the background equation of state while

the energy density develops towards an attractor solution for a wide range of initial

conditions. In those models the energy scale of the potential determines the epoch

at which dark energy will dominate. If the potential starts with energies consistent

with high energy physics the coincidence problem is solved because the present dark

energy domination is achieved naturally. Fine tuning is also not necessary because the

quintessence follows the evolution of the background while at late times the quintessence

field dynamics depend on the form of the potential. The generically small value of the

dark energy component today is then easily explained – it is so small because the

universe is so old and only recently the quintessence field has begun to dominate the

universe.

As with the other extensions of GR it is a phenomenological model because we are

lacking the fundamental theory which could predict such a field. Hence we can only

write down a Lagrangian and assume that this is the effective action, including all

unknown quantum fluctuations. We can write down a Lagrangian for the quintessence

field

Lq =
√−g

(

1

2
∂µϕ∂µϕ + V (ϕ)

)

, (3.9)
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where the potential V (ϕ) distinguishes different quintessence models. The energy mo-

mentum tensor for the quintessence field can then be obtained as [8, 24, 25]

T µ
ν = ϕ,µϕ,ν − δµ

ν

(

1

2
ϕ,αϕ,α + V (ϕ)

)

, (3.10)

while the equation of state reads

wq =
ϕ̇2/2 − V (ϕ)

ϕ̇2/2 + V (ϕ)
=

T − V

T + V
. (3.11)

Here we can see that if the quintessence field varies slowly in time ϕ̇2 � V its behavior

is close that of a cosmological constant. The aforementioned tracking behavior can be

expressed as a tracking condition

V ′

V
≈ Ω−1/2

ϕ ≈ H

ϕ̇
. (3.12)

The equation of motion for the quintessence field is given by the Klein-Gordon equation

for ϕ

ϕ̈ + 3Hϕ̇ + V ′(ϕ) = 0, (3.13)

where

H2 =
8πG

3

(

ρm + ργ +
1

2
ϕ̇2 + V (ϕ)

)

(3.14)

with ρm being the matter and ργ the radiation energy density.

3.2.4 Quintessence Potentials

We will give a short account of the some popular quintessence models without the

notion of completeness.

Inverse Power Law

One of the first and most simple potentials that have been proposed is the inverse power

law potential (IPL) [9]

V (ϕ) = V0ϕ
−α. (3.15)

Obviously this power law can be chosen to be as close to a cosmological constant as

one wishes by adjusting the parameter α.

Exponential Potential

The exponential potential [26] is written in the form

V (ϕ) = V0 exp

(

− αϕ

MP̄

)

, (3.16)
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where MP̄ is the reduced Planck mass. It the most simple form of potential but cannot

make the transition from subdominant to dominant energy density component of the

universe in late times. The equation of state is confined to w0
q = 0 today. Sahni and

Wang proposed a model [27]

V (ϕ) = V0(cosh λϕ − 1)p (3.17)

This model interpolates from V ∝ epλϕ to V ∝ (λϕ)2p, thereby preserving some of

the properties of the simpler exponential potential but allowing a different late time

behavior.

SUGRA Models

Brax and Martin [28] have put forward a model that is a supergravity extension of the

IPL potential

V (ϕ) =
Λ4+α

ϕα
e

κ
2
ϕ2

, (3.18)

with κ = M−2
P . The early evolution is similar to that of the unchanged ILP but at late

times the exponential term allows this model to reach an equation of state wq close to

wq ≈ −1. As an example, for parameters α = 11, Λ ≈ 1011GeV and Ωq = 0.7 they find

wq = −0.82.

Also inspired by supergravity is the scalar field potential suggested by Barreiro et.

al. [29, 30] which consists of two exponentials

V (ϕ) = M 4
P

(

eακ(ϕ−A) + eβκ(ϕ−b)
)

, (3.19)

with A being a free parameter while B is constrained by the condition M 4
P eβB ∼ ρϕ.

The authors emphasize that all parameters are of order Planck scale which makes this

model more natural while still being able to give the observed dark energy behavior.

Albrecht and Skordis [31, 32] have analyzed a potential of the from

V (ϕ) = V0[(ϕ − B)2 + A]e−λϕ. (3.20)

The most general approach perhaps is presented by Ng et. al. [33] who studied a

potential of the form

V (ϕ) ∝ ϕνeαϕβ
. (3.21)

Leaping Kinetic Term

The most prominent question about the quintessence field is how can it make the

transition from the tracking regime to become the dominant energy density component.

For the most simple exponential potential this cannot be achieved because the equation

of state for such simple models is w0
q = 0 today. We can assume more complex potentials
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Figure 3.2: The evolution of the energy density of radiation (Ωr) and matter (Ωm) in

a LKT quintessence model.Also shown is the equation of state of the quintessence field

wϕ. Figure taken from [34].

(like some of the potentials mentioned above) in order to obtain a quintessence model

which naturally predicts a negative equation of state to fit the observed w0
q .

A more systematic way to address this issue is presented in [34]. The main aim of this

approach is to present a theory of quintessence which does not contain any unnaturally

small parameter to avoid the problem of fine tuning but still shows the features that

are needed for a viable quintessence model. The Lagrangian for the quintessence field

is written in the form

L(ϕ) =
1

2
∂µϕ∂µϕ k2(ϕ) − M4

P̄ eϕ/MP̄ , (3.22)

The ϕ-dependent kinetic term can be be put in a standard form with an appropriate

change in the exponential (for details see [34]). This theory predicts early quintessence

contribution towards Ωtot = 1 of size Ωq = nbk
2. We therefore have an upper bound

on k(ϕ) during last scattering and structure formation. The contributions Ωls
q or Ωsf

q

are limited to the order of ∼ 10% by observations. An example for k(ϕ) would be

k(ϕ) = kmin + tanh ((ϕ − ϕ1)/MP̄ ) + 1. (3.23)

Here, kmin would have to be small enough not to violate the upper bound on Ωls
q and Ωsf

q

while the transition parameter ϕ1 can be adjusted to give the right late time behavior.

An example of the LKT quintessence is shown in Figure 3.2.4. Other transitions from

the tracker phase to the dark energy dominated phase are possible including a smoother

or more rapid change in k(ϕ) [34].

The recent interest in the variation of the fundamental couplings has lead to model

of quintessence where the quintessence field is identical with the scalar field which

drives the time dependence of the fundamental couplings. This possibility has been
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investigated in [35,36], where the quintessence model was termed crossover quintessence

because of the crossover in the energy density from matter to a dark energy dominated

universe and the crossover in the equation of state of quintessence from the tracking

regime, where it is close to the equation of state of radiation 1/3, to value w0
q < 0

consistent with observations. This crossover quintessence incorporates the change in

αem and the resulting changes in the predicted CMB spectrum in addition to being a

LKT type quintessence.

3.2.5 Coupled Quintessence

In the above the quintessence field ϕ has no direct coupling to matter and interacts

only indirect via gravity. However, there also exist models of quintessence in which the

quintessence field is coupled to, for instance, dark matter and/or baryons [37]. Many

of those coupled quintessence scenarios are conformally equivalent to Brans-Dicke type

models with different potential terms [26]. The strength of a possible coupling is also

limited by various experiments as can be seen in [26]. The generic difficulty with coupled

quintessence models is that they have to guess both the coupling and the effective

action (as all the actions quoted here are assumed to be the effective actions). It has

been shown that the quantum corrections are of the order of the potential itself [38]

and hence it is not very likely that by chance one picks the right value for the coupling

given a specific effective action. It is therefore not assured that one analyzes a physically

plausible potential-coupling configuration.

3.2.6 K-Essence

In most scalar field theories, model parameters have to be tuned to explain the co-

incidence of similar dark matter and dark energy contributions toward Ω0
tot = 1. To

solve this problem a scalar field theory was proposed which has a non-linear kinetic

term and thus exhibits new features in the dynamics. This k-essence termed scalar

field [39] shows properties that are comparable to a tracking quintessence scenario.

The k-essence field follows the equation of state of the background during radiation

domination. The difference in tracking behavior shows itself at the epoch where the

universe becomes matter dominated. Because the k-essence field is not able to mimic

w = 0 it dynamically freezes to a small value. After a timescale typically close to the age

of the universe it starts to dominate the energy density of the universe. In a dynamical

relaxation process the equation of state changes from w ≈ −1 to an asymptotic value

between 0 < w < −1 [39]. This scenario explains the coincidence problem at the cost

of introducing a non-linear kinetic term in the Lagrangian. This kinetic term must be

tuned to give the desired dynamics and it is therefore not obvious if this model entails
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less parameter adjustment than a quintessence or Brans-Dicke model.

3.2.7 Higher Dimensions and Brane Cosmology

One can extend GR in many different ways. One possibility would be to invoke a

spacetime with more than d = 4 dimensions. Those theories date back to Kaluza

and Klein [40] who employed a 5-dimensional spacetime and were able to obtain GR

as well as electromagnetism plus a scalar dilaton field by compactifying one of the

space dimension. Today, brane world models with various geometries and spacetime

dimensions are under investigation. Some of them do not serve to unify the different

forces observed in nature but obtain descriptions of the 4-d gravitational field. In those

models, the matter fields are localized on the brane (i.e. the 4 dimensional hypersurface

we live in) while gravitation is a phenomenon permeating the full d dimensional bulk

spacetime. The 4 dimensional metric is modified and hence the dynamics of our universe

change. These brane world models and its parameters are chosen to predict the observed

parameters and properties of our universe. Nevertheless, some features arise quite

natural in these models. This huge and interesting field of research cannot be covered in

a few introductory sentences and we therefore refer the reader to [41,42] and references

therein.

3.2.8 Even more models

Despite having described many different models to explain dark energy we have not

covered the..

Chaplygin Gas

Among the many phenomenological theories to explain dark energy is an exotic fluid

called Chaplygin gas with an equation of state [43]

p = −A

ρ
. (3.24)

It is motivated by higher dimensional physics and allows a supersymmetric extension.

The potential to obtain such an equation of state reads [43]

V (ϕ) =
1

2

√
A

(

cosh 3ϕ +
1

cosh 3ϕ

)

. (3.25)

Phantom Energy

A model of dark energy with an equation of state w < −1 has also been proposed [44].

Such phantom energy termed models lack an explanation in the framework of GR but
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are not excluded by the observations. In fact, some of the recent measurement seem to

favor or at least allow an equation of state smaller than w = −1 [19]. The theoretical

difficulties to explain an equation of state w ≤ −1 are serious. An equation of state

smaller than -1 will violate the strong energy condition, that is, the modulus of the

pressure is greater than the rest energy and that seems to be a bit counter intuitive.

Also, the perturbations in such a theory are not well behaved and allow tachyonic

solutions. On the other hand it is to mention that before dark energy was seriously

considered, a negative equation of state was also regarded not to be plausible.





Chapter 4

Current Observational Tests of

Cosmology

Modern cosmology is not imaginable without the great achievements of observational

astronomy. Since Hubble first observed the redshift of galaxies and Penzias and Wilson

detected the CMB [4] the observational techniques improved enormously.

In this section we will give an account of the most important observations in cos-

mology, including their constraints on cosmological parameters.

4.1 The CMB Spectrum

Any cosmological model today is tested against a variety of different measurements

and experimental data. One of the most important is the measurement of the tem-

perature anisotropies of the CMB. The first measurement of the CMB spectrum was

performed by the COBE satellite [45] with subsequent improvement with the ground

based experiment MAXIMA [46] and DASI [47] and the balloon born experiment

BOOMERANG [48]. The most up to date measurement of the CMB is provided by

NASA’s WMAP satellite [49, 50].

We will give a brief account for some of the features in the CMB spectrum that

have been described qualitatively. In Chapter 7 we will make use of this when studying

the effect of an early dark energy contribution on the CMB spectrum. A much more

detailed discussions of the CMB, including minor effects which have been omitted here,

can be found in [51, 52].
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4.2 Primary Anisotropies

As the universe expands the temperature decreases while the content is in thermal

equilibrium. The neutrinos drop out of the thermal equilibrium at T ∼ 1MeV before the

electron-positron annihilation takes place. Therefore, the temperature of the neutrinos

is lower by a factor Tν = (4/11)1/3T because their temperature is not reheated. After

Big Bang Nucleosynthesis, the temperature reaches value T ∼ 0.4eV at which the

electrons and protons recombine to form neutral hydrogen. From here on the photons

can free stream, i.e. the universe is transparent. This event of last scattering or

recombination is a very fast process because the density of the free electrons drops very

sharply. It is therefore plausible to talk about this process as an event like moment in

the universal history.

When we observe the CMB today we measure an almost perfect blackbody radi-

ation – better than any blackbody we can measure in a laboratory. On top of this

homogeneous radiation we are able to detect small deviations at the order of one part

in 105. It is the pattern of acoustic oscillations in the photon baryon plasma before

last scattering that leads to these tiny anisotropies of the CMB. Before decoupling,

the differential optical depth is very large and hence the scattering between photons

and electrons is very strong. The electrons in turn are coupled electrostatically to the

baryons – together this forms the so-called tight coupling regime. Photons and baryons

behave like a single fluid where the characteristic scale of the fluctuations is given by

the sound horizon in the plasma.

The CMB plane wave that we observe is decomposed into spherical harmonics to

visualize the 2-point correlation function of the anisotropies. We write the temperature

anisotropy observed into direction n as [53]

∆T

T
(n) = ξ(n). (4.1)

This function is position and time dependent and we implicitly assume that it is valid

today on earth. The decomposition into spherical harmonics given by

ξ(n) =
∑

l,m

al,mYm

l (n). (4.2)

The 2-point correlation function is assumed to be independent of direction or orientation

because of statistical homogeneity and isotropy, we can therefore write

〈al,ma∗l′,m′〉 = δll′δmm′Cl. (4.3)

We then obtain

〈ξ(n)ξ(n′)〉 =
∑

l

Cl

l
∑

m=−l

Y m
l (n)(Ym

l (n′))∗

=
1

4π

∑

l

(2l + 1)ClPl(µ) (4.4)
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where Pl(µ) are the Legendre polynomials and µ = n.n′. We can Fourier transform

this expression and obtain the Cl spectrum

Cl = 4π

∫

P (k)k2|∆l(k, τ0)|dk, (4.5)

where the ∆l(k, τ0) are the coefficients of the Legendre series.

We can now interpret the observed 2-point correlation function in terms of physics

that we expect to have taken place. Sound waves are propagating in the plasma and

lead to compression and rarefaction phases. The odd peaks in the observed CMB

spectrum correspond to the compression of the plasma and hence a temperature crest

while the even peaks are due to rarefaction and a corresponding temperature trough.

One of the most straight forward deduction from the CMB spectrum is the curvature

of the universe. By calculating the plasma sound speed we can predict the position

of the first acoustic peak and conclude on the spatial geometry of the universe (inside

our horizon). This is easily understood: with the first peak we observe an angular

scale at the time of last scattering. This angular scale would seem to be smaller (or

larger, respectively) than expected if the universe is closed (open) because of the convex

(concave) bending of the light traveling towards us. Surprisingly, observations suggest

that the universe is indeed flat [50].

Baryon Drag

The baryons are effectively pressureless but contribute towards the mass of the plasma.

This alters the balance between gravitational infall and pressure and subsequently leads

to a relative enhancement of compression peaks over rarefaction peaks. The measured

difference of the first and second peak is therefore sensitive to the baryon density

Ωbh
2. Because one also knows the number density of photons from the temperature

of the CMB the relative height of the first acoustic peak compared to the second

yields the baryon to photon ratio η, an important parameter concerning Big Bang

Nucleosynthesis.

Sachs Wolfe Effect

The difference in the gravitational potential at the last scattering surface with resulting

differences in photon energies, i. e. anisotropies, is called the Sachs-Wolfe effect [54].

It is one of the largest sources for anisotropies on large scales and contributes to the

plateau at the low multipoles up to l ≈ 100. It is those scales that a re larger than the

horizon at decoupling. Its amplitude depends upon the primordial spectrum of density

perturbations and agrees well with a scale invariant primordial spectrum.
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4.3 Secondary Anisotropies

4.3.1 Gravitational Effects

The Integrated Sachs-Wolfe Effect

The time dependence of the gravitational potential along the path of the CMB pho-

ton has a large impact on the CMB. The early ISW is caused by the decay of the

gravitational potential at horizon crossing if the universe was not completely matter

dominated at last scattering. The effect is closer to the observer of the CMB and hence

the same physical scale will arise at a larger scale than the same scale from the primary

anisotropies.

The late ISW effect is due to the decay of gravitational potentials caused by the

expansion of the universe. Photons which are in a potential while it decays pick up an

effective redshift.

In addition, any effect that introduces a metric perturbation along the path of the

photon will alter the CMB spectrum, for instance gravitational waves or topological

defects.

The Sachs-Wolfe and ISW effect have the strongest influence in the low multipole

region. It is important to note that the theoretical errors in this region is dominated by

the cosmic variance limit. Due to the fact that we can observe only one realization of

a CMB sky we have to invoke a sort of ergodic hypothesis: we assume that, for a given

set of cosmological parameters, the average of a patch of our CMB sky, periodically

extended to the whole sky, is equal to the average over many different realizations of

the CMB sky for that set of parameters. This assumption breaks down for the large

angular scales which results in large systematic error bars on those scales.

4.3.2 Scattering Effects

Sunjajev-Zel’dovich Effect

On their path, the CMB photons encounter hot clusters with a lot of free electrons.

These clusters provide a different optical depth which causes preferential scattering [55].

The Doppler effect due to peculiar velocities is known as the kinematic SZ effect.

Likewise, the Compton scattering off hot electrons alters the CMB signal, resulting in

the thermal SZ effect. The cluster therefore sees not only the primary CMB quadrupole

but two additional quadrupoles.

It is possible that future observations try to utilize this effect to extract more infor-

mation about galaxy clusters from the CMB measurements, like for instance the trans-

verse velocity of the cluster. Another interesting option is that the CMB quadrupole as

seen by the cluster contains information about the last scattering surface at the clusters
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position and could help to beat the cosmic variance limit [56, 57].

Reionization

The first stars that have been formed had a massive power output that led to a sig-

nificant fraction of matter being reionized. The ionized intergalactic medium leads to

scattering events between CMB photons and electrons. The intrinsic acoustic oscilla-

tion will be damped by this diffusion process. The reionization signal can be identified

when the temperature polarization cross correlation is studied in the experimental data.

Observations suggest that the reionization started at z ≈ 14 [58]. If star formation is

found to have set in very early it could be a challenging problem to inflation. The end

of the reionization is believed to be around z ≈ 10 [59], although indications suggest

a more complex , non monotonic reionization history with significant reionization still

being present at z ≈ 6 [60].

Small angles

As decoupling is not an instantaneous process the surface of last scattering has a finite

thickness. This leads to the so-called Silk damping at angular scales l = 1000. Gravita-

tional lensing of the CMB photons by clusters and galaxies at small redshifts smoothes

the CMB and further limits the accessible information at small angular scales.

4.3.3 WMAP and other CMB Experiments

The first year result from NASA’s WMAP satellite [50] are of very good quality. The

obtained data set extends up to l ∼ 800 and the data sets of other experiments like

ACBAR, CBI, [61–63] and VSA [64, 65] probing the higher l regions complement the

CMB observations. The CMB map has to undergo a very rigid analysis to remove

the apparent dipole caused by the relative movement of the earth with respect to the

CMB rest frame. Also, the galactic foreground, bright sources like stars and potential

SZ sources have to be removed from the data [66, 67]. As mentioned before, at large

angular scales, i. e. in the low l regions, the experimental precision is limited by cosmic

variance. Recently is was suggested [56, 57] to overcome this cosmic variance limit by

observing the scattered CMB photons from distant galaxies and hence determining their

CMB background to improve the statistics. Whether this will ever be experimentally

possible is unknown, for the time being the cosmic variance contributes significantly to

the uncertainties on large angular scales.

The measurement errors for l between 10 < l < 400 are very small and all cosmolog-

ical model that are taken to be serious fit this part of the CMB spectrum very well. The

higher l region is not as strongly constrained but the suppression of the higher peaks

puts severe constraints on a model with a χ2 comparable to the best fit model. The
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WMAP WMAPext WMAPext + 2dF WMAPext + 2dF + Ly-α

A 0.9 ± 0.1 0.8 ± 0.1 0.8 ± 0.1 0.75+0.08
−0.07

Ωbh
2 0.024 ± 0.001 0.023 ± 0.001 0.023 ± 0.001 0.0226 ± 0.0008

Ωmh2 0.14 ± 0.02 0.13 ± 0.01 0.134 ± 0.006 0.133 ± 0.006

h 0.72 ± 0.05 0.73 ± 0.05 0.73 ± 0.03 0.72 ± 0.03

τ 0.166+0.076
−0.071 0.143+0.071

−0.062 0.148+0.073
−0.071 0.117+0.057

−0.053

ns 0.99 ± 0.04 0.97 ± 0.03 0.97 ± 0.03 0.96 ± 0.02

Table 4.1: Best fit parameters for a ΛCDM model for the different data sets [50].

WMAP WMAPext WMAPext + 2dF WMAPext + 2dF + Ly-α

A 0.92 ± 0.12 0.9 ± 0.1 0.84 ± 0.09 0.83+0.09
−0.08

Ωbh
2 0.023 ± 0.002 0.022 ± 0.001 0.022 ± 0.001 0.0224 ± 0.0009

Ωmh2 0.14 ± 0.02 0.14 ± 0.01 0.136 ± 0.009 0.135+0.008
−0.009

h 0.70 ± 0.05 0.71 ± 0.06 0.71 ± 0.04 0.71+0.04
−0.03

τ 0.20 ± 0.07 0.20 ± 0.07 0.17 ± 0.06 0.17 ± 0.06

ns 0.93+0.07
−0.07 0.91 ± 0.06 0.93+0.04

−0.05 0.93 ± 0.03
dns
d lnk −0.047 ± 0.04 −0.055 ± 0.038 −0.031+0.023

−0.025 −0.031+0.016
−0.017

Table 4.2: Best fit parameters for the running spectral index model as proposed by [50].

WMAP collaboration used two different cosmological models to fit the available exper-

imental data. One cosmological model is a standard Λ CDM model while the other one

is also a Λ CDM model but has the additional freedom to allow for a variation of the

spectral index ns with k, the so-called running spectral index model. Many inflationary

models do not predict a running spectral index, which is why this possibility has not

been given much attention prior to the WMAP proposal.

The WMAP collaboration performed a Markov Chain Monte Carlo simulation to

determine the best fit parameters with the WMAP data only and an extended data set

where the WMAP data was complemented with measurements of the higher l regions

from the CBI [62, 63]and ACBAR [61] experiments. Furthermore, they included large

scale structure data from the 2 degree Field Galaxy Redshift Survey (2dFGRS) [68]

and the Lyman-alpha forest power spectrum constraints [69,70]. The combined results

for the different data sets for the best fit Λ CDM model can be found in Table 4.1,

while the best fit parameters for the running spectral index model are shown in Table

4.2.

Further interesting information is obtained from the observations by measuring the

polarization of the detected photons. The polarization is usually decomposed into E-
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mode and B-mode polarization. Additional information can therefore be obtained from

the cross correlation between temperature and polarization, the TE spectrum. A very

interesting possibility of planned future CMB experiments is the observation of B-mode

polarization [71, 72], which can be induced by tensor fluctuations, i.e. gravitational

waves, and could therefore be a vital probe for their detection.

The WMAP satellite is still operating and hence the measurement accuracy is im-

proving. Future CMB experiments like PLANCK [73, 74] should further improve this

powerful cosmological probe.

4.4 Supernovae

One of the most accurate observations with significance in cosmology is the observation

of supernova explosions of the type Ia. Assuming that those supernova can be distin-

guished from other types of supernovae by the shape of their lightcurve, and further

assuming that those identified supernovae are equally bright we can use them as a stan-

dard candle and measure distances and redshifts of galaxies. With the Hubble Space

Telescope (HST), SNeIa have been observed up to redshift z ≈ 1.6 [19] with excellent

accuracy.

The most recent SNeIa observations, enhanced by 16 high z SNeIa from the HST,

provide good evidence that the universe has made transition from decelerated to accel-

erated expansion at around z ∼ 0.5 [19] (See Fig. 4.1). This is concluded from the fact

that the observed supernovae appear dimmer than predicted and hence the distance

is larger than expected from decelerated expansion. This conclusion holds until an

alternative explanation for this apparent faintness can be found.

The experiment suggests that the universal expansion changed from decelerating to

accelerated expansion at z = 0.43 ± 0.13. The best fit flat ΛCDM model for the SNeIa

data alone predicts ΩM = 0.29+0.05
−0.03. Including large scale structure data and a static

dark energy component, the best fit model has an equation of state today given by

w0
q = −1.02+0.13

−0.19. The only dark energy models that exhibit w0
q < −1 are the phantom

energy models [44]. The data is nowhere near to be able to exclude w0
q ≥ −1 and hence

the hint for such an exotic equation of state is not conclusive, it rather seems that

measurements are homing in on w = −1. With the present accuracy, the supernovae

observations are one of the most powerful tools in modern cosmology and are best

suited for determining w0
q . The foreseeable end of the HST project will be a major

blow for the efforts to determine w0.
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Figure 4.1: This figure shows the present supernova data including the new HST su-

pernovae (full cicles). Figure taken from Riess et al. [19]

4.5 Galaxy Surveys

The distribution of matter in the universe is one of key the predictions of any cosmo-

logical model. There are several ways to observe this large scale structure [75, 76].

One way of doing it is to observe hundreds of thousands of galaxies and determine

their position and redshift. The sky surveys with the largest number of observed galax-

ies are the 2 degree field galaxy redshift survey (2dfGRS) [75] and the Sloan Digital Sky

Survey (SDSS) [77]. Both provide data for reconstructing the matter power spectrum

down to scales of a galaxy, k ∼ 0.1Mpc−1. At this scale the matter fluctuations become

nonlinear and the predictions from theory have to be interpreted with care. The result

is usually quoted in terms of σ8, that is the amplitude of matter fluctuations at the

scale of 8Mpc. The latest results of the large scale structure observations are those of

the SDSS collaboration and are shown in Fig. 4.2 together with a best fit model. When

performing galaxy surveys, the derived power spectrum has to be multiplied with a

biasing factor to correct for the systematics that are introduced by the fact that we

do not observe the dark matter distribution directly but are limited to observe the
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Figure 4.2: The matter power spectrum as measured by SDSS [77]. The luminosity

dependent clustering leads to a scale dependent bias, which is removed from the spec-

trum by dividing by the square of the shown bias. The overall calibration error is 4%

and not included in the shown errorbars. Figure taken from Tegmark et.al. [77].

distribution of luminous baryonic matter (i.e. galaxies). Also, a selection effect due to

the faintness of distant galaxies cannot be excluded.

4.6 Gravitational Lensing

A more recent development in observational techniques is the gravitational lensing

effect. Light from distant sources is distorted by a mass distribution that lies between

the source and the observer. This effect can be used to study the mass distribution

that is causing the effect.

Of special importance to cosmology is weak gravitational lensing [78] where not a
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single gravitational lens is studied but a small part of the sky. The distortions of many

distant and faint galaxies that are observed can be translated into a dark matter mass

distribution (for a review of the theory of weak lensing see for instance Bartelmann and

Schneider [79]). Weak lensing has the particularly nice feature that it probes the dark

matter distribution directly without the need for introducing a bias factor or accounting

for selection effects. Another advantage is that this method probes scales up to the

non-linear region of the power spectrum. This new tool can help to break parameter

degeneracies and to determine the equation of state of dark energy w0
de.

As with other measurements it is the question what data and priors to include to

determine cosmological parameters, for instance Hoekstra et al. [80] derive a bound

σ8 = 0.46+0.05
−0.07 Ω−0.50

m by using gaussian priors for the source redshift distribution.

Slightly different values are obtained by using other priors or fixing some parameters,

for instance Ωm, to values obtained from other experiments. In the future it also

seems possible to deduce the actual 3-d dark matter distribution from this type of

measurements [81].

4.7 Lyman alpha Forrest

Observations of the Lyman-alpha forest from the spectrum of distant quasars pro-

vide information about intergalactic hydrogen clouds leaving their imprints in form of

absorption lines in the quasar spectra. The absorption spectra are translated into a

matter power spectrum with the help of elaborate numerical codes (for instance the

Gadget code [82]) simulating the hydrogen clouds. The matter power spectrum has to

be interpreted carefully. The calibration of the power spectrum is debated because a

biasing factor for this kind of measurement seems plausible [83]. Also, the data touches

the non-linear part of the power spectrum where the linear approximations introduce

larger errors. The most recent results are obtained by McDonald et. al. [84] who have

used the SDSS [77] spectra to obtain their power spectrum from the Lyman-alpha for-

rest. Before them, the other groups have used a smaller sample of spectra to generate

a matter power spectrum, for instance Croft et. al. [69] and Kim et. al. [85].

4.8 Big Bang Nucleosynthesis

Big Bang Nucleosynthesis predicts the primordial abundances of the light elements

based on calculations of the nuclear reactions. One important parameter that enters

those calculations is the baryon to photon ratio η. We can therefore deduce the value

of η from the observations of element abundances and compare this value to the η

value obtained from the CMB measurements. It is very fortunate that we are able to
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compare two very different fields of physics via this parameter. Recent measurements

of the primordial helium abundance and calculation of the required η yield η = 3.4+0.7
−0.6

and η = 4.0+1.1
−0.5 [86] while η determined from WMAP reads η = 6.14 ± 0.25 [50]. This

discrepancy is significant at first sight but one could argue that the possible systematic

error in the observational determination of the primordial helium abundance is able to

accommodate the two different results. Nevertheless, this mismatch of two independent

measurements is the motivation for the BBN analysis performed in Chapter 8. BBN

is also very sensitive to the number of neutrino species and has in the past provided

constraints in this respect.

4.9 Combining Measurements

To break parameter degeneracies and tighten error bars it is helpful to combine different

measurements and perform a Monte Carlo search for the best fit cosmological model

in the huge parameter space. We have done so in our analysis of the WMAP data

as presented in Chapter 7 where we had to use the same data sets as the WMAP

collaboration to allow for a comparison between the different cosmological models.

More recent measurements of tremendous importance, in addition to those mentioned

above, are the new HST supernovea, the SDSS large scale strucure data and the VSA

CMB data for higher l regions. Many observations are still in progress and new data is

available almost every month. For instance, a combined study of different data sets has

been performed by Tegmark et.al. [77] and shown in Figure 4.3. The CMB constraints

on the power spectrum are obtained from the BOOMERANG, MAXIMA, DASI, CBI,

ACBAR, VSA and WMAP data. The lensing data is taken from Hoeckstra et. al. [80]

while the Ly-alpha data is the one from Croft et.al. [69] which has been reanalyzed by

Gnedin & Hamilton [70].

4.10 Remark on the Anthropic Principle

We would also like to comment on an argument which is often fielded in the discussions

about the origin and nature of our universe. The anthropic principle can be explained

by stating it in form of the following question:

Is it possible that some of the seemingly strange or unlikely properties of the universe

are necessary for the universe to be able develop life or even intelligent life? Is this the

reason why we are observing the universe as it is today?

We don’t want to repeat the discussion at this point but briefly comment. The

question is legitimate to ask. However, the problem with the answer is that science, by

now, knows very little about the evolution of intelligent life, its abundance or necessary
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Figure 4.3: This power spectrum combines different measurements. This figure is for

a ΛCDM model with a scale invariant spectrum, Ωm = 0.28, h = 0.72, Ωb = 0.044

and optical depth τ = 0.17. The aforementioned bias is set to b∗ = 0.92 for the SDSS

results. Figure taken from Tegmark et al. [77].

conditions for its creation. We can therefore not conclude on any properties of the

universe based on this idea. Hence we think that conclusions drawn based on the

anthropic principle are nothing more than speculation. At the moment it does not seem

possible to derive meaningful bounds on the properties of the universe by employing

the anthropic principle.



Chapter 5

Gauge-invariant Perturbation

Theory

When studying small perturbations in cosmology we we are confronted with the gauge

problem. We want to map the ’real’ manifold in which the unperturbed metric is given

onto a manifold of the background metric. This involves defining a way to obtain the

averaged background metric ḡµν and the averaged energy momentum tensor T̄µν from

the unperturbed quantities gµν and Tµν . This averaging procedure is not uniquely

defined and some authors claim that inhomogeneities induce a backreaction effect that

is responsible for the negative equation of state today and hence the backreaction lies

at the center of the dark energy problem. We argue instead that two different averaging

procedures contain errors of the order of the metric perturbations itself which we will

assume to be part of the metric perturbation. We are encouraged in this assumption

by recent work [87] that shows that the corrections are negligible on subhorizon scales.

The second difficulty is the following: Because the mapping of ’real’ metric onto

the background is invariant under diffeomorphisms the perturbations are not uniquely

defined. The different possible mapping schemes are termed ’gauges’. A sensible ap-

proach would be to choose the gauge in the most easy way, i.e. choose the condition

so that the resulting equations have the most simple form. Another possibility is to

employ a physical argument why we choose a certain gauge condition. In the litera-

ture the most commonly used gauges are the synchronous gauge and the newtonian

or longitudinal gauge [88]. In the synchronous gauge we put ourselves in on hypersur-

faces of synchronized time which stay synchronized as we evolve the perturbations. It

corresponds to the rest frame of the freely falling observer, e. g. the cold dark matter

rest frame. This gauge is not fixed in the sense that it defines a coordinate system as

a reference. Instead of preferring a certain set of observers we can completely fix the

coordinate system. This is done in the newtonian or longitudinal gauge. It corresponds

to zero-shear hypersurfaces and the dynamics are Newtonian on sub horizon scales.
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Both gauges have their justification and are, among many others, widely used in the

literature. Nevertheless, there are good reasons why we think that a gauge-invariant ap-

proach is useful. Comparing results obtained with different gauge conditions is tedious

and one has to be careful not to include artificial gauge modes in the analysis when

using the synchronous gauge [52]. We therefore decided to perform our perturbation

analysis in gauge-invariant variables which can be easily put in the form of a specific

gauge by employing a gauge condition. We can be sure not to include gauge modes

in out discussion as well as being able to compare the results with different groups.

In this chapter we want to derive a set of equations that describe the perturbations

of all particle species and radiation. Furthermore, we also derive the gauge-invariant

quintessence field perturbation. This set of equation can then be used to solve for

the eigenmodes of the system of equation and is the basis for our discussion of initial

conditions for the CMB in Chapter 6.

5.1 Metric Perturbations

Now that we study perturbation theory we will denote background quantities with a

bar. We also change the notation from comoving time t to conformal time dτ = dt/a.

A dot will now and in the following denote the derivative with respect to conformal

time τ and we define

H ≡ ȧ(τ)

a(τ)
, H =

ȧ(τ)

a2(τ)
. (5.1)

First, we summarize the gauge-invariant approach of Bardeen, Kodama and Sasaki

and Durrer [53, 89, 90]. Perturbing a homogenous Friedman universe, one classifies

fluctuations according to their transformation properties with respect to the rotation

group. In flat spacetime, we may expand the perturbation variables in terms of har-

monic functions [90]. With Q,i = ∂Q/∂xi one defines

Qi(k,x) ≡ −k−1Q(k,x),i (5.2)

and

Qij(k,x) ≡ k−2Q(k,x),ij +
1

3
δijQ(k,x), (5.3)

where the Q(k,x) are eigenfunctions of the Laplace-operator, ∇2Qk(x) = −k2Qk(x)

and in spatially flat universes Q = exp(ikx). As modes with different k decouple in

linear theory, we will not display the k-dependence of Q in the following. 1 The scalar

parts of vector and tensor fields can then be written as

Bi = BQi (5.4)

1The mode mixing in higher order perturbation theory is the major problem in 2nd order perturbation

theory .
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and

Hij = HLQδij + HT Qij. (5.5)

respectively.

Of course one could also write down the vector and tensor perturbations in cos-

mology. In this work, we are only interested in scalar fluctuations because scalar

quintessence will not influence vector or tensor modes. We decompose the metric into

background and perturbation according to

ds2 = gµνdxµdxν ≡ (ḡµν + a2hµν)dxµdxν . (5.6)

With hµνdxµdxν given by

hµνdxµdxν = −2Adτ 2 − 2Bidτdxi + 2Hijdxidxj (5.7)

we can write down a general ansatz for a line element for a perturbed Robertson-Walker

metric as

ds2 = a(τ)2[−(1 + 2A)dτ 2 − 2Bidτdxi + (δij + 2Hij)dxidxj ]. (5.8)

In the scalar case Bi and Hij are given by equations (5.4) and (5.5). The gauge

transformation of a tensor T is given by [53, 89–92]

T̃ (x) = T (x) − LεT̄ , (5.9)

where Lε is the Lie derivative in direction ε. The transformation vector ε can be

decomposed as

τ̃ = τ + T (τ)Q(x), (5.10)

x̃i = xi + L(τ)Qi(x), (5.11)

where L and T are arbitrary functions of τ . The transformation properties of the metric

perturbations are given by [89, 92]

Ã = A −HT − Ṫ , (5.12)

B̃ = B + L̇ + kT, (5.13)

H̃L = HL −HT − k

3
L, (5.14)

H̃T = HT + kL. (5.15)

The functions L and T can be used to eliminate two of the metric perturbations. The

above mentioned most popular choices are A = B = 0 for the synchronous gauge and

B = HT = 0 for the longitudinal gauge.
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From equations (5.12)-(5.15) one can construct the gauge-invariant Bardeen poten-

tials [89]

Ψ = A −Hk−1σ − k−1σ̇, (5.16)

Φ = HL +
1

3
HT −Hk−1σ, (5.17)

with σ ≡ k−1ḢT − B. It is worthwhile to note that in longitudinal gauge, for which

B = HT = σ = 0, the perturbed metric takes on the simple form

ds2
(long.) = a(τ)2

[

− (1 + 2ΨQ)dτ 2 + (1 + 2ΦQ)δijdxidxj
]

. (5.18)

With MP̄ ≡ (8πG)−1/2 denoting the reduced Planck mass, Einstein’s equation reads

T µ
ν = M2

P̄

(

Rµ
ν − 1

2
δµ

νR

)

, (5.19)

where the energy momentum tensor of a perfect fluid is given by

T µ
ν = pδµ

ν + (ρ + p)uµuν + πµ
ν . (5.20)

The covariant 4-velocity is written down as

ui = a[v(τ) − B]Qi, (5.21)

where the spacial velocity is vi = vQi. We define the energy density contrast δ by

ρ = ρ̄ (1 + δ(τ))Q, (5.22)

the spatial trace by

p δi
j = p̄(τ)(1 + πL(τ)Q) δi

j (5.23)

and the traceless part by

πi
j = p̄ Π Qi

j . (5.24)

The πL is interpreted as the isotropic pressure perturbation while Π is the anisotropic

stress perturbation. Putting these definitions together we obtain the components of

the energy momentum tensor as

T 0
0 = −ρ̄(1 + δ(τ)Q), (5.25)

T i
0 = −ρ̄(1 + w) v Qi, (5.26)

T 0
i = ρ̄ (1 + w) (v − B)Qi, (5.27)

T i
j = p̄

[

(1 + πLQ) δi
j + ΠQi

j

]

. (5.28)

Given the gauge-transformation properties of δ, v and πL [53,89–92], one can construct

the corresponding gauge-invariant quantities for the energy density contrast ∆, the
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velocity V and the entropy perturbation Γ. These are given by

∆ = δ + 3(1 + w)

(

HL +
1

3
HT

)

, (5.29)

V = v − k−1ḢT , (5.30)

Γ = πL − c2
s

w
δ. (5.31)

Here, c2
s ≡ ∂p̄/∂ρ̄ is the adiabatic sound speed. Note that there exists no unique

definition for the gauge-invariant energy density perturbation.

From the conservation of the zero component of the energy momentum tensor

∇µT̄ µ
0 = 0 we obtain

˙̄ρα

ρ̄α
= −3(1 + wα)H, (5.32)

where w = p̄/ρ̄ is the equation of state of the particular species.

The perturbed metric allows us to calculate the Christoffel symbols which in turn

allow us to determine the Riemann and the Ricci tensor. After some algebra this

calculation then obtains the perturbed part of the Einstein tensor as

δG0
0 =

2

a2

[

3H2A −HkB − 3HḢL − k2(HL +
HT

3
)

]

Q, (5.33)

δGi
0 =

2

a2

[

(Ḣ − H2)B − kHA + k(ḢL +
ḢT

3
)

]

Qi, (5.34)

δG0
j =

2

a2

[

kHA − k(ḢL +
ḢT

3
)

]

Qj , (5.35)

δGi
j =

2

a2
[(2

ä

a
+ 3H2)A + HȦ − k2

3
A − k

3
(Ḃ + 2HB)

− a−1 d

dτ
(aḢL) −HḢL − k2

3
(HL +

HT

3
)]δi

jQ

+
1

a2
[−k2A − k(Ḃ + HB) + a−1 d

dτ
(aḢT )

+ H(ḢT − kB) − k2(HL +
HT

3
)]Qi

j. (5.36)

The perturbed Friedmann equations in gauge-invariant variables are then obtained by

relating δGµ
ν to the energy momentum tensor [53, 89–92]. The dynamic equations for

∆, V and Π then read

a2ρ̄∆ = 2M2
P̄ k2Φ − 3a2ρ̄ (1 + w)

(

Hk−1V − Φ
)

, (5.37)

a2(ρ̄ + p̄)V = 2M2
P̄ k
(

HΨ − Φ̇
)

, (5.38)

a2p̄Π = −M2
P̄ k2(Φ + Ψ). (5.39)

In the above, it is understood that the quantities ∆, V and Π are the sum of the

contributions of all species α. Using ẇ = (c2
s −w) ˙̄ρ/ρ̄ and (5.32) we get from T µ

0;µ = 0
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Symbol Meaning Equation

Ωspecies fraction of total energy density n.a.

Ω0
species fraction of total energy density today n.a.

a scale factor of the universe n.a.

τ conformal time: dτ = dt/a n.a.

k wavenumber of mode n.a.

x kτ n.a.

˙ derivative w.r.t conformal time n.a.
′ derivative w.r.t. x d

dx n.a.

H ȧ/a n.a.

∆ gauge-inv. density contrast (∆g of [90]) (5.29)

V gauge-invariant velocity (5.30)

Π shear (5.28)

Ṽ reduced velocity: Ṽ = x−1V n.a.

Π̃ reduced shear: Π̃ = x−2Π n.a.

Table 5.1: Symbols and their meanings.

that

∆̇ + 3(c2
s − w)H∆ + kV (1 + w) + 3HwΓ = 0, (5.40)

and from T µ
i;µ = 0

V̇ = H(3c2
s − 1)V + k[Ψ − 3c2

sΦ] +
c2
sk

1 + w
∆ +

wk

1 + w

[

Γ − 2

3
Π

]

. (5.41)

5.2 Gauge-invariant Quintessence Perturbations

The scalar quintessence field is decomposed into a background and fluctuation part

according to ϕ(τ,x) = ϕ̄(τ) + χ(τ,x). The fluctuation can be promoted to a gauge-

invariant quantity by defining the gauge-invariant quintessence field fluctuation X ≡
χ − ˙̄ϕk−1σ. The field dynamics is governed by the Klein-Gordon equation. For the

background, it reads

¨̄ϕ = −2H ˙̄ϕ − a2V ′(ϕ), (5.42)

while the perturbation obeys the equation of motion

Ẍ = ˙̄ϕ(Ψ̇ − 3Φ̇) − 2a2V ′(ϕ)Ψ − (a2V ′′(ϕ) + k2)X − 2HẊ. (5.43)

From the energy momentum tensor for the quintessence field

T µ
ν = ϕ,µϕ,ν − δµ

ν

(

1

2
ϕ,αϕ,α + V (ϕ)

)

, (5.44)
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using ϕ = ϕ̄ + X and the longitudinal gauge metric, one gets

δT
0 (lon.)
0 =

[

a−2
(

˙̄ϕ2 Φ − Ẋ ˙̄ϕ
)

− V ′(ϕ)X
]

Q (5.45)

δT
i (lon.)
0 = −a−2 k ˙̄ϕX Qi. (5.46)

Using the definition of ∆, equation (5.29) in longitudinal gauge and ρ̄q + p̄q = a−2 ˙̄ϕ2

one can read off from equation (5.45) the gauge-invariant expression

∆q = (1 + wq)
[

3Φ − Ψ + Ẋ ˙̄ϕ−1
]

+ XV ′(ϕ)ρ̄(−1)
q . (5.47)

In the same manner, one gets from equation (5.46) and the fact that v (long.) = V the

relation

Vq = k ˙̄ϕ−1X. (5.48)

Taking the time derivative of equations (5.47) and (5.48) and using the equation of

motion (5.43), one obtains the evolution equations

∆̇q = (1 + wq)

[

2a2V ′(ϕ)
˙̄ϕ

(

∆q

1 + wq
− 3Φ

)

+

(

6aȧV ′(ϕ)

k ˙̄ϕ
− k

)

Vq

]

+
ẇq∆q

1 + wq
(5.49)

and

V̇q = k

[

∆q

1 + wq
− 3Φ + Ψ

]

+ 2HVq. (5.50)

Equation (5.49) depends on the specific quintessence model through V ′ and ˙̄ϕ.

We can try to put Equation 5.49 in a more simple form by simplifying the behavior of

wq. This can be achieved by considering tracking quintessence models [8,9,25] for which

the equation of state of the quintessence field wq is nearly constant during radiation

domination. We will use this vanishing of ẇq in the following to derive relations to

simplify equation (5.49). Considering a−2 ˙̄ϕ2 = (1+wq)ρϕ it follows using the Friedman

equation 3a−2M2
P̄
H2 = ρ that

˙̄ϕ = [3(1 + wq)Ωq]
1
2 MP̄H, (5.51)

and hence
¨̄ϕ
˙̄ϕ

=
d

dτ
ln ˙̄ϕ =

1

2

Ω̇q

Ωq
+

Ḣ
H , (5.52)

where we have neglected a term involving ẇq. We will in the following assume that at

early times, the universe expands as if radiation dominated. In this case, H = τ −1 and

inserting the above equation (5.52) into the equation of motion (5.42), one finds

a2V ′

˙̄ϕ
= −3(1 − wq)

2 τ
. (5.53)

Using this relation (5.53), the evolution equation for ∆q becomes

∆̇q = 3(wq − 1)
k

x

[

∆q − 3(1 + wq)Φ +

{

3 − x2

3(wq − 1)

}

(1 + wq)Ṽq

]

, (5.54)
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whereas the one for the velocity remains almost unaltered while we move to the reduced

velocity Ṽq:

˙̃Vq =
k

x

[

∆q

1 + wq
− 3Φ + Ψ

]

+ τ−1Ṽq. (5.55)

Note that Γq does not usually vanish. Instead, we obtain

wqΓq = (1 − c2
s(q))

[

∆q − 3(1 + wq)Φ + 3
ȧ

a
(1 + wq)

Vq

k

]

(5.56)

with the sound speed of quintessence given by

c2
s(q) = ṗq/ρ̇q = wq −

1

3

a

ȧ

ẇq

1 + wq
(5.57)

5.3 Matter and Radiation

Setting w = c2
s = Γ = 0 in equations (5.40) and (5.41), we obtain the cold dark matter

evolution equations

∆̇c = −kxṼc, (5.58)

˙̃Vc =
k

x
(−Ṽc + Ψ). (5.59)

The multipole expansion of the neutrino distribution function [88,93] can be truncated

beyond the quadrupole at early times. In terms of density, velocity and shear, it is

given by [92, 93]

∆̇ν = −4

3
kxṼν , (5.60)

˙̃Vν =
k

x

(

1

4
∆ν − Ṽν − 1

6
x2Π̃ν + Ψ − Φ

)

, (5.61)

˙̃Πν =
k

x

(

8

5
Ṽν − 2Π̃ν

)

. (5.62)

Deep in the radiation dominated era, for which the initial conditions here are derived,

Compton scattering tightly couples photons and baryons [90, 94]. The coupling leads

to Vb = Vγ and the evolution equations become [90]

∆̇γ = −4

3
kxṼγ , (5.63)

˙̃Vγ =
k

x

(

1

4
∆γ − Ṽγ + Ψ − Φ

)

, (5.64)

∆̇b = −k x Ṽγ . (5.65)

As the photon quadrupole and all higher photon multipoles are suppressed during tight

coupling, it follows that Φ is given from Einstein’s equation by

Φ = −Ψ − ΩνΠ̃ν , (5.66)
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Quantity Scaling behaviour

˙̄ϕ ∝ τ−(1+3wq)/2

V ′ ∝ τ−(7+3wq)/2

V ′′ ∝ τ−4

∆adiab.
q const.

Xadiab. ∝ τ (1−3wq)/2

Table 5.2: Tracking quintessence in the radiation era: Scaling handbook.

where we have used the Friedmann equation. Finally, the Poisson equation (5.37) in

terms of the various species is

Ψ = −

∑

α=c,b,γ,ν,q

Ωα(∆α + 3(1 + wα)Ṽα)

∑

α=c,b,γ,ν,q

3(1 + wα)Ωα + 2x2

3

− ΩνΠ̃ν , (5.67)

where the index α runs over all species. Rewriting the evolution equations (5.58) - (5.65)

in terms of d/d lnx and replacing Φ by means of (5.66), one arrives at (6.2)-(6.11).





Chapter 6

Initial conditions for the CMB

6.1 Why bother with non-adiabaticity?

The initial density fluctuation that lead to the CMB anisotropies are usually assumed to

be adiabatic fluctuations. This is because the most popular inflationary models predict

adiabatic fluctuations [95–97]. More elaborate models lead to an admixture of adiabatic

and isocurvature fluctuations [98, 99]. Isocurvature perturbations are perturbations in

the local equation of state and arise in various inflationary models like, for instance,

multi field inflation.

The time evolution of adiabatic and non-adiabatic fluctuations is well understood for

a universe composed of radiation, baryons, cold dark matter (CDM) and neutrinos [88].

In the context of quintessence [8, 9, 100], the behavior of the field fluctuation has been

studied in several works [101–105]. Initial conditions have been proposed in [106] for the

case of negligible quintessence contribution in the early universe. We will now conduct

a systematic treatment of initial conditions for quintessence models which differs from

that of [106] in approach and interpretation.

6.2 A Description of the Analysis

Our basic setting assumes that small deviations from homogeneity are generated during

a very early stage of the big bang, typically an inflationary epoch. During the following

radiation dominated period the wavelength of the relevant fluctuations is far outside

the horizon. Apart from this, we will not use any further constraint on the primordial

fluctuations. Only the spectra of a certain number of “dominant” modes can possibly

influence events such as emission of the CMB and its anisotropies since the other modes

decay. The information about these dominant modes therefore constitutes the initial

conditions for practical purposes. Primordial information beyond the dominant modes
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is effectively lost and not observable. The detailed time of specification of the initial

conditions is therefore irrelevant as long as it is much shorter than the time of matter-

radiation equality.

During the period relevant for the discussion of the initial conditions the universe

is radiation dominated. However, our approach allows for the presence of scalar fields

which evolve like radiation at early times or are subdominant. Consequently, our results

hold for a wide class of quintessence models, including those with non-negligible Ωq at

early times [107]. In fact, we only use a “tracking” property [25] for the background

of homogenous quintessence, namely that its equation of state wq = pq/ρq is almost

constant and determined only by the energy densities of the radiation and matter

components. The parameters wq and Ωq = 1−Ωm −Ων −Ωγ will therefore be the only

parameters of the quintessence model that influence the early time evolution of small

fluctuations. This makes our analysis model independent to a large extent.

In the previous Chapter 5 we derived the perturbation equations in a gauge-invariant

formalism. This allows us to formulate the evolution equations for the perturbation

variables as a first order differential matrix equation:

d

d lnx
U = A(x)U , (6.1)

where the vector U contains all perturbation variables and the matrix A(x) encodes the

evolution equations. In doing so, we relate the problem of finding initial conditions and

dominant modes to the familiar language of eigenvalues and eigenvectors. This formu-

lation makes “mode-accounting” transparent by counting the degeneracy of the largest

eigenvalue. We find four dominant modes that remain regular at early times. For physi-

cal reasons, we choose a basis using adiabatic, CDM Isocurvature, Baryon Isocurvature

and Neutrino Isocurvature initial conditions. As we will show, adiabaticity between

CDM, baryons and photons implies adiabaticity of quintessence. It therefore exists no

pure quintessence isocurvature mode. In addition, using the matrix formulation reveals

facets of the modes that otherwise remain obscured.

In contrast to earlier work, we find it more appropriate to specify the initial condi-

tions and time evolution of the quintessence field in terms of the gauge-invariant density

contrast and velocity, thus unifying the language for all species. As anticipated, the

quintessence density perturbation remains constant at super-horizon scales for adia-

batic initial conditions. In contrast to this, the field fluctuation follows a simple power

law in conformal time that only depends on the quintessence equation of state.

6.3 The Perturbation Equations

In Chapter 5 we derived the perturbation equations by following the gauge-invariant

approach as devised by Bardeen [89]. It turns out that the evolution is best described as
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a function of x ≡ kτ , where τ is the conformal time and k the comoving wavenumber

of the mode. We assume that at early times, the universe expands as if radiation

dominated. This assumption is well justified for small Ωq at early times, as well as

for potentials that are essentially exponentials at the time of interest, regardless of Ωq.

The assumption is certainly not justified for models in which quintessence is dominating

the universe at early times with equation of state wq 6= 1/3. For such (slightly exotic)

models, the following steps would need to be modified.

Assuming tracking quintessence we obtain the following set of equations 1:

∆′
c = −x2Ṽc, (6.2)

Ṽ ′
c = −2Ṽc + Ψ, (6.3)

∆′
γ = −4

3
x2Ṽγ , (6.4)

Ṽ ′
γ =

1

4
∆γ − Ṽγ + ΩνΠ̃ν + 2Ψ, (6.5)

∆′
b = −x2Ṽγ , (6.6)

∆′
ν = −4

3
x2Ṽν , (6.7)

Ṽ ′
ν =

1

4
∆ν − Ṽν − 1

6
x2Π̃ν + ΩνΠ̃ν + 2Ψ, (6.8)

Π̃′
ν =

8

5
Ṽν − 2Π̃ν , (6.9)

∆′
q = 3(wq − 1)

[

∆q + 3(1 + wq)
{

Ψ + ΩνΠ̃ν

}

+

{

3 − x2

3(wq − 1)

}

(1 + wq)Ṽq

]

, (6.10)

Ṽ ′
q = 3ΩνΠ̃ν +

∆q

1 + wq
+ Ṽq + 4Ψ, (6.11)

with the gauge-invariant Newtonian potential Ψ given by

Ψ = −

∑

α=c,b,γ,ν,q

Ωα(∆α + 3(1 + wα)Ṽα)

∑

α=c,b,γ,ν,q

3(1 + wα)Ωα + 2x2

3

− ΩνΠ̃ν . (6.12)

We denote the derivative d/d lnx with a prime. The gauge-invariant energy density

contrasts ∆α, the velocities Ṽα and the shear Π̃ν are the ones found in the literature

[53, 89, 90], except that we factor out powers of x from the velocity and shear defining

Ṽ ≡ V/x and Π̃ν ≡ x−2Πν . This factoring out leads to the particularly simple form

of the system of equations for x � 1. It does, however, exclude modes with diverging

Ψ at early times such as a neutrino velocity mode [108]. The index α runs over the

1Without assuming tracking quintessence one would have to use Eqns. (5.49) and (5.50) instead.
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five species in our equations, namely cold dark matter, baryons, photons, neutrinos

and quintessence, denoted with the subscript q. We assume tight coupling between

photons and baryons. The equation of state w = p̄/ρ̄ takes on the values wc = wb = 0,

wγ = wν = 1/3 and wq is left as a free parameter. Equations (6.2), (6.4), (6.6)

and (6.7) can be regarded as continuity relations between the density fluctuations and

the velocity. We obtain equations (6.10) and (6.11) from the perturbed Klein-Gordon

equation of the quintessence scalar field expressed in terms of ∆q and Vq, the energy

density and velocity perturbations as defined in Chapter 5.

6.4 Matrix Formulation and Dominant Modes

Conceptually, it is convenient to note that the above set of equations can be concisely

written in matrix form according to Equation (6.1) where the perturbation vector is

defined as

U
T ≡ (∆c, Ṽc, ∆γ , Ṽγ , ∆b, ∆ν , Ṽν , Π̃ν , ∆q, Ṽq). (6.13)

The matrix A(x) can easily be read off from equations (6.2)-(6.11). This enables us to

discuss the problem of specifying initial conditions in a systematic way.

The initial conditions are specified for modes well outside the horizon, i.e. x � 1. In

this case, the r.h.s. of equations (6.2), (6.4), (6.6) and (6.7) can be neglected, provided

Ṽα does not diverge ∝ x−2 or faster for x2 → 0. The evolution matrix A(x) loses any

explicit x dependence for x2 → 0. Yet, it still depends on x via terms involving Ωc,Ωb

and Ωq.

To analyze this remaining time dependence we can distinguish two cases.

The first case it an equation of state wq = 1/3 for quintessence. The term containing

Ωq is then constant (tracking quintessence). In leading order, the matrix A becomes

therefore x-independent for very early times. In fact, the general solution to Equation

(6.1) in the (ideal) case of a truly constant A would be

U(x) =
∑

i

ci

(

x

x0

)λi

U
(i), (6.14)

where U
(i) are the eigenvectors of A with eigenvalue λi and the time independent

coefficients ci specify the initial contribution of U
(i) towards a general perturbation

U . As time progresses, components corresponding to the largest eigenvalues λi will

dominate. Compared to these “dominant” modes, initial contributions in the direction

of eigenvectors U
(i) with smaller Re(λi) decay. It therefore suffices to specify the

initial contribution ci for the dominant modes, if one is not interested in very early

time behavior shortly after inflation. In our case, the characteristic polynomial of A(x)

indeed has a fourfold degenerate eigenvalue λ = 0 in the limit x2 → 0, independent
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of Ωc, Ωb and Ωq.
2 While it is not feasible to obtain the remaining six eigenvalues by

analytic means, we have checked numerically for a wide range of Ωγ , Ων , Ωb, Ωc, Ωq and

wq that the remaining eigenvalues have indeed negative real parts and contributions

from the corresponding eigenvectors towards a general perturbation U will therefore

decay according to Equation (6.14). We can improve the analytic description of the

dominant modes by taking corrections ∝ x into account.

As Ωc ∝ Ωb ∝ x, it is appropriate to split A(x) according to the scaling with x,

A(x) = A0 + xA1, (6.15)

where A0 and A1 are constant and xA1 contains the small, time-dependent corrections

from terms involving Ωc and Ωb. We may also write3 the eigenvectors as a series in x,

U(x) = U0 + xU1. (6.16)

Inserting Equations (6.15)-(6.16) in Equation (6.1), we get

A0 U0 = 0, (6.17)

and

U1 = −(A0 − 1)−1A1U0. (6.18)

The second possible case we want to discuss corresponds to wq < 1/3, while we

assume the background expands radiation dominated. In this case, Ωq ∝ τ (1−3wq) and

we can split the matrix in three parts according to their scaling with x:

A(x) = A0 + xA1 + x(1−3wq) Aq. (6.19)

Again, Equation (6.1) will lead to a solution vector of the form

U(x) = U0 + xU1 + x(1−3wq)
Uq. (6.20)

Substituting this into Equation (6.1) and keeping only leading orders in x, we get

A0 U0 = 0, (6.21)

A1 U0 + A0 U1 = U1, (6.22)

Aq U0 + A0 Uq = (1 − 3wq)Uq. (6.23)

While the conclusion regarding U0 and U1 are still the same as in the case for constant

Ωq, we see that quintessence may introduce a correction

Uq = − [A0 − (1 − 3wq)1]−1 Aq U0. (6.24)

2For wq = 1 we find another eigenvalue with λ = 0. We will ignore this special case in what follows.

3This form is not an ansatz, but dictated by Equation (6.1), once the dependence of A(x) on x is

given.
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This contribution x(1−3wq)
Uq could in principle dominate over xU1 for wq > 0, Ωq >

Ωc. However, as we will see shortly, the contribution is only of interest for the CDM

Isocurvature and Baryon Isocurvature modes, as it is otherwise negligible compared to

the constant order. Yet for CDM Isocurvature and Baryon Isocurvature,

Aq U0 = 0 (6.25)

and hence

Uq = 0 (6.26)

for CDM Isocurvature and Baryon Isocurvature modes. One order higher in x there

may be a contribution which we neglect.

Finally, we briefly discuss the case of vanishing U0. This only concerns possible

subdominant modes. Equation (6.22) then yields A0 U1 = U1, i.e. U1 is an eigenvector

of A0 with eigenvalue λ = 1. As A0 does not have such an eigenvector, we are led to

conclude that Equation (6.1) does not have a regular solution involving U1, if U0 = 0.

Turning to Equation (6.23), we similarly conclude that Uq needs to be a eigenvector of

A0 with λ = (1 − 3wq) for vanishing U0. For wq < 1/3 this is once again excluded and

for wq = 1/3, we just regain the results stated above.

Equation (6.18) is easy to solve, once U0 has been determined. We see from Equa-

tion (6.17) that to constant order the solutions of Equation (6.1) are indeed given by

eigenvectors to the eigenvalue λ = 0. We should emphasize that the vectors U0 do not

evolve in time if their corresponding eigenvalues are λ = 0. Thus, the perturbations

remain constant in the super-horizon regime during radiation domination in this ap-

proximation. If we include the next-to-leading order contribution to U, the eigenvectors

do evolve and we can no longer apply Eq. (6.14). These corrections are, however, small

as long as we are deep in the radiation dominated era due to the small contributions

of baryons, radiation and quintessence during this era. Given a set of initial conditions

in the form of coefficients for the four dominating modes at zinitial we can find the

perturbations at some later time (provided the modes are still super-horizon sized and

we have radiation domination). In leading order, the coefficients will remain the same

while in next-to-leading order we can use the evolution of U to compute the coefficients

for z < zinitial. If initial conditions are specified with accuracy of next-to-leading order

one therefore has to specify zinitial as well. In leading order this is unnecessary for z in

a wide range long before last scattering.

6.5 Constraint Equations to Leading Order

Equation (6.17) is equivalent to setting the l.h.s. of Equations (6.2)-(6.11) equal to

zero and using Ωc = Ωb = x2 = 0. Then Equations (6.2), (6.4), (6.6) and (6.7) are
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automatically satisfied (provided Ṽα does not diverge ∝ x−2 or faster), and Equations

(6.3),(6.5),(6.8)-(6.11) yield non-trivial constraints for the components of U0:

2Ṽc − Ψ = 0, (6.27)

1/4∆γ − Ṽγ + ΩνΠ̃ν + 2Ψ = 0, (6.28)

1/4∆ν − Ṽν + ΩνΠ̃ν + 2Ψ = 0, (6.29)

8/5Ṽν − 2Π̃ν = 0, (6.30)

3ΩνΠ̃ν + ∆q/(1 + wq) + 3Ṽq + 3Ψ = 0, (6.31)

3ΩνΠ̃ν + ∆q/(1 + wq) + Ṽq + 4Ψ = 0. (6.32)

In the above, all quantities are considered only to constant order. (we have omitted

the subscript ’0’ for notational convenience.) In particular, there is no contribution of

CDM and baryons to Ψ at constant order. Note that, apart from wq, no model-specific

parameters occur in any of these equations so the modes will be independent of the type

of quintessence as long as the scalar field is in a regime with approximately constant wq.

We note that for wq substantially smaller than 1/3 the quintessence fraction Ωq changes

with time. By the assumption that the universe expands as if radiation dominated, the

quintessence contribution would however be small in this case and its contribution to

Ψ can be neglected.

We mention that for wq = 1/3, quintessence evolves the same way as radiation,

therefore Ωq does not change in this case. If wq = −1/3, quintessence has the same

influence on the scale factor a as a curvature term in an open universe. However, the

geometry is still flat and one can distinguish an open universe from this quintessence

model by measuring the position of the first acoustic peak in the CMB.

6.6 The Modes in Detail

6.6.1 Classifying the Modes

While any basis for the subspace spanned by the eigenvectors with eigenvalue λ = 0

can be used to specify the initial conditions, it is still worthwhile to use a basis that

is physically meaningful. Following the existing literature, we use the gauge-invariant

entropy perturbation [90]

Sα:β =
∆α

1 + wα
− ∆β

1 + wβ
, (6.33)

between two species α and β, as well as the gauge-invariant curvature perturbation on

hyper-surfaces of uniform energy density of species α [96, 98, 109]

ζα =

(

HL +
1

3
HT

)

+
δρα

3(1 + wα)ρ̄α
, (6.34)
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in order to classify the physical modes. On slices of uniform total energy density, the

curvature perturbation is correspondingly

ζtot =

(

HL +
1

3
HT

)

+

∑

α δρα
∑

α 3(1 + wα)ρ̄α
. (6.35)

In our variables, these expressions take on the manifestly gauge-invariant form

ζα =
∆α

3(1 + wα)
, ζtot =

∑

α ∆αΩα
∑

α 3(1 + wα)Ωα
. (6.36)

If ζtot = 0, energy density perturbations do not generate curvature. It is therefore clear

that such a perturbation is a perturbation in the local equation of state. One should

note that the definition of ζtot is different from that of [91]:

ζMFB =
2

3

H−1Ψ̇ + Ψ

(1 + w)
+ Ψ. (6.37)

However, one may verify that this quantity coincides with ζtot in the super-horizon

limit for a flat universe [110].

6.6.2 The Adiabatic Mode

The first (rather intuitive) perturbations one would try to find are adiabatic pertur-

bations, which are specified by the adiabaticity conditions Sα:β = 0 for all pairs of

components. In our case, this results in eleven constraints4 for the ten components of

U0. It is a priori not clear that this has a solution so we will not include quintessence in

the adiabaticity requirement. Requiring adiabaticity between CDM, baryons, neutrinos

and radiation,

∆ν = ∆γ =
4

3
∆c =

4

3
∆b, (6.38)

and using the six constraint Equations (6.27)-(6.32), we obtain
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, (6.39)

4Without requiring quintessence to be adiabatic, we have six constraints from equations (6.27)-(6.32)

plus three constraints from Eq. (6.38) plus one constraint from the overall normalization, which is

fixed by choosing a specific value for ∆γ .
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where P = (15 + 4Ων)
−1 and C is an arbitrary constant. From ∆q/∆γ = 3(1 + wq)/4

we conclude that quintessence is automatically adiabatic if CDM, baryons, neutrinos

and radiation are adiabatic, independent of the quintessence model for as long as we

are in the tracking regime. As all components are non-vanishing, we do not quote the

next to leading order contributions from xU1.

6.6.3 Neutrino Isocurvature

Having found the adiabatic vector, one could specify three additional linearly indepen-

dent vectors satisfying the constraint Equations (6.27)-(6.32). This would complete the

basis. It is, however, appropriate to choose modes that may be generated by physi-

cal processes. These modes are in general not orthogonal but span the eigenspace of

λ = 0. Modes that may be generated by physical processes are isocurvature modes. A

given mode is an isocurvature mode, if the gauge-invariant curvature perturbation ζtot

vanishes, i.e. ζtot = 0. In order to distinguish different isocurvature modes from one

another, we require that the other species are adiabatic with respect to each other, i.

e. Sα:β = 0 except for quintessence and one species σ, which has non-vanishing Sσ:γ .

Let us first consider the neutrino isocurvature mode. For this, we require that

CDM, baryons and radiation are adiabatic, while Sν:γ 6= 0 and that the gauge-invariant

curvature perturbation vanishes:

ζtot = 0, ∆c = ∆b =
3

4
∆γ . (6.40)

Using this and Equations (6.27)-(6.32) leads to
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It is important to note that we did not require quintessence to be adiabatic. One can see

from the neutrino isocurvature vector that ∆q = 0, and as a consequence quintessence

is not adiabatic with respect to either neutrinos, radiation, baryons or CDM. Hence,

we could just as well have labeled this vector “quintessence isocurvature”. We cannot

require adiabaticity between neutrinos, CDM, baryons and radiation and hope to obtain
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a “pure” quintessence isocurvature vector since, as we have seen in the discussion of

the adiabatic mode, these requirements lead to quintessence being adiabatic as well.

6.6.4 CDM Isocurvature and Baryon Isocurvature

The CDM isocurvature mode is characterized by Sc:γ 6= 0, ζtot = 0 and adiabaticity

between photons, neutrinos and baryons:

ζtot = 0, ∆γ = ∆ν =
4

3
∆b. (6.42)

Using this and Equations (6.27)-(6.32) yields

U
T
0 (CDM iso.) = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0). (6.43)

This vector fulfills ζtot = 0 + O(Ωc), which is in line with our approximation since

Ωc � 1. Similarly, for the Baryon Isocurvature mode, we require Sb:γ 6= 0, ζtot = 0 and

adiabaticity between photons, neutrinos and baryons. The resulting vector reads

U
T
0 (baryon iso.) = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0). (6.44)

As all but one of the components of U0 are vanishing for CDM Isocurvature and

Baryon Isocurvature, we use Equation (6.18) to obtain the next to constant order

solution for CDM Isocurvature
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Ṽq











































CDM iso.

= C











































1

Ωc(4Ων − 15)U/12

0

−(15/4)Ωc U
0

0

−(15/4)Ωc U
−2Ωc U

Ωc(15 + 2Ων)(1 + wq)U
Ωc U V











































, (6.45)

where U = (30 + 4Ων)
−1 and V = [105− 45wq + 4Ων(3wq − 1)]/[36(wq − 1)]. Similarly,
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we find for Baryon Isocurvature
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Note that these vectors are not constant since Ωb and Ωc both evolve in time. We

observe that the corrections to U are indeed proportional to Ωc or Ωb as expected.

This result holds for all tracking quintessence models with wq = 1/3 or wq ≤ 0 during

the radiation dominated period. For intermediate values 0 < wq < 1/3 the devia-

tion from the leading behavior scales ∝ xα, α < 1. Obviously, the adiabatic, CDM

Isocurvature, Baryon Isocurvature and neutrino isocurvature vectors U0 are linearly

independent. We have therefore identified four modes corresponding to the fourfold

degenerate eigenvalue zero of A(x). These four vectors span the subspace of domi-

nant modes in the super-horizon limit, and there are no more linearly independent

vectors that satisfy the constraints (6.27) - (6.32). Arbitrary initial perturbations may

therefore be represented by projecting a perturbation vector U at initial time into the

subspace spanned by the four aforementioned vectors, as this is the part of the initial

perturbations which will dominate as time progresses.

Figure 6.1 demonstrates that the early time behavior is well described by our analytic

formulae. It also includes the comparison of the field fluctuation X as derived in

Appendix A for completeness. The analytic results agree very well with the simulation

for early times, when the mode is outside the horizon. In the lower graph, we plot the

equation of state wq. The quintessence model used is parameterized by an equation of

state wq(a) = −0.95 + 0.75(1 − a), leading to wq(early) = −0.2 and according to (A3),

X ∝ τ0.8. This differs from reference [106]. 5

We see that including quintessence does not add a new dominant mode. The two

additional modes added by the fluctuations of the scalar field are both subdominant and

decay with negative eigenvalue λi. This is due to the fact that none of the perturbation

equations for quintessence equate to zero in the superhorizon limit. This holds for

5In [106] it is stated that the quintessence fluctuation in Newtonian gauge scales ∝ τ 2 for adiabatic

initial conditions. This does not agree with our results in Appendix. Actually, equation (101) of [106]

includes a factor ϕt0, which, interpreted as a dynamical quantity dϕ/dt (and not fixed at some initial

time t0), leads to a power law in τ which is then consistent with our result for the field perturbation.
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Figure 6.1: Gauge-invariant energy density perturbation ∆q and quintessence field fluc-

tuation X as simulated (straight and dashed-dotted lines), compared to the analytic

solution of Equations (6.39) and (A3) (dashed and dotted lines) as a function of confor-

mal time τ for adiabatic initial conditions. Radiation and matter equality corresponds

to τ = 109Mpc. Shown is the mode for k = 0.1Mpc−1 and the cosmological parameters

have been Ω0
bh

2 = 0.022, h = 0.7, Ω0
m = 0.3, Ω0

q = 0.7.

non-tracking quintessence models as well. Let us investigate this in detail. For all the

other fluid components, ∆′
a = 0 in the super-horizon limit, but for quintessence we get

from Eq. (5.40) that ∆′
q = −3(c2

s(q) − wq)∆q − 3wqΓq. For tracking quintessence, we

obtain from equation (5.57) that c2
s(q) = wq and we find

∆′
q = −3wqΓq (6.47)

Since Γq does not vanish except for wq = 1 (see Eq. (5.56)), this does not equate to

zero. 6 Hence, due to the non-vanishing entropy perturbation of quintessence there is

no additional dominant mode. 7

6Note that wq = 0 does not lead to ∆′

q = 0.

7We have not yet investigated the relationship between decaying quintessence modes and the back-
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Figure 6.2: CMB Temperature spectra as a function of multipole l in an early

quintessence cosmology. The pure adiabatic (AD), CDM isocurvature (CI), neutrino

isocurvature (NI) mode and three different combinations of these dominant modes are

plotted. For comparison with experimental data we also give the WMAP measurements

of the CMB [50]. The spectrum of the pure Baryon Isocurvature mode is essentially

identical to that of the pure CDM Isocurvature mode. All spectra have been normalized

to the same power at l = 10.

6.7 Isocurvature Initial Conditions and the CMB

We illustrate the influence of different initial conditions on the CMB with an example.

For an analysis of experimental data and a possible isocurvature contribution to the

CMB we refer the reader to [111–113]. Here, we merely wish to show the qualitative

features of the different modes. We use a modified version of cmbeasy [92,114] to com-

pute CMB spectra corresponding to different initial conditions for an early quintessence

model which will be shown in Chapter 7 to fit the WMAP data very well [107]. The

exact values of the parameters can be found in Table 7.1. We set the spectral index

of the isocurvature modes identical to the spectral index of the pure adiabatic mode,

ns = 0.99. The resulting spectra are plotted in Fig. 6.2.

The spectrum of the pure CDM isocurvature mode decays quickly when going to small

scales as has been found in previous works [115–117]. The neutrino isocurvature mode

ground evolution.
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shows prominent peaks at higher multipoles than the adiabatic mode with different

peak ratios. For the mixed initial conditions with only small isocurvature contribution,

the shape of the curve remains more or less the same. A small admixture of isocurvature

fluctuations leads to a decrease of power at larger multipoles if the overall normalization

is fixed at l = 10. Comparison with the WMAP data in the same figure shows that

non-adiabatic initial perturbations are strongly constrained. Clearly, pure isocurvature

initial conditions are inconsistent with CMB observations.

We have not performed a full scale Markov Chain Monte Carlo simulation with vary-

ing initial conditions to find the best fit model allowing for the inclusion of isocurvature

perturbations. This would introduce new degrees of freedom to allow for a better fit

to the experimental data. Wether the gain in χ2 would be significant to clearly point

towards a primordial spectrum containing isocurvature contributions remains to be

determined.

6.8 Remarks on Isocurvature Initial Conditions

We have investigated perturbations in a radiation-dominated universe containing

quintessence, CDM, neutrinos, radiation and baryons in the tight coupling limit. The

perturbation evolution has been expressed as a differential equation involving a matrix

acting on a vector comprised of the perturbation variables. This formulation leads to a

systematic determination of the initial conditions. In particular, we find that due to the

presence of tracking scalar quintessence no additional dominant mode is introduced.

This fact is beautifully transparent in the matrix language. Indeed, contributions of

higher order in x ≡ kτ towards a perturbation vector U can easily be determined by

solving a simple matrix equation once the constant part of U has been determined.

In total, we find four dominant modes and choose them as adiabatic, CDM Isocur-

vature, Baryon Isocurvature and Neutrino Isocurvature. For the Neutrino Isocurvature

mode, quintessence automatically is forced to non-adiabaticity. Hence, we could have as

well labeled the Neutrino Isocurvature mode as quintessence isocurvature. To demon-

strate the influence on the cosmic microwave background anisotropy spectrum, we have

calculated spectra for all modes. Clearly, non-adiabatic contributions are severely con-

strained by the data. A detailed study may provide ways to put additional constraints

on quintessence models or reveal details about the initial perturbations after inflation.



Chapter 7

Early Quintessence and the CMB

Recently performed high precision measurements of the CMB by the WMAP satellite

[49, 50, 58, 118–120] open the possibility to test and compare different cosmological

models with unprecedented accuracy. Due to this improvement in available data it is

possible to tighten the constraints on various cosmological parameters. Combining the

different cosmological probes like CMB, LSS and SNe Ia observations it seems possible

to falsify some cosmological models based on those new data sets.

Here, we will now present an analysis of the first year WMAP data.

7.1 WMAP Results

The WMAP collaboration has analyzed the WMAP first year data in different ways.

The underlying cosmological model that was used to calculate the resulting CMB spec-

trum was a ΛCDM model with adiabatic power-law primordial density fluctuations,

i.e.

|δk|2 ∝ kns . (7.1)

The second model against which the experimental data was tested was a ΛCDM model

with a k-dependant spectral index, the so-called running spectral index model. None

of those two models had a dynamical dark energy component. We will now present

an analysis with a leaping kinetic term (LKT) quintessence scenario with a constant

spectral index close to one which is able to fit the data equally well.

The WMAP team used different data sets to complement the WMAP measurement.

For the higher l region of the CMB spectrum (where WMAP did not take data) they

additionally used the CBI [62, 63] and ACBAR [61] measurements. The matter power

spectrum obtained from the WMAP spectrum was supplemented with the large scale

structure (LSS) data from the 2dFGRS [68] and the LSS estimate from the Ly-alpha

data from Croft et. al. [69]. The WMAP collaboration presents the best fit cosmological
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model for the WMAP data alone, for WMAP and the other CMB experiments, a model

with further constraints from the matter power spectrum from 2dFGRS and finally a

model also including also the Ly-alpha datapoints (for details see [50]).

For the two different models the cosmological parameters obtained from various data

sets have already been quoted in Tables 4.3.3 and 4.3.3.

7.2 Early Quintessence

The WMAP team analyzed the available data with the help of a ΛCDM model. We

will extend this analysis to quintessence models and explicitly investigate the claimed

k-dependent spectral index. In the basic quintessence scenario, the dark energy enters

only at late times, as required for cosmic acceleration. In a more realistic picture, the

late appearance of the quintessence may not be the whole story. As has been mentioned

in Chapter 2, scalar field models of quintessence with global attractor solutions [8, 9,

24, 25] have been shown to “track” the dominant component of the cosmological fluid.

One consequence is that just after inflation, the universe may contain a non-negligible

fraction of the cosmic energy density. Through subsequent epochs, the quintessence

energy density ρq lags behind the dominant component of the cosmological fluid with

a slowly varying Ωq, and an equation-of-state wq ≡ pq/ρq which is nearly constant.

The field energy tracks the background until the current epoch, when the quintessence

energy density crosses and overtakes the matter density. A non-negligible fraction of

dark energy at last scattering, Ω
(ls)
q , and during structure formation, Ω

(sf)
q , then arises

quite naturally. From the observational viewpoint, detection of any trace of “early

quintessence” would give us a tremendous clue as to the physics of dark energy.

We will focus on “early quintessence”, characterized by non-negligible values

Ω
(ls)
q , Ω

(sf)
q . 0.05. Typical scalar field models exhibit an exponential form of the

scalar potential in the range of the field relevant for early cosmology, with special

features in the potential or kinetic term in the range governing the present epoch

[31,34,36,121–123]. These LKT quintessence explicitly allows for a non-negligible frac-

tion of dark energy at last scattering or structure formation.

Our attention is drawn toward these models due to the claims of suppressed power

on small scales in the combined WMAP / CMB / large scale structure data set. We are

motivated precisely by the fact that the most prominent influence of a small amount of

early dark energy is a suppression of the growth of dark matter fluctuations [124,125].

As we discuss, this influence can help to make the fluctuation amplitude extracted from

galaxy catalogues or the Ly-α forest compatible with a relatively high amplitude CMB

anisotropy.

The effect of early quintessence on the mass fluctuation power spectrum can be
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understood simply as a suppression of the growth function for dark matter and baryonic

fluctuations. Just as fluctuation growth is suppressed at late times with the onset

of dark energy, so is the growth of linear modes slowed at early times due to non-

negligible Ω
(ls)
q , Ω

(sf)
q . We can directly examine the effect on the mass power spectrum

by comparing the σ8 values of an early quintessence model with a Λ model having the

same amount of present-day dark energy. Fixing the amplitude of the CMB fluctuations

over a range of angular multipoles corresponding to k ≈ (8Mpc)−1, then

σ8(Q)

σ8(Λ)
= (aeq)

3Ω
(sf)
q /5(1 − Ω(0)

q )−(1+w̃−1)/5

√

τ0(Q)

τ0(Λ)
. (7.2)

The dominant effect is the first factor with aeq = Ωr/Ωm ≈ 1/3230. This factor accounts

for the slower growth of the cold dark matter fluctuations. The other kinematical

factors involve a suitably averaged quintessence equation-of-state in the recent epoch,

w̃ [126–128], and the present conformal time τ0 for the quintessence and Λ models. We

emphasize that Equation (7.2) results in a uniform suppression of the cold dark matter

amplitudes for all modes that have entered the horizon since zeq.

Now we turn to consider the implications of the CMB for quintessence. The tem-

perature anisotropy power spectrum, from the plateau through the first two peaks, now

has been measured with new accuracy. In the context of a spatially-flat Λ model, this

would tell us the Hubble constant, h, matter and baryon densities, Ωm and Ωb, very

precisely. For the case of quintessence, a degeneracy exists amongst these parameters,

and the influence of the equation-of-state can play off the Hubble constant to achieve

an otherwise indistinguishable anisotropy pattern out to small angular scales [127].

Clearly, the CMB sky is consistent with a small amount of early quintessence in ad-

dition to Ω
(0)
q insofar as the angular-diameter distance to the last scattering surface is

preserved. As a means of proof by example, we identify a set of models in Table 7.1

with observationally indistinguishable CMB patterns, i.e. identical peak positions, but

differing amounts of Ω
(ls)
q , Ω

(sf)
q , shown as Models (A,B) in Figure 7.1. Model (C) is

WMAP’s best fit ΛCDM and Model (D) the best fit for an extended data set with

ΛCDM and running spectral index [50]. Our methodology, therefore, is to use the

CMB data to guide our search for compatible quintessence models, rather than carry-

ing out an exhaustive survey of parameter space. We choose models with present-day

equation-of-state w
(0)
q . −0.9 so as to focus attention on the early rather than late

quintessence behavior, as compared to a Λ model. Because a significant parameter de-

generacy between the primordial scalar spectral index ns and the optical depth to last

scattering τ persists in the WMAP data, we explore different combinations of ns, τ .

In Fig.7.2 we compare the prediction of our models for the matter power spectrum

with data extracted from galaxy catalogues (e.g. 2dFGRS [68, 129, 130] or the Ly-α

forest [69,70]). In view of the uncertainties from bias and nonlinearities, the agreement

is good for all models (A-D).
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Figure 7.1: Temperature (TT) and Polarization (TE) as a function of multipole l.

The WMAP data [58, 118] are plotted alongside two early quintessence models with

ns = 0.99 and ns = 1.05 (see Table 7.1 for the other cosmological parameters). For

comparison, we plot WMAP-normalized spectra for the best fit ΛCDM model (no Ly-α

data) with constant spectral index n = 0.97 of [50], as well as the best fit ΛCDM model

with running spectral index ns = 0.93, dns/d ln k = −0.031. At large l we plot the

CBI [62, 63] and ACBAR [61] measurements.
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Table 7.1: Models and parameters

A B C D

Ω
(sf)
q 0.03 0.05 0 0

Ω
(ls)
q 0.03 0.05 0 0

w
(0)
q -0.91 -0.95 -1 -1

ns 0.99 1.05 0.97 0.93

h 0.65 0.70 0.68 0.71

Ωmh2 0.15 0.16 0.15 0.135

Ωbh
2 0.024 0.025 0.023 0.0224

τ 0.17 0.26 0.1 0.17

σ8 0.81 0.87 0.87 0.85

χ2
eff/ν 1432/1342 1432/1342 1430/1342 1432/1342

Increasing the spectral index to ns > 1 induces more power for the fluctuation

spectrum on small scales relative to large. We remark that this enhancement of small-

scale power can be balanced by an increase in Ω
(sf)
q . Typically, for σ8 to remain constant

a 10% increase of ns is compensated by a 5% increase of Ω
(sf)
q . Consequently we find a

degeneracy in the ns − Ω
(sf)
q plane for σ8. (See Fig. 3d of [124].) The degeneracy may

be broken once data for much larger k is included, such as the Ly-α forest. Whereas

Ω
(sf)
q leads to a uniform decrease of all mass fluctuations with k/h > 0.064Mpc−1 by a

constant factor, the increase of the small scale matter fluctuations due to ns depends

on scale ∝ kns .

An increase of ns also influences the detailed CMB spectrum in a number of ways.

First, the spectral index influences the precise location of the first peak in angular

momentum space l1. Parametrizing the location of the peaks as [131]

lm = lA(m − ϕm), (7.3)

one observes that the shift ϕ1 decreases by 4.7% if ns increases by 10%. Keeping the

well-measured position of l1 fixed [120], this results in a decrease of lA by 5%. As

a consequence, the location of the second and third peak are shifted by ∆l2 ≈ 19,

∆l3 ≈ 38 towards smaller l. Again, this effect can (partly) be compensated by an

increase of Ω
(ls)
q according to [132]

ϕ1 ≈ [1 − 0.466(ns − 1)][0.2604 + 0.291Ω(ls)
q ]. (7.4)

Second, increasing ns lowers the amplitude ratio between the second and first peak.

This can to be compensated by a larger fraction of baryons Ωbh
2. Third, larger ns adds

power to the CMB spectrum at large l, or a lower relative power at low l. To the extent
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Figure 7.2: The cold dark matter power spectrum today as a function of k/h. We plot

the linear spectrum for two early quintessence models with spectral indices ns = 0.99

and ns = 1.05 (see Table 7.1 for the other cosmological parameters). Also shown is the

best fit Λ model with running spectral index ns = 0.93, dns/d ln k = −0.031 of [50],

normalized to WMAP (no Ly-α data). The 2dFGRS [68,129,130] and Ly-α [69,70] data

have been evolved to z = 0, although we have not convolved our theoretical data with

the experimental window functions. The galaxy power spectrum has a bias compared

to theoretical predictions which is not included in the figure.

that WMAP and COBE [133,134] observe a lack of power on large scales, l . 10, then

a blue tilt is beneficial, as a 10% gain in ns lowers the quadrupole relative to l = 40 by

a factor of ∼ 1.8, more in line with observations.

In the extended WMAP parameter analysis, combining CMB with non-CMB cosmo-

logical constraints, the running k-dependence in ns is shown to lower the matter power

spectrum at σ8 and smaller scales, as well as reduce the small-angle CMB fluctuation

power, without touching the region of l measured by WMAP [50]. In the case of early

quintessence, the CMB power spectrum on small angular scales is only mildly lowered.

However, the matter fluctuations turn out to be smaller for a given CMB amplitude.
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The net effect is a shift of the CMB power extrapolated from structure formation data

towards larger values.

We have computed the spectra in Figures 7.1, 7.2 using CMBEASY [92] for a class

of “leaping kinetic term quintessence” [34] models with early quintessence. The main

features depend only on two parameters besides the present fraction of dark energy

Ω
(0)
q and the present equation of state w

(0)
q , namely the fraction of dark energy at last

scattering, Ω
(ls)
q , and during structure formation, Ω

(sf)
q .

7.3 Parametrization

In order to facilitate comparison with other effects of quintessence – for example

the Hubble diagram H(z) for supernovae – we present a useful parametrization of

quintessence [36, 122, 123] rather than detailed models. For a > aeq and x ≡ ln a =

− ln(1 + z) we consider a quadratic approximation for the averaged equation-of-state

(xls ≈ − ln(1100))

wq(x) = −1

x

∫ 0

x
dx′wq(x

′) (7.5)

= w(0)
q + (w(ls)

q − w(0)
q )

x

xls
+ Ax(x − xls).

The time-dependent average equation of state wq(x) is directly connected to the time

history of the fraction in dark energy Ωq(x) according to

Ωq(x)

1 − Ωq(x)
=

Ω
(0)
q (1 + aeq)

1 − Ω
(0)
q

exp(−3xwq(x))

1 + aeq exp(−x)
(7.6)

which connects w
(ls)
q to Ω

(ls)
q . The parameter A is related to the average fraction of

dark energy during structure formation (atr ≈ 1/3)

Ω(sf)
q =

∫ ln atr

lnaeq

Ωq(a)d ln a

ln(atr/aeq)
. (7.7)

The parameters describing our models are (A): w
(ls)
q = −0.188, A = −0.0091; (B):

w
(ls)
q = −0.172, A = −0.015. The Hubble expansion has a simple expression in terms

of wq(x)

H2(z) = H2
0

[

Ω(0)
q (1 + z)3(1+wq(x)) +

Ω(0)
m

(

(1 + z)3 + aeq(1 + z)4
)

]

. (7.8)

Our models (A) and (B) are consistent with all present bounds for H(z), including type

1a supernovae [128, 135–138].
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To summarize, we have demonstrated that models of early quintessence are com-

patible with the presently available data for a constant spectral index of primordial

density perturbations. Parameter degeneracies in the angular-diameter distance to last

scattering are consistent with a small abundance of early quintessence. In turn, the

presence of early quintessence results in a reduction in the spectrum of matter fluctua-

tions on small scales, which may have significant consequences for the interpretation of

combined CMB and large scale structure data. Increasing the spectral index as a means

to understand the lack of very large scale power in the CMB can be compensated in

part by increasing the amount of early quintessence. We look ahead toward on-going

and future tests which afford tighter measurements of small scale CMB and matter

power spectra. A precision measurement of the position and height of the third peak

could be extremely helpful for determining the fraction of early quintessence.



Chapter 8

BBN and the Variation of the

Fundamental Constants

We have already briefly mentioned the cosmological epoch at which hydrogen, helium

and in small amounts deuterium, lithium and beryllium have been formed via nuclear

reactions. Big Bang Nucleosynthesis is believed to be understood quite well. The pro-

cess starts with a given number density of protons and neutrons and an ever decreasing

temperature. As the the temperature drops the energy will reach a value below the

binding energy of deuterium which will then be formed due to nuclear reactions. After

that, tritium, helium-3 etc. can be synthesized. The various different nuclear reactions

are strongly temperature dependent and to calculate the exact abundances needs accu-

rate knowledge of the reaction rates and an elaborate numerical code. In principle this

should suffice to give an exact prediction for the abundances of the light elements in the

universe. Comparing the BBN predictions with the observed abundances establishes a

powerful link between cosmology and nuclear physics. The baryon to photon ratio η

is determined in this fashion and can be compared to the η that is deduced from the

most up to date CMB experiment.

The WMAP [50] value for η reads η = 6.14 ± 0.25 × 10−10 resulting in a prediction

for the helium abundance YHe = 0.2484+0.0004
−0.0005 [139]. Measurements of the helium

abundance yield various values in the range YHe = 0.2421±0.0021, YHe = 0.2444±0.0020

[86] and YHe = 0.238 ± 0.002 ± 0.005 [140]. Furthermore, the abundances of deuterium

and lithium-7 are much more delicate to determine from observation and bear much

larger errors. This disagreement between two different determinations of YHe (or η, if

we deduce the one from the other) with two independent and yet seemingly accurate

methods has attracted our interest.

Recently, a detection of a change in the fine structure constant αem over cosmological

time scales [141] has been reported. The observed absorption spectra of distant quasars

showed evidence that the strength of the electromagnetic interaction and hence the
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atomic energy levels had changed with time. The deduced bound on the variation of

αem is ∆αem/αem = −1.1 ± 0.4 × 10−5 [141]. There are several different methods and

observations to detect a variation of the fundamental constants. Most of them will

naturally just yield upper bounds on ∆αem/αem. Amongst those experiments is the

Oklo natural reactor [142,143] and the rhenium to osmium decay measurements [144].

Both of these measurements strongly constrain a possible variation of α but only up to

small redshift values. A change of the fundamental couplings at BBN (z ∼ 105) is not

strongly constrained by the measurements mentioned before. Although the evidence in

favor of a variation of αem is not convincing and the only direct detection via quasar

absorption lines could not be verified [145–148] we will nevertheless spend some time to

investigate the effects a change of the fundamental couplings will have on the predictions

of Big Bang Nucleosynthesis.

In order to do this we need to calculate the BBN abundances as a function of the

parameters that will change when we assume a variation of the fundamental couplings.

Furthermore, in contrast to earlier investigations, we do not change the electromagnetic

coupling and leave the others constant. We employ a simple grand unified theory scheme

in which the variations of the couplings will be interdependent. This model seems more

plausible to us than changing a single and not independent parameter in the model.

Once we have derived the primordial abundances they will be stated as functions of

the ’nuclear physics parameters’ Xi

Xi = (MP̄ , αem, 〈φ〉, me, τn, Q, Bd). (8.1)

Here, 〈φ〉 is the Higgs field vev, τn is the neutron lifetime, Q is the proton-neutron

mass difference and Bd is the binding energy of the deuteron. These parameters will

be related to the six dimensionless fundamental particle physics parameters Gk

Gk = (MP̄ /ΛQCD, αem, 〈φ〉/ΛQCD, me/ΛQCD, mq/ΛQCD, ∆m/ΛQCD). (8.2)

We scale all quantities with respect to ΛQCD which is the strong interaction scale. The

reduced Planck mass MP̄ sets the gravitational interaction strength and the Higgs vev

〈φ〉 is the weak scale. The quark masses enter this description via mq = (mu + md)/2

and ∆m = md − mu.

Because we do not use a full numerical simulation but a semi-analytical approxima-

tion we will restrict ourselves to analyze the helium abundance and leave the determi-

nation of deuterium and lithium abundances for future investigations.

8.1 Linearization

When we think of a change in the fundamental couplings we assume that this change

between the time of BBN and today is very small. We therefore assume that we can
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linearize this change in the different parameters Gk according to

∆YHe

YHe
=

YHe(G + ∆G) − YHe

YHe
=
∑

k

c
(G)
k

∆Gk

Gk
, (8.3)

where YHe denotes the helium abundance in terms of mass fraction. As emphasized

before this investigation is done to include the dependencies among the different Gk.

Because a nuclear physics calculation will involve the nuclear physics parameters Xi

rather than the fundamental couplings the BBN estimmate will yield a result

∆YHe

YHe
=
∑

i

c
(X)
i

∆Xi

Xi
. (8.4)

We therefore need to relate both parameter sets to each. This is done via

∆Xi

Xi
=
∑

k

fik
∆Gk

Gk
, (8.5)

with

fik =
∂ lnXi

∂ lnGk
. (8.6)

Once the coefficients c
(X)
i have been approximated from nuclear physics and the matrix

fik has been determined the coefficients c
(G)
k follow according to

c
(G)
k =

∑

i

c
(X)
i fik. (8.7)

8.2 Analytic estimate for the primordial helium abun-

dance

We will now analytically estimate the helium abundance dependent on the parameters

Xi. Our approach to simplifying this problem is the same as that of Esmailzadeh,

Starkman and Dimopoulos [149] and we will also use their form of short notation. It

abbreviates the reaction

α + β → γ + δ (8.8)

as [αβγδ] and will be used in the following discussion.

Before BBN, the universe contains protons and neutrons which are in thermal equi-

librium. The reaction rate for converting neutrons into protons is given by [150]

Γn→p = A

∫

dx x2

(

1 − m2
e

(Q + x)2

)
1
2

(Q + x)2(1 + e(x/T ))−1(1 + e−(Q+x)/T )−1. (8.9)

The integral runs from −∞ to +∞ with an energy gap between −Q−me and −Q+me

with Q being the proton neutron mass difference. Here A ∼ 〈φ〉−4 is the 4 point
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transition probability in Fermi-theory which depends on the axial and vector couplings

cV and cA. For simplicity we will work with constant cV and cA.

We now need to define a criteria for which this reaction becomes small and one can

regard the abundances of protons and neutrons to be fixed, i.e. a freeze out condition.

There certainly exist some freedom of choice for this condition and we will assume that

it happens when the Hubble expansion is comparable to the reaction rate. This defines

a freeze out temperature

Γn→p(T
∗
n) = b H(T ∗

n), (8.10)

where the parameter b is put in to alter the freeze out temperature T ∗
n slightly. We

adjust b so that our helium abundance estimate (YHe) is close to the prediction of a fully

numerical study. This reflects the fact that we approximate a BBN calculation. The

factor b must be set to b = 1.22 for our calculation to yield the numerically determined

YHe value. To solve Eq.(8.10) we also need the Friedmann equation

H2 =
ρ

3M2
P̄

(8.11)

and the energy density

ρ = g∗
π2

30
T 4. (8.12)

The effective number of massless degrees of freedom g∗ (those with m � T ) is given by

g∗ =
∑

i=bosons

(

Ti

T

)

+
7

8

∑

i=fermions

(

Ti

T

)

. (8.13)

At the temperature range we are considering (∼ 1MeV) we have to include the three

neutrino species, electron and positron and the two photon polarizations. This yields

a value of g∗ = 10.75. Given T ∗
n we can now determine the freeze out concentration of

neutrons via

Y ∗
n =

1

1 + eQ/T ∗

n
. (8.14)

After this freeze out, the neutrons will decay according to

Yn(t) = Y ∗
n et/τn (8.15)

until they take part in the nuclear reactions and become bound in helium, deuterium

or tritium. At the end of BBN, by far most neutrons are bound in helium and we are

therefore justified to assume that the neutrons decay until the helium production rate

dominates over the neutron decay. This defines a time tf for free neutron decay

2ẎHe(tf ) = −Ẏn(tf ). (8.16)

The final 4He abundance is then estimated by

YHe =
1

2
Yn(tf ) =

1

2
Y ∗

n e−(tf /τn). (8.17)
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It depends on the couplings via Q, T ∗
n , τn and tf . In turn, T ∗

n depends on A ∼ 〈φ〉−4,

Q, me and MP̄ via Eqs. (8.9), (8.10) and (8.11). To determine the time tf we use the

fact that the dominant process for helium production is [151]

d + t → 4He + n, (8.18)

while we neglect the subdominant processes. Using the abbreviation introduced above

the condition for tf reads

2YdYt[dtnα] =
1

τn
Y ∗

n e−tf /τn . (8.19)

As the time for free neutron decay depends on the abundances of deuterium (Yd) and

tritium (Yt) we also need to determine those. Because we are in the temperature

range around ∼ 1MeV the deuterium abundance is in equilibrium with the neutron

and proton abundance (Yp ≈ 1 − Yn) and given by the Saha equation [152]

Yd = 8.15

(

T

mn

)3/2

η eBd/T YnYp. (8.20)

For the tritium abundance we need to consider the processes

3He + n → p + t

d + d → p + t (8.21)

creating and

t + d → 4He + n (8.22)

annihilating tritium. Other reactions are subdominant by at least 2 orders of magnitude

(as can be verified from [151]) and are therefore neglected. Close to thermal equilibrium

the fixed point condition [149] leads us to an equation for Yt of the form:

Yt =
Yn Y3 [n3pt] + Yd Yd [ddpt]

Yd [dtnα]
. (8.23)

To solve for Yt the 3He abundance is also required. The reactions involved are

p + d → 3He + γ, (8.24)

d + d → 3He + n, (8.25)

d +3 He → p +4 He, (8.26)

n +3 He → p + t. (8.27)

Near the equilibrium the fixed point condition leads to

Y3 =
Yd Yp[pd3γ] + Yd Yd[ddn3]

Yd [d3pα] + Yn [n3pt]
. (8.28)
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We now have sufficient information to determine tf and hence solve the equations above

for the helium abundance YHe. The equations ar not analytically solvable so we will

need to solve them numerically.

What remains is to specify how we have incorporated the change of the parameters

Xi into this estimate. Because we will rescale the model so that the strong scale ΛQCD

is kept fixed we don’t need to consider changes in the reaction rates due to changes in

the strong scale but only those due to a change in αem. The dependence of the nuclear

reaction rates on αem has been studied by Bergström, Iguri and Rubinstein (BIR) [153]

and was extended by Nollett and Lopez [154]. For standard reaction rates, we use the

data of the NACRE compilation [155] where available, otherwise we use those of Smith,

Kawano and Malaney (SKM) [151]. For the process 3He(n, p)t we use the fit of Cyburt,

Fields and Olive [156].

We assume a linear dependence of ∆YHe/YHe on the involved parameters. We have

therefore investigated small changes in a single parameter while we keep the others

fixed. This will yield the linear dependence of YHe on the different parameters. The

result of this numerical approximation in given in Table 8.1.

variable MP̄ αem 〈φ〉 me τn Q BD

coeff. -0.81 -0.043 2.4 0.024 0.24 -1.8 0.53

Table 8.1: Coefficients c
(X)
i for nuclear physics parameters

8.3 The Relation of the Fundamental Couplings to the

Parameters Xi

What is left to be determined is the relation between the parameters

Xi = (MP̄ , αem, 〈φ〉, me, τn, Q, Bd) (8.29)

and the fundamental couplings

Gk = (MP̄ /ΛQCD, αem, 〈φ〉/ΛQCDme/ΛQCD, mq/ΛQCD, ∆m/ΛQCD). (8.30)

It is obvious that the matrix fik obeys the relation fik = δik for i = 1..4 because the

parameters are identical. Inspecting the list of parameters Xi, it is convenient to first

determine the dependence of Q on the fundamental couplings because we will need this

dependence to specify τn. To parametrize the ∆Q/Q in terms of the Gk we will use

the formula provided by Gasser and Leutwyler [157] which reads

Q =

[

−0.76

(

1 +
∆αem

αem

)

+ 2.05

(

1 +
∆(∆m)

∆m

)]

MeV . (8.31)
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The binding energy of deuterium depends on the Higgs vev 〈φ〉 and on the quarks

masses via mq and ∆m. Assuming only small changes and hence a linear dependence

on those parameters we keep one parameter fixed and vary the other.

To model the electromagnetic part we use the fit of Pudliner et al. [158] while for

the dependence on mπ ∝ m
1/2
q we adopt the linear fit of Yoo [159]. This leads us to

Bd = B0
d

[

(r + 1) − r
mπ

m0
π

]

− 0.018
∆αem

αem
MeV , (8.32)

where r is a parameter that varies between 6 and 10 and B0
d = 2.225 MeV is the

deuteron binding energy as measured in the laboratory today. Next, we need the

change in the neutron lifetime in terms of a variation of the fundamental parameters.

The most straight forward relation is those of the neutron lifetime and the weak scale

τn ∝ G−2
F ∝ 〈φ〉4. What needs to be taken into account as well is the change in the

phase space volume for free neutron decay

f =

∫ Q

me

dq q2(Q − q)2(1 − m2
e

q2
)1/2. (8.33)

This phase space integral also depends on Q and hence we obtain additional terms from

αem and ∆m leading to

∆τn

τn
= 3.86

∆αem

αem
+ 4

∆〈φ〉
〈φ〉 + 1.52

∆me

me
− 10.4

∆(∆m)

∆m
. (8.34)

The information given above is now sufficient to write down the matrix fik which is

provided in Table 8.2. We do not claim to have included every possible effect but did

take those into considerations which have the largest effect. If a zero is the matrix

element there is no dependence at all, if a the entry is left empty the effect is to be

neglected. Once we have determined fik we can calculate the relative change in YHe if

one varies the fundamental couplings Gk. This result is stated in Table 8.3.

8.4 Example

We have emphasized that we perform this investigation because the impact of a varia-

tion of the fundamental constants will not only be restrict to one parameter, for instance

αem. The underlying grand unified theory (GUT) will predict an interdependence of

the relevant fundamental couplings. We want to demonstrate this with the help of a

simple example. It is possible to specify many different plausible GUT models and we

will choose one that renders the analysis relatively simple.

The scalar field χ that drives the time evolution of the fundamental couplings can

be identified with the scalar field that accounts for the observed dark energy of the

universe today [8,160]. This would imply that in a phenomenological approach we can
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Table 8.2: The matrix entries fik, corresponding to the coefficients relating relative

changes in Gk to relative changes in Xi.

parameter 1 MP̄ αem 〈φ〉 me mq ∆m

MP̄ 1 0 0 0 0 0

αem 0 1 0 0 0 0

〈φ〉 0 0 1 0 0 0

me 0 0 0 1 0 0

τn 0 3.86 4 1.52 - −10.4

Q 0 −0.59 - - - 1.59

Bd 0 −0.0081 - - −r/2 -

Table 8.3: Coefficients c
(G)
k for fundamental couplings

variable MP̄ αem 〈φ〉 me mq ∆m

coeff. -0.81 1.94 3.36 0.389 -1.59 -5.358

calculate the field evolution and determine the variation of the fundamental couplings

at the different epochs for which observational bounds exist, e.g. QSO absorption

lines, the Oklo natural reactor bound and laboratory observations today. In this short

example we will instead just study the era BBN without the relation to the other

epochs, we therefore just need to assume that this field had a different value at the

BBN epoch compared to today. The evolution of this cosmon field χ does not influence

this example.

A detailed study of the dependencies of the fundamental couplings on a scalar field

has been presented in [35, 36]. The calculation to one loop order yields [35]

α−1
s (MW ) =

4πZF (χ)

ḡ2
+

7

2π
ln ζw(χ), (8.35)

α−1
w (MW ) =

4πZF (χ)

ḡ2
+

5

3π
ln ζw(χ), (8.36)

α−1
em(MW ) =

32πZF (χ)

3ḡ2
− 5

3π
ln ζw(χ), (8.37)

where the W-Boson mass is MW (χ) = ζw(χ) χ and ZF (χ) determines the renormal-

ized grand unified gauge coupling (g2
R = ḡ2/ZF , ḡ fixed). We normalize χ such that

MGUT (χ) = χ. The frame in which we work will be that of a constant strong inter-

actions so that the reaction rates do not change for our helium abundance estimate.

Note that such a frame can always be found via a Weyl scaling and will lead to a time
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dependent reduced Planck mass MP̄ . We also define that the ratio

MP̄ (χ)

MGUT (χ)
=

f√
6

(8.38)

is constant. From [35] we use the relations for the Planck scale

ln
MP̄

mn
= −2

9
ln ζw + ln f +

8πZF

9ḡ2
(8.39)

and the weak scale

∂ lnMW /mn

∂ lnχ
=

7

9

∂ ln ζW

∂ lnχ
+

8π2

9ḡ2

∂ lnZF

∂ lnχ
. (8.40)

We are now able to specify a particularly simple scenario in which we also keep the

weak scale fixed w.r.t the strong scale, i.e.

∂ lnMW /mn

∂ lnχ
= 0. (8.41)

Using δ(1/α) = −∆α/α2, a short calculation then yields

∆αem(MW )

α2
em(MW )

= −88π

7

∆ZF

ḡ2
. (8.42)

From Eq. 8.39 we obtain

∆MP̄ /ΛQCD

MP̄ /ΛQCD
= − π

11

∆αem(MW )

α2
em(MW )

. (8.43)

The other Gk parameters are determined as follows. Because we fixed the weak scale

we have ∆〈φ〉/〈φ〉 = 0, while for the others we neglect the variations in the Yukawa

couplings and hence obtain

∆me

me
=

∆(∆m)

∆m
=

∆mq

mq
=

∆〈φ〉
〈φ〉 . (8.44)

The running of the coupling αem below MW is given by

αem(µ)−1 = αem(MW )−1 +
2

3π

∑

i

Q2
i ln

MW

µ
, (8.45)

where the charges Qi of particles with masses in the range µ to MW is given by five

quarks in three colours plus three leptons
∑

i

Q2
i = 3 × (8/9 + 3/9) + 3. (8.46)

In this simple example we have ∆α−1
em(me) = ∆α−1

em(MW ) and the only unknown pa-

rameter that remains is the unified gauge coupling ZF . Because the GUT coupling is

arbitrary and would serve to define the model we can equally well choose the parame-

ter to be αem. In this case we can specify what the change in αem needs to be for the

helium abundance to agree with the observed value YHe ≈ 0.24. We obtain

∆αem(me)

αem(me)
= −1.0 × 10−3. (8.47)
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8.5 Remarks

The semi-analytic estimate presented here does not replace the need to study BBN with

fully numerical codes. The main advantage of the presented analysis is the modular

design which allows for easy improvements of the estimate without the need to change

the whole calculation. This might be of interest to scientists who do not have the full

numerical BBN code to test their hypothesis but want to estimate the specific effect on

the BBN abundance predictions. For instance, it is easy to incorporate new results and

estimates for the dependence of YHe on the Xi without the need to alter the matrix fik.

Likewise, if changes or improvements on the level of the fundamental couplings need

to be implemented one needs to change the entries in the matrix fik without the need

to change the helium abundance estimate. Last but not least, the specific GUT model

is also disconnected from the different parts of the analysis. One can therefore easily

test the predictions of a different GUT model by calculating the c
(G)
k for that model

and using the rest of the analysis as provided here.
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Conclusions

What is the present state of modern cosmology? The standard cosmological model

explains most of the features we observe very well, although in a phenomenological way.

The existence of both dark matter and dark energy is supported by an abundance of very

accurate measurements. Despite the many proposed theories, the nature of dark matter

and dark energy still remain obscured. Various possible dark matter explanations have

been suggested, none of which could be verified by present experiments. The dark

energy problem also remains unsolved, partly because possible models are not easily

distinguished by experiments. Determining the equation of state of dark energy today

and an accurate measurement of the dark matter power spectrum seem to be the most

promising tools to further improve the constraints.

Other areas of cosmology and astrophysics are making progress but are still quite far

from being fully understood. The ultra high energy cosmic rays are puzzling in nature

and a proper computer simulation of structure formation, predicting the parameters

we observe, is not yet possible. Nevertheless, the picture about the evolution of our

universe is sketched with some parts of it still missing but many parts being put in

the right place. Parametrizing our lack of knowledge with the help of dark matter and

dark energy at least serves to give a name to the things in cosmology we really don’t

understand.

Trying to shed light on the open issues in cosmology, we presented work on several

research topics involving quintessence as the dark energy component [107, 161, 162].

The discussion of the gauge problem followed the existing literature [53, 89, 90].

Based on this treatment we derived the perturbation equations for the energy density

contrast and the velocity fields in a radiation dominated universe containing CDM,

baryons, radiation, neutrinos and a scalar field. The presented matrix formulation and

subsequent determination of the eigenmodes renders our analysis very transparent. The

four dominant modes we have identified form a complete set of basis vectors in initial

condition space. We find those four dominant modes and choose them as adiabatic,
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CDM Isocurvature, Baryon Isocurvature and Neutrino Isocurvature. For the Neutrino

Isocurvature mode it is interesting to note that quintessence is automatically forced

to non-adiabaticity. Hence, we could have as well labeled the Neutrino Isocurvature

mode as Quintessence Isocurvature. In particular, we find that due to the presence of

tracking scalar quintessence no additional dominant mode is introduced by the scalar

field because quintessence cannot be non-adiabatic if the other components are. With

this decomposition into basis vectors we are able to analyze the CMB spectrum of any

possible admixture of adiabatic and isocurvature initial conditions.

As was mentioned before, a neutrino velocity mode as a stable, non-decaying mode

could not be found, contrary to the results of Bucher et al. [115]. This is due to the

difference in formalism. Bucher et al. work in synchronous gauge and they argued

in favor of the neutrino velocity mode because it has non-diverging potentials only in

synchronous gauge. Such a neutrino velocity mode has diverging Newtonian potentials

in longitudinal gauge or gauge-invariant formulation and is therefore absent in our

discussion.

To analyze the possible contribution of isocurvature initial conditions towards the

CMB we have calculated CMB spectra for the different isocurvature modes as well

as for some admixtures of adiabatic and isocurvature initial conditions. We have not

performed a full search of the parameter space to find the best fit mixture of isocurva-

ture contributions but the presented results already show that pure isocurvature initial

perturbations are excluded while admixtures are strongly constrained.

Following the discussion of initial conditions we focussed our work on the influence

of early quintessence on the CMB spectrum. The WMAP collaboration introduced a

ΛCDM model with a running spectral index to explain the WMAP first year data.

This k-dependent spectral index introduces a tilt in the dark matter power spectrum.

Noteworthy, a small contribution of quintessence towards the energy density at the

time of last scattering Ω
(ls)
q or structure formation Ω

(sf)
q has the effect of suppressing

the growth of structure for all dark matter modes that enter the horizon after matter

radiation equality – a comparable effect to that of a running of the spectral index. We

used LKT term quintessence models with non-negligible fractions of early quintessence

to find cosmological models which fit the data and do not rely on a k-dependent spec-

tral index. We presented two of those early quintessence models in Table 7.1. The

WMAP data is the by far most accurate measurement of the CMB but did not have

the discriminating power to rule out one of the cosmological models. Combining the

WMAP result with other CMB experiments and large scale structure data does show

an impressive agreement of various observations. The cosmological constant, despite

being theoretically unsatisfying, does very well in explaining the data as do quintessence

models. Tightening the constraints on the third peak in the CMB spectrum could in-

crease the sensitivity in detecting early quintessence, as traces of non-negligible dark
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energy contribution become discernable from a Λ dominated cosmological model.

A different aspect of an additional scalar field in cosmology was discussed in connec-

tion with the time variation of the fundamental couplings. Because a time evolution of

the fundamental constants should be driven by a field it is natural to assume that this

field can be identical with the quintessence field. Motivated by the slight discrepancies

between theoretical predictions [139] and observational determination [86, 140] of the

primordial helium abundance we studied the effects of a change of the fundamental cou-

plings on the BBN predictions. The result we obtained is very useful in determining the

effect of a change of the fundamental constants has on the predicted helium abundance.

The evolution of the scalar field itself is of minor importance in this analysis as we have

only compared the BBN epoch and today. To include the other bounds on a variation

of αem from the QSO absorption lines and the Oklo natural reactor one needs to calcu-

late the time evolution of the quintessence field and find a model that incorporates the

different constraints, as well as satisfying the other cosmological constraints the dark

energy component has to obey. Indulging in the analysis of the interdependencies of

the fundamental couplings in a GUT scheme was well justified. Our example shows

that the dominant contribution to a change of the primordial helium abundance can

be due to a change in the reduced Planck mass instead of the change in αem. The

provided treatment will hopefully encourage future researchers to include the relations

among the different fundamental couplings when studying BBN predictions.

What can we expect from the proclaimed ”decade of precision cosmology”? Maybe

the answer to the nature of dark matter can be given by particle physics if the LHC

is fully operational. The observation of dark matter decay products could guide this

search for a dark matter particle candidate.

Concerning the cosmological model with all its parameters we depend on improving

observational constraints to make progress. With the help of planned supernovae mis-

sions like SNAP we should be able to determine the equation of state very accurately.

This should settle the question wether w is smaller , equal or larger than -1. Also,

future CMB observations will be useful as ever, especially if some of these observations

detect B-mode polarization confirming gravitational waves. Careful measurement of

the E-mode and B-mode polarization and its cross-correlation with the temperature

anisotropies can further constrain possible cosmological models. As was mentioned,

scientists also discuss the possibility to use the SZ effect to gain more information on

the surface of last scattering as seen by distant clusters. It will also be of great impor-

tance to combine the different observations to break the parameter degeneracies that

exist.

Further improvements in the observational sector are already foreseeable. The the-

ory of weak gravitational lensing and associated observations will hopefully provide

excellent constraints on both the equation of state today and the dark matter distri-
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bution in the universe. The direct probing of the dark matter power spectrum will

also be able to rule out early dark energy as discussed in Chapter 7 and improve our

knowledge of structure formation.

Putting it all together, with upcoming observational techniques, cosmologists have

a good chance of making substantial progress in describing the universe. Whether the

’cosmological standard model’ of the future will contain a scalar field, a cosmological

constant or something entirely different only time can tell.
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Appendix A

Early Time Quintessence Field Fluctuations

While in Chapter 5, we describe quintessence perturbations by the variables {∆q, Vq},
one could instead use the field fluctuation and its time derivative {X, Ẋ}. We will

give analytic expressions for X and Ẋ in the case of tracking quintessence for super-

horizon modes. We will do so assuming that Ψ and Φ are at least almost constant. As

this is not the case for CDM Isocurvature and Baryon Isocurvature(which have been

described in Chapter 6), the following steps do not apply in these modes. Furthermore,

we will assume that the universe expands as if radiation dominated during the time of

interest. In this case, H = τ−1, Ωq ∝ τ1−3wq and hence by means of Equation (5.51)

˙̄ϕ ∝ τ− 1
2
(1+3wq). Using this, we infer from Equation (5.53) that V ′ ∝ τ− 1

2
(7+3wq). In

addition, a straightforward calculation using (5.52) and (5.53) yields

a2τ2V ′′ = a2τ2 dV ′

dτ

dτ

dϕ
=

3

4
(1 − wq)(7 + 3wq). (A1)

The Equation of motion for X (5.43) contains a term ˙̄ϕ
(

Ψ̇ − 3Φ̇
)

, which by assumption

we may drop. In addition, we see from Equation (A1), that for super-horizon modes,

a2V ′′ � k2 (except for wq very close to 1), and hence the Equation of motion reduces

to

Ẍ = −2a2V ′Ψ − a2V ′′X − 2
ȧ

a
Ẋ. (A2)

Using the power law behaviour in τ of V ′, V ′′ and a, as well as Equations (5.53) (A1),

one finds the particular solution

X(τ) =
τ

2
Ψ ˙̄ϕ, (A3)

as well as two complementary solutions that may be added to obtain the general solution

X(τ) =
τ

2
Ψ ˙̄ϕ + c1 τ− 1

2 (1−
√

1−4a2τ2V ′′) + c2 τ− 1
2(1+

√
1−4a2τ2V ′′). (A4)

The mode proportional to c2 is at least as rapidly decaying as the one proportional to

c1. Using the explicit form of 4a2τ2V ′′, Equation (A1), we find that
√

1 − 4a2τ2V ′′ is
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imaginary if wq ∈ [−2
3(1 +

√
6),−2

3 (1 −
√

6)], which holds for all scalar quintessence

models of current interest. Hence, the complementary modes decay ∝ 1/
√

τ in an

oscillating manner.

Coming back to the dominating particular solution (A3), Figure 6.1 shows that

the accuracy of this analytic result is indeed high at early times, when compared to

numerical simulations.

Inserting the solution (A3) and its time derivative into Equation (5.47), we find the

simple expression

∆q = 3(1 + wq)

(

Φ − 1

2
Ψ

)

, (A5)

which is just a restatement of eqn. (6.31) and (6.32). Hence, the energy density contrast

in tracking quintessence models remains constant on super horizon scales, provided the

gravitational potentials are constant to good approximation.



Appendix B

Conventions

Throughout this thesis we use units in which c = ~ = 1. Latin indices denote space

dimensions i = 1..3 whereas Greek indices run from µ = 0..3. A dot denotes the

derivative with respect to time. In Chapter 2 we used normal time (to keep the standard

notation used in most textbooks) while in Chapter 5 and following we use conformal

time τ .

Symbols and their Meanings

Symbol

gµν metric with signature (−1,+1,+1,+1)

MP̄ reduced Planck mass (8πG)−1/2

a cosmic scale factor

t normal time

τ conformal time dτ = dt/a

w equation of state ρ/p

Ωα fraction of total energy density of species α

H Hubble’s constant ȧ/a

Table 9.1: Short reference for symbols: general
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Symbol

Ψ, Φ Bardeen potentials

ϕ̄ background quintessence field

χ quintessence field perturbation

∆α gauge-inv. density contrast of species α

Vα gauge-invariant velocity of species α

Π shear

Γ entropy perturbation

Ṽ reduced velocity: Ṽ = x−1V

Π̃ reduced shear: Π̃ = x−2Π

Table 9.2: Short reference for symbols: Chapter 5

Symbol

η baryon to photon ratio

YHe helium abundance in terms of mass fraction

Yd deuterium abundance in terms of mass fraction

Yt tritium abundance in terms of mass fraction

Y3
3He abundance in terms of mass fraction

τn neutron lifetime

Q proton neutron mass difference

Bd deuterium binding energy

mu mass of the up quark

md mass of the down quark

mq (mu + md)/2

∆m md − mu

Table 9.3: Short reference for symbols: Chapter 8
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