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Point Spread Function Engineering in Fluorescence Spectroscopy: The
combination of high resolution imaging with fluorescence spectroscopy has ren-
dered the microscope into a powerful tool for functional analysis of biological
specimens. This thesis explores the potential of techniques, that are usually
utilized for PSF-engineering, for the development of new spectroscopical appli-
cations. The derivation of a simple integral solution for the Fourier transform
of the vectorial PSF lays the foundation for numerical modelling of dynamical,
intensity dependent processes in the focal region. Subsequently a theory de-
scribing the combination of fluorescence correlation spectroscopy with diffraction
limited, periodically modulated detection volumes is derived. This idea leads to
the proposal of a ’diffusion and flow microscope’ with high spatial resolution. It
is readily implemented in a multifocal 4Pi microscope and its potential to ex-
tract the parameters of anisotropic diffusion as well as speed and direction of
flow inside a fluid is demonstrated in simulations. Finally, experimental evidence
is presented that depletion by stimulated emission can be used to identify Förster
energy transfer between two molecules inside a sample.

Manipulation von Punktabbildungsfuntionen in der Fluoreszenzspek-
troskopie: Die Synthese von Mikroskopie und Fluoreszenzspektroskopie hat das
Mikroskop in ein vielseitiges Werkzeug zur funktionelle Analyse biologischer Sys-
teme verwandelt. In dieser Arbeit wird untersucht, ob und wie kürzlich ent-
wickelte Techniken zur Manipulation von Punktabbildungsfunktionen neue spek-
troskopische Anwendungen im Mikroskop hervorbringen können. Die Ableitung
einer einfachen Integraldarstellung der Fouriertransformation der fokalen Inten-
sitätsverteilung schafft die Grundlage für die numerische Modellierung dynami-
scher, intensitätsabhängiger Prozesse im Fokus. Als nächstes wird Fluoreszenz-
Korrelationsspektroskopie mit Detektionsvolumina, deren beugungsbegrenzte Ein-
hüllende periodisch moduliert ist, theoretisch beschrieben. Darauf aufbauend
wird ein ’Diffusions- und Strömungsmikroskop’ mit hoher räumlicher Auflösung
vorgeschlagen. Sein Aufbau ähnelt dem eines multifokalen 4Pi-Mikroskops und
seine Fähigkeit, die Parameter anisotroper Diffusion und die Strömungsrichtung
und -geschwindigkeit in einer Flüssigkeit zu bestimmen, wird in simulierten Mes-
sungen demonstriert. Zuletzt wird aufgezeigt und experimentell verifiziert, dass
Entvölkerung durch stimulierte Emission (stimulated emission depletion) dazu
verwendet werden kann, zwischenmolekularen Förster-Energie-Transfer in einer
Probe zu identifizieren.
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Chapter 1

Introduction

Far field light microscopy is non-invasive and delivers three-dimensional images
of life samples. Therefore it is one of the most important tools in the biological
sciences. The use of fluorescence as contrast allows functional imaging because
the dye can be selectively attached in the nucleus, cell membrane, to certain
molecules or even specific sites on macromolecules. At the same time it allows
for the combination of imaging with methods from fluorescence spectroscopy. By
measuring the spectral and temporal form of the signal in addition to its inten-
sity, information about the chemical and physical environment of the dye can be
assessed. For example, fluorescence correlation spectroscopy (FCS)1 delivers sta-
tistical information about movement and reactions of stained units which are too
small and too dense to be individually resolved. Distances can be measured by
monitoring resonant energy transfer between two dye molecules revealing struc-
tural information2, and identifying reaction partners.3

Owing to the wave nature of light the pass-band of a microscope is cut off at high
spatial frequencies, and the resolution of far field microscopy is therefore funda-
mentally limited. This diffraction barrier, first postulated by Abbe4 had long
been considered an unalterable fact. However, since the confocal laser scanning
microscope enabled three-dimensional imaging and widened the lateral pass-band
the problem has received renewed attention and the field of point-spread func-
tion engineering emerged. Several methods were found how the shape and, more
importantly, the size of the effective detection volume of a microscope can be
influenced.
A number of approaches is based on diffraction itself. The form of the focal in-
tensity distribution can be shaped by specific aberrations of the wavefront using
a pupil filter.5 However, a significant resolution increase can not be achieved in
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lateral or axial direction without producing large sidelobes and pupil filters are
mainly useful in combination with other techniques.6,7 By interfering two counter-
propagating beams an axial pattern is produced in the focus of a 4Pi microscope.
The aperture is effectively doubled and typically a more than 4-fold improvement
in axial resolution is achieved.8 Despite this success, the resolution limit is still
governed by diffraction in such a microscope. It is only by combining the aimed
reshaping of focal intensity distributions with a spectroscopical method that res-
olution becomes independent of diffraction. The idea is to establish a nonlinear
dependence of the signal on the intensity distribution. Several methods based
on this approach have been proposed9,10,11 and in practice stimulated emission
depletion (STED) microscopy increased the resolution to less than 100nm, far
beyond the Abbe limit. 12,13,14

On the other hand, methods originally aiming at the improvement of resolution
have been most useful in purely spectroscopical applications: The small detec-
tion volume and low background of a confocal detection scheme is one of the
prerequisites for single molecule detection, currently one of the most active fields
of research.

The goal of this work was to analyze whether the recently developed and es-
tablished techniques in STED and 4Pi microscopy can also provide feedback to
spectroscopical applications. For this purpose the following problems were ad-
dressed.

1) The foundation for theoretical modelling of dynamical, intensity dependent
processes in the focal region is laid by developing a method to calculate the Fourier
transform of the vectorial PSF with little numerical effort. As an application the
temperature rise due to linear absorption by water is calculated.

2) The prospects of combining 4Pi microscopy with FCS are analyzed. It is
found that by comparing correlation curves recorded with a standard, confo-
cal and a 4Pi detection volume, information about the movement of fluorescent
units can be separated from fluctuations due to internal dynamics or reactions.
Because the interference pattern has a well-defined orientation, directional infor-
mation in anisotropic samples is also obtained. Therefore a method to produce
patterns in lateral, axial and diagonal directions is proposed and a theory of FCS
in anisotropic media is developed allowing for arbitrary periodic modulations of
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the detection volume. Simulations show that all parameters of the anisotropic
model can be extracted from a small number of correlation measurements with
various pattern orientations.

3) When measuring fluorescence resonant energy transfer (FRET) in complex
environments by comparing donor and acceptor fluorescence, contributions from
uncoupled donor molecules are a source of uncertainty. This problem could be
overcome by measuring the excitation rate of the acceptor directly. However, time
resolved measurements in the time or frequency domain, which are currently used
inside microscopes have limited temporal resolution and cannot assess high trans-
fer rates. Therefore the possibility of using a STED beam to monitor the excited
state of the acceptor is explored. Experiments on a model system show that en-
ergy transfer can be identified using this technique.



Chapter 2

Transfer Functions

Large-angle focusing systems, such as objective lenses or high angle mirrors are
of great scientific interest because they are used whenever high spatial resolution
is required. Importantly, their imaging properties are determined by the spatial
distribution of quantities that depend on products of the vector components of
the electromagnetic field in image space. For example, the modulus squared of
the electric field is proportional to the electrical energy density, which in turn
determines the intensity point spread function (I-PSF) for incoherent imaging.
Transfer functions describe which spatial frequencies are transmitted by an optical
system. They play an important role in the analysis of three dimensional image
formation in the Fourier domain because the finite pass-band and damping of high
spatial frequencies are the reason for limited spatial resolution.15,16 In addition,
transfer functions are useful tools for the modelling and quantitative analysis
of photophysical processes in the focal spot, because the differential equations
involved are often solved in inverse space.
For incoherent imaging the 3D-optical transfer function (OTF) is the Fourier
transform of the I-PSF. It was introduced by Frieden17 and its paraxial approxi-
mation was derived in the same publication. However, for lenses of high numerical
aperture this approximation is not fully valid and the computation of the OTF
for conventional, confocal, and multiphoton microscopy has since been an active
field of research. The derivation of an analytical expression allowing for fast
and efficient calculation of the scalar OTF proved especially useful in numerical
calculations.18,19

At large focusing angles the vectorial nature of the electromagnetic field becomes
increasingly significant and the accuracy of the scalar description is compromised.20,21,22

More importantly many applications involve imaging of anisotropic samples such
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as a distribution of oriented dipoles in single molecule experiments. The scalar
theory cannot be applied in such cases and an efficient way to calculate the vec-
torial OTF becomes a necessity.
Richards and Wolf have given an integral representation for the electromagnetic
field in the focus.23 In principle one could use these results to numerically deter-
mine the spatial distribution of the PSF, or of any other observable depending on
the fields, numerically and subsequently Fourier transform the results. However
the computation in two steps is extensive and controlling the numerical error
is difficult. If the transform is not required simultaneously at all points of an
equidistant grid this method is particularly inadequate, because FFT algorithms
can not be used efficiently.
Alternatively, the OTF can be expressed as the correlation of the vector compo-
nents of the pupil function. In two dimensions numerical correlation yields the
2D OTF on a discrete grid24, but in 3D this approach fails because the pupil
functions are non-zero on spherical shells only. However, the correlation can be
written as a single line integral along the circular intersection of the two spheres.
Frieden used this method to derive the OTF in the paraxial approximation where
the spheres are replaced by parabolic surfaces.17 For high angle focusing systems
this approach was successfully used to derive an analytical expression of the scalar
OTF18 under the assumption of cylindrical symmetry. Importantly, the trans-
verse nature of light breaks this symmetry so that a more general formalism is
needed in the vectorial theory. The formalism developed here allows for arbi-
trary pupil functions and will be used to derive a line integral representation of
the Fourier transform of an arbitrary product of two vector components of the
electromagnetic field and its complex conjugate. The results are used to calcu-
late the vectorial OTF for both a single lens and the case of interfering foci in a
4Pi microscope. Due to the general form of the pupil function it is possible to
extend the theory to describe spherical aberrations induced by focusing through
an interface of two media with mismatched refractive indices.
As a first application of the newly found integrals focal heating is addressed. The
problem can now be modelled taking into account the true three-dimensional
profile of the vectorial PSF and an upper bound is found for the temperature
increase due to linear absorption by water.
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2.1 The Vectorial Optical Transfer Function

In fluorescence imaging the excitation probability is proportional to the electric
energy density and the excitation OTF is given by its Fourier transform. It can be
written as the sum of its vector components, which correspond to the contribution
of the three polarization directions

C = F[
exe∗x

]
+ F[

eye
∗
y

]
+ F[

eze
∗
z

]
= Cx + Cy + Cz (2.1)

We will express the components of the electric field as inverse Fourier transforms
of spherical shells. The convolution theorem can then be applied to equation
(2.1) and the OTF is given by correlations of these shells which we will express
as a line integral.
Let (r, θ, φ) be dimensionless spherical coordinates originating at the focal point
and normalized with the wave vector 2π/λ. The spherical inverse coordinates are
(k, ϑ, ϕ), and α is the half aperture angle of the lens. Using the same assumptions
as Richards and Wolf23 we write each component of the focal field as the Fourier
transform of the related component of the vectorial 3D pupil function.

f (r, θ, φ) = iAF[
P (ϑ, ϕ) af (ϑ, ϕ) δ (k − 1)

]
/π (2.2)

The scalar pupil function P (ϑ, ϕ) describes a relative amplitude and phase com-
mon to all components of the electromagnetic fields throughout the spherical exit
pupil and vanishes for ϑ > α. A is a scaling factor and the functions af (ϑ, ϕ) are
scalar strength factors. For the individual vector components of the electric field
they are23

aex = − cos ϑ cos2 ϕ − sin2 ϕ (2.3a)

aey = cos ϕ sinϕ (1 − cos ϑ) (2.3b)

aez = sinϑ cos ϕ (2.3c)

In the case of mismatched refractive indices these strength factors will have to be
modified due to refraction at the interface. Defining

Af (k) = iA P (π − ϑ, π + ϕ) af (π − ϑ, π + ϕ) /π (2.4)

we rewrite (2.2) as an inverse Fourier transform

f = F−1[Af δ (k − 1)
]

(2.5)
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Equation (2.1) contains only Fourier transforms of a field component multiplied
with its own complex conjugate. We keep our formalism more general and con-
sider Fourier transforms of products of two arbitrary field components f and g.
Using the convolution theorem and (2.5) we can write them as the correlation of
two weighted spherical shells

F[
f∗g

]
(k) = (2π)3

∫
d3k′A∗

f

(
k′) δ

(
k′ − 1

)
Ag

(
k + k′) δ

(∣∣k + k′∣∣ − 1
)

(2.6)

Next we introduce Cartesian coordinates in inverse space and a new coordinate
system denoted by double prime coordinates as shown in figure 2.1. The trans-
formation is described by an orthogonal matrix:

k′ =




cos ϑ cos ϕ − sinϕ sinϑ cos ϕ

cos ϑ sinϕ cos ϕ sin ϑ sinϕ

− sinϑ 0 cos ϑ


 k′′ (2.7)

With k1 = k′ and k2 = k + k′ equation (2.6) reads

F[
f∗g

]
(k) = (2π)3

∫
d3k′′k′′2d cos ϑ′′dϕ′′A∗

f (k1)Ag (k2)

× δ
(
k′′) δ

([ (
k + k′′ cos ϑ′′)2 +

(
k′′ sinϑ′′)2 ]1/2− 1

)
(2.8)

and after radial integration and simplification of the delta function’s argument
we obtain

F[
f∗g

]
(k) = (2π)3

∫
d cos ϑ′′dϕ′′A∗

f (k1)Ag (k2)

× δ
([

k2 + 2k cos ϑ + 1
]1/2 − 1

)∣∣∣∣∣
k′′=1

(2.9)

Azimuthal integration finally yields

F[
f∗g

]
(k) = (2π)3

∫
dϕ′′A∗

f (k1)Ag (k2) /k

∣∣∣∣∣
cos ϑ′′=−k/2,k′′=1

(2.10)

which indeed is a line integral along a circle of radius r0 =
[
1 − k2/4

]1/2. If we
define a = r0 cos ϑ cos ϕ′′, b = (k sinϑ)/2 and d = r0 sin φ′′, we can use (2.7) to
calculate the Cartesian components (m, n, s) of k1 and k2

m1/2 = (a ∓ b) cos ϕ − d sinϕ (2.11a)

n1/2 = (a ∓ b) sinϕ + d cos ϕ (2.11b)

s1/2 = −r0 sin ϑ cos ϕ′′ ∓ (k cos ϑ) /2 (2.11c)



2.1. The Vectorial Optical Transfer Function 13

Note that the functions Af only depend on the sine and cosine functions of
the spherical angles. It is straightforward to express them as functions of the
Cartesian components in equation (2.11) using the following relations:

cos
(
π + ϕ1/2

)
= −m1/2/

(
1 − s2

1/2

)1/2 (2.12a)

sin
(
π + ϕ1/2

)
= −n1/2/

(
1 − s2

1/2

)1/2 (2.12b)

cos
(
π − ϑ1/2

)
= −s1/2 (2.12c)

sin
(
π − ϑ1/2

)
=

(
1 − s2

1/2

)1/2 (2.12d)

We defined the pupil functions to be non-zero only for ϑ ≤ α. The integration
range the integration range in (2.10) is thus defined by −s1/2 ≥ cos α yielding

0 ≤ ∣∣ϕ′′∣∣ ≤ β1 = arccos [(2 cos α + k |cos ϑ|) / (2r0 sin ϑ)] (2.13)

and β1 = 0 if the argument of the inverse cosine is larger than unity. For arbitrary
pupil functions the integral in (2.10) can now be solved numerically.

If we restrict ourselves to cylindrically symmetric scalar pupil functions, it is
possible to extract the dependence on the polar angle from the integrals which
reduces numerical effort significantly in most applications. We use (2.4), (2.11)
and (2.12) to rewrite the integral in equation (2.10). Due to the symmetric
integration range, we can remove all asymmetric terms from the integrand and
restrict the integration range to positive ϕ′′. In a second step one can use simple
trigonometry to rewrite the angular dependence in terms of cos 2ϕ and cos 4ϕ,
yielding

Cx = 16π (I0 + I1 cos 2ϕ + I2 cos 4ϕ) /k (2.14a)

Cy = 16π (I3 − I2 cos 4ϕ) /k (2.14b)

Cz = 16π (I4 + I5 cos 2ϕ) /k (2.14c)

with
Ii =

∫ β1

0
P ∗ (π − ϑ1) P (π − ϑ2) Ji dϕ′′ (2.15)

If we define the variables S2/1 = s1/2/
(
1 − s1/2

)
and S3 =

(
1 − s1

)−1(1 − s2
)−1

the integrands evaluate to

J0 = S3
[
3J2

4 + b2d2]/2 − L + s1s2 (2.16a)

J1 = S3
[
d4 − (a2 − b2)2

]
/2 + L − (S1 + S2)d2 (2.16b)

J2 = S3
[
J2

5 − a2d2]/2 (2.16c)

J3 = S3
[
J2

4 − b2d2]/2 (2.16d)
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(b)

m''

s''

n''

β1

ϕ

ϑ

m'

s'

n'

s''

(a)

m2

s2

n2

Figure 2.1: 3D correlation of two spherical shells. The figure illustrates the coordinate

systems and the angles of the rotation matrix used in the text. The center of the first

sphere is located at the origin of the primed coordinate system while the second center

is at −k. Their circular intersection is shown as a white line. The new, double primed

coordinate system is chosen such that the centers of both spheres are on the new s′′-axis.

This is accomplished by rotating the coordinate system first by an angle ϕ around the s′

axis and then by an angle ϑ around the n′ axis as illustrated in (a). The intersection is

now in the plane of constant s′′ and centered about the s′′-axis as shown in (b).

with

J4 =
(
a2 − b2 + d2)/2 (2.16e)

J5 =
(
a2 − b2 − d2)/2 (2.16f)

and
L = S1

[
(a − b)2 + d2]/2 + S2

[
(a + b)2 + d2]/2 (2.16g)

The results of the scalar theory are reproduced if we use the correlation of Af (k) =
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iA P (π − ϑ)/π in equation (2.10), yielding

C (k, ϑ) = 16πA2
∫ β1

0
dϕ′′P ∗ (π − ϑ1)P (π − ϑ2) /k (2.17)

We now change to cylindrical optical coordinates, defined by v = r sin α sin θ,
u = 4r sin2 (α/2) cos θ and the polar angle φ. When using the inverse coordinate
system (

l = k sinϑ/ sinα, s = k cos ϑ/4 sin2 (α/2) , ϕ
)

(2.18)

we have to scale the result by a factor 4 sin2 α sin2 (α/2) due to the coordinate
transformation. It then satisfies the scaling condition

F−1[C]
(0) = (2π)−3

∫
dφ dl dsC(l, s, φ) = et(0) e∗(0) (2.19)

In addition one can choose the scaling factor A in such a way, that the Fourier
back-transform of the OTF at the origin, et(0)e∗(0), becomes unity. The choice
depends on the pupil function. For aplanatic, uniform and parabolic apodization
we have Pa (ϑ) = (cos ϑ)1/2, Pu (ϑ) = 1, and Pp (ϑ) = 2/ (1 + cos ϑ), respectively.
The corresponding A’s can be determined by evaluating equation (2.2) using the
integrals derived by Richards and Wolf and subsequent normalization.

Aa =
(

16
15 − 3

2 cos
3
2 α − 2

5 cos
5
2 α

)−1 (2.20a)

Au =
(

3
2 − cos α − 1

2 cos2 α
)−1 (2.20b)

Ap =
(
2 − 2 cos α

)−1 (2.20c)

After implementing our integrals we checked their validity by Fourier transform-
ing the components of the OTF and comparing the result to the vectorial PSF.
For randomly polarized illumination, equation (2.14) must be averaged over the
polar angle and only I0, I3 and I4 need to be solved. Additionally, transition
moments oriented along the x- and y-axis are now imaged identically and we are
left with an axial and a lateral component of the OTF as presented in figure 2.2.

2.2 Mismatched Refractive Indices

Focusing through an interface of two isotropic, homogeneous media with different
refractive indices results in spherical aberrations. This problem is frequently
encountered in microscopy, e.g. when imaging a sample mounted in glycerol
using an oil immersion lens, and several approaches exist to calculate the resultant
electromagnetic field in the focal region.25,26 Starting from these results we shall
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-0.6

100

-2

2

Cx+Cy

(a)

40

Cz

sl

-0.6

-2

2

(b)

-10

Figure 2.2: Lateral (a) and axial (b) component of the vectorial OTF for randomly

polarized illumination using a lens with half aperture angle α = 1.1. The axial component

corresponds to imaging a molecular transition moment oriented along the optic axis while

the lateral counterpart applies to an orientation parallel to the focal plane.

write the focal field as an inverse Fourier transform of a modified vectorial pupil
function and apply our formalism. We assume that the light emerges from the
lens as a perfect spherical wave that initially propagates in medium 1. At a
distance ∆ from the Gaussian focus it is refracted by a planar interface between
medium 1 and medium 2. Let n1 and n2 be the refractive indices of the media
and (r, θ, φ) be spherical coordinates normalized with the wave vector in medium
2 and centered at the Gaussian focus. We write again (k, ϑ, ϕ) for the inverse
coordinates and define the angle ϑ̄ = arcsin(n2 sinϑ/n1). Török and coworkers
extended the theory of Richard and Wolf to represent the field in medium 2 as
a superposition of plane waves.26 In their solution for the fields we change the
integration variable from ϑ̄ to ϑ. The Jacobian of this transformation is

n2
2 cos ϑ/

(
n2

1 cos ϑ̄
)

= n2γ/n1 (2.21)
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sl

0.6
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100
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sl

0.6
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0.6

-0.6
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-2
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π−π

π−π

C

C

C

(a)

(b)

(c)

Figure 2.3: Modulus of the vectorial OTF (a) for an unaberrated system and (b),(c)

when focusing into 80% glycerol (n2 = 1.45) with an oil (n1 = 1.52) immersion lens The

Gaussian focus was assumed at (b) 20µm and (c) 50µm from the interface and the half

aperture angle was α = 1.1. For the aberrated cases the phase is shown in the insets.

where we defined the function γ. The integrals can now be identified as Fourier
transforms in the form of equation (2.2) but with modified strength factors and
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a modified scalar pupil function. The strength vectors are

aex = −τp cos ϑ cos2 ϕ − τs sin2 ϕ (2.22a)

aey = cos ϕ sin ϕ (τs − τp cos ϑ) (2.22b)

aez = τp sinϑ cos ϕ (2.22c)

The Fresnel coefficients, τs and τp, are functions of ϑ and given by

τs = 2 sinϑ cos ϑ̄/ sin(ϑ̄ + ϑ) = 2(1 + γ) (2.23a)

τp = τs/ cos(ϑ̄ − ϑ) = τs/
[
n2 + n2 cos2 ϑ

(
γ−1 − 1

)]
(2.23b)

The new pupil function is

P (ϑ, ϕ) = n2γ/n1 · exp
[
−i∆(γ−1 − 1) cos(ϑ)

]
P̄

(
ϑ̄, ϕ

)
(2.24)

where P̄
(
ϑ̄, ϕ

)
is the pupil function in the absence of refraction. The new

pupil function is nonzero only for ϑ ≤ α2 with the effective aperture angle
α2 = arcsin(n2 sin α/n1). However, if sinα ≥ n2/n1 total internal reflection
occurs for the large incident angles and we have α2 = π/2. In order to calculate
the OTF we rewrite the trigonometric functions of the azimuthal and polar angles
in terms of ϕ′′ using equations (2.11), (2.12) and solve the integral in (2.10). Its
range is still determined by equation (2.13) but α has to be replaced by α2.

If we assume a cylindrically symmetric pupil function the calculations are very
similar to those for an unaberrated system. Using the same definitions as in
equation (2.1) and (2.14) the result is again given by equation (2.15) but with
modified integrands Ji. If we redefine the factors

S1/2 = τp,2/1s2/1

(
τs,1/2 + τp,1/2s1/2

)
/
(
1 − s2

1/2

)
(2.25a)

S3 = S1S2/ (s1s2τ) (2.25b)

where τ = τp,1τp,2, the integrands take almost the same form as before:

J0 = S3
[
3J2

4/τ2 + b2d2]/2 − L + s1s2τ (2.25c)

J1 = S3
[
d4 − (a2 − b2)2

]
/2 + L − (S1 + S2)d2 (2.25d)

J2 = S3
[
J2

5/τ2 − a2d2]/2 (2.25e)

J3 = S3
[
J2

4/τ2 − b2d2]/2 (2.25f)
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with

J4 =
(
a2 − b2 + d2)/2 (2.25g)

J5 =
(
a2 − b2 − d2)/2 (2.25h)

and
L = S1

[
(a − b)2 + d2]/2 + S2

[
(a + b)2 + d2]/2 (2.25i)

For identical refractive indices in both media (n1/n2 → 1) the Fresnel coefficients
become unity and equation (2.16) is reproduced. We introduce the same inverse
optical coordinates from (2.18) and therefore have to multiply the result by the
identical scaling factor 4 sin2 α sin2 (α/2). The pre-factor A is given by equation
(2.20). In figure 2.3 we evaluated the OTF for the common situation of focusing
from oil into glycerol. The results for two different focusing depths are shown
in (b) and (c) and compared to the vectorial OTF without aberrations in (a).
With increasing focusing depths the OTF is suppressed at high axial frequencies,
corresponding to a loss in axial resolution. The oscillation of its phase along the
inverse optic axis corresponds to a shift of the main maximum of the PSF in-
duced by refraction and the contortion of the resulting pattern is due to spherical
aberrations. The shift of the maximum depends on the focusing depth and the
aperture angle α and has to be determined numerically. When the light is not
focused deeper than several tens of micrometers into the second material, the
focal shift is proportional to the depth. In the paraxial approximation, that is
for small aperture angles, it is given by ∆(n2/n1 −1) as predicted by geometrical
optics.27,28

2.3 Transfer Functions of 4Pi Microscopes

In a 4Pi microscope, two beams which are focused by opposing objective lenses,
form an interference pattern. Let the electric fields of the lenses be given by
e1(r) and e2(r) where r originates at their respective Gaussian focus points. In
the aberrated case the focusing depths of the lenses differ due to axial scanning
of the sample. They are usually chosen in such a way, that both fields have their
maximum amplitude in the same point, which we will define to be the origin. The
Gaussian focus points of the two lenses are then located at positions d1,2 = d1,2ẑ,
which depend on the focusing depths and the aperture angle. The electric field
is now given by

e4Pi(r) = e1(r − d1) + M−1e2(Mr − Md2) exp(iφ) (2.26)
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where φ is the relative phase of the beams and the diagonal matrix depends on
the geometry of the interferometer. For a triangular setup we have

M =




1 0 0
0 1 0
0 0 −1


 (2.27)

The OTF is the Fourier transform of the modulus of (2.26) and consists of the sum
of the single lens OTFs and an additional addend accounting for the interference
of the fields described by the new function C(k).

C4Pi(k) = C(k) exp(idt
1k) + C(Mk) exp(idt

2k)

+ C(k) exp(iφ) + C(−k)∗ exp(−iφ) (2.28)

The phase factors in the first line originate from the relocation of the origin in
(2.26). The function C is given by

C(k) = F
[
e∗t1 (r − d1)Me2(Mr − Md2)

]
(k)

=
(
F[

e1
]
(k) exp(idt

1k)
)∗⊗̃

(
MF[

e2
]
(Mk) exp(idt

2k)
)

(2.29)

where the Fourier transform and convolution applies to each vector component
of the field separately and we used the fact that M is always diagonal. The
convolution theorem has been applied in order to find the expression in the second
line and ⊗̃ symbolizes the correlation of both factors. The Fourier transforms of
the field components are given by the functions Af and therefore we can apply
our formalism from the previous section. The integral (2.10) now reads

F[
f∗g

]
(k) = (2π)3

∫
dϕ′′ exp(−idt

1k1) exp(idt
2k2)

A∗
f (k1) Ag (Mk2) /k

∣∣∣
cos ϑ′′=−k/2,k′′=1

(2.30)

where f and g are vector components of e1 and e2 and in the absence of aberra-
tions f = g. Due to the multiplication of the argument with the matrix M the
integration range changes. As before −s1 ≥ cos α but for the second sphere the
minus sign disappears and s2 ≥ cos α. Consequently we have

β2 ≤ ∣∣φ′′∣∣ ≤ π − β2

β2 = arccos [(k cos ϑ − 2 cos α2) / (2r0 sinϑ)] (2.31)
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If the argument of the inverse cosine is larger than 1 or smaller than zero, we have
β2 = 0 and β2 = π/2, respectively. Therefore C is nonzero only if k cos ϑ > 2 cos α2

or, using optical coordinates

s > s0 = cos α2/[2 sin2(α/2)] (2.32)

For low apertures s0 becomes very large. The physical interpretation is that the
envelope of the focus only transmits very low spatial frequency but the interfer-
ence pattern transmits two additional, narrow frequency bands corresponding to
its modulation period.

For the case of a cylindrically symmetric pupil function we have

Cx = 16π (I0 + I1 cos 2ϕ + I2 cos 4ϕ) /k (2.33a)

Cy = 16π (I3 − I2 cos 4ϕ) /k (2.33b)

Cz = 16π (I4 + I5 cos 2ϕ) /k (2.33c)

in complete analogy to equation (2.14) The integrals take a similar form as in
equation (2.15) but the axial coordinate is inverted for the second pupil function
and we have to include the phase factors from (2.30). Taking into account the
integration range (2.31) we write

Ii =
∫ π−β2

β2

exp(i cos(ϑ2)d2 − i cos(ϑ1)d1)Ji dϕ′′P ∗ (π − ϑ1) P (ϑ2) (2.34)

The integrands Ji are found by replacing s2 with −s2 in equations (2.25) due to
the inversion of the axial coordinate by the matrix M.

At arbitrary depths the foci of the two lenses would have to be re-aligned when-
ever the position of the focal plane in the sample changes. In practical 4Pi
microscopy this problem can be avoided because at usual focusing depths the
dependence of the focal shift is well approximated by a linear function for scan
ranges of several tens of microns. The proportionality constant can be deter-
mined numerically and depends on the aperture angle and the refractive indices.
For thin samples ∂d/∂∆ is independent of the focus position and the alignment
of the foci therefore doesn’t change when moving the sample between the lenses.
When focusing deeper ∂d/∂∆ depends on ∆ and therefore re-alignment can only
be avoided near the central plane of the sample. It should also be noted that
in all cases the position dependent phase shift of the maximum has to be com-
pensated by varying the phase angle φ in order to maintain an approximately
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Figure 2.4: The excitation OTF of a 4Pi microscope (a) for an unaberrated system

and (b,c) when focusing into 80% glycerol (n2 = 1.45) with an oil (n1 = 1.52) immersion

lens The Gaussian focus of both lenses was assumed (b) 20µm and (c) 50µm deep in

medium 2, corresponding to a PSF centered in 43.1µm and 106.4µm thick samples. The

half aperture angle was α = 1.1.

space invariant PSF.28 Figure 2.4 shows the OTF of a 4Pi system assuming that
the focus is in the middle of the sample. Because the PSF is symmetric in this
case the imaginary part of the OTF vanishes. We adjusted the thickness of the
sample in order to obtain the same depth of the Gaussian focus as assumed for a
single lens in figure 2.3. Because the origin was chosen in the maximum no oscil-
lations along the axial coordinate occur for the aberrated cases. However the loss
of transmitted frequencies due to spherical aberrations is obvious from the graph.
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The formalism introduced here is not restricted to the calculation of excitation
OTFs. Rather it allows to directly determine the Fourier transform of any product
f∗g of two field components, by using the appropriate strength factors. A possible
example would be the energy flux given by the Pointing vector h×e. In addition
the Fourier transform of products fg will be of interest, e.g. when describing
confocal microscopes in reflection mode. The geometry is then changed and the
necessary modifications to the formulae are described in appendix C.1.

2.4 Focal Heating by Linear Absorption

Biological specimen consist mainly of water which has a non-negligible absorp-
tion in the 700-1100nm wavelength range. Therefore, focal heating caused by
linear absorption in the near infrared has been termed a limiting factor in op-
tical trapping29 and multiphoton microscopy.30 Experimental studies31 showed
heating by slightly less than 3K for irradiation with 170mW at 1064nm through
an oil immersion lens with a numerical aperture of NA=1.3. Theoretical esti-
mates for the focal temperature rise were also published but they are based on
simplified PSFs32 or assumed an axially invariant Gaussian beam profile, which
does not account for axial heat transport.30 In order to obtain reliable results the
true shape of the diffraction pattern should be used and the diffusion equation
must be solved numerically. If Λ and cv are heat conductivity and volume heat
capacity of a homogeneous medium it reads

[
cv∂t − Λ∇2

]
T (r, t) = p(r, t) (2.35)

where p is the absorbed power per unit volume and T is the temperature. Let
h be the electric energy density normalized to 1 in its maximum and σ the axial
energy flux scaled accordingly. The absorbed power per volume is then given by

p(r, t) = γPh(r, t)/σ (2.36)

with P being the total incident power and γ is the extinction coefficient of the
medium. Assuming cylindrical symmetry and switching to optical coordinates
and a dimensionless time scale τ = t/τ0, τ0 = [k2(NA)2Λ/cv] equation (2.35)
becomes [

∂τ − a2∂u − 1
v
∂vv∂v

]
T (v, u, τ) = ξh(v, u, τ) (2.37)
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with ξ = γP/(σΛ) defining the temperature scale and a = 4 sin2(α/2)/ sin(α)
from the definition of the optical coordinates. For small aperture angles σ can be
approximated by the integral of h over the focal plane denoted by σ′

σ′ = 2π

∫
dv v h(v, u, τ)

∣∣∣∣∣
u=0

(2.38)

but when the aperture increases one has to exclude the lateral component of the
flux stemming from outer regions of the aperture. In scalar diffraction theory the
field is a superposition of plane waves weighted with the pupil function and we
have

σ = σ′
∫

dΩ P (θ) cos θ
/ ∫

dΩ P (θ) (2.39)

In vectorial theory a more precise solution can be found integrating the pointing
vector over a plane perpendicular to the optic axis. The ratio of σ and σ′ was
found to differ from the scalar approximation by less than 5%.

We assume that a constant irradiation starts at τ = 0 and ends after a time
span τ1. An upper bound for the temperature rise can be found by assuming an
axially invariant beam with a Gaussian profile h(v) = exp(−πv2/σ). In this case
(2.37) can be integrated analytically. It is convenient to define τ̄ = min(τ, τ1);
the solution is then

∆T (τ) = ξ [ln(1 + τ) − ln(1 + τ − τ̄)] (2.40)

For τ < τ1 the second addend disappears. The choice of σ is somewhat arbitrary
in this approach, which makes it inherently unreliable because the temperature
rise in the focus scales with σ−1. Here we adjusted the focal intensity to that
predicted by scalar diffraction theory of an aplanatic system where σ′ � 4π and
(2.39) becomes

σ = 4π · 3
5(1 − cos

5
2 α)/(1 − cos

3
2 α) (2.41)

Obtaining a more reliable prediction by numerically integrating (2.37) using the
exact form of the diffraction pattern is difficult especially for long irradiation
times, owing to the oscillatory nature of the PSF and the infinite integration
range. However the differential equation simplifies in inverse space and because
the diffraction pattern is bandwidth limited integrations will be over a finite
volume. We therefore Fourier transform the heat equation

[
∂τ + l2 + a2s2

]
T̂ (l, s, τ) = ξC(l, s, τ) (2.42)
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where C(l, s, τ) is the OTF of the lens, C(l, s), during irradiation and zero oth-
erwise. For irradiation between τ = 0 and τ = τ1 the formal solution to the
problem is

∆T̂ (l, s, τ) = ξC(l, s)
∫ τ̄

0
dτ ′ exp

(
−[l2 + a2s2](τ − τ ′)

)
(2.43)

and carrying out the integral we obtain

∆T̂ (l, s, τ) = ξC(l, s)(l2 + a2s2)−1

×
[
exp

(
−[l2 + a2s2](τ − τ̄)

)
− exp

(
−[l2 + a2s2]τ

)]
(2.44)

For τ < τ1 we have τ̄ = τ and the first exponential becomes unity. The tempera-
ture can now be calculated by Fourier back-transforming the solution above.
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Figure 2.5: Temperature rise due to water absorption in the center of the focal spot of

a NA=1.2 water immersion lens during irradiation with 100mW at 850nm. The results

for a single lens and a 4Pi setup are shown in comparison with the Gaussian model and

inset compares the focal temperature in a 4Pi microscope to the values for a single lens.

For long irradiation times ∆T̂ resembles a sharp peak around the origin, therefore
an algorithm was implemented that successively contracts the integration area to
ensure unchanging accuracy. All calculations were carried out for NA = 1.2 water
immersion lenses with a relative precision of 1% and assuming Λ = 0.6 WK−1,
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Figure 2.6: Cooling of the focal spot after an irradiation with 500mW for 1ns resulting

in transient heating of 1K for a single lens. The result for the Gaussian model and for

scalar and vectorial diffraction theory are shown for a single lens. The cooling curve after

irradiation with a 4Pi focus is also depicted.

cv = 4.19 JK−1cm−3, γ = 0.013 cm−1. Figure 2.5 compares the temperature rise
in the center of the focus of a single lens and for a constructive 4Pi diffraction
pattern with equal total exposure. Due to the interference the electric energy
density in the main maximum is twice higher for the 4Pi system and for short
irradiation times the heating effect is thus doubled. However, the long term tem-
perature rise mainly depends on heat transport over larger distances and thus
on the envelope of the diffraction pattern and only a constant temperature offset
remains due to recently deposited energy in the interference maximum. The re-
sults are also compared to the Gaussian model. As expected, disregarding axial

NA τ0 [ns] ∆T [K] ∆T ′[K] ∆T/∆T ′ − 1 [%]
0.4 800 0.237 0.248 4.6
0.8 200 0.262 0.295 12.6
1.0 128 0.272 0.328 20.6
1.2 89 0.280 0.381 36.1
1.3 76 0.286 0.434 51.7

Table 2.1: Temperature increase ∆T and logarithmic approximation ∆T ′ for different

numerical apertures (NA) after irradiation of water with 100mW at 850nm for one second.
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∆T [K]
λ [nm] ξ [K] τ0 [ns] 10s 1s 1ms 1µs

50 0.014 52 0.25 0.22 0.13 0.040
750 0.017 69 0.30 0.26 0.15 0.044
850 0.018 89 0.32 0.28 0.16 0.044
950 0.180 111 3.17 2.77 1.57 0.402

1050 0.152 136 2.65 2.31 1.30 0.315

Table 2.2: Temperature increase for different wavelengths at NA=1.2 after irradiation

of water with 100mW for different durations

heat transport leads to an overestimation of the temperature rise by the loga-
rithmic solution. This overestimation is expected to be larger for high numerical
apertures, because heat dissipation along the optic axis becomes important due
to strong axial focusing. This expectation is confirmed in table 2.1 where we
compare our numerical results with the prediction of the Gaussian model. It is
however important to keep in mind that the choice of σ and thus the temperature
scale is not rigorous in the latter case and in fact the ratio between both predic-
tions stays almost constant over time. By ’switching off’ axial heat transport in
our numerical calculations it can be seen that the Gaussian model overestimates
heating for short and long irradiation times owing to two different reasons. While
inaccuracies in the lateral profile of the PSF result in an overestimation of the
peak intensity and are thus responsible for the deviation at short times, the error
for larger times is due to neglecting axial heat transport. This finding is also sup-
ported by the results shown in figure 2.6 where the cooling after short irradiation
with an intensive light pulse is depicted. Again, the logarithmic approximation
predicts higher values over the whole time scale. Numerical calculations based on
the scalar OTF initially deliver the same values because the same value for σ is
assumed but as heat dissipation becomes more important the scalar solution ap-
proaches the vectorial model while the Gaussian model remains inaccurate due to
its inherent simplifications. As expected, the pulse heats the center of a 4Pi PSF
twice more but the temperature soon approaches that of a single lens because
the initial pattern is smeared out. Finally table 2.2 shows focal heating owing to
water absorption for different wavelengths and irradiation times. It is expected
to remain less then 3K for all cases shown. The numerical results can be used to
estimate heating for arbitrary irradiation times, media and wavelengths by calcu-
lating τ0 and ξ and rescaling the graphs in figure 2.5. It should be mentioned that
all calculations assumed samples with infinite boundaries. In reality it is in con-
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tact with the microscope and the coverslip both of which can act as a heat sink.
Therefore long-term heating is slightly overestimated by the logarithmic increase
and our predictions are upper bounds. Heating by two-photon absorption can
be calculated using a three-dimensional Gaussian and solving the heat equation
analytically. For micromolar absorber concentrations sub-millikelvin effects are
predicted for typical conditions.



Chapter 3

Patterned Correlation

Spectroscopy

Fluorescence correlation spectroscopy (FCS) is a long established tool for the
investigation of dynamic processes in solutions using the fluorescence signal from
a, usually small, detection volume.1 Fluid motion and the reactions among its
constituents are theoretically modelled and the model parameters are determined
by fitting the time correlation of the signal.
If the form of the detection volume is not carefully controlled the precision of such
measurements is compromised. Often fluorescent particles in the fluid undergo
photophysical reactions, such as photobleaching, which take place on similar time
scales as diffusion or drift from the detection volume. In such cases the effects of
particle motion on the correlation curve are difficult to separate from those due
to reactions.
While models for anisotropic diffusion or particle drift can be included in stan-
dard FCS, it is inherently insensitive to the direction of the particle movement.
The axes belonging to different diffusion constants parallel to the focal plane are
impossible to distinguish and for diffraction limited spots even axial diffusion is
difficult to separate. Extensive a priori knowledge is thus a prerequisite when
trying to extract this information by correlating the signal from an unstructured
focal spot.33,34

Here this problem is addressed by superimposing a pattern on the focal spot
and thus designating a direction and introducing a precise length scale to the
experiment. A modulation of the detection volume with a periodic pattern was
proposed as early as 1975 by Asai and Ando35. They suggested to create a
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standing wave of excitation light using a mirror at the end of the sample cham-
ber. This concept was extended and experimentally implemented by Lenne and
coworkers36. By focusing the laser beam onto a mirror with an objective lens and
using confocal detection they created a diffraction limited, patterned detection
volume but such experiments are limited to the immediate proximity of the mir-
ror. The signal is enhanced because the mirror reflects fluorescence photons into
the detector. However, this also distorts the detection volume which complicates
precise data analysis. Bardeen and Coworkers used standing waves in two-photon
patterned photobleaching experiments37 in order to measure intracellular diffu-
sion constants. Because they employed two opposing lenses instead of a mirror to
create the standing wave, diffusion could be measured at arbitrary axial positions
in the sample.
As an alternative to the axial pattern, two coherent laser beams can be crossed
in the focal region producing a lateral interference pattern. Several approaches
exist to combine such a setup with correlation measurements using static38 or
travelling39 interference fringes. In fact, due to the large focal spot used in these
systems a single frequency component of the particle distribution is measured. As
before, the data can be used to extract model parameters, however the spacing
of the fringes can also be varied by tilting the beams relative to each other.
The intermediate scattering function which describes the dynamics of a complex
fluid is then directly measured. This technique has recently been introduced and
is called Fourier imaging correlation spectroscopy40 (FICS). Because the large
detection volume is intrinsic to this class of measurements, spatial variations of
fluid properties are difficult to determine and anisotropic systems require a way
to control both the pattern’s spacing and orientation.
Here, a vectorial theory for combining FCS with spatially modulated PSFs in
high resolution microscopy is developed in full generality. The model used for the
fluid allows for anisotropic diffusion and drift of the particles and a method to
determine all related parameters is proposed. Because it is based on comparing
correlation curves recorded with patterned and unpatterned detection volumes,
effects which do not depend on the particles’s motion cancel out and no longer
compromise data analysis.
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3.1 Theory of Correlation Measurements

All fluorescence correlation techniques record the time correlation of two detection
channels with the autocorrelation of a single channel just being a special case.
Usually the data is normalized by the average signals and the constant offset is
subtracted

G(τ) = [〈F1〉 〈F2〉]−1 〈F1 (t)F2 (t + τ)〉 − 1 (3.1)

The time average 〈〉 is assumed to be taken over a measurement period much
longer than the time scale τ we are interested in. In this form, the signal G(τ)
effectively measures the correlation of the signal fluctuations 〈δF 〉

G(τ) = [〈F1〉 〈F2〉]−1 〈δF1 (t) δF2 (t + τ)〉 (3.2)

Now let N types of particles be present in the sample. We denote the rate
of fluorescence photons detected in channel n from a particle of type j, which is
located at position r at a given time t by Qjnhn(r, t) where the particle brightness
Qjn is a constant for each particle and hn is the spatial and temporal form of a
channel’s detection volume, normalized to unity in its maximum. In general, Q

will contain information about excitation cross section, quantum efficiency and
spectral detection probability for the particle type, while h is the normalized
effective point spread function (PSF) of the optical setup. If the concentration of
the jth particle type is denoted by Cj(r, t), the signal in channel n is given by

Fn (t) =
N∑

j=1

∫
d3rQnjhn (r, t)Cj (r, t) (3.3)

We will restrict our analysis to cases where particle concentration, spectroscop-
ical properties, and the point spread function are uncorrelated in time, that is
〈QhC〉 = 〈Q〉〈h〉〈C〉. If we define the time averaged volume integrals of our PSFs

Vn =
∫

d3r 〈hn (r)〉 (3.4)

and assume that the time average of the concentrations is spatially invariant the
average detector signal is given by

〈Fn〉 = Vn

N∑
j=1

〈Cj〉 〈Qnj〉 (3.5)



3.2. The Fluid Model 32

and the correlation curve takes the form

G(τ) = [〈F1〉 〈F2〉]−1
∫

d3rd3r′
N∑

j,k=1

〈Q1kQ2j〉φjk

(
r − r′, τ

)

× 〈
h1

(
r′, t

)
h2 (r, t + τ)

〉
(3.6)

where we assumed translational invariance and φ is the concentration correlation
function given by

φjk

(
r − r′, τ

)
=

〈
δCj

(
r − r′, t + τ

)
δCk (0, t)

〉
(3.7)

The meaning of the concentration correlation function is put into context with
the theory of complex fluids in appendix A.1. In a thin, homogeneous solution
it is proportional to the probability that a particle of type k which is located at
r′ moves to r and reacts to a particle of type j during the time interval τ . The
expression for G can be simplified by rewriting it as a single frequency integral.
We use the identity

F[(
φjk ⊗ h1k

) · h2j
]
= (2π)−3 [(

φ̂jk · ĥ1k

) ⊗ ĥ2j
]

(3.8)

which can be verified by applying the convolution theorem twice. Its left hand side
evaluated at the origin is equivalent to equation (3.6). Writing the convolution
on the right hand side as an integral we obtain

G(τ) = [〈F1〉 〈F2〉]−1 (2π)−3
∫

d3k
N∑

j,k=1

〈Q1kQ2j〉 φ̂jk (k, τ)

×
〈
ĥ1 (k, t) ĥ2 (−k, t + τ)

〉
(3.9)

Because only a single integration is involved, this expression is more suitable for
our theoretical analysis. For the same reason and because the OTF, ĥ, is usually
bandwidth limited, it should be equally useful for numerical calculations.

3.2 The Fluid Model

We consider a solution consisting of a solvent and the particles under consider-
ation. Let us assume that the interaction among the particles can be described
by linear rate equations with the reaction rates given by the matrix T. For elec-
tronic transitions in molecules this description is accurate and for reactions among
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different particle types it is justified if the concentration fluctuations around equi-
librium are small. The rates are assumed to be constant across the detection vol-
ume. Because modelling becomes exceedingly difficult without this assumption
it is often used as an approximation, even when analyzing intensity dependent
reactions like triplet state transitions in dye molecules.41 In addition we allow for
anisotropic diffusion described by a tensor D and a constant flow given by the
vector v. The tensor D is symmetric and its eigenvalues and mutually orthogo-
nal eigenvectors correspond to the principal directions of diffusion and the related
diffusion constants. Like the reaction rates, both flow and diffusion are assumed
to be uniform within the detection volume. The differential equation describing
the particle concentrations is then

∂tCj = −vt∇Cj +
N∑

m=1

TjmCm + ∇tD∇Cj (3.10)

Using (A.5) and (A.8) we obtain for the Fourier transform of the concentration
correlation function with respect to r

∂τ φ̂jk = ivtkφ̂jk +
N∑

m=1

Tjmφ̂mk − ktDkφ̂jk (3.11)

In case the diffusion constants are equal for all species this differential equation
is solved by

φ̂jk(k) = α̂ (k, τ)Sjk(τ) (3.12)

with the Sjk being solutions to the homogeneous linear differential equation

∂τSjk(τ) =
N∑

m=1

TjmSmk(τ) (3.13)

and
α̂ (k, τ) = exp

(
−τktDk + iτvtk

)
(3.14)

In a homogeneous solution the probability of finding a molecule in an infinites-
imal volume element at time t is spatially invariant and therefore the number
of molecules within any given volume at a random point in time is spatially
uncorrelated and obeys the Poisson statistics. Therefore we can write

φjk (r, 0) = δjkδ (r)
〈
δC2

j

〉
= δjkδ (r)

〈
Cj

〉
(3.15)

and after Fourier transformation we obtain the initial condition for equation
(3.13)

Sjk (0) = φ̂jk (k, 0) = 〈Cj〉 δjk (3.16)
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Introducing the average particle brightness

Ql =
N∑

j=1

〈Qlj〉 〈Cj〉 (3.17)

the correlation function is given by

G(τ) =
N∑

j,k=1

〈Q1kQ2j〉Sjk(τ)g(τ)
/
Q1Q2 (3.18)

where the dimensionless function

g(τ) =
∫

d3k
〈
ĥ1(k, t)ĥ2(−k, t + τ)

〉
α̂(k, τ)/V1V2(2π)3 (3.19)

describes the effect of the detection volumes’ shape on the correlation signal.
When the particles under consideration are not point-like luminescent dipoles
but extended objects such as diffusing fluorescent beads which consist of many
transition dipoles distributed over their volume or surface, the effective PSF of
the system is changed. We introduce an object function, ρj(r), which can be
interpreted as a ”transition dipole density”. As a convention we will normalize its
volume integral to unity, while the particle brightness is contained in the factors
Qlj . If the particles can be assumed to be approximately monodisperse and
rotationally symmetric, the effective PSF is simply convolved with this object
function. Due to the convolution theorem this is equivalent to a multiplication
of the OTF with the Fourier transform ρ̂. Therefore the integrands of (3.19) and
(3.9) have to be multiplied by a factor ρ̂j(k)ρ̂k(k) accounting for particle size
effects.

3.3 Analytical Approximation

Because the theoretical description of FCS is used for the estimation of diffu-
sion times and reaction parameters, a fast way to calculate the function g(τ)
is essential for the successful application of nonlinear fitting methods. An ana-
lytical expression for the correlation function can be found when the PSFs are
approximated by a three dimensional Gaussian

h(r) = exp
(−2rtA−1r

)
(3.20)

The matrix A is symmetric, so there are three principal axes described by a
system of orthonormal eigenvectors, ej with the 1/e2 radii of the Gaussian given
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by the corresponding positive eigenvalues, νj . We use the identity (B.1) to Fourier
transform the PSF and obtain

ĥ(k) = V exp
(−ktAk/8

)
(3.21)

where V is the volume integral of the PSF and given by

V =
(
det (A)π3/8

)1/2 (3.22)

We assume that the PSFs have the same form for both detectors but allow them
to be offset by a distance d, a setup frequently encountered in flow measurements

ĥ1 (k) = ĥ (k) (3.23)

ĥ2 (k) = ĥ (k) exp (−ikd) (3.24)

In addition we approximate a finite particle size by a Gaussian object function

ρ̂(k) = exp
(−k2R2/8

)
(3.25)

The volume factors in (3.19) and (3.21) cancel out and the integral takes the form

g(τ) =
∫

d3k exp
(
−ktA(τ)k/4 − ikt (τv − d)

)
/(2π)3 (3.26)

where we defined the real, symmetric matrix

A(τ) = A + R2 I + 4Dτ (3.27)

with I being the identity matrix. Using the formula (B.1) once more, we find the
result

g(τ) = exp
(
− [τv − d]t A(τ)−1 [τv − d]

)/√
π3 det (A(τ) ) (3.28)

The root in the denominator describes the influence of diffusion while the expo-
nential term is due to the particle drift. When the offset d between two cross
correlated detection volumes is oriented along its direction a local maximum is
generated at τ = d/v allowing for the determination of the particle speed.
If diffusion is isotropic or the diffusion tensor and the matrix A can be simul-
taneously diagonalized owing to an appropriate choice of the PSF’s orientation,
the result can be simplified. Let Dj denote the eigenvalue of the diffusion tensor
corresponding to the common eigenvector ej . We can then define the diffusion
times

τj =
(
R2 + ν2

j

)
/4Dj (3.29)



3.4. Patterned Excitation 36

which can be interpreted as the time, a particle needs to cross the detection
volume in the direction of the eigenvector. It is conventional to define an effective
sample volume

V =
[
π3(ν2

1 + R2)(ν2
2 + R2)(ν2

3 + R2)
] 1

2 (3.30)

obtaining the well known result

gc(τ) = V −1[(1 − τ/τ1) (1 − τ/τ2) (1 − τ/τ3)]
−1/2

× exp
(
−

∑
j

[vjτ − dν ]
2/ν2

j aj(τ)
)

(3.31)

where we abbreviated

aj(τ) =
(
R2 + ν2

j + 4Djτ
)
/ν2

j (3.32)

For each fluorescing species we define the average number of particles contributing
to the measurement

〈Ni〉 = V 〈Ci〉 (3.33)

If only one species fluoresces we obtain the famous relationship

Gc(0) = 1/ 〈Ni〉 (3.34)

which states that the amplitude of the correlation function is inversely propor-
tional to the number of fluorescent particles in the sample volume. Equation
(3.31) proved useful for the rather simple case of isotropic diffusion and a cigar
shaped PSF with rotational symmetry around the optic axis but cannot be used
to extract information about the flow direction or the parameters of anisotropic
diffusion.

3.4 Patterned Excitation

If we superimpose the PSF with a pattern and its period is well known, a precise
time scale and a designated direction is created. The resulting correlation curve
should therefore contain additional information about the movement of particles
along the pattern which cannot be extracted from conventional experiments. Let
the orientation and period of the pattern be given by the vector κ and 4π/κ

respectively. We assume an optional, time dependent phase shift which is allowed
to differ for the two detection channels. The modulation pattern can then be
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written as a Fourier sum

hn(r, κ, t) = he(r)
∑

l

Bl exp
(
2il[κtr − ϕn(t)]

)
(3.35)

he is the envelope of the pattern and we have B−l = B∗
l because the intensity

pattern is a real function. Using the convolution theorem, the Fourier transform
of the new PSF is found

ĥn (k, κ, t) =
∑

l

Bl exp (2ilϕn(t)) ĥe(k − 2lκ) (3.36)

Substituting it into equation (3.19) we obtain a double sum for the geometrical
part of the correlation function

g(τ) = V 2
e /V 2

∑
l,m

BlBmJlm(κ, τ)
〈
exp

(
2ilϕ1(t) + 2imϕ2(t + τ)

)〉
(3.37)

with the frequency integral given by

Jlm(κ, τ) =
∫

d3k α̂ (k, τ) ρ̂(k)2 ĥe(2lκ + k) ĥe(2mκ − k) (3.38)

In order to simplify this result we use the Gaussian approximation for the envelope
and the particle shape. Substituting equation (3.14) and using the definition
(3.27) we obtain

Jlm(κ, τ) =
∫

d3k exp
(−ktA(τ)k/4 − iτktv

)
/(2π)3

× exp
(
(l − m)ktAκ/2

)
exp

(
−(l2 + m2)κtAκ/2

)
(3.39)

We define the matrix
E(τ) = AA(τ)−1 (3.40)

and use (B.1) once more to carry out the integral. The contribution of the
envelope ge is given by (3.28) with d = 0 and can be factored out. The solution
then reads

Jlm(κ, τ) = ge(τ) exp
(
−(l + m)2κtE(τ)Aκ/4

)
× exp

(
−(l2 + m2)κtE(τ)

(
4Dτ + IR2)κ/2

)
× exp

(
i(l − m)τκtE(τ)v

)
(3.41)

where we used the identity

E(τ)A + E(τ)
(
4Dτ + IR2) = A (3.42)
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to reorder the contributions. Let us now assume that the phase varies at a
constant rate, that is ϕn(t) = ωt + φn. In this case the time average in equation
(3.37) is nonzero only for l = −m and we are left with a single sum. The volume
integral of the PSF is the value of the OTF at the origin. If we assume that at
least one period of the pattern is contained in the envelope of the PSF we have

exp(−κtAκ) 
 1 (3.43)

and therefore from (3.36)

V =
〈
ĥ (0, t)

〉
� VeB0 (3.44)

At small τ , where the correlation function has still a significant amplitude, equa-
tion (3.43) generalizes to

exp(−κtE(τ)Aκ) 
 1 (3.45)

Therefore the factor in the first line of equation (3.41) is small for all l �= −m

and these contributions can be neglected even when the phase is kept constant or
exhibits a more complex time dependence as assumed above. If the correlation
function is recorded for both the patterned PSF and the envelope the ratio of
the two curves is independent of the spectroscopical properties of the particles.
Using equations (3.18) and (3.44) we obtain

G(τ)/Ge(τ) =
∑

l

Pl(τ)|Bl|2/B2
0

× exp
(
−4l2τκtE(τ)Dκ

)
exp

(
2il

[
(κtE(τ)v − ω

)
τ + ∆φ]

)
(3.46)

Where ∆φ = φ1−φ2 is the relative phase offset of the two channels and the newly
introduced function

Pl(τ) = exp
(
−R2l2κtE(τ)κ

)
(3.47)

describes the damping of the pattern effect due to the finite size of particles. As
it could be expected this function mainly depends on the size ratio of particles
and pattern and the contributions from higher harmonics are more effectively
damped. For very large particles the pattern is smeared out and the original
correlation curve is reproduced. By subtracting the constant offset we introduce
the directional correlation function

γ(τ, ω, κ) = G(τ)/Ge(τ) − 1 (3.48)
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and using the symmetry of the real factors in (3.41) with respect to l we restrict
the summation to positive l and obtain

γ(τ, ω, κ) = 2
∑
l>0

Pl(τ)|Bl|2/B2
0

× exp
(
−4l2τκtE(τ)Dκ

)
cos

(
2l

[
(κtE(τ)v − ω)τ + ∆φ

])
(3.49)

Importantly all dependence on reactions taking place in the sample is removed
from this observable Moreover the amplitude of γ is independent of relative quan-
tum yields and detection probabilities. In principle this result can be used to
measure all parameters of particle movement. If the vector κ can be chosen at
will, equation (3.49) allows for determination of the tensor D and the flow vec-
tor v by a series of experiments with various pattern orientations. In order to
determine both magnitude and sign of the flow vector’s components one either
has to record curves with distinct values for ω or introduce a phase difference ∆φ

between the detection channels.

3.5 Frequency Filtering

In order to simplify data analysis and reduce the number of measurements needed
the method can be combined with lock-in detection by varying the phase of the
modulation patterns at frequencies faster than the measured correlations and
detecting only the corresponding frequency component of the signal. Hardware
based frequency selection using the lock-in method can use frequencies faster than
the smallest time bin accessible by the counting hardware and it is compatible
with the logarithmic detection scheme of hardware correlators.42 Let us therefore
assume that our setup can modulate the detection probability of both detection
channels at a common lock-in frequency ωL but with independent phase offsets
φn. The time modulation function can then be written as a Fourier sum

fn(t) =
∑

l

Ll exp(il[ωLt + φn]) (3.50)

where the offset φn is usually unknown but its time dependence and the phase
difference of both channels ∆φ = φ1 − φ2 can be adjusted. In practice the
hardware actually averages the signal over time bins of width ∆t which we assume
to be much longer than the detector response function. If h′

n denotes the PSFs
in the absence of lock-in detection the new effective PSF is well approximated by

hn(r, t) =
∫ ∆t

0
ds h′

n(r, t + s)fn(t + s)/∆t (3.51)
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We vary the pattern’s phase at a constant rate ϕn(t) = ωt and choose the mod-
ulation frequency ω = 2π/∆t. Now one hardware time-bin corresponds to a full
oscillation of the PSFs. Choosing ωL = 2ω as lock-in frequency we obtain the
effective PSF

hn(r, κ, t) = he(r)
∑

l

BlLl exp
(
il[2κtr + φn]

)
(3.52)

Because the time-average of the modulated signal depends on the form of f and
can approach zero, we choose to normalize our correlation curve with the average
of the unmodulated signal which will be detected in a separate channel. The
offset subtracted in the definition of the directional correlation function has to be
adjusted accordingly and we define

γ(τ, ∆φ,κ) = G(τ)/Ge(τ) − |L0|2 (3.53)

and in analogy to equation (3.49)

γ(τ, ∆φ,κ) = 2
∑
l>0

Pl(τ)|LlBl|2/B2
0

× exp
(
−4l2τκtE(τ)Dκ

)
cos

(
l
[
2τκtE(τ)v + ∆φ

])
(3.54)

It is interesting to note that the FICS technique mentioned in the introduction
relies on a similar measurement principle. In short it can be described by consid-
ering the limiting case of infinitely large focal spots in the theory above. A more
detailed comparison is given in appendix A.2.
Let us now assume that the Ll and Bl drop off sufficiently fast so we can neglect
all higher harmonics. In order to maximize the information that can be extracted
from our data one can measure correlation curves for two different phase offsets
∆φ and the unmodulated curve simultaneously. This is achieved by splitting the
detector signal into three channels and recording the unmodulated signal Fe in
one of them. In two additional channels, the two modulated signals, F1 and F2

are recorded but the modulation’s phase is shifted by π/2 for F2. Because the
time average of the PSF is proportional to its envelope the function Ge is just the
autocorrelation of Fe. In addition we record the autocorrelation of F1, Ga, and
the cross-correlation of F1 and F2, Gx. The corresponding directional correlation
functions evaluate to

γa(κ, τ) = Ga/Gc= γs(κ, τ) cos
(
2τκtE(τ)v

)
(3.55)

γx(κ, τ) = Gx/Gc = γs(κ, τ) sin
(
2τκtE(τ)v

)
(3.56)
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where we introduced the function

γs(κ, τ) =
√

G2
a + G2

x/Gc =

2 |L1B1|2 /B2
0 P1(τ) exp

(
−4τκtE(τ)Dκ

)
(3.57)

which is independent of the particle flow. This elaborate detection scheme was
chosen because the diffusion constant and the magnitude of the flow along the
pattern can be more reliably extracted from γa, while the sign of the flow vector’s
components is identified by γx. In fact, if both curves are simultaneously analyzed
information about flow and diffusion can be separated because γs is independent
of flow.
When the principle directions of diffusion are aligned with the PSF, the result
for a measurement along the jth axis of the PSF simplifies to

γa(τ, κ) = γs(τ) cos(2τκvj/aj(τ)) (3.58)

γx(τ, κ) = γs(τ) sin(2τκvj/aj(τ)) (3.59)

and remembering the definition of the damping function, the common dependence
on diffusion is given by

γs(τ, κ) = 4B2
1/(π2B2

0) exp(−R2κ2/aj(τ)) exp(−4τκ2Dj/aj(τ)) (3.60)

The signal is now formed exclusively by diffusion and flow along the pattern.

3.6 Experimental Realization

The goal is to fit correlation curves recorded at different points of the sample
using the model developed above and extract flow and diffusion parameters, thus
effectively imaging particle flow and diffusion throughout the sample. In order to
achieve reasonable spatial resolution we will ideally need diffraction limited focal
spots with a superimposed pattern which cannot be produced by intersecting
Gaussian beams. However such spots with the pattern along the optic axis are
already used in 4pi confocal microscopes where the modulation is due to the
interference of two counterprobagating laser beams and can be shifted within
its envelope by varying their relative phase.43 Figure 3.1 shows the detection
probability in the focal region of a 4pi microscope using one-photon excitation.
The excitation field was calculated based on the theory of Richards and Wolf23.
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For determination of the detection probability an Airy-disk sized pinhole was
assumed. In general the n-photon 4pi PSF is well approximated by

h(r, κ, t) = he(r)
[
cos

(
ωt − κtr

)]2n (3.61)

where he denotes the envelope of the pattern which is equivalent to a confocal
PSF. The vector κ is oriented along the z-axis and slightly larger than the wave
vector of the light, owing to the high aperture of the lens. Using the identity
cos x = (eix + e−ix)/2 we find the Fourier coefficients

Bl = 4−n

(
2n

n + l

)
(3.62)

where of course l ≤ n. Let us further assume that the correlation hardware
can switch between adding and subtracting the detected photons at the lock-
in frequency. The first Fourier coefficients of such a rectangular function are

ϕ=π/2ϕ=0 ϕ=π ϕ=3π/2

a) b) 500nm

0 1

r

z

Figure 3.1: (a) The PSF of a one-photon type A 4pi confocal microscope calculated

for 488nm excitation light, a numerical aperture of 1.2 in water and an Airy-disk sized

pinhole. The inlay shows the movement of the pattern when varying the phase difference

of the beams. (b) The time average of a moving pattern which is equivalent to a confocal

PSF.
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ϕ=π/2ϕ=0 ϕ=π ϕ=3π/2

Figure 3.2: (a) The laterally modulated PSF as created by coherent foci aligned along

the x-Axis at a distance of 200nm from each other. Neighboring foci have a phase differ-

ence of π and their amplitudes depend on the distance from the center of the envelope and

drop off to 1/e2 after 400nm. The PSF is shown both in focal plane and in xz-direction.

At the bottom the movement of the pattern when moving the foci within the envelope

is illustrated. (b) The time average of the moving pattern.

L0 = L2 = 0 and L1 = 2/π and for point-like particles and one-photon absorption
we therefore expect an amplitude of 2/π2 � 0.2. Using two photon excitation the
amplitude increases by a factor 16/9 because the detection volume is effectively
reduced due to the quadratic dependence of the excitation probability on the
intensity.
If diffusion and flow can only be measured along the optic axis we are limited to



3.6. Experimental Realization 44

-1 1

x

y

φ=0

φ=0

φ=π/2φ=π/2

a) b)

x

z

Figure 3.3: The effective PSFs resulting from combining (a) the axial 4pi pattern shown

in figure 3.1 and (b) the lateral pattern illustrated in figure 3.2 with the lock-in detection

method. The effect is shown for two phase offsets φ of the detection modulation.

applications where the orientation of the sample is known and can be controlled
or where a properly oriented sample can be chosen. However, we aim at imag-
ing all the vector components of the flow and thus we need at least two more
measurements in linearly independent directions. This requires a way to produce
patterns lying in the focal plane. Such patterns have previously been produced
by crossing two coherent laser beams in a common focus produced by a single
lens.39,38 With this method, large focal spots with diameters of 100-140µm were
produced. Suitable lateral patterns within a small focal spot are more challeng-
ing to find. One possible approach is to superimpose several coherent foci placed
along a line with neighboring foci interfering destructively. We will see that such
foci can be produced by a single objective lens using techniques already estab-
lished in multifocal microscopy. Let E(r) be the E-field of a diffraction limited
focus and let hdet(r) be the spatial detection probability. If the position of the
foci is rj(t) and the amplitude of the beams is cj(t) the PSF is given by

h(r, t) = Chdet(r)
∣∣∣∑

j

(−1)jcj(t)E(r − rj(t))
∣∣∣2 (3.63)

where C scales the maximum of h to unity. We line the foci up along the unit
vector e at a distance d from each other and choose a Gaussian dependence of
the amplitude on the distance from the center of the envelope with a 1/e2 radius
w. The pattern can be moved by moving the foci along e and adjusting the
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amplitudes in the process. One period is then described by

rj(t) = (j + t/∆t)de (3.64)

cj(t) = exp(−2 |rj(t)|2 /w2) (3.65)

Figure 3.2 shows the resulting detection volume for w = 400nm and d = 200nm
which can be reasonably well approximated by the first harmonic of the Gaussian
model above.
The effective PSFs resulting from lock-in detection with a rectangular modula-
tion function fn are shown in figure 3.3 for both the lateral and the axial pattern.
Because L0 = 0 they oscillate around zero. The positive and negative regions cor-
respond to regions where molecules are excited primarily during times of positive
and negative counting by the hardware.
A slight modification of the setup for multifocal 4Pi microscopy44 would allow to
switch between both patterns in the same setup. The details are shown in figure
3.4. The lateral pattern is produced by a rotating microlens disk on which the
lenses are arranged parallel to its circumference instead of the usual, more com-
plex arrangement45. In order to achieve an interfocal distance of 200nm lenses
will also have to be smaller in size and the intermediate optics has to be modified.
The detection scheme is simpler than in the imaging case because only a single
pinhole is used. The lateral pattern can be oriented at arbitrary angles in the
focal plane by rotating the Dove prism.

3.7 Simulation of Flow Measurements

In order to validate that the parameters of diffusion and flow can be extracted
from the measured correlation curves under realistic conditions the motion of
fluorescent particles inside a simulation volume V was simulated. The proba-
bility of a particle located at the origin at t = 0 moving into an infinitesimal
volume element around r during a time step τ is given by the spatial part of the
concentration correlation function (3.7) which is found by evaluating the Fourier
back-transform of α̂:

α(r, τ) = exp
(
−[r − vτ ]tD−1[r − vτ ]/4τ

)/
8
√

π3τ3 det(D) (3.66)

Therefore diffusion of a particle during one time step can be simulated by cal-
culating three normal distributed random numbers. Similar simulations have
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Figure 3.4: Setup for measuring directional correlation functions in axial and lateral

directions. The incident laser beam is split by a beam splitter (BS) into two alternative

pathways. One of them passes directly into the 4Pi cavity where two counterprobagating

beams are formed and focused onto the same spot by a beam splitter (BS) and two

objective lenses (OL). Alternatively a second pathway can be switched on where the

beam is split into several, horizontally aligned beamlets by a line of microlenses (LA)

which can be moved through the beam profile. When one of the beams in the cavity is

switched off this results in a lateral pattern as described in the text. A Dove-prism (DP)

is only one of several possibilities to rotate the pattern around the optic axis.

previously been used to study the quality of data analysis in FCS.46 In this ap-
proach particles leaving the spherical simulation volume where randomly placed
on the boundary to keep the concentration constant while other approaches used
reflecting boundary conditions.47 However, in our case particles will preferably
enter the volume in the direction of the drift and therefore this method is in-
adequate. In addition the assumption of a fixed particle number inside V is
inaccurate. Its value at a random point in time is Poisson distributed and it ex-
hibits a time correlation dropping off after the time a particle needs to cross the
simulation volume. In order to correctly describe these effects, the probability
density, p in(r), of a particle from outside the volume appearing at a point r after
a time step ∆t has to be known. As an approximation we assume particles to be
randomly distributed outside the simulation volume, independently of previous
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events. Therefore
p in(r) = 〈C〉

∫
V

d3r′α(r − r′, ∆t) (3.67)

where V is the space outside the simulation volume. Not surprisingly this is
proportional to the probability of a particle located at −r leaving the sample
volume during one time step and we can thus simulate p in in the following way:
a Poisson distributed random number of particles with its expectation value given
by 〈C〉V is randomly distributed in the sample after each step. One time step
is simulated only for these particles and all particles which do not leave the
simulation volume are discarded. The remaining ones are restored at their initial,
random position and mirrored about the origin.
Finally the count rates for the three detector channels have to be simulated. If we
choose our time steps equal to the hardware time bin in (3.51), the total number
of detector counts, Fe, is Poisson distributed with mean value

F̄e(t) = Q∆t
∑
j

he(rj(t)) (3.68)

where the particle trajectories are denoted by rj(t) and the sum extends over
all particles in the simulation volume. The constant Q describes the particle
brightness and is defined in (3.3). For each modulated channel some of these
counts are added and some are subtracted. The number of positive counts in
channel n, F+

n , follows the binomial distribution with the following parameters:
The number of trials is given by the total number of counts during the time
step, Fe, and the probability of success is proportional to the fraction of positive
contributions to the integral (3.51)

h+(r, φn) =
∫ π

0
dsh′(r, s + φn/ωL)/[he(r)∆t] (3.69)

where φn is the shift of the rectangular detection modulation. All remaining
counts are negative and therefore the signal in channel n is given by Fn =
2F+

n − Fe. The channel signals can therefore be simulated by generating a single
Poisson distributed random number and two random numbers following binomial
distributions.
A portable random number generator called ran248 which has a period much
longer than the amount of calls needed for the simulation of an experiment, was
used in the program. At time steps of 10µs the simulations ran about thirty times
slower than realtime on a standard 1GHz personal computer. The function h+ was



3.7. Simulation of Flow Measurements 48

calculated on a grid which was then used for multilinear interpolation. In all our
simulations we assumed a concentration of 40 particles per µm3 corresponding to
a 66nM solution. Tests were made by using an idealized, Gauss-shaped PSF and
verifying that the correlation curve converged towards the theoretical prediction
(3.31) for long simulation times.

v D̄[µm2/s] v̄[µm/s] ∆φ Alat Aax

T = 100ms
50 2.7 ± 1.3 56 ± 15 25o 0.17 0.21
100 1.9 ± 0.5 102 ± 32 13o 0.16 0.19
200 2.0 ± 0.5 198 ± 14 6.2o 0.15 0.19
500 2.5 ± 0.7 498 ± 17 3.2o 0.15 0.19
1000 3.5 ± 1.1 1000 ± 27 2.3o 0.15 0.19

T = 50ms
50 1.8 ± 0.7 64 ± 25 36o 0.20 0.24
100 1.9 ± 0.7 107 ± 25 18o 0.18 0.22
200 2.1 ± 0.7 203 ± 22 9o 0.16 0.20
500 2.5 ± 1.0 506 ± 34 5.6o 0.16 0.19
1000 3.5 ± 1.6 1063 ± 36 3.1o 0.16 0.19

T = 25ms
50 1.6 ± 1.0 80 ± 50 48o 0.28 0.30
100 1.7 ± 0.9 116 ± 38 27o 0.21 0.24
200 1.8 ± 1.0 210 ± 36 16o 0.18 0.22
500 2.3 ± 1.3 507 ± 60 9o 0.15 0.19
1000 3.5 ± 2.2 1013 ± 51 4.5o 0.16 0.19

Table 3.1: Results from 1000 simulated flow measurements with randomly oriented flow

vectors of a fixed magnitude v and various acquisition times T . The average parameter

estimates for diffusion constant, D̄, flow magnitude, v̄, and the amplitudes of γ in the

lateral and axial direction Alat and Aax are shown. The errors reflect the standard

deviation of a single measurement and ∆φ is the average angle between assumed and

fitted flow vector.

Each flow measurement consisted of three data acquisitions, two with lateral pat-
terns oriented along the x- and y-axis and one with an axial pattern resulting
from the 4pi PSF. The correlation curves γa and γs were then calculated for each
pattern. The data was fitted with the model function (3.59) using a downhill
simplex algorithm as introduced by Nelder and Mead49 for the nonlinear pa-
rameters. The diffusion constant varied simultaneously for all curves but the
amplitudes of γ were allowed to differ for the three patterns. Linear parameters
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Figure 3.5: Simulated directional auto- and crosscorrelation functions γa and γx re-

sulting from three simulations assuming a diffusion constant of 2µm2/s and a particle

flow of 200µm/s (a) along the x-Axis, (b) along the y-Axis and (c) along the z-Axis. The

functions γa and γx are plotted right and left of the origin and the results for the three

data acquisitions with orientations of the pattern along the x, y and z-direction respec-

tively are shown next to each other. The colored lines are the results of parameter fitting.

Clearly only the curves where the pattern was oriented along the direction of flow exhibits

the sinusoidal oscillation as predicted by theory. The function γs presented on the right

only depends on the diffusion constant and has the same form in all measurements.
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Figure 3.6: Distribution of measured flow speeds and the angle between actual and

measured flow direction in five sets of N simulated experiments. The direction of the

flow was arbitrarily chosen in each experiment while the flow speed was kept constant

at a) v=50µm/s, b) v=100µm/s, c) v=200µm/s, d) v=500µm/s and e) v=1000µm/s. A

diffusion constant of 2µm2/s was assumed. The probability density of the angular error,

∆φ per solid angle is plotted on the left.
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were optimized during each step of the iteration using a linear least square al-
gorithm based on the Cholesky decomposition.48 The statistical significance of
each data point in the original correlation curves, G and Ge was assumed equal
and instrumental weights were chosen accordingly during fitting. The curves
were cut off at the point where Ge dropped below 2% of its maximum. Data
analysis using both a logarithmic time scale42 with 8 channels per octave and a
linear time scale produced very similar results. Symmetric normalization50 was
used in all cases. Formulas for statistical noise on correlation data can be found
in the literature51,52,53,46 but introducing an appropriate τ -dependent weighting
did not significantly change the results of our fits. Figure 3.5 shows the linear
correlation curves resulting from three simulations together with the theoretical
curves calculated with the optimized parameters. The flow vector was oriented
along each of the cartesian coordinates once in order to illustrate the resulting os-
cillation of γ. Because diffusion was assumed equal along each axis γs drops off at
the same rate, regardless of the pattern’s orientation. The theoretical curves are
the results of fitting the data. For the simple geometry used here fit results were
more precise than for arbitrary flow vectors. In order to quantitatively describe
the precision of our data analysis a series of measurements was simulated with a
randomly oriented flow of constant magnitude. For each measurement the angle
between the assumed and fitted flow vector was calculated and recorded together
with the fitted speed, diffusion constant and amplitudes. Figure 3.6 shows the
result for simulated measurements of 100ms along each axis. Similar runs were
conducted using shorter measurement times and the results are listed in table
3.1. Interestingly the amplitude Aax for the axial pattern is very close to the
predicted 0.2 and the lower amplitude along the lateral direction is due to the
lateral pattern not dropping to zero in the minima resulting in a damping of the
modulation effect.
Additional simulations were made to test the eligibility of our system for size
measurements on particles which are too small or moving too fast for precision
imaging. For particles of size R and using the Gauss approximation the model
predicts a damping of the directional correlation function’s amplitude described
by (3.47) and an underestimation of the diffusion constant due to the contribution
of the particle size to the matrix A(τ) in (3.27). Unlike in conventional FCS47

the amplitude of γ is independent of the concentration of particles and thus the
particle size can be extracted without a priori knowledge. The axial pattern of
a 4Pi PSF was convolved with spherical particles featuring various diameters in
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Figure 3.7: Amplitude of the directional correlation function γ extracted from simula-

tions assuming various particle sizes. The theoretical curve is based on an approximation

of the spherical particles as Gaussian caps, and neglects all higher harmonics of the pat-

tern modulating the PSF. The error bars represent the standard deviation of individual

measurements with an acquisition time of 100ms.

order to account for their effect on the effective PSF. While the identical lock-in
detection scheme was assumed in these simulations it should be mentioned that
time modulation of the pattern is not necessary in this context if diffusion and
flow are not to be determined simultaneously. The results are presented in figure
3.7 and show that the method is reliable for particles with sizes up to 100nm.
The size of large particles is slightly overestimated as could be expected due to
their approximation as Gauss caps.

3.8 Measurement of the Diffusion Tensor

The method presented in the previous section could be extended to cases where
diffusion is not isotropic but its symmetry axes are oriented along the cartesian
coordinates. The estimation of the flow vector might even be acceptable for
arbitrary diffusion properties if the measurement time is increased, because the
oscillation characteristic for flow along the pattern can be isolated from the curves.
However, the model (3.57) contains information about all matrix elements of the
diffusion tensor which we would like to extract from our measurements. Data
acquisition with patterns along the three cartesian coordinate axes is not sufficient
for this task because the resulting correlation functions mainly depend on the
diagonal elements of the diffusion tensor and always several of its orientations
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would lead to the same form of the curves. Therefore, in order to determine the
full tensor, we need correlation curves corresponding to patterns oriented along
the bisectors. In the focal plane the image field can be rotated using the Dove
prism but in order to tilt the optic axis, the sample would have to be rotated
with respect to the lens. Such setups have been proposed for optical tomography
54 but in practice the critical sample alignment and a complicated preparation
and mounting process severely complicate such an approach.
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Figure 3.8: (a) PSF resulting from simultaneously switching on the lateral and the

axial pattern generation. The axial and lateral patterns were varied with frequencies

ω2 = 9ω1/10 with the periodic variation of the pattern illustrated in the insets. A full

period is defined by ϕ = 2π and the envelope he resulting from time averaging is shown

in figure (b).
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Figure 3.9: Effective PSF resulting from combining the two-dimensional pattern in

figure 3.8 with lock-in detection at a frequency ω1 − ω2. The diagonal structure is used

to monitor diffusion along the bisectors of the coordinate system in diffusion tensor

measurements.

As an alternative we switch on both the lateral and the axial pattern in our
setup, producing a two dimensional one. The resulting PSF is shown in figure
3.8. We approximate the pattern by the superposition of two periodic patterns
defined by the vectors, κ1 and κ2 and with their time dependence given by
the functions ϕn,1/2(t). We expect a dependence of the correlation function on
the diffusion tensor’s off-diagonal elements as a result of the patterns diagonal
structure. Again, we write the modulations as Fourier sums:

hn (r, κ1, κ2, t) = he(r)
∑
l,j

B1lB2j exp
(
2iϕn,lj(t) − 2iκt

ljr
)

(3.70)

where we defined

κlj = lκ1 + jκ2 (3.71a)

ϕn,lj(t) = lϕn,1(t) + jϕn,2(t) (3.71b)

The Fourier transform is obtained using the convolution theorem

ĥn (k, κ1, κ2, t) = ĥe(k)
∑
l,j

B1lB2j exp (2iϕn,lj(t))he(k − 2κlj) (3.72)

and equation (3.19) can then be written as a summation

g(τ) = V 2
c /V 2

∑
l,m,j,k

B1lB1mB2jB2kJlmjk(κ1, κ2)

×
〈
exp

(
2iϕ1,lj(t)+ 2iϕ2,mk(t+ τ)

)〉
(3.73)
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with the volume given by
V � VcB

2
20B

2
10 (3.74)

Again assuming a Gaussian shape for the envelope the frequency integral can be
written as

Jlmjk(κ1, κ2, τ) =
∫

d3k exp
(−ktA(τ)k/4 − iτktv

)
/(2π)3

× exp
(
−κt

ljAκlj/2
)

exp
(
−κt

mkAκmk/2
)

× exp
(
ktA(κlj − κmk)/2

)
(3.75)

and using equations (B.1) and then (3.42) we find analogously to (3.41)

Jlmjk(κ1, κ2, τ) = gc(τ) exp
(
iτ(κlj − κmk)tE(τ)v

)
× exp

(
−κt

lj E(τ)
(
4Dτ + IR2)κlj /2

)
× exp

(
−κt

mkE(τ)
(
4Dτ + IR2)κmk/2

)
× exp

(
−(κlj + κmk)tE(τ)A(κlj + κmk)/4

)
(3.76)

As above we assume that the phases of the pattern vary at constant rates

ϕn,lj(t) = (lω1 + jω2)t + φn,lj = ωljt + φn,lj (3.77)

and therefore, if ω1 and ω2 and their higher harmonics are distinct, only terms
with m = −l and k = −j contribute. In all other cases the same solution is a
valid approximation owing to equation (3.45). Putting everything together we
obtain

G(τ)/Gc(τ) =
∑
jl

Plj(τ)|B1lB2j |2/(B10B20)2

× exp
(
−4τκljE(τ)Dκlj

)
exp

(
2i

[
(κljE(τ)v − ωlj)τ + ∆φlj

])
(3.78)

where we defined the phase offset ∆φlj = φ1,lj − φ2,lj and the damping function

Plj(τ) = exp
(
−R2κljE(τ)κlj

)
(3.79)

Equation (3.78) indeed contains the desired diagonal elements κ1E(τ)Dκ2 but it
depends on several of them simultaneously, which complicates data analysis.
However equation (3.78) simplifies significantly when we use frequency filtering.
We set φn,lj = ωljt and choose the frequencies ω1 = 2πm/∆t and ω2 = 2π(m −
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1)/∆t where m is an arbitrary whole number. When choosing ωL = ω1 − ω2 as
lock-in frequency only those addends of (3.70) contribute the integral (3.51), for
which ωlj = qωL and therefore

q = lm + j(m − 1) q ∈ Z (3.80)

These pairs are given by

l = q + µ(m − 1) µ ∈ Z (3.81)

−j = q + µm (3.82)

and if we choose m large enough and assume the Fourier coefficients of higher
harmonics to become small, we can neglect those contributions with µ �= 0. The
effective PSF is then well approximated by

h (r, κ, t) � he(r)
∑

l

B1lB2lLl exp
(
il[2κt

Lr − φm]
)

(3.83)

where we defined the diagonal vector selected by the lock-in frequency κL =
κ1 − κ2. Figure 3.9 shows the result for the setup proposed here. The diago-
nal structure is clearly visible and even though the pattern exhibits a secondary
structure we will see that the results of simulated measurements are still well
described by our theory. In order to introduce a diagonal equivalent to the direc-
tional correlation function (3.53) normalization is done with the average signal
in the absence of lock-in detection, we introduce independent phase shifts φ1 and
φ2 = φ1 + ∆φ for the two detector channels and define

γ(τ, ∆φ, κ1, κ2) = G(τ)/Gc(τ) − |L0|2 (3.84)

By picking the correct addends from (3.78) we find

γ(τ, ∆φ, κ1, κ2) =
∑
l>0

P−ll(τ)|LlB1lB2l|2/(B10B20)2

× exp
(
−4l2τκt

LE(τ)DκL

)
cos

(
l[2τκt

LE(τ)v + ∆φ]
)

(3.85)

For data fitting we will assume that the higher harmonics can be neglected.
The amplitude we expect is given by π/2 times the product of the average lat-
eral and axial amplitudes which corresponds to approximately 0.045 in our case.
When measuring the diffusion tensor three additional curves are recorded as com-
pared to flow measurements. One measurement now consists of six data acquisi-
tions with lateral patterns along the x- and y-axis as well as along the xy-bisector,
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Figure 3.10: Simulated data and fitted curves for diffusion tensor measurements. All six

data acquisitions are shown next to each other for each of the measurements. Diffusion

was assumed exclusively (a) in the xy- (b) in the xz- and (c) in the xz-plane but an

arbitrary flow vector was chosen for each of the measurements. The diffusion constant

was 4µm2/s. The function γs, which is plotted in the insets, illustrates the absence of

diffusion in the direction normal to the diffusion plane.
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D̄0/1[µm2/s] D̄2[µm2/s] ∆φ Alat Aax Adiag

(a) 3.6 ± 0.5 0.4 ± 0.4 31o 0.14 0.18 0.038
(b) 0.3 ± 0.3 3.5 ± 0.1 27o 0.15 0.19 0.038

Table 3.2: Results from simulated diffusion tensor measurements with 200 randomly

oriented tensors for (a) diffusion in a plane and (b) diffusion in only one direction with

D = 4µm2/s. The average parameter estimates for the diffusion constant, D̄, and the

amplitudes of γ in the lateral, axial and diagonal direction Alat ,Aax, Adiag are shown.

The errors reflect the standard deviation of a single measurement and ∆φ is the average

angle between assumed and fitted tensor orientation.

an axial pattern along the z-axis and two-dimensional patterns in the xz- and the
yz-planes. An acquisition time of 400ms was assumed for each of the patterns.
Data fitting was accomplished by simultaneously fitting the data from all six
recordings of a measurement using the model (3.56). Figure 3.10 shows 3 exem-
plary simulation runs. The diffusion tensor was oblate simulating diffusion only
parallel to a plane, e.g. within or on the surface of a biological membrane. Diffu-
sion was assumed once in the xy-, the xz- and yz planes illustrating the influence
of the tensor’s orientation on the correlation curves.
In order to quantify the precision of such measurements a series of simulations
with randomly oriented diffusion tensors and flow vectors was run. In addition to

0o 90o60o30o

n(∆φ)/dΩ (a)
(b)

Figure 3.11: Distribution of the angle ∆φ between assumed orientation of the diffusion

tensor and the guess based on simulated correlation data. The frequency of occurrence

has been plotted per solid angle and values are given for (a) diffusion in a plane and (b)

diffusion in only one direction.
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diffusion in a plane, a prolate tensor was assumed in a second set of simulations,
imitating e.g. diffusion along microtubule or filaments. The results are listed
in table 3.2. Clearly, our system distinguishes planar and linear diffusion from
the isotropic case and simultaneously identifies particle drift. The amplitude for
the xz- and yz-curves is lower than predicted by the Gauss approximation due
to the imperfections of the pattern. Figure 3.11 illustrates the quality of the
estimates for the orientation of the tensor. Obviously, the scheme proposed has
the potential to image preferred directions of diffusion, however the average error
of approximately 30o is still quite large and automatic fitting failed in about 10%
of the cases. These problems could be solved by a more elaborate data analysis,
based on the comparison of several fitting attempts with different initial guesses
for the parameters.



Chapter 4

Monitoring Energy Transfer

Using STED

Stimulated emission depletion (STED) microscopy is the first far-field technique
with a resolution that is not fundamentally limited by the diffraction of light.
Its basic principle is to stop fluorescence from molecules that are not located in
the center of the focal spot. This is accomplished by employing pulsed excitation
and quenching the excited state of the dye with a second, red-shifted pulse that
arrives a short time afterwards. Using diffraction techniques the focal intensity
of red light is distributed around the excitation maximum while ensuring zero
intensity in an interference minimum in the center. When increasing the power
of the STED beam, fluorescence can be almost completely quenched at places
where the intensity of the red light reaches only a fraction of its maximum value
in the focal area. Therefore fluorescence is effectively hindered even in the imme-
diate vicinity of the excitation maximum which ideally remains unaffected due
to the interference minimum. Thus theoretically, the resolution can be improved
indefinitely by increasing the strength of the STED beam.
If the STED beam forms a regular focus, which is then aligned with the excitation
focus, a STED microscope turns into a tool for pump-probe experiments at arbi-
trary spots of the sample. Because the STED beam quenches fluorescence only
from dyes with are in their excited state when the pulse arrives, the reduction of
fluorescence effectively monitors the population of that state. By changing the
temporal offset between the two beams its time evolution during an excitation
cycle can be analyzed.55

Fluorescence resonant energy transfer (FRET) is the nonradiative transfer of
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energy from a donor to an acceptor molecule by a weak dipole-dipole coupling
mechanism. The FRET efficiency is the probability that an excited donor ac-
tually transfers its energy to the acceptor before being quenched or decaying
radiatively. It was predicted by Förster to depend on the sixth power of the
distance, R between donor and acceptor56, and is given by E = [1 + (R/R0)6]−1.
The constant R0 is the Förster radius, the distance at which 50% efficiency is
reached. It depends on the spectral overlap integral of the donor’s fluorescence
spectrum with the excitation spectrum of the acceptor, J(λ), the fluorescence
quantum yield of the donor, φd, the refractive index of the medium, n and an
orientational factor κ2 = [cosθt − cos θd cos θa]2 where θt is angle between the
transition moments and θa and θd are the angles between the separation vec-
tor of their centers and the acceptor- and donor transition moment, respectively.
With J(λ) in M−1cm−1nm4. we have

R0 = [8.79 · 10−5J(λ)φdκ
2/n4]1/6 [Å] (4.1)

Thus, if relative orientations are isotropic or known, a FRET pair can serve as a
spectroscopic ruler in biological systems owing to the strong dependence of the
transfer efficiency on the distance between the dyes. In principle, FRET efficien-
cies are most easily measured by comparing the amount of donor and acceptor
fluorescence in a calibrated system. For this, the ratio of the quantum yields of
donor and acceptor has to be known. An additional problem is the contribution
from uncoupled donor molecules which reduces the measured transfer efficiency.
While this ’zero peak’ can be literally sorted out in single molecule experiments57,
its control in bulk measurements, especially in complex environments, is difficult.
Alternatively the fluorescence decay of the donor can be monitored. However
the rate is influenced by many mechanisms other than FRET and those pairs
with most effective transfer contribute least to the donor signal making analytis
difficult or impossible.
These problems can in principle be overcome by monitoring the excitation rate
of the acceptor directly. Under pulsed illumination, the rate at which acceptor
fluorescence increases after excitation of the donor is determined by the FRET
rate. At high transfer efficiencies this increase is too fast to be detected in tradi-
tional lifetime imaging.
Because a STED microscope inherently monitors the excited state of the quenched
dye it has both the required temporal resolution and the imaging capabilities to
carry the method back into biological systems. In this chapter these possibilities
are evaluated on a model system.
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4.1 Theory

We only consider the electronic ground state and the first excited state for both
donor and acceptor and neglect effects originating from vibrational relaxation.
The system has then 4 states corresponding to the following configurations: Both
molecules are excited ,D∗A∗, only the donor is excited ,D∗A, only the acceptor is
excited ,A∗D, and both molecules are in the ground state ,DA. They are shown in
figure 4.1 together with the relevant transition rates. The rate of energy transfer
is related to the FRET efficiency by the formula E = kt/[kt + kd]. The intensity
of donor fluorescence, Id and acceptor fluorescence, Ia is measured in two spectral
channels. Let qd,a be the product of quantum yield and collection efficiency for
donor and acceptor, thus denoting the probablility that a photon is registered in
the appropriate channel when a dye decays into its ground state. Usually some
donor fluorescence also leaks into the acceptor channel and vice versa and we
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Figure 4.1: Simplified Jablonski diagram of two dyes coupled by FRET. The 4 states

correspond to the permutations of excited and relaxed donor and acceptor. The case of

both dyes being excited is neglected in the formulae and depicted in gray. The remaining

states are labeled n0, n1 and n2 and kd and ka are the decay rates of the excited state of

donor and acceptor respectively; kex are excitation rates and ks is the rate at which light

quenching of the excited acceptor takes place. Finally kt is the rate of Förster transfer

between the dyes.
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denote their fractions by δd and δa. If we are far from saturation and the ratio
between unwanted, direct acceptor excitation and donor excitation is given by ξ

the signal in the channels is given by

Ia = C[(E + ξ)qa + (1 − E)qdδd] (4.2a)

Id = C[(E + ξ)qaδa + (1 − E)qd] (4.2b)

where C is a scaling constant and with γ = qa/qd the transfer efficiency is

E = [1 + γ(Id − Iaδa)/(Ia − Idδd − Cqaξ(1 − δaδd))]−1 (4.3)

Please note that for zero cross-talk (δa = δd = 0) and if only the donor is excited
(ξ = 0) this simplifies to

E = [1 + γId/Ia]−1 (4.4)

Spectral measurements of FRET efficiencies are based on this formula. The δ’s are
easily determined by calibration measurements. The amount of fluorescence from
direct acceptor excitation can be controlled by careful selection of the excitation
wavelength or it must be estimated. The main source of inaccuracy is the factor γ,
which is often unknown because quantum efficiencies are difficult to determine and
depend on the dye’s microenvironment. However it can in principle be measured
directly in the sample by bleaching some of the acceptors between two consecutive
measurements. For bleached acceptors E becomes zero and we have

qa/qd = −(∆Ia + δd∆Id)/(∆Id + δa∆Ia) (4.5)

where ∆Ia < 0 and ∆Id > 0 is the change of the signals after acceptor bleaching.
Of course, this approach renders the sample unusable for further analysis unless
diffusion exchanges molecules. Even without previous bleaching, single donor
molecules usually contribute to the signal owing to unwanted bleaching of ex-
cess labeling. In single molecule experiments these contributions can be literally
sorted out57 but in bulk measurements controlling this error is one of the most
challenging tasks.
Our goal is to solve this problem by directly monitoring the excitation of the
acceptor through energy transfer. Let us therefore consider the time evolution
of the system after initial excitation. We now assume pulsed excitation and that
all molecules are in their ground state before each excitation pulse. The pulse is
assumed to be very short as compared to the other transition rates. At sufficiently
low intensities saturation is avoided and a fraction ξd = kex∆t = Φσ∆t of donor
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molecules is excited during each pulse where σ is the excitation cross section, Φ
is the average density of the photon flux during the pulse and ∆t is the pulse
length. Similarly a fraction ξa = k′

ex∆t = ξξd of acceptor molecules is excited. If
ξa, ξd 
 1, contributions from systems where both dyes are initially excited are
negligible and we therefore disregard the state D∗A∗ in our considerations. In
the absence of STED the time evolution of the states is then described by the
equations

dn2(t)/dt = −[kd + kt]n2(t) (4.6a)

dn1(t)/dt = ktn2(t) − kan1(t) (4.6b)

and if the excitation pulse is at t = 0 the solution is

n2(t) = ξd exp(−[kd + kt)t) (4.7a)

n1(t) = (ξa + ηξd) exp(−kat) − ξdη exp(−[kd + kt]t) (4.7b)

where η = kt/[kd+kt−ka]. Note that at t = 0 we have dn1/dt = ξdkt and therefore
the excited state of the acceptor is initially filled exactly with the FRET rate, as
could be expected. The total signals are still given by (4.2b).
If the sample is irradiated with a STED pulse, which is short compared to the
transition rates, a fraction ε of all excited acceptor molecules is quenched. ε is
called the STED efficiency58 and if ks is faster than the other transition rates
but slow enough for vibrational relaxation to avoid re-excitation it is given by
ε = 1 − exp(−kt∆t) = 1 − exp(−σtΦ∆t) where ∆t is the pulse duration, Φ the
density of the photon flux and the σt the cross section for stimulated emission of
the acceptor. Assuming that the donor is not quenched and the pulse arrives at
t = τ the signal in the acceptor channel is given by

Ia(τ) = Ia − Cεqan1(τ) (4.8)

and here we will measure the time dependent STED efficiency

ε(τ) = 1 − Ia(τ)/Ia = β exp(−kaτ) − α exp(−[kd + kt]τ) (4.9)

with the fraction of direct acceptor excitation given by ξ = η(β − α)/α. Our
experiments will aim at extracting kt+kd from ε(τ). For large transfer efficiencies
(kt  kd) this is a direct measurement of the FRET rate, in other cases kd has
to be determined independently.
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Figure 4.2: Schematic of the DNA-n constructs used (inset). The donor (TAMRA) was

always attached to the 5’ end the first oligomere while the acceptor (Cy5) was bound to

the nth base on the complementary oligomere. The absorption and emission spectra of

the donor (TAMRA) and acceptor (Cy5) are shown along with the detection windows

of the band-pass filters used to separate donor and acceptor fluorescence. Below the

wavelengths of excitation and STED beam are marked.

4.2 Materials and Methods

Because the goal of the experiments was to verify that STED can be used to
identify FRET inside samples imaged by a microscope, the setup was based on a
custom built stage scanning confocal fluorescence microscope. A Ti:Sapphire sys-
tem (Coherent, Santa Clara, CA, USA) delivered a train of laser pulses of 76MHz
at 760nm and some of the red light was converted into green 550nm light in an
optical parametric oscillator (APE, Berlin, Germany). The green (excitation)
pulses were 250fs long while the red (STED) pulses were stretched to 13-15ps by
down-chirping them in a holographic grating decompressor. Both beams passed
a liquid crystal laser power controller LPC (Cambridge Research & Instrumen-
tation, Woburn, MA, USA) which was used to adjust the excitation and STED
intensities and removed noise from the laser signal. The time lag between excita-
tion and STED pulses was controlled with sub-picosecond precision by moving a
retro reflector mounted on a linear stage (Owis, Staufen, Germany). The beams
were focused through pinholes in order to improve the quality of the wavefronts.
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Figure 4.3: STED-microscopical setup used for monitoring FRET. The dichroic mirror

(DC1 and DC2) combine the two beams and transmit fluorescence from the sample which

is split into its polarization components by a polarizing beam splitter cube (BS) and

focused on the opening of an APD’s fibre which acts as a pinhole (PH). The polarization

of the STED beam can be rotated using a λ/2 plate.

Two dichroic mirrors, one being transparent for excitation light and fluorescence
(700DCSX, Chroma, USA) and one transmitting only fluorescence (650DCWB,
Chroma, USA) were used to join their pathways and separate them from fluores-
cence. The beams were then focused into the sample using a NA=1.2 63x water
immersion lens (Leica, Wetzlar, Germany). Both beams could be independently
switched on and off by automatic shutters and the polarization of the STED beam
could be changed using a λ/2-plate. The beam diameter of the excitation light
was larger than the back-aperture (7.7mm) of the lens producing a diffraction
limited spot. The STED beam was narrowed to 3mm by an aperture enlarging
the focus almost 7-fold and ensuring a virtually uniform intensity throughout the
confocal detection volume. Typical laser powers in the sample were < 1µW of
green and 2-3mW of red light. Fluorescence polarized parallel and perpendicular
to the excitation beam was separated by a polarizing beam splitter and detected
separately by focusing it onto the opening of an Avalanche Photo Diode’s (APD,
EG&G Vandreuil, Quebec, Canada) input fibre with a tube lens. The fibre di-
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ameter (62.5µm) served as a pinhole for confocal detection and corresponded to
310nm in the sample which is less than the size of the Airy disk. Band pass filters
were used to select donor and acceptor fluorescence. (HQ680/60 for the accep-
tor, HQ610/75 for the donor, both Chroma, USA) Time-correlated single photon
counting (TCSPC) was accomplished simultaneously in both polarization chan-
nels on a personal computer using an SPC-535 ISA-card (Becker & Hickl GmbH,
Berlin, Germany) and a custom acquisition and analysis software ’Imspector’ for
multiparameter microscopy59 that allowed for online analysis and control, syn-
chronization and readout of most components including an xyz-stage for scanning
the sample, the LPCs, linear stage and shutters. The time dependent STED ef-
ficiency was measured by scanning the time offset between excitation and STED
pulse using the linear stage. The change to the path of the red light altered its
transmission through the pinhole by up to 15% and this effect was compensated
during the measurement by using the LPC to keep the focal intensity at a con-
stant level. Acceptor fluorescence was detected in both polarization directions
and the signal I = I‖ + 2I⊥ was calculated for each time offset.
Doubly labeled double stranded DNA was used as a model system because of its
known structure. The FRET pair had to be chosen such that acceptor fluores-
cence could be detected between the excitation and STED wavelengths and the
influence of the STED beam on the donor was minimized. The dyes TAMRA
(6-isomer, donor, Molecular Probes) and Cy5 (acceptor, Amersham) met these
criteria (see figure 4.2) and were chosen due to the large Förster radius (∼53Å)
for energy transfer between these dyes. In all experiments TAMRA was attached
to the 5’-end of the 29mer 5’-CTC TTC AGT TCA CAG TCC ATC CTA TCA
GC-3’ with a 5’-aminomodifier (C6). For the DNA-n (n=7;15;19) constructs
Cy5 was attached to a thymidine residue via a C6-linker and an aminomodi-
fier (Amino Modifier C6 dT, Glenresearch) at position n on the complementary
oligomer. The oligonucleotides were double HPLC purified. All synthesis was
done by IBA GmbH NAPS (Göttingen, Germany). The strands were hybridized
by mixing them 1:1 in a buffer containing 180mM NaCl, 12mM Na-citrate and
25µM MgCl2 (pH 7.5) and cooling them slowly from 95 to 20oC. Donor-only and
acceptor-only labeled molecules were made by hybridizing with the unlabeled
complement. For measurement a sodium phosphate buffer containing 180mM
NaCl, and 10mM NaH2PO4/Na2HPO4 (pH 7.5) was used, the concentration of
DNA molecules was adjusted to 9µM and microscope slides with a dent were used
to minimize the effects of adhesion on the walls.



4.3. Results and Discussion 68

4.3 Results and Discussion

In order to reduce the error due to low frequency laser noise the fluorescence
intensity with and without irradiation by the STED beam was recorded alter-
natingly for 160ms resulting in two values, I1 and I0. The average of 8 such
measurements was taken at each time offset and the time dependent STED ef-
ficiency ε = 1 − I1/I0 was calculated. For τ < 0 negative values of ε were
obtained. This means that a STED pulse arriving before the excitation pulse
actually enhanced fluorescence and was observed for both acceptor-only and dou-
bly labelled DNA. One possible reason is that the red light influences the process
of trans-cis isomerization of Cy5, reducing the population of the non-fluorescent
cis-state. The enhancement did not show any τ dependence between -550ps and
-20ps and was therefore assumed approximately constant over the 13ns between
pulses. Therefore I1/I0 was normalized to unity at τ < 0 before further anal-
ysis. For each DNA construct curves for acceptor-only molecules were recorded
in order to extract the decay rate ka. This value agreed well with the lifetimes
extracted from TCSPC for only the parallel detection channel, as expected. The
curves for doubly-labelled molecules were then fit with equation (4.9), keeping ka

fixed. Such measurements are shown in figure 4.4 together with the fits for all
three DNA constructs. For the DNA-7 construct an additional rate had to be
introduced in order to describe the data. In principle this would be evidence for
at least one sub-population with a different FRET rate, maybe due to a different
relative orientation of donor and acceptor but we will see below that an artefact
can not be ruled out. The donor lifetime was measured using TCSPC on donor-
only labelled samples. The decay curves could be fit by a double exponential
and the faster decay rate, which had a 5-6 times stronger amplitude was used
here. Values for all constructs are listed in table 4.1 and the FRET efficiencies
calculated from kt compare well with those found in single molecule experiments
for similar DNA constructs.57

However, the values obtained for the fraction of direct acceptor excitation, ξ are
much higher than expected from the spectra and measurements with acceptor-
only labelled DNA and the origin of fluorescence enhancement at τ < 0 is not
yet identified. In addition the second rate for DNA-7 and the rates obtained for
DNA-14 and DNA-19 are not too fast to be influenced by the decay of rotational
anisotropy making a reliable interpretation difficult.
In order to remove these uncertainties the STED intensity would have to be cho-
sen far from saturation and additional measurements with the polarization of
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Figure 4.4: The dependence of the STED-efficiency ε for acceptor-only and doubly

labeled (a) DNA-7, (b) DNA-14 and (c) DNA-19 construct on the time delay between

excitation and STED pulse. Effectively ε monitors the excited state of the acceptor and

thus its ’filling’ after excitation of the donor due to energy transfer. The offset is due to

direct excitation of the acceptor. The colored curves are the result of fits with equation

(4.9). For DNA-7 a fit with two transfer rates,which describes the data much better, is

also shown and the residuals are compared in the inset.
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ka [1/ns] kd [1/ns] kt [1/ns] ξ E Eden

DNA-7 0.87 1.22 23 0.95 93 95
2.8 63

DNA-14 0.84 1.21 2.5 0.76 68 72
DNA-19 0.89 1.26 1.3 0.78 51 42

Table 4.1: Acceptor decay rate, ka and rate of energy transfer, kt, extracted from

the time dependent STED efficiency using equation (4.9). The rate of donor decay

through channels other than FRET, kd was obtained from TCSPC measurements. ξ is

the fraction of direct acceptor excitation. The FRET efficiency E calculated from kt and

kd is compared to the values obtained by Deniz et al. for the same distance between the

dyes.

the red beam rotated by 90o are needed. Indeed, rotating the polarization of
the STED beam using the λ/2 plate resulted in significantly lower STED effi-
ciencies and different time constants. But in such measurements the rotational
symmetry around the polarization direction of the exciting beam is broken and
either fluorescence has to be detected in all three polarization directions or fur-
ther assumptions about the FRET pairs have to be made. However, this is a
purely spectroscopical task and for an application at low signal in a complex en-
vironment, possibly inside a biological specimen this is inadequate. Nevertheless
figure 4.4 and the data from 4.1 show that the method can identify energy trans-
fer and for simpler systems quantitative analysis might be possible also inside a
microscope.



Chapter 5

Summary and Outlook

In this work the prospect of applying techniques which were originally established
in point spread function engineering to spectroscopical imaging was explored. The
first part was dedicated to the description of the focal intensity pattern in the
Fourier domain, taking into account the vectorial nature of light and arbitrary
manipulations of the wavefront before it enters the lens. A simple integral solu-
tion for the excitation OTF of both a single lens and a 4Pi setup was presented,
suitable for fast and precise numerical calculations. It was used to calculate an
upper bound of 3K for focal heating under typical conditions in a two photon
microscopes. Because the formalism allows for arbitrary modifications of the
wavefront, can be applied for the analysis of aberrations and the design of new
pupil filters.
The combination of 4Pi microscopy with fluorescence correlation spectroscopy
was examined next. Theoretical analysis took place in the Fourier domain us-
ing the OTF. In order to exploit its full potential, the approach was extended
to arbitrary periodic patterns modulating the enveloping PSF. The fluid model
was changed to account for anisotropic diffusion and directed particle drift. It
was shown, how the comparison of correlation measurements with and without
modulation of the PSF can separate information about particle movement from
fluctuations due to internal dynamics of the fluorescent entities. Approximating
the envelope of the PSF by a Gaussian, an analytical solution for the predicted
correlation curves was found. An experimental method based on a multifocal 4Pi
setup, which forms patterns of various orientations in its focus was then proposed
and theoretically investigated. Simulated measurements, using PSFs calculated
from diffraction theory showed that the flow vector can be determined from three
correlation curves with different pattern orientations and that not more than 6
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correlation measurements are needed to fully assess anisotropic diffusion.
Finally STED microscopy was used to monitor Förster energy transfer between
two molecules. An appropriate experiment was set up and TAMRA and Cy5
attached to double-stranded DNA served as a test system. Indirect excitation
of the acceptor through energy transfer from the donor was clearly visible when
monitoring the acceptor’s excited state using stimulated emission. Even though
quantitative analysis was difficult, this finding is significant because a new method
for identifying FRET in a microscopical environment has been established. By
detecting fluorescence in all three polarization directions in a dedicated setup
and careful spectroscopical analysis the uncertainties remaining in the data in-
terpretation could be avoided. The original setup could then be calibrated for
a specific FRET pair allowing for the quantification of energy transfer based on
the comparison of FRET efficiencies for a few time offsets between excitation and
STED pulse. This technique can be readily applied in every STED microscope
originally designed for resolution improvement.
The experimental realization of 4Pi microscopy with fluorescence correlation spec-
troscopy is already under way. Anisotropic diffusion is present in biological sys-
tems whenever sub-structures designate a direction. As an example it has been
found in cell dendrites, where microtubules hamper diffusion perpendicular to
their orientation.34 In these systems patterned correlation spectroscopy will de-
liver information about the orientation of the sub-structure not assessable by
established methods.



Appendix A

Complex Fluids

A.1 General Theory

We assume that the fluid is formed by particles, be it molecules or larger struc-
tures like fluorescent beads or macromolecules. Different types of particles or
particles in different states exist in the fluid. Let there be an average of 〈Nj〉
particles of type j with their trajectories given by r

(j)
m (t). The particle numbers

may vary during time due to chemical or photophysical reaction. We will later
consider the limit of an infinite volume while keeping the average concentrations,
〈Cj〉 = 〈Nj〉 /V , constant. The time dependent, local particle density of type j

is given by
Cj (r, t) =

∑
m

δ
(
r − r(j)

m (t)
)

(A.1)

Please note that this and all subsequent sums are over all particles that exist of
the type at the given time. The statistical information about the dynamical prop-
erties of the fluid’s structure is contained in the density-density time correlation
function given by

Hjk

(
r, r′, τ

)
=

〈
Cj

(
r′ + r, t + τ

)
Ck

(
r′, t

)〉/
〈Ck〉 (A.2a)

=
〈∑

m,n

δ
(
r′ + r − r(j)

m (t + τ)
)
δ
(
r′ − r(k)

n (t)
)〉/

〈Ck〉 (A.2b)

which is the averaged probability density of finding a particle of type j at a place
r′ + r after a time-span τ given that a particle of type k was initially at position
r′. If we remove the dependence on the origin r′ by averaging over all space, we
obtain a generalization of the time- and space-dependent distribution function
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introduced by van Hove. By simple substitution we can carry out the integral

Hjk (r, τ) =
∫

d3r′
〈
Cj

(
r′ + r, t + τ

)
Ck

(
r′, t

)〉 /
〈Ck〉V (A.3a)

=
∫

d3r′
〈∑

m,n

δ
(
r′

)
δ
(
r′ + r − r(j)

m (t + τ) + r(k)
n (t)

)〉/
〈Nk〉 (A.3b)

=
〈∑

m,n

δ
(
r − r(j)

m (t + τ) + r(k)
n (t)

)〉/
〈Nk〉 (A.3c)

The last identity (A.3c) holds only in the classical case where all position oper-
ators commute. It is often advantageous to consider the frequency components
of the above systems. In order to avoid divergence for the limit of translation-
invariant and thus infinite systems we consider the normalized Fourier transforms
of the above quantities. The spectrum of the particle density is given by

Ĉj (k, t) =
∫

d3r exp (ikr)Cj (r, t)
/

V (A.4a)

The Fourier transform of the density-density time correlation function is

Ĥjk

(
k, r′, τ

)
=

∫
d3r exp (ikr)Hjk

(
r, r′, τ

) /
V (A.4b)

= exp
(−ir′k

) 〈
Ĉj (k, t)Ck

(
r′, t

)〉/
〈Ck〉 (A.4c)

For V → ∞ the volume average with respect to r′ of equation (A.4c) becomes a
Fourier transform and we can write

Ĥjk (k, τ) =
〈
Ĉj (k, t + τ) Ĉ∗

k (k, t)
〉/

〈Ck〉 (A.5)

This function is called the intermediate scattering function. The static structure
factor of the liquid is simply given by

Sjk (k) = Ĥjk (k, 0) (A.6)

If a liquid is at equilibrium its dynamical properties manifest themselves in con-
centration fluctuations. In FCS theory one therefore usually considers the cor-
relation functions of the fluctuations rather than the quantities defined above.
However, both differ only by a constant and a scaling factor. For a system with
translational invariance we have

φjk (r, τ) = 〈δCj (r, t + τ) δCk (0, t)〉 (A.7)

And using 〈δC〉 = 0 this can be expressed in terms of the van Hove function

φjk (r, τ) = 〈Ck〉Hjk (r, τ) − 〈Ck〉 〈Cj〉 (A.8)
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It is interesting to note that φjk/ 〈Ck〉 and 〈C〉 can be considered the ’self’ and
the ’distinct’-part of the van Hove function, the latter just being the probability
per volume element to find an unrelated particle of type j. The ’self’ part is the
contribution due to possible movement of the particle originally at the origin to
position r and, if j �= k, its conversion during the time span τ .

A.2 Fluorescence Imaging Correlation Spectroscopy

The signal in both, FCS and FICS has the form of equation (3.9) but the two
techniques use a different approach to extract information about φ̂ and hence the
fluid. In FCS the correlation function G is predicted by modelling the dynamic
behaviors of the fluid theoretically. During experiments the model is tested for
validity and its parameters are determined. FICS is the attempt to measure φ̂

directly in cases were a model for the dynamic structure under consideration is
not available. This can be accomplished by choosing the PSFs in such a way that
G is dominated by the form of φ̂ at a single, adjustable frequency. It is clear
from equation (3.9) that this implies sharp maxima of the OTF and therefore
large focal areas. In principle FICS uses the fact that a large focal spot with a
superimposed harmonic modulation probes the strength of a single Fourier com-
ponent of an image. It is therefore restricted to samples which can be considered
homogeneous over the portion illuminated by the pattern. While FICS has so
far only been applied under the assumption of isotropic samples this limitation
could be overcome by rotating the pattern.

The technique relies on a similar detection scheme as the frequency filtering
method described in section 3.5. We assume the pattern to be strictly harmonic
and therefore we only keep the first order of the effective PSF (3.52) and sub-
stitute it into equation (3.9). Assuming a single type of point-like, fluorescent
particles and neglecting all constant factors, including the normalization with the
average signal we obtain

G(τ) =
∫

d3kφ̂jk(k, τ)
∑

l,m=±1

exp(ilφ1 + imφ2)

× ĥe(k − lκ, t)ĥe(k + mκ, t + τ) (A.9)

Using the Gauss approximation (3.21) for the envelope and defining

a± = [k ± κ]tA[k ± κ] (A.10)
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this becomes

G(τ) = π3 det(A)
∫

d3kφ̂(k, τ)
[
exp(−a−/4) exp(i∆φ)

+ exp(−a+/4) exp(−i∆φ)

+ exp(−[a− + a+]/8) cos(iφ1 + iφ2)
]
/8 (A.11)

Effectively this is a convolution of φ̂ with a three dimensional Gauss peak eval-
uated at ±κ plus a contribution from the last line that becomes small for sharp
peaks. In the limit of very large envelopes we can use the identity (B.5) and
obtain, again neglecting all constants

G(τ) = exp(i∆φ)φ̂(κ, τ) + exp(−i∆φ)φ̂(−κ, τ) (A.12)

Because the van Hove function is real we have

φ̂(−k, τ) = φ̂(k, τ)∗ (A.13)

and thus
G(τ) = 2�

[
exp(i∆φ)φ̂(κ, τ)

]
(A.14)

By recording two correlation curves Ga and Gx with ∆φ = 0 and ∆φ = π/2 for
each vector κ real and imaginary part of φ̂ can be imaged separately:

Ga(τ) = 2�
[
φ̂(κ, τ)

]
(A.15a)

Gx(τ) = 2�
[
φ̂(κ, τ)

]
(A.15b)

We note that φ̂ contains both, information about movement and location of the
particles in the fluid and their intrinsic dynamics, including reaction among them.
In cases where these processes appear as a factor in φ̂ a comparison of patterned
and unpatterned correlation curves can separate them from spatial information.
In fact equation (3.54) reveals that in the limit of an infinite envelope and ne-
glecting higher harmonics the directional correlation function is

γ ∝ exp
(
−4τκtDκ

)
cos

(
2κtv + ∆φ

)
= �

[
α̂(2k, τ) exp(i∆φ)

]
(A.16)

and thus, instead of φ̂ only the portion corresponding to particle movement is
determined.
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Mathematical Appendix

B.1 Integration Formulae

For the integration and Fourier transformation of the three-dimensional Gaussians
in the analytical approximation for FCS the following generalization of the one-
dimensional Gauss integral is needed. When applying the identity it should be
kept in mind that the determinant is multi-linear in the lines and rows of a
matrix and therefore in n-dimensional space we have det(xA) = xn det(A) for
any quadratic matrix A.

Lemma 1 If b is an arbitrary complex vector and A is a real and symmetric
matrix with positive eigenvalues ν2

i then

I =
∫

d3s exp
(
−stAs + bts

)
=

√
π3/ det(A) exp

(
btA−1b/4

)
(B.1)

Proof: We start from the corresponding one-dimensional integral. For any b ∈ C

and real a > 0 the identity∫
ds exp

(
−as2 + bs

)
=

√
π/a exp

(
b2/4a

)
(B.2)

can be readily verified using Cauchy’s integral theorem and completing the square
in the exponential’s argument. However, because A is positive definite we can
find an orthogonal matrix O with A = OtDO and the diagonal matrix given by
Dij = δijν

2
i . Rotating the coordinate system about O we obtain

I =
∫

d3s exp
(
−stDs + btOts

)
=

∏
i

∫
ds exp

(
−ν2

i s2 + [Ob]is
)

(B.3)
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and applying equation (B.2) for each factor we obtain

I =
√

π3/(ν1ν2ν3) exp
(∑

i

[Ob]2i /4ν2
i

)

=
√

π3/(ν1ν2ν3) exp
(
btOtD−1Ob/4

)
(B.4)

This proofs the above identity keeping in mind the definition of A and because
det(O) = 1.

When making the transition from patterned FCS to FICS the Gauss peaks of the
transfer function become sharper and effectively select a single spatial frequency of
the van Hove function. Mathematically this process is described by the following

Lemma 2 Let b be an arbitrary complex vector and A be positive definite as
above. If the function f(s) is analytical the following identity holds:

lim
νi→∞det(A)

∫
d3s exp

(
−[s − b]tA[s − b]

)
f(s) =

√
π3 f(b) (B.5)

Proof: We start with the corresponding one-dimensional integral and a Gaussian
located at the origin

a

∫
dsf(s) exp

(
−a2s2

)
= a

∞∑
n=0

f (n)(0)
∫

dssn exp(−a2s2)/n! (B.6)

Due to symmetry only the contributions with even n are nonzero and using
substitution and partial integration we find∫

ds s2nexp(−a2s2) = Γ(n + 1/2)/a2n+1 (B.7)

Thus equation (B.6) becomes

a

∫
dsf(s) exp

(
−a2s2

)
= a

∞∑
n=0

Γ(n + 1/2)f (n) (0) /(n! an+1) (B.8)

and finally in the limit a → ∞ using Γ(1/2) =
√

π

lim
a→∞ a

∫
ds exp

(
−a2s2

)
f (s) =

√
π f(0) (B.9)

In the multi-dimensional case we rotate and shift the coordinate system such
that A is diagonal and b is zero. The one-dimensional argument can then be
applied along each cartesian axis independently because f is analytical, proving
the lemma.
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Appendix C

More Transfer Functions

C.1 Extension of the Formalism

A confocal microscope in reflection mode can be characterized by its coherent
transfer function (CTF). The theoretical description of such a microscope is not
part of this discussion but the modifications to the previously developed formal-
ism, which are needed in order to apply it to the CTF’s calculation, shall be
briefly addressed. The CTF contains products of two vector components f and g

of the form fg60, thus lacking the conjugation of the first factor. The correlation
in equation (2.6) is therefore substituted by a convolution:

F[
fg

]
(k) = (2π)3

∫
d3k′Af

(
k′) δ

(
k′ − 1

)
Ag

(
k − k′) δ

(∣∣k − k′∣∣ − 1
)

(C.1)

changing the geometry of our problem. If we redefine the vectors k1 = k′ and
k2 = k − k′ and use the same coordinate transformation as above we obtain

F[
fg

]
(k) = (2π)3

∫
dϕ′′Af (k1) Ag (k2) /k

∣∣∣∣
cos ϑ′′=k/2,k′′=1

(C.2)

Using equation (2.7), we find the Cartesian components of the new vectors k1

and k2 to be

m1/2 = (b ± a) cos ϕ ∓ d sinϕ (C.3a)

n1/2 = (b ± a) sinϕ ± d cos ϕ (C.3b)

s1/2 = ∓r0 sin ϑ cos ϕ′′ + (k cos ϑ) /2 (C.3c)

The integration range is now defined by −s1/2 ≥ cos α, resulting in

β2 ≤ ∣∣φ′′∣∣ ≤ π − β2

β2 = arccos [(−k cos ϑ − 2 cos α) / (2r0 sinϑ)] (C.4)
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If the argument of the inverse cosine is larger than 1 or smaller than zero, we
have β2 = 0 and β2 = π/2 respectively. Depending on the desired observables
one can now go on to substitute equations (C.3) and (2.12) into (C.2) and extract
the angular dependence in analogy to (2.14).
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