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Abstract
The aim of this thesis is to prove existence and uniqueness of weak solutions for some types

of quasilinear and nonlinear pseudoparabolic equations and for some types of quasilinear

and nonlinear variational inequalities. The pseudoparabolic equations are characterized by

the presence of mixed third order derivatives. Here the existence theory for degenerate par-

abolic equations is extended to the pseudoprabolic case, and degenerate pseudoparabolic

equations with nonlinear integral operator are treated. Furthermore, quasilinear equations,

posed on time intervals of the form (−∞, T], are considered. Some nonlinear pseudopara-

bolic equations are obtained as reduced form of systems of equations. To show existence,

the Galerkin and Rothe methods are used. The system of the degenerate equations, where

the term ∂tu is replace by ∂tb(u), is solved using the monotonicity and gradient assumptions

on the nonlinear function b. The discretization along characteristics is applied to equations

with convection. The existence of solutions of variational inequalities is proved by a penalty

method; here an inequality is replaced by an equation with an added penalty operator. The

uniqueness follows from the monotonicity of the differential operators. In the case of non-

linear pseudoparabolic equations, the uniqueness can be shown for regular solutions only.

The needed regularity is shown for two dimensional domains.

Zusammenfassung

Thema dieser Arbeit sind sowohl quasilineare und nichtlineare pseudoparabolische Glei

chungen als auch solche Variationsungleichungen. Pseudoparabolische Gleichungen sind

durch Auftreten von gemischten Ableitungen von dritter Ordnung charakterisiert. Für ei-

nige Typen solcher Gleichungen bzw. Ungleichungen wird in dieser Arbeit die Lösbarkeit

gezeigt. In fast allen Fällen kann auch die Eindeutigkeit bewiesen werden. Die Existen-

ztheorie für entartete parabolische Gleichungen wird auf den Fall pseudoparabolischer

Gleichungen erweitert. Entartete Gleichungen mit nichtlinearen Integraloperatoren wer-

den ebenfalls behandelt. Außerdem werden quasilineare Gleichungen für Zeitintervalle

der Form (−∞, T] betrachtet. Einige nichtlineare pseudoparabolische Gleichungen erhält

man durch Reduktion von Systemen. Für den Beweis der Existenz werden die Rothe- und

Galerkin-Methoden benutzt. Die Existenz von Lösungen des Systems entarteter Gleichun-

gen ist unter Annahme der Monotonie und der Rotationsfreiheit der nichtlineare Funktion

gezeigt; genauer, die nichtlineare Funktion ist ein Gradient. Die Gleichungen mit Konvek-

tion werden hier entlang der Charakteristiken diskretisiert. Die Existenz von Lösungen für

Variationsungleichungen ist mit Hilfe der Strafterm-Methode gezeigt. Die Eindeutigkeit

der Lösung folgt aus der Monotonie der Operatoren. Die Eindeutigkeit der Lösung der

nichtlinearen Gleichungen ist nur für reguläre Lösungen bewiesen, wobei schwache Lösun-

gen in zwei Dimension schon diese Regularität besitzen.
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Introduction

The pseudoparabolic equations are characterized by the occurrence of mixed third order

derivatives, more precisely, second order in space and first order in time, for example

ut − ∆ut − ∆u = f (u).

Such equations are used to model fluid flow in fissured porous media (Barenblatt, En-

tov, and Ryzhik 1990), two phase flow in porous media with dynamical capillary pres-

sure (Cuesta, van Duijn, and Hulshof 1999), heat conduction in two-temperature systems

(Gurtin 1968a), and flow of some non-Newtonian fluids (Ting 1963). Pseudoparabolic equa-

tions can be used also as regularization of ill-posed transport problems (Barenblatt, Bertsch,

Passo, and Ughii 1993; Novick-Cohen and Pego 1991).

The aim of this thesis is to show existence and uniqueness of weak solutions for some types

of quasilinear and fully nonlinear pseudoparabolic equations and variational inequalities.

To prove the existence of solutions for pseudoparabolic equations Galerkin’s and Rothe’s

methods are used. Using Galerkin’s method, we approximate an infinite dimensional Ba-

nach space by a sequence of finite dimensional spaces and obtain an ordinary differential

equation. From the theory of ordinary differential equations, i.e. the theorems of Peano and

Carathéodory, we get the existence of continuously differentiable or uniformly continuous

solutions. A priori estimates and compactness arguments give us the convergence of ap-

proximate solutions to a solution of the original problem.

Rothe’s method is especially useful if it is applied to equations which are quasilinear in the

time derivative. Kacur describes this method and its implementation in his book. By dis-

cretization in time, the evolution equation is reduced to a family of stationary equations.

These elliptic equations can be solved directly by applying the theory of monotone op-

erators. Alternatively, by Galerkin’s method, we obtain nonlinear functional equations in

finite dimensional spaces. In both cases, the convergence of the nonlinear monotone terms

is shown by applying the Minty-Browder method. For some equations even strong conver-

gence of approximate solutions is obtained.

Pseudoparabolic variational inequalities appear in obstacle problems (Scarpini 1987), and

free boundary problems (DiBenedetto and Showalter 1982).

To prove existence of solutions of inequalities a penalty method is used, i.e. an inequality is

replaced by an equation with an added penalty operator. The penalty operator is basically

defined to be the difference of the identity and a projection on a closed and convex set,

such that the unpenalized elements are exactly the elements of the convex set. Increasing
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the coefficient of the penalty operator yields a sequence of approximate solutions to the

inequality. It will be shown that this sequence converges to a solution of the inequality.

The uniqueness follows by the strong monotonicity of the involved operators. In the case of

degenerate equations, uniqueness can only be shown for a linear or Lipschitz continuous

elliptic part. In the case of fully nonlinear equations, uniqueness can be shown for regular

solutions, though the needed regularity can only be proved in two dimensions.

Various properties of solutions of pseudoparabolic equations are known.

Ralph Showalter uses the theory of semigroups to show existence, (Showalter 1969; 1970;

1972; 1975a; Brill 1977), and regularity, (Showalter 1975b; 1975c), of solutions.

Sequences of solutions of appropriately chosen pseudoparabolic equations can be used to

approximate a solution of a parabolic equation, see (Showalter and Ting 1970) and (Ting

1969).

The question of regularity of solutions of linear and quasilinear pseudoparabolic equations

is considered in (Showalter 1983) and in (Boehm and Showalter 1985a; 1985b; Boehm 1987a;

1987b). Here it is shown that regularity or singularity of the initial data is preserved. The

Yosida approximation of a solution of a parabolic equation is actually the solution of a pseu-

doparabolic equation. For such equations it is shown that local singularities are stationary.

More precisely, in (Boehm and Showalter 1985b) the existence of a solution is shown for

initial conditions in Ws,p
0 (Ω) and exterior forces in C(0, T; Ws,p

0 (Ω)). This solution is found

in C1(0, T; Ws,p
0 (Ω)). For forces r- integrable in time it lies in W1,r(0, T; Ws,p

0 (Ω)), provided

r ∈ [1, ∞], p > 1, and s is sufficiently small. For initial conditions and forces of bounded

variation in space it is in W1,r(0, T; BV(Ω)). In two dimensions the spatial regularity can

be improved. The solution can be found in W1,r(0, T; W2,p) for r ∈ [1, ∞] and p > 2. In

(Boehm 1987a; 1987b) the existence and Hölder-continuity of a solution of the nonlinear

pseudoparabolic equation is shown. The solution is an element of C0,δ(0, T; C1,λ(Ω̄)) and of

C0,δ(0, T; W1,p(Ω)) for all p > N.

In special cases, the differential operator acting upon the time derivative of the solution is

invertible and dominates the elliptic operator. Therefore, the pseudoparabolic equation is

equivalent to a Banach-space valued ordinary differential equation. In this manner, Gajew-

ski and Zacharias prove strong convergence of a Galerkin approximation in (Gajewski and

Zacharias 1970; 1971; 1973).

To discretize a partial differential equation, Crank-Nicolson approximation in time com-

bined with finite element or finite difference scheme can be used, see for example (Ew-

ing 1975a; 1975b; 1978; Ford and Ting 1974; Ford 1976; Wahlbin 1975), and (Gilbert and

Lundin 1983). The approximation scheme for pseudoparabolic equations obtained in such

a way, has the same order of convergence as for parabolic equations, k2 + h2. A predictor-

corrector-Galerkin approximation is considered in (Ford 1976). The Euler-Galerkin method
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for quasilinear pseudoparabolic equation in (0, T)×R with a periodic boundary condition

is presented in (Arnold, Douglas, Jr.Thomée, and Thomée 1981).

There is no classical maximum principle for pseudoparabolic equations. For the nonnega-

tivity of a solution not only nonnegative initial data, but also an extra condition on the

elliptic operator is needed, see (Rundell and Stecher 1979; DiBenedetto and Pierre 1981;

Showalter 1983), and (Boehm and Showalter 1985a).

Degenerate pseudoparabolic equations of the form d
dt A(u) + B(u) 3 f , where A and B

are maximal monotone operators from a Hilbert space V to its dual V∗, are considered

in (DiBenedetto and Showalter 1981). Existence of a solution is proved by Yosida’s ap-

proximation, if one of the operator is strongly monotone and the other is a subgradient,

A : V → V∗ is compact, one of the operators is coercive, B : V → V∗ is bounded, and

A : V → W∗ is bounded, where W is a reflexive Banach space such that V is densely and

compactly embedded in W. Nonlinear pseudoparabolic variational inequalities of the form(
d
dt A(u(t)) + B(u(t))− f , v− u(t)

)
> 0 were studied in (DiBenedetto and Showalter 1982).

To prove existence of a solution the penalty method, described above, is used. The existence

is shown if A : V → V is compact perturbation of the identity and B : V → V is bounded.

The uniqueness of the solution is known if the operator A is linear and self-adjoint and the

operator B is strictly monotone.

In (Scarpini 1987) existence of a solution of a degenerate linear pseudoparabolic variational

inequality is proved by a regularization method combined with Galerkin’s method. The

iteration to solve the inequality numerically is introduced. For pseudoparabolic problems

with an internal obstacle a convergence rate is obtained, however this rate is slower than

that already proved for parabolic inequalities. Regularization and Galerkin methods are

also used to solve degenerate quasilinear variational inequalities, where the term ∂tu(t, x)

is replace by b(t, x)∂tu(t, x), see (Kenneth and Kuttler 1984).

Some remarks about nonlinear pseudoparabolic equations can be found in the book of

Visintin (1996).

In the last years the existence of traveling waves for pseudoparabolic equations was con-

sidered, see (Cuesta and Hulshof 2001; van Duijn and Hulshof 2001; Cuesta, van Duijn, and

Hulshof 1999), and (Hulshof and King 1998).

The main contribution of this thesis is the generalization of existence and uniqueness re-

sults, known for pseudoparabolic equations, to systems of more general degenerate pseu-

doparabolic equations, which may contain a nonlinear integral operator, to doubly nonlin-

ear equations, and to fully nonlinear equations. Furthermore, more general forms of de-

generate variational inequalities are studied. Without assumptions on the behavior of the

solution at −∞ the existence and uniqueness of solutions of quasilinear pseudoparabolic

equations and variational inequalities in unbounded time intervals of the form (−∞, T]

were not considered before.
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This work consists of four chapters.

In Chapter 1 physical applications are presented. A model for fluid flow in fissured porous

media, (Barenblatt, Entov, and Ryzhik 1990), and a model for two phase flow in porous

media with a non-static relationship between pressure difference and saturation of wetting

phase are considered. Reasons for this non-static capillary condition can be found in (Baren-

blatt, Garcia-Azorero, De Pablo, and Vazquez 1997; Hassanizadeh and Gray 1993; Beliaev

and Hassanizadeh 1993).

The next three chapters deal with existence and uniqueness of solutions of nonlinear pseu-

doparabolic equations and variational inequalities.

In Chapter 2 Rothe’s method is used. In Section 2.1 a system of degenerate pseudopara-

bolic equations, where the term ∂tu is replace by ∂tb(u), is considered. We consider fluid

flow in a material with memory. Here the memory effect is described by a nonlinear inte-

gral operator. Its kernel may be weakly singular, i.e. it is dominated by a term of order t−γ

for some 0 < γ < 1/p, where p > 2. The existence of a solution is obtained by applying

Rothe-Galerkin’s method (Theorem 2.1.3). The crucial assumptions to guarantee existence

and uniqueness are monotonicity and potentiality (Alt and Luckhaus 1983) of the nonlinear

function b, that means, the nonlinear function is a gradient of a convex, continuously differ-

entiable function. Due to these assumptions, the integration by parts formula is valid, see

Lemma A.1.3. The discretization of integral operators is used similarly to (Kacur 1999), i.e.

we define an approximation as a function, piecewise constant on a partition of the time in-

terval. Using the strong monotonicity of the elliptic part, we prove the strong convergence

of the approximate solutions. For uniqueness we need to assume linearity, Theorem 2.1.9,

or Lipschitz-continuity, Theorem 2.1.8, of the function defining the diffusion operator.

In Section 2.2 a variational inequality is considered. The existence of solutions of quasilinear

variational inequalities is proved under stronger assumptions, namely the nonlinear func-

tion defining the elliptic part is assumed to be a gradient and the nonlinear function b is

Lipschitz continuous, Theorem 2.2.4.

In Section 2.3, the existence of a solution of a doubly nonlinear pseudoparabolic equation

by the Rothe-Galerkin method is shown, Theorem 2.3.3. The doubly nonlinear parabolic

equations are considered in (Jäger and Kacur 1995; Kacur 1998). Here the integration by

parts formula from (Jäger and Kacur 1995) for parabolic equations is generalized to the

case of pseudoparabolic equations. The uniqueness is shown for the Lipschitz-continuous

function defining the diffusion operator, Theorem 2.3.7.

The method of characteristics for parabolic equations with convection is used in (Douglas

and Russell 1982; Kacur 2001; Kacur and Keer 2001). This method can also be applied in the

case of pseudoparabolic equations with convection. This is done in Section 2.4. In this case

an approximate solution is obtained as a solution to a discretized differential equation along

the approximated characteristics. The convergence of the family of approximate solutions
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to a solution of the pseudoparabolic equation is shown in Theorem 2.4.3. The uniqueness is

proved for the linear elliptic parts and for the space dimension N ≤ 4, Theorem 2.4.7.

In Chapter 3 existence and uniqueness of solutions of quasilinear equations and inequalities

without initial conditions in C((−∞, T]; H1(Ω)) ∩ Lp
loc((−∞, T]; H1,p(Ω)) is proved. Similar

to the case of parabolic equations, see (Bokalo 1989), we get the uniqueness independent

of an additional assumption on the behavior of the solution at −∞, Theorem 3.1.4. For

the proof we use the Pankov Lemma, Lemma A.2.2. We obtain the existence of a weak

solution in the sense of Definition 3.1.2 using Galerkin’s method. At first, we solve the

problem in a bounded time interval with zero initial condition, Theorem 3.1.9. Assuming

strong monotonicity of the nonlinear elliptic part provides us with strong convergence of a

sequence of approximate solutions. The sequence of approximate solutions is constructed

as solutions of the problem with vanishing initial conditions on a sequence of monotonically

increasing family of time-intervals, exhausting (−∞, T). We use cut-off functions to show

the strong convergence of this sequence to a solution of the original problem, Theorem 3.1.6.

These results are already published in (Lavrenyuk and Ptashnik 2000).

The corresponding variational inequality is considered in Section 3.2. Under additional re-

strictions on the nonlinear functions and on the right hand side, we show existence of so-

lutions of the pseudoparabolic variational inequality posed in unbounded time intervals,

see Theorem 3.2.2. The uniqueness of solution of the variational inequality is proved in

Theorem 3.2.5.

For p = 2, existence and uniqueness of a solution in the class of functions of at most expo-

nential growth is proved in (Lavrenyuk and Ptashnik 1998; Ptashnyk 2002).

In Chapter 4 fully nonlinear pseudoparabolic equations and variational inequalities are

considered. It is proved that the solution of a nonlinear pseudoparabolic equation is the

quasistationary state of a system with cross diffusion, modeling the reaction and the dif-

fusion of two biological, chemical, or physical substances if one of them does not diffuse.

Since one of the equations is an ordinary differential equation, for a special kinetic function

the system is reduced to the pseudohyperbolic equation. At first, the existence of a solu-

tion of a quasilinear pseudohyperbolic equation is shown using Galerkin’s approximation

in Theorem 4.1.5. For a priori estimates and convergence the monotonicity and the growth

assumptions on nonlinear functions are used. For the strong convergence the strong mono-

tonicity of the nonlinear functions is needed. Secondly, the convergence of the sequence

of solutions to a solution of the pseudoparabolic equation is shown in Theorem 4.1.7. The

uniqueness follows from the strong monotonicity and can only be shown for sufficiently

regular solutions, Theorem 4.1.11. The needed regularity is proved in two dimensions, The-

orems 4.1.8, 4.1.9. The existence of a solution of the pseudoparabolic variational inequality

is proved in Theorem 4.2.2. The uniqueness of the solution of the inequality can be shown

only by additional regularity assumption on the solution, Theorem 4.2.3.



6 Introduction

In the Appendix, some theorems and lemmata, which are used in the thesis, are collected

for convenience.

For additional reference on heat conduction problems in materials with memory and para-

bolic integro-differential equations see (Crandall, Londen, and Nohel 1978; Dafermos and

Nohel 1979; Heard 1982; Engler 1984), and (Engler 1996).

For additional reference on quasilinear and doubly nonlinear parabolic equations see

(Raviart 1970; Grance and Mignot 1972; Bamberger 1977; Kröner and Rodrigues 1985), and

(Blanchard and Francfort 1988).
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1

Models Leading to Pseudoparabolic Equations

In this chapter two models for physical processes leading to pseudoparabolic equation are

presented.

1.1 Fluid Flow in Fissured Porous Media

The first model describes the flow of fluids in a fissured porous medium (Barenblatt, Entov,

and Ryzhik 1990). Fissured porous media consist of porous permeable blocks separated

by a system of fissures. Here, both components, porous blocks and fissures, have nonzero

porosity and permeability. An example of such media is limestone.

We assume that the blocks are large in comparison with

Figure 1.1.1.
Fissured porous medium

the size of the pores, but small in comparison with the size

of the whole reservoir, the volume of the fissures is very

small in comparison with the total volume of the solid ma-

trix or the volume of porous blocks, and the permeability of

porous blocks is very low. It is characteristic for a fissured

porous medium that the fluid flows through the fissures,

even though their total volume is small. Because flow in the

fissures is much more rapid than inside the porous blocks,

the fluid does not flow directly from one block to another.

Rather, it first flows into the fissure system, and then it can

pass into a block or remain in the fissures.

For the fissured porous media we have three different scales: the size of pores, as a mi-

croscopic scale, the size of fissures, as a mesoscopic scale, and the size of the medium, as

a macroscopic scale. The macroscopic model for the double-porosity problem can also be

obtained by applying the homogenization theory (Hornung 1996).

The essential point in the construction of the macroscopic fissured-porous-medium model

in (Barenblatt, Entov, and Ryzhik 1990) is to introduce at each point in space two fluid

pressures, the pressure in the fissures p1 and the pressure in the porous blocks p2. Both

pressures are actually mean pressure values, averaged over scales, large in comparison with

the scales of blocks, but small in comparison with the size of the flow region. Hence, the

seepage flux for the blocks is very small, the equations for the mass conservation law in the
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fissures and in the blocks are

∂t(S1ρ) +∇ · (ρv)− q = 0, ∂t(S2ρ) + q = 0,

where S1 is the saturation in the fissure, S2 is the saturation in the blocks, v is the velocity

in the fissures, q is the in-flow rate of fissures, the amount of fluid that flows per unit time

and per unit volume of the medium from the porous blocks to the fissures, and ρ is the fluid

density.

Since the saturation in the fissures is very small, the first term in the first equation is very

small in comparison to the second, and we obtain

∇ · (ρv)− q = 0.

In order to obtain a closed system of equations, we need the relations for the flow rate q and

for the increment of the saturation S2. The flow rate q can be governed by the pressures p1

and p2, the size l, the permeability k2 of the blocks, and the fluid viscosity µ and density ρ.

Furthermore, since q should vanish when p1 = p2, we obtain

q = α
ρk2

µ l2 (p2 − p1),

where α is a dimensionless constant, characterizing the geometry. We can assume that the

increment of the saturation of the blocks is a linear function of the pressure increment, since

the influence of fissures is very small, this is

∂tS2 = β∂t p2.

The velocity is given by Darcy’s law,

v = − k1

µ
∇p1,

where k1 is the permeability of the fissures. Thus, we obtain two equations for the pressures

∇ · (k1∇p1) +
αk2

l2 (p2 − p1) = 0,

∂t p2 +
αk2

βl2µ
(p2 − p1) = 0.

In this system p2 can be eliminated. Hence, p1 satisfies

∂t p1 − η ∂t∆p1 = k∆p1,

where η = k/A = (k1l2)/(αk2). An analogous equation is obtained for the pressure p2.
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1.2 The Two-Phase Flow in Porous Media with Dynamical
Capillary Pressure

In the second model the two-phase flow in porous media with dynamical capillary pressure

is considered, (Cuesta, van Duijn, and Hulshof 1999; Hassanizadeh and Gray 1993).

Capillary pressure is an essential characteristic of two-phase flow in porous media. In the

standard approach, capillary pressure is expressed as a monotone function of the wetting

phase saturation and is equal to the difference of the pressures in the wetting and non-

wetting phases. Here, the model of Gray and Hassanisadeh is presented. They propose to

include the dynamical effects of the system in the relation between the pressures difference

and the saturation.

The two phases in this model are water (wetting phase) and air (non-wetting phase). For

water in a homogeneous and isotropic porous medium, we have the momentum balance

equation (Darcy’s law)

q = −K(S)(∇pw + ρg) (1.2.1)

and the mass balance equation

φ∂t(ρS) +∇ · (ρq) = 0. (1.2.2)

Here q denotes the volumetric water flux, S water saturation, K(S) hydraulic conductivity,

pw water pressure, ρ water density, φ porosity, and g a gravity constant. To solve these

equations, an additional relation between pw and S is needed. For this relation it is assumed

that the air pressure pa is constant and the static conditions hold, see (Bear 1988),

pa − pw = pc(S), (1.2.3)

where pc denotes the capillary pressure.

For the processes with slowly monotonically varying water saturation the equilibrium con-

dition (1.2.3) can be accepted. For the fast processes, for example capillary imbibition, the

hysteresis and dynamical effect are important and the capillary equation (1.2.3) has to be

modified.

To derive the dynamical relation between saturation S and pressures difference pa − pw,

Hassanizadeh and Gray (1993) gave a definition of the capillary pressure pc(S) as a ther-

modynamic parameter in terms of the free energy functions of the phases, independent of

pa − pw, more precisely, they set

pc = −S
∂Aw

∂S
− (1− S)

∂An

∂S
− 1

ε ∑
αβ

Aαβ

∂S
,

where Aw is the Helmholtz free energy of the wetting phase per unit volume of the phase,

An is the Helmholtz free energy of the non-wetting phase, Aαβ is the Helmholtz free energy
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of the interface per unit volume of the porous medium. Then we have the entropy inequality

of the form

−∂tS[(pa − pw)− pc] > 0. (1.2.4)

This inequality requires that ∂tS must be negative, i.e. the system will undergo drainage,

if pa − pw > pc, and ∂tS must be positive, i.e. imbibition occurs, if pa − pw < pc. Only in

equilibrium, ∂tS = 0 and no change of saturation is occurring, pa − pw = pc. Though the

relation (1.2.3) is not the definition of pc(S), but a constitutive approximation valid only in

equilibrium.

From the thermodynamic conditions, we obtain the equation

pa − pw = pc(S)− φL(S)∂tS, (1.2.5)

where L(S) is a nonlinear damping term.

The general inequality (1.2.4) and the approximation (1.2.5) suggest that, at a given point

in the system and at a given time, saturation will change locally in order to restore the

equilibrium and the equivalence between pa − pw and pc.

In the models with hysteresis we obtain the relation pa − pw ∈ pc(S) with multivalued

function pc(S) if ∂tS = 0. The equilibrium value of pc as a function of S depends on the

direction of the process, i.e. drainage or imbibition.

Now, from the equations (1.2.1), (1.2.2), and (1.2.5), a single equation can be obtained for

the water saturation S,

φ∂t(ρS) = ∇ · {ρK(S)ρg + ρK(S)∇(−pc(S) + φL(S)∂tS)}. (1.2.6)

By choosing a new variable σ = L(S), where L(S) =
S∫
0

L(r)dr and L(S)∂tS = ∂tL(S), the

equation (1.2.6) can be rewritten in the form

∂tb(σ) = ∇ · d(σ,∇σ) + ∆∂tσ.

Equations of such structure with memory terms will be solved in the Section 2.1. The mem-

ory operator is obtained by modeling the two-phase flow in elastic porous media. For a

medium with memory, Darcy’s law has the form

q(t, x) = −k(t, x)∇p(t, x)−
t∫

0

K(t, s)∇p(s, x)ds.

The models for heat transport in material with memory can be found in (Gurtin and Pipkin

1968; Gurtin 1968b; Nunziato 1971; Miller 1978; Heard 1982).

The generalized Darcy’s law in the integral form

v(t, x) = v0(x) +

t∫

0

A(t− s)( f −∇p)(s, x) ds

is obtained also by the homogenization of unsteady Stokes problem, see (Hornung 1996).



2

Rothe’s Method for Quasilinear and Nonlinear
Equations and Inequalities

The existence of solutions of degenerate quasilinear equations with memory terms, quasi-

linear variational inequalities, doubly nonlinear equations, and equations with convection

is shown. In the last case time discretization is used along characteristics. The existence

of solutions of degenerate quasilinear equations is proved under the assumption that the

nonlinear function b is monotone and a gradient of a convex, continuously differentiable

function. The existence of solutions of quasilinear variational inequalities is proved un-

der stronger assumptions, namely, the nonlinear function defining the elliptic part is as-

sumed to be a gradient and the function b to be Lipschitz continuous. The uniqueness of

the solution of a degenerate quasilinear or doubly nonlinear equation is proved for lin-

ear or Lipschitz-continuous elliptic parts. The uniqueness of the solution of equations with

convection is proved for linear elliptic parts and for space dimensions N ≤ 4.

2.1 Degenerate Quasilinear Pseudoparabolic Equations with
Memory Terms

In this section a system of degenerate quasilinear pseudoparabolic equations with memory

term is considered. Such equations describe the two-phase fluid flow in porous media with

dynamical capillary pressure, as introduced in section 1.2.

Let Ω ⊂ RN be a bounded domain with Lipschitz boundary. The initial boundary value

problem is given by




∂tbj(u)−∇ · (a(x)∇ut)j −∇ · dj(t, x, u,∇u) + Mj(u) = f j(u) in QT = (0, T)×Ω,

uj = 0 on (0, T)× ∂Ω,

bj(u(0, x)) = bj(u0(x)) in Ω,
(2.1.1)

where the memory operator M is defined by

〈Mj(t)(u), vj〉 =
∫

Ω

t∫

0

K j(t, s) gj(s, x,∇u(s, x)) ds∇vj(t, x) dx
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for all functions u, v ∈ Lp(0, T; H1,p
0 (Ω)l), for almost all t ∈ (0, T).

The existence of a solution will be ensured by the following assumptions.

Assumption 2.1.1.

(A1) The vector field b : Rl → Rl is monotone nondecreasing and a continuous gradient,

i.e. there exists a convex C1 function Φ : Rl → R such that b = ∇Φ, and b(0) = 0.

(A2) The tensor field a ∈ (L∞(Ω))N×l×N×l , considered as a linear mapping on L∞(Ω)N×l ,

is symmetric and elliptic, i.e. for some 0 < a0 ≤ a0 < ∞, a satisfies

a0|ξ|2 ≤ a(x)ξ ξ ≤ a0|ξ|2 for ξ ∈ RN×l and for almost all x ∈ Ω.

(A3) The diffusivity d : (0, T)×Ω×Rl ×RN×l → RN×l is continuous, elliptic, i.e.

d(t, x, η, ξ) ξ > d0|ξ|p for every ξ ∈ RN×l , d0 > 0, p > 2, strongly monotone, i.e.

(d(t, x, η, ξ1)− d(t, x, η, ξ2)) (ξ1 − ξ2) > d1|ξ1 − ξ2|p for ξ1, ξ2 ∈ RN×l , d1 > 0,

and satisfies the growth assumption |d(t, x, η, ξ)| ≤ C(1 + |η|p−1 + |ξ|p−1) for η ∈ Rl .

(A4) The function f : (0, T)×Ω×Rl → Rl is continuous and sublinear, i.e.

| f (t, x, η)| ≤ C(1 + |η|) for η ∈ Rl and for almost all (t, x) ∈ QT.

(A5) The matrix field g : (0, T)×Ω×RN×l → RN×l is continuous, satisfies the growth

assumption |g(t, x, ξ)| ≤ C(1 + |ξ|p−1), and |g(t, x, ξ1)− g(t, x, ξ2)| ≤ C|ξ1 − ξ2|p−1.

(A6) The kernel K : (0, T)× (0, T) → Rl is weakly singular, i.e. |K(t, s)| ≤ |t− s|−γω(t, s),

for some 0 ≤ γ < 1/p and continuous ω : [0, T]× [0, T] → R.

(A7) The initial condition u0 is in H1
0(Ω)l , and b(u0) is in L1(Ω)l and in H−1(Ω)l .

The notion of a solution of the problem introduced above, will be given now. It is appropri-

ate to show global existence.

Definition 2.1.2. A function u : QT → Rl is called a weak solution of the problem (2.1.1) if

it satisfies the following:

1) u ∈ Lp(0, T; H1,p
0 (Ω)l), u ∈ L∞(0, T; H1

0(Ω)l), and b(u) ∈ L∞(0, T; L1(Ω)l),

∂t(b(u)−∇ · (a(x)∇u)) ∈ Lq(0, T; H−1,q(Ω)l),

2) u satisfies the equality

−
T∫

0

∫

Ω

(
b(u) vt + a(x)∇u∇vt

)
dx dt +

T∫

0

∫

Ω

(
b(u0) vt + a(x)∇u0 ∇vt

)
dx dt

+

T∫

0

∫

Ω

d(t, x, u,∇u)∇v dx dt +

T∫

0

〈M(u), v〉 dt =

T∫

0

∫

Ω

f (t, x, u) v dx dt (2.1.2)

for all test functions v ∈ Lp(0, T; H1,p
0 (Ω)l), such that

vt ∈ L2(0, T; H1
0(Ω)l) ∩ L1(0, T; L∞(Ω)l) and v(T) = 0.
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We define the function

B(z) := b(z) · z− Φ(z)− Φ(0) =

1∫

0

(b(z)− b(sz)) · z ds =

z∫

0

(b(z)− b(s)) ds.

The properties of the function B can be found in Lemma A.1.1. The function B will be used

in the integration by parts formula, Lemma A.1.2 and Lemma A.1.3.

At first we formulate the existence result.

Theorem 2.1.3 (Existence).

Suppose Assumption 2.1.1 is satisfied. Then there exists a weak solution of the problem (2.1.1).

We approximate the differential equation by the time discretization, h = T/n, ti = ih,

i = 0, ..., n, and obtain the discrete problem

1
h
(b(ui)− b(ui−1))−

1
h
∇ · (a(x)(∇ui −∇ui−1))

−∇ · d(ti, x, ui−1,∇ui) + M(ûi−1)− f (ti, x, ui−1) = 0 in Ω, (2.1.3)

ui(x) = 0 on ∂Ω,

where the function ûi−1 is defined by

ûi−1 =

{
uj−1, t ∈ [tj−1, tj), j = 1, ..., i− 1,

ui−1, t ∈ [ti−1, T].

Thus, we obtain elliptic problems, which can be solved by Galerkin’s procedure. Let {ek}∞
k=1

be a basis of H1,p
0 (Ω)l and ek ∈ L∞(Ω)l . We are looking for functions {um

i }n
i=1 in the subspace

Hm, spanned by {e1, ..., em},

um
i =

m

∑
k=1

αm
ik ek,

such that ∫

Ω

1
h
(b(um

i )− b(um
i−1)) ξ dx +

∫

Ω

1
h

a(x)(∇um
i −∇um

i−1)∇ξ dx

+
∫

Ω

d(ti, x, um
i−1,∇um

i )∇ξ dx + 〈M(ûm
i−1), ξ〉 −

∫

Ω

f (ti, x, um
i−1) ξ dx = 0 (2.1.4)

holds for all ξ ∈ Hm. Here um
0 ∈ Hm is an approximation of u0 in H1

0(Ω)l .

Lemma 2.1.4. There exists a solution um
i in Hm of the family of discretized equations (2.1.4).

Proof. The existence will be shown by induction. Since um
0 is given, um

i−1 can be assumed to

be known. The left-hand side of (2.1.4) defines a continuous mapping Jhm : Rm → Rm given

by

J j
hm(r) =

1
h

∫

Ω

(b(v)ej + a(x)∇v∇ej) dx− 1
h

∫

Ω

(b(um
i−1)ej + a(x)∇um

i−1 ∇ej) dx

+
∫

Ω

d(ti, x, um
i−1,∇v)∇ej dx + 〈M(ûm

i−1), ej〉 −
∫

Ω

f (ti, x, um
i−1) ej dx,
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where v =
m
∑
j=1

rj ej. This mapping satisfies the following estimates:

Jhm(r)r > d0

∫

Ω

|∇v|p dx +
1
h

∫

Ω

B(v) dx +
a0

2h

∫

Ω

|∇v|2 dx− 1
h

∫

Ω

B(um
i−1) dx− a0

2h

∫

Ω

|∇um
i−1|2 dx

−c1δ

∫

Ω

|∇v|p dx− c2(δ)c(γ)
i

∑
k=1

h
∫

Ω

|∇um
k−1|p dx− c3

∫

Ω

| f (ti, x, um
i−1)|2 dx

> c4

∫

Ω

|∇v|2 dx + c5

∫

Ω

|∇v|p dx− c6,

as will be shown now. From the assumption on b and the definition of B it follows that

1
h

∫

Ω

(b(v)− b(um
i−1)) v dx > 1

h

∫

Ω

B(v) dx− 1
h

∫

Ω

B(um
i−1) dx.

The assumptions on a and d imply
∫

Ω

d(ti, x, um
i−1,∇v)∇v dx > d0

∫

Ω

|∇v|p dx,

1
h

∫

Ω

a(x)(∇v−∇um
i−1)∇v dx > a0

2h

∫

Ω

|∇v|2 dx− a0

2h

∫

Ω

|∇um
i−1|2 dx.

Applying Hölder’s and Young’s inequalities yields

〈M(ûm
i−1), v〉 ≤ c1/δ

∫

Ω

( ti∫

0

K(ti, s) g(s, x,∇ûm
i−1) ds

)q
dx + c2δ

∫

Ω

|∇v|p dx,

where 1/q + 1/p = 1. The first integral can be estimated by using the assumptions on K
and g, and the boundedness of ω,

∣∣∣
ti∫

0

K(ti, s) g(s, x,∇ûm
i−1) ds

∣∣∣ ≤
i

∑
k=1

tk∫

tk−1

|K(ti, s)||g(s, x,∇ûm
i−1)| ds

≤ c1

i

∑
k=1

(1 + |∇um
k−1|p−1)

tk∫

tk−1

(ti − s)−γ ds

≤
( i

∑
k=1

h|∇um
k−1|p

)1/q( i

∑
k=1

h(ti − tk)−γp
)1/p

+ c2.

Since γ < 1/p,

i

∑
k=1

h(ti − tk)−γp ≤ 1
1− pγ

=: c(γ).

Due to sublinearity of f and Poincaré’s inequality,
∫

Ω

| f (ti, x, um
i−1)|2 dx ≤ c1

∫

Ω

|∇um
i−1|2 dx + c2.
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Hence, for |r| big enough, J(r)r > 0 for all such r. The continuity of J implies the exis-

tence of a zero of J(r), i.e. a solution of the discretized equation (2.1.4), see (Showalter 1996,

Proposition 2.1). ❒

Now convergence of um
i to the solution u of the problem (2.1.1) for n, m → ∞ is shown. For

the proof a priori estimates, compactness arguments, and an integration by parts formula

from (Alt and Luckhaus 1983), adapted for pseudoparabolic equations, are used.

At first we obtain the estimates for um
i .

Lemma 2.1.5. The estimates

max
1≤j≤n

∫

Ω

B(um
j ) dx ≤ C,

max
1≤j≤n

∫

Ω

|∇um
j |2 dx ≤ C, (2.1.5)

n

∑
i=1

h
∫

Ω

|∇um
i |p dx ≤ C

hold uniformly in m and n.

Proof. Choosing um
i as a test function in (2.1.4) and summing over i yield

j

∑
i=1

∫

Ω

b(um
i )− b(um

i−1)
h

um
i dx +

j

∑
i=1

∫

Ω

a(x)∇um
i − um

i−1

h
∇um

i dx (2.1.6)

+
j

∑
i=1

∫

Ω

d(ti, x, um
i−1,∇um

i )∇um
i dx +

j

∑
i=1
〈M(ûm

i−1), um
i 〉 =

j

∑
i=1

∫

Ω

f (ti, x, um
i−1) um

i dx.

Each term will be dealt separately. From the assumption on b and the definition of the

function B it follows that
j

∑
i=1

∫

Ω

(b(um
i )− b(um

i−1)) um
i dx >

∫

Ω

B(um
j ) dx−

∫

Ω

B(um
0 ) dx.

By Abel’s summation formula we obtain

j

∑
i=1

∫

Ω

a(x)∇(um
i − um

i−1)∇um
i dx > a0

2

∫

Ω

|∇um
j |2 dx− a0

2

∫

Ω

|∇um
0 |2 dx.

The ellipticity assumption implies

j

∑
i=1

∫

Ω

d(ti, x, um
i−1,∇um

i )∇um
i dx > d0

j

∑
i=1

∫

Ω

|∇um
i |p dx.

For the integral operator we have the estimate

j

∑
i=1
〈M(ûm

i−1), um
i 〉 ≤ c1/δ

j

∑
i=1

∫

Ω

( ti∫

0

K(ti, s) g(s, x,∇ûm
i−1) ds

)q
dx + c2δ

j

∑
i=1

∫

Ω

|∇um
i |p dx.
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By the assumptions on the function g and the kernel K we have

∣∣∣
ti∫

0

K(ti, s) g(s, x,∇ûm
i−1) ds

∣∣∣ ≤
i

∑
k=1

tk∫

tk−1

|K(s, ti)||g(s, x,∇ûm
i−1)| ds

≤ c1

( i

∑
k=1

h|∇um
k−1|p

)1/q( i

∑
k=1

h(ti − tk)−γp
)1/p

+ c2.

The last integral in (2.1.6), due to sublinearity of f and Poincaré’s inequality, is estimated

by

j

∑
i=1

∫

Ω

f (x, ti, um
i−1) um

i dx ≤ 1
2

j

∑
i=1

∫

Ω

| f (x, ti, um
i−1)|2 dx +

1
2

j

∑
i=1

∫

Ω

|um
i |2 dx

≤ c3

j

∑
i=1

∫

Ω

|∇um
i |2 dx + c4.

By the estimates above, from equation (2.1.6) we obtain the inequality

∫

Ω

B(um
j ) dx +

a0

2

∫

Ω

|∇um
j |2 dx + (d0 − c1δ)

j

∑
i=1

h
∫

Ω

|∇um
i |p dx

≤
∫

Ω

B(um
0 ) dx +

a0

2

∫

Ω

|∇um
0 |2 dx + c2c(γ)

j

∑
i=1

h
i

∑
k=1

h
∫

Ω

|∇um
k |p dx

+c3

j

∑
i=1

h
∫

Ω

|∇um
i |2 dx + c3.

Using discrete Gronwall’s lemma in the last inequality implies the estimates in Lemma 2.1.5.

Gronwall’s lemma can be applied for all sufficiently small h and δ that satisfy c3h < a0/2

and c2c(γ)h < (d0 − c1δ). ❒

To show the strong convergence of the approximation and equicontinuity of u in time with

respect to L2(QT) the following lemma is needed.

Lemma 2.1.6. The estimates

n−k

∑
j=1

h
∫

Ω

(b(um
j+k)− b(um

j ))(um
j+k − um

j ) dx ≤ Ckh,

n−k

∑
j=1

h
∫

Ω

|∇um
j+k −∇um

j |2 dx ≤ Ckh (2.1.7)

hold uniformly with respect to m and n.
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Proof. Summing up the equations (2.1.4) for i = j + 1, ..., j + k, then choosing um
j+k − um

j as a

test function, and finally summing up over j = 1, ..., n− k yields

n−k

∑
j=1

∫

Ω

1
h
(b(um

j+k)− b(um
j ))(um

j+k − um
j ) dx +

n−k

∑
j=1

∫

Ω

1
h

a(x)(∇um
j+k −∇um

j )(∇um
j+k −∇um

j ) dx

+
n−k

∑
j=1

j+k

∑
i=j+1

∫

Ω

d(ti, x, um
i−1,∇um

i )(∇um
j+k −∇um

j ) dx +
n−k

∑
j=1

j+k

∑
i=j+1

〈M(ûm
i−1), um

j+k − um
j 〉

=
n−k

∑
j=1

j+k

∑
i=j+1

∫

Ω

f (ti, x, um
i−1)(um

j+k − um
j ) dx.

Due to the growth assumption on d we have
n

∑
i=1

∫

Ω

|d(ti, x, um
i−1,∇um

i )|qdx ≤ c1

n

∑
i=1

∫

Ω

|∇um
i |p dx + c2

n

∑
i=1

∫

Ω

|um
i−1|p dx + c3.

The operator M and the function f can be estimated similarly to the last lemma. Then we

obtain the following inequality

n−k

∑
j=1

∫

Ω

1
h
(b(um

j+k)− b(um
j ))(um

j+k − um
j ) dx + a0

n−k

∑
j=1

∫

Ω

1
h
|∇um

j+k −∇um
j |2 dx

≤ c1

n

∑
i=1

∫

Ω

|∇um
i |2 dx + c2(T)c(γ)

n

∑
i=1

∫

Ω

|∇um
i |p dx +

n

∑
i=1

∫

Ω

|∇um
i |p dx

+k
n−k

∑
j=1

∫

Ω

(|∇um
j+k|2 + |∇um

j+k|p + |um
j+k|2 + |∇um

j |2 + |∇um
j |p + |um

j |2) dx.

This, by using Lemma 2.1.5, implies the asserted estimates. ❒

Proof of Theorem 2.1.3. We define for t ∈ (ti−1, ti] and x ∈ Ω the step functions by

ūm
n (t, x) := um(ti, x),

where the initial conditions are ūm
n (0, x) = um

0 (x). From (2.1.5) we obtain

sup
0≤t≤T

∫

Ω

B(ūm
n (t)) dx ≤ C,

sup
0≤t≤T

∫

Ω

|∇ūm
n (t)|2 dx ≤ C, (2.1.8)

T∫

0

∫

Ω

|∇ūm
n |p dx dt ≤ C.

The growth assumptions on d, g, and f imply

||dn(t, x, ūm
n,h,∇ūm

n )||Lq(QT)N×l ≤ C,

||M(ûm
n−1)||Lq(0,T;H−1,q(Ω)l) ≤ C, (2.1.9)

|| fn(t, x, ūm
n,h)||L2(QT)l ≤ C,
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where ūm
n,h(t, x) := ūm

n (t − h, x) for t ∈ [h, T] and ūm
n,h(t, x) := um

0 (x) for t ∈ [0, h],

dn(t, x, s, z) := d(ti, x, s, z) for t ∈ (ti−1, ti], for i = 1, ..., n, and dn(0, x, s, z) := d(0, x, s, z).

From (2.1.7) we have

T−τ∫

0

∫

Ω

(
b(ūm

n (t + τ, x))− b(ūm
n (t, x))

)(
ūm

n (t + τ, x)− ūm
n (t, x)

)
dx dt ≤ C τ,

T−τ∫

0

∫

Ω

|∇ūm
n (t + τ, x)−∇ūm

n (t, x)|2 dx dt ≤ C τ, (2.1.10)

where for k ∈ {0, . . . , n − 1}, kh ≤ τ ≤ (k + 1)h. The second estimate in (2.1.10) and

Poincaré’s inequality imply

||ūm
n − ūm

n,h||L2(0,T;H1
0 (Ω)l) ≤

C√
n

.

From the equation (2.1.4) we obtain

||∂h
(
b(ūm

n )−∇ · (a(x)∇ūm
n )

)||Lq(0,T;H−1,q(Ω)l) ≤ C. (2.1.11)

Then the estimates in (2.1.8), (2.1.9), and (2.1.11) imply convergence of a subsequence of

{ūm
n }, again denoted by {ūm

n }

ūm
n → u weakly in Lp(0, T; H1,p

0 (Ω)l),

ūm
n → u weakly-∗ in L∞(0, T; H1

0(Ω)l),

d(x, t, ūm
n,h,∇ūm

n )) → χ weakly in (Lq(QT))N×l , (2.1.12)

∂h
(
b(ūm

n )−∇ · (a(x)∇ūm
n )

) → ζ weakly in Lq(0, T; H−1,q(Ω)l),

M(ûm
n−1) → µ weakly in Lq(0, T; H−1,q(Ω)l)

as m, n → ∞. The weak convergence of {ūm
n } in Lp(0, T; H1,p

0 (Ω)l) and the second estimate

in (2.1.10) imply, by Kolmogorov’s Theorem, (Necas 1967), the strong convergence of {ūm
n }

in L2(QT)l , and also the convergence almost everywhere in QT. Then we have also ūm
n,h → u

strongly in L2(QT)l and almost everywhere in QT. Thus, since

|b(ūm
n )| ≤ δB(ūm

n ) + sup
|σ|≤ 1

δ

|b(σ)|

and sublinearity of f , due to the Dominated Convergence Theorem, (Evans 1998), and con-

tinuity of b in u and of f in t and u, we obtain the convergences b(ūm
n ) → b(u) a.e. in QT,

b(ūm
n (t)) → b(u) in L1(0, T; L1(Ω)l), and fn(t, x, um

n,h) → f (t, x, u) in L2(QT)l . From the con-

tinuity of B follows B(ūm
n ) → B(u) a.e. in QT. Since {B(ūm

n )}m
n is bounded in L∞(0, T; L1(Ω))

and B(ūm
n ) is nonnegative we obtain, by Fatou’s Lemma,

1
τ

t∫

t−τ

∫

Ω

B(u) dx dt ≤ lim inf
m,n→∞

1
τ

t∫

t−τ

∫

Ω

B(ūm
n ) dx dt ≤ C for all t, t− τ ∈ [0, T] and small τ,
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and, hereby, B(u) ∈ L∞(0, T; L1(Ω)). Due to the estimate |b(u)| ≤ δB(u) + sup
|σ|≤ 1

δ

|b(σ)| we

have b(u) ∈ L∞(0, T; L1(Ω)l).

Passing to the limit for m, n → ∞ in the equation (2.1.4) yields

T∫

0

〈ζ, v〉 dt +

T∫

0

∫

Ω

χ∇v dx dt +

T∫

0

〈µ, v〉 dt =

T∫

0

∫

Ω

f (t, x, u) v dx dt. (2.1.13)

Since b(ūm
n (0)) = b(um

0 ) and um
0 → u0 in H1

0(Ω)l , we have that

T∫

0

∫

Ω

∂hb(ūm
n (t)) v(t) dx dt +

T∫

0

∫

Ω

a(x)∂h∇ūm
n (t)∇v(t) dx dt

= −
T−h∫

0

∫

Ω

(b(ūm
n (t))− b(um

0 ))∂−hv(t) dx dt−
T−h∫

0

∫

Ω

a(x)(∇ūm
n (t)−∇um

0 )∂−h ∇v(t) dx dt

→ −
T∫

0

∫

Ω

(b(u(t))− b(u0)) vt(t) dx dt−
T∫

0

∫

Ω

a(x)(∇u(t)−∇u0)∇vt(t) dx dt

as m, n → ∞, for v ∈ Lp(0, T; H1,p
0 (Ω)l) ∩ L∞(QT)l , such that vt ∈ L2(0, T; H1

0(Ω)l) and

vt ∈ L∞(0, T; L∞(Ω)l), and v(T) = 0. Since such v form a dense subspace of Lp(0, T; H1,p
0 (Ω)l)

and the uniform boundedness (2.1.11), we obtain ∂t
(
b(u)−∇ · (a(x)∇u)

)
= ζ as functions

in Lq(0, T; H−1,q(Ω)l).

Now we prove ūm
n → u strongly in Lp(0, T; H1,p

0 (Ω)l). We choose in the discretized equation

ξ = ūm
n − vm

n and integrate over the interval (0, τ), where vm
n in Lp(0, T; Hm) is the approxi-

mation of u in Lp(0, T; H1,p
0 (Ω)l), constant in each interval ((k− 1)h, kh).

∫

Qτ

∂hb(ūm
n )(ūm

n − vm
n ) dx dt +

∫

Qτ

a(x)∇∂hūm
n (∇ūm

n −∇vm
n ) dx dt

+
∫

Qτ

dn(t, x, ūm
n,h,∇ūm

n )(∇ūm
n −∇vm

n ) dx dt +

τ∫

0

〈M(ûm
n−1), ūm

n − vm
n 〉 dt

=
∫

Qτ

fn(t, x, ūm
n,h)(ūm

n − vm
n ) dx dt. (2.1.14)
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By the strong convergence of vm
n , the weak convergence of ∂h

(
b(ūn

m)−∇ · (a(x)∇ūn
m)

)
, and

the integration by parts formula, Lemma A.1.3, yields

τ∫

0

∫

Ω

∂hb(ūm
n ) (ūm

n − vm
n ) dx dt +

τ∫

0

∫

Ω

a(x)∂h∇ūm
n ∇(ūm

n − vm
n ) dx dt

≥ 1
h

τ∫

τ−h

∫

Ω

B(ūm
n ) dxdt +

1
2h

τ∫

τ−h

∫

Ω

a(x)∇ūm
n ∇ūm

n dx dt

−
∫

Ω

B(u(τ)) dx− 1
2

∫

Ω

a(x)∇u(τ)∇u(τ) dx + cε.

Fatou’s lemma implies

lim inf
m,n→∞

1
h

τ∫

τ−h

∫

Ω

(
B(ūm

n )+
1
2

a(x)∇ūm
n ∇ūm

n

)
dx dt >

∫

Ω

B(u(τ)) dx +
1
2

∫

Ω

a(x)∇u(τ)∇u(τ) dx.

Thus, we obtain

lim inf
m,n→∞

τ∫

0

∫

Ω

(
∂hb(ūm

n ) (ūm
n − vm

n ) + a(x)∂h∇ūm
n ∇(ūm

n − vm
n )

)
dx dt > 0.

Strong convergence of ūm
n to u in L2(QT)l and of vm

n to u in Lp(0, T; H1,p
0 (Ω)), continuity of d,

weak convergence of d in (Lq(QT))N×l , and the Dominated Convergence Theorem, (Evans

1998), imply dn(t, x, ūm
n,h,∇u) → d(t, x, u,∇u) strongly in (Lq(QT))N×l . Hence, strong mono-

tonicity of d yields

τ∫

0

∫

Ω

dn(t, x, ūm
n,h,∇ūm

n )(∇ūm
n −∇vm

n ) dx dt

=

τ∫

0

∫

Ω

(dn(t, x, ūm
n,h,∇ūm

n )− dn(t, x, ūm
n,h,∇vm

n ))(∇ūm
n −∇vm

n ) dx dt

+

τ∫

0

∫

Ω

dn(t, x, ūm
n,h,∇vm

n )∇(ūm
n − vm

n ) dx dt > d1

τ∫

0

∫

Ω

|∇(ūm
n − vm

n )|p dx dt− c ε.

The integral operator satisfies the estimate

τ∫

0

〈M(ûm
n−1), ūm

n − vm
n 〉 dt

=

τ∫

0

∫

Ω

t∫

0

K(t, s)(g(s, x,∇ûm
n−1(s))− g(s, x,∇vm

n (s))) ds∇(ūm
n (t)− vm

n (t)) dx dt

≤ c1

δ

τ∫

0

∫

Ω

( t∫

0

K(t, s)(g(s,∇ûm
n−1(s))− g(s,∇vm

n (s)))ds
)q

dx dt + c2δ||ūm
n − vm

n ||pLp(0,T;H1,p
0 (Ω)l)

.
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Because of the weak singularity of the kernel K and the assumption on g we have

t∫

0

K(t, s)(g(s,∇ûm
n−1(s))− g(s,∇vm

n (s))) ds ≤ C
( t∫

0

|K(t, s)|pds
) 1

p
( t∫

0

|∇ûm
n−1(s)−∇vm

n (s)|p ds
) 1

q
.

Combining the last two estimates and the estimate ||ūm
n − ūm

n−1||L2(0,T;H1
0 (Ω)l) ≤ C/

√
n yields

τ∫

0

〈M(ûm
n−1), ūm

n − vm
n 〉 dt ≤ Cδ

τ∫

0

∫

Ω

t∫

0

|∇ūm
n −∇vm

n |p ds dx dt + Cδ||ūm
n − vm

n ||pLp(0,T;H1,p
0 (Ω)l)

+ c ε.

The strong convergences of ūm
n and fn imply

τ∫

0

∫

Ω

fn(t, x, ūm
n,h)(ūm

n − vm
n ) dx dt ≤ c ε.

The estimates of all terms in the equation (2.1.14) give

(d1 − Cδ)

τ∫

0

∫

Ω

|∇ūm
n −∇vm

n |p dx dt ≤ C1

τ∫

0

∫

Ω

t∫

0

|∇ūm
n −∇vm

n |p ds dx dt + C2ε.

By Gronwall’s lemma
τ∫

0

∫

Ω

|∇ūm
n −∇vm

n |p dx dt ≤ C ε

holds. Thus, we have the strong convergence of um
n to u in Lp(0, T; H1,p

0 (Ω)l). Continuity of

d and g yield

dn(t, x, ūm
n,h,∇ūm

n ) → d(t, x, u,∇u) a.e. in QT

and

gn(t, x,∇ûm
n−1) → g(t, x,∇u) a.e. in QT.

The weak convergences of dn(t, x, ūm
n,h,∇ūm

n ) and M(ûm
n−1) and the almost everywhere con-

vergences imply χ = d(t, x, u,∇u) and µ = M(u). Thus, u is the solution of the problem

(2.1.1). ❒

Remark 2.1.7. We can also consider the linear integral operator

〈M(t)(u), v(t)〉 =
∫

Ω

t∫

0

a(t− s)∇u(s, x) ds∇v(t, x) dx,

for u, v ∈ L2(0, T; H1
0(Ω)l) with positive-definite and weakly singular kernel |a(t)| ≤ C|t|−γ,

0 ≤ γ < 1. The kernel a is positive-definite iff

T∫

0

t∫

0

a(t− s)β(s) ds β(t) dt > 0.
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The positive-definiteness of kernel a is equivalent to the assumption

(−1)j∂
j
ta(t) > 0 for all t > 0, where j = 0, 1, 2, and ∂ta 6= 0.

This definiteness implies the monotonicity of the operator M

T∫

0

〈M(t)(u1)− M(t)(u2), u1(t)− u2(t)〉 dt

=

T∫

0

∫

Ω

t∫

0

a(t− s)∇(
u1(s, x)− u2(s, x)

)
ds∇(

u1(t, x)− u2(t, x)
)

dx dt > 0.

In this case we can weaken the assumption on d to show existence. Only monotonicity, but

not strong monotonicity, is needed to apply the Minty-Browder theorem.

The existence can also be proved in the case of memory term operators of first order, i.e.

〈M(t)(u), v(t)〉 =
∫

Ω

t∫

0

a(t− s) · ∇u(s, x) ds v(t, x) dx.

It is sufficient to assume monotonicity of d and weak singularity of the kernel a, i.e.

|a(t)| ≤ C|t|−γ, 0 ≤ γ < 1. The convergence of dn(t, x, ūm
n,h,∇ūm

n ) to d(t, x, u,∇u) follows

from Minty-Browder theorem.

Though we considered the Dirichlet boundary conditions only, the results remain valid for

other boundary conditions, that allow a Poincaré inequality. For more general boundary

conditions we have to assume B(u0) ∈ L1(Ω), see Remark A.1.4 .

Now the uniqueness of a solution will be proved twice. In the first proof less assumptions

are needed. Nevertheless, the second proof uses a variant of an interesting method, which

was applied in (Alt and Luckhaus 1983) to parabolic equations.

Theorem 2.1.8 (Uniqueness). Let Assumption 2.1.1, p = 2, and

|d(t, x, η1, ζ1)− d(t, x, η2, ζ2)| ≤ C(|η1 − η2|+ |ζ1 − ζ2|),

| f (t, x, η1)− f (t, x, η2)| ≤ C|η1 − η2|

be satisfied for (t, x) ∈ QT, η1, η2 ∈ Rl , and ζ1, ζ2 ∈ RN×l . Then there exists at most one weak
solution of the problem (2.1.1).
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Proof. Suppose, there are two solutions u1, u2 ∈ L2(0, T; H1
0(Ω)l). Then their difference

satisfies

−
T∫

0

∫

Ω

(
(b(u1)− b(u2)) vt + a(x)∇(u1 − u2)∇vt

)
dx dt

+

T∫

0

∫

Ω

(d(t, x, u1,∇u1)− d(t, x, u2,∇u2))∇v dx dt (2.1.15)

+

T∫

0

〈M(u1)− M(u2), v〉 dt =

T∫

0

∫

Ω

( f (t, x, u1)− f (t, x, u2)) v dx dt,

because b(u1
0) = b(u2

0) and∇u1
0 = ∇u2

0. Since ∂t
(
b(ui)−∇ · (a(x)∇ui)

) ∈ L2(0, T, H−1(Ω)l),

we may assume b(ui)−∇ · (a(x)∇ui) ∈ C(0, T; H−1(Ω)l). Due to ui ∈ L2(0, T; H1
0(Ω)l) and

a ∈ L∞(Ω)l we obtain ∇ · (a(x)∇ui) ∈ L2(0, T, H−1(Ω)l) and b(ui) ∈ L2(0, T; H−1(Ω)l). We

choose for s ≤ T

vs(t) =





s∫
t
(u1(τ)− u2(τ)) dτ, t < s,

0, otherwise

and integrate by parts. Notice that vs(s) = 0. Hereby we obtain
s∫

0

〈b(u1)− b(u2), u1 − u2〉 dt + a0

s∫

0

∫

Ω

|∇u1 −∇u2|2 dx dt (2.1.16)

≤ δ0

s∫

0

∫

Ω

|∇u1 −∇u2|2 dx dt +
c1

δ0

s∫

0

∫

Ω

|∇vs(t)|2 dx dt,

where the last term satisfies the following estimate
s∫

0

∫

Ω

|∇vs(t)|2 dx dt ≤ c2

s∫

0

s∫

t

∫

Ω

|∇(u1(x, τ)− u2(x, τ))|2 dx dτ dt

= c2

s∫

0

t∫

0

∫

Ω

|∇(u1(x, τ)− u2(x, τ))|2 dx dτ dt.

Using the monotonicity of the function b and Gronwall’s lemma for the inequality (2.1.16)

yields
s∫

0

∫

Ω

|∇u1 −∇u2|2 dx dt = 0

and u1 = u2 almost everywhere in QT. ❒

Theorem 2.1.9 (Uniqueness). Let Assumption 2.1.1 be satisfied, let p = 2, and let dj(t, x, u,∇u)

be of the form (d(t, x)∇u)j, j = 1, . . . , l, where d ∈ (L∞(Ω))N×l×N×l , d is symmetric and strictly
positive definite. Furthermore, let dt ∈ (L∞(QT))N×l×N×l and

| f (t, x, η1)− f (t, x, η2)| ≤ C|η1 − η2|
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for (t, x) ∈ QT, η1, η2 ∈ Rl , and ζ1, ζ2 ∈ RN×l . Then there exists at most one weak solution of the
problem (2.1.1).

Proof. Suppose, there are two solutions u1, u2 ∈ L2(0, T; H1
0(Ω)l). Then their difference

satisfies

−
∫

QT

[
(b(u1)− b(u2)) vt + a(x)∇(u1 − u2)∇vt

]
dx dt +

∫

QT

d(t, x)∇(u1 − u2)∇v dx dt

+

T∫

0

〈M(u1)− M(u2), v〉 dt =
∫

QT

( f (t, x, u1)− f (t, x, u2)) v dx dt, (2.1.17)

since b(u1
0) = b(u2

0) and ∇u1
0 = ∇u2

0. Since ∂t
(
b(ui) −∇ · (a(x)∇ui)

) ∈ L2(0, T, H−1(Ω)l),

we may assume b(ui)−∇ · (a(x)∇ui) ∈ C(0, T; H−1(Ω)l). Due to ui ∈ L2(0, T; H1
0(Ω)l) and

a ∈ L∞(Ω)l we obtain∇· (a(x)∇ui) ∈ L2(0, T, H−1(Ω)l) and then b(ui) ∈ L2(0, T; H−1(Ω)l).

We define β = b(u1)− b(u2) and v = u1 − u2.

Due to Lax-Milgram theorem there exists the solution w in L2(0, T; H1
0(Ω)l) of the equation

T∫

0

∫

Ω

d(t, x)∇w∇ξ dx dt =

T∫

0

〈β, ξ〉 dt +

T∫

0

∫

Ω

a(x)∇v∇ξ dx dt (2.1.18)

for all ξ ∈ L2(0, T; H1
0(Ω)l). Now we will prove the equality

τ∫

0

〈∂t
(

β−∇ · (a(x)∇v)
)
, w〉 dt =

1
2

∫

Ω

d(τ, x)∇w∇w dx +
1
2

∫

Qτ

dt(t, x)∇w∇w dx dt.

(2.1.19)

For the difference quotient we have the equality

2

τ+h∫

h

〈∂hβ, w〉 dt + 2

τ+h∫

h

∫

Ω

a(x)∂h∇v∇w dx dt +
1
h

h∫

0

〈β, w〉 dt +
1
h

h∫

0

∫

Ω

a(x)∇v∇w dx dt

=

τ∫

0

〈∂−hβ, w(t + h)〉 dt−
τ∫

0

〈β, ∂−hw〉 dt +
1
h

τ+h∫

τ

〈β, w〉 dt +

τ∫

0

∫

Ω

a(x)∂−h∇v∇w(t + h) dx dt

−
τ∫

0

∫

Ω

a(x)∇v ∂−h∇w dx dt +
1
h

τ+h∫

τ

∫

Ω

a(x)∇v∇w dx dt.
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Using the equation (2.1.18) for the integrals on the right hand side yields

2

τ+h∫

h

〈∂hβ, w〉 dt + 2

τ+h∫

h

∫

Ω

a(x)∂h∇v∇w dx dt +
1
h

h∫

0

〈β, w〉 dt +
1
h

h∫

0

∫

Ω

a(x)∇v∇w dx dt

=
∫

Qτ

d(x, t)∇w ∂−h∇w dx dt−
∫

Qτ

d(x, t)∂−h∇w∇w(t + h) dx dt

+
1
h

τ+h∫

h

∫

Ω

∂hd(t, x)∇w∇w dx dt +
1
h

τ+h∫

τ

∫

Ω

d(x, t)∇w∇w dx dt. (2.1.20)

Due to the symmetry of d, we obtain

1
h

∫

Qτ

d(t, x)(∇w(t + h)−∇w(t))(∇w(t + h)−∇w(t)) dx dt

=
∫

Qτ

d(t, x)∂−h∇w∇w(t + h) dx dt−
∫

Qτ

d(t, x)∇w ∂−h∇w dx dt.

The left hand side of the last equality converges to 0 as h → 0. Passing to the limit in (2.1.20)

as h → 0 and using the convergences

τ+h∫

h

〈∂h
(

β−∇ · (a(x)∇v)
)
, w〉 dt →

τ∫

0

〈∂t
(

β−∇ · (a(x)∇v)
)
, w〉 dt

and

1
h

h∫

0

〈β, w〉 dt +
1
h

h∫

0

∫

Ω

a(x)∇v∇w dx dt → 0,

imply the equality (2.1.19). The last convergence holds true since β(0) = 0 and v(0) = 0.

The equation (2.1.18) for ξ = u1 − u2 for t ∈ (0, τ) and ξ = 0 for t ∈ (τ, T) has the form

∫

Qτ

d(t, x)∇w∇(u1 − u2) dx dt =

τ∫

0

〈b(u1)− b(u2), u1 − u2〉 dt

+
∫

Qτ

a(x)∇(u1 − u2)∇(u1 − u2) dx dt. (2.1.21)

Now in the equation (2.1.17) we choose v = w for t ∈ (0, τ) and v = 0 for t ∈ (τ, T) and

obtain
τ∫

0

〈∂t
(
(b(u1)− b(u2))−∇ · (a(x)∇(u1 − u2))

)
, w〉 dt +

∫

Qτ

d(t, x)∇(u1 − u2)∇w dx dt

+

τ∫

0

〈M(u1)− M(u2), w〉dt =
∫

Qτ

(
f (t, x, u1)− f (t, x, u2)

)
w dx dt.
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Due to (2.1.19), (2.1.21), and the sublinearity assumptions on f and g , the last equality

implies

1
2

∫

Ω

d(τ, x)∇w∇w dx +

τ∫

0

〈b(u1)− b(u2), u1 − u2〉 dt + a0

∫

Qτ

|∇u1 −∇u2|2 dx dt

≤ C1δ0

∫

Qτ

|∇u1 −∇u2|2 dx dt +
∫

Qτ

(C2/δ0 + ||dt||)|∇w|2 dx dt

+C3c(γ)δ0

∫

Qτ

|∇u1 −∇u2|2 dx dt + C4/δ0

∫

Qτ

|∇w|2 dx dt.

Using the monotonicity of b and Gronwall’s lemma yields
∫

Ω

|∇w(τ)|2 dx = 0 for all τ ∈ (0, T)

and ∫

Qτ

|∇u1 −∇u2|2 dx dt ≤ 0.

Thus, u1 = u2 almost everywhere in QT. ❒

Remark 2.1.10. The classical examples for the functions b and d are given by

b(η) = |η|α−2η for α > 1,

d(t, x, η, ξ) = h(t, x, η)|ξ|p−2ξ for p > 2 and 0 < h0 ≤ h(t, x, η) ≤ h1 < ∞

for all η ∈ R and (t, x) ∈ QT.
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2.2 Quasilinear Pseudoparabolic Inequalities

Variational inequalities model free boundary value problems and problems with obstacles,

and describe a minimization of an energy type functional on a convex set.

The latter is obtained as follows. Let Ω be a bounded domain in RN , V be a Hilbert space,

and K be a convex and closed subset in V. Provided A is a continuous, symmetric, and

elliptic bilinear form on V, L is a linear functional on V, the minimum of the functional J,

given by

J(v) = A(v, v)− 2L(v),

on K, is attained at an unique u ∈ K, which is in fact the solution of the inequality

A(u, v− u) > L(v− u) for all v ∈ K.

The solution of a parabolic obstacle problem is a function u ∈ K that satisfies a variational

inequality

(ut, v− u) +A(u, v− u) > ( f , v− u) for a. a. t ∈ (0, T), for all v ∈ K,

where

K = {v ∈ H1((0, T)×Ω), v = g on (0, T)× ∂Ω, v > φ a.e. in (0, T)×Ω}

and φ describes the obstacle.

For a strong solution u ∈ H1(0, T; H2(Ω)) this is equivalent to

(ut − Au− f )(u− φ) = 0 in (0, T)×Ω,

ut − Au− f > 0 in (0, T)×Ω,

u− φ > 0 in (0, T)×Ω,

u = g on (0, T)× ∂Ω.

A special free boundary value problem is the Stefan Problem, describing the melting of ice.

In complex materials the energy, entropy, heat flux, and thermodynamic temperature may

depend on the conductive temperature. Nevertheless, the heat satisfies a pseudoparabolic

inequality (DiBenedetto and Showalter 1982). The convex subset is given by

K = {v ∈ H1((0, T)×Ω), v = g on ∂Ω, v > 0 a.e. in (0, T)×Ω}.

In all this cases a pseudoparabolic inequality
∫

QT

[
∂tb(u)(v− u) + a(x)∇ut∇(v− u) + d(t, x,∇u)∇(v− u)

]
dx dt

>
∫

QT

f (t, x, u)(v− u) dx dt (2.2.1)
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is considered on a set QT := (0, T)×Ω with an initial condition

b(u(0, x)) = b(u0(x)). (2.2.2)

In this section we prove an existence theorem for this quasilinear pseudoparabolic inequal-

ity.

The initial value problem is completed by posing spatial boundary conditions. An inter-

mediate subspace V, H1,p
0 (Ω)l ⊂ V ⊂ H1,p(Ω)l , is chosen such that it is densely and

continuously embedded in L2(Ω)l , is densely and continuously embedded into a closed

subspace V0 ⊂ H1(Ω)l . The spaces V and V0 should satisfy Poincaré inequalities, i.e.

||v||Lp(Ω)l ≤ C||∇v||Lp(Ω)l for v ∈ V

and

||v||L2(Ω)l ≤ C||∇v||L2(Ω)l for v ∈ V0.

The constraint on u is given by the requirement u ∈ K, where K is chosen to be a closed and

convex subset of V containing 0.

The following assumptions ensure the existence of a solution of the variational inequality.

Assumption 2.2.1.

(A1) The vector field b : Rl → Rl is monotone nondecreasing, Lipschitz continuous,

a continuous gradient, i.e. there exists a convex C1 function Φ : Rl → R,

such that b = ∇Φ, and b(0) = 0.

(A2) The tensor field a ∈ (L∞(Ω))N×l×N×l , considered as a linear mapping on L∞(Ω)N×l ,

is symmetric and elliptic, i.e. for some 0 < a0 ≤ a0 < ∞, a satisfies

a0|ξ|2 ≤ a(x)ξ ξ ≤ a0|ξ|2, for ξ ∈ RN×l , for almost all x ∈ Ω.

(A3) The diffusivity d : (0, T)×Ω×RN×l → RN×l is continuous, elliptic, i.e.

there exists some d0 > 0, such that d(t, x, ξ) ξ > d0|ξ|p, for all ξ ∈ RN×l , p > 2,

and monotone, i.e. (d(t, x, ξ1)− d(t, x, ξ2)) (ξ1 − ξ2) > 0 for all ξ1, ξ2 ∈ RN×l ,

and satisfies the growth assumption |d(t, x, ξ)| ≤ C(1 + |ξ|p−1) for ξ ∈ RN×l ,

and is a gradient, i.e. there is a continuous function D(t, x, ξ) such that ∇ξD = d and

|D(t, x, 0)| ≤ C, |∂tD(t, x, ξ)| ≤ C(1 + |ξ|p) for ξ ∈ RN×l , for almost all (t, x) ∈ QT.

(A4) The function f : (0, T)×Ω×Rl → Rl is continuous and sublinear, i.e.

| f (t, x, η)| ≤ C(1 + |η|) for η ∈ Rl , for almost all (t, x) ∈ QT.

(A5) The initial condition u0 is in K.
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Definition 2.2.2. A function u : QT → Rl is called a weak solution of the inequality (2.2.1) if

1) u ∈ Lp(0, T; V), ut ∈ L2(0, T; V0), ∂tb(u) ∈ L2(QT)l , and u(t) ∈ K

for almost all t ∈ (0, T),

2) u satisfies the inequality (2.2.1) for all test functions v ∈ Lp(0, T; V) and v(t) ∈ K

for almost all t,

3) u satisfies the initial condition (2.2.2), i.e. b(u(t, x)) → b(u0(x)) in L2(Ω)l as t → 0.

Remark 2.2.3. A partial integration of the time derivative in (2.2.1) would allow a seem-

ingly weaker notion of a weak solution, provided v is differentiable in time. However, this

is only possible if the generality of K is restricted, (Alt and Luckhaus 1983). The assumptions

on b and d, posed in this section, are needed to show the existence of a solution.

Theorem 2.2.4. Let Assumption 2.2.1 be satisfied. Then there exists a weak solution of the varia-
tional inequality (2.2.1) with the initial condition (2.2.2).

For positive α we consider the penalized equation

∂tb(u)−∇ · (a(x)∇ut)−∇ · d(t, x,∇u) + αB(u) = f (t, x, u),

where B : Lp(0, T; V) → Lq(0, T; V∗) is the penalty operator, introduced in Definition A.1.10.

In the proof of this theorem some of the estimates of section 2.1 are reused. By the Rothe-

Galerkin approximation we obtain the family of functions um
α,i, satisfying

∫

Ω

1
h
(b(um

α,i)− b(um
α,i−1)) ξ dx +

∫

Ω

a(x)
1
h
∇(um

α,i − um
α,i−1)∇ξ dx +

∫

Ω

d(ti, x,∇um
α,i)∇ξ dx

+α〈B(um
α,i), ξ〉 =

∫

Ω

f (ti, x, um
α,i−1) ξ dx (2.2.3)

for ξ ∈ Hm = span{e1, ..., em}, where {ej}∞
j=1 is a basis of V and ej ∈ L∞(Ω)l , and {um

α,0}m is

an approximation of u0 in V. Since the operator B is monotone, the existence of um
α,i can be

proved in the same manner as in section 2.1.

Similar to the proof of Lemma 2.1.5, using Assumption 2.2.1 and the monotonicity of B
yields the estimates

max
0≤j≤n

∫

Ω

B(um
α,j) dx ≤ C,

max
0≤j≤n

∫

Ω

|∇um
α,j|2 dx ≤ C,

j

∑
i=1

h
∫

Ω

|∇um
α,i|p dx ≤ C, (2.2.4)

α
j

∑
i=1

h〈B(um
α,i), um

α,i〉 ≤ C.
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For the proof of existence of a solution of the variational inequality we have to show that

∂tb(u) ∈ L2(QT)l and ut ∈ L2(0, T; V0).

Since d is a gradient it is possible to prove the following.

Lemma 2.2.5. The estimates
n

∑
i=1

h
∫

Ω

1
h2 (b(um

α,i)− b(um
α,i−1))(um

α,i − um
α,i−1) dx ≤ C,

n

∑
i=1

h
∫

Ω

∣∣∣
∇um

α,i −∇um
α,i−1

h

∣∣∣
2

dx ≤ C, (2.2.5)

max
1≤j≤n

∫

Ω

|∇um
α,j|p dx ≤ C

hold uniformly with respect to m, n, and α.

Proof. Choosing ξ = (um
α,i − um

α,i−1) as a test function in (2.2.3) and summing over i yields

j

∑
i=1

∫

Ω

1
h
(b(um

α,i)− b(um
α,i−1))(um

α,i − um
α,i−1) dx +

j

∑
i=1

∫

Ω

1
h

a(x)∇(um
α,i − um

α,i−1)∇(um
α,i − um

α,i−1) dx

+
j

∑
i=1

∫

Ω

d(ti, x,∇um
α,i)∇(um

α,i − um
α,i−1) dx + α

j

∑
i=1
〈B(um

α,i), um
α,i − um

α,i−1〉

=
j

∑
i=1

∫

Ω

f (ti, x, um
α,i−1)(um

α,i − um
α,i−1) dx. (2.2.6)

Due to the assumption on d the third integral on the left can be rewritten in the form

I =
j

∑
i=1

∫

Ω

d(ti, x,∇um
α,i)(∇um

α,i −∇um
α,i−1) dx

=
j

∑
i=1

∫

Ω

D(ti, x,∇um
α,i)− D(ti, x,∇um

α,i−1) dx

=
∫

Ω

D(tj, x,∇um
α,j) dx−

∫

Ω

D(0, x,∇um
0 ) dx

−
j

∑
i=1

∫

Ω

(D(ti, x,∇um
α,i−1)− D(ti−1, x,∇um

α,i−1)) dx.

Applying the assumed growth bounds of d to |D(t, x, z)| ≤ ∫ z
0 |d(t, x, ξ)| dξ + |D(t, x, 0)|

yields |D(0, x,∇um
α,0)| ≤ C(1 + |∇um

α,0|p). The ellipticity assumption on d implies

D(t, x, ξ)− D(t, x, 0) =

1∫

0

∇D(t, x, sξ) ξ ds =

1∫

0

d(t, x, sξ) s ξ s−1 ds

> d0|ξ|p
1∫

0

sp−1 ds =
d0

p
|ξ|p.
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Since |D(t, x, 0)| ≤ C, we obtain

D(ti, x,∇um
α,j) > d0

p
|∇um

α,j|p − C.

Then, due to |∂tD(t, x, z)| ≤ C(1 + |z|p), we have

I > d0

p

∫

Ω

|∇um
α,j|p dx− c1

∫

Ω

|∇um
0 |p dx− c2

j

∑
i=1

h
∫

Ω

|∇um
α,i−1|p dx− c3.

The penalty operator can be estimated by

j

∑
i=1

〈B(um
α,i), um

α,i − um
α,i−1

〉
=

j

∑
i=1

〈
J(um

α,i − PKum
α,i), um

α,i − um
α,i−1

〉

=
j

∑
i=1

〈
J(um

α,i − PKum
α,i), PKum

α,i − PKum
α,i−1

〉

+
j

∑
i=1

〈
J(um

α,i − PKum
α,i), (um

α,i − PKum
α,i)− (um

α,i−1 − PKum
α,i−1)

〉

> 1
p

j

∑
i=1

(
||um

α,i − PKum
α,i||pV − ||um

α,i−1 − PKum
α,i−1||pV

)

=
1
p
||um

α,j − PKum
α,j||pV > 0.

Here u0 ∈ K and the property of PK are used. Due to estimates for d and B from (2.2.6) we

obtain the inequality

j

∑
i=1

∫

Ω

1
h
(b(um

α,i)− b(um
α,i−1))(um

α,i − um
α,i−1) dx

+
j

∑
i=1

∫

Ω

a0 − δ

h
|∇(um

α,i − um
α,i−1)|2dx +

d0

p

∫

Ω

|∇um
α,j|p dx

≤ cδ

j

∑
i=1

h
∫

Ω

| f (ti, x, um
α,i−1)|2 dx +

j

∑
i=1

h
∫

Ω

|∇um
α,i|p dx +

∫

Ω

|∇um
0 |p dx.

Using the bounds (2.2.4) and sublinearity of f in the last inequality implies the assertion of

the Lemma. ❒

Since b is Lipschitz continuous we have

j

∑
i=1

h
∫

Ω

∣∣∂hb(um
α,i)

∣∣2 dx ≤ C. (2.2.7)

Proof of Theorem 2.2.4. We define the Rothe functions piecewise for t ∈ (ti−1, ti] and x ∈ Ω

by

um
α,n(t, x) = um

α (ti−1, x) + (t− ti−1)
um

α (ti, x)− um
α (ti−1, x)

h
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and the step functions by

ūm
α,n(t, x) = um

α (ti, x),

where the initial conditions are um
α,n(0, x) = um

0 (x) and ūm
α,n(0, x) = um

0 (x).

From (2.2.4), (2.2.5), and (2.2.7) we obtain

sup
0≤t≤T

∫

Ω

B(ūm
α,n) dx ≤ C,

sup
0≤t≤T

∫

Ω

|∇ūm
α,n|2 dx ≤ C,

sup
0≤t≤T

∫

Ω

|∇ūm
α,n|p dx ≤ C, (2.2.8)

T∫

0

∫

Ω

|∂h∇um
α,n|2 dx dt ≤ C,

T∫

0

∫

Ω

|∂hb(ūm
α,n)|2 dx dt ≤ C.

The growth assumption on d implies

||dn(t, x,∇ūm
α,n)||Lq(QT)N×l ≤ C,

where dn(t, x, z) := d(ti, x, z) for t ∈ (ti−1, ti] for i = 1, ..., n, and dn(0, x, z) := d(0, x, z).

The penalty operator is bounded, hence

||B(ūm
α,n)||Lq(0,T;V∗) ≤ C.

The fourth assumptions in (2.2.8) and the Poincaré inequality imply

||ūm
α,n − ūm

α,n,h||L2(0,T;V0) ≤
C
n

, (2.2.9)

where ūm
α,n,h(t, x) := ūm

α,n(t− h, x) for t ∈ [h, T] and ūm
α,n,h(t, x) := um

α,0(x) for t ∈ [0, h].

From (2.2.8) follows the existence of a subsequence of {ūm
α,n} and of {um

α,n}, resp., again

denoted by {ūm
α,n} and {um

α,n}, resp., such that

ūm
α,n → uα weakly in Lp(0, T; V),

ūm
α,n → uα weakly− ∗ in L∞(0, T; V0),

∂hum
α,n → ∂tuα weakly in L2(0, T; V0),

∂hb(ūm
α,n) → ηα weakly in L2(QT)l

dn(t, x,∇ūm
α,n)) → χα weakly in (Lq(QT))N×l ,

B(ūm
α,n) → θ weakly in Lq(0, T; V∗),
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as m, n → ∞. The strong convergence of {um
α,n} in L2(QT)l follows from the Compactness

Lions-Aubin Lemma, (Lions 1969). This and the estimate (2.2.9) imply the strong conver-

gence of {um
α,n,h} in L2(QT)l . From the strong convergence of {um

α,n} in L2(QT)l and the con-

tinuity of b follows b(ūm
α,n) → b(uα) a.e. in QT. The Lipschitz-continuity of b and b(0) = 0

imply

||b(ūm
α,n)||L2(QT)l ≤ c||ūm

α,n||L2(QT)l ≤ C.

Due to the Dominated Convergence Theorem, (Evans 1998), yields b(ūm
α,n) → b(uα) in

L2(QT)l and ηα = ∂tb(uα). From the strong convergence of {um
α,n,h} and the continuity of

f follows fn(t, x, ūm
α,n,h) → f (t, x, uα) a.e. in QT. The sublinearity of f yields

|| fn(t, x, ūm
α,n,h)||L2(QT)l ≤ C1(1 + ||ūm

α,n,h||L2(QT)l ) ≤ C.

Then the Dominated Convergence Theorem implies fn(t, x, ūm
α,n,h) → f (t, x, uα) strongly in

L2(QT)l . From the continuity of B follows B(ūm
α,n) → B(uα) a.e. in QT. Since {B(ūm

α,n)} is

bounded in L∞(0, T; L1(Ω)) and B(ūm
α,n) is nonnegative we obtain, by Fatou’s Lemma,

1
τ

t∫

t−τ

∫

Ω

B(uα) dx dt ≤ lim inf
m,n→∞

1
τ

t∫

t−τ

∫

Ω

B(ūm
α,n) dx dt ≤ C for all t, t− τ ∈ [0, T] and small τ,

and, hereby, B(uα) ∈ L∞(0, T; L1(Ω)).

Using uα ∈ Lp(0, T; V), ∂tuα ∈ L2(0, T; V0) and (Evans 1998, Theorem 5.9.2), imply

uα ∈ C([0, T]; V0) and uα(0) = u0. Due to the Lipschitz-continuity of b we obtain
∫

Ω

|b(uα(t))− b(uα(s))|2 dx ≤ c1||uα(t)− uα(s)||2V0
for all t, s ∈ [0, T].

This implies b ∈ C([0, T]; L2(Ω)l) and b(uα(0)) = b(u0) in L2(Ω)l .

Passing to the limit as m, n → ∞ in the discretized equation (2.2.3) yields

∫

QT

∂tb(uα) v dx dt +
∫

QT

a(x)∂t∇uα ∇v dx dt +
∫

QT

χα ∇v dx dt + α

T∫

0

〈θ, v〉 dt

=
∫

QT

f (t, x, uα) v dx dt. (2.2.10)

Due to the monotonicity of d and B we will show

∫

QT

χα ∇v dx dt + α

T∫

0

〈θ, v〉 dt =
∫

QT

d(t, x,∇uα)∇v dx dt + α

T∫

0

〈B(uα), v〉 dt (2.2.11)

for all functions v ∈ Lp(0, T; V). Fatou’s lemma implies

lim inf
m,n→∞

∫

Qτ

a(x)∂t∇um
α,n ∇um

α,n dx dt = lim inf
m,n→∞

1
2

∫

Ω

a(x)∇um
α,n ∇um

α,n dx− 1
2

∫

Ω

a(x)∇u0 ∇u0 dx

>
∫

Qτ

a(x)∂t∇uα ∇uα dx dt.
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Then from equation (2.2.3), convergence of ūm
α,n, and equation (2.2.10) we have

lim sup
m,n→∞

(∫

QT

dn(t, x,∇ūm
α,n)∇ūm

α,n dx dt + α

T∫

0

〈B(ūm
α,n), ūm

α,n〉 dt
)

≤
∫

QT

f (t, x, uα) uα dx dt−
∫

QT

∂tb(uα) uα dx dt− lim inf
m,n→∞

∫

QT

a(x)∂t∇um
α,n ∇um

α,n dx dt

≤
T∫

0

〈χα,∇uα〉 dt + α

T∫

0

〈θ, uα〉 dt.

Since d and B are monotone, we have

∫

QT

(
dn(t, x,∇um

α,n)− d(t, x,∇w)
) (∇um

α,n−∇w
)

dx dt + α

T∫

0

〈B(um
α,n)−B(w), um

α,n−w〉 dt > 0.

Passing to the limit as m, n → ∞ yields

∫

QT

(
χα − d(t, x,∇w)

) (∇uα −∇w
)

dx dt + α

T∫

0

〈θ − B(w), uα − w〉 dt > 0.

Choosing w = uα − λv for v ∈ Lp(0, T; V) and λ > 0, continuity of d and hemicontinuity of

B imply the equality (2.2.11) by Minty-Browder’s argument.

Then for every α the function uα satisfies the equation

∫

QT

∂tb(uα) v dx dt +
∫

QT

a(x)∂t∇uα ∇v dx dt +
∫

QT

d(t, x,∇uα)∇v dx dt

+α

T∫

0

〈B(uα), v〉 dt =
∫

QT

f (t, x, uα) v dx dt. (2.2.12)

Analogously as for um
α,n, we obtain the estimates for uα

sup
0≤t≤T

∫

Ω

B(uα) dx ≤ C, sup
0≤t≤T

∫

Ω

|∇uα|2 dx ≤ C,

∫

QT

|∇uα|p dx dt ≤ C,
∫

QT

|∂t∇uα|2 dx dt ≤ C,

∫

QT

|∂tb(uα)|2 dx dt ≤ C,
∫

QT

|d(t, x,∇uα)|q dx dt ≤ C,

α

T∫

0

〈B(uα), uα〉 dt ≤ C.
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Then there exists a subsequence of {uα}, again denoted by {uα}, such that

uα → u weakly in Lp(0, T; V),

uα → u weakly– ∗ in L∞(0, T; V0),

∂tuα → ∂tu weakly in L2(0, T; V0),

∂tb(uα) → η weakly in L2(QT)l ,

d(t, x,∇uα) → χ weakly in (Lq(QT))N×l .

Due to the similar argumentation as for um
α,n, we obtain the strong convergences uα → u,

f (t, x, uα) → f (t, x, u), b(uα) → b(u) in L2(QT)l and η = ∂tb(u).

Since u ∈ Lp(0, T; V) and ut ∈ L2(0, T; V0) we have u ∈ C([0, T]; V0) by (Evans 1998, Theo-

rem 5.9.2). Then uα(0) → u(0) weakly in V0 yields u(0) = u0. Since b is Lipschitz continuous,

we obtain b ∈ C([0, T]; L2(Ω)l) and b(u(0)) = b(u0) in L2(Ω)l , and thus the validity of the

initial condition (2.2.2).

From equation (2.2.12) we obtain

T∫

0

〈B(uα), v〉 dt =
1
α

∫

QT

(
f (t, x, uα) v− ∂tb(uα) v− a(x) ∂t∇uα ∇v− d(t, x,∇uα)∇v

)
dx dt

for all v ∈ Lp(0, T; V). Since all the terms on the right hand side are bounded in Lq(0, T; V∗),

B(uα) → 0 in Lq(0, T; V∗) as α → ∞.

Applying the monotonicity of B to the sequence {uα} yields

T∫

0

〈B(v), uα − v〉 dt ≤
T∫

0

〈B(uα), uα − v〉 dt.

Together with the estimate
T∫
0
〈B(uα), uα〉 dt ≤ C/α and the convergence of B(uα) → 0 in

Lq(0, T; V∗) we obtain for α → ∞

T∫

0

〈B(v), u− v〉 dt ≤ 0.

We take v = u− λw for λ > 0 and w ∈ Lp(0, T; V). Passing to the limit as λ → 0 and using

the hemicontinuity of B imply

T∫

0

〈B(u), w〉 dt ≤ 0 for all w ∈ Lp(0, T; V).

Thus, B(u) = 0 and u ∈ K for almost all t ∈ (0, T).
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Now we show that u satisfies the inequality (2.2.1). We choose uα − u as a test function in

the equation (2.2.12) and obtain
∫

QT

∂tb(uα) (uα − u) dx dt +
∫

QT

a(x)∂t∇uα ∇(uα − u) dx dt +
∫

QT

d(t, x,∇uα)∇(uα − u) dx dt

−
∫

QT

f (t, x, uα) (uα − u) dx dt = −α

T∫

0

〈B(uα)− B(u), uα − u〉 dt ≤ 0,

since B(u) = 0. Due to Fatou’s lemma and integration by parts

lim inf
α→∞

∫

QT

a(x)∂t∇uα ∇(uα − u) dx dt > 0.

Then, by using the convergence of uα, we obtain

lim sup
α→∞

∫

QT

d(t, x,∇uα)∇(uα − u) dx dt

≤ lim
α→∞

∫

QT

f (t, x, uα) (uα − u) dx dt− lim
α→∞

∫

QT

∂tb(uα) (uα − u) dx dt = 0.

The monotonicity of d implies

lim sup
α→∞

∫

QT

d(t, x,∇uα)∇(uα − u) dx dt > lim
α→∞

∫

QT

d(t, x,∇u)∇(uα − u) dx dt = 0.

Thus, we have

lim
α→∞

∫

QT

d(t, x,∇uα)∇(uα − u) dx dt = 0. (2.2.13)

For the function w = (1− λ)u + λv, where v ∈ Lp(0, T; V) and λ > 0, the monotonicity of d
implies

0 ≤
∫

QT

(d(t, x,∇uα)− d(t, x,∇w))∇(uα − w) dx dt

=
∫

QT

(d(t, x,∇uα)− d(t, x,∇w))∇(uα − u) dx dt

+λ

∫

QT

(d(t, x,∇uα)− d(t, x,∇w))∇(u− v) dx dt.

The first integral on the right hand side converges to zero for α → ∞, due to the convergence

of {uα} and (2.2.13). Then we divide this inequality by λ, pass to the limits as α → ∞ and

λ → 0, and, due to continuity of d, obtain

lim
α→∞

∫

QT

d(t, x,∇uα)∇(u− v) dx dt >
∫

QT

d(t, x,∇u)∇(u− v) dx dt. (2.2.14)
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Now we choose v− uα as a test function in the equation (2.2.12), where v ∈ Lp(0, T; V) and

v(t) ∈ K for almost all t ∈ (0, T), use the monotonicity of B and obtain
∫

QT

[
∂tb(uα) (v− uα) + a(x)∂t∇uα ∇(v− uα) + d(t, x,∇uα)∇(v− uα)

]
dx dt

−
∫

QT

f (t, x, uα) (v− uα) dx dt = α

T∫

0

〈B(v)− B(uα), v− uα〉 dt > 0, (2.2.15)

since B(v) = 0. By Fatou’s lemma we have

lim inf
α→∞

∫

QT

a(x)∂t∇uα ∇uα dx dt >
∫

QT

a(x)∂t∇u∇u dx dt.

The equality (2.2.13) and the inequality (2.2.14) yields

lim
α→∞

∫

QT

d(t, x,∇uα)∇(v− uα) dx dt

= lim
α→∞

∫

QT

d(t, x,∇uα)∇(v− u) dx dt + lim
α→∞

∫

QT

d(t, x,∇uα)∇(u− uα) dx dt

≤
∫

QT

d(t, x,∇u)∇(v− u) dx dt.

Then taking the limit as α → ∞ in (2.2.15) and using the convergence of uα imply that u
satisfies the inequality (2.2.1). ❒

Remark 2.2.6. Assuming the strong monotonicity of d, i.e.

(d(t, x, ξ1)− d(t, x, ξ2))(ξ1 − ξ2) > d1|ξ1 − ξ2|p for d1 > 0, ξ1, ξ2 ∈ RN×l

ensures the strong convergence of uα → u in Lp(0, T; V).
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2.3 Doubly Nonlinear Equations

The initial boundary value problem for doubly nonlinear pseudoparabolic equation is given

by




∂tb(u)− ∂t∆a(u)−∇ · d(t, x, u,∇a(u)) = f (t, x, u), (t, x) ∈ QT = (0, T)×Ω,

b(u(0, x)) = b(u0(x)), x ∈ Ω,

u(t, x) = 0, (t, x) ∈ (0, T)× ∂Ω.

(2.3.1)

We define the function B̃ by

B̃(s) := b(a−1(s)) s−
s∫

0

b(a−1(z)) dz for s ∈ {y ∈ R, y = a(z), z ∈ R}. (2.3.2)

The existence of a solution will be ensured by the following assumptions.

Assumption 2.3.1.

(A1) The function b : R→ R is strictly monotone increasing, continuous, b(0) = 0,

and satisfies the growth assumption |b(s)|2 ≤ C1B̃(a(s)) + C2 for all s ∈ R.

(A2) The function a : R→ R is strictly monotone increasing, continuous, a(0) = 0.

(A3) The diffusivity d : (0, T)×Ω×R×RN → RN is continuous, elliptic, i.e. there

exists some d0 > 0, such that d(t, x, z, ξ) ξ > d0|ξ|p for ξ ∈ RN , p > 2, and

monotone, i.e. (d(t, x, z, ξ1)− d(t, x, z, ξ2)) (ξ1 − ξ2) > 0 for ξ1, ξ2 ∈ RN , and

satisfies the growth assumption |d(t, x, z, ξ)| ≤ C
(
1 + |ξ|p−1 + (B̃(a(z)))

p−1
p

)

for almost all (t, x) ∈ QT and for z ∈ R, ξ ∈ RN .

(A4) The function f : (0, T)×Ω×R→ R is continuous and satisfies the growth

assumption, i.e. | f (t, x, z)| ≤ C
(
1 + (B̃(a(z)))

p−1
p

)
for almost all (t, x) ∈ QT

and for z ∈ R.

(A5) The initial condition b(u0) is in L2(Ω) and a(u0) is in H1
0(Ω).

The notion of a solution of the problem introduced above, will be given now.

Definition 2.3.2. A function u : QT → R is called a weak solution of (2.3.1) if

1) b(u) ∈ L2(QT), ∂t(b(u)− ∆a(u)) ∈ Lq(0, T; H−1,q(Ω)),

a(u) ∈ Lp(0, T; H1,p
0 (Ω)), a(u) ∈ L∞(0, T; H1

0(Ω)), and

2) −
∫

QT

b(u) ∂tv dx dt−
∫

QT

∇a(u)∇∂tv dx dt +
∫

QT

d(t, x, u,∇a(u))∇v dx dt

+
∫

QT

b(u0) vt dx dt +
∫

QT

∇a(u0)∇vt dx dt =
∫

QT

f (t, x, u) v dx dt, (2.3.3)

for all functions v ∈ Lp(0, T; H1,p
0 (Ω)), such that vt ∈ L2(0, T; H1

0(Ω)) and v(T) = 0.
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Theorem 2.3.3. Under Assumption 2.3.1 there exists a weak solution of the problem (2.3.1).

We approximate the differential equation by the time discretization, h = T/n, ti = ih,

i = 0, . . . , n, and obtain the discrete problem
{

1
h (b(ui)− b(ui−1))− 1

h ∆(a(ui)− a(ui−1))−∇ · d(ti, x, ui−1,∇a(ui)) = f (ti, x, ui−1),

ui(x) = 0 for x ∈ ∂Ω.

The elliptic problems can be solved by Galerkin’s approximation. Let {ek}∞
k=1 be a basis in

H1,p
0 (Ω). We are looking for functions {um

i }n
i=1 in the subspace Hm, spanned by {e1, ..., em},

a(um
i ) =

m

∑
k=1

αm
ik ek,

such that
∫

Ω

1
h
(b(um

i )− b(um
i−1)) ξ dx +

∫

Ω

1
h
(∇a(um

i )−∇a(um
i−1))∇ξ dx

+
∫

Ω

d(ti, x, um
i−1,∇a(um

i ))∇ξ dx−
∫

Ω

f (ti, x, um
i−1) ξ dx = 0 (2.3.4)

holds for all ξ ∈ Hm. Here a(um
0 ) ∈ Hm is an approximation of a(u0) in H1

0(Ω). The strict

monotonicity of a yields um
0 → u0 a.e. in QT.

Lemma 2.3.4. There exists a solution um
i in Hm of the family of discretized equations (2.3.4).

Proof. The existence will be shown by induction. Since um
0 is given, um

i−1 can be assumed to

be known. The left-hand side of (2.3.4) defines a continuous mapping Jhm : Rm → Rm given

by

J j
hm(r) =

1
h

∫

Ω

(b(v)ej +∇a(v)∇ej) dx− 1
h

∫

Ω

(b(um
i−1) ej +∇a(um

i−1)∇ej) dx

+
∫

Ω

d(ti, x, um
i−1,∇a(v))∇ej dx−

∫

Ω

f (ti, x, um
i−1) ej dx,

where a(v) =
m
∑
j=1

rj ej. Due to Assumption 2.3.1, this mapping satisfies the estimate

Jhm(r)r > 1
h

∫

Ω

(
B̃(a(v)) +

1
2
|∇a(v)|2

)
dx− 1

h

∫

Ω

(
B̃(a(um

i−1)) +
1
2
|∇a(um

i−1)|2
)

dx

+d0

∫

Ω

|∇a(v)|p dx− c1δ0

∫

Ω

|∇a(v)|p dx− c2(δ0)
∫

Ω

| f (ti, x, um
i−1)|q dx

> c3

∫

Ω

|∇a(v)|2 dx + c4

∫

Ω

|∇a(v)|p dx− c5.

Hence, for |r| big enough, J(r)r > 0 for all such r. The continuity of J implies the existence

of a zero of J, see (Showalter 1996, Proposition 2.1). Due to the strict monotonicity of a there

exists v = um
i a solution of (2.3.4). ❒
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We construct approximative solutions as piecewise constant interpolation of the ui’s to

[0, T]. For the proof of the Theorem 2.3.3 we use an a priori estimate, a compactness ar-

gument, and an integration by parts formula from (Jäger and Kacur 1995), adapted for

pseudoparabolic equations, Lemma A.1.6.

At first we obtain the estimates for um
i .

Lemma 2.3.5. The estimates

max
1≤i≤n

∫

Ω

B̃(a(um
i )) dx ≤ C,

max
1≤i≤n

∫

Ω

|∇a(um
i )|2 dx ≤ C, (2.3.5)

n

∑
i=1

h
∫

Ω

|∇a(um
i )|p dx ≤ C

hold uniformly with respect to m and n.

Proof. Choosing a(um
i ) as a test function in (2.3.4) and summing over i yields

j

∑
i=1

∫

Ω

1
h
(b(um

i )− b(um
i−1)) a(um

i ) dx +
j

∑
i=1

∫

Ω

1
h
(∇a(um

i )−∇a(um
i−1))∇a(um

i ) dx

+
j

∑
i=1

∫

Ω

d(ti, x, um
i−1,∇a(um

i ))∇a(um
i ) dx−

j

∑
i=1

∫

Ω

f (ti, x, um
i−1) a(um

i ) dx = 0.

By using Assumption 2.3.1 each term will be estimated separately. From the definition of

the function B̃ it follows that

I1 :=
j

∑
i=1

∫

Ω

(b(um
i )− b(um

i−1)) a(um
i ) dx >

∫

Ω

B̃(um
j ) dx−

∫

Ω

B̃(um
0 ) dx.

By Abel’s summation formula we obtain

I2 :=
j

∑
i=1

∫

Ω

(∇a(um
i )−∇a(um

i−1))∇a(um
i ) dx > 1

2

∫

Ω

|∇a(um
j )|2 dx− 1

2

∫

Ω

|∇a(um
0 )|2 dx.

The ellipticity assumption implies

I3 :=
j

∑
i=1

∫

Ω

d(ti, x, um
i−1,∇a(um

i ))∇a(um
i ) dx > d0

j

∑
i=1

∫

Ω

|∇a(um
i )|p dx.

By the growth assumption on f and the Poincaré inequality we have

I4 :=
j

∑
i=1

∫

Ω

f (ti, x, um
i−1) a(um

i ) dx ≤ c1/δ0

j

∑
i=1

∫

Ω

| f (ti, x, um
i−1)|q dx + c2δ0

j

∑
i=1

∫

Ω

|a(um
i )|p dx

≤ c3(δ0)
j

∑
i=1

∫

Ω

B̃(um
i ) dx + c4δ0

j

∑
i=1

∫

Ω

|∇a(um
i )|p dx + c4.
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Collecting the estimates of integrals I1, I2, I3, and I4 implies
∫

Ω

B̃(um
j ) dx +

1
2

∫

Ω

|∇a(um
j )|2 dx + (d0 − c1δ0)

j

∑
i=1

h
∫

Ω

|∇a(um
i )|p dx

≤
∫

Ω

B̃(um
0 ) dx +

1
2

∫

Ω

|∇a(um
0 )|2 dx + c2(δ0)

j

∑
i=1

h
∫

Ω

B̃(um
i ) dx + c3.

The discrete version of Gronwall’s Lemma implies the estimates in Lemma 2.3.5. The Gron-

wall Lemma is applicable for sufficiently small h and δ0 that satisfy d0 > c1δ0 and

c2(δ0)h < 1. ❒

To show the strong convergence of the approximations in L2(QT) the following lemma is

essential.

Lemma 2.3.6. The estimates
n−k

∑
j=1

h
∫

Ω

(b(um
j+k)− b(um

j )) (a(um
j+k)− a(um

j )) dx ≤ Ckh,

n−k

∑
j=1

h
∫

Ω

|∇a(um
j+k)−∇a(um

j )|2 dx ≤ Ckh (2.3.6)

hold uniformly with respect to m and n.

Proof. Summing up the equations (2.3.4) for j = j + 1, ..., j + k, choosing a(um
j+k)− a(um

j ) as

a test function, and finally summing up over j = 1, ..., n− k yields
n−k

∑
j=1

∫

Ω

1
h
(b(um

j+k)− b(um
j ))(a(um

j+k)− a(um
j )) dx +

n−k

∑
j=1

∫

Ω

1
h
|∇a(um

j+k)−∇a(um
j )|2 dx

+
n−k

∑
j=1

j+k

∑
i=j+1

∫

Ω

d(ti, x, um
i−1,∇a(um

i ))(∇a(um
j+k)−∇a(um

j )) dx

−
n−k

∑
j=1

j+k

∑
i=j+1

∫

Ω

f (ti, x, um
i−1)(a(um

j+k)− a(um
j )) dx = 0.

The third and fourth integral can be estimated by

n−k

∑
j=1

j+k

∑
i=j+1

∫

Ω

d(ti, x, um
i−1,∇a(um

i ))(∇a(um
j+k)−∇a(um

j )) dx

≤ c1

n

∑
i=1

∫

Ω

|d(ti, x, um
i−1,∇a(um

i ))|q dx + c2k
n−k

∑
j=1

∫

Ω

(|∇a(um
j+k)|p + |∇a(um

j )|p) dx

and
n−k

∑
j=1

j+k

∑
i=j+1

∫

Ω

f (ti, x, um
i−1)(a(um

i )− a(um
i−1)) dx ≤ c3

n

∑
i=1

∫

Ω

| f (ti, x, um
i−1)|q dx

+c4k
n−k

∑
j=1

∫

Ω

(|a(um
j+k)|p + |a(um

j )|p) dx.
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Due to the growth assumptions on d and f , we have

n

∑
i=1

∫

Ω

|d(x, ti, um
i−1,∇a(um

i ))|q dx ≤ c5 + c6

n

∑
i=1

∫

Ω

|∇a(um
i )|p dx + c7

n

∑
i=1

∫

Ω

B̃(a(um
i )) dx,

n

∑
i=1

∫

Ω

| f (x, ti, um
i−1)|q dx ≤ c8 + c9

n

∑
i=1

∫

Ω

B̃(a(um
i )) dx.

Then we obtain the following inequality

n−k

∑
j=1

∫

Ω

1
h
(b(um

j+k)− b(um
j ))(a(um

j+k)− a(um
j )) dx +

n−k

∑
j=1

∫

Ω

1
h
|∇a(um

j+k)−∇a(um
j )|2 dx

≤
n

∑
i=1

∫

Ω

|∇a(um
i )|p dx + c1

n

∑
i=1

∫

Ω

B̃(a(um
i )) dx + c2k

n−k

∑
j=1

∫

Ω

(|a(um
j+k)|p + |a(um

j )|p) dx + c3.

This, by using the estimates in Lemma 2.3.5, implies the asserted estimates. ❒

Proof of Theorem 2.3.3. We define the step functions for t ∈ (ti−1, ti], x ∈ Ω by

ūm
n (t, x) := um(ti, x),

where the initial conditions are ūm
n (0, x) = um

0 (x).

From estimates (2.3.5) and (2.3.6) we obtain

sup
0≤t≤T

∫

Ω

B̃(a(ūm
n (t, x))) dx ≤ C, sup

0≤t≤T

∫

Ω

|∇a(ūm
n (t, x))|2 dx ≤ C,

∫

QT

|∇a(ūm
n (t, x))|p dx dt ≤ C,

T−τ∫

0

∫

Ω

|∇a(ūm
n (t + τ, x))−∇a(ūm

n (t, x))|2 dx dt ≤ Cτ,

T−τ∫

0

∫

Ω

(b(a(ūm
n (t + τ)))− b(a(ūm

n (t)))(a(ūm
n (t + τ))− a(ūm

n (t))) dx dt ≤ Cτ, (2.3.7)

where for k ∈ {0, . . . , n− 1}, τ ∈ (kh, (k + 1)h). The growth assumption on d and estimates

(2.3.7) imply

||dn(t, x, ūm
n,h,∇a(ūm

n ))||Lq(QT)N ≤ c1||∇a(ūm
n )||

p
q

Lp(QT)N + c2||B̃(a(ūm
n ))||

1
q

L1(QT) + c3 ≤ C,

where ūm
n,h(t) := ūm

n (t − h) for t ∈ [h, T] and ūm
n,h(t, x) := um

0 (x) for t ∈ [0, h],

dn(t, x, s, z) := d(ti, x, s, z) for t ∈ (ti−1, ti], for i = 1, ..., n, and dn(0, x, s, z) := d(0, x, s, z).

From the equation (2.3.4) we obtain

||∂h
(
b(ūm

n )− ∆a(ūm
n )

)||Lq(0,T;H−1,q(Ω)) ≤ C. (2.3.8)

The growth assumption |b(s)|2 ≤ C1B̃(a(s)) + C2 and the estimate for B̃ in (2.3.7) imply

||b(ūm
n )||L2(QT) ≤ C.
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Then there exists a subsequence in m and n of {ūm
n }, again denoted by {ūm

n }, such that

a(ūm
n ) → α weakly− ∗ in L∞(0, T; H1

0(Ω)),

a(ūm
n ) → α weakly in Lp(0, T; H1,p

0 (Ω)),

b(ūm
n ) → β weakly in L2(QT), (2.3.9)

∂h(b(ūm
n )− ∆a(ūm

n )) → z weakly in Lq(0, T; H−1,q(Ω)),

d(t, x, ūm
n,h,∇a(ūm

n )) → χ weakly in (Lq(QT))N .

The third and fourth estimates in (2.3.7) imply, by Kolmogorov’s compactness criterium,

(Necas 1967), the strong convergence of {a(ūm
n )} in L2(QT). Due to strict monotonicity of a

we obtain convergence ūm
n → u a.e. in QT. Since a is continuous, a(ūm

n ) → a(u) a. e. in QT

and α = a(u). Thus, by the Dominated Convergence Theorem, (Evans 1998), a(ūm
n ) → a(u)

strongly in L2(QT). The fourth estimate in (2.3.7) and the Poincaré inequality imply

||a(ūm
n )− a(ūm

n,h)||L2(0,T;H1
0 (Ω)) ≤

C√
n

.

Then the strict monotonicity of a and ūm
n → u a.e. in QT imply ūm

n,h → u a.e. in QT. The

continuity of b implies b(ūm
n ) → b(u) a. e. in QT. The Dominated Convergence Theorem

yields b(ūm
n ) → b(u) strongly in L2(QT). Since f (ūm

n,h) is continuous and bounded in Lq(QT),

|| fn(t, x, ūm
n,h)||Lq(QT) ≤ c1||B̃(a(ūm

n ))||
1
q

L1(QT) + c2 ≤ C,

we obtain f (ūm
n,h) → f (u) strongly in Lq(QT). From the continuity of B̃ follows that

B̃(ūm
n ) → B̃(u) a.e. in QT. Since {B̃(ūm

n )} is bounded in L∞(0, T; L1(Ω)) and B̃(ūm
n ) is non-

negative we obtain, by Fatou’s Lemma, B̃(u) ∈ L∞(0, T; L1(Ω)).

Integrating the equation (2.3.4) over (0, T) and passing to the limit as m, n → ∞ imply
T∫

0

〈z, v〉 dt +
∫

QT

χ∇v dx dt =
∫

QT

f (t, x, u) v dx dt.

The discrete time derivative can be rewritten in the form∫

QT

1
h
(
b(ūm

n (t))− b(ūm
n (t− h))

)
v dx dt +

∫

QT

1
h
(∇a(ūm

n (t))−∇a(ūm
n (t− h))

)∇v dx dt =

−
∫

QT

(
b(ūm

n )∂−hv +∇a(ūm
n )∂−h∇v

)
dx dt +

∫

Ω

(
b(ūm

n (0))v(0) +∇a(ūm
n (0))∇v(0)

)
dx

for all v ∈ Lp(0, T; H1,p
0 (Ω)), such that vt ∈ L2(0, T; H1

0(Ω)) and v(T) = 0. Due to

a(ūm
n (0)) = a(um

0 ), a(um
0 ) → a(u0) in H1

0(Ω), and um
0 → u0 a.e. in QT for m → ∞, we

obtain
T∫

0

〈z, v〉 dt = lim
m,n→∞

∫

QT

1
h

((
b(ūm

n (t))− b(ūm
n (t− h))

)
v +∇(

a(ūm
n (t))− a(ūm

n (t− h))
)∇v

)
dx dt

= −
∫

QT

b(u)vt dx dt−
∫

QT

∇a(u)∇vt dx dt +
∫

QT

b(u0)vt dx dt +
∫

QT

∇a(u0)∇vt dx dt
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for all v ∈ Lp(0, T; H1,p
0 (Ω)), such that vt ∈ L2(0, T; H1

0(Ω)) and v(T) = 0. Since such v
form a dense subspace of Lp(0, T; H1,p

0 (Ω)) and the boundedness in (2.3.8), we obtain that

z = ∂t(b(u)− ∆a(u)) as functions in Lq(0, T; H−1,q(Ω)).

Now we show χ(t, x) = d(t, x, u,∇a(u)) by using the monotonicity of d and Minty-Browder

argument. The integration by parts formula, Lemma A.1.6, and Fatou’s Lemma yield

lim inf
m,n→∞

T∫

0

〈∂t(b(ūm
n )− ∆a(ūm

n )), a(ūm
n )〉 dt

> lim inf
m,n→∞

(∫

Ω

B̃(a(ūm
n )) dx +

1
2

∫

Ω

|∇a(ūm
n )|2 dx

)
−

∫

Ω

(
B̃(a(u0)) +

1
2
|∇a(u0)|2

)
dx

>
∫

Ω

B̃(a(u)) dx +
1
2

∫

Ω

|∇a(u)|2 dx−
∫

Ω

B̃(a(u0)) dx− 1
2

∫

Ω

|∇a(u0)|2 dx.

Then

lim sup
m,n→∞

T∫

0

∫

Ω

d(t, x, ūm
nh,∇a(ūm

n ))∇a(ūm
n ) dx dt

≤
T∫

0

∫

Ω

f (t, x, u) u dx dt− lim inf
m,n→∞

T∫

0

〈∂t(b(ūm
n )− ∆a(ūm

n )), a(ūm
n )〉 dt

≤
T∫

0

∫

Ω

χ∇a(u) dx dt.

The monotonicity of d implies

T∫

0

∫

Ω

(
dn(t, x, ūm

nh,∇a(ūm
n ))− dn(t, x, ūm

nh, w)
)(∇a(ūm

n )− w
)

dx dt > 0.

Since ūm
nh → u a.e. in QT, dn is continuous, and dn(t, x, ūm

nh, w) is uniformly bounded in

Lq(QT)N , we have dn(t, x, ūm
nh, w) → d(t, x, u, w) in Lq(QT)N , by the Dominated Conver-

gence Theorem. Taking the limit as m, n → ∞ yields

T∫

0

∫

Ω

(
χ− d(t, x, u, w)

)(∇a(u)− w
)

dx dt > 0.

Using the Minty-Browder Theorem implies χ(t, x) = d(t, x, u,∇a(u)). Thus, we obtain that

the function u satisfies the equation (2.3.3). ❒

Theorem 2.3.7 (Uniqueness). Let Assumption 2.3.1, p = 2,

|d(t, x, ξ1, ζ1)− d(t, x, ξ2, ζ2)| ≤ C(|a(ξ1)− a(ξ2)|+ |ζ1 − ζ2|), and

| f (t, x, ξ1)− f (t, x, ξ2)| ≤ C|a(ξ1)− a(ξ2)|
for t ∈ (0, T), x ∈ Ω, ξ1, ξ2 ∈ R, ζ1, ζ2 ∈ RN be satisfied. Then there exists at most one weak
solution of the problem (2.3.1).
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Proof. Suppose, there are two solutions u1, u2 ∈ L2(QT). Then they satisfy

−
∫

QT

(
(b(u1)− b(u2)) vt +∇(a(u1)− a(u2))∇vt

)
dx dt

+
∫

QT

(
d(t, x, u1,∇a(u1))− d(t, x, u2,∇a(u2))

)∇v dx dt =
∫

QT

( f (t, x, u1)− f (t, x, u2)) v dx dt,

using b(u1
0) = b(u2

0) and ∇a(u1
0) = ∇a(u2

0). Since ∂t(b(ui) − ∆ a(ui)) ∈ L2(0, T, H−1(Ω)),

we can assume b(ui)− ∆ a(ui) ∈ C(0, T; H−1(Ω)). Due to a(ui) ∈ L2(0, T; H1
0(Ω)) we obtain

at first ∆ a(ui) ∈ L2(0, T, H−1(Ω)) and thereby b(ui) ∈ L2(0, T; H−1(Ω)). We choose for

s ≤ T

vs(t) =





s∫
t
(a(u1(τ))− a(u2(τ)))dτ, t < s,

0, otherwise

and integrate by parts. Notice that vs(s) = 0. Then we obtain

s∫

0

〈b(u1)− b(u2), a(u1)− a(u2)〉 dt +

s∫

0

∫

Ω

|∇a(u1)−∇a(u2)|2 dx dt

≤ δ0

s∫

0

∫

Ω

|∇a(u1)−∇a(u2)|2 dx dt +
c1

δ0

s∫

0

∫

Ω

|∇vs(t)|2 dx dt.

The last integral satisfies the following estimate

s∫

0

∫

Ω

|∇vs(t)|2 dx dt ≤ c2

s∫

0

s∫

t

∫

Ω

|∇a(u1(x, τ))−∇a(u2(x, τ))|2 dx dτ dt

= c2

s∫

0

t∫

0

∫

Ω

|∇a(u1(x, τ))−∇a(u2(x, τ))|2 dx dτ dt.

Using the monotonicity of the functions b and a, and Gronwall’s lemma in the last inequality

yields
s∫

0

∫

Ω

|∇a(u1)−∇a(u2)|2 dx dt = 0

and, since the function a is strictly monotone increasing, u1 = u2 almost everywhere in QT.

❒

Remark 2.3.8. We considered the Dirichlet boundary conditions. The results remain valid

for other boundary conditions, that allow the use of a Poincaré inequality.
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2.4 Pseudoparabolic Equations with Convection

In this section, a better approximative solution of diffusion with convection is obtained by

using discretization along characteristics. Such a convective term arises in the two-phase

flow model described earlier. It is due to gravitational force.

In QT = (0, T)×Ω consider the initial boundary value problem




∂tu−∇ · (a(x)∂t∇u) + c(t, x, u)∇u−∇ · (d(t, x, u)∇u) = f (t, x, u),

u(0, x) = u0(x) x ∈ Ω,

u(t, x) = 0, (t, x) ∈ (0, T)× ∂Ω.

(2.4.1)

The existence of a solution will be ensured by the following assumptions.

Assumption 2.4.1.

(A1) The matrix field a ∈ L∞(Ω)N×N is symmetric and elliptic, i.e. for some a0 and a0,

0 < a0 ≤ a0 < ∞, a satisfies a0|ξ|2 ≤ a(x)ξ ξ ≤ a0|ξ|2 for a.a. x ∈ Ω and for ξ ∈ RN .

(A2) The function c : (0, T)×Ω×R→ RN is continuous and bounded |c(t, x, z)| ≤ c0 < ∞.

(A3) The matrix field d : (0, T)×Ω×R→ RN×N is continuous, elliptic, i.e. there exists

some d0 > 0, such that d satisfies d(t, x, z)ξ ξ > d0|ξ|2 for ξ ∈ RN , and bounded,

i.e. for some d0 < ∞, |d(t, x, z)| ≤ d0 for almost all (t, x) ∈ QT and z ∈ R.

(A4) The function f : (0, T)×Ω×R→ R is continuous and sublinear, i.e.

| f (t, x, z)| ≤ C(1 + |z|) for almost all (t, x) ∈ QT and for z ∈ R.

(A5) The initial condition u0 is in H1
0(Ω).

The notion of a solution of the problem (2.4.1) will be given now.

Definition 2.4.2. A function u : QT → R is called a weak solution of (2.4.1) if

1) u ∈ H1(0, T; H1
0(Ω)),

2) u satisfies the initial condition, i.e. u(t) → u0 in H1
0(Ω) as t → 0,

3) u satisfies the equality∫

QT

ut v dx dt +
∫

QT

a(x)∇ut ∇v dx dt +
∫

QT

c(t, x, u)∇u v dx dt

+
∫

QT

d(t, x, u)∇u∇v dx dt =
∫

QT

f (t, x, u) v dx dt (2.4.2)

for all test functions v ∈ L2(0, T; H1
0(Ω)).

The main theorem of this section contains the existence of such a solution.

Theorem 2.4.3. Under Assumption 2.4.1 there exists a weak solution of the problem (2.4.1).
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The equation (2.4.1) is of the form




∂tu + v · ∇u− A(u) = f (t, x, u) in QT,

u = 0 on (0, T)× ∂Ω,

u(0, x) = u0 in Ω,

where v(t, x) = c(t, x, u(t, x)). Due to the characteristic method, we obtain the equation

∂tu(t, X(t, s, x))− A(u) = f (t, x, u),

where X satisfies

∂tX(t, s, x) = v(t, X(t, s, x)), X(s, s, x) = x.

The basic structure of the in time discretized equation reads

ui − ui−1 ◦ φi

h
− A(ui) = f (ti, x, ui−1),

where φi(x) = x − hv(ti, x) is an approximation of X(ti−1, ti, x) for h = T/n, ti = ih,

i = 0, . . . , n. To make this idea work there are some subtleties to be considered.

It is substantial that the characteristics X do not intersect; otherwise, neither the backward

transport X(ti−1, ti, x) nor φi(x) can be shown to exist. Provided

||∇v(t)||L∞(Ω) ≤ c for all t ∈ (0, T),

and therefore det(φi(x)) > 1− hc > 0, the backward transport exists. However, this estimate

may not be satisfied. To circumvent this problem, we consider for τ = hω, 0 < ω < 1, the

smoothed version of vi(x) := v(ti, x) by vτ
i := wτ ∗ vi, where wτ(x) = 1

τN w1( x
τ ),

w1(x) =

{
κ exp( |x|2

|x|2−1 ) for |x| ≤ 1,

0 otherwise,
and

∫

RN

w1(x)dx = 1.

This concept will guarantee that ||∇vτ
i ||L∞(Ω) will be uniformly bounded in i = 1, . . . , n for

each fixed τ. Choose

Ωh = {x ∈ RN , dist(x, Ω) < h||v||L∞(QT)}.

Then Ω = ∩h>0Ωh. Fix some h∗ > 0 and Ω∗ = Ωh∗ . Let Ωi = φi(Ω). The boundedness of v
yields Ωi ⊂ Ωh ⊂ Ω∗ for h ≤ h∗. Since h∗ > 0, there exists an extension ũi−1 of ui−1 from Ω

to Ω∗, satisfying ||ũi−1||H1(Ω∗) ≤ c||ui−1||H1(Ω) uniformly in u. The function ui−1 from H1
0(Ω)

can be extended by zero to a function ũi−1 ∈ H1
0(Ω∗) and ||ũi−1||H1

0 (Ω∗) ≤ ||ui−1||H1
0 (Ω). This

construction allows us to assume that ũi−1 is defined on all Ωi. Especially, ũi−1 ◦ φi is well

defined.
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We approximate the differential equation (2.4.1) by the time discretization, h = T/n,

ti = ih, i = 0, . . . , n, and obtain

1
h
(
ui − ũi−1 ◦ φi)−∇ · (a(x)

1
h
∇(ui − ui−1)

)−∇ · (d(ti, x, ui−1)∇ui) = f (ti, x, ui−1),

ui(x) = 0 on ∂Ω, (2.4.3)

where φi(x) := x− h vτ
i (x) and vi(x) = c(ti, x, ui−1). It is equivalent to

−∇ ·
(
(a(x)

1
h

+ d(ti, x, ui−1))∇ui

)
+

1
h

ui = f (ti, x, ui−1) +
1
h

ũi−1 ◦ φi − 1
h
∇ · (a(x)∇ui−1)

The existence and uniqueness of the solution ui of elliptic problems (2.4.3) follows from

Lax-Milgram Theorem, (Evans 1998).

In the proof of the a priori estimates we use the following lemma.

Lemma 2.4.4. (Kacur 2001) There exists h0 > 0, such that φi is one to one and

1
2
|x− y| ≤ |φi(x)− φi(y)| ≤ 2|x− y|, for all x, y ∈ Ω

uniformly in n, i = 1, . . . , n, and h ≤ h0.

Proof. Due to ||vi||L∞(Ω) ≤ C < ∞, we have

||vτ
i ||L∞(Ω) ≤ C

and

||∇vτ
i ||L∞(Ω) ≤ C/τ.

Since τ = hω and 0 < ω < 1, we obtain for φi

(1− h1−ωC)|x− y| ≤ |φi(x)− φi(y)| ≤ (1 + h1−ωC)|x− y|.

❒

Now we prove a priori estimates for ui.

Lemma 2.4.5. The estimates

max
1≤j≤n

∫

Ω

(
|uj|2 + |∇uj|2

)
dx ≤ C,

n

∑
i=1

h
∫

Ω

|∇ui|2 dx ≤ C (2.4.4)

hold uniformly in n.

Proof. Testing the equation (2.4.3) with ui and summing over i yield

j

∑
i=1

1
h

∫

Ω

(ui − ui−1) ui dx +
j

∑
i=1

1
h

∫

Ω

(ui−1 − ũi−1 ◦ φi) ui dx +
j

∑
i=1

1
h

∫

Ω

a(x)∇(ui − ui−1)∇ui dx

+
j

∑
i=1

∫

Ω

d(ti, x, ui−1)∇ui ∇ui dx =
j

∑
i=1

∫

Ω

f (ti, x, ui−1) ui dx.
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Due to Assumption 2.4.1, Abel’s summation formula, and multiplication with h, we obtain

∫

Ω

|uj|2 dx + a0

∫

Ω

|∇uj|2 dx + d0

j

∑
i=1

h
∫

Ω

|∇ui|2 dx (2.4.5)

≤
∫

Ω

|u0|2 dx + a0
∫

Ω

|∇u0|2 dx +
j

∑
i=1

∫

Ω

|(ui−1 − ũi−1 ◦ φi)ui| dx + c1

j

∑
i=1

h
∫

Ω

|ui|2 dx + c2.

To estimate the third integral on the right hand side we use the equality

ui−1 − ũi−1 ◦ φi =

1∫

0

∇ũi−1(x + s(φi(x)− x)) ds vτ
i (x) h.

Integration over Ω and boundedness of vτ
i yields

∫

Ω

|ui−1 − ũi−1 ◦ φi|2 dx ≤ C

1∫

0

∫

Ω

|∇ũi−1(x + s(φi(x)− x))|2 dx ds h2.

Changing to the new variable y = x + s(φi(x)− x), using y ∈ Ωi ⊂ Ω∗ and the monotonicity

of the integral, and applying the estimate |det Dφ(x)| > 1
2N yields

∫

Ω

|ui−1 − ũi−1 ◦ φi|2 dx ≤ C h2

1∫

0

∫

Ω∗

|∇ũi−1(y)|2 dy ds.

From the boundedness of the extension operator it follows that

||ui−1 − ũi−1 ◦ φi||L2(Ω) ≤ Ch||∇ũi−1||L2(Ω∗) ≤ C1 h||∇ui−1||L2(Ω).

Using this estimate in the estimates in (2.4.5) yields

j

∑
i=1

∫

Ω

|(ui−1 − ũi−1 ◦ φi) ui| dx ≤ c1

j

∑
i=1

h
∫

Ω

|∇ui|2 dx + c2

j

∑
i=1

h
∫

Ω

|ui|2 dx.

Then we obtain the inequality

∫

Ω

|uj|2 dx + a0

∫

Ω

|∇uj|2 dx + d0

j

∑
i=1

h
∫

Ω

|∇ui|2 dx ≤ c3 + c4

j

∑
i=1

h
∫

Ω

(
|ui|2 + |∇ui|2

)
dx.

Due to the discrete Gronwall lemma we obtain the estimates (2.4.4). ❒

Lemma 2.4.6. The estimate
n

∑
i=1

h
∫

Ω

(
|∂hui|2 + |∂h∇ui|2

)
dx ≤ C (2.4.6)

holds uniformly in n, where ∂hui := ui−ui−1
h .



50 Rothe’s Method for Quasilinear and Nonlinear Equations and Inequalities

Proof. We test the equation (2.4.3) with ui − ui−1, sum up over i, and obtain the equality
j

∑
i=1

h
∫

Ω

ui − ũi−1 ◦ φi

h
∂hui dx +

j

∑
i=1

h
∫

Ω

a(x)∇∂hui ∇∂hui dx

+
j

∑
i=1

h
∫

Ω

d(ti, x, ui−1)∇ui ∇∂hui dx =
j

∑
i=1

h
∫

Ω

f (ti, x, ui−1) ∂hui dx.

By Assumption 2.4.1 we have the inequality
j

∑
i=1

h
∫

Ω

|∂hui|2 dx + a0

j

∑
i=1

h
∫

Ω

|∇∂hui|2 dx ≤ c1δ
j

∑
i=1

h
∫

Ω

|∇∂hui|2 dx +
c2d0

δ

j

∑
i=1

h
∫

Ω

|∇ui|2 dx

+c3δ
j

∑
i=1

h
∫

Ω

|∂hui|2 dx +
c4

δ

j

∑
i=1

h
∫

Ω

| f (ti, x, ui−1)|2 dx +
c5

δ

j

∑
i=1

h
∫

Ω

∣∣∣∣
ui−1 − ũi−1 ◦ φi

h

∣∣∣∣
2

dx.

Similarly to Lemma 2.4.5 we obtain

ui−1(x)− ũi−1 ◦ φi(x)
h

=

1∫

0

∇ũi−1(x + s(φi(x)− x)) ds vτ
i

and ∣∣∣∣
∣∣∣∣
ui−1 − ũi−1 ◦ φi

h

∣∣∣∣
∣∣∣∣

L2(Ω)
≤ C||∇ũi−1||L2(Ω∗) ≤ C||∇ui−1||L2(Ω).

Then we have the inequality
j

∑
i=1

h
∫

Ω

|∂hui|2 dx +
j

∑
i=1

h
∫

Ω

|∇∂hui|2 dx ≤ C1

j

∑
i=1

h
∫

Ω

|ui|2 dx + C2

j

∑
i=1

h
∫

Ω

|∇ui|2 dx.

Due to the estimates in Lemma 2.4.5, this inequality implies the estimate for the discrete

time derivative ∂hui. ❒

Proof of Theorem 2.4.3. By using the a priori estimates for ui and ∂hui we will show the

convergence of an appropriate subsequence of the approximate solutions to a solution of

the original problem (2.4.1).

Therefor, we define the Rothe functions piecewise for t ∈ (ti−1, ti] and for x ∈ Ω by

un(t, x) := u(ti−1, x) + (t− ti−1)
u(ti, x)− u(ti−1, x)

h
and the step functions by

ūn(t, x) := u(ti, x),

where the initial conditions are un(0, x) = u0(x) and ūn(0, x) = u0(x). From (2.4.4) and

(2.4.6) we have the estimates

sup
0≤t≤T

∫

Ω

(
|ūn|2 + |∇ūn|2

)
dx ≤ C,

∫

QT

|∇ūn|2 dx dt ≤ C, (2.4.7)

∫

QT

(
|∂hun|2 + |∇∂hun|2

)
dx dt ≤ C,

∫

QT

(
|un − ūn|2 + |∇un −∇ūn|2

)
dx dt ≤ C

n2 .
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These estimates imply the existence of subsequences of {un} and of {ūn}, resp., again de-

noted by {un} and {ūn}, resp., such that

ūn → u weakly− ∗ in L∞(0, T; H1
0(Ω)),

ūn → u weakly in L2(0, T; H1
0(Ω)), (2.4.8)

∂hun → ∂tu weakly in L2(0, T; H1
0(Ω)),

where ∂hun(t) := un(t)−un(t−h)
h and un(t − h) = u0 for t ∈ [0, h]. Using the Compactness

Aubin-Lions Lemma, see (Lions 1969) or (Showalter 1996), implies ūn → u strongly in

L2(QT). Due to (Evans 1998, Theorem 5.9.2) and u ∈ H1(0, T; H1
0(Ω)), we obtain

u ∈ C([0, T]; H1
0(Ω)) and u(0) = u0.

Testing the discrete equation (2.4.3) with v ∈ L2(0, T; H1
0(Ω)) yields

∫

QT

∂hun v dx dt +
∫

QT

∂h∇un ∇v dx dt +
∫

QT

dn(t, x, ūn
h)∇ūn ∇v dx dt

+
∫

QT

1
h
(ūn

h − ˜̄un
h ◦ φn) v dx dt =

∫

QT

fn(t, x, ūn
h) v dx dt, (2.4.9)

where φn(t, x) = x − h wτ ∗ cn(t, x, ūn
h), ūn

h(t, x) = ūn(t − h, x), cn(t, x, z) = c(ti, x, z),

dn(t, x, z) = d(ti, x, z) for t ∈ (ti−1, ti], for i = 1, . . . , n, and cn(0, x, z) = c(0, x, z), dn(0, x, z) =

d(0, x, z). The strong convergence of ūn and the last estimate in (2.4.7) imply ūn
h → u strongly

in L2(QT) and ūn
h → u a. e. in QT. The continuity of d(t, x, z) in t and z and the convergence

of ūn
h a. e. in QT imply dn(t, x, ūn

h) → d(t, x, u) a. e. in QT. The boundedness of dn(t, x, ūn
h) and

d(t, x, u), and the Egorov Theorem, (Alt 2002), imply the uniform convergence of dn(t, x, ūn
h)

to d(t, x, u) a.e. in QT. Due to ūn → u weakly in L2(0, T; H1
0(Ω)), we obtain

∫

QT

dn(t, x, ūn
h)∇ūn ∇v dx dt →

∫

QT

d(t, x, u)∇u∇v dx dt.

The convergence of fn(t, x, ūn
h) → f (t, x, u) a.e. in QT follows from the continuity of f and

the a.e. convergence of ūn
h in QT. Due to the sublinearity of f and the Dominated Conver-

gence Theorem, (Evans 1998), we obtain fn(t, x, ūn
h) → f (t, x, u) in L2(QT). The continuity

of c implies cn(t, x, ūn
h) → c(t, x, u) a. e. in QT. From the boundedness of cn(t, x, ūn

h) and

c(t, x, u) in L∞(QT) and the Egorov Theorem follows cn(t, x, ūn
h) → c(t, x, u) uniformly a. e.

in QT.

Now we have to prove
∫

QT

1
h
(ūn

h − ˜̄un
h ◦ φn) v dx dt →

∫

QT

c(t, x, u)∇u v dx dt

for n → ∞, where h = T
n . The equality

∫

QT

1
h
(ūn

h − ˜̄un
h ◦ φn) v dx dt =

∫

QT

1∫

0

∇˜̄un
h(x + s(φn(t, x)− x)) ds wτ ∗ cn(t, x, ūn

h) v dx dt
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holds. Since cn(t, x, ūn
h) → c(t, x, u) a. e. in QT, we have wτ ∗ cn(t, x, ūn

h) → c(t, x, u) a. e. in

QT as n → ∞. The assumed boundedness of c yields

||wτ ∗ cn(t, x, ūn
h)||L∞(QT) ≤ c0.

We need to show that ∇zn → ∇u weakly in L2(QT), where

∇zn(t, x) :=

1∫

0

∇˜̄un
h(t, x + s(φn(t, x)− x)) ds.

Due to ∫

QT

|∇zn|2 dx dt ≤ C1,

there exists χ ∈ L2(QT), such that ∇zn → χ weakly in L2(QT). Now we show zn → u in

L2(QT). Integrating the difference

zn(t, x)− ūn
h(t, x) =

1∫

0

(
˜̄un

h(t, x + s(φn(t, x)− x))− ūn
h(t, x)

)
ds

=

1∫

0

1∫

0

∇˜̄un
h(t, x + sr(φn(t, x)− x)) ds dr wτ ∗ cn(t, x, ūn

h) h

over QT and using the boundedness of cn imply

∫

QT

|zn(t, x)− ūn
h(t, x)|2 dx dt ≤ c0h2

1∫

0

1∫

0

∫

QT

|∇˜̄un
h(t, x + sr(φn(t, x)− x))|2 dx dt ds dr.

From the boundedness of the extension operator and the a priori estimates for ūn
h it follows

that

||∇˜̄un
h ||L2((0,T)×Ω∗) ≤ C2||∇ūh

n||L2(QT) ≤ C3.

Then we have

T∫

0

∫

Ω

|zn(t, x)− ūn
h(t, x)|2 dx dt ≤ Ch2.

Due to the fact that ūn
h → u in L2(QT), we obtain zn → u in L2(QT). Then, ∇zn → χ weakly

in L2(QT) implies that χ = ∇u. Passing in the equation (2.4.9) to the limit as n → ∞, it

follows that the function u is a solution of the problem (2.4.1). ❒

Theorem 2.4.7 (Uniqueness).

Let Assumption 2.4.1 be satisfied, where d depends only on time and space. Let N ≤ 4 and

| f (t, x, z1)− f (t, x, z2)| ≤ C|z1 − z2|, |c(t, x, z1)− c(t, x, z2)| ≤ C|z1 − z2|

for z1, z2 ∈ R, (t, x) ∈ QT. Then there exists at most one weak solution of (2.4.1).
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Proof. Suppose u1 and u2 solve the problem (2.4.1). Then the difference u = u1− u2 satisfies

the equality
∫

Qτ

ut v dx dt +
∫

Qτ

a(x)∇ut ∇v dx dt +
∫

Qτ

(
c(t, x, u1)∇u1 − c(t, x, u2)∇u2

)
v dx dt

+
∫

Qτ

d(t, x)∇u∇v dx dt =
∫

Qτ

(
f (t, x, u1)− f (t, x, u2)

)
v dx dt. (2.4.10)

We choose the test function v = u. The third integral in the last equality is estimated by
∫

Qτ

(
c(t, x, u1)∇u1 − c(t, x, u2)∇u2

)
u dx dt

=
∫

Qτ

c(t, x, u1)∇u u dx dt +
∫

Qτ

(
c(t, x, u1)− c(t, x, u2)

)∇u2 u dx dt

≤ c1

∫

Qτ

|u|2 dx dt + c2

∫

Qτ

|∇u|2 dx dt + c3

(∫

Qτ

|u|4 dx dt
) 1

2
(∫

Qτ

|∇u2|2 dx dt
) 1

2
.

Sobolev’s embedding theorem yields

(∫

Qτ

|u|4 dx dt
) 1

2 ≤ c4

∫

Qτ

|u|2 dx dt + c5

∫

Qτ

|∇u|2 dx dt,

since u ∈ L∞(0, T; H1
0(Ω)) and N ≤ 4. Applying these estimates, ellipticity of a and d, and

Lipschitz continuity of f to equation (2.4.10) implies
∫

Ω

(
|u(τ)|2 + |∇u(τ)|2

)
dx ≤ C

∫

Qτ

(
|u|2 + |∇u|2

)
dx dt.

Due to Gronwall’s Lemma, we obtain
∫

Ω

(
|u(τ)|2 + |∇u(τ)|2

)
dx ≤ 0

and u1 = u2 almost everywhere in QT. ❒

Remark 2.4.8. In this section the zero Dirichlet boundary conditions were considered. This

restriction is not essential and the results can be obtain also for other boundary conditions.





3
Quasilinear Equations and

Variational Inequalities
in Unbounded Time Intervals

In this chapter the question of existence and uniqueness of solutions of quasilinear pseu-

doparabolic equations and variational inequalities without initial conditions is studied. In

section 3.1 a pseudoparabolic equation with a monotone, bounded, hemicontinuous oper-

ator is solved. Such equations are used in the second section to approximate the solution of

a variational inequality. The monotone operator is used as a penalty operator. The unique-

ness will be proved using the strong monotonicity of the operators and Pankov’s Lemma,

see Lemma A.2.2 in the appendix.

3.1 Quasilinear Equations in Unbounded Time Intervals

Here we consider a boundary value problem in the time interval (−∞, T). Quasilinear pseu-

doparabolic equations model the fluid flow in fissured porous media with nonlinear diffu-

sion. The model of Barenblatt, introduced in the Chapter 1, is based upon a linear diffusion.

The existence and uniqueness of a solution in the whole time interval (−∞, T) is interest-

ing, since such a solution represents the evolution far-off of initial perturbations. We prove

the uniqueness of the solution of the nonlinear equation stated below without posing addi-

tional assumptions on the behavior of a solution at −∞. In the linear case it is well known

that extra assumptions at −∞ are needed, (Lavrenyuk and Ptashnik 1998).

Consider a space V that satisfies H1,p
0 (Ω) ⊂ V ⊂ H1,p(Ω) for some p ∈ (2, +∞), is com-

pactly and continuously embedded in L2(Ω), and is densely and continuously embedded

into a closed subspace V0 ⊂ H1(Ω). In QT = (−∞, T)×Ω the equation

ut −∇ · (a(x)∇ut)−∇ · d(t, x,∇u) + g(t, x, u) + B(u) = f (t, x) (3.1.1)

is considered, where B : V → V∗ is a monotone, bounded, and hemicontinuous operator

that satisfies B(0) = 0. The norm in V is the norm of H1,p(Ω) and the norm in V0 is the norm

of H1(Ω).

Here we assume the uniform ellipticity of pseudoparabolic and elliptic parts and the strong

monotonicity and polynomial growth in ξ and in z of the nonlinear functions d(t, x, ξ) and

g(t, x, z).
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Assumption 3.1.1.

(A1) The matrix field a ∈ L∞(Ω)N×N , considered as a linear mapping on L∞(Ω)N , is

symmetric and elliptic, i.e. for some 0 < a0 ≤ a0 < ∞, a0|ξ|2 ≤ a(x)ξ ξ ≤ a0|ξ|2

for ξ ∈ RN and for almost all x ∈ Ω.

(A2) The diffusivity d : (0, T)×Ω×RN → RN is measurable in x, continuous in t and ξ,

elliptic, i.e. for some d0 > 0, d(t, x, ξ) ξ > d0|ξ|p for ξ ∈ RN , strongly monotone, i.e.

for some d1 > 0, (d(t, x, ξ1)− d(t, x, ξ2))(ξ1 − ξ2) > d1|ξ1 − ξ2|p for ξ1, ξ2 ∈ RN , and

satisfies the growth assumption, i.e. for some d0 < ∞, |d(t, x, ξ)| ≤ d0(1 + |ξ|p−1).

(A3) The function g : (0, T)×Ω×R→ R is measurable in x, continuous in t and z,

elliptic, i.e. for some g0 > 0, g(t, x, z) z > g0|z|p, strongly monotone, i.e. for some

g1 > 0, (g(t, x, z1)− g(t, x, z2))(z1 − z2) > g1|z1 − z2|p for z1, z2 ∈ R, and satisfies

the growth assumption, i.e. for some g0 < ∞, |g(t, x, z)| ≤ g0(1 + |z|p−1).

(A4) The external force f ∈ C((−∞, T]; L2(Ω)).

Now we define our notion of a weak solution.

Definition 3.1.2. A function u : QT → R is called a weak solution of the equation (3.1.1) if

1) u ∈ C((−∞, T]; V0) ∩ Lp
loc

(
(−∞, T]; V

)
and

2) −
t2∫

t1

∫

Ω

(
u wt + a(x)∇u∇wt

)
dx dt +

t2∫

t1

∫

Ω

(
d(t, x,∇u)∇w + g(t, x, u) w

)
dx dt

+

t2∫

t1

〈B(u), w〉 dt +
∫

Ω

(
u w + a(x)∇u∇w

)
dx

∣∣∣
t2

t1
=

t2∫

t1

∫

Ω

f (t, x) w dx dt (3.1.2)

for all w ∈ Lp
loc((−∞, T]; V), such that wt ∈ L2

loc

(
(−∞, T]; V0

)
and w ∈ C((−∞, T]; V0), and

for all t1 and t2, such that −∞ < t1 < t2 ≤ T.

Remark 3.1.3. In the definition of the weak solution no information concerning the time

derivative was assumed. In this class existence and uniqueness will be shown without pos-

ing assumptions at−∞. However, in a different class, which consists of functions of at most

exponential growth, existence and uniqueness can be shown also, (Lavrenyuk and Ptash-

nyk 1999).

Theorem 3.1.4 (Uniqueness). Let Assumption 3.1.1 be satisfied. Then there exists at most one
weak solution of the equation (3.1.1).
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Proof. Suppose u1 and u2 are two solutions of equation (3.1.1). Then the function
u = u1 − u2 satisfies∫

Qt1,t2

[
−u wt − a(x)∇u∇wt + (d(t, x,∇u1)− d(t, x,∇u2))∇w + (g(t, x, u1)− g(t, x, u2)) w

]
dx dt

+

t2∫

t1

〈B(u1)− B(u2), w〉 dt +
∫

Ω

[
u w + b(x)∇u∇w

]
dx

∣∣∣
t2

t1
= 0 (3.1.3)

for every function w ∈ Lp
loc((−∞, T]; V), such that wt ∈ L2

loc((−∞, T]; V0), w ∈ C((−∞, T]; V0),

and for all t1 and t2, such that −∞ < t1 < t2 ≤ T. Because of the lack of regularity in the

time variable, the function u cannot be chosen as a test function in the equality (3.1.3).

Hence, a function of the form

w =
(
(γmu) ∗ ρk ∗ ρk

)
γm

for k > 2m is used. Here γm are continuous, piecewise linear cut-off functions on (−∞, T] ,

given by

γm(t) =





1 for t1 + 2
m < t < t2 − 2

m ,

m(t− t1)− 1 for t1 + 1
m ≤ t ≤ t1 + 2

m ,

m(t2 − t)− 1 for t2 − 2
m ≤ t ≤ t2 − 1

m ,

0 for t < t1 + 1
m and t > t2 − 1

m .

The sequence {ρk} ⊂ D(R) satisfies ρk(t) = ρk(−t),
∞∫
−∞

ρk(t)dt = 1, supp ρk ∈
[
− 1

k , 1
k

]
, and

can be constructed in the form ρk = 1
kn ρ1(kx), where ρ1(x) = C exp(− |x|2

1−|x|2 ). The function u
is extended by zero on QT,∞. The function w is smooth in time and belongs to the space V.

By using the properties of convolution, we modify the first integral in (3.1.3) and obtain

I1 := −
∫

Qt1,t2

[
u wt + a(x)∇u∇wt

]
dx dt

= −
∫

Qt1,t2

[
u ((γmu) ∗ ρk ∗ ρk) + a(x)∇u ((γm∇u) ∗ ρk ∗ ρk)

]
γ′m dx dt

−
∫

Qt1,t2

[
uγm ((γmu) ∗ ρk ∗ ρk)t + a(x)∇uγm ((γm∇u) ∗ ρk ∗ ρk)t

]
dx dt.

The second integral on the right hand side vanishes because of

−
∫

Qt1,t2

[
u γm ((γmu) ∗ ρk ∗ ρk)t + a(x)∇u γm ((γm∇u) ∗ ρk ∗ ρk)t

]
dx dt

=
∫

Qt1,t2

[
(γmu) ∗ ρk ((γmu) ∗ ρk)t + a(x)(γm∇u) ∗ ρk ((γm∇u) ∗ ρk)t

]
dx dt

=
1
2

∫

Ω

[
|(uγm) ∗ ρk|2 + a(x)(γm∇u) ∗ ρk (γm∇u) ∗ ρk

]
dx

∣∣∣∣
t2

t1

= 0,
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since γm(t) = 0 at t = t1 and t = t2. So we obtain

I1 =
∫

Qt1,t2

[
uγ′m (γmu) ∗ ρk ∗ ρk + a(x)∇uγ′m (γm∇u) ∗ ρk ∗ ρk

]
dx dt

→
∫

Qt1,t2

[
γmγ′m|u|2 + γmγ′ma(x)∇u∇u

]
dx dt

as k → ∞. Furthermore, the regularity u ∈ C((−∞, T]; V0) implies

I1 → 1
2

∫

Ω

[
|u(t2)|2 + a(x)∇u(t2)∇u(t2)

]
dx− 1

2

∫

Ω

[
|u(t1)|2 + a(x)∇u(t1)∇u(t1)

]
dx

as m → ∞. Passing to the limits in (3.1.3) with the function w, at first as k → ∞, and

afterwards as m → ∞, yields

∫

Ω

[
|u|2 + a(x)∇u∇u

]
dx

∣∣∣∣
t2

t1

+

t2∫

t1

∫

Ω

(d(t, x,∇u1)− d(t, x,∇u2))∇u dx dt

+

t2∫

t1

∫

Ω

(g(t, x, u1)− g(t, x, u2)) u dx dt +

t2∫

t1

〈B(u1)− B(u2), u〉 dt = 0. (3.1.4)

The assumptions on d and g and the monotonicity of B give the estimates for the integrals

in (3.1.4)

I2 :=
∫

Qt1,t2

[
(d(t, x,∇u1)− d(t, x,∇u2))∇u + (g(t, x, u1)− g(t, x, u2)) u

]
dx dt

≥
∫

Qt1,t2

(
d1|u|p + g1|∇u|p

)
dx dt,

I3 :=

t2∫

t1

〈B(u1)− B(u2), u1 − u2〉 dt ≥ 0 .

For p > 2 we have the estimate
∫

Ω

(
|u(t)|p + |∇u(t)|p

)
dx ≥ c1

( ∫

Ω

[
|u(t)|2 + a(x)∇u(t)∇u(t)

]
dx

)p/2
,

where c1 depends on p, n, and a0.

Due to the estimates of I2, I3 and the last inequality, the equality (3.1.4) implies

y2(t)
∣∣∣
t2

t1
+c2

t2∫

t1

yp(t) dt ≤ 0

for all t1, t2 ≤ τ0, where

y2(t) =
∫

Ω

[
|u(t)|2 + a(x)∇u(t)∇u(t)

]
dx .
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Using Pankov’s Lemma A.2.2, it follows from the last inequality that y(t) = 0 for all

t ∈ (−∞, τ0]. Therefore, u = 0 almost everywhere in Qτ0 . To show u = 0 almost every-

where in Qτ0,T, we consider the equation (3.1.4) for t1 = τ0 and t2 = τ, τ0 < τ ≤ T, and

obtain the inequality ∫

Ω

(
|u(τ)|2 + |∇u(τ)|2

)
dx ≤ 0.

Thus, u = 0 almost everywhere in Qτ0,T and the theorem is proved. ❒

Remark 3.1.5. As it can be seen from the proof, the weak solution of the equation (3.1.1)

satisfies the equality

∫

Ω

(
|u|2 + a(x)∇u∇u

)
dx

∣∣∣∣
t2

t1

+

t2∫

t1

∫

Ω

(
d(t, x,∇u)∇u + g(t, x, u) u

)
dx dt +

t2∫

t1

〈B(u), u〉 dt

=

t2∫

t1

∫

Ω

f (t, x) u dx dt for all t1, t2 ∈ (−∞, T].

Now we will prove the existence of the solution in two steps. At first we show the existence

of a solution in any bounded time interval of the form (t0, T) with zero initial condition.

Secondly, we choose T − k as lower bounds t0 and obtain a sequence of solutions, which is

shown to converge to a solution of the original problem.

Theorem 3.1.6 (Existence). Let Assumption 3.1.1 be satisfied. Then there exists a weak solution u
of the equation (3.1.1) that satisfies the estimates

∫

Ω

(
|u(t)|2 + |∇u(t)|2

)
dx ≤ C , t ∈ [τ, T] ,

∫

Qτ,T

(
|u|p + |∇u|p

)
dx dt ≤ C , τ ∈ (−∞, T] , (3.1.5)

where C depends on τ.

Now we formulate the problem with an initial condition. In Ω × (t0, T), t0 ∈ (−∞, T) the

equation

ut −∇ · (a(x)∇ut)−∇ · d(t, x,∇u) + g(t, x, u) + B(u) = ft0(t, x) (3.1.6)

with the initial condition

u(t0) = 0, (3.1.7)

where

ft0(t, x) =

{
f (t, x), if (x, t) ∈ Qt0,T ,

0, if (x, t) ∈ Qt0 ,

is considered. Similarly to the solution in an unbounded interval, we define the solution in

a bounded domain.
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Definition 3.1.7. A function u : QT → R is called a weak solution of the problem (3.1.6),

(3.1.7) if

1) u ∈ C([t0, T]; V0) ∩ Lp(t0, T; V),

2) u satisfies the initial condition (3.1.7), i.e. u(t) → 0 in V0 for t → t0, and

3) −
T∫

t0

∫

Ω

(
u vt + a(x)∇u∇vt

)
dx dt +

∫

Ω

(
u(T) v(T) + a(x)∇u(T)∇v(T)

)
dx (3.1.8)

+

T∫

t0

∫

Ω

d(t, x,∇u)∇v dx dt +

T∫

t0

∫

Ω

g(t, x, u) v dx dt +

T∫

t0

〈B(u), v〉 dt =

T∫

t0

∫

Ω

ft0(t, x) v dx dt

for all functions v ∈ Lp(t0, T; V), such that vt ∈ L2(t0, T; V0) and v ∈ C([t0, T]; V0).

Remark 3.1.8. Because of the choice of the test functions, (3.1.8) holds true if and only if it

holds true on any subinterval [t1, t2] ⊆ [t0, T].

We have the following existence result.

Theorem 3.1.9. Under Assumption 3.1.1, there exists a weak solution of the problem (3.1.6),
(3.1.7).

The existence of the solution is proved using Galerkin’s method. Let {ϕk}∞
k=1 be a basis of

V. We are looking for a function um of the form

um(t, x) =
m

∑
k=1

zm
k (t)ϕk(x) , l = 1, 2, ... , (3.1.9)

such that um solves the Cauchy problem
∫

Ω

(
um

t ϕk + a(x)∇um
t ∇ϕk + d(t, x,∇um)∇ϕk + g(t, x, um) ϕk

)
dx + 〈B(um), ϕk〉

=
∫

Ω

ft0(t, x) ϕk dx, for k = 1, . . . , m, (3.1.10)

um(t0) = 0. (3.1.11)

By Peano’s theorem, see (Amann 1995), there exists a continuously differentiable local so-

lution of the problem (3.1.10), (3.1.11) in the time interval [t0, t0 + σ], for some σ > 0. Due to

the a priori estimate (3.1.13) this solution can be extended to the whole interval [t0, T].

Lemma 3.1.10. The a priori estimates
∫

Ω

(
|um(τ)|2 + |∇um(τ)|2

)
dx ≤ C , τ ∈ [t0, T] , (3.1.12)

∫

Qt0,T

(
|um|p + |∇um|p

)
dx dt ≤ C , (3.1.13)

hold uniformly with respect to m.
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Proof. We multiply the equation (3.1.10) for k = 1, . . . , m by the corresponding function zm
k ,

sum up over k from 1 to m, and integrate over [t0, τ] ⊂ [t0, T]. Hereby, we obtain
∫

Qt0,τ

[
um

t um + a(x)∇um
t ∇um + d(t, x,∇um)∇um + g(t, x, um) um

]
dx dt

+

τ∫

t0

〈B(um), um〉 dt =
∫

Qt0,τ

ft0(t, x) um dx dt . (3.1.14)

Now we estimate all terms in the last equality separately. Assumption 3.1.1 yields

I1 :=
∫

Qt0,τ

[
um

t um + a(x)∇um
t ∇um

]
dx dt ≥ 1

2

∫

Ω

[
|um(τ)|2 + a0|∇um(τ)|2

]
dx ,

I2 :=
∫

Qt0,τ

[
d(t, x,∇um)∇um + g(t, x, um) um

]
dx dt >

∫

Qt0,τ

[
d0|∇um|p + g0|um|p

]
dx dt ,

I3 :=
∫

Qt0,τ

ft0(t, x) um dx dt ≤ 1
2

δ0

∫

Qt0,τ

|um|2 dx dt +
1

2δ0

∫

Qt0,τ

| ft0(t, x)|2 dx dt .

Finally, the monotonicity of the operator B, the estimates of the integrals I1, I2, and I3, and

Gronwall’s lemma, imply the inequality
∫

Ω

(
|um(τ)|2 + |∇um(τ)|2

)
dx +

∫

Qt0,τ

(
|um|p + |∇um|p

)
dx dt ≤ C.

Hence, the estimates hold. ❒

Lemma 3.1.11. The inequality
∫

Ω

(
|um(t + δ, x)− um(t, x)|2 + |∇um(t + δ, x)−∇um(t, x)|2

)
dx ≤ Cδ (3.1.15)

holds uniformly with respect to m.

Proof. The monotonicity of d, g and B, the estimate (3.1.12), and the continuity of the func-

tion f in time yield
∫

Ω

(
|um(τ)|2 + a(x)∇um(τ)∇um(τ)

)
dx ≤ C(τ − t0), (3.1.16)

where C is independent of m. Analogously to (3.1.14) we obtain for δ > 0 the equation
∫

Qt0,τ

[
um

t (t) um(t + δ) + a(x)∇um
t (t)∇um(t + δ)

]
dx dt +

∫

Qt0,τ

d(t, x,∇um(t))∇um(t + δ) dx dt +

∫

Qt0,τ

g(t, x, um(t)) um(t + δ) dx dt +

τ∫

t0

〈B(um(t)), um(t + δ)〉 dt =
∫

Qt0,τ

ft0(t, x) um(t + δ) dx dt.
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We subtract (3.1.14) from the last equation and obtain∫

Qt0,τ

[
um

t (t) vm(t) + a(x)∇um
t (t)∇vm(t) + d(t, x,∇um(t))∇vm(t) + g(t, x, um(t)) vm(t)

]
dxdt

+

τ∫

t0

〈B(um(t)), vm(t)〉 dt =
∫

Qt0,τ

ft0(t, x) vm(t) dx dt , (3.1.17)

where vm(t, x) = um(t + δ, x)− um(t, x). From (3.1.10) we have the equation∫

Qt0,τ

[
um

t (t + δ) vm(t) + a(x)∇um
t (t + δ)∇vm(t)

]
dx dt

+
∫

Qt0,τ

[
d(t + δ, x,∇um(t + δ))∇vm(t) + g(t + δ, x, um(t + δ)) vm(t)

]
dx dt

+

τ∫

t0

〈B(um(t + δ)), vm(t)〉 dt =
∫

Qt0,τ

ft0(t + δ, x) vm(t) dx dt .

We subtract the last equality from (3.1.17), integrate by parts the first two terms, and obtain
1
2

∫

Ω

[
|vm(τ)|2 + a(x)∇vm(τ)∇vm(τ)

]
dx =

1
2

∫

Ω

[
|um(t0 + δ)|2 + a(x)∇um(t0 + δ)∇um(t0 + δ)

]
dx

−
∫

Qt0,τ

[(
d(t + δ,∇um(t + δ))− d(t,∇um(t))

)∇vm(t) +
(

g(t + δ, um(t + δ))− g(t, um(t))
)

vm(t)
]

dx dt

−
τ∫

t0

〈B(um(t + δ))− B(um(t)), vm(t)〉 dt−
∫

Qt0,τ

( ft0(t + δ, x)− ft0(t, x)) vm(t) dx dt.

Because of the monotonicity of d, g and B, the estimates (3.1.12), (3.1.16), the continuity

in time of d, g and f , and Gronwall’s Lemma, the claimed estimate follows from the last

equality. ❒

Proof of Theorem 3.1.9. Now, by using the a priori estimates, we will show the convergence

of the approximate solutions to the solution in a bounded domain.

We denote by Γ : Lp(t0, T; V) → Lq(t0, T; V∗) the operator given by
T∫

t0

〈Γ(u), v〉 dt =

T∫

t0

∫

Ω

(
d(t, x,∇u)∇v + g(t, x, u) v

)
dx dt +

T∫

t0

〈B(u), v〉 dt for v ∈ Lp(t0, T; V) .

From the boundedness of the operator B and the estimate (3.1.13) it follows that

∣∣∣
T∫

t0

〈Γ(um), v〉 dt
∣∣∣ ≤

∫

Qt0,T

(
d0(1 + |∇um|p−1)|∇v|+ g0(1 + |um|p−1)|v|

)
dx dt

+

T∫

t0

||B(um)||V∗ ||v||V dt

≤ C||v||Lp(t0,T;V),
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where C is independent of m. Therefore,

||Γ(um)||Lq(t0,T;V∗) ≤ C.

The estimates (3.1.12), (3.1.13), and (3.1.15), and the boundedness of Γ imply the existence

of a subsequence of {um}, again denoted by {um}, such that

um → u weakly– ∗ in L∞(t0, T; V0),

um → u weakly in Lp(t0, T; V),

um → u in C([t0, T]; Vweak),

Γ(um) → Z weakly in Lq(t0, T; V∗)

as m → ∞, where Vweak is the space V0 endowed with its weak topology.

We multiply the equations (3.1.10) by βs ∈ C1([t0, T]), sum up over s from 1 to m0, where

m0 < m is an arbitrary positive integer, integrate over [t0, τ], for some τ ∈ (t0, T], and obtain

∫

Qt0,τ

[
um

t vm0 + a(x)∇um
t ∇vm0

]
dx dt +

τ∫

t0

〈Γ(um), vm0〉 dt =
∫

Qt0,τ

ft0(t, x) vm0 dx dt ,

where vm0(x, t) =
m0

∑
s=1

βs(t)φs(x). After integrating by parts, passing to the limit m → ∞, and

using the fact that the set of all functions of the form ∑
s<∞

βs φs is dense in each of the spaces

C([t0, T]; V0), Lp(t0, T; V), and H1(t0, T; V0), we obtain the equality

∫

Ω

[
u(τ) v(τ) + a(x)∇u(τ)∇v(τ)

]
dx−

∫

Qt0,τ

[
u vt + a(x)∇u∇vt

]
dx dt

+

τ∫

t0

〈Z, v〉 dt =
∫

Qt0,τ

ft0(t, x) v dx dt (3.1.18)

for all functions v ∈ Lp(t0, T; V), such that vt ∈ L2(t0, T; V0) and v ∈ C([t0, T]; V0), and for

all τ ∈ (t0, T].

Now we have to show Z = Γ(u). At first we show the strong convergence of um. Consider

the equation (3.1.10) with the test function um −wm, where wm =
(
(γnvm) ∗ ρk ∗ ρk

)
γn as in

Theorem 3.1.4 and vm → u strongly in Lp(t0, T; V),

∫

Qt0,τ

[
um

t (um − wm) + a(x)∇um
t (∇um −∇wm)

]
dx dt +

∫

Qt0,τ

d(t, x,∇um) (∇um −∇wm) dx dt

+
∫

Qt0,τ

g(t, x, um) (um − wm) dx dt +

τ∫

t0

〈B(um), um − wm〉 dt =
∫

Qt0,τ

ft0(t, x) (um − wm) dx dt.
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By Fatou’s Lemma, the weak convergence of {um} and the calculation similar to Uniqueness

Theorem 3.1.4, we obtain

lim inf
m→∞

∫

Qt0,τ

[
um

t (um − wm) + a(x)∇um
t (∇um −∇wm)

]
dx dt

=
1
2

lim inf
m→∞

∫

Ω

(
|um|2 + a(x)∇um∇um

)
dx− 1

2

∫

Ω

(
|u|2 + a(x)∇u∇u

)
dx > 0.

Then we obtain the inequality
∫

Qt0,τ

[
(d(t, x,∇um)− d(t, x,∇vm))∇(um − vm) + (g(t, x, um)− g(t, x, vm))(um − vm)

]
dx dt

+

τ∫

t0

〈B(um)− B(vm), um − vm〉 dt

≤ −
∫

Qt0,τ

[
d(t, x,∇vm)∇(um − vm) + g(t, x, vm) (um − vm)

]
dx dt−

τ∫

t0

〈B(vm), um − vm〉 dt

+
∫

Qt0,τ

ft0(t, x) (um − vm) dx dt.

Due to the strong monotonicity of d and g, the monotonicity of B, the weak convergence of

um in Lp(t0, T; V), and the strong convergence of vm in Lp(t0, T; V) yields

T∫

t0

∫

Ω

(
|um − u|p + |∇um −∇u|p

)
dx dt ≤ Cε.

This implies

um → u strongly in Lp(t0, T; V)

as m → ∞. Then, since d and g are continuous, and because of the weak convergence of

Γ(um) to Z, we have Z = Γ(u).

From the equation (3.1.18) it follows that u is the solution of (3.1.6). Due to u ∈ C([t0, T], V0)

and um(t0) = 0, we obtain u(t0) = 0. ❒

Remark 3.1.12. Consider the equation (3.1.18) for τ = t2 with test functions of the form

v(x, t)γn(t), where v ∈ Lp(t0, T; V), such that vt ∈ L2(t0, T; V0), and γn as defined in Theo-

rem 3.1.4. Then we obtain the equality
∫

Qt1,t2

[
−u vt − a(x)∇u∇vt + d(t, x,∇u)∇v + g(t, x, u) v

]
γn dx dt

+

t2∫

t1

〈B(u), v〉 γn dt−
∫

Qt1,t2

[u v + a(x)∇u∇v]γ′n dx dt =
∫

Qt1,t2

ft0(t, x) v γn dx dt .
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Passing in the last equality to the limit as n → ∞ implies

−
∫

Qt1,t2

[
u vt + a(x)∇u∇vt

]
dx dt +

∫

Qt1,t2

[
d(t, x,∇u)∇v + g(t, x, u) v

]
dx dt

+

t2∫

t1

〈B(u), v〉 dt +
∫

Ω

[
u v + a(x)∇u∇v

]
dx

∣∣∣∣
t2

t1

=
∫

Qt1,t2

ft0(t, x) v dx dt

for all functions v ∈ Lp(t0, T; V), such that vt ∈ L2(t0, T; V0) and v ∈ C([t0, T]; V0),

and t1, t2 ∈ [t0, T], t1 < t2.

Proof of Theorem 3.1.6. Now we prove the existence of a solution in an unbounded interval.

The key idea of this proof is to use cut-off functions. We choose for positive integer k lower

bounds t0 = T− k and obtain a sequence of solutions uk of problem (3.1.6), (3.1.7), which we

extend by zero to all QT−k. To be able to pass to the limit in the nonlinear terms we have to

show the strong convergence of the sequence {uk}. It suffices to show that {uk} is a Cauchy

sequence. Due to (3.1.8), for all positive integers k and s, and for all t0 > −min{k, s}, the

functions uk,s = uk − us satisfy the equation

−
∫

Qt0,T

[
uk,s vt + a(x)∇uk,s ∇vt

]
dx dt +

∫

Qt0,T

(d(t, x,∇uk)− d(t, x,∇us))∇uk,s dx dt

+
∫

Qt0,T

(g(t, x, uk)− g(t, x, us))uk,s dx dt +

T∫

t0

〈B(uk)− B(us), uk,s〉 dt (3.1.19)

+
∫

Ω

[
uk,s(T) v(T) + a(x)∇uk,s(T)∇v(T)

]
dx = 0

for v ∈ Lp(t0, T; V), such that vt ∈ L2(t0, T; V0) and v(t0) = 0. Let us choose in (3.1.19) for

n > 2m

v =
(
(ψm uk,s) ∗ ρn ∗ ρn

)
ψm,

where ψm is a cut-off function in the time variable, such that

ψm(t) =





0, τ − 1
m ≤ t ≤ T,

m(τ − t)− 1, τ − 2
m < t < τ − 1

m ,(
t−t0

τ− 2
m−t0

)α0
, t0 ≤ t ≤ τ − 2

m , α0 > 0,

0, t < t0.

The sequence {ρn} ⊂ D(R) is used for mollification like in the proof of Theorem 3.1.4.
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Using the bounded support of ψm and

∫

Qt0,τ

uk,s (uk,sψm) ∗ ρn ∗ ρntψm dx dt

=
∫

Ω

( ∞∫

−∞

uk,s(t, x) ψm(t)

∞∫

−∞

( ∞∫

−∞

uk,s(σ, x) ψm(σ)ρn(τ − σ) dσ
)

ρnt(t− τ) dτ dt
)

dx

= −
∫

Qt0,τ

∂

∂t

( ∞∫

−∞

uk,s(τ, x)ψm(τ)ρn(t− τ)dτ
) ∞∫

−∞

uk,s(τ, x) ψm(τ)ρn(t− τ) dτ dt dx = 0,

we obtain for one of the terms in equation (3.1.19)

∫

Qt0,τ

uk,s vt dx dt =
∫

Qτ0,τ

uk,s (uk,sψm) ∗ ρn ∗ ρn
d
dt

ψm dx dt

+
∫

Qt0,τ

uk,s (uk,sψm) ∗ ρn ∗ ρntψm dx dt →
∫

Qt0,τ

|us,k|2ψm
d
dt

ψm dx dt,

as n → ∞. Convergence of the second term involving the time derivative is shown similarly.

Hence, taking limits in equation (3.1.19) yields

−
∫

Qt0,τ

(
|uk,s|2 + a(x)∇uk,s ∇uk,s

)
ψm

d
dt

ψm dx dt +

τ∫

t0

〈Γ(uk)− Γ(us), uk,s〉ψ2
m dt = 0 .

Splitting the integral

∫

Qt0,τ

[
|uk,s|2 + a(x)∇uk,s ∇uk,s

]
ψm

d
dt

ψm dx dt =

τ− 2
m∫

t0

∫

Ω

[
|uk,s|2 + a(x)∇uk,s ∇uk,s

]
ψm

d
dt

ψm dx dt−m

τ− 1
m∫

τ− 2
m

∫

Ω

[
|uk,s|2 + a(x)∇uk,s ∇uk,s

]
ψm dx dt

and passing to the limit as m → ∞ in each term separately yields

∫

Ω

[
|uk,s(τ)|2 + a(x)∇uk,s(τ)∇uk,s(τ)

]
ψ2(τ) dx−

∫

Qt0,τ

(
|uk,s|2 + a(x)∇uk,s ∇uk,s

)
ψ

d
dt

ψ dx dt

+

τ∫

t0

〈Γ(uk)− Γ(us), uk,s〉ψ2 dt = 0 , (3.1.20)

where ψ(t) =
( t−t0

τ−t0

)α0 for t ∈ [t0, τ].
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We estimate (3.1.20) term by term. For this, we use the boundedness of a, the strong mono-

tonicity of d and g, and the monotonicity of the operator B.

I1 :=
∫

Qt0,τ

[
uk,s uk,s + a(x)∇uk,s ∇uk,s

]
ψ ψ

′
dx dt

≤
∫

Qt0,τ

[
|uk,s|2 + a0|∇uk,s|2

]
ψ ψ

′
dx dt

≤ δ1

∫

Qt0,τ

(
|uk,s|p + |∇uk,s|p

)
ψ2 dx dt + c1(δ1)

∫

Qτ0,τ

ψ
p−4
p−2 (ψ

′
)

p
p−2 dx dt,

I2 :=

τ∫

t0

〈Γ(uk)− Γ(us), uk,s〉ψ2 dt =
∫

Qt0,τ

(d(t, x,∇uk)− d(t, x,∇us))∇uk,s ψ2 dx dt

+
∫

Qt0,τ

(g(t, x, uk)− g(t, x, us)) uk,s ψ2 dx dt +

τ∫

t0

〈B(uk)− B(us), uk,s〉ψ2 dt

> C
∫

Qt0,τ

(
d0|∇uk,s|p + g0|uk,s|p

)
ψ2 dx dt.

Due to the estimates of I1 and I2, and the equation (3.1.20) we obtain
∫

Ω

(
|uk,s(τ)|2 + |∇uk,s(τ)|2

)
ψ2(τ) dx +

∫

Qt0,τ

(
|uk,s|p + |∇uk,s|p

)
ψ2(t) dx dt

≤ c2

∫

Qt0,τ

ψ
p−4
p−2 (ψ

′
)

p
p−2 dx dt ≤ c3(τ − t0)

2α0+1− p
p−2 ,

for α0 > 1
p−2 . Let t1 ∈ (t0, τ) be an arbitrarily fixed number. Then the last inequality implies

∫

Ω

(
|uk,s(t2)|2 + |∇uk,s(t2)|2

)
dx +

∫

Qt1,t2

(
|uk,s|p + |∇uk,s|p

)
dx dt

≤ c4
(t2 − t0)

2α0+1− p
p−2

(t1 − t0)2α0
= c5

( t2 − t0

t1 − t0

)2α0
(t2 − t0)

1− p
p−2 ,

where c5 is independent of t0 and t2 ∈ [t0, T] . For sufficiently large |t0| the right hand

side of the last inequality is small. Therefore, the sequence {uk} converges uniformly in

C([t1, T]; V0) and strongly in Lp(t1, T; V) to a function u for all t1 ∈ (−∞, T).

Now we show that the function u is a weak solution of the original problem. Because of

(3.1.8), the function uk satisfies
∫

Ω

[
uk v + a(x)∇uk ∇v

]
dx

∣∣∣
t2

t1
−

∫

Qt1,t2

[
uk vt + a(x)∇uk ∇vt

]
dx dt (3.1.21)

+
∫

Qt1,t2

[
d(t, x,∇uk)∇v + g(t, x, uk) v

]
dx dt +

t2∫

t1

〈B(uk), v〉 dt =
∫

Qt1,t2

fk(t, x) v dx dt
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for all v ∈ Lp
loc((−∞, T]; V), such that vt ∈ L2

loc((−∞, T]; V0) and v ∈ C((−∞, T]; V0), and for

all t1 and t2 that satisfy ∞ < t1 < t2 ≤ T. The strong convergence of {uk} in Lp
loc((−∞, T]; V)

and the continuity of d and g yield
∫

Qt1,t2

(
d(t, x,∇uk)∇v + g(t, x, uk)v

)
dx dt →

∫

Qt1,t2

(
d(t, x,∇u)∇v + g(t, x, u)v

)
dx dt

as k → ∞. The operator B is monotone, bounded, and hemicontinuous. Therefore, the con-

vergence
t2∫

t1

〈B(uk), v〉 dt →
t2∫

t1

〈B(u), v〉 dt

as k → ∞ holds true. Passing to the limit as k → ∞ in (3.1.21) implies that u satisfies the

equation (3.1.1). The estimates for u follow from the estimates for um. ❒
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3.2 Quasilinear Pseudoparabolic Variational Inequalities in
Unbounded Time Intervals

The penalty method and the existence result of the section 3.1 are used to show the existence

of a solution of an inequality. The functions d and g are assumed to be independent of the

time variable. The uniqueness follows from the monotonicity of the operators and from

Pankov’s lemma.

In QT = (−∞, T)×Ω we consider the inequality
∫

Qt1,t2

[
vt(v− u) + a(x)∇vt ∇(v− u) + d(x,∇u)∇(v− u) + g(x, u)(v− u)

]
dx dt

−
∫

Qt1,t2

f (t, x) (v− u) dx dt > 1
2

∫

Ω

[
|v− u|2 + a(x)∇(v− u)∇(v− u)

]
dx

∣∣∣∣
t2

t1

. (3.2.1)

The constraint on u is given by the requirement u ∈ K, where K is chosen to be a closed and

convex subset of V containing 0.

Definition 3.2.1. A function u : QT → R is called a weak solution of the inequality (3.2.1) if

1) u ∈ C((−∞, T]; V0) ∩ Lp
loc((−∞, T]; V), u(t) ∈ K for almost all t ∈ (−∞, T),

2) u satisfies the inequality for all t1 and t2, such that −∞ < t1 < t2 ≤ T, and

for all functions v ∈ Lp
loc((−∞, T]; V), such that vt ∈ L2

loc((−∞, T]; V0),

v ∈ C((−∞, T]; V0), and v(t) ∈ K for almost all t ∈ (−∞, T).

Theorem 3.2.2 (Existence). Let Assumption 3.1.1, d(x, ·) ∈ C1(RN), g(x, ·) ∈ C1(R), and
∂t f ∈ L2

loc((−∞, T]; L2(Ω)) be satisfied. Then there exists a weak solution of the inequality (3.2.1).

At first we show the existence of a solution in any bounded time interval (t0, T) with zero

initial condition. For every t0 ∈ (−∞, T) we define the space

Wt0 = {v ∈ Lp(t0, T; V)∩C([t0, T]; V0), s. t. vt ∈ L2(t0, T; V0) and v(t) ∈ K for a.a. t ∈ (t0, T)}.

Theorem 3.2.3. Let the assumptions of Theorem 3.2.2 be satisfied. Then there exists a function
u ∈ Wt0 that satisfies the inequality

∫

Qt1,t2

[
vt (v− u) + a(x)∇vt ∇(v− u)

]
ϕ dx dt +

1
2

∫

Qt1,t2

[
|v− u|2 + a(x)∇(v− u)∇(v− u)

] d
dt

ϕ dx dt

+
∫

Qt1,t2

[
d(x,∇u)∇(v− u) + g(x, u) (v− u)

]
ϕ dx dt−

∫

Qt1,t2

f (t, x) (v− u) ϕ dx dt

> 1
2

∫

Ω

[
|v− u|2 + a(x)∇(v− u)∇(v− u)

]
ϕ dx

∣∣∣∣
t2

t1

(3.2.2)

for all functions v ∈ Wt0 and all t1, t2 ∈ [t0, T], t1 < t2, where ϕ ∈ C1((−∞, T]) and ϕ(t) > 0 for
all t ∈ (−∞, T], and initial condition u(t0, x) = 0.
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Here the existence result Theorem 3.1.9 is used. We choose a family of penalty operators of

the form αB with a parameter α > 0 and obtain similarly to (3.1.6)

ut −∇ · (a(x)∇ut)−∇ · d(x,∇u) + g(x, u) + αB(u) = ft0(t, x).

The definition and the properties of the penalty operator B can be found in Definition A.1.10

of the appendix. To show the convergence of a subsequence of the approximative solutions

given by (3.1.9) to a solution of the inequality (3.2.2) an additional estimate is needed.

Lemma 3.2.4. For the Galerkin approximation um,α in (3.1.9) the estimate
∫

Ω

[
|um,α

t (τ)|2 + a(x)∇um,α
t (τ)∇um,α

t (τ)
]
dx ≤ C, τ ∈ [t0, T], (3.2.3)

holds uniformly with respect to m and α.

Proof. We derive the equation (3.1.10) for k with respect to the time variable t, multiply by

the corresponding function zm
kt, sum over k from 1 to m, and integrate over [t0, τ], t0 < τ ≤ T.

Hereby, we obtain
∫

Qt0,τ

[
um,α

tt um,α
t + a(x)∇um,α

tt ∇um,α
t

]
dx dt +

∫

Qt0,τ

[
∂td(x,∇um,α)∇um,α

t + ∂tg(x, um,α) um,α
t

]
dx dt

+α

τ∫

t0

〈[B(um,α)]t, um,α
t 〉 dt =

∫

Qt0,τ

∂t f (t, x) um,α
t dx dt. (3.2.4)

Now we estimate all terms in (3.2.4) separately. From the assumptions on the functions a, d,

and g it follows that

I1 :=
∫

Qt0,τ

(
um,α

tt um,α
t + a(x)∇um,α

tt ∇um,α
t

)
dx dt ≥ 1

2

∫

Ω

(
|um,α

t (τ)|2 + a0|∇um,α
t (τ)|2

)
dx

−1
2

∫

Ω

(
|um,α

t (t0)|2 + a(x)∇um,α
t (t0)∇um,α

t (t0)
)

dx ,

I2 :=
∫

Qt0,τ

∂td(x,∇um,α)∇um,α
t dx dt =

∫

Qt0,τ

∂ξd(x,∇um,α)∇um,α
t ∇um,α

t dx dt > 0,

I3 :=
∫

Qt0,τ

∂tg(x, um,α) um,α
t dx dt =

∫

Qt0,τ

∂ζg(x, um,α) |um,α
t |2 dx dt > 0.

Here we used the following calculations. For d(x, ·) ∈ C1(RN) and

(d(x, ξ1)− d(x, ξ2))(ξ1 − ξ2) > d1|ξ1 − ξ2|p, p > 2

yield

(d(x, ξ̃ + sη)− d(x, ξ̃)) sη > d1sp|η|p for all η ∈ RN and |s| < ε
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or
(d(x, ξ̃ + sη)− d(x, ξ̃))η

s
> d1sp−2|η|p for all η ∈ RN and |s| < ε,

respectively. Passing to the limit as s → 0 implies

∂ξd(x, ξ̃)η η > 0 for all η ∈ RN , ξ̃ ∈ RN .

Similarly we obtain

∂ζg(x, ζ̃) |η̃|2 > 0 for all η̃ ∈ R, ζ̃ ∈ R.

Due to ft ∈ L2
loc((−∞, T]; L2(Ω)), we have

I4 :=
∫

Qt0,τ

ft(t, x) um,α
t dxdt ≤ δ

2

∫

Qt0,τ

|um,α
t |2 dx dt +

1
2δ

∫

Qt0,τ

| ft(t, x)|2 dx dt.

The monotonicity of the penalty operator implies

I5 :=

τ∫

t0

〈[B(um,α)]t, um,α
t 〉 dt > 0.

From the equality (3.1.10) and the initial condition (3.1.11) it follows that

I6 :=
∫

Ω

(
|um,α

t (t0)|2 + a(x)∇um,α
t (t0)∇um,α

t (t0)
)

dx =
∫

Ω

f (t0, x) um,α
t (t0) dx.

This inequality, due to the assumptions on a, implies
∫

Ω

(
|um,α

t (t0)|2 + a(x)∇um,α
t (t0)∇um,α

t (t0)
)

dx ≤ C(a0)
∫

Ω

| f (t0, x)|2 dx.

By using the estimates of the integrals I1, ..., I6 in the equality (3.2.4) we obtain the claimed

estimate. ❒

Proof of Theorem 3.2.3. Now we prove the existence of a solution of the inequality (3.2.2).

We denote by Γ : Lp(t0, T; V) → Lq(t0, T; V∗) the operator given by

T∫

t0

〈Γ(u), v〉 dt =

T∫

t0

∫

Ω

[
d(x,∇u)∇v + g(x, u) v

]
dx dt for v ∈ Lp(t0, T; V). (3.2.5)

Due to estimate (3.1.13) and the growth assumptions on d and g, we obtain

∣∣∣
T∫

t0

〈Γ(um,α), v〉 dt
∣∣∣ ≤

∫

Qt0,T

(
d0(1 + |∇um,α|p−1)|∇v|+ g0(1 + |um,α|p−1)|v|

)
dx dt

≤ C||v||Lp(t0,T;V),

where C is independent of m and α. Therefore,

||Γ(um,α)||Lq(t0,T;V∗) ≤ C.
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The estimates (3.1.12), (3.1.13), and (3.2.3), and the boundedness of the operators Γ and B
imply the existence of a subsequence of {um,α}, again denoted by {um,α}, such that

um,α → uα weakly– ∗ in L∞(t0, T; V0),

um,α
t → uα

t weakly– ∗ in L∞(t0, T; V0),

um,α → uα weakly in Lp(t0, T; V),

Γ(um,α) → Γ(uα) weakly in Lq(t0, T; V∗),

B(um,α) → B(uα) weakly in Lq(t0, T; V∗),

as m → ∞. The last two convergences follow from the strong convergence of um,α to uα in

Lp(t0, T; V), which was proved in Theorem 3.1.9. Due to uα ∈ Lp(t0, T; V) , uα
t ∈ L2(t0, T; V0),

and (Evans 1998, Theorem 5.9.2), we obtain uα ∈ C([t0, T]; V0). Then, because of

um,α(t0) = 0, we have uα(t0) = 0.

The function uα satisfies the equation
∫

Qt0,τ

[
uα

t v + a(x)∇uα
t ∇v + d(x,∇uα)∇v + g(x, uα) v

]
dx dt

+ α

τ∫

t0

〈B(uα), v〉 dt =
∫

Qt0,τ

f (t, x) v dx dt (3.2.6)

for every α ∈ R+, for all functions v ∈ Lp(t0, T; V), and all τ ∈ [t0, T]. Analogously as for

um,α, we obtain the estimates for uα

∫

Ω

(
|uα(τ)|2 + |∇uα(τ)|2

)
dx ≤ C, τ ∈ [t0, T],

∫

Ω

(
|uα

t (τ)|2 + |∇uα
t (τ)|2

)
dx ≤ C, τ ∈ [t0, T],

∫

Qt0,T

(
|uα|p + |∇uα|p

)
dx dt ≤ C, (3.2.7)

||Γ(uα)||Lq(t0,T;V∗) ≤ C,

α

T∫

t0

〈B(uα), uα〉 dt ≤ C.

Due to the estimates (3.2.7) there exists a subsequence of {uα}, again denoted by {uα}, such

that

uα → u weakly in H1(t0, T; V0),

uα → u weakly in Lp(t0, T; V),

Γ(uα) → χ weakly in Lq(t0, T; V∗),

B(uα) → β weakly in Lq(t0, T; V∗)



3.2 Quasilinear Variational Inequalities in Unbounded Time Intervals 73

as α → ∞. For v ∈ Lp(t0, T; V), such that vt ∈ L2(t0, T; V0), the equation (3.2.6) can be

rewritten in the form

∫

Qt0,τ

[
−uα vt − a(x)∇uα ∇vt + d(x,∇uα)∇v + g(x, uα) v

]
dx dt + α

τ∫

t0

〈B(uα), v〉 dt

+
∫

Ω

[
uα(τ) v(τ) + a(x)∇uα(τ)∇v(τ)

]
dx =

∫

Qt0,τ

f (t, x) v dx dt. (3.2.8)

Applying the estimates (3.2.7) to (3.2.6) we obtain

∣∣∣∣
T∫

t0

〈B(uα), v〉 dt
∣∣∣∣ ≤ C

α
||uα

t ||L2(t0,T;V0)||v||L2(t0,T;V0) +
C
α
||Γ(uα)||Lq(t0,T;V∗)||v||Lp(t0,T;V)

+
C
α
|| f ||L2(Qt0,T)||v||L2(Qt0,T)

≤ C
α
||v||Lp(t0,T;V)

for all functions v ∈ Lp(t0, T; V). Therefore,

||B(uα)||Lq(t0,T;V∗) ≤
C
α

holds true. Using the monotonicity of B we get

T∫

t0

〈B(v), uα − v〉 dt ≤
T∫

t0

〈B(uα), uα − v〉 dt.

Together with the estimate
T∫

t0

〈B(uα), uα〉 dt ≤ C/α and the convergence of B(uα) → 0 in

Lq(t0, T; V∗) we obtain for α → ∞

T∫

t0

〈B(v), u− v〉 dt ≤ 0.

We choose functions v of the form u − λw for λ > 0 and w ∈ Lp(t0, T; V). Passing to the

limit as λ → 0 and using the hemicontinuity of B imply

T∫

t0

〈B(u), w〉 dt ≤ 0 for all w ∈ Lp(t0, T; V).

Thus, B(u) = 0 and, due to the definition of the penalty operator, u(t) ∈ K for almost all

t ∈ (t0, T).
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Now we show that u satisfies the inequality (3.2.2). Due to uα ∈ Lp(t0, T; V) and

uα ∈ H1(t0, T; V0), we can choose uα as the test function in the equation (3.2.8) and obtain

∫

Qt0,τ

[
d(x,∇uα)∇uα + g(x, uα) uα

]
dx dt + α

τ∫

t0

〈B(uα), uα〉 dt

−
∫

Qt0,τ

f (t, x) uα dx dt +
1
2

∫

Ω

[
|uα(τ)|2 + a(x)∇uα(τ)∇uα(τ)

]
dx = 0

for τ ∈ [t0, T]. The integration by parts formula for v ∈ Wt0 implies
∫

Qt0,τ

[
vt v + a(x)∇vt ∇v

]
dx dt =

1
2

∫

Ω

[
|v|2 + a(x)∇v∇v

]
dx

∣∣∣∣
τ

t0

.

We add the last two equalities, subtract (3.2.8), and obtain
∫

Qt0,τ

[
vt (v− uα) + a(x)∇vt ∇(v− uα) + d(x,∇uα)∇(v− uα) + g(x, uα) (v− uα)

]
dx dt

+α

τ∫

t0

〈B(uα), v− uα〉 dt−
∫

Qt0,τ

f (t, x)(v− uα) dx dt

=
1
2

∫

Ω

[
|v− uα|2 + a(x)∇(v− uα)∇(v− uα)

]
dx

∣∣∣∣
τ

t0

.

Due to the monotonicity of B, the last equality implies
∫

Qt0,τ

[
vt (v− uα) + a(x)∇vt ∇(v− uα) + d(x,∇uα)∇(v− uα) + g(x, uα) (v− uα)

]
dx dt

−
∫

Qt0,τ

f (t, x) (v− uα) dx dt > 1
2

∫

Ω

(
|v− uα|2 + a(x)∇(v− uα)∇(v− uα)

)
dx

∣∣∣∣
τ

t0

. (3.2.9)

Since u ∈ Wt0 , the inequality (3.2.9) also holds for v = u. Then we obtain

1
2

∫

Ω

(
|u− uα|2 + a(x)∇(u− uα)∇(u− uα)

)
dx

∣∣∣∣
τ

t0

+
∫

Qt0,τ

(d(x,∇u)− d(x,∇uα))∇(u− uα) dx dt

+
∫

Qt0,τ

(g(x, u)− g(x, uα)) (u− uα) dx dt ≤
∫

Qt0,τ

(
ut (u− uα) + a(x)∇ut ∇(u− uα)

)
dx dt

+
∫

Qt0,τ

(
d(x,∇u)∇(u− uα) + g(x, u) (u− uα)

)
dx dt−

∫

Qt0,τ

f (t, x) (u− uα) dx dt.

Using the ellipticity of a, the strong monotonicity of d and g, and the weak convergence of

{uα} in Lp(t0, T; V) in the last inequality, yields
∫

Ω

(
|u(τ)− uα(τ)|2 + |∇u(τ)−∇uα(τ)|2

)
dx +

∫

Qt0,τ

(
|u− uα|p + |∇u−∇uα|p

)
dx dt ≤ c1ε
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and

uα → u uniformly in C([t0, T]; V0),

uα → u strongly in Lp(t0, T; V),

as α → ∞. The strong convergence yields χ = Γ(u). Also, due to (Evans 1998, Theorem

5.9.2), u ∈ Lp(t0, T; V), and ut ∈ L∞(t0, T; V0) we obtain u ∈ C([t0, T]; V0) and u(t0, x) = 0.

Analogously to the inequality (3.2.9), we obtain the inequality
∫

Qt1,t2

[
vt (v− uα) + a(x)∇vt ∇(v− uα)

]
ϕ dx dt

+
1
2

∫

Qt1,t2

[
|v− uα|2 + a(x)∇(v− uα)∇(v− uα)

] d
dt

ϕ dx dt

+
∫

Qt1,t2

[
d(x,∇uα)∇(v− uα) + g(x, uα) (v− uα)− f (t, x) (v− uα)

]
ϕ dx dt

> 1
2

∫

Ω

[
|v− uα|2 + a(x)∇(v− uα)∇(v− uα)

]
ϕ dx

∣∣∣∣
t2

t1

(3.2.10)

for every v ∈ Wt0 and all t1, t2 ∈ [t0, T], t1 < t2, where ϕ ∈ C1((−∞, T]), such that ϕ(t) > 0

for t ∈ (−∞, T]. Passing to the limit as α → ∞ in (3.2.10) implies the inequality (3.2.2). ❒

Proof of Theorem 3.2.2. Now we prove the existence of a solution on the whole interval

(−∞, T]. We choose for positive integer k lower bounds t0 = T − k and hereby obtain a

sequence of solutions uk of the inequality (3.2.2), due to Theorem 3.2.3, which we extend by

zero to all QT−k. To show that {uk} converges to a solution of the inequality without initial

condition (3.2.1), the strong convergence of {uk} is needed.

Due to (3.2.2), for all positive integers k and l, such that k ≤ l, and for all t1 > T − k the

functions u(i) for i = 1, 2 satisfy the inequalities
∫

Qt1,t2

[
vt (v− u(i)) + a(x)∇vt ∇(v− u(i))

]
ϕ(t) dx dt

+
1
2

∫

Qt1,t2

[
|v− u(i)|2 + a(x)∇(v− u(i))∇(v− u(i))

] d
dt

ϕ dx dt

+
∫

Qt1,t2

[
d(x,∇u(i))∇(v− u(i)) + g(x, u(i)) (v− u(i))

]
ϕ dx dt−

∫

Qt1,t2

fi(t, x) (v− u(i)) ϕ dx dt

> 1
2

∫

Ω

[
|v− u(i)|2 ϕ + a(x)∇(v− u(i))∇(v− u(i))

]
ϕ(t) dx

∣∣∣∣
t2

t1

(3.2.11)

for all functions v ∈ WT−l , where u(1) = uk, u(2) = ul , f1(t, x) = fk(t, x), f2(t, x) = fl(t, x),

fk(t, x) =

{
f (t, x), (t, x) ∈ QT−k,T,

0, (t, x) ∈ QT−k,
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and ϕ is a cut-off function in the time variable

ϕ(t) =

{
(t− t1)γ, t1 ≤ t ≤ T, γ > 1,

0, t < t1.

Since K is convex, v = 1
2 (uk + ul) ∈ K for almost all t ∈ (−∞, T]. Choosing this function as

the test function in (3.2.11) and adding the inequalities implies

1
2

∫

Ω

[
|uk,l(t2)|2 + a(x)∇uk,l(t2)∇uk,l(t2)

]
ϕ(t2) dx

+
∫

Qt1,t2

[
(d(x,∇uk)− d(x,∇ul))∇uk,l + (g(x, uk)− g(x, ul)) uk,l

]
ϕ dx dt

≤ 1
2

∫

Qt1,t2

[
|uk,l |2 + a(x)∇uk,l ∇uk,l

] d
dt

ϕ dx dt, (3.2.12)

where uk,l = uk − ul . Due to the assumption (A1), we obtain

I1 :=
∫

Ω

a(x)∇uk,l(t2)∇uk,l(t2) ϕ(t2) dx > a0

∫

Ω

|∇uk,l(t2)|2 ϕ(t2) dx.

From the strong monotonicity of d and g follows the estimate

I2 :=
∫

Qt1,t2

[
(d(x,∇uk)− d(x,∇ul))∇uk,l + (g(x, uk)− g(x, ul)) uk,l

]
ϕ dx dt

>
∫

Qt1,t2

[
d1|∇uk,l |p + g1|uk,l |p

]
ϕ dx dt .

The right hand side of (3.2.12) is estimated by

I3 :=
∫

Qt1,t2

[
|uk,l |2 + a(x)∇uk,l ∇uk,l

] d
dt

ϕ dx dt

=
∫

Qt1,t2

[
|uk,l |2 + a(x)∇uk,l ∇uk,l

]
ϕ

2
p ϕ

− 2
p

d
dt

ϕ dx dt

≤ c1δ

∫

Qt1,t2

[
|uk,l |p + |∇uk,l |p

]
ϕ dx dt + c2/δ

t2∫

t1

ϕ
− 2

p−2 (t)
( d

dt
ϕ(t)

) p
p−2 dt,

where c1 depends on p, Ω, and a0. Using the estimates of the integrals I1, I2, and I3, and the

equality
t2∫

t1

ϕ
− 2

p−2 (t)
( d

dt
ϕ(t)

) p
p−2 dt =

γ(p− 2)
(γ + 1)(p− 2)− p

(t2 − t1)
γ+1− p

p−2
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in (3.2.12) implies
∫

Ω

(
|uk,l(t2)|2 + |∇uk,l(t2)|2

)
dx +

∫

Qt0,t2

(
|uk,l |p + |∇uk,l |p

)
dx dt ≤ C

( t2 − t1

t0 − t1

)γ
(t2− t1)

1− p
p−2 ,

where C is independent of k, l, and t1, and t0 is a fixed number, such that t1 < t0 ≤ t2. We

notice that 1− p
p−2 < 0 because of p > 2. For sufficiently large |t1| the right hand side of

the last inequality is small. Therefore, the sequence {uk} is a Cauchy sequence in the spaces

C((−∞, T]; V0) and Lp
loc((−∞, T]; V), and there exists a function u, such that

uk → u uniformly in C((−∞, T]; V0),

uk → u strongly in Lp
loc((−∞, T]; V)

as k → ∞. Due to Theorem 3.2.3, for every integer k, the function uk satisfies the inequality
∫

Qt1,t2

[
vt (v− uk) + a(x)∇vt ∇(v− uk) + d(x,∇uk)∇(v− uk) + g(x, uk) (v− uk)

]
dx dt

−
∫

Qt1,t2

f (t, x) (v− uk) dx dt > 1
2

∫

Ω

[
|v− uk|2 + a(x)∇(v− uk)∇(v− uk)

]
dx

∣∣∣
t2

t1

for all functions v ∈ Lp
loc((−∞, T]; V), such that vt ∈ L2

loc((−∞, T]; V0), v ∈ C((−∞, T]; V0),

and v(t) ∈ K for almost all t ∈ (−∞, T], and t1, t2 ∈ (−∞, T], t1 < t2. Passing in this

inequality to the limit as k → ∞ and using the strong convergence we obtain that u is a

solution of the inequality (3.2.1). ❒

Theorem 3.2.5 (Uniqueness). Let Assumption 3.1.1 be satisfied. Then there exists at most one
weak solution of the inequality (3.2.1).

Proof. Suppose, u(1) and u(2) are two weak solutions of (3.2.1), i.e.
∫

Qt1,τ

[
vt (v− u(i)) + a(x)∇vt ∇(v− u(i)) + d(x,∇u(i))∇(v− u(i)) + g(x, u(i)) (v− u(i))

]
dx dt

−
∫

Qt1,τ

f (t, x) (v− u(i)) dx dt > 1
2

∫

Ω

[
|v− u(i)|2 + a(x)∇(v− u(i))∇(v− u(i))

]
dx

∣∣∣∣
τ

t1

(3.2.13)

for all functions v ∈ Lp
loc((−∞, T]; V), such that vt ∈ L2

loc((−∞, T]; V0), v ∈ C((−∞, T]; V0),

and v(t) ∈ K for almost all t ∈ (−∞, T), and for all t1, τ, such that t1 < τ ≤ T, where i = 1, 2.

In the inequalities (3.2.13) we choose v = vξ, where for all ξ > 0 vξ is the solution of the

Cauchy problem {
ξ vt + v = w,

v(t1) = w(t1),
(3.2.14)

and w = 1
2 (u(1) + u(2)). Since w ∈ Lp

loc((−∞, T]; V) there exists a set J ⊂ (−∞, T], such that

w(t) ∈ V for all t ∈ J and (−∞, T] \ J is a set of measure zero. We assume t1 ∈ J. For all ξ
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there exists a solution of (3.2.14) of the form

vξ(t, x) = v(t1)e−
t−t1

ξ +

t∫

t1

e−
t−s

ξ
w(s, x)

ξ
ds.

From the properties of approximation of the Dirac function, it follows that vξ → w almost
everywhere in Qt1,T. To show that vξ → w weakly in Lp(t1, T; V) we need the estimate
||vξ ||Lp(t1,T;V) ≤ C, where C is independent of ξ.

||vξ ||pLp(t1,T;V) = ||w(t1)||pV +
∫

Qt1,T

( t∫

t1

e−
t−s

ξ
w(s, x)

ξ
ds

)p
dx dt +

∫

Qt1,T

( t∫

t1

e−
t−s

ξ
∇w(s, x)

ξ
ds

)p
dx dt

≤ c1 +
∫

Qt1,T

( t∫

t1

(e−
t−s

ξ )p
′
/p

′
ds

) p

p′
( t∫

t1

e−
t−s

ξ
1
ξp (|w|p + |∇w|p) ds

)
dx dt

≤ c1 + c2

(
||u(1)||pLp(t1,T;V) + ||u(2)||pLp(t1,T;V)

)
ξ

p

p′ ξξ−p ≤ C

for u(1), u(2) ∈ Lp(t1, T; V).

Summing up the inequalities (3.2.13) for i = 1, 2 yields

2
∫

Qt1,τ

(
vξt (vξ − w) + a(x)∇vξt ∇(vξ − w)

)
dx dt

+

τ∫

t1

(
〈Γ(u(1)), vξ − u(1)〉+ 〈Γ(u(2)), vξ − u(2)〉

)
dt− 2

∫

Qt1,τ

f (t, x) (vξ − w) dx dt

> 1
2

∫

Ω

(
|vξ(τ)− u(1)(τ)|2 + a(x)∇(vξ(τ)− u(1)(τ))∇(vξ(τ)− u(1)(τ))

)
dx

+
1
2

∫

Ω

(
|vξ(τ)− u(2)(τ)|2 + a(x)∇(vξ(τ)− u(2)(τ))∇(vξ(τ)− u(2)(τ))

)
dx

−1
4

∫

Ω

(
|u(t1)|2 + a(x)∇u(t1)∇u(t1)

)
dx,

where u = u(1) − u(2) and the operator Γ is as defined in (3.2.5). Since

∫

Qt1,τ

(
vξt (vξ − w) + a(x)∇vξt ∇(vξ − w)

)
dx dt =

−1
ξ

∫

Qt1,τ

(
|vξ − w|2 + a(x)∇(vξ − w)∇(vξ − w)

)
dx dt ≤ 0,
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we obtain from the last inequality that

2
∫

Qt1,τ

f (t)(vξ − w) dx dt ≤

τ∫

t1

(
〈Γ(u(1)), vξ − u(1)〉+ 〈Γ(u(2)), vξ − u(2)〉

)
dt +

1
4

∫

Ω

(
|u(t1)|2 + a(x)∇u(t1)∇u(t1)

)
dx

−1
2

∫

Ω

(
|vξ(τ)− u(1)(τ)|2 + a(x)∇(vξ(τ)− u(1)(τ))∇(vξ(τ)− u(1)(τ))

)
dx

−1
2

∫

Ω

(
|vξ(τ)− u(2)(τ)|2 + a(x)∇(vξ(τ)− u(2)(τ))∇(vξ(τ)− u(2)(τ))

)
dx.

We multiply the last inequality by ψm(τ), where ψm ∈ C([t1, t2]),
t2∫

t1

ψm(t)dt = 1, ψm(t) > 0

on [t1, t2], supp ψm ∈ [t2 − (t2 − t1)/m, t2], and integrate over [t1, t2]. Hereby, we obtain

2

t2∫

t1

ψm(τ)
∫

Qt1,τ

f (t, x) (vξ − w) dx dt dτ ≤ 1
4

∫

Ω

(
|u(t1)|2 + a(x)∇u(t1)∇u(t1)

)
dx

+

t2∫

t1

ψm(τ)

τ∫

t1

(
〈Γ(u(1)), vξ − u(1)〉+ 〈Γ(u(2)), vξ − u(2)〉

)
dt dτ

−1
2

t2∫

t1

ψm

∫

Ω

(
|vξ(τ)− u(1)(τ)|2 + a(x)∇(vξ(τ)− u(1)(τ))∇(vξ(τ)− u(1)(τ))

)
dx dτ

−1
2

t2∫

t1

ψm

∫

Ω

(
|vξ(τ)− u(2)(τ)|2 + a(x)∇(vξ(τ)− u(2)(τ))∇(vξ(τ)− u(2)(τ))

)
dx dτ.

Due to the weak convergence of {vξ}, passing in the last inequality to the limit as ξ → 0

implies

1
2

t2∫

t1

ψm(τ)
∫

Ω

(
|u|2 + a(x)∇u∇u

)
dx

∣∣∣
τ

t1
dτ

+

t2∫

t1

ψm(τ)

τ∫

t1

〈Γ(u(1))− Γ(u(2)), u(1) − u(2)〉 dt dτ ≤ 0.

Letting m → ∞ in this inequality and using the strong monotonicity of d and g yields

1
2

∫

Ω

(
|u|2 + a(x)∇u∇u

)
dx

∣∣∣∣
t2

t1

+
∫

Qt1,t2

(
|u|p + |∇u|p

)
dx dt ≤ 0.

The last inequality can be rewritten in the form

y2(t)
∣∣∣
t2

t1
+µ

t2∫

t1

yp(t) dt ≤ 0,
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where

y2(t) =
∫

Ω

(
|u(t)|2 + a(x)∇u(t)∇u(t)

)
dx,

for all t1, t2, such that −∞ < t1 < t2 ≤ T and t1 ∈ J. Then, due to Pankov’s Lemma A.2.2,

y(t) = 0 almost everywhere in (−∞, T]. Therefore, u = 0 almost everywhere in QT and the

uniqueness of the solution of the inequality (3.2.1) is proved. ❒



4

Nonlinear Pseudoparabolic Equations and
Variational Inequalities

In the first section of this chapter it will be shown that a solution of a nonlinear pseudo-

parabolic equation can be obtained as a singular limit of solutions of quasilinear hyperbolic

equations. If a system with cross diffusion, modeling the reaction and the diffusion of two

biological, chemical, or physical substances, is reduced, such an hyperbolic equation is ob-

tained. For regular solutions even uniqueness can be shown, though the needed regularity

can only be proved in two dimensions.

The second section deals with existence and uniqueness of weak solutions of nonlinear

pseudoparabolic variational inequalities. Again, uniqueness can only be shown for suffi-

ciently regular solutions.

4.1 Nonlinear Pseudoparabolic Equations

We consider a reaction system with diffusion of one of the substances

{
ε∂tv = ∇ · a(t, x,∇v) +∇ · (d(t, x)∇w) + f̃ (t, x, w)− b(t, x, v),

∂tw = h(w)v,

where the function h may be of the form

h(w) =
h1w

w + h2
+ h0.

This function satisfies

0 < h0 ≤ h(w) ≤ h1.

After a change to a new variable u = H(w), where H(w) =
w∫
0

1
h(s) ds, we obtain

∂tu = v.

Hereby the system is reduced to the single equation

ε utt = ∇ · a(t, x,∇ut) +∇ · (d(t, x)h(u)∇u) + f̃ (t, x, H−1(u))− b(t, x, ut).



82 Nonlinear Pseudoparabolic Equations and Variational Inequalities

In this section we show at first the existence of a weak solution of the problem




ε utt + b(t, x, ut)−∇ · a(t, x,∇ut)−∇ · (d(t, x)h(u)∇u) = f (t, x, u) in QT,

u(0) = u0 in Ω,

ut(0) = 0 in Ω.

(4.1.1)

Secondly, we prove the convergence of the sequence of solutions {uε} as ε → 0 to a solution

of the pseudoparabolic equation
{

b(t, x, ut)−∇ · a(t, x,∇ut)−∇ · (d(t, x)h(u)∇u) = f (t, x, u) in QT,

u(0) = u0 in Ω.
(4.1.2)

Both initial value problems are completed by posing spatial boundary conditions. Herefore,

we choose a closed subspace V0, H1
0(Ω) ⊂ V0 ⊂ H1(Ω), densely and continuously embed-

ded in L2(Ω). The existence of a solution will be ensured by the following assumption.

Assumption 4.1.1.

(A1) The function b : (0, T)×Ω×R→ R is measurable in t and x, continuous in ξ,

elliptic, i.e. for some b0 > 0, b(t, x, ξ) ξ > b0|ξ|p for ξ ∈ R, and strongly monotone, i.e.

for some b1 > 0, (b(t, x, ξ1)− b(t, x, ξ2)) (ξ1 − ξ2) > b1|ξ1 − ξ2|p, for ξ1, ξ2 ∈ R, p > 2,

and satisfies a growth assumption, i.e. for some b0 < ∞, |b(t, x, ξ)| ≤ b0(1 + |ξ|p−1).

(A2) The function a : (0, T)×Ω×RN → RN is measurable in t and x, continuous in η,

elliptic, i.e. for some a0 > 0, a(t, x, η) η > a0|η|2 for η ∈ RN , and strongly monotone, i.e.

for some a1 > 0, (a(t, x, η1)− a(t, x, η2)) (η1 − η2) > a1|η1 − η2|2 for η1, η2 ∈ RN , and

satisfies a growth assumption, i.e. for some a0 < ∞, |a(t, x, η)| ≤ a0(1 + |η|) for η ∈ RN .

(A3) The matrix field d ∈ L∞(QT)N×N , i.e. |d(t, x)| ≤ d1 for a. a. (t, x) ∈ QT, the function

h : R→ R is continuous and satisfies 0 < h0 ≤ h(ξ) ≤ h1 < ∞ for all ξ ∈ R.

(A4) The function f : (0, T)×Ω×R→ R is measurable in t and x, continuous in ξ,

and sublinear, i.e. for some c1 < ∞, | f (t, x, ξ)| ≤ c1(1 + |ξ|p−1) for ξ ∈ R.

(A5) The initial condition u0 is in V0.

Now we define the notion of a weak solution of the problem (4.1.1).

Definition 4.1.2. A function u : QT → R is called a weak solution of the problem (4.1.1) if

1) εut ∈ C([0, T]; L2(Ω)), ut ∈ Lp(QT) ∩ L2(0, T; V0), u ∈ C([0, T]; V0),

2) satisfies the initial condition, i.e. u(t) → u0 in V0, ut(t) → 0 in L2(Ω) for t → 0, and

3)
∫

QT

[
−εut vt + b(t, x, ut) v + a(t, x,∇ut)∇v + d(t, x)h(u)∇u∇v

]
dx dt

+ε

∫

Ω

ut(T)v(T) dx =
∫

QT

f (t, x, u) v dx dt (4.1.3)

for all functions v ∈ Lp(QT) ∩ L2(0, T; V0), such that vt ∈ L2(QT), v ∈ C([0, T]; L2(Ω)).
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The existence of a solution of (4.1.1) is proved using Galerkin’s method. Herefore, let

{φk}∞
k=1 ⊂ V0 ∩ Lp(Ω) be a basis of the spaces V0 and Lp(Ω). We consider the sequence

of the functions {um} of the form

um(t, x) =
m

∑
k=1

zm
k (t)φ(k)(x), m = 1, 2, ...,

such that um is a solution of the Cauchy problem

ε

∫

Ω

um
tt φ(k) dx +

∫

Ω

b(t, x, um
t ) φ(k) dx +

∫

Ω

a(t, x,∇um
t )∇φ(k) dx

+
∫

Ω

d(t, x)h(um)∇um ∇φ(k) dx =
∫

Ω

f (t, x, um) φ(k) dx, (4.1.4)

um(0, x) = um
0 (x), um

t (0, x) = 0, (4.1.5)

where {um
0 } is an approximation of u0 in the space V0. Due to the generalization of Peano’s

theorem for Carathéodory functions, (Deimling 1992), there exists a local solution of this

problem in [0, t0m]. The following lemma allows an extension of the solutions to the whole

interval [0, T].

Lemma 4.1.3. The estimates

ε

∫

Ω

|um
t (t)|2 dx ≤ C, t ∈ [0, t0m],

∫

Qt0m

|um
t |p dx dt ≤ C,

∫

Qt0m

|∇um
t |2 dx dt ≤ C (4.1.6)

hold uniformly with respect to m and ε.

Proof. We multiply the equation (4.1.4) by zm
kt, sum up over k from 1 to m, and integrate over

[0, τ], where 0 < τ ≤ t0m

∫

Qτ

[
εum

tt um
t + b(t, x, um

t ) um
t + a(t, x,∇um

t )∇um
t + d(t, x) h(um)∇um ∇um

t

]
dx dt

=
∫

Qτ

f (t, x, um) um
t dx dt. (4.1.7)

Now we estimate the integrals in (4.1.7) separately. Due to the second initial condition in

(4.1.5) we obtain

I1 = ε

∫

Qτ

um
tt um

t dx dt =
ε

2

∫

Ω

|um
t (τ)|2 dx.
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Assumption 4.1.1 implies

I2 :=
∫

Qτ

b(t, x, um
t ) um

t dx dt > b0

∫

Qτ

|um
t |p dx dt,

I3 :=
∫

Qτ

a(t, x,∇um
t )∇um

t dx dt > a0

∫

Qτ

|∇um
t |2 dx dt,

I4 :=
∫

Qτ

d(t, x)h(um)∇um ∇um
t dx dt ≤ d2

1h2
1

2δ

∫

Qτ

|∇um|2 dx dt +
δ

2

∫

Qτ

|∇um
t |2 dx dt,

I5 :=
∫

Qτ

f (t, x, um) um
t dx dt ≤ δ

p

∫

Qτ

|um
t |p dx dt +

1
qδq/p

∫

Qτ

| f (t, x, um)|q dx dt.

Due to the assumption on f we have

∫

Qτ

| f (t, x, um)|q dx dt ≤ c1

∫

Qτ

|um|p dx dt + c2 ≤ c3

τ∫

0

∫

Qt

|um
t |p dx ds dt + c4.

Using the inequality

∫

Qτ

|∇um|2 dx dt ≤ c5 +

τ∫

0

∫

Qt

|∇um
t |2 dx ds dt,

the estimates of integrals I1, ..., I5, and Gronwall’s lemma in the equation (4.1.7) implies the

assertion. ❒

Remark 4.1.4. Since the constant C is independent of t0m, the solution um may be assumed

to be the maximal solution, i.e. the one that exists for all t ∈ [0, T]. Furthermore, since the

estimates of the last Lemma are independent of m, they are satisfied by every um for all

t ∈ [0, T].

From the estimates for um
t we obtain the estimate for um. Due to (4.1.6) and p > 2, the second

term on the right hand side of the equality
∫

Ω

(
|um|2 + |∇um|2

)
dx =

∫

Ω

(
|um

0 |2 + |∇um
0 |2

)
dx + 2

∫

Qτ

(
um

t um +∇um
t ∇um

)
dx dt,

can be estimated by

2
∫

Qτ

(
um

t um +∇um
t ∇um

)
dx dt ≤

∫

Qτ

(
|um

t |2 + |∇um
t |2

)
dx dt +

∫

Qτ

(
|um|2 + |∇um|2

)
dx dt

≤ c1 +
∫

Qτ

(
|um

t |p + |∇um
t |2

)
dx dt +

∫

Qτ

(
|um|2 + |∇um|2

)
dx dt

≤ c2 +
∫

Qτ

(
|um|2 + |∇um|2

)
dx dt.
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Hence we obtain
∫

Ω

(
|um|2 + |∇um|2

)
dx ≤ c3 +

∫

Qτ

(
|um|2 + |∇um|2

)
dx dt.

Gronwall’s Lemma implies
∫

Ω

(
|um|2 + |∇um|2

)
dx ≤ C.

Theorem 4.1.5 (Existence). Let Assumption 4.1.1 be satisfied. Then there exists a weak solution
uε of the problem (4.1.1).

Proof. The growth assumptions on a and b imply
∣∣∣
∫

QT

b(t, x, um
t ) v dx dt

∣∣∣ ≤
∫

QT

b0(1 + |um
t |p−1) |v| dx dt ≤ C(1 + ||um

t ||p/q
Lp(QT))||v||Lp(QT)

and
∣∣∣
∫

QT

a(t, x,∇um
t )∇v dx dt

∣∣∣ ≤
∫

QT

a0(1 + |∇um
t |)|∇v| dx dt ≤ C(1 + ||um

t ||L2(0,T;V0))||v||L2(0,T;V0)

for all v ∈ Lp(QT) ∩ L2(0, T; V0). From this and from the estimates (4.1.6) follows the exis-

tence of a subsequence of {um}, again denoted by {um}, such that

um → uε weakly– ∗ in L∞(0, T; V0),

um
t → uε

t weakly in Lp(QT) ∩ L2(0, T; V0),

um
t → uε

t weakly– ∗ in L∞(0, T; L2(Ω)),

b(t, x, um
t ) → βε weakly in Lq(QT),

a(t, x,∇um
t ) → ηε weakly in L2(QT)N ,

as m → ∞. Using the Aubin-Lions Compactness Lemma, (Lions 1969), yields um → uε

strongly in L2(QT). From the strong convergence of um follows um → uε a.e. in QT. The

continuity of h and f implies h(um) → h(uε) and f (t, x, um) → f (t, x, uε) a.e. in QT. From

the assumptions it follows that h(um), h(uε) ∈ L∞(QT) and f (t, x, um), f (t, x, uε) ∈ Lq(QT).

Then by the Egorov Theorem (Alt 2002) we obtain h(um) → h(uε) uniformly a.e. in QT and

by the Dominated Convergence Theorem (Evans 1998) we have that f (t, x, um) → f (t, x, uε)

strongly in Lq(QT).

All terms but the first of the equation (4.1.4) are uniformly bounded in Lq(QT) + L2(0, T; V∗
0 )

in m. Hence, there exists a bounded functional w ∈ Lq(QT) + L2(0, T; V∗
0 ) that satisfies

ε〈w, ṽ〉 =
∫

Ω

f (t, x, uε) ṽ dx−
∫

Ω

βε ṽ dx−
∫

Ω

ηε ∇ṽ dx−
∫

Ω

d(t, x)h(uε)∇uε ∇ṽ dx

in Lq(0, T) + L2(0, T) for all functions ṽ ∈ Lp(Ω) ∩V0.
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Since um
t → uε

t weakly in Lp(QT), we obtain

〈um
tt , ṽ〉 =

d
dt
〈um

t , ṽ〉 → 〈uε
tt, ṽ〉 in D ′

(0, T)

as m → ∞ for ṽ ∈ Lp(Ω). Hence, w = uε
tt in D ′

(0, T, Lq(Ω) + V∗
0 ). Since w ∈ Lq(QT) +

L2(0, T; V∗
0 ) we may assume uε

tt ∈ Lq(QT) + L2(0, T; V∗
0 ). From the convergence of the um

t

we have that uε
t ∈ Lp(QT)∩ L2(0, T; V0). Thus, due to (Gajewski et al. 1974, Theorem IV.1.17)

or (Showalter 1996, Proposition III.1.2), it may be assumed that uε
t ∈ C([0, T]; L2(Ω)) and

the integration by parts formula
t2∫

t1

〈uε
tt, uε

t〉 dt =
1
2

∫

Ω

|uε
t(t2)|2 dx− 1

2

∫

Ω

|uε
t(t1)|2 dx

holds for all t1, t2 ∈ [0, T], such that t1 < t2. Now we will show that the function uε satisfies

the initial condition. Since all um
t and uε

t are in C([0, T]; L2(Ω)), and um
t → uε

t weakly–∗ in

L∞(0, T, L2(Ω)), we obtain
∫

Ω

um
t (0) ṽ dx →

∫

Ω

uε
t(0) ṽ dx and

∫

Ω

um
t (T) ṽ dx →

∫

Ω

uε
t(T) ṽ dx,

as m → ∞ for ṽ ∈ Lp(Ω). Then we have uε
t(0) = 0 in L2(Ω), because of um

t (0) = 0 in L2(Ω).

Since uε ∈ L∞(0, T; V0) and uε
t ∈ L2(0, T; V0), due to (Evans 1998, Theorem 5.9.2), it may be

assumed that uε ∈ C([0, T]; V0) and

um(0) → uε(0) strongly in L2(Ω)

as m → ∞. Thus, uε(0) = u0.

Integrating in the equation (4.1.4) the first term by part, passing to the limit as m → ∞ and

using the fact, that the set of all functions of the form ∑
l<∞

dl φl , where dl ∈ C1([0, T]), is

dense in Lp(QT), in L2(0, T; V0), in C([0, T]; L2(Ω)), and in H1(0, T; L2(Ω)), yields

−ε

∫

QT

uε
t vt dx dt +

∫

QT

(βε v + ηε ∇v ) dx dt +
∫

QT

d(t, x) h(uε)∇uε ∇v dx dt

+ε

∫

Ω

uε
t(T)v(T) dx =

∫

QT

f (t, x, uε) v dx dt

for all functions v ∈ Lp(QT) ∩ L2(0, T; V0), such that vt ∈ L2(QT) and v ∈ C([0, T]; L2(Ω)).

To complete the proof we have to show that βε = b(t, x, uε
t) and ηε = a(t, x,∇uε

t). For this

we show the strong convergence of {um
t } to uε

t in Lp(QT) ∩ L2(0, T; V0). We choose um
t − uε

t

as a test function in the equation (4.1.4), integrate this equation over [0, τ], and obtain

ε

τ∫

0

〈um
tt , um

t − uε
t〉 dt +

∫

Qτ

b(t, x, um
t ) (um

t − uε
t) dx dt +

∫

Qτ

a(t, x,∇um
t )∇(um

t − uε
t) dx dt

+
∫

Qτ

d(t, x) h(um)∇um ∇(um
t − uε

t) dx dt =
∫

Qτ

f (t, x, um) (um
t − uε

t) dx dt.
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By Fatou’s lemma and weak convergence of um
tt in Lq(QT) + L2(0, T; V∗

0 ), we obtain for the

first integral

lim inf
m→∞

τ∫

0

〈um
tt , um

t − uε
t〉 dt > 1

2
lim inf

m→∞

∫

Ω

|um
t (τ, x)|2 dx− 1

2

∫

Ω

|uε
t(τ, x)|2 dx > 0.

Then, we have the inequality
∫

Qτ

(b(t, x, um
t )− b(t, x, uε

t))(um
t − uε

t) dx dt +
∫

Qτ

(a(t, x,∇um
t )− a(t, x,∇uε

t))∇(um
t − uε

t) dx dt

≤
∫

Qτ

[
b(t, x, uε

t) (uε
t − um

t ) + a(t, x,∇uε
t)∇(uε

t − um
t )

]
dx dt +

∫

Qτ

d(t, x) h(um)∇uε∇(uε
t − um

t ) dx dt

+
∫

Qτ

d(t, x) h(um)∇(um − uε)∇(uε
t − um

t ) dx dt +
∫

Qτ

f (t, x, um) (um
t − uε

t) dx dt.

Due to the weak convergence of {um
t }, the uniform convergence of h(um) → h(uε) a.e.

in QT, h(um), h(uε) ∈ L∞(QT), and the strong convergence of f (t, x, um) → f (t, x, uε) in

Lq(QT), the first, the second, and the fourth integral on the right hand side converge to zero

as m → ∞. The third integral on the right hand side can be estimated by
∫

Qτ

d(t, x) h(um)∇(um − uε)∇(um
t − uε

t) dx dt

≤ d2
1h2

1
2δ

∫

Qτ

|∇(um − uε)|2 dx dt +
δ

2

∫

Qτ

|∇(um
t − uε

t)|2 dx dt

≤ c1

τ∫

0

∫

Qs

|∇um
t −∇uε

t |2 dx dt ds +
δ

2

∫

Qτ

|∇(um
t − uε

t)|2 dx dt.

The monotonicity of b and a, and the convergence of {um} and {um
t } imply

b1

∫

Qτ

|um
t −uε

t |p dxdt +(a1− δ

2
)
∫

Qτ

|∇(um
t −uε

t)|2 dxdt ≤ σ(
1
m

)+ c2

τ∫

0

∫

Qs

|∇(um
t −uε

t)|2 dxdtds.

Using Gronwall’s lemma in the last inequality yields

||um
t − uε

t ||Lp(QT) + ||∇um
t −∇uε

t ||L2(QT) ≤ Cσ(
1
m

).

Thus, um
t → uε

t strongly in Lp(QT)∩ L2(0, T; V0) as m → ∞. The strong convergence of {um
t }

and the weak convergence of {b(t, x, um
t )} and {a(t, x,∇um

t )} imply that βε = b(t, x, uε
t) and

ηε = a(t, x,∇uε
t), and the theorem is proved. ❒

Now we show that the sequence of solutions {uε} converges as ε → 0 to a solution of the

initial boundary value problem for the nonlinear pseudoparabolic equation (4.1.2).

We consider a weak solution of the problem (4.1.2).
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Definition 4.1.6. A function u : QT → R is called a weak solution of the problem (4.1.2) if

1) u ∈ C([0, T]; V0), ut ∈ Lp(QT) ∩ L2(0, T; V0),

2) it satisfies the initial condition in the sense that u(t) → u0 in V0 for t → 0, and

3)
∫

QT

[
b(t, x, ut) v + a(t, x,∇ut)∇v + d(t, x)h(u)∇u∇v

]
dx dt =

∫

QT

f (t, x, u) v dx dt (4.1.8)

for all functions v ∈ Lp(QT) ∩ L2(0, T; V0).

Theorem 4.1.7 (Existence).

Let Assumption 4.1.1 be satisfied. Then, there exists a weak solution of the problem (4.1.2).

Proof. We rewrite the equation (4.1.3) for v = uε
t and obtain

−ε

∫

QT

uε
t uε

t dx dt +
∫

QT

[
b(t, x, uε

t) uε
t + a(x, t,∇uε

t)∇uε
t + d(t, x)h(uε)∇uε ∇uε

t

]
dx dt

+ε

∫

Ω

uε
t(T) uε

t(T) dx =
∫

QT

f (x, t, uε) uε
t dx dt. (4.1.9)

We estimate all integrals in (4.1.9) analogously to (4.1.7) and have

ε

∫

Ω

|uε
t(t)|2 dx ≤ C, t ∈ [0, T],

∫

QT

|uε
t |p dx dt ≤ C,

∫

QT

|∇uε
t |2 dx dt ≤ C,

where C is independent of ε. Due to the growth assumptions on b and a, and estimates for

uε
t , we obtain

||b(t, x, uε
t)||Lq(QT) ≤ C,

||a(t, x,∇uε
t)||L2(QT)N ≤ C.

Similarly as for um we obtain
∫

Ω

(
|uε(t)|2 + |∇uε(t)|2

)
dx ≤ C, t ∈ [0, T].

Then there exists a subsequence of {uε}, again denoted by {uε}, such that

uε → u weakly- ∗ in L∞(0, T; V0),

uε
t → ut weakly in Lp(QT) ∩ L2(0, T; V0),

b(t, x, uε
t) → β weakly in Lq(QT),

a(t, x,∇uε
t) → η weakly in L2(QT)N ,

εuε
t → 0 weakly in L2(0, T; L2(Ω)),

εuε
t(·, T) → 0 weakly in L2(Ω),
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as ε → 0. Using the Aubin-Lions Compactness Lemma, (Lions 1969), yields uε → u strongly

in L2(QT). From the strong convergence of uε follows uε → u a.e. in QT. The continuity of

h and f implies h(uε) → h(u) and f (t, x, uε) → f (t, x, u) a.e. in QT. From the assumptions

it follows that h(uε), h(u) ∈ L∞(QT) and f (t, x, uε), f (t, x, u) ∈ Lq(QT). Then by the Egorov

Theorem (Alt 2002) we obtain h(uε) → h(u) uniformly a.e. in QT and by the Dominated

Convergence Theorem (Evans 1998) we have that f (t, x, uε) → f (t, x, u) strongly in Lq(QT).

Passing to the limit as ε → 0 in (4.1.3) yields

∫

QT

(
β v + η∇v

)
dx dt +

∫

QT

d(t, x)h(u)∇u∇v dx dt =
∫

QT

f (t, x, u) v dx dt

for all v ∈ Lp(QT) ∩ L2(0, T; V0). Similarly as for {um
t } we prove the strong convergence of

{uε
t} and obtain β = b(t, x, ut), η = a(t, x,∇ut). Using u ∈ L∞(0, T; V0), ut ∈ L2(0, T; V0), and

(Evans 1998, Theorem 5.9.2), implies that u : [0, T] → V0 is continuous. Due to uε(0) = u0,

we obtain u(0) = u0 in V0. Thus, u is a solution of the problem (4.1.2). ❒

Theorem 4.1.8 (Regularity). Let Assumption 4.1.1 be satisfied, Ω be a C2-domain, V0 = H1
0(Ω),

u0 ∈ H2(Ω), a(t, ·, ·) ∈ C1(Ω ×RN), d(t, ·) ∈ C1(Ω)N×N for t ∈ (0, T), h ∈ C1(R), N = 2,
p = 2, and for η ∈ RN , ξ ∈ R

|∂ηa(t, x, η)| ≤ C, |∇xa(t, x, η)| ≤ a2(1 + |η|),

|∂ξh(ξ)| ≤ C, |∇xd(t, x)| ≤ C.

Then the solution uε of the problem (4.1.1) is in H1(0, T; H1
0(Ω)), in H1(0, T; H2(Ω)), and satisfies

ε uε
tt ∈ L2(QT).

Proof. First we show the local regularity. We fix any open set U, and choose an open set W,

such that U ⊂⊂ W ⊂⊂ Ω. We choose the basis functions φk as solutions of

∆φk = λφk in Ω,

φk = 0 on ∂Ω.

We choose v = −∂xl (ζ2
1∂xl u

m
t ) as a test function in the equation (4.1.4), where the cut-off

function ζ1 is smooth and satisfies





ζ1 = 1 in U,

ζ1 = 0 in ΩrW,

0 ≤ ζ1 ≤ 1,
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and integrate over t. Due to the regularity of φk, we have that v ∈ L2(0, T; H1
0(Ω)). Integrat-

ing by parts and summing over l from 1 to N implies

ε

∫

QT

∇um
tt ∇um

t ζ2
1 dx dt−

N

∑
l=1

∫

QT

b(t, x, um
t ) ∂xl (ζ2

1∂xl u
m
t ) dx dt

+
N

∑
l=1

N

∑
i,j=1

∫

QT

∂ηj a
i(t, x,∇um

t )∂xj ∂xl u
m
t ∂xi(ζ2

1∂xl u
m
t ) dx dt +

N

∑
l=1

∫

QT

∂xl a(t, x,∇um
t )∇(ζ2

1∂xl u
m
t ) dx dt

+
N

∑
l=1

∫

QT

∂xl (d(t, x)h(um)∇um)∇(ζ2
1∂xl u

m
t ) dx dt =

N

∑
l=1

∫

QT

f (t, x, um) ∂xl (ζ2
1∂xl u

m
t ) dx dt. (4.1.10)

The strong monotonicity of a implies

1
σ

(
a(t, x, η̃ + σξ)− a(η̃)

)
ξ > a1|ξ|2

for η1 = η̃ + σξ, σ > 0, and η2 = η̃. Taking the limit as σ → 0 yields

∇ηa(t, x, η̃)ξ ξ > a1|ξ|2 for η̃, ξ ∈ RN .

Then we have the estimate

N

∑
l=1

N

∑
i,j=1

∫

QT

∂ηj a
i(t, x,∇um

t )∂xj ∂xl u
m
t ∂xi ∂xl u

m
t ζ2

1 dx dt > a1

N

∑
l=1

N

∑
i=1

∫

QT

|∂xi ∂xl u
m
t |2 ζ2

1 dx dt.

From the equation (4.1.10), using Young’s inequality, we obtain

ε

2

∫

Ω

|∇um
t (T)|2 ζ2

1 dx + a1

∫

QT

|∇2um
t |2 ζ2

1 dx dt

≤ δ0

∫

QT

|∇2um
t |2 ζ2

1 dx dt + δ0

∫

QT

|∇η a(t, x,∇um
t )|2|∇2um

t |2 ζ2
1 dx dt + c1(δ0)

∫

QT

|ζ1|2|∇ζ1|2|∇um
t |2 dx dt

+c2(δ0)
∫

QT

|∇ζ1|2|∇um
t |2 dx dt + c3(δ0)

∫

QT

|∇xa(t, x,∇um
t )|2 dx dt + c4(δ0)

∫

QT

|b(t, x, um
t )|2 dx dt

+c5(δ0)
∫

QT

|∇d(t, x)|2|h(um)|2|∇um|2 dx dt + c6(δ0)
∫

QT

|d(t, x)|2|h(um)|2|∇2um|2 ζ2
1 dx dt

+c7(δ0)
∫

QT

|d(t, x)|2|∂ξh(um)|2|∇um|4 ζ2
1 dx dt + c8(δ0)

∫

QT

| f (t, x, um
t )|2 dx dt. (4.1.11)

For N = 2, due to the embedding theorem, we have ∇um ∈ L4(QT) and the Gagliardo-

Nirenberg inequality
∫

QT

|∇um|4 ζ2
1 dx dt ≤ C

(∫

QT

|∇2um|2 ζ2
1 dx dt +

∫

QT

|∇um|2 ζ2
1 |∇ζ1|2 dx dt

) ∫

QT

|∇um|2 dx dt.
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The estimate for ∇um and the assumption u0 ∈ H2(Ω) imply

∫

QT

|∇um|4 ζ2
1 dx dt ≤ c1

∫

QT

|∇2um|2 ζ2
1 dx dt + c2 ≤ c3 + c4

T∫

0

∫

Qt

|∇2um
τ |2ζ2

1 dx dτdt.

Due to the estimates (4.1.6) for um
t and the assumptions in the theorem, we obtain from

(4.1.11) the inequality

∫

QT

ζ2
1|∇2um

t |2 dx dt ≤ C1 + C2

T∫

0

∫

Qt

ζ2
1|∇2um

τ |2 dx dτdt.

Then Gronwall’s lemma implies the estimate

∫

QT

ζ2
1|∇2um

t |2 dx dt ≤ C. (4.1.12)

From (4.1.11) we obtain also

sup
0≤t≤T

∫

Ω

|∇um
t |2 ζ2

1 dx ≤ C.

Using these extra estimates in the proof of Theorem 4.1.5 yields a subsequence and a limit-

function uε ∈ H1(0, T; H1
0(Ω)), with satisfies uε

t ∈ L2(0, T; H2
loc(Ω)) and uε

t ∈ L∞(0, T; H1
loc(Ω))

also.

To show the regularity of uε up to the boundary we need an estimate for ∇2um
t close to ∂Ω.

Here we use φk = 0 and ∆φk = 0 on ∂Ω.

We can cover ∂Ω with a finite number of balls, due to compactness. In local coordinates near

the boundary Ω is of the form B1(0) ∩ {R × R+}. Hence, we consider the case

Ω = B1(0) ∩ {R×R+} first. We choose v = −∂x1(ζ2∂x1 um
t ) as a test function in the equation

(4.1.4), where the smooth cut-off function ζ is defined by





ζ = 1 in B 1
2
(0),

ζ = 0 in R2r B1(0),

0 ≤ ζ ≤ 1,
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and ζ vanishes near the curved part of ∂Ω. Integrating over t and integrating by parts imply

ε

∫

QT

∂x1 um
tt ∂x1 um

t ζ2 dx dt−
∫

QT

b(t, x, um
t ) (∂2

x1
um

t ζ2 + 2ζ∂x1 ζ ∂x1 um
t ) dx dt

+
∫

QT

∇ηa(t, x,∇um
t )∂x1∇um

t ∂x1∇um
t ζ2 dx dt + 2

∫

QT

∇ηa(t, x,∇um
t )∂x1∇um

t ζ∇ζ ∂x1 um
t dx dt

+
∫

QT

∂x1 a(t, x,∇um
t )∂x1∇um

t ζ2 dx dt + 2
∫

QT

∂x1 a(t, x,∇um
t )ζ∇ζ ∂x1 um

t dx dt

+
∫

QT

∂x1(d(t, x)h(um)∇um) ∂x1∇um
t ζ2 dx dt + 2

∫

QT

∂x1(d(t, x)h(um)∇um) ζ∇ζ ∂x1 um
t dx dt

=
∫

QT

f (t, x, um) (∂2
x1

um
t ζ2 + 2ζ∂x1 ζ ∂x1 um

t ) dx dt. (4.1.13)

The boundary integrals vanish, since ζ vanishes near the curved part of ∂Ω, and ∂x1 um = 0

and ∂2
x1

um = 0 vanish on {x2 = 0}, because um = ∑m
k=1 ck

mφk is zero on {x2 = 0} and the

normal vector to this part of the boundary is ν = (0,−1). Furthermore, v ∈ L2(0, T; H1
0(Ω)).

From the strong monotonicity of a we have the estimate
∫

QT

∇ηa(t, x,∇um
t )∇∂x1 um

t ∇∂x1 um
t ζ2 dx dt > a1

∫

QT

|∇∂x1 um
t |2 ζ2 dx dt.

Then from the equation (4.1.13) by using Young’s inequality we obtain

ε

2

∫

Ω

|∂x1 um
t (T)|2 ζ2 dx + a1

∫

QT

|∂x1∇um
t |2 ζ2 dx dt

≤ δ0

∫

QT

|∂x1∇um
t |2 ζ2 dx dt + c1(δ0)

∫

QT

|∂x1 a(t, x,∇um
t )|2 dx dt + c2(δ0)

∫

QT

|b(t, x, um
t )|2 dx dt

+c3(δ0)
∫

QT

|∂x1 d(t, x)|2|h(um)|2|∇um|2 dx dt + c4(δ0)
∫

QT

|d(t, x)|2|h(um)|2|∂x1∇um|2 ζ2 dx dt

+c5(δ0)
∫

QT

|d(t, x)|2|∂ξh(um)|2|∇um|4 ζ2 dx dt +
∫

QT

| f (t, x, um
t )|2 dx dt

+c1

∫

QT

ζ2|∇ζ|2|∇um
t |2 dx dt + c2

∫

QT

|∇ζ|2|∇um
t |2 dx dt. (4.1.14)

Using again the inequality
∫

QT

|∇um|4 ζ2 dx dt ≤ C
(∫

QT

|∇2um|2 ζ2 dx dt +
∫

QT

|∇um|2 ζ2 |∇ζ|2 dx dt
) ∫

QT

|∇um|2 dx dt,

the estimate for ∇um, and the assumption u0 ∈ H2(Ω) implies

∫

QT

|∇um|4 ζ2 dx dt ≤ c1

∫

QT

|∇2um|2 ζ2 dx dt + c2 ≤ c3 + c4

T∫

0

∫

Qt

|∇2um
τ |2 ζ2 dx dτ dt.
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Due to the estimates (4.1.6) for um
t and the assumptions in the theorem, we obtain from

(4.1.14) the inequality

∫

QT

|∂x1∇um
t |2 ζ2 dx dt ≤ C1 +

T∫

0

∫

Qt

|∂2
x2

um
τ |2 ζ2 dx dτ dt + C2

T∫

0

∫

Qt

|∂x1∇um
τ |2 ζ2 dx dτ dt.

Then Gronwall’s lemma implies the estimate

∫

QT

|∂x1∇um
t |2 ζ2 dx dt ≤ C

(
1 +

T∫

0

∫

Qt

|∂2
x2

um
τ |2 ζ2 dx dτdt

)
. (4.1.15)

Now we choose v = −∂x2(ζ2∂x2 um
t ) as a test function in the equation (4.1.4) and obtain

−ε

∫

QT

um
tt ∂x2(ζ2∂x2 um

t ) dx dt−
∫

QT

b(t, x, um
t ) ∂x2(ζ2∂x2 um

t ) dx dt

−
∫

QT

a(t, x,∇um
t )∇∂x2(ζ2∂x2 um

t ) dx dt−
∫

QT

d(t, x)h(um)∇um ∇∂x2(ζ2∂x2 um
t ) dx dt

= −
∫

QT

f (t, x, um) ∂x2(ζ2∂x2 um
t ) dx dt.

Integrating by parts implies

ε

∫

QT

∂x2 um
tt ∂x2 um

t ζ2 dx dt−
∫

QT

b(t, x, um
t ) (∂2

x2
um

t ζ2 + 2ζ∂x2 ζ∂x2 um
t ) dx dt

+
∫

QT

∇ · a(t, x,∇um
t ) ∂2

x2
um

t ζ2 dx dt + 2
∫

QT

∇ · a(t, x,∇um
t ) ζ∂x2 ζ∂x2 um

t dx dt

+
∫

QT

∇ · (d(t, x)h(um)∇um) ∂2
x2

um
t ζ2 dx dt + 2

∫

QT

∇ · (d(t, x)h(um)∇um) ζ∂x2 ζ∂x2 um
t dx dt

= −
∫

QT

f (t, x, um) (∂2
x2

um
t ζ2 + 2ζ∂x2 ζ∂x2 um

t ) dx dt.

The boundary integrals vanish, since ∆um = 0 and ∂2
x1

um = 0 on {x2 = 0} implies that

∂2
x2

um = 0 on {x2 = 0}, and ∂x2 ζ = 0 on {x2 = 0}, and ζ vanishes near the curved part of

∂Ω. Furthermore, v ∈ L2(0, T; H1
0(Ω)). In the last equality we use Young’s inequality and
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obtain

ε

2

∫

Ω

|∂x2 um
t (T)|2 ζ2 dx +

∫

QT

∂η2 a2|∂2
x2

um
t |2 ζ2 dx dt ≤ δ

∫

QT

|∂2
x2

um
t |2 ζ2 dx dt

+
∫

QT

|∂η1 a2|2|∂x2 ∂x1 um
t |2 ζ2 dx dt +

∫

QT

|∂η1 a1|2|∂2
x1

um
t |2 ζ2 dx dt +

∫

QT

|∂η2 a1|2|∂x1 ∂x2 um
t |2 ζ2 dx dt

+
∫

QT

|d22(t, x)|2|h(um)|2|∂2
x2

um|2 ζ2 dx dt +
∫

QT

|d(t, x)|2|h(um)|2|∂x1∇um|2 ζ2 dx dt

+
∫

QT

|∇d(t, x)|2|h(um)|2|∇um|2 dx dt +
∫

QT

|∇um
t |2 |∂x2 ζ|2 dx dt

+
∫

QT

|d(t, x)|2|∂ξh(um)|2|∇um|4 ζ2 dx dt + c(δ)
∫

QT

(|b(t, x, um
t )|2 + | f (t, x, um)|2) dx dt.

From the strong monotonicity of a for ξ = (0, 1) we obtain that a2
η2

> a1. Now, due to the

inequality

∫

QT

|∇um|4 ζ2 dx dt ≤ C +

T∫

0

∫

Qt

|∂x1∇um
τ |2 ζ2 dx dτ dt +

T∫

0

∫

Qt

|∂2
x2

um
τ |2 ζ2 dx dτ dt,

the estimate (4.1.15), and the estimates for um, yields

∫

QT

|∂2
x2

um
t |2 ζ2 dx dt ≤ C1 + C2

T∫

0

∫

Qt

|∂2
x2

um
τ |2 ζ2 dx dτ dt.

The Gronwall lemma implies
∫

QT

|∂2
x2

um
t |2 ζ2 dx dt ≤ C.

From this and (4.1.15) it follows that
∫

QT

|∇2um
t |2 ζ2 dx dt ≤ C.

Using this estimate and the local estimate (4.1.12) in the proof of Theorem 4.1.5 yields that

uε
t ∈ L2(0, T; H1

0(Ω)), uε
t ∈ L2(0, T; H2(Ω)), and ε uε

t ∈ L∞(0, T; H1
0(Ω)).

From uε
t ∈ L2(0, T; H2(Ω)) and the equation (4.1.1) it follows that ε uε

tt ∈ L2(QT).

All the above calculations are true for a general C2 domain: for any point x0 ∈ ∂Ω, since ∂Ω

is C2, we may assume that

Ω ∩ B(x0, r) = {x ∈ B(x0, r), xN > γ(x1, . . . , xN−1)}

for some r > 0 and some C2 function γ : RN−1 → R. We change variables to y = Φ(x),

x = Ψ(y) and choose s > 0 so small that the half-ball Ω
′

:= B(0, s) ∩ {yN > 0} lies in
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Φ(Ω ∩ B(x0, r)). Define ūε(t, y) := uε(t, Ψ(y)) for (t, y) ∈ (0, T) ×Ω
′
. Since ∇Φ = (∇Ψ)−1,

|det∇Φ| = 1, and Φ, Ψ ∈ C2, we obtain that ūε is a solution of the equation

ε ūε
tt + b̄(t, y, ūε

t)−∇ · ā(t, y,∇ūε
t)−∇ · (d̄(t, y)h̄(ūε)∇ūε) = f̄ (t, y, ūε)

for

f̄ (t, y, ūε(t, y)) = f (t, Ψ(y), uε(t, Ψ(y))), b̄(t, y, ūε
t(t, y)) = b(t, Ψ(y), uε

t(t, Ψ(y))),

h̄(ūε(t, y)) = h(uε(t, Ψ(y))), d̄(t, y) = d(t, Ψ(y))∇xΦ(Ψ(y))∇xΦ(Ψ(y)),

ā(t, y,∇ūε
t(t, y)) = a(t, Ψ(y),∇xΦ(Ψ(y))∇uε

t(t, Ψ(y)))∇xΦ(Ψ(y)).

The ellipticity, boundedness, and regularity assumptions for a, b, d, h, and f translate into

assumptions for ā, b̄, d̄, h̄, and f̄ . From the calculations above we obtain the estimate for ūε

and consequently for uε. ❒

By using the regularity of uε we prove the regularity of a solution of the pseudoparabolic

equation.

Theorem 4.1.9 (Regularity). Let the assumptions of Theorem 4.1.8 be satisfied. Then the solution
of the problem (4.1.2) is in H1(0, T; H1

0(Ω)) and in H1(0, T; H2(Ω)).

Proof. For the proof of the local regularity we choose v = −∇ · (ζ2
1Dσuε

t) as a test function in
the equation (4.1.3), where Dσ

i v(x) = 1
h (u(x + hei) − u(x)), i = 1, . . . N, and

Dσv :=
(

Dσ
1 v, . . . , Dσ

Nv
)
, and the cut-off function ζ1 is defined in Theorem 4.1.8, and ob-

tain

−ε

∫

QT

uε
tt∇ · (ζ2

1Dσuε
t) dx dt−

∫

QT

b(t, x, uε
t)∇ · (ζ2

1Dσuε
t) dx dt−

∫

QT

a(t, x,∇uε
t)∇∇ · (ζ2

1Dσuε
t) dx dt

−
∫

QT

d(t, x)h(uε)∇uε ∇∇ · (ζ2
1Dσuε

t) dx dt = −
∫

QT

f (t, x, uε)∇ · (ζ2
1Dσuε

t) dx dt.

Integrating by parts implies

ε

∫

QT

∇uε
ttD

σuε
t ζ2

1 dx dt−
∫

QT

b(t, x, uε
t)∇ · (ζ2

1Dσuε
t) dx dt +

∫

QT

∇a(t, x,∇uε
t)∇(ζ2

1Dσuε
t) dx dt

+
∫

QT

∇(
d(t, x)h(uε)∇uε

)∇(ζ2
1Dσuε

t) dx dt = −
∫

QT

f (t, x, uε)∇ · (ζ2
1Dσuε

t) dx dt.

All integrands are integrable and uniformly bounded in σ by L1(QT) functions, because

uε
t ∈ L2(0, T; H2(Ω)). Then, due to the Dominated Convergence Theorem, (Evans 1998), we
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can take limits as σ → 0 and obtain

ε

2

∫

Ω

|∇uε
t |2 ζ2

1 dx +
∫

QT

∇a(t, x,∇uε
t)∇(ζ2

1∇uε
t) dx dt

= −
∫

QT

∇(
d(t, x)h(uε)∇uε

)∇(ζ2
1∇uε

t) dx dt

−
∫

QT

f (t, x, uε)∇(ζ2
1∇uε

t) dx dt +
∫

QT

b(t, x, uε
t)∇(ζ2

1∇uε
t) dx dt.

After some calculations we obtain
ε

2

∫

Ω

|∇uε
t |2 ζ2

1 dx +
∫

QT

∇η a(t, x,∇uε
t)∇2uε

t ∇2uε
t ζ2

1 dx dt + 2
∫

QT

∇η a(t, x,∇uε
t)∇2uε

t ζ1∇ζ1 ∇uε
t dx dt

+
∫

QT

∇xa(t, x,∇uε
t)∇2uε

t ζ2
1 dx dt + 2

∫

QT

∇xa(t, x,∇uε
t) ζ1∇ζ1 ∇uε

t dx dt =

−
∫

QT

(
∇ · d(t, x)h(uε)∇uε + d(t, x)∂ξh(uε)∇uε∇uε

)(
∇2uε

t ζ2
1 + 2ζ1∇ζ1 ∇uε

t

)
dx dt

+
∫

QT

d(t, x)h(uε)∇2uε
(
∇2uε

t ζ2
1 + 2ζ1∇ζ1 ∇uε

t

)
dx dt

−
∫

QT

f (t, x, uε)
(

∆uε
t ζ2

1 + 2ζ1∇ζ1 ∇uε
t

)
dx dt +

∫

QT

b(t, x, uε
t)

(
∆uε

t ζ2
1 + 2ζ1∇ζ1 ∇uε

t

)
dx dt.

From the strong monotonicity of a we have the estimate
∫

QT

∇ηa(t, x,∇uε
t)∇2uε

t ∇2uε
t ζ2

1 dx dt > a1

∫

QT

|∇2uε
t |2 ζ2

1 dx dt.

Then we have

ε

2

∫

Ω

|∇uε
t |2 ζ2

1 dx + a1

∫

QT

|∇2uε
t |2 ζ2

1 dx dt ≤ δ

∫

QT

|∇2uε
t |2 ζ2

1 dx dt +
∫

QT

|∇2uε|2 ζ2
1 dx dt (4.1.16)

+
∫

QT

|∇uε|4 ζ2
1 dx dt + c

∫

QT

(|∇uε
t |2 + |uε

t |2 + |∇uε|2 + |uε|2) dx dt.

Using the Gagliardo-Nirenberg inequality, the estimate for ∇uε, and the assumption that

u0 ∈ H2(Ω) implies

∫

QT

ζ2
1|∇uε|4 dx dt ≤ c1

∫

QT

ζ2
1|∇2uε|2 dx dt + c2 ≤ c3 + c4

T∫

0

∫

Qt

ζ2
1|∇2uε

τ |2 dx dτdt.

Due to the estimates for uε
t and the assumptions in the theorem, we obtain from (4.1.16)

∫

QT

ζ2
1|∇2uε

t |2 dx dt ≤ C1 + C2

T∫

0

∫

Qt

ζ2
1|∇2uε

τ |2 dx dτ dt.
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Then the Gronwall lemma implies
∫

QT

ζ2
1|∇2uε

t |2 dx dt ≤ C. (4.1.17)

Using this estimate in the proof of Theorem 4.1.7 yields a subsequence and a limit-function

such that ut ∈ L2(0, T; H1
0(Ω) and ut ∈ L2(0, T; H2

loc(Ω)).

For the estimate near the boundary we use the same argument as for the hyperbolic equa-

tion. We can consider the equation in the half-ball, i.e. Ω = B1(0)∩ {R×R+}with a straight

boundary. Then we choose v = −∂x1(ζ2Dσ
1 uε

t) as a test function in the equation (4.1.3), where

the cut-off function ζ is as defined in Theorem 4.1.8, and, after integrating by parts and tak-

ing limits as σ → 0 as above, we obtain

ε

2

∫

Ω

|∂x1 uε
t |2ζ2 dx−

∫

QT

b(t, x, uε
t)∂x1(ζ2∂x1 uε

t) dx dt +
∫

QT

∂x1 a(t, x,∇uε
t)∇(ζ2∂x1 uε

t) dx dt

+
∫

QT

∂x1(d(t, x)h(uε)∇uε)∇(ζ2∂x1 uε
t) dx dt =

∫

QT

f (t, x, uε)∂x1(ζ2∂x1 uε
t) dx dt.

The boundary integrals vanish since ζ vanishes near the curved part of ∂Ω, and ∂x1 uε = 0

and ∂2
x1

uε = 0 vanish on {x2 = 0}, because the normal vector to this part of the boundary is

ν = (0,−1). Furthermore, v ∈ L2(0, T; H1
0(Ω)), since uε

t ∈ L2(0, T; H2(Ω)). Similarly, as for

the hyperbolic equation, we obtain

∫

QT

|∂x1∇uε
t |2 ζ2 dx dt ≤ C

(
1 +

T∫

0

∫

Qt

|∂2
x2

uε
τ |2 ζ2 dx dτdt

)
. (4.1.18)

The estimate for ∂2
x2

uε
t is obtained from the equation in (4.1.1). Since uε

t ∈ L2(0, T; H2(Ω)),

uε
t ∈ L2(0, T; H1

0(Ω)), and ε uε
tt ∈ L2(QT), we have that uε satisfies the equation in (4.1.1)

almost everywhere. Then we obtain

∂x2 a2(t, x,∇uε
t) + ∂x2(d2(t, x)h(uε)∇uε) = −∂x1 a1(t, x,∇uε

t)− ∂x1(d1(t, x)h(uε)∇uε)

+b(t, x, uε
t) + εuε

tt − f (t, x, uε),

or

∂η2 a2(t, x,∇uε
t)∂2

x2
uε

t = −d22(t, x)h(uε)∂2
x2

uε − ∂x1 a1(t, x,∇uε
t)−∇ηa1(t, x,∇uε

t)∂x1∇uε
t

−∂η1 a2(t, x,∇uε
t)∂x1∇uε

t − ∂x1(d1(t, x)h(uε)∇uε)

−∂x2 d2(t, x)h(uε)∇uε − d(t, x)∂ξh(uε)∇uε∇uε

+b(t, x, uε
t) + εuε

tt − f (t, x, uε).

From the strict monotonicity of a it follows that ∂η2 a2 > a1. Then

∫

QT

|∂2
x2

uε
t |2 ζ2 dx dt ≤ C +

T∫

0

∫

Qt

|∂2
x2

uε
τ |2 ζ2 dx dτ.
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The Gronwall’s lemma implies the estimate
∫

QT

|∂2
x2

uε
t |2 ζ2 dx dt ≤ C,

where C is independent of ε. This, together with (4.1.18), implies
∫

QT

|∇2uε
t |2 ζ2 dx dt ≤ C.

Using the last estimate and the local estimate (4.1.17) in the proof of Theorem 4.1.7 yields a

subsequence and a limit-function such that u ∈ H1(0, T; H1
0(Ω)) and u ∈ H1(0, T; H2(Ω)).

❒

Remark 4.1.10. For the linear function a and for the function d, the proof of Theorem 4.1.8

can be simplified. We can choose the basis functions φk as solutions of

∆φk = λφk in Ω,

φk = 0 on ∂Ω.

Then, choosing −∆um
t as a test function in the equation (4.1.4) and integrating by parts,

imply

ε

∫

QT

∇um
tt ∇um

t dx dt−
∫

QT

b(t, x, um
t ) ∆um

t dx dt +
∫

QT

∆um
t ∆um

t dx dt

+
∫

QT

∇d(t, x)h(um)∇um ∆um
t dx dt +

∫

QT

d(t, x)∂ξh(um)∇um∇um ∆um
t dx dt

+
∫

QT

d(t, x)h(um)∆um ∆um
t dx dt = −

∫

QT

f (t, x, um) ∆um
t dx dt.

For the estimates we use the Gagliardo-Nirenberg inequality
∫

QT

|∇um|4 dx dt ≤
∫

QT

|∇2um|2 dx dt
∫

QT

|∇um|2 dx dt

and the fact that for um ∈ L2(0, T; H2(Ω)) and um ∈ L2(0, T; H1
0(Ω)) we have

∫

QT

|∇2um|2 dx dt ≤ C
∫

QT

|∆um|2 dx dt.

Theorem 4.1.11 (Uniqueness). Let the assumptions of the Theorem 4.1.8 and

| f (t, x, ξ1)− f (t, x, ξ2)| ≤ C|ξ1 − ξ2|,

|h(ξ1)− h(ξ2)| ≤ C|ξ1 − ξ2|

for (t, x) ∈ QT, ξ1, ξ2 ∈ R, be satisfied. Then there exists at most one weak solution of (4.1.2).
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Proof. Suppose u1 and u2 are two solutions of the problem (4.1.2). Then for u = u1 − u2 and

the test function v = ut we obtain the equation

∫

QT

(b(t, x, u1
t )− b(t, x, u2

t )) ut dx dt +
∫

QT

(a(t, x,∇u1
t )− a(t, x,∇u2

t ))∇ut dx dt

+
∫

QT

d(t, x)(h(u1)∇u1 − h(u2)∇u2)∇ut dx dt =
∫

QT

( f (t, x, u1)− f (t, x, u2)) ut dx dt.

Now we estimate all terms in the last equation separately

I1 :=
∫

QT

(b(t, x, u1
t )− b(t, x, u2

t ))ut dx dt ≥ b1

∫

QT

|ut|2 dx dt,

I2 :=
∫

QT

(a(t, x,∇u1
t )− a(t, x,∇u2

t ))∇ut dx dt ≥ a1

∫

QT

|∇ut|2 dx dt,

I3 :=
∫

QT

d(t, x)(h(u1)∇u1 − h(u2)∇u2)∇ut dx dt =
∫

QT

d(t, x)h(u1)∇u∇ut dx dt

+
∫

QT

d(t, x)(h(u1)− h(u2))∇u2∇ut dx dt.

The first integral in I3 can be estimated by

∫

QT

d(t, x)h(u1)∇u∇ut dx dt ≤ c1

2δ

∫

QT

|∇u|2 dx dt +
δ

2

∫

QT

|∇ut|2 dx dt

From the embedding theorem we have that v ∈ H1(0, T; H2(Ω)) implies ∇v ∈ L4(QT)

even for Ω of the dimension N ≤ 4. Then, due to the regularity of u1 and u2, we obtain

u1, u2 ∈ L4(QT) and ∇u2 ∈ L4(QT), and the second integral in I3 can be estimated by

∫

QT

d(t, x)(h(u1)− h(u2))∇u2∇ut dx dt

≤ c2

(∫

QT

|u|4 dx dt
) 1

4
(∫

QT

|∇u2|4 dx dt
) 1

4
(∫

QT

|∇ut|2 dx dt
) 1

2

≤ c3

(∫

QT

|u|4 dx dt
) 1

4
(∫

QT

|∇ut|2 dx dt
) 1

2

≤ c4

2δ

∫

QT

(
|u|2 + |∇u|2

)
dx dt +

δ

2

∫

QT

|∇ut|2 dx dt.
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The right hand side is estimated by

I4 :=
∫

QT

( f (t, x, u1)− f (t, x, u2)) ut dx dt

≤ c5

δ0

∫

QT

|u|2 dx dt + δ0

∫

QT

|ut|2 dx dt

≤ c6

δ0

T∫

0

∫

Qτ

|ut|2 dx dt dτ + δ0

∫

QT

|ut|2 dx dt,

since u1(0) = u2(0). Thus, due to estimates of the integrals I1, I2, I3, and I4, we obtain the

inequality

(b1 − δ0)
∫

QT

|ut|2 dx dt + (a1 − δ)
∫

QT

|∇ut|2 dx dt ≤ C

T∫

0

∫

Qτ

(
|ut|2 + |∇ut|2

)
dx dt dτ.

Using Gronwall’s lemma in the last inequality implies ut = 0 almost everywhere in QT and,

since u1(0) = u2(0), we obtain that u1 = u2 almost everywhere in QT. ❒

4.2 Nonlinear Pseudoparabolic Variational Inequalities

In this section we consider the nonlinear pseudoparabolic variational inequality. The ex-

istence result for a nonlinear equation and the penalty method imply the existence of a

solution of an inequality.

In (0, T)×Ω we consider the inequality
∫

QT

(
b(t, x, ut) (v− ut) + a(t, x,∇ut)∇(v− ut) + d(t, x) h(u)∇u∇(v− ut)

)
dx dt

>
∫

QT

f (t, x, u) (v− ut) dx dt (4.2.1)

with initial condition

u(0) = u0. (4.2.2)

The constraint on u is given by the requirement ut(t) ∈ K for a.a. t ∈ (0, T), where K is

chosen to be a closed and convex subset of Lp(Ω) ∩V0 containing 0.

Definition 4.2.1. A function u : QT → R is called a weak solution of (4.2.1), (4.2.2) if

1) u ∈ C([0, T]; V0), ut ∈ Lp(QT) ∩ L2(0, T; V0), ut(t) ∈ K for almost all t ∈ (0, T),

2) u satisfies (4.2.1) for all functions v ∈ Lp(QT) ∩ L2(0, T; V0), such that v(t) ∈ K

for almost all t ∈ (0, T),

3) u satisfies the initial condition (4.2.2) in the sense that u(t) → u0 in V0 for t → 0.
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Theorem 4.2.2 (Existence). Let Assumption 4.1.1 be satisfied. Then there exists a weak solution
of the problem (4.2.1), (4.2.2).

Proof. We consider the equation with the penalty operator B for a positive parameter α
∫

QT

[
b(t, x, uα

t ) v + a(t, x,∇uα
t )∇v + d(t, x)h(uα)∇uα ∇v

]
dx dt

+α

T∫

0

〈B(uα
t ), v〉 dt =

∫

QT

f (t, x, uα) v dx dt . (4.2.3)

Due to Theorem 4.1.7, since the operator B : Lp(QT) ∩ L2(0, T; V0) → Lq(QT) + L2(0, T; V∗
0 )

is monotone, bounded and hemicontinuous, there exists for all α a solution uα ∈ C([0, T]; V0)

of the equation (4.2.3), such that uα
t ∈ Lp(QT) ∩ L2(0, T; V0). Similarly as in Theorem 4.1.7,

using Assumption 4.1.1 and the last equation with the test function v = uα
t implies the

estimates
∫

Ω

(
|uα(t)|2 + |∇uα(t)|2

)
dx ≤ C for t ∈ [0, T],

∫

QT

(
|uα

t |p + |∇uα
t |2

)
dx dt ≤ C,

||b(t, x, uα
t )||Lq(QT) ≤ C,

||a(t, x,∇uα
t )||L2(QT)N ≤ C,

T∫

0

〈B(uα
t ), uα

t 〉 dt ≤ C
α

,

uniformly in α. There exists a subsequence of {uα}, again denoted by {uα}, such that

uα → u weakly– ∗ in L∞(0, T; V0),

uα
t → ut weakly in Lp(QT) ∩ L2(0, T; V0),

b(t, x, uα
t ) → β weakly in Lq(QT),

a(t, x,∇uα
t ) → γ weakly in L2(QT)N

as α → ∞. From the equation (4.2.3) we obtain the equality

T∫

0

〈B(uα
t ), v〉 dt =

1
α

(∫

QT

f (t, x, uα) v dx dt−
∫

QT

b(t, x, uα
t ) v dx dt

−
∫

QT

a(t, x,∇uα
t )∇v dx dt−

∫

QT

d(t, x)h(uα)∇uα∇v dx dt
)

for all v ∈ Lp(QT) ∩ L2(0, T; V0). Since all terms on the right hand side in the last equality

are bounded in Lq(QT) + L2(0, T; V∗
0 ) we obtain

B(uα
t ) → 0 in Lq(QT) + L2(0, T; V∗

0 )
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as α → ∞. Applying the monotonicity of B to uα
t implies

〈B(uα
t )− B(v), uα

t − v〉 > 0

for all v ∈ Lp(QT) ∩ L2(0, T; V0). Using the estimate
T∫
0
〈B(uα

t ), uα
t 〉 dt ≤ c/α and passing to

the limit as α → ∞ yields
T∫

0

〈B(v), uα
t − v〉 dt ≤ 0.

Choosing in this inequality v = ut − λw, where w ∈ Lp(QT) ∩ L2((0, T); V0) and λ > 0,

taking the limit as λ → +0, and using the hemicontinuity of B implies

T∫

0

〈B(ut), w〉 dt ≤ 0

for all w ∈ Lp(QT) ∩ L2(0, T; V0). Thus, B(ut) = 0 and ut(t) ∈ K for almost all t ∈ [0, T].

Using u ∈ L2(0, T; V0) and ut ∈ L2(0, T; V0) implies u ∈ C([0, T]; V0) and uα(0) → u(0)

weakly in V0. Since uα(0) = u0, we obtain u(0) = u0, i.e. u satisfies the initial condition

(4.2.2).

Now we show the strong convergence of {uα
t } in Lp(QT) ∩ L2(0, T; V0). We choose

v = (uα
t − ut) as a test function in the equation (4.2.3). Due to ut(t) ∈ K and B(ut) = 0,

we obtain the equality
∫

QT

[
b(t, x, uα

t ) (uα
t − ut) + a(t, x,∇uα

t )∇(uα
t − ut)

]
dx dt

+
∫

QT

d(t, x)h(uα)∇uα ∇(uα
t − ut) dx dt + α

T∫

0

〈B(uα
t )− B(ut), uα

t − ut〉 dt

=
∫

QT

f (t, x, uα) (uα
t − ut) dx dt.

Using the monotonicity of b, a, and B implies

b1

∫

QT

|uα
t − ut|p dx dt + a1

∫

QT

|∇(uα
t − ut)|2 dx dt ≤

∫

QT

b(t, x, ut) (ut − uα
t ) dx dt

+
∫

QT

a(t, x,∇ut)∇(ut − uα
t ) dx dt +

∫

QT

d(t, x)h(uα)∇u∇(ut − uα
t ) dx dt

+
∫

QT

d(t, x)h(uα)∇(uα − u)∇(ut − uα
t ) dx dt +

∫

QT

f (t, x, uα) (uα
t − ut) dx dt.

From the strong convergence of uα in L2(QT) it follows that uα → u a. e. in QT. Thus,

since h and f are continuous, h(uα) → h(u), f (t, x, uα) → f (t, x, u) a.e. in QT. Due to the
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assumptions we have that h(uα), h(u) ∈ L∞(QT) and f (t, x, uα), f (t, x, u) ∈ Lq(QT). From

the Egorov Theorem it follows that h(uα) → h(u) uniformly a.e. in QT. From the Dominated

Convergence Theorem it follows that f (t, x, uα) → f (t, x, u) strongly in Lq(QT). The fourth

integral on the right hand side can be estimated analogously as in Theorem 4.1.7. Then,

using the weak convergence of uα
t , the strong convergence of uα, and Gronwall’s lemma in

the last inequality implies

||uα
t − ut||Lp(QT) + ||∇uα

t −∇ut||L2(QT) ≤ C σ(
1
α
).

From the last estimate we have uα
t → ut strongly in Lp(QT) ∩ L2(0, T; V0) as α → ∞.

Due to monotonicity of B, from equation (4.2.3) it follows that the inequality
∫

QT

[
b(t, x, uα

t ) (v− uα
t ) + a(t, x,∇uα

t )∇(v− uα
t ) + d(t, x)h(uα)∇uα ∇(v− uα

t )
]

dx dt

−
∫

QT

f (t, x, uα) (v− uα
t ) dx dt = α

T∫

0

〈B(v)− B(uα
t ), v− uα

t 〉 dt > 0

holds true for all functions v ∈ Lp(QT) ∩ L2(0, T; V0), such that v(t) ∈ K for a.a. t ∈ (0, T).

The strong convergence of {uα} and {uα
t } for α → ∞ now implies the inequality (4.2.1).

❒

Theorem 4.2.3 (Uniqueness). Let Assumption 4.1.1, u ∈ L4(0, T; H1,4(Ω)), and

| f (t, x, ξ1)− f (t, x, ξ2)| ≤ C|ξ1 − ξ2|, |h(ξ1)− h(ξ2)| ≤ C|ξ1 − ξ2|

for (t, x) ∈ QT and ξ1, ξ2 ∈ R be satisfied. Then there exists at most one solution of (4.2.1), (4.2.2).

Proof. We assume there exist two solutions u(1) and u(2) of the problem (4.2.1), (4.2.2), i.e.
∫

QT

[
b(t, x, u(i)

t ) (v− u(i)
t ) + a(t, x,∇u(i)

t )∇(v− u(i)
t ) + d(t, x)h(u(i))∇u(i)∇(v− u(i)

t )
]

dx dt

>
∫

QT

f (t, x, u(i)) (v− u(i)
t ) dx dt (4.2.4)

for all v ∈ Lp(QT) ∩ L2(0, T; V0), where i = 1, 2. The function u(1)
t + u(2)

t is in the space

Lp(QT) ∩ L2(0, T; V0), and, since K is convex, the function v = 1
2 (u(1)

t + u(2)
t ) may be taken

as the test function in the inequalities (4.2.4). Adding these inequalities implies
∫

QT

[(
b(t, x, u(1)

t )− b(t, x, u(2)
t )

)
ut +

(
a(t, x,∇u(1)

t )− a(t, x,∇u(2)
t )

)∇ut

]
dx dt

+
∫

QT

d(t, x)
(
h(u(1))∇u(1) − h(u(2))∇u(2))∇ut dx dt

≤
∫

QT

(
f (t, x, u(1))− f (t, x, u(2))

)
ut dx dt,
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where u = u(1) − u(2). Now we estimate the integrals of the following equality
∫

QT

d(t, x)
(
h(u(1))∇u(1) − h(u(2))∇u(2))∇ut dx dt

=
∫

QT

d(t, x)h(u(1))∇u∇ut dx dt +
∫

QT

d(t, x)
(
h(u(1))− h(u(2))

)∇u(2)∇ut dx dt.

For the first integral in the last equality we have the estimate
∫

QT

d(t, x)h(u(1))∇u∇ut dx dt ≤ c1

2δ

∫

QT

|∇u|2 dx dt +
δ

2

∫

QT

|∇ut|2 dx dt.

Due to the regularity of u(1) and u(2), i.e. u(1), u(2) ∈ L4(QT) and∇u(2) ∈ L4(QT), the second

integral in the last equality can be estimated by
∫

QT

d(t, x)
(
h(u(1))− h(u(2))

)∇u(2)∇ut dx dt

≤ c2

(∫

QT

|u|4 dx dt
) 1

4
(∫

QT

|∇u(2)|4 dx dt
) 1

4
(∫

QT

|∇ut|2 dx dt
) 1

2

≤ c3

(∫

QT

|u|4 dx dt
) 1

4
(∫

QT

|∇ut|2 dx dt
) 1

2

≤ c4

2δ

∫

QT

(
|u|2 + |∇u|2

)
dx dt +

δ

2

∫

QT

|∇ut|2 dx dt.

The right hand side is estimated by
∫

QT

(
f (t, x, u(1))− f (t, x, u(2))

)
ut dx dt ≤ c5

δ0

∫

QT

|u|2 dx dt + δ0

∫

QT

|ut|2 dx dt

≤ c6

δ0

T∫

0

∫

Qτ

|ut|2 dx dt dτ + δ0

∫

QT

|ut|2 dx dt,

since u(1)(0) = u(2)(0). Then, we obtain the inequality

(b1 − δ0)
∫

QT

|ut|2 dx dt + (a1 − δ)
∫

QT

|∇ut|2 dx dt ≤ C

T∫

0

∫

Qτ

(
|ut|2 + |∇ut|2

)
dx dt dτ.

This, using Gronwall’s Lemma, implies that ut = 0 a.e. in QT and, since u(1)(0) = u(2)(0),

that u(1) = u(2) a.e. in QT. ❒



Conclusion

In this thesis we considered pseudoparabolic equations and variational inequalities. We

proved the existence and uniqueness for degenerate quasilinear equations, Theorem 2.1.3,

Theorem 2.1.8, Theorem 2.1.9, the existence for degenerate quasilinear variational inequali-

ties, Theorem 2.2.4, the existence and uniqueness for doubly nonlinear equations, Theorem

2.3.3, Theorem 2.3.7, the existence and uniqueness for equations with convection, Theorem

2.4.3, the existence and uniqueness for quasilinear equations and variational inequalities

on the time interval (−∞, T], Theorem 3.1.4, Theorem 3.1.6, Theorem 3.2.2, Theorem 3.2.5,

and the existence and uniqueness for nonlinear pseudoparabolic equations and variational

inequalities, Theorem 4.1.7, Theorem 4.2.2.

Here Rothe’s and Galerkin’s methods were applied. To show the convergence of approxi-

mate solutions we used Minty–Browder Theorem, strong convergence, Aubin-Lions Com-

pactness Lemma, and Kolmogorov’s compactness criterium.

Degenerate equations, where the term ∂tu is replaced by ∂tb(u), were solved using the

monotonicity and the gradient assumptions on the nonlinear function b. To prove higher

regularity in time, we needed linearity or a gradient assumption on the flux and Lipschitz

continuity of the function b. These assumptions were used to prove the existence of a so-

lution of the degenerate quasilinear variational inequalities. As we saw, the memory op-

erator may be linear, Lipschitz continuous, or of first order. However, it is not clear how

to prove similar results for the degenerate quasilinear equations containing the nonlinear

function of the gradient in the pseudoparabolic term, i.e. the mixed third-order derivative.

The uniqueness was proved by using the monotonicity of the operators and the linearity

or the Lipschitz continuity of the function defining the elliptic part. The Kruzhkov method,

which was applied in (Otto 1996) for degenerate parabolic equations, implies the unique-

ness making fewer assumptions. But, it is not clear if this method can be applied to prove

the uniqueness for degenerate pseudoparabolic equations. The problem is due to the lack

of estimates for the mixed third-order derivative.

For doubly nonlinear equations it is essential to have the same nonlinearity in the elliptic

part as in the pseudoparabolic term, i.e. the mixed third-order derivative. Here we extended

the integration by parts formula given by (Jäger and Kacur 1995) for parabolic doubly non-

linear equations.

We showed that the characteristic method is useful for the pseudoparabolic equations with

convection. These equations can also be considered as a degenerate equation with nonlinear

function b.
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The existence and uniqueness in an unbounded time interval without the restriction at −∞

was shown for quasilinear pseudoparabolic equations. Here we used Pankov’s Lemma and

the cut-off function method. For variational inequalities we assumed, additionally, that the

nonlinear functions were independent of the time variable. For an appropriate set K and a

corresponding penalty operator B, which satisfies
∫ T

0 〈B(u), ut〉 dt > 0, the existence could

be proved without this restriction.

In the last chapter we considered the solution of a nonlinear pseudoparabolic equation as a

quasistationary state of a system with cross diffusion
{

ε∂tv = ∇ · a(t, x,∇v) +∇ · (d(t, x, v)∇u) + f (t, x, u)− b(t, x, v),

∂tu = g(u, v).

Here we choose a function g of the form g(u, v) = h(u)v. For arbitrary g a similar result is

unknown. We also considered a function d, which depended on time and space, but was

independent of v. Otherwise, if d depends on v, we can not prove the convergence of the

sequence of solutions {uε} to a solution of the pseudoparabolic equation. The problem is the

uncertainty of the strong convergence of {uε
t}. For a regular solution the uniqueness can be

shown; however, the existence of such regular solutions is proved in two dimensions only.

The existence proofs in this thesis are constructive, in the sense that they are based on

Rothe’s and Galerkin’s methods. Hence, the corresponding numerical approximation sche-

mes should converge. For real computations the order of convergence and error estimates

for a particular finite element space are needed. The relaxation method for degenerate par-

abolic equations introduced in (Jäger and Kacur 1995), (Kacur 1998), and (Kacur 2001) to

control the degenerate term, can be applied to degenerate pseudoparabolic equations. We

used the characteristic method for equations with convection. The change of solutions of

problems with convection along the characteristic lines is small compared to the change in

time. Thus, the standard Rothe-Galerkin’s method is only applicable for small time steps.

On the other hand, the discretization along characteristics is allowed for rather large time

steps in the time discretization.

Pseudoparabolic equations often arise if the dimension of a system of partial differential

equations is reduced. The decreased number of equations facilitates the analysis and nu-

merical approximation of the original system, albeit these equations with the term of mixed

third-order derivatives are un-canonical. But known results may be adapted to include

pseudoparabolic equations.
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Appendix

A.1 Auxiliary Lemmata and Theorems for Chapter 2

Let b : Rl → Rl be a monotone vector field and a continuous gradient, i.e. there exists a

convex C1 function Φ : Rl → R such that b = ∇Φ. Then we define the function Ψ by

Ψ(z) = Ψb(z) := sup
σ∈Rl

1∫

0

(z− b(sσ)) σ ds = sup
σ∈Rl

(z · σ− Φ(σ)− Φ(0)).

The convexity of Φ implies that

B(z) := Ψ(b(z)) = b(z) · z− Φ(z)− Φ(0) =

1∫

0

(b(z)− b(sz)) · z ds =

z∫

0

(b(z)− b(s)) ds.

Lemma A.1.1. (Kacur 1985) The estimates

1) B(z) =
∫ 1

0
(b(z)− b(σz)) z dσ > 0,

2) B(z)− B(z0) > (b(z)− b(z0)) z0,

3) b(z)− Φ(z) + Φ(0) = B(z) ≤ b(z) z,

4) |b(z)| ≤ δB(z) + sup
|σ|≤ 1

δ

|b(σ)|,

hold true for all z, z0 ∈ Rl , and for positive δ.

We define the space V := {v ∈ H1,p(Ω)l , v = 0 on Γ}, where Γ ⊂ ∂Ω is measurable with

HN−1(Γ) > 0.

Lemma A.1.2. (Alt and Luckhaus 1983, Lemma 1.5, Integration by parts)
Suppose u ∈ uD + Lp(0, T; V), uD ∈ Lp(0, T; H1,p(Ω)l) ∩ L∞(QT)l , ∂tuD ∈ L1(0, T; L∞(Ω)l),
b(u) ∈ L∞(0, T; L1(Ω)l), ∂tb(u) ∈ Lq(0, T; V∗), Ψ(b0) ∈ L1(Ω), b0 maps into the rang of b, and

T∫

0

〈∂tb(u), ξ〉 dt +

T∫

0

∫

Ω

(b(u)− b0)∂tξ dx dt = 0

for all test functions ξ ∈ Lp(0, T; V) ∩ H1,1(0, T; L∞(Ω)l) with ξ(T) = 0.
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Then B(u) ∈ L∞(0, T; L1(Ω)) and for almost all t the following formula holds

∫

Ω

B(u(t)) dx−
∫

Ω

B(u0) dx =

t∫

0

〈∂tb(u), u− uD〉 dt−
t∫

0

∫

Ω

(b(u)− b(u0))∂tuD dx dt

+
∫

Ω

(b(u(t))− b(u0))uD(t) dx.

For pseudoparabolic equations we have adapted version of Lemma A.1.2.

Lemma A.1.3. Suppose u ∈ Lp(0, T; H1,p
0 (Ω)l), u ∈ L∞(0, T; H1

0(Ω)l), b(u) ∈ L∞(0, T; L1(Ω)l),
B(u) ∈ L∞(0, T; L1(Ω)), ∂t(b(u) − ∇ · (a(x)∇u)) ∈ Lq(0, T; H−1,q(Ω)l), u0 ∈ H1

0(Ω),
b(u0) ∈ L1(Ω), and b(u0) ∈ H−1(Ω). Then for almost all t the following formula holds

t∫

0

〈∂t(b(u)−∇ · (a(x)∇u), u〉 dt =
∫

Ω

B(u(t)) dx +
1
2

∫

Ω

a(x)∇u(t)∇u(t) dx

−
∫

Ω

B(u0) dx− 1
2

∫

Ω

a(x)∇u0∇u0 dx.

Remark A.1.4. As was shown by Brezis and Browder, (1978), the assumptions u0 ∈ H1
0(Ω),

b(u0) ∈ L1(Ω), b(u0) ∈ H−1(Ω), and b(u0)u0 > 0 yield B(u0) ∈ L1(Ω).

Proof of Lemma. For almost all (t, x) ∈ (h, T)×Ω, where u(t− h, x) = u0(x) for t ∈ (0, h)

and b(u(t− h, x)) = b(u0(x)) for t ∈ (0, h), we have the inequalities

B(u(t, x))− B(u(t− h, x)) +
1
2

a(x)∇u(t, x)∇u(t, x)− 1
2

a(x)∇u(t− h, x)∇u(t− h, x)

≤ (b(u(t, x))− b(u(t− h, x)))u(t, x) + a(x)(∇u(t, x)−∇u(t− h, x))∇u(t, x)

and

B(u(t, x))− B(u(t− h, x)) +
1
2

a(x)∇u(t, x)∇u(t, x)− 1
2

a(x)∇u(t− h, x)∇u(t− h, x)

> (b(u(t, x))− b(u(t− h, x)))u(t− h) + a(x)(∇u(t, x)−∇u(t− h, x))∇u(t− h, x).

Now we multiply the first inequality by h−1 and integrate over (0, τ) × Ω. Due to
u ∈ Lp(0, T; H1,p

0 (Ω)l) and b(u) ∈ Lq(0, T; H−1,q(Ω)l), we obtain

1
h

τ∫

τ−h

∫

Ω

(
B(u(t, x)) +

1
2

a(x)∇u(t, x)∇u(t, x)
)

dx dt−
∫

Ω

(
B(u0) +

1
2

a(x)∇u0∇u0

)
dx

≤
τ∫

0

1
h
〈b(u(t, x))− b(u(t− h, x)), u(t, x)〉 dt +

τ∫

0

∫

Ω

1
h

a(x)∇(u(t, x)− u(t− h, x))∇u(t, x) dx dt.

Multiplying the second inequality by h−1 and integrating over (h, τ)×Ω implies

1
h

τ∫

τ−h

∫

Ω

(
B(u(t, x)) +

1
2

a(x)∇u(t, x)∇u(t, x)
)

dx dt− 1
h

h∫

0

∫

Ω

(
B(u(t, x)) +

1
2

a(x)∇u(t, x)∇u(t, x)
)

dx dt

>
τ−h∫

0

1
h
〈b(u(t + h, x))− b(u(t, x)), u(t, x)〉 dt +

τ−h∫

0

∫

Ω

1
h

a(x)∇(u(t + h, x)− u(t, x))∇u(t, x) dx dt.
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Since ∂h(b(u)−∇ · (a(x)∇u)) = 1
h

τ∫
τ−h

d
dt (b(u)−∇ · (a(x)∇u)) dt, we obtain

T∫

h

||∂h(b(u)−∇ · (a(x)∇u))||q
H−1,q(Ω)

dt ≤
T∫

h

1
h

τ∫

τ−h

|| d
dt

(b(u)−∇ · (a(x)∇u))||q
H−1,q(Ω)

dt dτ

≤
T∫

h

1
h

h∫

0

|| d
dz

(b(u(z + t− h))−∇ · (a(x)∇u(z + t− h)))||q
H−1,q(Ω)

dz dt

≤ 1
h

h∫

0

T∫

0

|| d
dt

(b(u)−∇ · (a(x)∇u))||q
H−1,q(Ω)

dt ds ≤ C.

Then ∂h(b(u)−∇ · (a(x)∇u)) → χ in Lq(0, T; H−1,q(Ω)l).

Due to ∂t(b(u)−∇ · (a(x)∇u)) ∈ Lq(0, T; H−1,q(Ω)l) and

T∫

0

∫

Ω

∂h(b(u)−∇ · (a(x)∇u))v dx dt = −
T∫

0

∫

Ω

(b(u)−∇ · (a(x)∇u))∂−hv dx dt

for v ∈ Lp(0, T; H1,p(Ω)l) ∩ L∞(QT)l , vt ∈ L2(0, T; H1
0(Ω)l) and v(t, x) = 0 for t ∈ (0, δ) and

t ∈ (T − δ, T), 0 < δ < T, x ∈ Ω, we have

∂h(b(u)−∇ · (a(x)∇u)) → ∂t(b(u)−∇ · (a(x)∇u))

in Lq(0, T; H−1,q(Ω)l).

Since u ∈ Lp(0, T; H1,p(Ω)l) we can take the limit as h → 0 and obtain
∫

Ω

(
B(u(τ)) +

1
2

a(x)∇u(τ)∇u(τ)
)

dx−
∫

Ω

(
B(u0) +

1
2

a(x)∇u0∇u0

)
dx

≤
τ∫

0

〈∂t
(
b(u(t))−∇ · (a(x)∇u(t))

)
, u(t)〉 dt

and
∫

Ω

(
B(u(τ)) +

1
2

a(x)∇u(τ)∇u(τ)
)

dx−
∫

Ω

(
B(u0) +

1
2

a(x)∇u0∇u0

)
dx

>
τ∫

0

〈∂t
(
b(u(t))−∇ · (a(x)∇u(t))

)
, u(t)〉 dt.

These two inequalities imply the assertion of Lemma. By passing to the limit in the second

inequality we used that

lim inf
h→0

1
h

h∫

0

∫

Ω

(
B(u(t)) +

1
2

a(x)∇u(t)∇u(t)
)

dx dt >
∫

Ω

(
B(u0) +

1
2

a(x)∇u0∇u0

)
dx. (1.1.1)
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Due to ∂t(b(u) − ∇ · (a(x)∇u)) ∈ Lq(0, T; H−1,q(Ω)l) and the second estimate in Lemma

A.1.1, we obtain

lim inf
h→0

1
h

h∫

0

∫

Ω

(
B(u(t)) +

1
2

a(x)∇u(t)∇u(t)− B(u0)− 1
2

a(x)∇u0∇u0

)
dx dt

> lim inf
h→0

h

1∫

0

〈∂t(b(u)−∇ · (a(x)∇u)), u0〉 dt = 0.

Thus, we have the inequality (1.1.1). ❒

Lemma A.1.5. (Jäger and Kacur 1995, Lemma 3.25)
Let u : QT → R with β(u) ∈ Lp(0, T; V), b(x, u) ∈ L∞(0, T; L2(Ω)), ∂tb(x, u) ∈ Lq(0, T; V∗),
b(u0) ∈ L2(Ω), β(u0) ∈ V. Then for almost all t ∈ (0, T)

t∫

0

〈∂tb(x, u), β(u)〉 dt =
∫

Ω

B∗(x, β(u(t))) dx−
∫

Ω

B∗(x, β(u0)) dx

holds true, where for s ∈ {y ∈ R : y = β(z)}

B∗(x, s) := b(x, β−1(s)) s−
s∫

0

b(x, β−1(z)) dz.

For pseudoparabolic equations we have adapted version of this Lemma.

Lemma A.1.6. Suppose ∂t(b(u) − ∆a(u)) ∈ Lq(0, T; H−1,q(Ω)), a(u) ∈ L∞(0, T; H1
0(Ω)),

a(u) ∈ Lp(0, T; H1,p
0 (Ω)), B̃ ∈ L∞(0, T, L1(Ω)), b(u0) ∈ L2(Ω), and a(u0) ∈ H1

0(Ω). Then
for almost all t ∈ (0, T) the integration by parts formula

t∫

0

〈∂t(b(u)− ∆a(u)), a(u)〉 dt

=
∫

Ω

B̃(a(u(t))) dx +
1
2

∫

Ω

|∇a(u(t))|2 dx−
∫

Ω

B̃(a(u0)) dx− 1
2

∫

Ω

|∇a(u0)|2 dx

holds, where for s ∈ {y ∈ R : y = a(z)}

B̃(s) := b(a−1(s)) s−
s∫

0

b(a−1(z)) dz.

Proof. For (t, x) ∈ (0, T − h)×Ω, where u(t) = u0 for t ∈ [−h, 0], we have the inequalities

B̃(a(u(t)))− B̃(a(u(t− h))) +
1
2
|∇a(u(t))|2 − 1

2
|∇a(u(t− h))|2

≤ (b(u(t))− b(u(t− h)))a(u(t)) +∇(a(u(t))− a(u(t− h)))∇a(u(t)) (1.1.2)
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and

B̃(a(u(t)))− B̃(a(u(t− h))) +
1
2
|∇a(u(t))|2 − 1

2
|∇a(u(t− h))|2

> (b(u(t))− b(u(t− h)))a(u(t− h)) +∇(a(u(t))− a(u(t− h)))∇a(u(t− h)). (1.1.3)

Now we multiply (1.1.2) by h−1 and integrate it over (0, t)×Ω. Due to a(u) ∈ Lp(0, T; H1,p
0 (Ω)),

p > 2, and b(u) ∈ L2(QT), we obtain

1
h

∫ τ

τ−h

∫

Ω

(
B̃(a(u(t))) +

1
2
|∇a(u(t))|2

)
dx dt−

∫

Ω

(
B̃(a(u0)) +

1
2
|∇a(u0)|2

)
dx

≤
τ∫

0

∫

Ω

1
h

[
(b(u(t))− b(u(t− h)))a(u(t)) + (∇a(u(t))−∇a(u(t− h)))∇a(u(t))

]
dx dt.

Since ∂t(b(u)− ∆a(u)) ∈ Lq(0, T; H−1,q(Ω)), we have ∂h(b(u)− ∆a(u)) → ∂t(b(u)− ∆a(u))

in Lq(0, T; H−1,q(Ω)).

Due to a(u) ∈ Lp(0, T; H1,p(Ω)) we can take the limit as h → 0 and obtain
∫

Ω

(
B̃(a(u(τ))) +

1
2
|∇a(u(τ))|2

)
dx−

∫

Ω

(
B̃(a(u0)) +

1
2
|∇a(u0)|2

)
dx

≤
τ∫

0

〈∂t(b(u)− ∆a(u)), a(u)〉 dt.

To prove the reverse inequality we integrate (1.1.3) over (h, t)×Ω and proceed analogously

to the above. For the reverse inequality we use

∫

Ω

(
B̃(a(u0)) +

1
2
|∇a(u0)|2

)
dx ≤ lim inf

h→0

1
h

h∫

0

∫

Ω

(
B̃(a(u(t))) +

1
2
|∇a(u(t))|2

)
dx dt.

This estimate can be obtained similarly to that in Lemma A.1.3. ❒

Lemma A.1.7. (Gajewski, Gröger, and Zacharias 1974; Showalter 1996)
Let f : RN → RN be continuous and, for any R > 0, ( f (x), x) > 0 for every |x| = R. Then there
exists an a ∈ RN , such that |a| ≤ R and f (a) = 0.

Theorem A.1.8. (Necas 1967) [Kolmogorov’s theorem]
Let Ω be a bounded domain in RN . A set M of functions f ∈ Lp(Ω) is precompact iff M is
bounded and equicontinuous, i.e for any ε > 0 there is a δ > 0 such that for all f ∈ M

∫

Ω

| f (x + y)− f (x)|pdx < ε for |y| < δ.

Theorem A.1.9. (Evans 1998)[Minty-Browder Theorem]
Let d : (0, T)×Ω×RN → RN be monotone in the last variable, i.e.

(d(t, x, z1)− d(t, x, z2))(z1 − z2) > 0 for z1, z2 ∈ RN ,
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and

un → u weakly in Lp(QT)N ,

d(t, x, un) → χ weakly in Lq(QT)N ,

lim sup
n→∞

∫

Ω

d(t, x, un) un dx ≤
∫

Ω

χ u dx.

Then χ = d(t, x, u).

Definition A.1.10. (Lions 1969)[Definition of penalty operator]

Let V be a reflexive Banach space and K a closed convex subset in V. Then a penalty operator
B : V → V∗ related to K is a monotone, bounded and hemicontinuous operator such that

{v | v ∈ V, B(v) = 0} = K.

Such an operator B is given by

B = J(I − PK),

where J : V → V∗ a dual mapping and PK : V → K is the projection operator on K.

In the case V = H1,p, for some p > 1, the dual mapping J can be chosen as

〈J(u), v〉 =
∫

Ω

(|u|p−2uv + |∇u|p−2∇u∇v) dx

and the projection operator PK satisfies

〈J(u− PKu), PKu− v〉 > 0 for v ∈ K.

A.2 Auxiliary Lemmata and Theorems for Chapters 3 and 4

Theorem A.2.1. (Deimling 1992) [Generalization for Carathéodory functions]
Let X = Rn, D ⊂ X, and suppose the function f : (0, T) × D → R satisfies the Carathéodory
conditions, i.e.

(1) f (·, x) is measurable for each x ∈ D,

(2) f (t, ·) is continuous for almost all t ∈ (0, T),

and

| f (t, x)| ≤ c(t)(1 + |x|) on (0, T)× D, with c ∈ L1(0, T).

Then

x′ = f (t, x), x(0) = x0

has an absolutely continuous solution for every x0 ∈ D.
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Lemma A.2.2. (Pankov 1990, Lemma 1.3, p.47)
Assume λ ∈ C(J), where J is an half-line or J = R, λ > 0 and

λ2(t)
∣∣∣∣
t2

t1

+ α

t2∫

t1

λp(t) dt ≤ 0, t1, t2 ∈ J, t1 ≤ t2

for some α > 0 and p > 2. Then we have

λ(t)
≤

(>)

[
c

c1λ(t0)p−2(t− t0) + c

]1/(p−2)

λ(t0),

for t ≥ t0, (t ≤ t0, respectively), t0 ∈ J, if p > 2, and

λ(t)
≥

(≤)
e−c(t−t0)λ(t0)

for t ≥ t0, (t ≤ t0, respectively), if p = 2. Here c > 0 and c1 > 0 depend on α and p.

Lemma A.2.3. (Gajewski et al. 1974; Showalter 1996) [Integration by parts formula]
Let the Banach space V be dense and continuously embedded in the Hilbert space H, H∗ = H, so
that V ⊂ H ⊂ V∗ and X = Lp(0, T; V) ∩ Lp0(0, T; H) . Then the Banach space

W = {u|u ∈ X, u′ ∈ X∗}

is continuously embedded in C([0, T]; H) and for every u, v ∈ W the integration by parts formula

(u(t), v(t))− (u(s), v(s)) =

t∫

s

[
〈u′(τ), v(τ)〉+ 〈u(τ), v′(τ)〉

]
dτ, s, t ∈ [0, T]

holds, where (·, ·) denotes the scalar product in H .

Lemma A.2.4. (Lions 1969; Showalter 1996)[Lions-Aubin Compactness Lemma]
Let B0, B, B1 be Banach spaces with B0 ⊂ B ⊂ B1; assume B0 ↪→ B is compact and B ↪→ B1 is
continuous. Let 1 < p < ∞, 1 < q < ∞, let B0 and B1 be reflexive, and define

W = {v|v ∈ Lp(0, T; B0), vt ∈ Lq(0, T; B1)}.

Then the inclusion W ↪→ Lp(0, T; B) is compact.

Let Banach spaces X and Y be subspaces of linear space V. Then X ∩ Y is a Banach space

with the norm ||x||X∩Y = ||x||X + ||x||Y
Let X, Y be Banach spaces, continuously embedded in the locally convex space V. Then

X + Y = {x + y| x ∈ X, y ∈ Y}

is a Banach space with the norm ||z||X+Y = inf
x∈X,y∈Y,x+y=z

max{||x||X, ||y||Y}.
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Theorem A.2.5.(Gajewski et al. 1974, Theorem I.5.13) Let X, Y be Banach spaces, continuously
embedded in the locally convex space V, X ∩Y is dense in X and in Y. Then

X∗ + Y∗ = (X ∩Y)∗

and
(X + Y)∗ = X∗ ∩Y∗.



Notations

RN is Euclidean N- dimensional space

Ω is a bounded domain in RN with a Lipschitz continuous boundary ∂Ω

U ⊂⊂ Ω is if U ⊂ U ⊂ Ω and U is compact, i.e. U is compactly contained in Ω

Qt1,t2 = (t1, t2)×Ω, t1 < t2

QT = (0, T)×Ω or QT = (−∞, T)×Ω

H1,p(Ω) is a Banach space, H1,p(Ω) = {u ∈ Lp(Ω), uxi ∈ Lp(Ω), i = 1, . . . , N}
H1(Ω) = H1,2(Ω)

Lp(0, T; H1,s(Ω)) is the set of measurable functions u : t ∈ (0, T) 7→ u(t) ∈ H1,s(Ω), such

that ||u(·)||H1,s(Ω) ∈ Lp(0, T)

D ′
(Ω) distributions defined on Ω

X∗ is the dual space to the Banach space X

〈·, ·〉 is a duality product between X and X∗, 〈·, ·〉 : X∗ × X → R

Lr
loc((−∞, T]; B), 1 ≤ r ≤ +∞ is the space of functions z, such that z ∈ Lr(t1, T; B) for all

t1 < T, where B is a Banach space

The Banach space X is reflexive if i(X) = X∗∗

The topological space X is separable if X contains a countable dense subset

The set M is dense in the topological space X if M = X

Let Banach spaces X and Y be subspaces of linear space V. Then X ∩ Y is a Banach space

with the norm ||x||X∩Y = ||x||X + ||x||Y
Let X, Y be Banach spaces, continuously embedded in the locally convex space V. Then

X + Y = {x + y| x ∈ X, y ∈ Y}

is a Banach space with the norm ||z||X+Y = inf
x∈X,y∈Y,x+y=z

max{||x||X, ||y||Y}

The generic constants will be denoted by C, Ci, c, and ci

1
p + 1

q = 1 for p > 1, q > 1.
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