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CHAPTER 1

Introduction

Usually in Mathematics you have an equation and you
want to find a solution. Here you are given a solution
and you have to find the equation. I like that.

Julia Robinson

In this thesis we analyze parameter identification problems governed by partial differential
equations and develop efficient numerical methods for their solution.

Often, a physical (chemical) model described by a system of partial differential equations
involves unknown parameters, which cannot be measured directly, or whose measurement would
require too much effort. For instance, this can appear by modeling of heuristic laws (like the
Arrhenius law), by calibration of transport models or by covering unknown boundary condi-
tions. In all these situations, the estimation (identification) of the unknown parameters is in-
dispensable for successful simulation and optimization of the corresponding physical processes.
The information required for parameter identification is usually obtained by observations of
measurable quantities, like forces, fluxes, point values of pressure, velocity or concentration.
Thereafter, the unknown parameters are determined such that the discrepancy between the
measured quantities and the corresponding quantities obtained by solving the underlying sys-
tem of partial differential equations is minimal. Choosing a way of measuring this discrepancy
(in an appropriate norm) one obtains an optimization (minimization) problem to be solved.

The aim of this work is the analysis of parameter identification problems and the devel-
opment of efficient numerical algorithms for their solution, based on adaptive finite element
methods. Since, in general, the computational effort for solving the arising optimization prob-
lems exceeds significantly the cost for a simple simulation, the question of choosing efficient
(cheap) discretizations is crucial for applications. Our approach to this question is based on
the a posteriori error estimation for finite element discretization of the problem. We derive
a posteriori error estimators to be used in an adaptive mesh refinement algorithm producing
economical meshes for parameter identification.

The concepts of adaptivity based on a posteriori error estimation are now commonly ac-
cepted for numerical solution of partial differential equation. In this work we provide the first
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8 1. INTRODUCTION

systematic approach to adaptive finite element discretization of parameter identification prob-
lems. This is based on the works on a posteriori error estimation for optimal control problems
by Becker & Rannacher [18, 19] and Becker [11]. However, substantial extensions of the tech-
niques from [11,18,19] were performed for covering parameter identification problems.

The methods developed in this thesis are applied to parameter identification in fluid dy-
namics and to estimation of chemical models in multidimensional reactive flow problems. In
the applications under consideration there is a finite number of the unknown parameters, i.e.
the parameters build a vector from a finite dimensional space. In this work we consider only the
case of finite dimensional parameter spaces, in contrast to the estimation of so called distributed
parameters. This is due to the fact, that the analysis and the required solution algorithms for
parameter identification problems differ depending on the dimension (finite or infinite) of the
parameter space. However, most of the results presented below can be extended to the case of
distributed parameters, which is a subject of future work.

The organization of the thesis is as follows: In the next chapter we discuss the formulation
of parameter identification problems as an optimization problem. Thereafter we character-
ize possible solutions by necessary and sufficient optimality conditions and analyze existence,
uniqueness and stability of them. Moreover, we discuss some statistical aspects of parameter
identification, in particular the question of the statistical quality of the estimated parameters.

In Chapter 3 we treat the finite element discretization of parameter identification problems.
The main purpose of this chapter is the development of a priori error analysis for the error in
parameters due to the discretization. We derive a priori error estimates for parameter identi-
fication problems governed by elliptic partial differential equations of second order and discuss
possible extensions of our approach.

The solution algorithm for the discretized problem is discussed in Chapter 4. We describe
different Newton type methods applied to the unconstrained (reduced) formulation of the pa-
rameter identification problem. Moreover, we discuss trust region techniques for globalization
of convergence. The behavior of the algorithms is demonstrated for an example problem.

Chapter 5 is devoted to a posteriori error analysis. Here, we develop an a posteriori error
estimator for the error in parameters due to the discretization. Its purpose is to guide an adap-
tive mesh refinement algorithm producing a sequence of economical, locally refined meshes.
Furthermore, it is used to assess the accuracy of the computed parameters. Exploiting the
special structure of the parameter identification problem, allows us to derive an error estimator
which is cheap in comparison to the overall optimization algorithm. Several examples illustrate
the behavior of the adaptive mesh refinement algorithm based on our error estimator.
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In Chapter 6 the presented methods are applied to parameter identification problems gov-
erned by the incompressible Navier-Stokes equations. We consider two problems, where the
exact boundary conditions are unknown. This describes a typical difficulty in computational
fluid dynamics. We formulate these problems as parameter identification problems with param-
eterized boundary conditions and treat them by the techniques from previous chapters. The
numerical results show the capability of our methods.

An application to parameter estimation in multidimensional reactive flow problems is dis-
cussed in Chapter 7. We consider two typical problems: estimation of the Arrhenius parameters
for a simple combustion model and calibration of the diffusion coefficients for a hydrogen flame
with detailed chemistry. Here, the underlining model includes the compressible Navier-Stokes
equations and nine (nonlinear) convection-diffusion-reaction equations for chemical species. To
the author’s knowledge, this is the first published result on automatic parameter estimation for
multidimensional computation of flames.

In the last chapter, conclusions and an outlook on future work are given. Here, we summarize
the results presented in this thesis and discuss some extension ideas.
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CHAPTER 2

Theoretical Results

In this chapter we describe considered parameter identification problems from the theoretical
point of view. In Section 2.1 we start with the formulation of the parameter identification
problem and introduce some notation to be used throughout. Section 2.2 is devoted to the
question of existence of a solution for problems under consideration. Thereafter, in Section 2.3
the solutions are characterized by necessary and sufficient optimality condition. In Section 2.4
we introduce the concept of a stable solution and analyze the main properties of it. In the last
section of this chapter we touch some statistical aspects of parameter identification.

2.1. Formulation of the problem

We consider parameter identification problems involving a finite number of unknown pa-
rameters in the following abstract form: The state variable u in an appropriate Hilbert space
V is determined by a partial differential equation (state equation) in weak form:

a(u, q)(φ) = f(φ) ∀φ ∈ V, (2.1.1)

where q ∈ Q = Rnp denotes the unknown parameters. The semi-linear form a(·, ·)(·) is defined
on the Hilbert space V ×Q× V . Semi-linear forms are written with two parentheses, the first
one refers to the nonlinear arguments, whereas the second one embraces all linear arguments.
The partial derivatives of the semi-linear form a(·, ·)(·) are denoted by a′u(·, ·)(·, ·), a′q(·, ·)(·, ·)
etc. The linear functional f ∈ V ′ represents the right hand side of the state equation, where
V ′ denotes the dual space of V .

Remark 2.1.1. For the treatment of Dirichlet boundary conditions the state variable u
is searched in an affine space û + V , where û ∈ V̂ describes the boundary conditions in an
appropriate Hilbert space V̂ ⊃ V . In the following we assume V̂ = V and û = 0 for simplicity
of notation.

Further, we are given an observation operator C : V → Z, which maps the state variable u
to the space of measurements Z = Rnm , where we assume that nm ≥ np. We denote by 〈·, ·〉Z
a scalar product of Z and by ‖ · ‖Z the corresponding norm. Similar notation are used for the
scalar product and norm in the space Q.
The values of the parameters are estimated from a given set of measurements C̄ ∈ Z using a
least squares approach such that we obtain a constrained optimization problem with the cost
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12 2. THEORETICAL RESULTS

functional J : V ×Q→ R:

Minimize J(u, q) :=
1

2
‖C(u)− C̄‖2

Z +
α

2
‖q − q̄‖2

Q, (2.1.2)

under the constraint (2.1.1). Here, the cost functional (2.1.2) is the sum of the squared norm
of the so called least squares residual defined by

RLS(u) := C̄ − C(u), (2.1.3)

and a regularization term involving prescribed α ≥ 0 and q̄ ∈ Q.

For covering additional constraints on the parameters we seek q ∈ Qad, where Qad ⊂ Q is
an admissible set of parameters. A pair (u, q) ∈ V ×Q is called admissible, if q ∈ Qad and (u, q)
fulfills the state equation (2.1.1). An admissible pair (u, q) is a local solution of the problem
(2.1.1, 2.1.2), if there exist neighborhoods Bu ⊂ V of u and Bq ⊂ Q of q such that:

J(ũ, q̃) ≥ J(u, q), (2.1.4)

for all admissible pairs (ũ, q̃) ∈ Bu × Bq. If the condition (2.1.4) holds for all admissible pairs
(ũ, q̃) ∈ V ×Qad, the solution (u, q) is called a global solution.

Below, we introduce some notations from the theory of function spaces, which we will use
throughout. Properties of this spaces can be found e.g. in Alt [2], Riesz & Sz.-Nagy [82] or
Zeidler [89].

Notation for function spaces

For a domain Ω ⊂ Rd we denote the Lebesgue space of square-integrable functions on Ω by
L2(Ω). It is a Hilbert space with scalar product and norm:

(v, w)Ω =

∫
Ω

vw dx, ‖v‖Ω =
(∫

Ω

|v|2 dx
) 1

2 .

Analogous, L2(∂Ω) denotes the space of square-integrable functions on the boundary ∂Ω
equipped with the scalar product and norm:

(v, w)∂Ω =

∫
∂Ω

vw ds, ‖v‖∂Ω =
(∫
∂Ω

|v|2 ds
) 1

2 .

The Sobolev spaces H1(Ω) and H2(Ω) consist of those functions v ∈ L2(Ω) which possess first-
and second-order (distributional) derivatives ∇v ∈ L2(Ω)d and ∇2v ∈ L2(Ω)d×d, respectively.
For this spaces we use the norms:

‖v‖H1(Ω) =
(
‖v‖2

Ω + ‖∇v‖2
Ω

) 1
2 , ‖v‖H2(Ω) =

(
‖v‖2

Ω + ‖∇v‖2
Ω + ‖∇2v‖2

Ω

) 1
2 .
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Further, there exists a continuous trace operator γ : H1(Ω) → L2(∂Ω) with v|∂Ω := γ(v). It
allows, to define the function space H1

0 (Ω) by:

H1
0 (Ω) = {v ∈ H1(Ω) | v|∂Ω = 0}.

By the Poincaré inequality,
‖v‖Ω ≤ c‖∇v‖Ω ∀v ∈ H1

0 (Ω),

the H1-seminorm ‖∇v‖Ω is a norm on the subspace H1
0 (Ω). The spaces Lp(Ω) and Wm,p(Ω)

are defined in a similar way, see e.g. Alt [2].

If Ω describe the domain on which the differential equation is posed, we usually omit the
subscript Ω in the notations of norms and scalar products, for instance ‖v‖ = ‖v‖Ω. All the
above notation will be synonymously used also for vector- or matrix-valued functions v.

2.2. Existence of a solution

The problem (2.1.1, 2.1.2) belongs to a big class of optimal control problems involving partial
differential equation. There is a number of publications, where the question of the existence
of a solution of such problems is discussed, see e.g. Lions [71], Fursikov [52], Litvinov [72]
and Neittaanmacki & Tiba [76]. For some classes of parameter identification problems with
distributed parameters this question is analyzed e.g. in Banks & Kunisch [9] and Kravaris &
Seinfeld [70].
Due to the fact, that the space of parameters in the problem under consideration has finite
dimension np, the question of the existence of a solution can be treated in a slightly simpler
way, as for the problems with distributed parameters. However, the space of measurements Z
is also finite dimensional. It often leads to the fact, that the boundedness of the cost function
(2.1.2) does not necessary imply the boundedness of the state variable and therefore the so
called coercivity relation, see Fursikov [52], is usually not valid.

In this section we prove the existence of a solution of the problem (2.1.1, 2.1.2) for two
typical sets of assumptions and also for two example problems, where some of the assumptions
are not fulfilled.

Throughout we assume the semilinear form a(·, ·)(·) and the observation operator C(·) to
be continuously differentiable and introduce an operator A : V × Q → V ′ by the following
identification:

〈A(u, q), φ〉V ′×V = a(u, q)(φ) ∀φ ∈ V, (2.2.5)

where 〈·, ·〉V ′×V denotes the duality pairing between the Hilbert space V and its dual V ′. Using
this notation we can rewrite the state equation (2.1.1) in an operator form:

A(u, q) = f,

and formulate the following assumption for it:
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Assumption (A1). There exists a nonempty open subset Q0 of Q such that the state equa-
tion (2.1.1) possesses an unique solution u ∈ V for all q ∈ Q0.

In addition we make the following regularity assumptions for the partial derivative A′u of
the operator A:

Assumption (A2). For an arbitrary q ∈ Q0 and the solution u ∈ V of (2.1.1) the partial
derivative A′u(u, q) of the operator A is a linear homeomorphism of V onto V ′.

These two assumptions guarantee the existence of a solution operator by following proposi-
tion:

Proposition 2.2.1. Assume (A1) and (A2) are valid. Then there exists a continuously
differentiable solution operator S : Q0 → V such that there holds for all q ∈ Q0:

A(S(q), q) = f,

or equivalently
a(S(q), q)(φ) = f(φ) ∀φ ∈ V.

Proof. The proof is given by a direct application of the implicit function theorem, see,
e.g., Dieudonné [40]. �

Remark 2.2.2. The solution operator S inherits the regularity of the operator A, i.e. if the
operator A is of Ck-class (k ≥ 1) then the solution operator S is of Ck-class too.

We restrict our consideration to the case, where the state equation possesses a solution for
all q ∈ Qad, i.e. we make the following assumption:

Assumption (A3). Qad ⊂ Q0.

The existence of a solution operator S allows us to formulate the two following theorems
about the existence of a solution of the problem (2.1.1, 2.1.2).

Theorem 2.2.1. Let Assumptions (A1), (A2) and (A3) be valid and the admissible set
Qad be bounded and closed in Q. Then the problem (2.1.1, 2.1.2) possesses a solution (u, q) ∈
V ×Qad.

Proof. Let A be a set of admissible elements, defined by

A := {(u, q) ∈ V ×Qad |A(u, q) = f}. (2.2.6)

Due to Assumptions (A1) and (A3) the set A is nonempty and due to the definition of J (2.1.2)
there holds:

J(A) ⊂ R+ ∪ {0}.
This implies the existence of a nonnegative real number J∗ with

J∗ = inf
(u,q)∈A

J(u, q)
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and a sequence {(un, qn)} ⊂ A with

lim
n→∞

J(un, qn) = J∗.

Due to the boundedness of the finite dimensional set Qad there exists a subsequence {qnk
} ⊂ Qad

and q ∈ Q with

lim
k→∞

qnk
= q.

The fact, that Qad is closed, implies that q ∈ Qad.
We set u := S(q) and show, that (u, q) ∈ V ×Qad is a solution of the problem (2.1.1, 2.1.2).
Due to the continuity of the solution operator S and the observation operator C we obtain:

lim
k→∞

J(S(qnk
), qnk

) = J(u, q).

This implies that J(u, q) = J∗. This completes the proof. �

For this result we do not need any assumption on the regularization parameter α. It means,
that Theorem 2.2.1 can be applied in the case α = 0. The next result provides the existence of
a solution of the problem (2.1.1, 2.1.2) in the case, where we do not require the boundedness
of Qad, but the regularization parameter α is chosen to be positive.

Theorem 2.2.2. Let Assumptions (A1), (A2) and (A3) be valid, the regularization param-
eter α be positive and the admissible set Qad be closed in Q. Then the problem (2.1.1, 2.1.2)
possesses a solution (u, q) ∈ V ×Qad.

Proof. The proof is similar to the one of Theorem 2.2.1. Here, we use the boundedness
of the sequence {J(un, qn)} and due to the fact, that α > 0 we obtain the boundedness of the
sequence {qn}. �

These two theorems guarantee the existence of a solution for a big class of parameter identi-
fication problems. However, there are a lot of situations, where some of the conditions, required
in Theorem 2.2.1 and Theorem 2.2.2, are not satisfied. In the following we prove the existence
of solutions for two examples, where the above theorems cannot be applied. These examples
are prototypical for the problems we consider later on.

Example 1

In the first example we consider a simplified version of the application problem described in
Chapter 7 (Estimation of Arrhenius parameter). The state u is given by the following nonlinear
elliptic equation:

−∆u+ equ = f in Ω,
u = 0 on ∂Ω,

(2.2.7)
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where Ω ⊂ R2 is a convex domain with the polygonal boundary ∂Ω and f ∈ L2(Ω) is a right
hand side function with

f(x) > 1 a.e. x ∈ Ω. (2.2.8)

The parameter q ∈ Qad = R+ ∪{0} is estimated using measurements given by the mean values
of the state variable along fixed measurement lines Γi, see Figure 2.2.1.

measurement  lines

1

Ω

2ΓΓ

Figure 2.2.1. The computational domain with measurement lines.

The components of the corresponding observation operator C have the following form:

Ci(v) =

∫
Γi

v ds i = 1 . . . nm,

and the parameter identification problem is formulated as follows: For (u, q) ∈ V × Qad with
V = H1

0 (Ω):

Minimize J(u) :=
1

2

nm∑
i=1

(Ci(u)− C̄i)
2 (2.2.9)

under the constraint (2.2.7). The components of the measurement vector C̄ ∈ Z = Rnm are
denoted by C̄i.

In this example we have neither the boundedness of the admissible set Qad nor a regulariza-
tion in contrast to the class of the parameter identification problems considered in Theorem 2.2.1
and Theorem 2.2.2.
However, due to the fact, that the nonlinear differential operator A of the equation (2.2.7) is
monotone (see e.g. Zeidler [89]) the equation (2.2.7) possesses a unique solution for all q ∈ Qad,
i.e. Assumption (A1) is valid. Due to the ellipticity and the boundedness of the operator A
Assumption (A2) is valid as well. This implies the existence of a continuously differentiable



2.2. EXISTENCE OF A SOLUTION 17

solution operator S (see Proposition 2.2.1) and a nonnegative real number

J∗ = inf
(u,q)∈A

J(u), (2.2.10)

where A is the set of admissible elements, defined as in (2.2.6). A result of solvability of the
problem (2.2.9) is given in the following proposition:

Proposition 2.2.3. Let for the optimal value J∗ the following condition be fulfilled:

J∗ < J(0) =
1

2
‖C̄‖2, (2.2.11)

then the problem (2.2.9) possesses a solution (u, q) ∈ V ×Qad.

Proof. Analogous to the proof of Theorem 2.2.1 there exists a sequence {(un, qn)} ⊂ A
with

lim
n→∞

J(un) = J∗.

We rewrite the state equation (2.2.7) for un ∈ V in a weak form:

(∇un,∇φ) + (eqnun , φ) = (f, φ) ∀φ ∈ V,

set φ = un and obtain:
‖∇un‖2 + (eqnun , un) = (f, u).

By virtue of the maximum principle (see e.g. Hellwig [62]) we have that the state variable un

is positive due to the condition (2.2.8). Therefore, using the fact, that ex > 1 + x ∀x ∈ R we
obtain:

‖∇un‖2 + (1 + qnun, un) ≤ (f, u).

Then, using Cauchy-Schwarz and Young’s inequalities:

‖∇un‖2 + qn‖un‖2 ≤ (f − 1, un) ≤ ‖f − 1‖‖un‖ ≤
1

4qn
‖f − 1‖2 + qn‖un‖2

and consequently:

‖∇un‖2 ≤ 1

4qn
‖f − 1‖2. (2.2.12)

If the sequence {qn} is unbounded, then there exists a subsequence {qnk
} ⊂ Qad such that

qnk
→ ∞ for k → ∞ and due to (2.2.12) unk

→ 0 in V . By virtue of the trace theorem (see
e.g. Alt [2]) we obtain that

Ci(unk
) =

∫
Γi

unk
ds→ 0 for k →∞, i = 1 . . . nm

and consequently J(unk
) → 1

2
‖C̄‖2, which is a contradiction with (2.2.11). Therefore the

sequence {qn} is bounded and we complete the proof analogous to Theorem 2.2.1. �
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Remark 2.2.4. The crucial assumption (2.2.11) can be simply checked for a given set of
measurements C̄. It is equivalent to the following condition: There exists q0 ∈ Qad with
J(S(q0)) <

1
2
‖C̄‖.

Example 2

In the second example we consider the following diffusion-reaction equation with unknown
diffusion coefficient q in a convex domain Ω with the polygonal boundary ∂Ω:

−q∆u+ u = 1 in Ω,
u = 0 on ∂Ω.

(2.2.13)

The parameter q is estimated using measurements given by the values of the state variable
at nm different points ξi and the components of the corresponding observation operator C have
the following form:

Ci(v) = v(ξi) i = 1 . . . nm. (2.2.14)

The corresponding parameter identification problem is formulated as follows: For (u, q) ∈
V ×Qad with V = H1

0 (Ω)

Minimize J(u) :=
1

2

nm∑
i=1

(u(ξi)− C̄i)
2 (2.2.15)

under the constraint (2.2.13). The components of the measurement vector C̄ ∈ Z = Rnm are
denoted by C̄i.
The natural choice for the admissible set of parameters is Qad = R+, the largest connected
set such that the equation (2.2.13) possesses an unique solution for all q ∈ Qad. This set is
neither bounded nor closed. Moreover, the observation operator C is here an unbounded linear
operator on V (see, e.g. Riesz & Sz.-Nagy [82]). This complicates the proof of the existence
of a solution of the problem (2.2.15). We start with a lemma about a singularly perturbed
problem, which we use later on for the proof of the solvability of the problem (2.2.15).

Lemma 2.2.5. Let v ∈ H1(Ω) be determined by the equation

−ε∆v + v = 0 in Ω,
v = 1 on ∂Ω,

(2.2.16)

where Ω is a convex domain with the polygonal boundary ∂Ω.Moreover, let for 0 < δ < diam(Ω)
the domain Ωδ be defined by:

Ωδ := {x ∈ Ω | dist(x, ∂Ω) > δ}.

Then there holds:

‖v‖Ωδ
≤ 2 diam(Ω)

1
2 e
− δ

2
√

ε .
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Proof. The proof is given analogous to the proof of Lemma 1 from Rannacher [80].
Let the functions d, σ : Ω → R be given by: d(x) := dist(x, ∂Ω) and

σ(x) := min{e
d(x)√

ε , e
δ√
ε}.

Then, there holds:

ε‖∇v‖2
Ωδ

+ ‖v‖2
Ωδ
≤ e

− δ√
ε
(
ε(σ∇v,∇v) + (σv, v)

)
.

We denote L := ε(σ∇v,∇v) + (σv, v) and obtain:

L = (σv, v) + ε(∇(σv),∇v)− ε(v∇σ,∇v).

Since |∇σ| ≤ σ√
ε

we have

ε|(v∇σ,∇v)| ≤ 1

2

(
ε(σ∇v,∇v) + (σv, v)

)
and

L ≤ (σv, v) + ε(∇(σv),∇v) +
1

2
L.

Hence, absorbing terms, we obtain:

L ≤ 2
(
(σv, v) + ε(∇(σv),∇v)

)
= 2
(
(σv, v)− ε(σv,∆v) + ε(σv, ∂nv)∂Ω

)
.

Using the equation (2.2.16) and the fact, that σ = v = 1 along ∂Ω we have:

L ≤ 2ε(1, ∂nv)∂Ω = 2ε(1,∆v) = 2(1, v).

Due to the fact, that σ(x) ≥ 1 we obtain:

L ≤ 2(σ
1
2 , v) ≤ 2 diam(Ω)

1
2 (σv, v)

1
2 ≤ 2 diam(Ω)

1
2L

1
2 .

Therefore,

L ≤ 4 diam(Ω).

This completes the proof. �

The state equation (2.2.13) possesses an unique solution for all q ∈ Qad and therefore there
exists analogous to Example 1 a nonnegative number

J∗ = inf
(u,q)∈A

J(u), (2.2.17)

where A is the set of admissible elements, defined as in (2.2.6). A result of solvability of the
problem (2.2.15) is given in the following proposition:
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Proposition 2.2.6. Let for the optimal value J∗ the following condition be fulfilled:

J∗ <
1

2
min{‖C̄‖2, ‖C∞ − C̄‖2}, (2.2.18)

where C∞ ∈ Rnm is given by C∞
i = 1, i = 1 . . . nm. Then the problem (2.2.15) possesses a

solution (u, q) ∈ V ×Qad.

Proof. The ellipticity and the boundedness of the differential operator A of the equation
(2.2.13) implies the existence of a continuously differentiable solution operator S : Qad → V .
Due to the convexity of the domain Ω the following regularity condition holds (see e.g. Grisvard
[57]):

S(q) ∈ V ∩H2(Ω) ∀q ∈ Qad . (2.2.19)

This implies that the observation operator C is well defined on S(Qad), due to the Sobolev
embedding theorem (see, e.g. Alt [2]). Therefore, there exists a sequence {(un, qn)} ⊂ A with

lim
n→∞

J(un) = J∗.

Analog to the proof of Proposition 2.2.3 we obtain:

‖∇un‖ ≤
‖1‖2

4qn
. (2.2.20)

If the sequence {qn} is unbounded, then there exists a subsequence {qnk
} ⊂ Qad such that

qnk
→ ∞ for k → ∞ and due to (2.2.12) unk

→ 0 in V . Hence, using the state equation
(2.2.13) and the convexity of the domain Ω we obtain:

‖∇2un‖ ≤ ‖∆un‖ =
1

qn
‖1− un‖ (2.2.21)

and therefore, unk
→ 0 in H2(Ω). This implies by virtue of Sobolev embedding theorem (see

e.g. Alt [2]) that

Ci(unk
) = unk

(ξi) → 0 for k →∞, i = 1 . . . nm

and consequently J(unk
) → 1

2
‖C̄‖2, which is a contradiction to (2.2.18). Therefore we obtain

that the sequence {qn} is bounded and there exists q ∈ Q̄ad = Qad ∪ {0} with:

qnk
→ q for k →∞.

We consider two cases: q = 0 and q ∈ Qad. For the first case we set vk = 1− unk
and εk = qnk

and obtain:
−εk∆vk + vk = 0 in Ω,

vk = 1 on ∂Ω.
(2.2.22)
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Further, using Lemma 2.2.5 we have:

‖vk‖Ωδ
≤ 2 diam(Ω)

1
2 e
− δ

2
√

εk ,

where Ωδ is defined as in Lemma 2.2.5. Then, using the equation (2.2.22) and the convexity of
the domain Ω we obtain:

‖∇2vk‖Ωδ
≤ ‖∆vk‖Ωδ

=
1

εk

‖vk‖Ωδ
≤ 2

εk

diam(Ω)
1
2 e
− δ

2
√

εk .

This implies that vk|Ωδ
→ 0 for k →∞ in H2(Ωδ). Choosing δ small enough, we have by virtue

of Sobolev theorem (see e.g. Alt [2]):

Ci(unk
) = unk

(ξi) → 1 for k →∞, i = 1 . . . nm

and consequently J(unk
) → 1

2
‖C∞ − C̄‖2, which is a contradiction with (2.2.18). Therefore,

q ∈ Qad and we complete the proof analog to Theorem 2.2.1 using the continuity of the solution
operator S on H2(Ω) due to (2.2.21). �

2.3. Necessary and sufficient optimality conditions

In this section we reformulate the problem (2.1.1, 2.1.2) as an unconstrained optimization
problem and derive the necessary and sufficient optimality conditions for it. We also introduce
the Lagrange function, in order to obtain the optimality system for the constrained formula-
tion of the problem under consideration. For the formulation of the second order optimality
conditions we assume, that the operators A and C are of C2-class, which implies the same for
the solution operator S, see Remark 2.2.2.

In the following we assume throughout, that we do not have any additional constraints on
the parameters q or they are inactive in the solution of the problem (2.1.1, 2.1.2). Therefore,
we set Qad = Q.

Using the solution operator S introduced in Proposition 2.2.1 we define the reduced obser-
vation operator c : Q0 → Z by:

c(q) := C(S(q)). (2.3.23)

This allows us to reformulate the problem under consideration as an unconstrained optimization
problem with the reduced cost functional j : Q0 → R:

Minimize j(q) :=
1

2
‖c(q)− C̄‖2

Z +
α

2
‖q − q̄‖2

Q, q ∈ Q. (2.3.24)

The first- and second-order necessary optimality condition for this problem are formulated
by the following theorem:

Theorem 2.3.1. Let q ∈ Q be a local solution of the problem (2.3.24). Then there holds:
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(i) q is stationary point of j, i.e.

j′(q)(δq) = 0 ∀δq ∈ Q, (2.3.25)

(ii) j′′(q) is positive semidefinite, i.e.

j′′(q)(δq, δq) ≥ 0 ∀δq ∈ Q. (2.3.26)

The proof of this theorem can be found in the standard literature, see e.g. Nocedal &
Wright [78].

The sufficient optimality conditions for the problem (2.3.24) are given by the following
theorem:

Theorem 2.3.2. Let for q ∈ Q the first order necessary condition (2.3.25) be fulfilled. Let
in addition the second derivative j′′(q) be positive definite, i.e. there exists γ ∈ R+ with

j′′(q)(δq, δq) ≥ γ‖δq‖2
Q ∀δq ∈ Q, (2.3.27)

then q is a local minimum of j.

The proof of this theorem can be also found in the standard literature, see e.g. Nocedal &
Wright [78].

Denoting by G = c′(q) the Jacobian matrix of the reduced observation operator c, the first
order necessary condition (2.3.25) for the problem (2.3.24) reads:

G∗c(q) + αq = G∗C̄ + αq̄. (2.3.28)

In the following proposition we compute the Jacobian G.

Proposition 2.3.1. Let the reduced observation operator c be defined as in (2.3.23). Then
its partial derivatives can be computed as follows:

∂ci
∂qj

(q) = Gij = C ′
i(u)(wj), i = 1 . . . nm, j = 1 . . . np, (2.3.29)

with u = S(q), Ci and ci denote the components of the observation and the reduced observation
operators respectively; Gij denotes the entries of the Jacobian matrix G = c′(q) and wj ∈ V is
the solution of the following tangent problem:

a′u(u, q)(wj, φ) = −a′qj
(u, q)(1, φ) ∀φ ∈ V. (2.3.30)

Proof. Taking the derivatives of

a(S(q), q)(φ) = f(φ) ∀φ ∈ V, (2.3.31)
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we obtain:

a′u(u, q)(S
′
qj

(q)(1), φ) + a′qj
(u, q)(1, φ) = 0 ∀φ ∈ V, (2.3.32)

where S ′qj
(q)(1) denotes the partial derivative of the solution operator S with respect to qj.

By the chain rule we have:

Gij =
∂ci
∂qj

(q) = C ′
i(u)(S

′
qj

(q)(1)) . (2.3.33)

To complete the proof we use the definition (2.3.30) of wj. �

The Hessian matrix ∇2j(q) of the reduced cost functional j, which is as usual given by the
identification

〈δq,∇2j(q) τq〉Q = j′′(q)(δq, τq) ∀δq, τq ∈ Q
can be expressed as:

∇2j(q) = G∗G+M + αI, (2.3.34)

where I denotes the identity matrix on Q, G∗ is the transpose of G and the matrix M ∈ Rnp×np

is defined by

M := −
nm∑
i=1

c′′i (q)R
LS
i . (2.3.35)

Here, RLS
i denotes the i-th component of the least squares residual RLS(u) defined in (2.1.3)

with u = S(q).
We collect the necessary information for computation of M in the next proposition.

Proposition 2.3.2. The entries Mjk of the matrix M defined in (2.3.35) can be computed
by:

Mjk = −a′′uu(u, q)(wj, wk, z)− a′′uqj
(u, q)(wk, 1, z)− a′′qjqk

(u, q)(1, 1, z)

−a′′uqk
(u, q)(wj, 1, z)− 〈C ′′(u)(wj, wk), R

LS(u)〉Z ,

where u = S(q). Further, wj ∈ V is defined in (2.3.30) and z ∈ V is the solution of the
following adjoint equation:

a′u(u, q)(φ, z) = −〈RLS(u), C ′(u)(φ)〉Z ∀φ ∈ V. (2.3.36)

The proof of Proposition 2.3.2 is similar to the one of Proposition 2.3.1.

Remark 2.3.3. The existence of the solutions of the tangent equation (2.3.30) and the
adjoint equation (2.3.36) is given as a consequence of Assumption (A2).

The solution z of (2.3.36) is also called the Lagrange multiplier for the problem (2.1.1, 2.1.2).
It is a main component of a so called Lagrange principle, which is used to establish the optimality
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system for the constraint formulation of the parameter identification problem. For the problem
under consideration we introduce the following Lagrange function:

L(u, q, z) =
1

2
‖C(u)− C̄‖2

Z +
α

2
‖q − q̄‖2

Q + f(z)− a(u, q)(z), (2.3.37)

for u ∈ V , q ∈ Q and z ∈ V . The derivative of L is expressed by means of the residual
functionals, defined, using the abbreviation ξ := (u, q, z), by

ρu(ξ)(φ) := f(φ)− a(u, q)(φ), (2.3.38)

ρz(ξ)(ψ) := −〈C ′(u)(ψ), RLS(u)〉Z − a′u(u, q)(ψ, z), (2.3.39)

ρq(ξ)(σ) := α〈q − q̄, σ〉Q − a′q(u, q)(σ, z), (2.3.40)

where φ, ψ ∈ V and σ ∈ Q are test functions. Now we have with δξ = (δu, δq, δz):

L′(ξ)(δξ) = ρu(ξ)(δz) + ρz(ξ)(δu) + ρq(ξ)(δq). (2.3.41)

This leads to the following formulation of the Lagrange principle:

Theorem 2.3.3 (Lagrange principle). Let Assumptions (A1) and (A2) be valid and (u, q) ∈
V ×Q be a (local) solution of the problem (2.1.1, 2.1.2). Then there exists a Lagrange multiplier
z ∈ V such that the triple (u, q, z) is a stationary point of the Lagrange function defined in
(2.3.37).

Proof. We define the Lagrange multiplier z ∈ V as in (2.3.36) and there remains to
check that the derivative L′(u, q, z) vanishes. The residual functional ρu vanishes due to the
fact, that u solves the state equation for the parameter q; the residual functional ρz vanishes
due to the definition of z (2.3.36) and for the term ρq(ξ)(σ) we obtain analog to the proof of
Proposition 2.3.1:

j′(q)(σ) = 〈C(u)− C̄, C ′(u)(S ′(q)(σ))〉Z + α〈q − q̄, σ〉Q
= a′u(u, q)(S

′(q)(σ), z) + α〈q − q̄, σ〉Q
= −a′q(u, q)(σ, z) + α〈q − q̄, σ〉Q = ρq(ξ)(σ).

The application of Theorem 2.3.1 completes the proof. �

Remark 2.3.4. The proof of the Lagrange principle here is simple due to Assumption (A2),
which implies the existence of the Lagrange multiplier z. For the discussion of the Lagrange
principle in more general situation see e.g. Tikhomirov [85].

2.4. Stability and uniqueness of the solution

In this section we introduce the concept of a stable solution of the parameter identification
problem and analyze the main properties of it. We investigate the influence of small pertur-
bations of the problem on the corresponding solution. Among other things we prove the local
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uniqueness of stable solutions. Moreover we show, that global uniqueness cannot be expected
for the solution of the problem under consideration.

We call a solution q ∈ Q of the problem (2.3.24) stable, if the sufficient optimality condition
from Theorem 2.3.2 is fulfilled, i.e. if there exists γ ∈ R+ with:

j′′(q)(δq, δq) ≥ γ‖δq‖2
Q ∀δq ∈ Q. (2.4.42)

In the following proposition we derive a sufficient condition for the stability of a solution of
the problem (2.3.24).

Proposition 2.4.1. Let q be a solution of the problem (2.3.24) and G be the Jacobian
matrix of the reduced observation operator c. Let moreover λG∗G, ε, σ ∈ R+ be defined by:

λG∗G = min{λ ∈ R |λ is an eigenvalue of G∗G},

ε = ‖c(q)− C̄‖Z

and

σ = sup
δq∈Q

‖c′′(q)(δq, δq)‖Z

‖δq‖2
Q

.

Then the existence of a positive number γ with

λG∗G − σε+ α ≥ γ > 0 (2.4.43)

is sufficient for the stability of a solution q.

Proof. The matrix G∗G is symmetric and positive semidefinite. This implies that all
eigenvalues are real and λG∗G ∈ R+ ∪ {0}.
For the second derivative of the reduced cost functional j we obtain:

j′′(q)(δq, δq) = δq∗G∗Gδq + 〈c′′(q)(δq, δq), c(q)− C̄〉Z + α〈δq, δq〉Q ≥
≥ λG∗G‖δq‖2

Q − ‖c′′(q)(δq, δq)‖Z ‖c(q)− C̄‖Z + α‖δq‖2
Q ≥

≥ (λG∗G − σε+ α)‖δq‖2
Q.

This completes the proof. �

Remark 2.4.2. If the cost functional vanishes in the solution q, i.e. if ε = 0, then each of
the following conditions is sufficient for the stability:

(i) The Jacobian matrix G has full rank np,
(ii) The regularization parameter α is positive.

For a stable solution q of the problem (2.3.24) we formulate the following stability theorem,
see Bock [25] for analogous argumentation:
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Theorem 2.4.1. Let q be a stable solution of the problem (2.3.24) and j̃(q, ε) be a perturbed
cost functional with a perturbation parameter ε ∈ E = Rk. We assume, that j̃ : Q × E → R is
continuously differentiable with

j(q) = j̃(q, 0) ∀q ∈ Q.

Then there exist a neighborhood Q1 ⊂ Q of q, a neighborhood E1 ⊂ E of ε = 0 and a continuously
differentiable function f : E1 → Q1 such that f(0) = q and qε = f(ε) is a local minimum of
j̃(q, ε) for all ε ∈ E1.

Proof. We apply the implicit function theorem (see, e.g., Dieudonné [40]) to the function
F (q, ε) = ∇q j̃(q, ε), where the gradient ∇q j̃(q, ε) ∈ Q is as usual defined by the identification:

j̃′q(q, ε)(δq) = 〈∇q j̃(q, ε), δq〉Q ∀δq ∈ Q .

There holds:

(i) F (q, 0) = 0,
(ii) F ′

q(q, 0) = ∇2j(q) is positive definite and consequently regular.

The application of the implicit function theorem provides the existence of the neighborhoods
Ẽ1 ⊂ E of ε = 0, Q1 ⊂ Q of q and a continuously differentiable function f : Ẽ1 → Q1 such that:

∇q j̃(f(ε), ε) = 0 ∀ε ∈ Ẽ1.

Moreover, there exists a neighborhood E1 ⊂ Ẽ1 such that

∇2
q j̃(f(ε), ε) is positive definite ∀ε ∈ E1.

Therefore, we obtain by using the sufficient optimality conditions from Theorem 2.3.2, that
qε = f(ε) is a local minimum of j̃(q, ε) for all ε ∈ E1. This completes the proof. �

The above result means, that “small” (continuous) perturbations of the cost functional j
lead to “small” perturbations of the solution q. In the next theorem we give a more precise
result for perturbations of the measurement vector C̄.

Theorem 2.4.2. Let q be a stable solution of the problem (2.3.24), δC̄ be a perturbation of
the measurement vector C̄ and q̃ a solution of the perturbed parameter identification problem
with the measurements C̄ + δC̄. Then, there holds for δq = q̃ − q:

δqj
qj

=
nm∑
i=1

κij
δC̄i

C̄i

+O(‖δC̄‖2
Z),

where the so called (relative) condition numbers κij are given by:

κij = (H−1G∗)ji
C̄i

qj
,
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with the Hessian H = ∇2j(q) and the Jacobian matrix G = c′(q).

Proof. Similar to the proof of the Theorem 2.4.1 we define a function F : Q × Z → Q
describing the first order necessary condition for a given measurement vector C̄ by:

F (q, C̄) = G∗(c(q)− C̄).

Due to the implicit function theorem there exists a neighborhood Z0 ⊂ T and a continuously
differentiable function f : Z0 → Q such that:

F (f(C̄), C̄) = 0 ∀C̄ ∈ Z0

and f(C̄) is a solution for the problem (2.3.24) for the measurement vector C̄. There holds:

F ′
q(q, C̄) = H

and
F ′

C̄(q, C̄) = −G∗.

Therefore, the derivative f ′(C̄) is given by:

f ′(C̄) = H−1G∗.

We complete the proof by using the fact, that

δq = f(C̄ + δC̄)− f(C̄) = f ′(C̄)(δC̄) +O(‖δC̄‖2
Z).

�

This theorem is a typical result of the sensitivity analysis. The relative condition number
κij describes the relative importance of the ith measurement for the parameter qj. It can be
simply computed by a post-processing of the optimization algorithm described in Chapter 4,
see Becker & Vexler [23]. For the sensitivity analysis of optimal control problems, see e.g.
Malanowski [75] or Griesse [55,56].

From Theorem 2.4.2 we obtain the following corollary:

Corollary 2.4.3. Let λH denote the smallest eigenvalue of the Hessian H, λGG∗ the largest
eigenvalue of the matrix GG∗ and κ be defined by:

κ = λ−1
H

√
λGG∗

‖C̄‖Z

‖q‖Q

.

Then, with the notation from Theorem 2.4.2 there holds:

‖δq‖Q

‖q‖Q

≤ κ
‖δC̄‖Z

‖C̄‖Z

+O(‖δC̄‖2
Z) .
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Proof. From Theorem 2.4.2 we obtain:

‖δq‖ ≤ ‖H−1G∗δC̄‖+O(‖δC̄‖2
Z) .

For the term ‖H−1G∗δC̄‖ we have:

‖H−1G∗δC̄‖2 = (G∗δC̄)∗(H−1)2(G∗δC̄) ≤ λ−2
H δC̄∗(GG∗)δC̄ ≤ λ−2

H λGG∗ ‖δC̄‖2
Z .

This completes the proof. �

Another consequence of the stability is the local uniqueness, formulated in the following
theorem:

Theorem 2.4.3 (Local uniqueness). Let q be a stable solution of the problem (2.3.24), then
there exist a neighborhood Q1 ⊂ Q of q such that:

j(q̃) > j(q) ∀q̃ ∈ Q1 \ {q} .

Proof. Due to the positive definiteness of j′′(q) there exists a neighborhood Q1 ⊂ Q of q
such that j′′(q̂) is also positive definite for all q̂ ∈ Q1. Let now q̃ ∈ Q1 be arbitrary chosen.
There holds with an appropriate q̂ ∈ Q1:

j(q̃)− j(q) = j′(q)(q̃ − q) + j′′(q̂)(q̃ − q, q̃ − q).

We complete the proof by using the first order necessary condition from Theorem 2.3.1 and the
positive definiteness of j′′(q̂). �

A natural consequence of the above theorem is that a stable solution q of the problem (2.3.24)
possesses a neighborhood, which does not contain any additional (local) solution of the prob-
lem (2.3.24).

In the following example we show that the local uniqueness of a solution q of the problem
(2.3.24) does not guarantee the global uniqueness. To this end, we consider a parameter iden-
tification problem, which possesses two different stable solutions.
Let I = (0, 1) be the unit interval, we choose V = H1

0 (I) and Q = R. With these settings we
consider the following parameter identification problem for u ∈ V and q ∈ Q:

Minimize J(u) = (u(0.5)− C̄)2 (2.4.44)

under the constraint
−u′′ + qu′ = 1 in I,

u(0) = u(1) = 0.
(2.4.45)

The solution operator S is here given by:

S(q)(x) =
xeq − x− eqx + 1

q(eq − 1)
.
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In Figure 2.4.2 we see the solutions of the state equations for two choices of the parameter:
q1 = 5 and q2 = −5.
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Figure 2.4.2. The solutions of the state equations for two choices of the pa-
rameter: q1 = 5 (solid line) and q2 = −5 (dashed line).

One simply obtains that

S(q1)(0.5) = S(q2)(0.5) =
e2.5 − 1

10(e2.5 + 1)
.

It leads to the following situation: We choose

C̄ =
e2.5 − 1

10(e2.5 + 1)

and obtain, that the problem (2.4.44, 2.4.45) possesses at least two solutions (q1, S(q1)) and
(q2, S(q2)). Applying Proposition 2.4.1 to this problem we obtain that these both solutions are
stable with j(q1) = j(q2) = 0 (cf. Remark 2.4.2).

2.5. Statistical considerations

In this section we touch the statistical aspects of parameter identification. We give a statisti-
cal justification of using least squares method for the formulation of the parameter identification
problem. Moreover, we analyze the statistical quality of the parameters obtained as a solution
of the least squares problem.
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By the statistical consideration of the parameter identification problem one uses the follow-
ing (nonlinear) regression model (see e.g. Bates & Watts [10]):

C̄ = C(uτ ) + ε, (2.5.46)

where uτ = S(qτ ) is the solution of the state equation (2.1.1) for the true parameters qτ ∈ Q
and ε ∈ Z denotes the measurement errors considered as a vector of random variables εi. We
make the following standard assumption on the distribution of the measurement errors:

Assumption (S1). The measurement errors εi are uncorrelated and normally distributed
with the expected value E(ε) = 0 and the covariance matrix

cov(ε) = σ2I, σ ∈ R+.

The analysis of the general nonlinear regression model (2.5.46) requires validity of several
additional assumptions on C, S, and ε, see e.g. Humak [67], and is still an active field of
research. However, the special case of linear regression, i.e. if both the solution operator S and
the observation operator C are linear, is well studied. In this case there holds the following
theorem, see e.g. Seber & Lee [83]:

Theorem 2.5.1. Let Assumption (S1) be valid and q ∈ Q be a global minimizer of the least
square problem (2.3.24) (with the regularization parameter α = 0), then among the class of
linear unbiased estimates of qτ , the estimate q is the unique one with minimum variance.

The above theorem gives a justification of using least squares approach for parameter iden-
tification in the linear case.

The validity of Assumption (S1) allows us also to analyze the statistical quality of the
solution q of the least square problem (2.3.24). This is done by introduction of so called
confidence regions. A confidence region describes the region around the estimated parameter
q, where the true parameter qτ lies with a given probability level. Under Assumption (S1) the
confidence region with the probability level 100(1− α)% is given by:

R = {q̃ | j(q̃)− j(q) ≤ γ2(α)}, (2.5.47)

where
γ2(α) = σ2npF1−α(np, nm − np).

The factor σ2 can be estimated by:

b2 =
j(q)

nm − np

.

In general, there is no simple characterization of the confidence region (2.5.47). Therefore, we
consider a linearized version of the confidence region:

RL = {q + δq | j′′(q)(δq, δq) ≤ γ2(α)}. (2.5.48)
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This is justified by the Taylor’s formula giving:

j(q̃)− j(q) = j′(q)(q̃ − q) + j′′(q)(q̃ − q, q̃ − q) + o(‖q̃ − q‖2
Q)

and the fact, that
j′(q)(q̃ − q) = 0

due to the necessary optimality condition from Theorem 2.3.1.
For a stable solution q of the problem (2.3.24) the linearized confidence region RL defines an

ellipsoid (due to the positive of the Hessian matrix of j). In this case the linearized confidence
region RL can be estimated by so called confidence intervals:

Proposition 2.5.1. For a stable solution q of the problem (2.3.24) the linearized confidence
region RL, defined in (2.5.48), is a subset of a parallelepiped given as a product of confidence
intervals for each component of q, i.e.:

RL ⊂
np∏
j=1

[qj − θj, qj + θj],

where

θj = P
1
2

ii γ(α)

with P = (∇2j(q))−1.

Proof. The proof is given by a direct calculation. �

The computation of the confidence intervals introduced above can be done by a simple
post-processing of the optimization algorithm described in Chapter 4. This requires only the
knowledge of the diagonal elements of the inverse P of the Hessian. If an approximative Hessian
is used, one obtains approximative confidence intervals, see e.g. Bock [25] for the computation
of confidence intervals based on the Gauß-Newton matrix.





CHAPTER 3

Finite Element Discretization

In this chapter we treat the discretization of parameter identification problems by the finite
element method. In Section 3.1 we describe meshes over the computational domain and the cor-
responding finite element spaces. Moreover, we introduce finite element interpolation operators
and discuss the estimates of the interpolation errors. In Section 3.2 the described finite element
spaces are used for the discretization of the parameter identification problem (2.1.1, 2.1.2).
Afterwards, in Section 3.3 we study the question of the existence of a solution of the discretized
parameter identification problem. Section 3.4 is devoted to the derivation of a priori error es-
timates for the error in parameters due to the discretization. In the last section of this chapter
we present some numerical results confirming these error estimates.

3.1. Triangulations and finite element spaces

In this section we describe the finite element meshes (triangulations) over the domain Ω ⊂ Rd

with a polygonal boundary ∂Ω and the corresponding finite element spaces. The case of non-
polygonal boundary necessitates the treatment of curved cells and is neglected here.

We consider two dimensional meshes consisting of open quadrilaterals (cells) K which con-
stitute a non-overlapping covering of the computational domain. The corresponding mesh is
denoted by Th = {K}, where the mesh parameter h is defined as a cell-wise constant function
by setting h|K = hK and hK is the diameter of K. Usually we use the symbol h also for the
maximal cell size, i.e.

h = max
K∈Th

hK .

The straight parts which make up the boundary ∂K of a cell K are called faces.

A mesh Th is called regular, if it fulfills the standard conditions for shape-regular finite
element mesh (see e.g. Ciarlet [34] or Braess [31]), i.e. if the following properties are satisfied:

(M1) Ω̄ = ∪K∈Th
K̄,

(M2) K1 ∩K2 = ∅ or K1 = K2, ∀K1, K2 ∈ Th,
(M3) Any face of any cell K1 ∈ Th is either a subset of the boundary ∂Ω, or a face of another

cell K2 ∈ Th.

However, in order to ease the mesh refinement we weaken the condition (M3) and allow the
cells to have nodes, which lie on midpoints of faces of neighboring cells. But at most one such

33
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hanging node (see Figure 3.1.1) is permitted for each face.

Figure 3.1.1. Quadrilateral mesh in two dimensions with two hanging nodes.

In addition we require that the mesh Th is organized in a patch-wise manner. This means, that
it results from a coarser regular mesh T2h by one global refinement. By a “patch” of elements
we denote a group of four cells in Th which results from a common coarser cell in T2h. In
Figure 3.1.2, an example is shown.

Figure 3.1.2. “Patch-mesh” Th (right) resulting from a coarser regular mesh
T2h (left) by one global refinement.

On a regular mesh, we construct continuous finite element spaces Vh ⊂ V , see e.g. Ciarlet [34],
Brenner & Scott [32] or Johnson [68], by:

Vh = {v ∈ V | v|K ∈ P (K), K ∈ Th},

where P (K) denotes a suitable space of polynomial-like functions defined on the cell K ∈ Th. In
our numerical results discussed below, we mostly use (isoparametric) “bilinear” or “biquadratic”
finite elements on quadrilateral meshes. In this case P (K) = Q̃r(K) (r = 1, 2) consists of
shape functions obtained via a bilinear transformation from the space of bilinear or biquadratic
functions Qr(K̂) on the reference cell K̂ = (0, 1)2, where

Q1(K̂) = span{1, x1, x2, x1x2} or Q2(K̂) = Q1(K̂)⊕ span{x2
1, x

2
2, x1x

2
2, x2x

2
1, x

2
1x

2
2}.

The case of hanging nodes requires some additional remarks. There are no degrees of
freedom corresponding to these irregular nodes and the value of the finite element function is
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determined by point-wise interpolation. This implies continuity and therefore global conformity.
For implementation details see e.g. Carey & Oden [33].

Remark 3.1.1. The space V2h corresponding to the mesh T2h is defined in a similar way.
The patch-structure of the mesh will be used for defining stabilization terms, see Chapter 6,
and for evaluation of a posteriori error estimators, see Chapter 5.

The mesh Th is called quasi-uniform, if the following additional condition is valid for a
moderate constant Cm:

(M4)
hK

ρK

≤ Cm ∀K ∈ Th,

where ρK denotes the diameter of the biggest ball inscribed in K.

The approximation properties of finite element spaces can be characterized by error es-
timates for interpolation errors. Throughout we use two types of interpolation operators
ih : V → Vh: point-wise interpolation for continuous functions and a generalized interpola-
tion for functions in H1(Ω), see Clément [35].

In the following proposition we collect some estimates of interpolation errors.

Proposition 3.1.2. Let Th be a quasi-uniform mesh and Vh a space of (isoparametric)
bilinear finite elements, then there exists a constant CI depending on Cm such that there holds
for u ∈ H2(Ω):

‖u− ihu‖Ω ≤ CI h
2 ‖∇2u‖Ω ,

and

‖∇(u− ihu)‖Ω ≤ CI h ‖∇2u‖Ω .

The proof is given e.g. in Braess [31].

Remark 3.1.3. For the analogous results in the case of biquadratic finite elements, see e.g.
Braess [31].

3.2. Discretization of a parameter identification problem

In this section we describe the discretization of the problem (2.1.1, 2.1.2) by finite element
methods. To this end, the state equation (2.1.1) is discretized using finite element spaces
introduced in Section 3.1. Thereafter, we turn the discretized problem in an unconstrained
formulation and derive the corresponding necessary and sufficient optimality condition.

For a given finite element space Vh the corresponding discrete solution (uh, qh) ∈ Vh ×Q is
determined by:

Minimize J(uh, qh) (3.2.49)

under the constraint

a(uh, qh)(φh) = f(φh) ∀φh ∈ Vh, (3.2.50)
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where J is the cost functional defined in (2.1.2).

Remark 3.2.1. Due to the finite dimension of Q, we suppose the parameter qh in (3.2.49)
to be searched in the same space Q.

We assume the discrete analog of Assumptions (A1) and (A2), in order to guarantee the
existence of a continuously differentiable discrete solution operator Sh : Q0 → Vh such that
there holds for all qh ∈ Q0:

a(Sh(qh), qh)(φh) = f(φh) ∀φ ∈ Vh.

Analogous to Section 2.3, we introduce the discrete reduced observation operator ch : Q0 → Z
by

ch(qh) = C(Sh(qh)), (3.2.51)

and turn the discrete problem (3.2.49, 3.2.50) into an unconstrained minimization problem:

Minimize jh(qh) :=
1

2
‖ch(qh)− C̄‖2

Z +
α

2
‖qh − q̄‖2

Q, qh ∈ Q. (3.2.52)

Analogous to Theorem 2.3.1 the first necessary condition for this problem reads:

j′h(qh) = 0.

Denoting Gh = c′h(qh) this condition can be rewritten as:

G∗
hch(qh) + αqh = G∗

hC̄ + αq̄. (3.2.53)

The matrix Gh can be computed analog to the Jacobian G of the reduced observation
operator c, i.e there holds the following proposition:

Proposition 3.2.2. Let the discrete reduced observation operator ch be defined by (3.2.51).
Then its partial derivatives can be computed as follows:

∂ci,h
∂qj

(qh) = Gij,h = C ′
i(uh)(wj,h), i = 1 . . . nm, j = 1 . . . np, (3.2.54)

with uh = Sh(qh) and ci,h denote the components of the discrete reduced observation operator;
Gij,h denotes the entries of the Jacobian matrix Gh = c′h(qh) and wj,h ∈ Vh is the solution of
the following tangent problem:

a′u(uh, qh)(wj,h, φh) = −a′qj
(uh, qh)(1, φh) ∀φh ∈ Vh. (3.2.55)

The proof of Proposition 3.2.2 is similar to the one of Proposition 2.3.1.

The sufficient optimality conditions for the discretized problem (3.2.52) are given by the
application of Theorem 2.3.2 to the discrete reduced cost functional jh:
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Theorem 3.2.1. Let for qh ∈ Q the first order necessary condition (3.2.53) be fulfilled. Let
in addition the second derivative j′′h(qh) be positive definite, i.e. there exists γ ∈ R+ with

j′′h(qh)(δqh, δqh) ≥ γ‖δqh‖2
Q ∀δqh ∈ Q, (3.2.56)

then qh is a local minimum of jh.

The second derivatives of jh, which are involved in (3.2.56), can be computed similar to the
derivatives of j in Proposition 2.3.2.

Proposition 3.2.3. The Hessian matrix ∇2jh(qh) of the discrete reduced cost functional jh
is given by:

∇2jh(qh) = G∗
hGh +Mh + αI, (3.2.57)

where the entries Mjk,h of the matrix Mh can be computed by:

Mjk,h = −a′′uu(uh, qh)(wj,h, wk,h, zh)− a′′uqj
(uh, qh)(wk,h, 1, zh)− a′′qjqk

(uh, qh)(1, 1, zh)

−a′′uqk
(uh, qh)(wj,h, 1, zh)− 〈C ′′(uh)(wj,h, wk,h), R

LS(uh)〉Z ,

with uh = Sh(qh). Further, wj,h ∈ V is defined in (3.2.55) and zh ∈ Vh is the solution of the
following adjoint equation:

a′u(uh, qh)(φh, zh) = −〈RLS(uh), C
′(uh)(φh)〉Z ∀φh ∈ Vh. (3.2.58)

The proof of this Proposition is given similar to the one of Proposition 2.3.1.

3.3. Existence of a solution of the discrete problem

In this section we analyze the question of the existence of a solution for the discrete prob-
lem (3.2.52). We prove, that under some natural assumptions on the reduced cost functional j
and the discrete reduced cost functional jh, the existence of a stable solution q of the continuous
problem (2.3.24) implies the existence of a stable solution qh of the problem (3.2.52).

Considering the discretization of the problem (2.3.24) as a special perturbation of it, the
question of the existence of a solution resembles the same question for a perturbed problem,
see Section 2.4. However, the dependence of the discrete reduced cost functional jh on the
discretization parameter h is not described by a continuous differentiable function such that we
cannot apply Theorem 2.4.1 in this case. For this reason we use here another approach based
on the following theorem.

Theorem 3.3.1. Let F and Fh (h ∈ R+) be continuously differentiable operators

F, Fh : Rn → Rn

and x ∈ Rn be a solution of F (x) = 0. Moreover let the following conditions be fulfilled:
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(i) The derivative F ′(x) is positive definite, i.e. there exists a constant γ > 0 with

p∗F ′(x)p ≥ γ‖p‖2 ∀p ∈ Rn,

(ii)
lim
h→0

‖F (x)− Fh(x)‖ = 0,

(iii)
lim
h→0

‖F ′(x)− F ′
h(x)‖ = 0,

(iv) There is a neighborhood U of x and a positive number L ∈ R+ such that

‖F ′
h(ξ)− F ′

h(η)‖ ≤ L‖ξ − η‖ ∀ξ, η ∈ U ∀h ∈ R+.

Then, for h small enough there exists xh ∈ U such that Fh(xh) = 0 and F ′
h(xh) is positive

definite uniformly in h.

Proof. Due to the condition (iii) we can choose a positive number h1 ∈ R+ such that there
holds for h ≤ h1:

‖F ′(x)− F ′
h(x)‖ ≤

γ

4
. (3.3.59)

Moreover we choose a positive number δ ≤ γ
4L

such that

Bδ(x) = {ξ | ‖x− ξ‖ ≤ δ} ⊂ U. (3.3.60)

For this choice we obtain, that F ′
h(ξ) is positive definite in Bδ(x) for h ≤ h1 uniformly in h:

p∗F ′
h(ξ)p = p∗F ′(x)p+ p∗(F ′

h(x)− F ′(x))p+ p∗(F ′
h(ξ)− F ′

h(x))p

≥ γ‖p‖2 − ‖F ′
h(x)− F ′(x)‖‖p‖2 − ‖F ′

h(ξ)− F ′
h(x)‖‖p‖2 (3.3.61)

≥ (γ − γ

4
− Lδ)‖p‖2 ≥ γ

4
‖p‖2.

Moreover we obtain for ξ ∈ Bδ(x) and h ≤ h1 that the derivative F ′
h(ξ) is bounded uniformly

in h, i.e

‖F ′
h(ξ)‖ ≤ β := ‖F ′(x)‖+

γ

2
. (3.3.62)

Next, we prove, that there exists a unique xh ∈ Bδ(x) with Fh(xh) = 0. To this end, we define
an operator Ds : Rn → Rn by

Ds(ξ) = ξ − sFh(ξ)

with s ∈ R+. For a certain choice of s, we show, that Ds is a contraction on Bδ(x) and use the
Banach fixed point theorem.
There holds for ξ ∈ Bδ(x), h ≤ h1 and an arbitrary p ∈ Rn:

‖D′
s(ξ)p‖2 = ‖p− sF ′

h(ξ)p‖2 = ‖p‖2 − 2sp∗F ′
h(ξ)p+ s2‖F ′

h(ξ)p‖2

≤ (1− s
γ

2
+ s2β2)‖p‖2.
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For the choice s = γ
4β2 there holds:

‖D′
s(ξ)p‖2 ≤ (1− γ2

16β2
)‖p‖2

and consequently

‖D′
s(ξ)‖ ≤ (1− γ2

16β2
)1/2 < 1.

Moreover, for an arbitrary ξ ∈ Br(x) there holds:

‖x−Ds(ξ)‖ = ‖Ds(x)−Ds(ξ) + sFh(x)‖
≤ ‖Ds(x)−Ds(ξ)‖+ s‖Fh(x)− F (x)‖ ≤ ‖D′

s(η)‖‖x− ξ‖+ s‖Fh(x)− F (x)‖,

for a certain η ∈ Br. Therefore, there holds:

‖x−Ds(ξ)‖ ≤ (1− γ2

16β2
)1/2δ + s‖Fh(x)− F (x)‖.

Due to the condition (ii) there is a number h2 ∈ R+ such that there holds for h ≤ h2:

‖Fh(x)− F (x)‖ ≤
(1− (1− γ2

16β2 )
1/2)δ

s
.

This implies
‖x−Ds(ξ)‖ ≤ δ.

for h ≤ h2 and consequently Ds(ξ) ∈ Br(x).
We define h0 by

h0 := min(h1, h2)

and obtain by the Banach fixed point theorem the existence of xh ∈ Bδ(x) with Fh(xh) = 0
for h ≤ h0. Due to the construction (3.3.60) of Bδ(x) the derivative F ′

h(xh) is positive definite
with a constant γ

4
, see (3.3.61), i.e. uniformly in h. This completes the proof. �

Remark 3.3.1. The Lipschitz condition (iv) can be weaken in the following sense: The
constant L may depend on the discretization parameter h, i.e. L = L(h). However one should
require, that:

lim
h→0

L(h)‖F (x)− Fh(x)‖ = 0.

Then there existence of a discrete solution xh is ensured as well. This can be proved similar to
Theorem 3.3.1.

From the above theorem we derive a sufficient condition for existence of a solution of the
problem (3.2.52) in the following corollary:

Corollary 3.3.2. Let q ∈ Q be a stable solution of (2.3.24). Let moreover, the following
conditions for reduced cost functional j and the discrete reduced cost functional jh be fulfilled:



40 3. FINITE ELEMENT DISCRETIZATION

(i)

lim
h→0

‖j′(q)− j′h(q)‖ = 0,

(ii)

lim
h→0

‖j′′(q)− j′′h(q)‖ = 0.

(iii) There is a neighborhood U of q and a positive number L ∈ R+ such that

‖j′′h(ξ)− j′′h(η)‖ ≤ L‖ξ − η‖ ∀ξ, η ∈ U ∀h ∈ R+ .

Then, for h small enough there exists a solution qh ∈ Q of the discrete problem (3.2.52), which
satisfies the sufficient optimality condition from Theorem 3.2.1. Moreover, the second derivative
j′′h(qh) is positive definite uniformly in h.

Proof. The proof is given by the application of Theorem 3.3.1 on the functions

F (q) = ∇j(q), Fh(q) = ∇jh(q).

�

The approximation conditions (i) and (ii) and the Lipschitz condition (iii) from Corol-
lary 3.3.2 are valid for a big class of parameter identification problems. Moreover, this result
can be used not only in the context of finite element discretization. In the next section we
check the conditions from Corollary 3.3.2 for a class of parameter identification problem and
use it for derivation of the corresponding a priori error estimates.

3.4. A priori error analysis

The aim of this section is the derivation of the a priori error estimates for the error q − qh
between the solution of the continuous parameter identification problem (2.3.24) and the dis-
cretized problem (3.2.52) obtained by the finite element discretization, see Section 3.2. There
is a number of publications, where a priori error estimates are derived for optimal control prob-
lem governed by partial differential equations, see e.g. Falk [48], Arada, Casas & Tröltzsch [3],
Deckelnic & Hinze [37] and Gunzburger & Hou [60]. However, to our knowledge, there are
only few published results on this topic in the context of parameter identification problems, see
Falk [49], Neittaanmaeki & Tai [77] and Kärkkäinen [69]. For the discussion of this subject in
the case of ODE constrained parameter identification see Bock [25].

In the following theorem, we derive a general a priori error estimate for the problem under
consideration, based on Theorem 3.3.1 and Corollary 3.3.2.

Theorem 3.4.1. Let q ∈ Q be a stable solution of (2.3.24) and the conditions from Corol-
lary 3.3.2 be valid. Then, for h small enough, there holds the following a priori error estimate:

‖q − qh‖ ≤ Cs‖j′(q)− j′h(q)‖,
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where the constant Cs does not depends on the discretization parameter h.

Proof. By virtue of Corollary 3.3.2 the existence of qh is ensured. Moreover, there exists
a ball Bδ(q) (cf. (3.3.60) in the proof of Theorem 3.3.1) such that qh ∈ Bδ(q) and the second
derivative j′′h(ξ) is positive definite for all ξ ∈ Bδ(q) uniformly in h. Therefore, there exists a
constant γ ∈ R+ and h0 ∈ R+ such that there holds:

j′′(ξ)(p, p) ≥ γ‖p‖2
Q ∀ξ ∈ Bδ(q) ∀h ≤ h0.

Using this expression we obtain:

j′h(q)(q − qh)− j′h(qh)(q − qh) = j′′h(ξ)(q − qh, q − qh) ≥ γ‖q − qh‖2
Q,

for a certain ξ ∈ Bδ(q). Hence, using the necessary optimality conditions for the continuous
and the discrete problem, we obtain:

‖q − qh‖2
Q ≤

1

γ
|j′h(q)(q − qh)− j′h(qh)(q − qh)| =

1

γ
|j′h(q)(q − qh)− j′(q)(q − qh)|

≤ 1

γ
‖j′(q)− j′h(q)‖ ‖q − qh‖Q.

We complete the proof by setting Cs = 1
γ

. �

This result turns out, that the asymptotical behavior of the error in parameter is driven
by the consistence error ‖j′(q)− j′h(q)‖. In the following we estimate this consistence error for
parameter identification problem governed by elliptic partial differential equations of second
order. For simplicity, we concentrate on the following problem:
Let Ω ⊂ R2 be a polygonal domain, V = H1

0 (Ω) and the parameter identification problem be
formulated as follows:

Minimize J(u) =
1

2
‖C(u)− C̄‖2

Z , (3.4.63)

under the constraint:

(A(q)∇u,∇φ) = (f, φ) ∀φ ∈ V, (3.4.64)

where C : V → Z = Rnm is a linear operator, C̄ ∈ Z denotes a vector of measurements and
f ∈ L2(Ω) is a given right-hand side. The entries aij : Q → L∞(Ω) of the symmetric 2 × 2
matrix A(q) = (aij(q)) are assumed to be three times continuously differentiable. For this
problem we assume the existence of a stable solution q ∈ Q = Rnp such that A(q) is positive
definite. We discretize the problem (3.4.63, 3.4.64) by bilinear finite elements on the space Vh,
see Section 3.1, and prove, that the error in parameters has the same asymptotical behavior
as the discretization error of the state equation with respect to the observation operator for
fixed parameter q, i.e. as the error C(S(q)− Sh(q)). For simplicity, we first consider a regular
case, where both, the state variable and the observation operator, possess a certain regularity
described by the following assumptions:
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Assumption (R1). Let q be a solution of (3.4.63, 3.4.64) and g ∈ L2(Ω). Then for the
solution v ∈ V of the equation

(A(q)∇v,∇φ) = (g, φ) ∀φ ∈ V,

there holds: v ∈ H2(Ω) ∩ V .

Remark 3.4.1. Sufficient conditions for this assumption on the interior angles of ∂Ω can
be found, e.g. in Grisvard [57].

In addition, we make an assumption on the regularity of the observation operator C:

Assumption (R2). Let the dual solutions zi ∈ V, i = 1, 2 . . . nm, be defined by:

(A(q)∇φ,∇zi) = Ci(φ) ∀φ ∈ V. (3.4.65)

Then, there holds: zi ∈ H2(Ω) ∩ V .

The next theorem provides an a priori error estimate for the problem (3.4.63, 3.4.64).

Theorem 3.4.2. Let for the problem (3.4.63, 3.4.64) assumptions (R1) and (R2) be satis-
fied, then there exists h0 ∈ R+ such that for all h ≤ h0 there exists a discrete solution (uh, qh)
and the following a priori error estimate holds:

‖q − qh‖Q = O(h2).

For the proof of this theorem, we make the following preparations:

The positive definiteness of the matrix A(q) implies the existence of a neighborhood Q1 of
the solution q and a positive number γ ∈ R+ such that there holds:

p∗A(ξ)p ≥ γ‖p‖2 ∀p ∈ Rd, ∀ξ ∈ Q1.

Due to the fact, that A(q) is three times continuously differentiable, there exist the numbers
m1,m2,m3 ∈ R+ defined by:

m1 := max
j

sup
ξ∈Q1

‖A′qj
(ξ)‖ ,

m2 := max
j,k

sup
ξ∈Q1

‖A′′qjqk
(ξ)‖ ,

m3 := max
j,k,l

sup
ξ∈Q1

‖A′′′qjqkql
(ξ)‖ .

(3.4.66)

We define ūh ∈ Vh by ūh = Sh(q), i.e. as a solution of

(A(q)∇ūh,∇φh) = (f, φh) ∀φh ∈ Vh, (3.4.67)

then due to the Assumption (R1) and Assumption (R2) we obtain the following a priori error
estimates:
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Lemma 3.4.2. Let u be a solution of (3.4.64), ūh be defined as in (3.4.67) and zi ∈ V as in
(3.4.65), then there holds:

(a) ‖∇(u− ūh)‖ ≤ c h ‖∇2u‖,

(b) ‖u− ūh‖ ≤ c h2 ‖∇2u‖,

(c) Ci(u− ūh) ≤ c h2 ‖∇2u‖ ‖∇2zi‖.

Proof. For proof of (a) and (b) one uses standard techniques, see e.g. Braess [31] or
Großmann & Roos [58]. For (c) we obtain:

Ci(u− ūh) = (A(q)∇(u− ūh),∇zi) = (A(q)∇(u− ūh),∇(zi − ihzi))

≤ m1‖∇(u− ūh)‖ ‖∇(zi − ihzi)‖ .

We complete the proof using (a), an estimate of the interpolation error, see Proposition 3.1.2,
and the fact, that zi ∈ H2(Ω) due to Assumption (R2). �

Next, we prove some a priori error estimates for the tangent solutions wj defined in (2.3.30):

Lemma 3.4.3. Let wj ∈ V be defined as in (2.3.30) and w̄j,h ∈ Vh be defined by:

(A(q)∇w̄j,h,∇φh) = −(A′qj
(q)∇ūh,∇φh) ∀φh ∈ Vh. (3.4.68)

Then, there holds:

(a) ‖∇(wj − w̄j,h)‖ = O(h),

(b) Ci(wj − w̄j,h) = O(h2).

Proof. We introduce w̃j,h ∈ Vh as a solution of:

(A(q)∇w̃j,h,∇φh) = −(A′qj
(q)∇u,∇φh) ∀φh ∈ Vh.

With the help of them, we split the error ew = wj − w̄j,h in two parts: ew = e1 + e2, where

e1 = wj − w̃j,h

and

e2 = w̃j,h − w̄j,h.

First, we obtain by the same arguments as in Lemma 3.4.2, that:

‖∇e1‖ = O(h)

and

Ci(e1) = O(h2).
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Next, we show the same for e2. For e2 ∈ Vh there holds a perturbed Galerkin orthogonality
relation:

(A(q)∇e2,∇φh) = −(A′qj
(q)∇(u− ūh),∇φh) ∀φh ∈ Vh. (3.4.69)

By setting φh = e2 we obtain:

γ‖∇e2‖2 ≤ m1 ‖∇(u− ūh)‖ ‖∇e2‖

and therefore:

‖∇e2‖ ≤
m1

γ
‖∇(u− ūh)‖ = O(h).

For the error with respect to Ci we obtain:

Ci(e2) = (A(q)∇e2,∇zi) = (A(q)∇e2,∇(zi − ihzi)) + (A(q)∇e2,∇ihzi).

Due to the perturbed Galerkin orthogonality relation (3.4.69) we have:

Ci(e2) = (A(q)∇e2,∇(zi − ihzi))− (A′qj
(q)∇(u− ūh),∇ihzi)

= (A(q)∇e2,∇(zi − ihzi))− (A′qj
(q)∇(u− ūh),∇zi) + (A′qj

(q)∇(u− ūh),∇(zi − ihzi)).

For the first and third term we simply obtain asymptotical behavior O(h2) and for the term
(A′qj

(q)∇(u− ūh),∇zi) we obtain by integration by parts:

|(A′qj
(q)∇(u− ūh),∇zi)| = |(u− ūh,∇ · (A′qj

(q)∇zi)|
≤ m1 ‖u− ūh‖ ‖∇2zi‖ = O(h2).

Here, we used the fact, that zi ∈ H2(Ω) due to the Assumption (R2). This completes the
proof. �

The next lemma provides an a priori error estimate for the dual solution z defined in (2.3.36).

Lemma 3.4.4. Let the dual solution z ∈ V be defined as in (2.3.36) and z̄h ∈ Vh be given
by:

(A(q)∇φh,∇z̄h) = −〈RLS(ūh), C(φh)〉Z . (3.4.70)

Then there holds:

‖∇(z − z̄h)‖L2(Ω) = O(h).

Proof. The proof of this lemma is similar to the one of Lemma 3.4.3. �

The next lemma provides the validity of the Lipschitz condition (iii) from Corollary 3.3.2 for
the problem (3.4.63, 3.4.64). For two arbitrary parameter sets ξ, η ∈ Q1 we denote uξ = Sh(ξ)
and uη = Sh(η). Correspondingly, we define wj,ξ ∈ Vh and zξ ∈ Vh similar to w̄j,h and z̄h for
q = ξ by:

(A(ξ)∇wj,ξ,∇φh) = −(A′qj
(ξ)∇uξ,∇φh) ∀φh ∈ Vh
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and

(A(ξ)∇φh,∇zξ) = −〈RLS(uξ), C(φh)〉Z .

Moreover, we define wj,η ∈ Vh and zη ∈ Vh in the similar way.

Lemma 3.4.5. For the above definition of uξ, uη, wj,ξ, wj,η, zξ and zη we obtain:

(a) ‖∇(uξ − uη)‖ ≤ L1‖ξ − η‖Q

(b) ‖∇(wj,ξ − wj,η)‖ ≤ L2‖ξ − η‖Q

(c) ‖∇(zξ − zη)‖ ≤ L3‖ξ − η‖Q,

where L1, L2 and L3 depend only on on the domain Ω, the observation operator C, constants
m1, m2, γ, and additionally on the data C̄ and f .

Proof. Due to the definition of uξ and uη we obtain:

(A(ξ)∇(uξ − uη),∇φh) + ((A(ξ)− A(η))∇uη,∇φh) = 0 ∀φh ∈ Vh.

By setting φh = uξ − uη we obtain:

γ‖∇(uξ − uη)‖2 ≤ (A(ξ)∇(uξ − uη),∇(uξ − uη))
= −((A(ξ)− A(η))∇uη,∇(uξ − uη))
≤ m1‖ξ − η‖Q ‖∇uη‖ ‖∇(uξ − uη)‖.

(3.4.71)

It remains to show, that ‖∇uη‖ is bounded uniformly in h and in η ∈ Q1. To this end, we use
the positive definiteness of the matrix A(η) and obtain:

γ‖∇uη‖2 ≤ (A(η)∇uη,∇uη) = (f, uη) ≤ ‖f‖‖uη‖.

Due to the Poincare inequality with the Poincare constant Cp we obtain

‖∇uη‖ ≤
Cp

γ
‖f‖.

Therefore, we use (3.4.71) and conclude, that

‖∇(uξ − uη)‖ ≤ m1
Cp

γ
‖f‖ ‖ξ − η‖Q.

The estimates (b) and (c) are obtained in a similar way. �

Next, we prove Theorem 3.4.2.
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Proof. First, we check the conditions (i), (ii) and (iii) from Corollary 3.3.2. There holds:

∂

∂qj
j(q)− ∂

∂qj
jh(q) = 〈C(u)− C̄, C(wj)〉Z − 〈C(ūh)− C̄, C(w̄j,h)〉Z

= 〈C(u)− C̄, C(wj − w̄j,h)〉Z + 〈C(u− ūh), C(w̄j,h)〉Z .

Using Lemma 3.4.2 and Lemma 3.4.3 and the fact, that ‖∇w̄j,h‖ is bounded uniformly in h we
obtain:

‖j′(q)− j′h(q)‖ = O(h2).

Analogical we obtain the condition (ii) from Corollary 3.3.2 using Lemma 3.4.2, Lemma 3.4.3,
Lemma 3.4.4 and the representation of the Hessians ∇2j(q) from Proposition 2.3.2 and ∇2jh(q)
from Proposition 3.2.3.
It remains to check the condition (iii) from Corollary 3.3.2. It is obtained using Lemma 3.4.5,
the fact, that ‖∇w̄j,h‖ and ‖∇z̄h‖ are bounded uniformly in h and the representation of the
Hessian of ∇2jh(q) from Proposition 3.2.3. The application of Theorem 3.4.1 completes the
proof. �

Theorem 3.4.2 is proved on quite restrictive assumptions (R1) and (R2), but it can be
simply extended for the case:

u ∈ W 2,s(Ω) zi ∈ W 2,t(Ω)

where

1 < s, t <∞ ,
1

s
+

1

t
= 1.

However, this does not include the case of point-wise observation. For this case, the following
result holds:

Theorem 3.4.3. Let q ∈ Q be a stable solution of (3.4.63, 3.4.64) with point-wise observa-
tions, i.e. Ci(v) = v(ξi) with given points ξi in a convex domain Ω. Then, for h small enough,
there exist a stable solution qh ∈ Q of the discretized problem, and there holds the following a
priori error estimate:

‖q − qh‖Q ≤ Cs | log(h)|2 h2,

where the constant Cs does not depend on the mesh parameter h.

This theorem is proved in Rannacher & Vexler [81] using the techniques for estimating dis-
crete Green functions developed in Frehse & Rannacher [51].

The obtained result holds also for the case of the parameter identification problem governed
by more general elliptic equations of the form:

−∇ · (A(q)∇u+ b1(q)u) + b2(q)u = f,

as well as by elliptic systems.
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3.5. Numerical examples

In this section we discuss an example problem confirming the a priori error estimates from
the previous section. The state equation is given by:

−∇ · (A(q)∇u) = 2 in Ω,
u = 0 on ∂Ω,

(3.5.72)

where Ω is the unit square. The matrix A(q) is a function of the parameter q = (q1, q2) ∈ Q = R2

given by:

A(q) =

(
q2
1 q1q2

q1q2 eq2

)
.

The parameters are estimated from the measurements of mean values along seven given lines:

Γi = (0, 1)× {0.125 i}, i = 1 . . . 7.

The components of the corresponding observation operator C have the following form:

Ci(v) =

∫
Γi

v ds, i = 1 . . . 7.

The vector of measurements C̄ is given by:

C̄i = Ci(S(q̂))(1 + εi), i = 1 . . . 7,

where the reference parameter is q̂ = (5, 6) and ε = (εi) describes the data perturbation. We
consider two cases:

ε = 0 and ε ≈ (0.12,−0.26, 0.29,−0.37,−0.49, 0.13,−0.04).

The parameter identification problem is discretized using bilinear finite elements on uniformly
refined meshes. For the solution of the discretized problem we use Gauß-Newton method,
described in the next chapter. The computations are done on a sequence of uniformly refined
meshes such that maximal mesh size h(k) of the k-th mesh is given by

h(k) = 2−kh(0), k = 0, 1, . . . 5.

This allows to estimate the order of convergence. The obtained results are listed in Table 3.5.1
and Table 3.5.2. For both cases the expected order of convergence is achieved.
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Table 3.5.1. The error and the order of convergence with respect to the com-
ponents of q without data perturbation.

h q1 − q1,h q2 − q2,h

2−3 6.426e-1 4.525e-2

2−4 2.455e-1 1.516e-2

2−5 7.413e-2 4.347e-3

2−6 1.971e-2 1.137e-3

2−7 4.972e-3 2.853e-4

2−8 1.192e-3 6.829e-5

order 2.024 2.029

Table 3.5.2. The error and the order of convergence with respect to the com-
ponents of q with data perturbation.

h q1 − q1,h q2 − q2,h

2−3 8.620e-2 1.583e-2

2−4 2.099e-2 2.827e-3

2−5 5.173e-3 5.800e-4

2−6 1.294e-3 1.360e-4

2−7 3.174e-4 3.122e-5

2−8 7.544e-5 7.223e-6

order 2.050 2.117



CHAPTER 4

Optimization Algorithm

In this chapter we describe the optimization loop for the solution of the parameter identi-
fication problem discussed in the previous chapters. Later on, it is used on each mesh in an
adaptive mesh refinement algorithm, see Chapter 5. In Section 4.1 we discuss a general class
of Newton type methods for the solution of the parameter identification problem. Then, in
Section 4.2 we analyze some realizations of the general optimization loop, namely full New-
ton method, Gauß-Newton method, quasi Newton methods with Broyden type updates and a
special update method exploiting the structure of the parameter identification problem. After-
wards, in Section 4.3 we discuss trust region techniques for globalization of the convergence.
All algorithms described here are applied to the reduced (unconstrained) formulation of the
parameter identification problem (3.2.52). For a comparison of the algorithms based on the
reduced and on the constrained formulation, see e.g. Hinze [64]. A generalized Gauß-Newton
method for parameter identification problems in DAE systems is introduced by Bock [24, 25].
In the last section of this chapter we demonstrate the behavior of the presented algorithms for
some numerical examples.

4.1. Newton type methods

In this section we describe a general Newton type optimization algorithm for the discretized
parameter identification problem (3.2.49, 3.2.50). The Newton type methods are successfully
used for parameter identification and optimization problems governed by systems of ODEs and
DAEs, see e.g. Bock et. al. [25, 26], and also in the context of PDE constrained problems, see
e.g. Becker [11], Hinze and Kunisch [65], and Haber, Ascher & Oldenburg [61].

The main idea by the Newton type methods is to compute a sequence of iterates {qk
h}

starting with an initial guess q0
h and using a quadratic approximation of the cost functional

for the recursive setting qk+1
h = qk

h + δqh. The update δqh is obtained using a symmetric
approximation Hk of the Hessian ∇2jh(q

k
h) as the solution of the system of linear equations:

Hk δqh = −∇jh(qk
h). (4.1.73)

The choice of the matrix Hk leads to different variants of the optimization algorithm, like New-
ton method, Gauß-Newton method, quasi Newton methods, see Section 4.2. In the following
we give details for a typical optimization loop without specifying the choice of the matrix Hk.

49
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For the computation of the gradient in the right-hand side of (4.1.73) we use the representa-
tion of the Jacobian matrix Gh = c′h(q

k
h) of the discrete reduced observation operator ch from

Proposition 3.2.2 and the fact, that

∇jh(qk
h) = G∗

h(ch(q
k
h)− C̄) + α(qk

h − q̄). (4.1.74)

The matrix Gh is also used by almost all variants of the optimization loop for the computation
of the matrix Hk, see Section 4.2. In the stopping criterion we use a given tolerance ε.

Optimization Algorithm

(1) Choose an initial parameter q0
h ∈ Q and set k = 0

(2) Compute uk
h ∈ Vh, the solution of

a(uk
h, q

k
h)(φh) = f(φh) ∀φh ∈ Vh

(3) Compute wk
j,h ∈ Vh, j = 1 . . . np, the solutions of

a′u(u
k
h, q

k
h)(wk

j,h, φh) = −a′qj
(uk

h, q
k
h)(1, φh) ∀φh ∈ Vh

(4) Compute the matrix Gh by:

(Gh)ij = C ′
i(u

k
h)(w

k
j,h)

(5) Compute the residual rh ∈ Q as

rh = G∗
h(C̄ − C(uk

h)) + α(q̄ − qk
h)

(6) If ‖rh‖Q ≤ ε quit

(7) Compute the matrix Hk

(8) Compute δqh as solution of:

Hk δqh = rh

(9) Set qk+1
h = qk

h + δqh

(10) Increment k and go to 2.

The local convergence theory for such algorithms is discussed in various publications, see
e.g. Dennis & Schnabel [38] or Nocedal & Wright [78]. In Deuflhard, Engl & Scherzer [41] the
convergence of iterative algorithms for least squares problem is analyzed. A general theorem
about local convergence for Newton type methods is proved in Bock [25].
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4.2. Realizations of the algorithm

In this section we shortly describe different realization of the algorithm presented in Sec-
tion 4.1. We present Gauß-Newton method, full Newton method, quasi Newton method with
Broyden type updates and a special Gauß-Newton update method, which exploits the struc-
ture of parameter identification problem and combines the advantages of the Gauß-Newton and
Quasi-Newton methods.

4.2.1. Gauß-Newton method

The most widely used method for the solution of least squares problem is the Gauß-Newton
method. The corresponding choice of the matrix Hk is

Hk = G∗
hGh + αI, (4.2.75)

where Gh = c′h(q
k
h) is the Jacobian matrix of the discrete reduced observation operator ch and

is computed in Step 4 of the algorithm in Section 4.1. For this choice the solution of (4.1.73)
can be interpreted as the solution of the linearized minimization problem

Minimize
1

2
‖ch(qk

h) +Ghδqh − C‖2
Z +

α

2
‖qk

h + δqh − q̄‖2
Q. (4.2.76)

For one Gauß-Newton step, the discrete state equation in Step 2 and np tangent problems in
Step 3 have to be solved which originate from the same linear operator but with different right-
hand sides. Due to the small dimension np of the parameter space Q the solution of (4.1.73) in
Step 8 is uncritical.

This method has several advantages. First, the matrix Hk in (4.2.75) can be evaluated
almost without extra cost using the already computed matrix Gh, which is required for the
gradient evaluation in (4.1.74). Moreover, for the solution of (4.1.73) there is no need to
calculate the matrix Hk explicitly, one can use QR or singular-value decompositions of the
matrixGh for solving the corresponding normal equation, see e.g. Stoer & Bulirsch [84]. Second,
the matrix Hk is always positive semidefinite and there holds the following proposition:

Proposition 4.2.1. Let one of the following assumptions be valid:

(i) The matrix Gh has full rank, i.e. Rank(Gh) = np,
(ii) The regularization parameter α is positive.

Then the Gauß-Newton matrix Hk, defined in (4.2.75), is positive definite.

Proof. The proof is trivial. �

The positive definiteness of the matrix Hk implies that the corresponding update δqh is
always a descent direction of the cost function jh. This allows more flexibility in the choice of
globalization methods, i.e. line search is possible.
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4.2.2. Full Newton method

The choice of the matrixHk to be equal to the Hessian of the discrete reduced cost functional
jh, i.e.

Hk = ∇2jh(q
k
h)

leads to the full Newton method. For evaluation of the Hessian Hk one uses the representation
given in Proposition 3.2.3, i.e.:

∇2jh(qh) = G∗
hGh +Mh + αI.

As before, the computation of the Jacobian Gh is required. The entries of the matrix Mh can by
computed by a subtle evaluation of several second derivatives of the semi-linear form a in the
directions of the solutions wj,h ∈ Vh of the tangent problems (3.2.55) and the solution zh ∈ Vh

of the adjoint equation (3.2.58) as described in Proposition 3.2.3.

The Newton method produces a sequence of iterates {qk
h}, which converges quadratically to

the solution qh provided the initial guess q0
h is in a sufficiently small neighborhood of the opti-

mal parameter qh, see e.g. Fletcher [50]. The Gauß-Newton method, described in the previous
section, usually shows linear convergence.

In contrast to the Gauß-Newton method the matrices Hk are not necessary positive definite
throughout the optimization loop, even if the positive definiteness of the Hessian is given in the
solution qh. This leads to the fact, that the produced sequence of iterates {qk

h} may converge
to a local maximum or to a saddle point. One way to overcome this difficulty is the application
of the Newton method combined with a trust region strategy, as described in Section 4.3.

Another difficulty by the Newton method is that the computation of the second derivatives
of the semi-linear form a is in many cases very expensive. This is often a major disincentive to
the use of the Newton method. In the following sections we describe two possibilities for im-
provement the local convergence properties of the Newton types algorithms without evaluation
of the second derivatives.

4.2.3. Quasi-Newton methods

Quasi-Newton methods require only the computation of the gradient of the cost functional
and construct the approximation Hk of the Hessian ∇2jh(q

k
h) in an iterative way by an update

formula. This construction is based on measuring the changes in gradients, which has to be
in accordance with the new approximation Hk+1. This leads to a so called secant equation
motivated by Taylor’s formula:

Hk+1δqh = ∇jh(qk+1
h )−∇jh(qk

h). (4.2.77)

However, the condition (4.2.77) does not determine the new approximation Hk+1. There several
formulas for updating Hk+1. The most of them uses a correction of small rank, for instance of
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rank two, i.e:
Hk+1 = Hk + βxx∗ + γyy∗,

where β, γ ∈ R and x, y ∈ Rnp . In the following we describe the update formulas of Broyden
class and a special update formula, witch exploits the structure of parameter identification
problem and combines the advantages of the Gauß-Newton and Quasi-Newton methods.

Broyden class

The most popular update formulas like BFGS and DFP are members of the Broyden class.
The general update formula describing this family of methods has the following form:

Hk+1 = Hk −
x x∗

x∗ δqh
+

y y∗

y∗ δqh
+ φ v v∗, (4.2.78)

where
x = Hkδqh,
y = ∇jh(qk+1

h )−∇jh(qk
h),

φ is a scalar parameter and v is given by:

v =
y

y∗ δqh
− x

x∗ δqh
.

The BFGS formula is obtained from (4.2.78) by setting φ = 0 and the DFP formula by setting
φ = 1. The application of update formulas of Broyden class leads to local superlinear conver-
gence. For detailed analysis of these formulas see e.g. Fletcher [50] or Nocedal & Wright [78].

Gauß-Newton-Update method

For the solution of parameter identification problems one can derive an update formula
exploiting the structure of the Hessian∇2jh(q

k
h). By using the algorithm described in Section 4.1

the information of the Gauß-Newton part of the Hessian is evaluable. Therefore, it is natural
to consider the following approximation Hk:

Hk = G∗
hGh + αI + M̂k,

where M̂k is an approximation of the matrix Mh from (3.2.57) and is given by an update

formula. By construction of an update formula for M̂k one have to ensure that the secant
condition (4.2.77) holds for the matrix Hk. Such an update formula was suggested in Dennis,

Gay & Welsch [39]. There, the matrix M̂k is recursively updated starting with M̂0 = 0:

M̂k+1 = M̂k +
1

y∗ δq
(x y∗ + y x∗)− x∗ δq

(y∗ δq)2
y y∗,

where
y = G∗

k+1 rk+1 −G∗
k rk ,

x = (G∗
k+1 −G∗

k) rk+1 − M̂k δq .

For derivation and analysis of this update formula, see also Dennis & Schnabel [38].



54 4. OPTIMIZATION ALGORITHM

4.3. Trust region method

It is well known, see e.g. Fletcher [50], that the convergence of the algorithms described so
far is ensured, only if the initial guess q0

h is in a sufficiently small neighborhood of the optimal
parameter qh. There are two main possibilities to overcome this difficulty and to improve the
global convergence: line search and trust region methods, see e.g. Nocedal & Wright [78]. The
line search method requires positive definiteness of the matrices Hk throughout the optimiza-
tion algorithm. This is often too restrictive for the kind of parameter identification problems
we consider, see examples in Section 4.4. Therefore, we apply trust region techniques for im-
proving the global convergence. In the following we describe the algorithm we use.

If the matrix Hk is positive definite, the computation of δqh ∈ Q in (4.1.73) can be inter-
preted as the solution of a minimization problem:

Minimize mk(δqh) := jh(q
k
h) +∇jh(qk

h)∗ δqh +
1

2
δq∗Hk δq, δq ∈ Q, (4.3.79)

where ∇jh(qk
h) is given by (4.1.74). The cost functional mk of (4.3.79) is the so called local

model function, whose behavior near the current point qk
h is similar to that of the actual cost

functional jh defined in (3.2.52). However, the local model function mk may not be a good
approximation of jh for large δqh. Therefore, we restrict the search for a minimizer of mk to a
ball (trust region) around qk

h. In other words, we replace the problem (4.3.79) by the following
constrained optimization problem:

Minimize mk(δqh), subject to ‖δqh‖Q ≤ ∆k, (4.3.80)

with a trust region radius ∆k to be determined iteratively.
For the convergence properties of the trust region method, the strategy for choosing the

trust region radius ∆k is crucial. Following the standard approach, see e.g. Conn, Gould &
Toint [36], we base this choice on the agreement between the model function mk and the cost
functional jh at the previous iteration. For the increment δqh, we define the ratio

ρk =
jh(q

k
h)− jh(q

k
h + δqh)

mk(0)−mk(δqh)
, (4.3.81)

and use it as an indicator of the quality of the local model mk. The numerator of (4.3.81) is
called the actual reduction, and the denominator is the predicted reduction. If this ratio is close
to 1, there is a good agreement between the model mk and the cost functional jh for the current
step. As a consequence, the trust region is expanded for the next iteration. Otherwise, we do
not alter the trust region or shrink it, depending on the distance |ρk − 1|. We note, that due
to the fact, that δqh is a minimizer of (4.3.80), the predicted reduction is always nonnegative.
Therefore, if ρk is negative, the new value jh(q

k
h + δqh) is greater than the current value jh(q

k
h)

and the step is rejected. Let the initial and the maximal trust region radius ∆0 and ∆̄ be given,
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then a typical procedure for determining the new trust region radius has the following form:

∆k+1 = NTR(∆k, ρk, δqh) =


1
4
‖δqh‖Q, if ρk <

1
4
,

∆k, if 1
4
< ρk <

3
4
,

min(2∆k, ∆̄), if ρk >
3
4
.

(4.3.82)

For a given ε > 0 and σ ∈ (0, 1
4
) the trust region algorithm is as follows:

Trust Region Algorithm

(1) Choose an initial parameter q0
h ∈ Q and set k = 0

(2) Compute rh = ∇jh(qk
h)

(3) Compute the matrix Hk

(4) If ‖rh‖Q ≤ ε quit

(5) Compute δqh by solving (4.3.80)

(6) Compute ρk by (4.3.81)

(7) Compute ∆k+1 = NTR(∆k, ρk, δqh), see (4.3.82)

(8) If ρk > σ set qk+1
h = qk

h + δqh

(9) Increment k and go to 2.

Remark 4.3.1. The residual rh is computed in the same way as in the algorithm in Sec-
tion 4.1. The matrix Hk is obtained by one of the methods described in Section 4.2.

Remark 4.3.2. For the stability of the algorithm the current step is rejected not only if
ρk < 0 but also if ρk ≤ σ, with a small positive number σ.

Due to the compactness of the feasible set described by the condition ‖δqh‖Q ≤ ∆k, the
problem (4.3.80) possess always a solution independently of the definiteness of the matrix
Hk. The procedure we use for solving (4.3.80) in Step 5 is based on the following proposition
characterizing the solution of (4.3.80).

Proposition 4.3.3. The vector δqh is a global solution of the trust region problem (4.3.80)
if and only if there is a scalar λ ≥ 0 such that the following conditions are fulfilled:

(i) (Hk + λI) δqh = −∇jh(qk
h),

(ii) λ(∆k − ‖δqh‖) = 0,



56 4. OPTIMIZATION ALGORITHM

(iii) ‖δqh‖ ≤ ∆k,

(iv) (Hk + λI) is positive semidefinite.

Proof. For proof see e.g. Nocedal & Wright [78]. �

For the solution of (4.3.80) we compute an eigenvalue decomposition of the symmetric
matrix Hk, i.e.

Hk = T D T ∗,

where T is an orthogonal matrix and D is a diagonal matrix

D = diag(λ1, λ2, . . . , λnp)

with λ1 ≤ λ2 ≤ . . . λnp eigenvalues of Hk. Due to the small dimension np of the parameter
space Q the effort for this decomposition is uncritical.

If the matrix Hk is positive definite (i.e. λ1 > 0) and it holds

‖H−1
k ∇jh(qk

h)‖Q ≤ ∆k,

we set δqh = −H−1
k ∇jh(qk

h). Otherwise, the solution δqh is searched on the boundary of the
feasible set, i.e such that ‖δq‖Q = ∆k. Using Proposition 4.3.3 we have:

δqh = −T (D + λI)−1 T ∗∇jh(qk
h).

Hence, denoting g = T ∗∇jh(qk
h) we obtain:

‖δqh‖2
Q = ‖T (D + λI)−1 g‖2

Q = g∗
(
(D + λI)−1

)2
g =

np∑
j=1

g2
j

(λj + λ)2
,

where gj is the jth component of g ∈ Q. Therefore, we need only to solve a one-dimensional
root-finding problem

np∑
j=1

g2
j

(λj + λ)2
= ∆2

k,

which is done by using a standard Newton algorithm.

The following theorem (see [78]) ensures the global convergence of the presented method:

Theorem 4.3.1. Suppose that ‖Hk‖ ≤ β for some constant β and the level set

N = {q | jh(q) ≤ jh(q
0
h)}

is bounded. Then there holds for the iterates qk
h obtained by the algorithm described above:

lim
k→∞

∇jh(qk
h) = 0.
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4.4. Numerical examples

In this section we demonstrate the behavior of the algorithms described above for sim-
ple numerical examples. We consider a convection-diffusion equation with unknown constant
transport direction (q1, q2) in the unit square Ω = (0, 1)2:

−∆u+ q1ux + q2uy = 2 in Ω,
u = 0 on ∂Ω.

(4.4.83)

The parameter q is estimated using measurements given by the values of the state variable at
five different points:

ξ1 = (0.25, 0.5), ξ2 = (0.5, 0.25),
ξ3 = (0.75, 0.5), ξ4 = (0.5, 0.75), ξ5 = (0.5, 0.5).

(4.4.84)

The components of the corresponding observation operator C have the following form:

Ci(v) = v(ξi), (4.4.85)

and the parameter identification problem is formulated as follows: For (u, q) ∈ V × Q with
V = H1

0 (Ω) and Q = R2

Minimize
1

2

5∑
i=1

(u(ξi)− C̄i)
2 (4.4.86)

under the constraint (4.4.83). The components of the measurement vector C̄ ∈ Z = R5 are
given by

C̄i = S(q̂)(ξi)(1 + εi),

where q̂ = (8, 8) and

|εi| ≤ δ, i = 1, 2, 3, 4, 5.

For our numerical results we use pseudo-random perturbations εi with different perturbations
levels δ. We consider three cases: δ = 0.1, 0.3, 0.5 with corresponding perturbations:

ε1 = (0.043,−0.008, 0.068,−0.084,−0.041),
ε2 = (0.092,−0.182,−0.285, 0.039,−0.146),
ε3 = (0.121,−0.255, 0.285,−0.370,−0.492).

(4.4.87)

The solutions of the corresponding problems are:

q1 ≈ (8.52229, 7.06701),
q2 ≈ (7.25298, 11.4838),
q3 ≈ (11.1831, 4.55648).

(4.4.88)

In Figure 4.4 we see the isolines of the reduced observation operator j(q) depending on q for the
third case. We note, that the initial guess for optimization q0 = (0, 0) lies in a neighborhood
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of a local maximum of the cost functional j and the corresponding Hessian matrix ∇2j(q0) is
negative definite with eigenvalues (λ1, λ2) ≈(-4.2e-4, -3.9e-4).

Figure 4.4.1. The isolines of the reduced observation operator j(q) depending
on q. The initial guess for optimization q0 = (0, 0) is marked by a ball.

For these problems we compare different optimization algorithms described in Section 4.2.
For all algorithms here we use the same trust region techniques described in Section 4.3. In
Table 4.4.1 we compare the number of iterations for different optimization algorithms (Newton
method, Gauß-Newton method, BFGS method, and the Gauss-Newton-Update method) in the
first case (δ = 0.1). The comparison is done on three uniform refined meshes with 256, 1024
and 4096 nodes. The corresponding results for δ = 0.3 and δ = 0.5 are given in Table 4.4.2 and
Table 4.4.3.

Table 4.4.1. Number of iterations of different optimization algorithms for δ = 0.1

N Gauß-Newton Newton Gauß-Newton-Update BFGS

256 11 9 10 24
1024 5 3 5 20
4096 5 3 5 11
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Table 4.4.2. Number of iterations of different optimization algorithms for δ = 0.3

N Gauß-Newton Newton Gauß-Newton-Update BFGS

256 18 10 10 28
1024 8 3 6 21
4096 7 3 6 17

Table 4.4.3. Number of iterations of different optimization algorithms for δ = 0.5

N Gauß-Newton Newton Gauß-Newton-Update BFGS

256 60 9 11 27
1024 49 3 7 18
4096 45 3 6 17





CHAPTER 5

A Posteriori Error Analysis

This chapter is devoted to the a posteriori error estimation. Our goal is the development
of an a posteriori error estimator for the error in the parameters. Its purpose is to guide an
adaptive mesh refinement algorithm. Furthermore, the estimator is used to assess the accuracy
of the computed parameters.

The concepts of adaptivity and a posteriori error estimation are now commonly accepted for
the numerical solution of partial differential equations. The research in this field was initiated
by the pioneering work of Babuška & Rheinboldt [4, 5] and further developed e.g. by Bank &
Weiser [8], Babuška & Miller [6] and Ainsworth & Oden [1]. The use of “duality techniques” for
a posteriori error estimation in finite element methods is first systematically pursued by Eriks-
son & Johnson [43,44]. In Becker & Rannacher [18,19] this approach is further developed into
a computation-based feedback method for error control and mesh optimization with respect to
a target functional representing physical quantity of interest.

However, to our knowledge, there are only few published results on adaptive finite elements
for optimization problems, see Becker [11], Becker, Kapp & Rannacher [20] and Liu & Yan [73].
In Bangerth [7] adaptivity is used for estimating distributed parameters of elliptic partial dif-
ferential equations. Our approach to a posteriori error estimation for parameter identification
problems presented below, is developed in Becker & Vexler [21, 22]. It is based on the optimal
control approach to a posteriori error estimation from Becker & Rannacher [18, 19]. However,
a direct application of the techniques described in [18,19] leads to an estimator which controls
the error in the cost functional J (2.1.2), see [7]. In general, such an estimator does not provide
useful error bounds for the parameters, in contrast to the approach presented here.

In order to measure the error in the parameters, we introduce an error functional E : Q→ R.
The use of the error functional E allows one to weight the relative importance of the different
parameters. We prove the following error representation:

E(q)− E(qh) = ηh +R, (5.0.89)

where E(q)−E(qh) describe the error between the solution q of the continuous parameter iden-
tification problem and the solution qh of the discrete one. Further, ηh denotes the a posteriori
error estimator and R consists of remainder terms, which may usually be neglected; see the

61
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discussion in Section 5.2.

The error estimator ηh is used within an adaptive algorithm for error control and mesh
refinement, sketched below. Such an algorithm generates a sequence of locally refined meshes
and corresponding finite element spaces until the estimated error with respect to E is below a
given tolerance TOL. For the following iteration, we use a mesh refinement procedure, which
adaptively refines a given regular mesh to obtain a new regular mesh for the next iteration.
It is guided by information based on the localization of the error estimator ηh to cell-wise (or
node-wise) contributions, see Section 5.4.

Adaptive Mesh Refinement Algorithm

(1) Choose an initial mesh Th0 and set k = 0

(2) Construct the finite element space Vhk

(3) Compute uhk
∈ Vhk

, qhk
∈ Q by solving (3.2.49, 3.2.50)

(4) Evaluate the a posteriori error estimator ηhk

(5) If ηhk
≤ TOL quit

(6) Refine Thk
→ Thk+1

using information from ηhk

(7) Increment k and go to 2.

Remark 5.0.1. In step 3, the discretized parameter identification problem (3.2.49, 3.2.50)
is solved on the current mesh Thk

, see Chapter 4. As initial data, we use the values from
the computation on the previous mesh. This allows us to avoid unnecessary iterations of the
optimization loop on fine meshes.

This chapter is organized as follows: In Section 5.1 we discuss the a posteriori error estima-
tion for a simple linear example in order to illustrate our approach. In Section 5.2 we derive the
error estimator for the error in parameters in the general nonlinear case without assuming a
perfect match, i.e without assuming C(u) = C̄. We present two versions of the a posteriori error
estimator. For the first one the knowledge of the Hessian of the reduced cost functional jh is
required, which is computed in the last step of the optimization loop by using Newton method,
as described in Section 4.2.2. Further, a simplified version of the error estimator is derived,
which does not require the use of the Newton method, but leads to an additional remainder
term, see the discussion in Section 5.2. An extension to the class of problems, where the quan-
tity of interest (error functional E) depends on the state variable as well as on the parameters,
is discussed in Section 5.3. In Section 5.4 we present the techniques for the localization of the
error estimator to node-wise (or cell-wise) contributions. Numerical examples illustrating the



5.1. AN INTRODUCTORY EXAMPLE 63

behavior of the adaptive mesh refinement algorithm based on our error estimator are presented
in Section 5.5. We consider linear and nonlinear elliptic equations where the parameters enter
in different ways.

5.1. An introductory example

We discuss the question of a posteriori error estimation for a simple linear example with one
parameter and one observation, i.e. Q = Z = R. The state equation, the observation operator
and the dependency of the state variable on the parameter are all linear. The regularization
parameter α is zero. The problem is formulated as follows: for a positive weight function
ω ∈ L2(Ω) and a number C̄ we minimize the least squares functional

J(u) =
1

2

∣∣∣∫
Ω

ωu dx− C̄
∣∣∣2 (5.1.90)

under the constraint
−∆u = qf in Ω = (0, 1)2,

u = 0 on ∂Ω,
(5.1.91)

with positive f ∈ L2(Ω) and u ∈ V = H1
0 (Ω). A standard weak formulation of the state

equation (5.1.91) is given by:

(∇u,∇φ) = (qf, φ) ∀φ ∈ V. (5.1.92)

The meaning of this example problem is, that we adjust the scaling of the load in such a way,
that the weighted mean of the solution u attains a prescribed value.

Here, the solution operator is given by

u = S(q) = qu1, (5.1.93)

where u1 is the solution of the state equation (5.1.91) for q = 1, i.e.

−∆u1 = f in Ω
u1 = 0 on ∂Ω.

(5.1.94)

Therefore the optimal parameter is simply given by:

q = C̄µ, µ :=
1∫

Ω

ωu1 dx
. (5.1.95)

By virtue of the maximum principle (see e.g. Hellwig [62]), µ is well defined. Similarly, the
optimal parameter for the finite element discretization of the problem (5.1.90, 5.1.91), see
Chapter 3, is given by

qh = C̄µh, µh :=
1∫

Ω

ωu1h dx
, (5.1.96)
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where u1h ∈ Vh is the solution of the discrete analog of (5.1.94), i.e.:

(∇u1h,∇φh) = (f, φh) ∀φh ∈ Vh.

Now, the fundamental idea is to introduce the adjoint equation:

−∆y = −µω in Ω
y = 0 on ∂Ω.

(5.1.97)

Using the equation (5.1.97) we prove the following error representation:

Proposition 5.1.1. For the finite element discretization of the simple example (5.1.90,
5.1.91), we have the following error representation:

q − qh = ρ(y − ihy), (5.1.98)

where y is the solution of the adjoint equation (5.1.97) and ρ is a residual of the state equa-
tion (5.1.92) defined by:

ρ(φ) := (qhf, φ)− (∇uh,∇φ).

Proof. We have, using the definitions of q, µ and (5.1.97):

q − qh = C̄µ− qhµ

∫
Ω

ωu1 dx

= µ

∫
Ω

ωuh dx+ qh(∇u1,∇y)

= −(∇uh,∇y) + (qhf,∇y).

We complete the proof using the Galerkin orthogonality relation, i.e. the fact that:

(qhf, φh)− (∇uh,∇φh) = 0 ∀φh ∈ Vh.

�

Remark 5.1.2. A direct application of the approach in Becker, Rannacher & Kapp [20]
would lead to consider the following adjoint equation:

−∆z = −(C̄ −
∫
Ω

ωu dx)ω in Ω

z = 0 on ∂Ω.
(5.1.99)

The right hand side in (5.1.99) is the derivative of the least squares functional. This implies
z = 0 in our case, and therefore, the resulting error bound is useless.
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Remark 5.1.3. The simple form and derivation of error representation (5.1.98) are due
to the structure of the problem: beside the linearity and nm = np = 1, the fact that the
observations are matched, i.e. that the least squares residual C(u)− C̄ vanishes, is crucial. In
the general setting later on, we use an approach based on a special Lagrange function.

Remark 5.1.4. The quantity µ captures the stability of the problem, since µ = 1/c′(q)
with the reduced functional c defined in (2.3.23). It can also be seen that µ = H−1G∗ with
H = ∇2j(q), which is the correct expression in the general setting. The same term appears in
the sensitivity analysis, cf. Theorem 2.4.2 in Section 2.4.

Remark 5.1.5. For evaluation of the error representation (5.1.98), the local interpolation
error y − ihy has to be approximated. Later on, we use interpolation of the computed bilinear
finite element solution yh on the space of biquadratic finite elements on patches of cells, see
Section 5.4.

5.2. A posteriori error estimation for the error in parameters

Here, we derive our a posteriori error estimator for the error in the parameters in the
general setting. More precisely, we estimate the error with respect to a given error functional
E : Q→ R. The functional E is supposed to be three times continuously differentiable and we
define its gradient by identification in the usual way:

〈∇E(q), δq〉Q = E ′(q)(δq) ∀δq ∈ Q.

Our goal is to prove the following error representation:

E(q)− E(qh) = ηh +R,

where ηh denotes the a posteriori error estimator to be developed and R is a cubic remainder
term due to linearization. The precise result is given in Theorem 5.2.1. The evaluation of
this error estimator requires knowledge of certain second derivatives of the reduced observation
operator c, which are computed in the last step of the optimization algorithm by using New-
ton method. Further, we derive a simplified version of the error estimator, which is cheaper
to evaluate and does not require the use of Newton method; here additional remainder terms
related to the least squares residual RLS(u) = C̄ − C(u) appear, see Theorem 5.2.2.

For the derivation of our a posteriori error estimator we make the following preparations:
We recall that the optimality conditions for the parameter identification problem (2.1.1, 2.1.2)
are based on the Lagrange function L introduced in Section 2.3,

L(u, q, z) =
1

2
‖C(u)− C̄‖2

Z +
α

2
‖q − q̄‖2

Q + f(z)− a(u, q)(z),
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for u ∈ V , q ∈ Q and z ∈ V . The expression of the derivatives of L is given using the
abbreviation:

ρu(ξ)(φ) := f(φ)− a(u, q)(φ),

ρz(ξ)(ψ) := −〈C ′(u)(ψ), RLS(u)〉Z − a′u(u, q)(ψ, z),

ρq(ξ)(σ) := α〈q − q̄, σ〉Q − a′q(u, q)(σ, z),

(5.2.100)

where φ, ψ ∈ V and σ ∈ Q are test functions; and we have with δξ = (δu, δq, δz):

L′(ξ)(δξ) = ρu(ξ)(δz) + ρz(ξ)(δu) + ρq(ξ)(δq).

For the error functional E, we introduce the following Lagrangian M:

M(ξ, χ) = E(q) + L′(ξ)(χ), (5.2.101)

where we have introduced an additional set of variables χ = (v, p, y) ∈ V ×Q× V . Similar to
Becker & Rannacher [19], we have an error representation expressed in the following proposition.

Proposition 5.2.1. Let x = (ξ, χ) ∈ X = (V ×Q× V )2 be a stationary point of M, i.e.

M′(x)(δx) = 0 ∀δx ∈ X. (5.2.102)

Further let Xh = (Vh ×Q× Vh)
2 ⊂ X be a subspace and xh = (ξh, χh) ∈ Xh the corresponding

Galerkin solution:

M′(xh)(δxh) = 0 ∀δxh ∈ Xh. (5.2.103)

Then, there holds

E(q)− E(qh) =
1

2
M′(xh)(x− x̂h) +R, (5.2.104)

where x̂h ∈ Xh is arbitrary and the remainder term R is given by:

R =
1

2

1∫
0

M′′′(xh + s e)(e, e, e)s(s− 1)ds, (5.2.105)

with e = x− xh.

Proof. We note, that ξ is a stationary point of L, i.e.

L′(ξ)(δξ) = 0 ∀δξ ∈ V ×Q× V (5.2.106)

and ξh is the corresponding Galerkin solution

L′(ξh)(δξh) = 0 ∀δξh ∈ Vh ×Q× Vh. (5.2.107)

Therefore, we obtain:

E(q)− E(qh) = M(x)−M(xh). (5.2.108)
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We rewrite the right hand side of (5.2.108) as follows:

M(x)−M(xh) =

1∫
0

M′(xh + s e)(e)ds, (5.2.109)

approximate the integral by the trapezoidal rule and obtain:

M(x)−M(xh) =
1

2
M′(x)(e) +

1

2
M′(xh)(e) +R, (5.2.110)

where the remainder term R is defined in (5.2.105). The term M′(x)(e) vanishes, and due
to Galerkin orthogonality the term M′(xh)(e) can be replaced by M′(xh)(x − x̂h) with x̂h

arbitrarily chosen. This completes the proof. �

Next, we consider the derivative M′. First, using (5.2.101) and the splitting of variables
x = (ξ, χ), δx = (δξ, δχ), we have:

M′(x)(δx) = L′(ξ)(δχ) + E ′(q)(δq) + L′′(ξ)(δξ, χ). (5.2.111)

Therefore, the stationarity condition (5.2.102) splits into the following two systems of equations.
First, the original variables ξ are determined by the stationarity of L, which corresponds to
variations δχ. Second, the auxiliary variables χ are solutions of the equations corresponding
to variations δξ. In order to rewrite the last terms, we introduce some additional residual
functionals:

ρv(x)(φ) := −a′q(u, q)(p, φ)− a′u(u, q)(v, φ),

ρy(x)(ψ) := 〈C ′(u)(v), C ′(u)(ψ)〉Z − 〈C ′′(u)(ψ, v), RLS(u)〉Z
−a′′uu(u, q)(ψ, v, z)− a′′uq(u, q)(ψ, p, z)− a′u(u, q)(ψ, y),

ρp(x)(σ) := E ′(q)(σ)− a′′uq(u, q)(v, σ, z)− a′′qq(u, q)(σ, p, z)

−a′q(u, q)(σ, y) + α〈p, σ〉Q.

(5.2.112)

With these notations, we have:

M′(x)(δx) = {ρu(ξ)(δy) + ρz(ξ)(δv) + ρq(ξ)(δp)}
+ {ρv(x)(δz) + ρy(x)(δu) + ρp(x)(δq)}. (5.2.113)

At first glance, it seems as if application of Proposition 5.2.1 requires a huge coupled system to
be solved. That this is not the case, is shown in Proposition 5.2.2. It turns out that the main
afford in computation of the auxiliary solution (v, p, y) is already done in the optimization loop
based on Newton method as described in Chapter 4.

Proposition 5.2.2. Let (u, q, z) be a stationary point of L (2.3.37) and let H = (Hjk) be
the reduced Hessian defined by

H = G∗G+ αI +M, (5.2.114)
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where M = −
∑nm

i=1 c
′′
i (q)R

LS
i . Further, let {wj}1≤j≤np be the tangent solutions defined in

(2.3.30). Then, the auxiliary solution (v, p, y) is given by:

Hp = −∇E, v =

np∑
j=1

wjpj, (5.2.115)

and y is the solution of the following equation:

a′u(u, q)(φ, y) = 〈Gp,C ′(u)(φ)〉Z − 〈C ′′(u)(φ, v), RLS(u)〉Z (5.2.116)

−a′′uu(u, q)(φ, v, z)− a′′uq(u, q)(φ, p, z) ∀φ ∈ V.

Proof. (u, q, z) is a stationary point of L and consequently the residuals ρu(x), ρz(x) and
ρq(x) vanish. Due to the construction of v in (5.2.115) we obtain:

ρv(x)(φ) = −
np∑
j=1

pja
′
u(u, q)(wj, φ)− a′q(u, q)(p, φ)

= −
np∑
j=1

pj

(
a′u(u, q)(wj, φ) + a′qj

(u, q)(1, φ)
)
.

This sum vanishes because of the definition of wj (2.3.30). Moreover, using Proposition 2.3.1
we obtain:

C ′
i(u)(v) =

np∑
j=1

pjC
′
i(u)(wj) =

np∑
j=1

Gijpj = (Gp)i.

Therefore, C ′(u)(v) = Gp and ρy(x) vanishes too due to the definition of y (5.2.116). Finally,
in order to see, that ρp(x) = 0, we obtain using (5.2.115), (5.2.116) and the representations of
G and M given by Proposition 2.3.1 and Proposition 2.3.2:

E ′
qj

(q) = −
nm∑
k=1

Gkj(Gp)k −
nm∑
k=1

Mjkpk − αpj

= −〈Gp,C ′(u)(wj)〉Z + 〈C ′′(u)(wj, v), R
LS(u)〉Z

+a′′uu(u, q)(wj, v, z) + a′′uq(u, q)(wj, p, z) + a′′uqj
(u, q)(v, 1, z)

+a′′qqj
(u, q)(p, 1, z)− αpj

= a′′uqj
(u, q)(v, 1, z) + a′′qqj

(u, q)(p, 1, z)− a′u(u, q)(wj, y)− αpj

= a′qj
(u, q)(1, y) + a′′uqj

(u, q)(v, 1, z) + a′′qqj
(u, q)(p, 1, z)− αpj.

This completes the proof. �

Remark 5.2.3. The construction of the corresponding discrete set of auxiliary variables
χh = (vh, ph, yh) ∈ Vh ×Q× Vh is done in the same way.
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From Propositions 5.2.1 and 5.2.2 we obtain the following result using a suitable interpola-
tion operator ih : V → Vh, see, e.g., Clément [35].

Theorem 5.2.1. Let ξ = (u, q, z) be the solution of the parameter identification problem
and let χ = (v, p, y) be defined by equations (5.2.115) and (5.2.116). Further we denote by ξh =
(uh, qh, zh) and χh = (vh, ph, yh) the corresponding Galerkin solutions, and set xh = (ξh, χh).
Then, the following error representation holds:

E(q)− E(qh) =
1

2
{ρu(ξh)(y − ihy) + ρz(ξh)(v − ihv)} (5.2.117)

+
1

2
{ρv(xh)(z − ihz) + ρy(xh)(u− ihu)}+R, (5.2.118)

where R is the cubic remainder term defined in (5.2.105).

Proof. We use Proposition 5.2.1 and set x̂h = (ihu, q, ihz, ihv, p, ihy). This complete the
proof. �

Theorem 5.2.1 gives a satisfactory result in the following sense: with the solution of only
one auxiliary problem, i.e. the discrete version of (5.2.116), we obtain an error representation
with a cubic remainder term. For a discussion of the estimation of such remainder terms from
linearization, see Vexler [86]. Moreover, no assumption on the smallness of the least squares
residual RLS(u) is necessary. However, the Newton matrix H, and therefore computation of
the adjoint solution z are required.

In the following, we provide a simpler error representation which can be used when the
Gauß-Newton algorithm is employed in the optimization loop. For this purpose, we split the
derivative M′ into two parts:

M′(x)(δx) = D(x)(δx) + T (x)(δx), (5.2.119)

where the terms D and T are defined by

D(x)(δx) = {ρu(ξ)(δy) + ρz(ξ)(δv) + ρq(ξ)(δp)}
+ {ρv(x)(δz) + ρ̃y(x)(δu) + ρ̃p(x)(δq)} (5.2.120)

and

T (x)(δx) = −〈C ′′(u)(δu, v), RLS(u)〉Z − a′′uu(u, q)(δu, v, z)

− a′′qu(u, q)(δu, p, z)− a′′uq(u, q)(δq, v, z) (5.2.121)

− a′′qq(u, q)(δq, p, z), (5.2.122)
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using the additional residuals:

ρ̃y(x)(ψ) := 〈C ′(u)(v), C ′(u)(ψ)〉Z − a′u(u, q)(ψ, y), (5.2.123)

ρ̃p(x)(σ) := E ′(q)(σ)− a′q(u, q)(σ, y) + α〈p, σ〉Q.

The main idea is to replace the stationarity condition (5.2.102) by a simpler equation:

D(x̃)(δx) = 0 ∀δx ∈ X. (5.2.124)

Similar to Proposition 5.2.2 we obtain:

Proposition 5.2.4. Let (u, q, z) be a stationary point of L (2.3.37) and let H̃ = (H̃jk) be
the reduced Gauß-Newton matrix defined by

H̃ = G∗G+ αI. (5.2.125)

Further, let {wj}1≤j≤np be the tangent solutions defined in (2.3.30). Then, the solution x̃ =
(u, q, z, ṽ, ỹ, p̃) ∈ X of (5.2.124) is given by:

H̃p̃ = −∇E, ṽ =

np∑
j=1

wj p̃j, (5.2.126)

and ỹ is the solution of the following equation:

a′u(u, q)(φ, ỹ) = 〈Gp̃, C ′(u)(φ)〉Z ∀φ ∈ V. (5.2.127)

The proof of Proposition 5.2.4 is similar to the one of Proposition 5.2.2.
The computation of (ṽ, ỹ, p̃) is cheaper in comparison with (v, p, y), because the matrix M is

not required and the right hand side of (5.2.127) does not involve second derivatives of the semi-
linear form a in contrast to (5.2.116). The corresponding error representation is formulated in
the following theorem:

Theorem 5.2.2. Let (u, q, z) be the solution of the parameter identification problem and let
(ṽ, p̃, ỹ) be defined by equations (5.2.126) and (5.2.127). Further we denote by

x̃h = (uh, qh, zh, ṽh, p̃h, ỹh)

the corresponding Galerkin solution. Then, the following error representation holds:

E(q)− E(qh) =
1

2
{ρu(ξh)(ỹ − ihỹ) + ρ̃y(x̃h)(u− ihu)}+ R̃ + P,

where R̃ is a remainder term defined by

R̃ =
1

2

1∫
0

D′′(x̃h + sẽ)(ẽ, ẽ, ẽ)s(s− 1)ds−
1∫

0

T ′(x̃h + sẽ)(ẽ, ẽ)sds, (5.2.128)
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with ẽ = x̃− x̃h. The additional remainder term P admits the estimate:

|P | ≤ C̃
(
‖eu‖V + ‖eq‖Q + ‖δhṽ‖V + ‖δhz̄‖V

)
‖RLS(u)‖Z , (5.2.129)

where eu := u − uh, eq := q − qh, δhφ := φ − ihφ is an interpolation error operator on V and
RLS(u) is the least squares residual defined in (2.1.3). The normalized adjoint solution z̄ ∈ V
is determined by:

a′u(u, q)(φ, z̄) = 〈− RLS(u)
‖RLS(u)‖ , C

′(u)(φ)〉Z ∀φ ∈ V, (5.2.130)

if the least squares residual RLS(u) does not vanish; otherwise we set z̄ = 0. The constant C̃
does not depend on the mesh parameter h nor on the measurements C̄.

Proof. Similar to Proposition 5.2.1 we obtain the following error representation:

E(q)− E(qh) =

1∫
0

M′(x̃h + sẽ)(ẽ)ds

=

1∫
0

D(x̃h + sẽ)(ẽ)ds+

1∫
0

T (x̃h + sẽ)(ẽ)ds.

We approximate the first integral by the trapezoidal rule, the second by the box rule and obtain

E(q)− E(qh) =
1

2
D(x̃h)(ẽ) +

1

2
D(x̃)(ẽ) + T (x̃)(ẽ) + R̃, (5.2.131)

with the corresponding remainder term R̃ defined in (5.2.128). The term D(x̃)(ẽ) vanishes,
and due to Galerkin orthogonality the term D(x̃h)(ẽ) can be replaced by D(x̃h)(x̃ − x̂h) with
x̂h arbitrarily chosen. We set

x̂h = (ihu, q, ihz, ihṽ, p̃, ihỹ) (5.2.132)

and obtain that the residuals ρq and ρ̃p vanish. We define the remainder term P by

P = T (x̃)(ẽ) + 1
2
ρz(ξh)(δhz) + 1

2
ρv(x̃h)(δhṽ) (5.2.133)

and it remains to prove the estimation (5.2.129). The term P has the following explicit form:

P = −〈C ′′(u)(eu, ṽ), R
LS(u)〉Z − a′′uu(u, q)(eu, ṽ, z)

− a′′qu(u, q)(eu, p̃, z)− a′′uq(u, q)(eq, ṽ, z)
− a′′qq(u, q)(eq, p̃, z)− 〈C ′(u)(δhṽ), R

LS(u)〉Z
− a′u(u, q)(δhṽ, z)− a′u(u, q)(ṽ, δhz)− a′q(u, q)(p̃, δhz).

(5.2.134)
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We use the fact that z̄ = z ‖RLS(u)‖Z and rewrite (5.2.134) as

P = −〈C ′′(u)(eu, ṽ), R
LS(u)〉Z − ‖RLS(u)‖Z a

′′
uu(u, q)(eu, ṽ, z̄)

− ‖RLS(u)‖Z a
′′
qu(u, q)(eu, p̃, z̄)− ‖RLS(u)‖Z a

′′
uq(u, q)(eq, ṽ, z̄)

− ‖RLS(u)‖Z a
′′
qq(u, q)(eq, p̃, z̄) + 〈C ′(u)(δhṽ), R

LS(u)〉Z
− ‖RLS(u)‖Z a

′
u(u, q)(δhṽ, z̄)− ‖RLS(u)‖Z a

′
u(u, q)(ṽ, δhz̄)

− ‖RLS(u)‖Z a
′
q(u, q)(p̃, δhz̄).

(5.2.135)

Using the Cauchy-Schwarz inequality and the continuity of the derivatives of C and a′ completes
the proof. �

Remark 5.2.5. For evaluation of the resulting error estimator, the local interpolation errors
u− ihu and ỹ− ihỹ are approximated by using higher order reconstructions. For the discussion
of the localization of the error estimator, i.e. for the node-wise (cell-wise) representation of it,
see Section 5.4.

Remark 5.2.6. In the case of perfect match, i.e. RLS(u) = 0, the remainder term P
vanishes and the error estimators resulting from Theorem 5.2.1 and from Theorem 5.2.2 are
identical.

5.3. An extension to more general error functionals

In this section we extend our a posteriori error estimation for more general error functionals
E : V × Q → R, i.e. for the case, if the quantity of interest depends on the state variable as
well as on the parameters, see Vexler [87] and Becker & Vexler [23].

This extension allows a consideration of the following problem: We are given a mathemat-
ical model of a physical process, described by a system of partial differential equations. This
model depends on a finite number of unknown (or just imprecisely known) model parameters,
which cannot be measured directly. We are interested in the value of some quantity of the
process (quantity of interest or output), which cannot be measured directly either (or whose
measurement would require too much effort). This quantity of interest is given as a function of
the state variable and parameters, denoted by E. As usual we are given a set of measurements
and our aim is to compute the quantity of interest for the calibrated model with parameters,
which fit the measurements.

One possible approach to this kind of problems is to split this problem in a pure parameter
identification problem and an output-oriented simulation of the process. By this approach, first
the unknown parameters are estimated from the given measurements using parameter identifi-
cation techniques, and then the quantity of interest is computed by an appropriate simulation.
But this approach has some drawbacks: First, the appropriate discretizations for the parameter
identification problem and for the output-oriented simulation can be completely different; and
second, the required accuracy of the parameters for achieving a given tolerance for the error in
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the quantity of interest is a priori unknown due to the (in general unknown) derivatives of the
quantity of interest with respect to the parameters.

We suggest another approach for more effective solution of this kind of problems. We
consider this problem as a parameter identification problem and choose the finite element
discretizations adaptively according to the quantity of interest. To this end, we derive an a
posteriori error estimator, which aims at controlling the error in the quantity of interest. We
use this error estimator within the adaptive mesh refinement algorithm described above, with
purpose to improve the accuracy of the computed output in an efficient way.

Similar to the consideration in the previous section, there are two possibilities to derive the
announced error estimator for the quantity of interest. In the following theorem we give the
result, which requires the Hessian of the reduced cost functional as in Theorem 5.2.1.

Theorem 5.3.1. Let (u, q, z) be a solution of the parameter identification problem and
(uh, qh, zh) the corresponding Galerkin solutions. Let moreover H denote the reduced Hessian,
see (2.3.34), and (v, p, y) be defined as follows:

Hp = g, (5.3.136)

where the components of g are:

gj = E ′
qj

(u, q)(1) + E ′
u(u, q)(wj),

v =

np∑
j=1

wjpj, (5.3.137)

and y ∈ V is given by:

a′u(u, q)(φ, y) = 〈Gp,C ′(u)(φ)〉Z − 〈C ′′(u)(φ, v), RLS(u)〉Z − a′′uu(u, q)(φ, v, z) (5.3.138)

−a′′uq(u, q)(φ, p, z) + E ′
u(u, q)(φ) ∀φ ∈ V.

Let the discrete variable (vh, ph, yh) be defined in the similar way. Then, there holds the following
error representation:

E(u, q)− E(uh, qh) =
1

2
{ρu(ξh)(y − ihy) + ρz(ξh)(v − ihv)} (5.3.139)

+
1

2
{ρv(xh)(z − ihz) + ρy(xh)(u− ihu)}+R, (5.3.140)

where ρu, ρz and ρv are defined as in (5.2.100) and in (5.2.112), and ρy is given by:

ρy(x)(ψ) := E ′(u, q)(ψ) + 〈C ′(u)(v), C ′(u)(ψ)〉Z − 〈C ′′(u)(ψ, v), RLS(u)〉Z (5.3.141)

−a′′uu(u, q)(ψ, v, z)− a′′uq(u, q)(ψ, p, z)− a′u(u, q)(ψ, y)
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and R is a cubic remainder term due to linearization.

Proof. The proof is given using the same techniques as in Section 5.2. �

Remark 5.3.1. Similar to Theorem 5.2.2 one obtains the error estimator, which does not
require the use of the Newton method.

5.4. Localization of the error estimator

For numerical evaluation of the error representation from Theorem 5.2.1, Theorem 5.2.2 and
Theorem 5.3.1 we have to approximate the local interpolation errors, e.g. u − ihu. In Becker
& Rannacher [19], it is suggested to use a recovery process of the computed solution uh by
higher-order polynomials. In our practical realization, we exploit the patch-wise structure of
finite element meshes, see Section 3.1, and use interpolation in the space of higher order finite

elements V
(2)
2h on patches T2h.

Remark 5.4.1. In the following, we concentrate on the consideration of bilinear finite

elements Vh and biquadratic elements V
(2)
2h on patches such that there holds:

dimV
(2)
2h = dimVh.

Let i
(2)
2h : Vh → V

(2)
2h be the corresponding interpolation operator; the interpolation errors

are numerically approximated by:

u− ihu ≈ i
(2)
2h uh − uh.

Moreover, for using the resulting error estimator in the adaptive mesh refinement algorithm,
we have to localize the estimator to the cell-wise or node-wise contributions. In the numerical
examples described below we use node-wise localization. A direct localization of the terms from
the error representations, such

ρy(xh)(i
(2)
2h uh − uh),

leads, in general, to the local contributions of wrong order (overestimation) due to oscillatory
behavior of the residual terms. To overcome this, we introduce a so called filtering operator
πh : Vh → Vh by setting:

πhξ := ξ − ih2hξ,

where by ih2h we denote the nodal interpolation operator ih2h : Vh → V2h. The space V2h is the
bilinear finite element space on patches. This construction exploits the patch-structure of the
mesh, which implies, that the finite element spaces V2h and Vh are nested, i.e. V2h ⊂ Vh. Due

to the fact, that V2h ⊂ V
(2)
2h , we obtain using Galerkin orthogonality:

ρy(xh)(i
(2)
2h uh − uh) = ρy(xh)(i

(2)
2h πhuh).
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The last term is used in the following localization procedure: We denote the nodal basis of Vh

by:

{φi}, i = 1 . . . n,

where n = dimVh. Further, for each node we introduce a quadratic nodal function φ
(2)
i , which

is given by:

φ
(2)
i = i

(2)
2h φi ∈ V (2)

2h .

Let now Φy
i ∈ R denote the contribution of the residual ρy(xh) with respect to the quadratic

function φ
(2)
i , i.e.

Φy
i = ρy(xh)(φ

(2)
i ).

For the filtered primal solution πhuh the nodal values are denoted by Uπ
i such that there holds:

πhuh =
n∑

i=1

Uπ
i φi.

This allows the following representation:

ρy(xh)(i
(2)
2h πhuh) =

n∑
i=1

Uπ
i Φy

i .

According to this, the computable local quantities for each node are :

Uπ
i Φy

i , i = 1 . . . n.

The contributions of other residual are computed in the same way. The error representation
from Theorem 5.2.2 lead to the following local quantities:

ηh,i =
1

2
|Uπ

i Φy
i + Y π

i Φu
i |,

where Y π
i and Φu

i are defined analog by

Φy
i = ρy(xh)(φ

(2)
i )

and

πhyh =
n∑

i=1

Y π
i φi.

The value of the error estimator is computed by:

ηh =
1

2

∣∣ n∑
i=1

(Uπ
i Φy

i + Y π
i Φu

i )
∣∣
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and there holds:

ηh ≤
n∑

i=1

ηh,i.

For more details of this procedure see Braack [28] and Braack & Ern [29]. For using the
node-wise contributions ηh,i in a refinement procedure, the information has to be shifted to
cells. Thereafter, standard algorithms can be used, see [18,19].

For discussion of other localization techniques we refer to Becker & Rannacher [18, 19].
Therein, the residual terms are cell-wise integrated by parts resulting in cell-wise contributions.

5.5. Numerical examples

In this section, we illustrate the usage of the a posteriori error estimators described above
for some prototypical two-dimensional elliptic problems. Throughout, the discretization of the
state equation uses piecewise bilinear finite elements on meshes consisting of quadrilaterals.
The resulting nonlinear state equations are solved by Newton method and the solution of the
linear subproblems are computed using a multigrid algorithm on locally refined meshes, see
Becker & Braack [13]. With these ingredients, the total numerical cost for solution on a given
mesh behaves like O(N), where N is the number of nodes. All computations are done on the
basis of the package ParamGascoigne for treating parameter identification problems. This C++
library is implemented by the author as an extension of the finite element toolkit Gascoigne3D,
see [12].

5.5.1. Example 1

We consider a convection-diffusion equation with unknown constant transport direction
(q1, q2) in the unit square Ω = (0, 1)2 (as in the example in Section 4.4):

−∆u+ q1ux + q2uy = 2 in Ω,
u = 0 on ∂Ω.

(5.5.142)

The parameters (q1, q2) = (8, 8) are estimated using measurements given by the values of the
state variable at five different points ξi as in the example in Section 4.4, see (4.4.84). The
components of the corresponding observation operator C have the following form:

Ci(v) = v(ξi), (5.5.143)

and the parameter identification problem is formulated as follows: For (u, q) ∈ V × Q with
V = H1

0 (Ω) and Q = R2

Minimize
1

2

5∑
i=1

(u(ξi)− C̄i)
2 (5.5.144)
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under the constraint (5.5.142), where C̄i denote the components of the measurement vector
C̄ ∈ Z = R5 and are given by the values of the state variable u for the exact parameter q, i.e.
C̄i = u(ξi).

Estimating the error in parameter

We estimate the error in the first component of q ∈ Q, i.e. we set:

E1(q) := q1. (5.5.145)

First, we study the quality of the generated locally refined meshes. For comparison we
also consider global refinement and refinement by an “energy” estimator for the state variable,
which aims to control the error u− uh in H1(Ω). Figure 5.5.1 compares the accuracy achieved
on meshes resulting from these three types of refinement.

0.0001

0.001

0.01

0.1

100 1000 10000 100000

global
energy

our

Figure 5.5.1. Errors in q1 for different refinement strategies vs. number of nodes.

As seen from Figure 5.5.1, adaptive refinement based on the “energy”-estimator leads to
almost the same reduction of the error as global refinement. However, the strategy based on
our estimator leads to an obvious saving in the number of unknowns necessary to achieve a
prescribed accuracy level.

Next, we investigate the quantitative behavior of the estimator which is important for
error control. Comparison between the error in q1 and the value of the estimator is shown in
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Table 5.5.1. There, the effectivity index of the error estimator is defined by

Ieff := (E(q)− E(qh))/ηh. (5.5.146)

Table 5.5.1. Efficiency of the error estimator for the error functional E1(q) = q1.

N E1(q)− E1(qh) ηh Ieff

81 2.80e-1 3.60e-1 0.78
153 9.59e-2 1.04e-1 0.92
407 1.82e-2 1.99e-2 0.91
1161 5.66e-3 5.39e-3 1.05
2487 2.47e-3 2.41e-3 1.02
7129 6.27e-4 6.14e-4 1.02
21091 1.63e-4 1.60e-4 1.02

Computations for Table 5.5.1 are done on the same sequence of locally refined meshes as before,
see Figure 5.5.1.

Some typical meshes resulting from application of the a posteriori error estimator for the
error functionals E1(q) = q1, E2(q) = q2, and E3(q) = q2

1 + q2
2 are shown in Figure 5.5.2.

Figure 5.5.2. Typical meshes produced for E1(q) = q1 (left), E2(q) = q2 (mid-
dle) and E3(q) = q2

1 + q2
2 (right).

Remark 5.5.1. The presented example with the error functional E1(q) = q1 mimics a
typical situation. One distinguishes between a set of parameters which are of primary interest,
q1, and others, which are also unknown and determined on the way. Depending on the choice
of primary parameters, the meshes may differ significantly.
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Estimating the error in the quantity of interest

For illustrating the error estimation, discussed in Section 5.3, we consider the quantity of
interest given by the mean value

EΩ0(u) =

∫
Ω0

u dx (5.5.147)

on a subdomain Ω0 defined by

Ω0 = (
15

16
, 1)× (0,

1

16
).

We test again the efficiency of the error estimator and the quality of the generated meshes.
In Table 5.5.2 the error, the estimation of it and the effectivity index of the error estimator,
defined as in (5.5.146) are shown.

Table 5.5.2. Efficiency of the error estimator for the error functional EΩ0 .

N EΩ0(u)− EΩ0(uh) ηh Ieff

81 1.46e-0 4.07e-0 0.36
163 1.65e-1 8.10e-2 2.04
375 4.13e-2 4.24e-2 0.97
1009 1.07e-2 1.07e-2 1.00
2463 2.55e-3 2.56e-3 0.99
6135 7.65e-4 7.79e-4 0.98
16713 1.92e-4 1.95e-4 0.98

In Figure 5.5.3 we compare the accuracy with respect to the quantity of interest achieved
on the meshes resulting from the application of the error estimator for EΩ0 with some other
types of mesh refinement. To this end, we consider uniform mesh refinement, refinement cor-
responding to the error estimator derived for the error in parameters (Es(q) = q1 + q2) and
for the error in the cost functional (J(u) = 1

2
‖C(u) − C̄‖2). The latter corresponds to the a

posteriori error estimator for optimization problems, see Becker & Rannacher [19] and Becker,
Kapp & Rannacher [20].

As seen from Figure 5.5.3 the strategy of the a posteriori error estimation derived above is
the most efficient one. The strategies, which does not take into account the quantity of interest,
i.e. the error functional EΩ0 , are even worse than the uniform mesh refinement. In Figure 5.5.4
we show typical meshes resulting from the a posteriori error estimator for EΩ0 and from the
estimator for the cost functional J(u).



80 5. A POSTERIORI ERROR ANALYSIS

1e-05

0.0001

0.001

0.01

0.1

1

100 1000 10000 100000

global
our

sum
cost

Figure 5.5.3. Errors in EΩ0 for different refinement strategies vs. number of nodes.

Figure 5.5.4. Typical meshes produced by a posteriori error estimator for EΩ0

(left) and for the cost functional J(u) (right).

5.5.2. Example 2

In this example we investigate a simple case of non-vanishing least squares residual. Here,
we consider a convection-diffusion-reaction equation with a nonlinear reaction term:

−∆u+ eq1u + q2ux + q3uy = 2 in Ω,
u = 0 on ∂Ω.

(5.5.148)
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Again, we choose Ω = (0, 1)2. The parameters (q1, q2, q3) ∈ Q = R3 are estimated using
measurements given by the values of the state variable at the same points ξi (4.4.84) as in
Example 1. The parameter identification problem is formulated as follows: For (u, q) ∈ V ×Q
with V = H1

0 (Ω) and Q = R3

Minimize
1

2

5∑
i=1

(u(ξi)− C̄i)
2 +

α

2
‖q − q̄‖2

Q (5.5.149)

under the constraint (5.5.148), where C̄i denote the components of the measurement vector
C̄ ∈ Z = R5 and q̄ ∈ Q is a given reference parameter. In contrast to Example 1 we consider
the case of α > 0. The data (C̄, q̄ and α) are chosen, such that the least squares residual
RLS(u) does not vanish.

Here, the a posteriori error estimators η1 and η2 based on the error representation from
Theorem 5.2.1 and Theorem 5.2.2 respectively, differ. In order to illustrate the difference
between the estimators, we consider two cases with different magnitude of ‖RLS(u)‖Z . In both
cases the error functional is E(q) = q2. The values of the estimators η1 and η2 are shown in
Table 5.5.4 and Table 5.5.3. The corresponding effectivity indexes I1

eff and I2
eff are defined as

in (5.5.146).

Table 5.5.3. Comparison between the error in E(q) and the values of the esti-
mators η1 and η2 for the data with ‖RLS(u)‖Z ≈ 3 · 10−4

N E(q)− E(qh) η1 I1
eff η2 I2

eff

25 3.27e-1 6.92e-2 4.72 4.87e-2 6.73
81 7.53e-2 8.53e-2 0.88 7.80e-2 0.96
289 1.84e-2 1.87e-2 0.98 1.74e-2 1.06
1089 4.57e-3 4.51e-3 1.01 4.21e-3 1.09
4225 1.14e-3 1.12e-3 1.02 1.04e-3 1.10

Table 5.5.4. Comparison between the error in E(q) and the values of the esti-
mators η1 and η2 for the data with ‖RLS(u)‖Z ≈ 4 · 10−2

N E(q)− E(qh) η1 I1
eff η2 I2

eff

25 1.87e-1 2.06e-1 0.90 5.31e-2 3.52
81 3.58e-2 4.74e-2 0.76 1.26e-2 2.84
289 8.24e-3 8.71e-3 0.94 3.29e-3 2.50
1089 1.99e-3 2.00e-3 0.99 8.31e-4 2.39
4225 4.70e-4 4.85e-3 0.97 2.08e-4 2.26
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5.5.3. Example 3

In this section we compare our general approach to mesh refinement for parameter identi-
fication problems with some heuristic mesh refinement algorithms.
We consider three types of heuristic approaches to mesh refinement: a strategy based only on
the information obtained from the computed state variable, a strategy based only on the a
priori knowledge of the structure of the observation operator and a strategy, which combines
both types of information.

For this comparison, we consider the following diffusion-reaction equation with unknown
coefficient q in the unit square Ω = (0, 1)2:

−q∆u+ su = 2 in Ω,
u = 0 on ∂Ω,

(5.5.150)

where s is chosen as s = 200.

The parameter q is estimated using measurements given by the values of the state variable
at nine different points ξi, see Figure 5.5.5. The exact value of the parameter is q = 1.

Remark 5.5.2. We note, that the chosen values of s and q lead to boundary layer behavior
of the solution of the state equation (5.5.150).

Figure 5.5.5. The computational domain with measurement points marked by circles.

The components of the corresponding observation operator C(·) have the following form:

Ci(v) = v(ξi), i = 1, 2 . . . 9.

and the parameter identification problem is formulated as follows: For (u, q) ∈ V × Q with
V = H1

0 (Ω) and Q = R

Minimize
1

2

9∑
i=1

(u(ξi)− C̄i)
2 (5.5.151)
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under the constraint (5.5.150). The components C̄i of the measurement vector C̄ ∈ Z = R9 are
given by the values of the state variable u for the exact parameter q, i.e.

C̄i = u(ξi), i = 1, 2 . . . 9.

First, we compare the quality of meshes generated by our a posteriori error estimator for
this problem with a typical strategy based on a posteriori information obtained by the state
variable, i.e with the mesh refinement guided by one of the well-known “energy” type error
estimators for uncontrolled equation, see e.g. Bank & Weiser [8] and Babuška & Miller [6].
This estimator aims to control the error u − uh in H1-norm, but it does not take care of the
structure of the parameter identification problem.

1e-05

0.0001

0.001

0.01

0.1

1000 10000 100000

global
energy

our

Figure 5.5.6. Errors in q for different refinement strategies vs. number of nodes
(global refinement, “energy”-based refinement and refinement resulting from our
a posteriori error estimator).

As seen from Figure 5.5.6, adaptive refinement based on the “energy” estimator leads to
the similar reduction of the error as global refinement. However, the strategy based on our
error estimator leads to an obvious saving in the number of unknowns necessary to achieve a
prescribed accuracy level.

Next, we compare our strategy for mesh refinement with the following heuristic approach:
In each iteration of the mesh refinement we refine the cells, which lie close to one of the
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measurement points, i.e. in the set ⋃
i

{
x | ‖x− ξi‖ ≤ r

}
, (5.5.152)

where r ∈ R+ is a given number. In contrast to our approach, this strategy is unable to weight
the relative importance of the measurement points. The corresponding comparison with our
strategy is done in Figure 5.5.7 for two choices of r (r = 0.04 and r = 0.1).
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global
r=0.1

r=0.04
our

Figure 5.5.7. Errors in q for different refinement strategies vs. number of
nodes (global refinement, refinement across measurement points and refinement
resulting from our a posteriori error estimator).

After several steps one does not observe any error reduction despite increasing the number
of nodes for both choices of r in the described strategy, as could be expected. Typical meshes
resulting from application of our a posteriori error estimator, “energy” estimator and the last
strategy are shown in Figure 5.5.8.

We also compare our mesh refinement procedure with a combination of both last heuristic
methods. By this strategy both cells marked by “energy” estimator and cells across the mea-
surement points (5.5.152) are refined. The corresponding comparison with our mesh refinement
procedure is made in Figure 5.5.9 for two choices of r (r = 0.04 and r = 0.1).

The typical meshes resulting from application of this strategy for two choices of r (r = 0.04
and r = 0.1) are shown in Figure 5.5.10.
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Figure 5.5.8. Typical meshes produced by our a posteriori error estimator
(left), energy error estimator (middle) and the refinement across the measure-
ment points (right).
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Figure 5.5.9. Errors in q for different refinement strategies vs. number of
nodes (global refinement, refinement produced by combing the refinement across
measurement points and “energy”-based refinement, and refinement resulting
from our a posteriori error estimator).
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Figure 5.5.10. Typical meshes produced by combining the refinement accord-
ing to “energy” error estimator and the refinement across the measurement points
for r = 0.1 (left) and r = 0.04 (right).



CHAPTER 6

Application to CFD Problems

In this chapter we illustrate the capability of our approach on two flow problems, where
the state is described by the incompressible Navier-Stokes equations. In Section 6.1 we de-
scribe the discretization of the Navier-Stokes equations by stabilized finite elements of equal
order. The approach to stabilization is based on local projection techniques. Thereafter, in
Section 6.2 an extension of the provided parameter identification techniques to the parameter-
dependent boundary conditions is discussed. The application of this approach to covering
unknown boundary conditions by CFD problems is discussed on two example problems. In
Section 6.3 we consider a flow in a system of tubes describing a simple model for blood flow
in arteries (bypass simulation). The unknown boundary conditions of Neumann type are pa-
rameterized, and the parameters are estimated using measurements of fluxes. A problem with
parameterized Dirichlet boundary condition is discussed in Section 6.4. Here, we consider a
flow around a cylinder in a channel with rough wall. The computation is done on a channel
with even walls, and the roughness is modeled by prescription of parameterized inhomogeneous
Dirichlet boundary conditions.

6.1. Discretization of the Navier-Stokes equations

This section is devoted to the discretization of the (stationary) Navier-Stokes equations with
finite element method. Here, we use the discretization and stabilization techniques similar to
the approach described in Becker [11] and Becker & Braack [14].

Let Ω ⊂ R2 be a Lipschitz domain. Its boundary ∂Ω is divided into a part ΓD where
Dirichlet boundary conditions are subscribed and a part ΓN , where Neumann-type conditions
are given, ∂Ω = ΓD ∪ ΓN . The equations for the unknown velocity field v and pressure p read:
Find u = (v, p) such that

−ν∆v + v · ∇v +∇p = f in Ω,
∇·v = 0 in Ω,
v = g on ΓD,

ν ∂v
∂n
− pn = p0n on ΓN ,

(6.1.153)

where g ∈ H 1
2 (ΓD) describes the Dirichlet, p0 ∈ L2(ΓN) the Neumann boundary condition date,

and n denote the outward unit normal vector to ΓN . For the analysis of this type of Neumann
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boundary conditions, see Heywood, Rannacher & Turek [63].

The starting point for any finite element discretization of the Navier-Stokes equations
(6.1.153) is a variational formulation. The space of test function for the velocity is

H = {ψ ∈ H1(Ω)2 |ψ = 0 on ΓD}.

Let v̂ ∈ H1(Ω)2 be a function representing the Dirichlet boundary data, i.e.

v̂ = g on ΓD.

Further, we set û = (v̂, 0), V = H×L2(Ω) and V̂ = û+V . The semilinear form a : V̂ ×V → R
is defined by:

a(u)(φ) = ν(∇v,∇ψ) + (v · ∇v, ψ)− (p,∇ · ψ) + (∇ · v, ξ), (6.1.154)

where φ = (ψ, ξ) ∈ V denotes the test functions for velocity and pressure. The corresponding

weak formulation reads: Find u ∈ V̂ such that

a(u)(φ) = (f, ψ) + (p0n, ψ)ΓN
∀φ ∈ V. (6.1.155)

The problem (6.1.155) is discretized using conforming finite elements on shape-regular quadri-
lateral meshes described in Section 3.1. We use finite elements of equal order for each component
constructed in the similar way as in Section 3.1, i.e.:

Vh = {φh = (ψh, ξh) ∈ V |φh|K ∈ Q̃1(K)3, K ∈ Th},

where Q̃1(K) consists of shape functions obtained via a bilinear transformation from the space

of bilinear functions Q1(K̂) on the reference cell K̂ = (0, 1)2. Using the patch-structure of the
mesh, the finite element space V2h on the mesh T2h is defined in a similar way, cf. Figure 3.1.2
in Section 3.1.

It is well known, see e.g. Girault & Raviar [54], that the use of equal-order finite elements
leads to an unstable Galerkin formulation, since the stiff pressure-velocity coupling for incom-
pressible flows enforces spurious pressure modes. Moreover, the standard Galerkin discretization
of the (nonlinear) convection term leads to oscillations, see e.g. Johnson [68]. Therefore, we
add stabilization terms to the semilinear form a (6.1.154) in order to obtain a stable formulation.

Due to the patch-structure of the mesh, see Section 3.1, the finite element spaces V2h and
Vh are nested, i.e. V2h ⊂ Vh. By ih2h we denote the nodal interpolation operator ih2h : Vh → V2h.
By

πh : Vh → Vh , πhξ = ξ − ih2hξ
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we denote the difference between the identity and this interpolation. For a velocity field β and
a discrete state uh = (vh, ph) ∈ Vh we define a stabilization bilinear form

s(β)(uh, φh) =
∑

K∈Th

{
αK

(
∇(πhph),∇(πhξh)

)
K

+ δK
(
β · ∇(πhvh), β · ∇(πhψh)

)
K

}
,

where the cell-wise coefficients δK and αK are chosen:

δK :=
δ0h

2
K

6ν + hK |β|K
, αK = α0h

2
K/ν.

Here, hK denotes the diameter of the cell K and |β|K is the cell-wise value of the velocity
field β. The parameters δ0 and α0 are usually chosen between 0.2 and 1. Let ûh be a discrete
approximation of the boundary data û, then the stabilized discrete formulation reads: Find
uh = (vh, ph) ∈ ûh + Vh such that:

a(uh)(φh) + s(vh)(uh, φh) = (f, ψh) + (p0n, ψh)ΓN
∀φh ∈ Vh.

For the analysis of stability and convergence of the described approximation scheme see Becker
& Braack [14]. Similar stabilization techniques for the convective term are analyzed in Guer-
mond [59].

6.2. Treatment of parameter-depended boundary conditions

In this section we discuss an extension of the methods described in previous chapters to
covering unknown boundary conditions. The modeling of boundary conditions is a typical
difficulty for a broad class of CFD problems. We consider the case, where boundary conditions
g and p0 (6.1.153) depend on the unknown parameters q ∈ Q, i.e.

g = g(q), p0 = p0(q).

Such a parameterization allows for formulating a problem with unknown boundary conditions
as an parameter identification problem. Using the information obtained by measurements the
unknown parameters can be estimated by application of the methods described in previous
chapters. This allows for finding boundary conditions, which have the best possible match with
the experiments.

If the parameters enter the Neumann type boundary condition, the computation of the
derivatives with respect to parameters is done in the same way, as described in Propositions 2.3.1
and 2.3.2. This is due to the fact, that in this case the parameters are directly involved
in the semilinear form a. The case of parameter-dependent Dirichlet boundary conditions
requires some additional remarks. Suppose the state equation with inhomogeneous parameter-
dependent Dirichlet boundary conditions is given by: Find u ∈ û(q) + V such that

a(u, q)(φ) = (f, φ) ∀φ ∈ V. (6.2.156)
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Let S be the solution operator of (6.2.156), see Proposition 2.2.1, and the reduced observation
operator c be defined as in (2.3.23) by:

c(q) = C(S(q)).

Then there holds the following proposition describing the derivatives of the reduced observation
operator c with respect to parameters:

Proposition 6.2.1. There holds:

∂ci
∂qj

(q) = Gij = C ′
i(u)(wj), i = 1 . . . nm, j = 1 . . . np,

with u = S(q), Ci and ci denote the components of the observation and the reduced observation
operators respectively. The tangent solution wj is sought in û′qj

(q)(1)+V and is determined by:

a′u(u, q)(wj, φ) = −a′qj
(u, q)(1, φ) ∀φ ∈ V.

Proof. The proof is given similar to the one of Proposition 2.3.1. �

6.3. Bypass simulation with unknown boundary conditions

In this section we consider a simplified model for the blood flow in arteries (bypass simu-
lation). Here, a typical difficulty is the prescription of in- and outflow boundary conditions on

Γ
(1)
in , Γ

(2)
in and Γout respectively, see the configuration in Figure 6.3.1.

Γout

Γ0

Γ

Γin

in
(1)

(2)

S

S S

1

2 3

Γ1

Figure 6.3.1. The configuration for the bypass simulation.

We parameterize these unknown boundary conditions by the parameter q ∈ Q = R2 in the
following way:

ν ∂v
∂n
− pn = q1n on Γ

(1)
in ,

ν ∂v
∂n
− pn = q2n on Γ

(2)
in ,

ν ∂v
∂n
− pn = 0 on Γout,

v = 0 on Γ0 ∪ Γ1.



6.3. BYPASS SIMULATION WITH UNKNOWN BOUNDARY CONDITIONS 91

This parameterization can be interpreted as follows: The parameters q1 and q2 describe the

pressure difference between Γ
(1)
in and Γout, and between Γ

(2)
in and Γout respectively, cf. Heywood,

Rannacher & Turek [63].

We assume, the measurements to be given by fluxes at S1, S2 and S3, see Figure 6.3.1. The
corresponding observation operator is given by:

Ci(u) =

∫
Si

v · n ds, i = 1, 2, 3.

The choice of the type of measurements is not crucial for this application. The measurements
of point values of the velocity or of the pressure are also possible.

The unknown parameter are estimated from a set of measurements C̄ ∈ Z = R3. The
solution of the state equation for the exact parameters q = (0.5, 3.0) is shown in Figure 6.3.2.
However, the values of the parameters do not describe the quantity of physical interest in this
application. The quantity we wish to compute is described by the forces acting on a part of
the boundary ΓA ⊂ Γ1.

Figure 6.3.2. Solution of the state equation (horizontal velocity) for the exact
parameters q = (0.5, 3.0) .

This quantity of interest is given by the functional E:

E(u) = c0

∫
ΓA

n · σ · d ds, (6.3.157)

where d = (−1, 0) is a chosen direction, c0 is a given constant, and σ denotes the stress tensor
given as usual by:

σ =
ν

2
(∇v + (∇v)T )− pI.

For the evaluation of E we use the following representation:

E(u) = c0(a(u)(φd)− f(φd)), φd = (ψd, 0),
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where ψd is a prolongation of the vector d to the whole domain, which vanishes on ∂Ω\ΓA. For
the discussion of this representation including the independence of the prolongation and an a
priori error analysis see Giles, Larson, Levenstam & Süli [53] and Becker [11].

The described problem is solved by the Gauß-Newton method with the initial guess q0 =
(0, 0), which corresponds to the state variable u = 0. Application of the a posteriori error
estimator for the quantity of interest, see Section 5.3, leads to the sequence of locally refined
meshes, see in Figure 6.3.3.

Figure 6.3.3. A sequence of the obtained meshes for computing the forces act-
ing on ΓA with 2 491, 5 297 and 10 029 nodes.

On the first (coarse) mesh 10 iterations of the optimization loop are done. However, on the
following meshes only a few (≤ 3) iterations are required for sufficient reduction of the residual
of the optimality condition, see the discretion of the optimization loop in Section 4.1.

The comparison of the error in the quantity of interest (6.3.157) for uniform mesh refinement,
refinement based on an “energy” error estimator, and refinement produced by our a posteriori
error estimator is done in Figure 6.3.4. It turns out, that the refinement strategy based on
the error estimator for the quantity of interest leads to very efficient meshes. For achieving a
tolerance TOL = 1% a local refined mesh with 5 297 nodes is needed. The usage of uniform
refined meshes requires a mesh with 41 665 nodes for the same tolerance.
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Figure 6.3.4. Error in the quantity of interest E vs. number of mesh points
for different types of mesh refinement (uniform refinement,“energy”-based refine-
ment, and local refinement resulting from our a posteriori error estimator).

6.4. Flow in a canal with a rough wall

In this section we discuss an example dealing with the estimation of parameters from Dirich-
let boundary conditions. We consider a flow around a cylinder in a channel with a rough wall,
see Figure 6.4.6. Due to the unknown roughness we wish to make the computation on a canal
with even walls, see Figure 6.4.5.

Γ1

Γin

Γ2

Γout

Figure 6.4.5. Computational domain with even walls.

This leads to unknown inhomogeneous Dirichlet boundary conditions. We parameterize
these boundary conditions

v = g on Γ1
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by means of Fourier sums with an additional compatibility condition g(0) = 0. This leads to
the following representation for the components g(1) and g(2) of g:

g(k) =
L∑

l=1

(
q
(k)
2l sin(lωx) + q

(k)
2l+1(cos(lωx)− 1)

)
, k = 1, 2,

where L ∈ N and ω ∈ R+ are given numbers. The parameters q ∈ Q = R4L are estimated
from point-wise measurements of the velocity and pressure. In the computation results below
we use L = 8 and the measurements of velocity and pressure at 36 different points ξi. This
corresponding cost functional is given by:

C3i−2(u) = p(ξi), C3i−1(u) = v1(ξi), C3i(u) = v2(ξi), i = 1, 2 . . . 36.

The initial parameter values for the optimization loop are chosen q0 = 0 describing the homo-
geneous boundary conditions, see Figure 6.4.7.

Figure 6.4.6. Flow around the cylinder computed on a canal with a rough wall.

Figure 6.4.7. Flow around the cylinder computed on a canal with even walls
and homogeneous Dirichlet boundary conditions.

Figure 6.4.8. Flow around the cylinder with estimated boundary conditions.
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The quantity of interest E is here the drag coefficient on the cylinder computed in the same
way as in the previous section. The exact value for the drag coefficient is Eref ≈ 6.6709. The
computation on the domain with even walls and homogeneous boundary conditions leads to
the value E(S(q0)) ≈ 5.5794. However, using the estimated boundary conditions allows for
obtaining an approximation E(u) ≈ 6.6755, see Figure 6.4.8. A sequence of locally refined
meshes produced for this computation is shown in Figure 6.4.9.

Figure 6.4.9. A sequence of the obtained meshes for computing the drag coef-
ficient with estimated boundary conditions.





CHAPTER 7

Application to Multidimensional Reactive Flows

In this chapter we apply the algorithms described in previous chapters to two parame-
ter identification problems for chemical models in multidimensional reactive flows. Due to
heavy impact of physical and chemical models in combustion simulations the issue of parame-
ter estimation is of essential importance for the development of accurate transport and chemical
models. Typical problems are the estimation of Arrhenius parameters and diffusion coefficients.
The examples considered in this chapter are introduced in Becker, Braack & Vexler [16]. The
example in Section 7.1 deals with the estimation of Arrhenius parameters for a simple com-
bustion model described by a convection-diffusion-reaction equation for one single reaction. In
Section 7.2 we analyze diffusion parameters for a hydrogen flame. It includes the compress-
ible Navier-Stokes equations and a system of convection-diffusion-reaction equations for nine
chemical species and 38 elementary (bi-directional) reactions. To the author’s knowledge, the
paper [16] is the first published work on automatic parameter estimation for multidimensional
computation of flames. For an overview of parameter estimation problems in chemistry, we
refer to the book of Englezos and Kalogerakis [42]. Therein, many applications of parameter
identification in the framework of ordinary differential equations are given. Parameter estima-
tion problems for reactive flows in one space dimension are treated for instance by Bock et.
al. [90].

7.1. Identification of Arrhenius parameters

In this section we demonstrate the behavior of our methods for the problem of estimating
Arrhenius parameters in a simple combustion model. The state equation is given by scalar
stationary convection-diffusion-reaction equation for the variable u in a domain Ω ⊂ R2 with a
divergence-free vector field β and a diffusion coefficient D:

β · ∇u− div(D∇u) + s(u, q) = f , (7.1.158)

provided with Dirichlet boundary conditions u = û at the inflow boundary Γin ⊂ ∂Ω and Neu-
mann conditions ∂nu = 0 on ∂Ω \ Γin. As usual in combustion problems, the reaction term is
of Arrhenius type

s(u, q) := A exp{−E/(d− u)}u(c− u) . (7.1.159)

The variable u stands for the mole fraction of a fuel, while the mole fraction of the oxidizer is
0.2−u. Since the Arrhenius law is a heuristic law and can not be derived by physical laws, the
involved parameters are a priori unknown and have to be calibrated. This parameter fitting
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is usually done by comparison of experimental data and simulation results. Therefore, this
example is well suited for the proposed parameter identification algorithm. We assume the
parameters d, c to be fixed and the parameters A, E are considered as unknown and form the
vector-valued parameter q = (log(A), E) ∈ Q = R2.

We consider the following configuration: Fuel (F ) and oxidizer (Ox) are injected in dif-
ferent pipes and diffuse in a reaction chamber with overall length 35mm and high 7mm, see
Figure 7.1.1. At the center tube, the Dirichlet condition for the fuel is u = uin := 0.2, and at
the upper and lower tube, u = 0. On all other parts of the boundary, homogeneous Neumann
conditions are opposed.

The fix parameters in the Arrhenius law (7.1.159) are c = uin and d = 0.24. The convection
direction β(x, y) is a velocity field obtained by solving the incompressible Navier-Stokes equa-
tions with parabolic inflow profile at the tubes with peak flow βmax = 0.2m/s. The diffusion
coefficient D is chosen D = 2.e-6.

The measurements C(u) ∈ Z = Rnm are modeled by mean values along nm = 10 straight
lines Γi at different positions in the reaction chamber, see dashed lines in Figure 7.1.1:

Ci(v) =

∫
Γi

v dx , i = 1, . . . , nm .

Instead of experimental data, we simply choose the optimal parameters to q = (6.9, 0.07)
and replace the measurements by computation with these parameters: C̄ := C(S(q)). As a
consequence, the “measurements” perfectly match for the optimal parameters. This will not
be the case in the example in Section 7.2.

Ox

Ox

F

Figure 7.1.1. Configuration of the reaction chamber for estimating Arrhenius
coefficients. Dashed vertical lines show the lines where the measurements are
modeled.

The initial parameters are set to q0 = (log(A0), E0) = (4, 0.15), leading to low reaction rates
and a diffusion dominated solution. In Figure 7.1.2 the corresponding state variable (fuel) u0

is shown. For the optimal q, in contrast to the initial guess q0, a sharp reaction front occurs,
see Figure 7.1.3. Obviously, the difference in the parameters has a substantial impact to the
state variable u.
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Figure 7.1.2. Mole fraction of the fuel (u0) for the initial parameters q0. Blue:
u = 0, red: u = 0.2.

Figure 7.1.3. Mole fraction of the fuel (u) for the optimal parameters q.

The state equation (7.1.158) is discretized by finite elements described in Chapter 3. The
stabilization of the convection term β · ∇u is treated in the same way as in Section 6.1 for
the Navier-Stokes equations. For the error functional, we choose the discretization error with
respect to the second parameter, i.e. E(q) = q2. In the optimization loop, we use the Gauß-
Newton algorithm with the trust region strategy described in Section 4.3.

In Table 7.1.1, the results obtained are listed. The third column displays the norm of the
least squares residual. On the first mesh with only N = 1664 nodes, 8 iterations (see second
column) are done. On this mesh, the cost functional is reduced by more than two digits. In the
fourth column, the remaining residual of the optimization condition (2.3.28) (in the discrete
form) is listed:

Res := ‖G∗
h(C̄ − ch(q

k
h))‖ . (7.1.160)

The last two columns show the corresponding obtained parameters. After a substantial re-
duction of Res, the mesh is adapted locally according to the a posteriori error estimator, see
Chapter 5. The second mesh has 2852 nodes. Here, the optimization loop is repeated. However
on the finer meshes, only a few (≤ 3) iterations are necessary. On the finest mesh, the error in
the first parameter is about 0.03% and in the second parameter about 0.3%.
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Table 7.1.1. Numerical results for Arrhenius parameter identification.

N it ‖C(u)− C̄‖ Res q1 q2

1664 1 5.87e-2 2.54e-3 4.000 1.500e-1
2 5.86e-2 2.56e-3 4.001 1.499e-1
3 5.81e-2 2.83e-3 4.132 1.499e-1
4 4.47e-2 6.42e-3 5.630 1.489e-1
5 2.36e-2 5.58e-3 6.752 1.481e-1
6 6.22e-3 1.90e-3 7.433 1.093e-1
7 8.34e-4 2.55e-4 6.660 4.621e-2
8 3.00e-4 1.00e-4 6.825 6.394e-2

2852 1 4.79e-4 1.44e-4 6.798 6.216e-2
2 3.68e-5 1.04e-5 6.905 7.134e-2
3 1.92e-5 5.51e-8 6.906 7.158e-2

6704 1 2.33e-4 7.72e-5 6.906 7.158e-2
2 1.42e-5 1.91e-8 6.904 7.066e-2

13676 1 6.91e-5 2.30e-5 6.904 7.063e-2
2 3.53e-6 6.76e-9 6.905 7.052e-2

21752 1 1.22e-5 3.24e-6 6.905 7.052e-2
2 2.84e-6 8.89e-9 6.902 7.022e-2

0.01

0.1

10000 100000

global
local

Figure 7.1.4. Relative error in the second Arrhenius parameter in dependence
of the number of mesh points. Solid line: globally refined meshes, dashed line:
locally refined meshes on the basis of a posteriori error estimation.
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Comparing the error in the parameters with a more conventional strategy on globally re-
fined meshes, our proposed algorithm is much more efficient. In Figure 7.1.4, the relative error
in the second parameter is plotted in dependence of the number of mesh points. The dashed
line results from our method on locally refined meshes. The solid line stands for parameter
estimation with the same optimization loop but on uniformly refined meshes. For a relative
error of less than 1%, only 6 704 nodes are necessary with a locally refined mesh, whereas more
than 100 000 nodes are necessary on a uniformly refined mesh.

In Figure 7.1.5, a sequence of locally refined meshes produced by the refinement algorithm
is shown. The highest amount of mesh points is located near the flame front and close to the
measurement lines.

Figure 7.1.5. Obtained meshes for estimating Arrhenius parameters with 2 825,
6 704, 13 676 and 21 752 nodes (from upper left to lower right).

7.2. Identification of diffusion parameters

In this section we consider a stationary hydrogen diffusion flame and estimate parameters
in a diffusion model. The propose is to calibrate the parameters in the Fick’s law in order
to substitute multicomponent diffusion laws. A similar problem for the ozone decomposition
flame is discussed in Becker, Braack & Vexler [17].
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7.2.1. Underlying system of equations

A stationary hydrogen diffusion flame considered here is modeled by the following system
of equations for velocities v, pressure p, temperature T and mass fractions yk:

div (ρv) = 0 ,

(ρv · ∇)v + divπ +∇p = 0 ,

ρv · ∇T − 1

cp
divQ = − 1

cp

∑
i∈S

hifi ,

ρv · ∇yk + divFk = fk k ∈ S .

The specific enthalpies are denoted by hi, the heat capacity at constant pressure is denoted by
cp. Both quantities are evaluated by the use of thermodynamic data bases. The set S denotes
the set of chemical species. The density ρ is given by the perfect gas law in a mixture with
partial molecular weights mi and the uniform gas constant R:

ρ =
p

RT

(∑
i∈S

yi

mi

)−1

.

The stress tensor π is given as usual for compressible flows:

π = −µ
{
∇v + (∇v)T − 2

3
(div v)I

}
,

where µ denotes the viscosity depending on temperature and the mixture fractions. The reac-
tion terms fi are modeled by a set of elementary reactions with reaction rates kr of Arrhenius
type:

fi = mi

∑
r∈R

(ν ′ri − νri)kr

∏
s∈S

cνrs
s ,

kr = ArT
βr exp

{
− Er

RT

}
.

The set R includes all reactions considered. The stoichiometric coefficients of the products and
educts for reaction r are denoted by ν ′ri and νri, respectively. The concentration ci of species i
is given by ci = ρyi/mi. The heat flux Q is given by the Fourier’s law

Q = −λ∇T ,

where λ is the heat conductivity. The species fluxes Fk are modeled by a simple Fick’s law:

Fk = qkD
∗
k∇yk .
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The scaling parameters qk are the free parameters which have to be calibrated in the optimiza-
tion procedure. Following Hirschfelder & Curtiss [66] and Warnatz, Dibble & Maas [88], the
diffusion coefficients in the mixture D∗

k are given by

D∗
k = (1− yk)

(∑
l 6=k

xl

Dbin
kl

)−1

,

with binary diffusion coefficients Dbin
kl and mole fractions xl. In order to insure that the sum

over all species mass fractions sum up to 1 and to have a consistent model, the inert species
(N2) is erased from the set of unknown species.

For the system of equation described above we apply apply the approximation for Low-Mach
number combustion due to Majda [74]. The discretization is done by bilinear finite elements,
see Chapter 3. The stabilization of the pressure-velocity coupling and of the convection terms
is treated in a similar way as in Section 6.1 for the Navier-Stokes equations. For the detailed
description of the Low-Mach number approximations for combustion and the corresponding
finite element discretization we refer to Braack [27] and Becker, Braack & Rannacher [15].

7.2.2. Configuration of a hydrogen diffusion flame

The set up for this hydrogen diffusion flame is taken from Braack & Ern [30] and is shown
schematically in Figure 7.2.6. At the inflow boundary of the center tube, 10% mass fractions
of hydrogen and 90% nitrogen is opposed. At the upper and lower tube, yO2 = 0.22 and
YN2 = 0.78 is prescribed. The peak velocity of the three parabolic velocity profiles is 1m/s. Low
temperature T = 273K is prescribed at the inflow boundaries. On the other three boundaries
(upper,lower,right), homogeneous Neumann conditions for temperature and mass fractions are
opposed. For the velocities, the upper and lower wall are no-slip walls. The chemical model
involves nine chemical species, see the mechanism in Table 7.2.2.

2 cm

5 mm 2 mm

1 mm

1 mm

Air

Air

H2 / N2

Figure 7.2.6. Schematic set up for the hydrogen diffusion flame.
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Table 7.2.2. Reaction mechanism used for hydrogen combustion. The collision
efficiencies are: M(H,H2, O2, OH,H2O,N2) = (0, 1, 0.4, 0, 6.5, 0.4).

Reaction Ar βr Ear

O2 + H=OH + O 2.000× 1014 0 70.3

H2 + O=OH + H 5.060× 1004 2.67 26.3

H2 + OH=H2O + H 1.000× 1008 1.6 13.8

OH + OH=H2O + O 1.500× 1009 1.14 0.42

H + H + M=H2 + M 1.800× 1018 −1 0

O + O + M=O2 + M 2.900× 1017 −1 0

H + OH + M=H2O + M 2.200× 1022 −2 0

H + O2 + M=HO2 + M 2.300× 1018 −0.8 0

HO2 + H=OH + OH 1.500× 1014 0 4.2

HO2 + H=H2 + O2 2.500× 1013 0 2.9

HO2 + H=H2O + O 3.000× 1013 0 7.2

HO2 + O=OH + O2 1.800× 1013 0 −1.7

HO2 + OH=H2O + O2 6.000× 1013 0 0

HO2 + HO2=H2O2 + O2 2.500× 1011 0 −5.2

OH + OH + M=H2O2 + M 3.250× 1022 −2 0

H2O2 + H=H2 + HO2 1.700× 1012 0 15.7

H2O2 + H=H2O + OH 1.000× 1013 0 15

H2O2 + O=OH + HO2 2.803× 1013 0 26.8

H2O2 + OH=H2O + HO2 5.400× 1012 0 4.2

The initial parameters are set to q0 = (1, . . . , 1) ∈ Q = Rnp , np = 8, so that the Fick’s
law with conventional diffusion parameters is recovered. The right boundary is the natural
outflow boundary condition. Due to the rich fuel condition at the center tube, there is not
enough oxygen for a complete burning of the fuel. This kind of flame is called under-ventilated.
However, the peak temperature reaches more than 2000K in the burnt gas. In Figure 7.2.7, a
zoom of the resulting mass fractions of hydrogen peroxide H2O2 is shown indicating the flame
front.

We substitute the experimental data by a computation of the same flame but with a
more sophisticated species diffusion model, namely multicomponent diffusion, see Ern & Gio-
vangigli [46]. The diffusion fluxes are evaluated by the EGLIB library [45]. The corresponding
flame is shown in Figure 7.2.8, showing a qualitatively different flame front. The heavy impact
of diffusion models for hydrogen flames is also observed in Ern & Giovangigli [47]. We like to
emphasize that this setting is not chosen to propose better constants for the Fick’s laws but to
show the capability of the parameter identification algorithm.

The vector of observation C̄ consists of 640 point values of mass fractions of hydrogen
peroxide. These “observation points” are equidistant distributed in the region of the flame
front Ω′ = [0, 3.125mm] × [0, 2.5mm], where we obtained reference values by computations
with the multicomponent diffusion models. Unlike the example in Section 7.1, the observation
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Figure 7.2.7. Mass fractions of H2O2 for the initial diffusion model (Fick’s law).

Figure 7.2.8. Mass fractions of H2O2 for the multicomponent diffusion model.

Figure 7.2.9. Mass fractions of H2O2 for the calibrated Fick’s diffusion model.

operator for the optimized parameters does not exactly match with C̄, because the Fick’s law
and multicomponent diffusion are qualitatively different.

7.2.3. Computational results for the hydrogen diffusion flame

In the optimization loop we use the Gauß-Newton algorithm with the update formula for a
part of the Hessian involving the second derivatives of the observation operator, as described
in Section 4.2.3.
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After optimization, the cost functional J is reduced by the factor of 5 and the obtained
parameters are:

q = (0.269, 0.454, 1.09, 2.46, 0.946, 18.6, 0.579, 0.179).

A comparison of H2O2 for multicomponent diffusion in Figure 7.2.8 and the corresponding
solutions with the parameter fitted Fick’s law, given in Figure 7.2.9, shows a substantial im-
provement. The sequence of (zooms of) the locally refined meshes resulting from the application
of the adaptive mesh refinement algorithm, described in Chapter 5, is shown in Figure 7.2.10.

Figure 7.2.10. A sequence of zooms of the locally refined meshes for the hy-
drogen flame.



CHAPTER 8

Conclusion and Future Work

In this doctoral thesis efficient algorithms for parameter identification problems are devel-
oped and analyzed. Parameter identification problems governed by partial differential equations
are discretized by finite element methods. For the error in parameters due to this discretization
a priori and a posteriori analysis is developed. We show an optimal order of convergence for
a class of parameter identification problems governed by elliptic partial differential equations
of second order. Moreover, we discuss an extension of this proof for the case of point-wise
measurements, which is important for applications.

The main issue of this work is the development of an adaptive mesh refinement algorithm
with the aim of finding an efficient discretization for parameter identification. The algorithm
produces a sequence of locally refined meshes based on the a posteriori error estimator for the
error in parameters. The presented error estimator is derived in the general nonlinear case.
Exploiting the special structure of parameter identification problem makes the computation
of the error estimator cheap in comparison to the overall optimization loop. The quality of
the resulting meshes and the efficiency of error estimation is illustrated for several example
problems.

Different Newton type optimization algorithms acting on the parameter space are discussed
and compared. Trust-region techniques are used for globalization of convergence. The underly-
ing nonlinear state equations are solved by the Newton’s method and the solutions of the linear
subproblems are computed using standard multigrid algorithms. All computations are done
on the basis of the package ParamGascoigne for treating parameter identification problems.
This C++ library is implemented by the author as an extension of the finite element toolkit
Gascoigne3D, see [12].

In order to demonstrate the capability of the presented approach we apply the developed
methods to parameter identification problems in fluid dynamics and to estimation of chemi-
cal models in multidimensional reactive flow problems. In the context of CFD problems we
discuss the treatment of unknown Dirichlet and Neumann boundary conditions. This is done
by parameterization of the boundary conditions leading to parameter identification problems.
Another application field is the calibration of the parameters in Arrhenius law and of the dif-
fusion coefficients by modeling combustion processes with detailed chemistry. To the author’s

107
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knowledge, this is the first published result discussing automatic parameter estimation for mul-
tidimensional computation of flames.

An extension of the approaches presented in this thesis to estimating parameters from infi-
nite dimensional spaces is a subject of future work. Here, we wish to combine model reduction
techniques with adaptive mesh refinement for efficient handling of parameter identification
problems with distributed parameters. Moreover, a posteriori error analysis may be also used
for control of the regularization terms from the cost functional.

Another generalization of our work is treatment of time-dependent parameter identification
problems. An appropriate extension of our mesh refinement techniques requires a posteriori
analysis of the influence of the time and space discretizations on the quality of the estimated pa-
rameters. Another important issue is the data handling for the solution of the time-dependent
adjoint problems.

Further, we intent to continue the work on the parameter estimation in combustion prob-
lems. Here, we wish to apply the proposed concepts to parameter identification with real
experimental data.
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