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Summary

Profilin1 and profilin2 are two actin-binding proteins. Biochemically, proflin1
and profilin2 are similar in respect to their interactions with actin,
phosphatidylinositol-4,5-bisphosphate (PIP2), and proteins containing poly-L-
proline rich motives among which the Ena/VASP protein family members such as
Mena. While profilin1 is highly expressed throughout development and adulthood in
most tissues including brain, profilin2 is the neuronal specific isoform. Lack of
profilin1 results in early embryonic lethality, while profilin2 KO mice are viable and
show behavioral abnormalities.
In this thesis I aimed to address three major questions:

1. Is there functional redundancy between profilin1 and profilin2 in vivo?
2. What is the role of the profilin ligand Mena in neuronal cell function and mouse

behavior?
3. Is there a common functional pathway for profilin2 and Mena?

In order to address functional redundancy between profilin1 and 2 I
generated two different knock-in mouse lines in which profilin1 was substituted by
mouse profilin2. However, for unknown reasons expression of profilin2 from the
transgene was not detectable in tissues isolated from mice targeted with both
knock-in strategies.  

My studies on Mena KO mice suggested an involvement of this protein in re-
organization of the actin cytoskeleton and axon path-finding. In hippocampal
neurons isolated from Mena KO mice, I showed that Mena is normally inhibiting the
outgrowth of dendritic processes and cell spreading. In the mutant animals these
alterations lead to axonal path-finding defects and behavioral abnormalities. My
behavioral analysis showed that lack of Mena leads to impairment of locomotor
activity, motor coordination and balance as well as to alteration in stress response.
The severity of the phenotype was found to be age-dependent.

Since Mena and profilin2 are known to interact in vitro I tried to investigate
if both proteins act in common physiological pathways. Therefore, I compared the
neuronal cell phenotype and the behavior of Mena KO and profilin2 KO mice.
Interestingly, the morphological alterations are very similar in hippocampal neurons
from Mena KO and profilin2 KO mice (longer primary processes and faster
spreading). In terms of behavior, both KO lines showed alterations in locomotor
activity, impairments in motor coordination and balance as well as altered stress
response. The overlap and the differences of phenotypes suggest that profilin2
and Mena are linked in common functional pathways, but also that Mena and
profilin2 have unique functions in mouse brain physiology.
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Profilins

Cells undergo continuous changes in shape and motility. These processes

are initiated in response to either external or internal stimuli and accomplished by

the cytoskeleton. In particular the microfilament cytoskeleton is considered to be

a highly sensitive recipient of messages conveyed by various signaling pathways.

In response to such information the three-dimensional organization of the actin

cytoskeleton or the equilibrium between actin filaments and the monomeric actin

pool undergoes continuous changes. These events are spatially and temporally

controlled.

Two decades ago Carlsson and co-workers discovered profilin, a small 12-16

kDa protein that directly interacts with actin, acidic phospholipids and several

other proteins involved in various signal transduction pathways. Since then profilin

was identified in all Eukaryotes investigated, such as Protozoa, echinodermata,

insects, plants and mammals. Even Vaccinia virus contains a profilin like gene

(Blasco et al. 1991). In yeast and Drosophila one profilin gene is expressed while,

Arabidopsis, Acanthamoeba, Dictyostelium, Physarum, and plants encode more

than one profilin isoform on distinct genes. It was long believed that mammalian

species contain only one profilin isoform, however during the execution of a

random human cDNA cloning project, a second profilin gene - profilin2 was

discovered. To date three profilin isoforms have been identified in mammals.

Mouse profilins are encoded on three different genes and called profilin1, profilin2

and profilin3.

The amino acid sequence identity between two isoforms within any given

organism is between 54% and 83%; for example, the human profilin1 and profilin2
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are 65% identical at the amino acid level but only 35% identical to profilins from

lower eukaryotes and about 20% identical to plant profilins. In spite of the

considerable degree of sequence variation between profilins from different

species, their biochemical properties have been extremely well conserved

throughout evolution (Lambrechts et al. 1997). It has been shown that plant and

bovine profilin is able to rescue the defects in cell shape, cytokinesis and

development that were observed in Dictyostelium profilin null mutant

(Karakesisoglou et al. 1996; Schluter et al. 1998).

Biochemical features of profilins

Biochemically, profilin was identified by its ability to bind to poly-L-proline

stretches and was shown to form a 1:1 complex with monomeric G-actin (Carlsson

et al. 1977). The formation of this complex might represent a mechanism to

sequester G-actin from the free cellular pool, although upon binding to actin

monomers, profilin in vitro increases the rate of nucleotide exchange on the actin

monomer, thereby charging the monomer with ATP, and possibly enhancing actin

filament dynamics (Goldschmidt-Clermont et al. 1992). In vitro data show that

profilin does not solely act as a sequestering protein for G-actin. Kinetics studies

of actin polymerization have shown that profilin can accelerate actin filament

growth if free barbed filament ends are available (Pantaloni and Carlier 1993). This

finding suggests that in vivo profilin might actually promote actin polymerization.

The only known physiological compounds able to release actin from the

profilin-actin complex are the phosphoinositides, especially phosphatidylinositol-

4,5-bisphosphate (PIP2), since the domains responsible for profilin interaction with

actin and PIP2 overlap (Lassing and Lindberg 1985). Profilin binds PIP2 with high

affinity and is able to inhibit the non-tyrosine-phosphorylated form of

phospholipase C-γ , suggesting that profilin may also play a role in signal
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transduction through tyrosine kinases and phospholipids (Goldschmidt-Clermont et

al. 1991). In addition, the profilin-actin complex in vitro binds with high affinity to

poly-L-proline stretches, suggesting that in vivo profilin might bind to proline rich

proteins. This property could serve other functions depending on the ligand. The

Arp2/3 complex (Machesky et al. 1994), Ena/VASP family members (Reinhard et

al. 1995; Gertler et al. 1996), gephyrin (Mammoto et al. 1998), Diaphanous

(Watanabe, 1997) and dynamin (Damke et al. 1994) have been shown to interact

with profilins. The profilin ligands appear to play a role in the control of cell motility

and actin dynamics such as fibroblast migration as well as axon guidance or

platelet activation (Aszodi et al. 1999; Lanier et al. 1999; Bear et al. 2002;

Loureiro et al. 2002). They were found concentrated at the leading edge of cells

suggesting a role in regulating the dynamics of the major protrusive actin

structures: lammelipodia thin membrane sheets and membrane spikes known as

filopodia (Rottger et al. 1999).

The role of profilin in actin-based motility

Many studies on profilin role in actin - based motility were taking advantage

of intracellular pathogens. Certain intracellular pathogenic bacteria such as Shigella

flexneri, Listeria monocytogenes, Rikettsia conorii as well as an enveloped virus,

Vaccinia virus (Cudmore et al. 1995), use actin-based motility for their intra- and

intercellular movement. Intracellular movement is strictly coupled to a polarized

actin polymerization process at one end of the bacterium, resulting in the

formation of an actin comet tail or rocket tail. Specific bacterial surface proteins

have been identified to be involved in this movement for example VirG or IcsA for

S. flexneri, and ActA for L. monocytogenes (Bernardini et al. 1989). These

proteins are anchored in the bacterial membrane, transversely to the

peptidoglycan layer, and have an intracellular domain, which recruits cellular
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proteins like F-Actin, Arp2/3 complex, N-WASP, actin depolimerizing factor (ADF

or cofilin) and capping proteins. Profilin is recruited to sites of active cytoskeletal

assembly through the association with N-WASP, a signaling protein that links

multiple signaling components to direct actin-dependent events (Suetsugu et al.

1998). In addition, profilin associates with the Arp2/3 complex (Mullins et al.

1998), which is present in lammelipodia and other dynamic, actin-based structures

(Machesky et al. 1997) and appears to initiate actin polymerization during the

intracellular motility of the pathogenic bacterium Listeria monocytogenes

(Reinhard et al. 1995; Welch et al. 1997). Profilin also interacts with members of

the Ena/VASP protein family, including VASP - Vasodilator-Stimulated

Phosphoprotein - (Reinhard et al. 1995) and Mena - mammalian Enabled - (Gertler

et al. 1996). Like the Arp2/3 complex, VASP and Mena are recruited by the

Listeria protein ActA to sites of actin polymerization, where they colocalize with

profilin (Theriot and Mitchison 1993; Gertler et al. 1996; Niebuhr et al. 1997).

Inhibiting profilin binding to VASP (Kang et al. 1997) or VASP binding to ActA

(Smith et al. 1996) impairs Listeria motility, suggesting a role of profilin in

accelerating the actin-dependent motility of the pathogen.

Apart from pathogen motility, profilin has been shown to be important for

motility of eukaryotic cells. For example, D. discoideum mutants deficient for

profilin show defects in F-actin content, cytokinesis and development (Haugwitz et

al. 1994). Yeast lacking profilin show defects in cell shape and actin localization

(Haarer et al. 1990). Actin cables are no longer visible, the polarity of the cells is

lost, and the normal axial budding of haploid cells becomes random. In Drosophila,

genomic deletions of the chickadee locus (Drosophila profilin) resulted in a late

embryonic lethal phenotype indicating that profilin is essential for fly development.

Lack of profilin during Drosophila oogenesis leads to a failure in proper assembly of

nurse cell actin filament bundles and abnormal mitosis (Cooley et al. 1992;

Manseau et al. 1996). Using an RNA interference approach (RNAi) in C. elegans it

was shown that profilin PFN-1 is required for assembly and stability of the cortical



Introduction

5

actomyosin cytoskeleton as well as for oogenesis and fertilization (Karakesisoglou

et al. 2000).

Profilins in mouse

To date, three profilins profilin1, 2 and 3 were identified in mouse, each

encoded on a distinct gene (Kwiatkowski and Bruns 1988; Honore et al. 1993;

Braun et al. 2002). Profilin1 is highly expressed in most tissues except skeletal

muscle, while profilin2 is present predominantly in neuronal tissues and at lower

levels in uterus and kidney (Witke et al. 1998). Two spliced variants of profilin2

profilin2A and profilin2B have been identified (Di Nardo et al. 2000). Since

profilin2A is the main brain specific profilin2 isosform in mice, I will simply refer to

profilin2A as profilin2 in following work. Recently a novel profilin isoform, profilin3,

was detected in mouse, rat and human tissues (Hu et al. 2001; Braun et al. 2002).

Mouse profilin3 expression is a testis specific isoform (Braun et al. 2002).

During embryonic development profilin1 is expressed highly at all stages

including embryonic stem (ES) cells. Profilin2 is expressed at very low level in ES

cells and in early embryos, with peak expression around day E13. The increase in

the expression level correlates with rapid brain development around E13.

Mouse profilin1 and profilin2 share 62% identity at the amino acid level. The

biochemical properties of these two profilin isoforms are very similar with respect

to actin binding, PIP2 binding and affinity for poly-L-proline (Gieselmann et al.

1995; Lambrechts et al. 1995).
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Role of profilin1 and profilin2 in mice

The functional differences between profilin isoforms are not yet known and their

role may be dependent on the tissue specific expression, on the total intracellular

concentration of the protein or on the specific complexes formed with their

ligands. In order to study the role of mouse profilins in vivo conventional profilin1

and profilin2 knockout mice were generated in our laboratory.

Mutation of the profilin1 gene leads to an embryonic lethal phenotype: KO

embryos die before implantation probably from defects in cytokinesis (Witke et al.

2001). Heterozygous mice for profilin1, which express 50% of profilin1, are viable

and have a normal longevity.

Profilin2 deficient mice are viable and show normal brain anatomy. Profilin2

KO hippocampal neurons spread fasted after plating and produce longer dendritic

processes. Profilin2 mutant mice show behavioral abnormalities, such as impaired

maternal behavior, altered stress response and hyperactivity (Di Nardo, PhD thesis,

Pilo Boyl unpublished data).

Profilin1 and profilin2 are both expressed in mouse brain

In the mouse brain the expression level of profilin2 is three times higher

compared to the expression of profilin1. Because in brain both profilins are

expressed, this tissue serves as an ideal model to study the general functions of

profilins as well as specific activities of profilin2 (Witke et al. 2001). Using MALDI

mass spectrometry protein complexes formed by profilin1 and profilin2 were

identified (Witke et al. 1998). Interestingly, these complexes were very different

from each other and different from the ones described in lower eukaryotes

(Machesky et al. 1994). The components of profilin complexes are involved in

signal transduction, endocytosis and synaptic recycling. The major components of

the profilin1 complex in mouse brain are: clathrin, valosine containing protein
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(VCP), hsp70 and actin. The most prominent component of profilin2 complex is

dynamin1, a protein known to be involved in clathrin-mediated vesicle formation

(Damke et al. 1994). In primary mouse hippocampal neurons profilin2 and

dynamin1 co-localize at vesicular structures, supporting the idea that the profilin2

complexes exist in vivo and might play a role in vesicle recycling (Witke et al.

1998). Synapsin1A/B, synapsin2A/B, ROCK2 a downstream effector of Rho

signaling pathway, and Mena were detected as other abundant components of

profilin2 complex in the mouse brain. Mena has been shown to have an important

function in regulating cytoskeletal dynamics and recent work has suggested that

Mena might link profilin to this process. Table1 summarizes the proteins detected

in profilin1 and profilin2 brain complexes.

            

Profilin1 complex Profilin2 complex

Actin Actin

Tubulin ROCK2

clathrin POP

Hsp 70 HEM

Mena, VASP Dynamin1

VCP Synapsin1A/B

Synapsin2A/B

Hsp70

Mena,VASP

             

Table1 List of proteins detected in profilin1 and profilin2 protein complexes by MALDI mass
spectroscopy and western blot in the mouse brain.
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Mena, a member of the Ena/VASP protein family, and its
interaction with profilins

An important question was raised by the biochemical data on profilin

complexes and the in vivo findings in the KO mice, whether the specific complexes

account for the different phenotype of the mutant mice. In this respect, the

observations made in the double mutant for profilin1 and the ligand Mena is

particularly informative. The brains of Mena KO mice exhibit striking abnormalities

in the corpus callosum and hippocampal commissure. Fibers in the corpus callosum

fail to project medially and to cross the midline, therefore there is no proper

connection formed between the two hemispheres (Lanier et al. 1999). The failure

of Mena-deficient growth cones to choose the correct path suggests that Mena

has a role in growth cone's ability to read or respond adequately to the guidance

cues.

A

B

E

D

A C F

Figure 1 Histological comparison of WT and Mena KO adult brains
Matched section of WT and Mena KO brains were analyzed by silver staining.
(A,C,E) Coronal section through wild type (WT) brain, where structures of pre- and post
commissural fornix (fopr and fop, respectively) and the hippocampal commissure (hc) are shown.
(B,D,F) In Mena KO brains many of the above structures are abnormal or missing.
(D and F) A few fibers from the corpus callosum appear to project ventrally and cross just above
the dorsal fornix (arrow head).
(D and F) Cells are visible in the midline (arrow), but fibers of the hippocampal commissure do not
appear to cross as they do in the wild type control (compared to C and E)

Lanier et al., 1999
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Mice heterozygous for profilin1 gene and deficient for Mena expression die

prenatally from cephalic tube closure defects. This suggests the existence of a

common pathway where the two proteins are acting (Lanier et al. 1999).

The Ena/VASP protein family is a structurally conserved family found in

vertebrates, invertebrates and Dictyostelium. This family is composed of

Drosophila Enabled (Ena), C. elegans UNC-34/Enabled, vertebrate EVL (Ena/VASP-

like protein), VASP and Mena. Ena/VASP proteins are implicated in cell motility

(Bear et al. 2000; Goh et al. 2002). Mena and all the other Ena/VASP proteins

share a highly conserved tripartite structure: a proline rich core flanked by two

defined regions called Ena/VASP homology domains 1 and 2, EVH1 and EVH2

(Figure 2).

EVH1

EVH2EVH1

EVH1 EVH2

EVH2

PRO

PRO

PRO
PP PP PP

Q-RichDrosophila Ena

Dictyostelium VASP

C.elegans unc-34

Invertebrate homologs

EVH1 EVH2PRO
P

P

P
FABTML COCOLERER

P

+EXON

EVH1 EVH2PRO

P

P

FABTML COCO
P

EVH1 EVH2PRO FABTML COCO
P P

iEXON

Conserved PKA site
P

Phosphotyrosine

Phothreonine/
phosphoserine

Mena

EVL

VASP

Verterbrate family

 

EVH1, EVH2 - Ena/Vasp homology domain
COCO - coiled – coil region
TML – thymosin-like-motif
FAB – F-actin binding region
PRO – proline rich region
LERER - a.a sequence
Q-Rich - glutamate rich region
+EXON –neuronal specific alternative ragion

EVH1EVH2 PRO
P

P

P
FAB TMLCOCO LERER

P

+EXON EVH1EVH2 PRO

P

P

FAB TMLCOCO
P

EVH1EVH2 PROFAB TMLCOCO
PP

iEXON

Conserved PKA site
P

Phosphotyrosine

Phothreonine/
phosphoserine

Mena

EVL

VASP

Verterbrate family
Figure 2 Representation of the structural organization of the highly related vertebrate proteins
Mena, VASP and EVL and their invertebrate orthologs: Ena, VASP and UNC-34.
All members share a conserved domain structure: PRO, a proline rich core, flanked by two distinct
regions called Ena/VASP like domain (EVH1 and EVH2). All verterbrate family members are
substrates for Ser/Thr protein kinase A and G. Ena is a substrate for Abl tyrosine kinase and contains
six phosphorylation sites.
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The N-terminal EVH1 domain binds directly to a consensus motif and plays

an essential role in targeting Ena/VASP proteins to focal adhesion sites, while the

central proline-rich region serves as a docking site for several SH3 (Src-homology

3) and WW domain-containing proteins like Abl, IRSp53 and FE65 as well as for

profilin (Lambrechts et al. 2000). The EVH2 domain is required for oligomerization

(Bachmann et al. 1999) and binding of actin (Bachmann et al. 1999; Walders-

Harbeck et al. 2002). In fibroblasts, Ena/VASP proteins regulate the protrusive

step of motility by controlling the geometry of actin networks within lamellipodia

(Bear et al. 2002). However, these findings seem to contradict the enhanced

intracellular actin based motility of L. monocytogenes caused by presence of

Ena/VASP and profilin (Loisel et al. 1999; Grenklo et al. 2003). Since distinct

regions within the Ena/VASP molecule are required for lammelipodial protrusion of

fibroblasts and Listeria motility, the observed paradox might be explained by the

different functions performed by the Ena/VASP proteins in these two actin-

dependent processes. Ena/VASP proteins are also implicated in many other actin-

dependent processes, including axon guidance (Gertler et al. 1990), neural tube

closure (Lanier et al., 1999), attenuation of platelet aggregation (Aszodi et al.

1999), T-cell activation, phagocytosis (Krause et al. 2000), cell–cell adhesion and

the intracellular movement of the bacterial pathogen L. monocytogenes

(Vasioukihin et al., 2001).

EVH1 domain. The structure of EVH1 domain of Ena/VASP has been solved and

has revealed a direct binding to the consensus motif (D/E)-FPPPP-X(D/E)(D/E)

(Niebuhr et al. 1997). This recognition sequence is identified in a number of

cellular proteins, which preferentially localize at focal adhesion sites. The

interaction of Ena/VASP through EVH1 domain is confirmed for the cytoskeletal

proteins zyxin and vinculin (Beckerle 1997) as well as for the transmembrane axon

guidance molecules Robo (Godenschwege et al. 2002) and Semaphorin6A-1

(Klostermann et al. 2000). The EVH1 domain of Ena/VASP proteins is involved in

the association of Mena and VASP with sites of an actin tail assembly on L.
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monocytogenes surface by direct binding to proline-rich motifs of the bacterial

ActA protein. This binding would stimulate intracellular movement of Listeria

(Smith et al. 1996).

The proline rich region (PRO region) of Ena/VASP proteins contains binding

sites for profilin and SH3 and WW domain-containing proteins. Deletion of this

region has no effect on the ability of Ena/Vasp proteins to localize and to support

normal rates of fibroblast movement. This indicates that this region is not

essential for the function of Ena/VASP within lammelipodia during this type of

motility. However, the PRO region, by interaction with profilin, recruits profilin-actin

complexes to rapidly assemble the actin tail during Listeria movement and lack of

the PRO region in Ena/VASP proteins reduces speed of L .  monocytogenes.

Considering the genetic interaction between Ena and Abl in Drosophila (Gertler et

al. 1990) it is possible that the physical interaction between the PRO region and

the SH3 domain of Abl kinase may play a role in connecting Abl signaling to

Ena/VASP protein function. Also Dictyostelium mutagenesis studies revealed an

important role of the PRO region in filopodia formation, suggesting its requirement

for initiation or stability of these structures.

EVH2 domain. The EVH2 domain is composed of three conserved regions: a G-

actin binding region known as thymosin-like-motif (TML), an F-actin binding region

(FAB) and a coiled-coil region (COCO). In addition, phosphorylation sites for

PKA/PKG kinases were found within EVH2 domains of Mena, VASP and EVL.

Deletion of the TML region leads to cellular miss-localization of the Ena/VASP

proteins and their diffused distribution throughout the cytoplasm and weak

detection in the focal adhesions as well as along the leading edge of lammelipodia.

The FAB region binds to F-actin and plays a crucial role in targeting Ena/VASP

proteins to the leading edge. The FAB is also involved in proper regulation of cell

motility possibly by maintaining the anti-capping activity of Ena/VASP proteins

(Bear et al. 2002). The C terminus region of EVH2 domain contains the coiled-coil

motif that mediates oligomerization of Ena/VASP proteins (Bachmann et al.
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1999), which seems to be important for in vitro actin nucleation and the binding

to various Ena/VASP ligands.

Ena/VASP proteins regulate axonal outgrowth

Actin - based motility is critical for neuronal development and neural crest

cell migration. Genetic studies performed on several models revealed that

Ena/VASP proteins are required for normal axon pathfinding. In wild-type

Drosophila, the intersegmental nerve group b (ISNb) subset of motor axons

defasciculate from the intersegmental nerve just adjacent to the ventral nerve

cord and innervate their target muscles (Vactor et al. 1993). In Ena mutant flies,

the ISNb neurons ignore the signals to turn and normally innervate their muscle

targets and instead continue processing dorsally (Wills et al. 1999). In C. elegans,

mutation in UNC-34/Ena gene leads to misguidance of the motor axons and

premature termination of axons in the ventral nerve cord (Yu et al., 2002).

Goals of my PhD thesis

Biochemical similarities of profilins with respect to actin, PIP2 and poly-L-

proline binding as well as rescue experiments performed on Dictyostelium mutants

lacking profilin using plant and bovine profilins (Karakesisoglou et al. 1996;

Schluter et al. 1998) have led to hypothesize a functional redundancy between

profilin1 and profilin2 genes in mice. Due to the importance of this question the

first part of my PhD thesis was aimed at addressing a possible in vivo functional

redundancy between profilin1 and profilin2. For this purpose I performed a study

where profilin1 was substituted by profilin2 in mice. Considering the dramatically

different phenotypes shown by the two KO mice for profilin1 and profilin2, which
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might be due to differences in developmental expression pattern, tissue

distribution as well as subcellular localization, this approach would have addressed

the biochemical functional redundancy between the two proteins as well as their

functional specificity.

In the second part of my thesis I focused on the consequences of Mena

gene inactivation on neuronal cell development and behavior. Therefore, I analyzed

the morphology of Mena KO hippocampal neurons and tested the behavior of Mena

KO mice.

In the last part, I was interested in possible common pathways for profilin2

and Mena in vivo. In order to address this issue I compared the neuronal cell

phenotype and the behavior of profilin2 and Mena KO mice.



2. Results
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2.1 Functional redundancy between profilin1 and profilin2 in

mice

Studies on tissue distribution and developmental expression of profilin1 and

profilin2 as well as similarities with respect to their interactions with actin,

phosphoinositides (PIP2) and poly-L-proline rich motives suggest the possibility of

functional redundancy between the two genes. In order to address this question, I

decided to replace profilin1 by profilin2 in vivo. The mouse model generated was

meant to express profilin2 in all the tissues that normally express profilin1.

2.1.1 Conditional replacement of the mouse profilin1 gene by the

human profilin1/mouse profilin2 (IRES-hP1/mP2) cassette

In order to replace profilin1 by profilin2 in vivo, the targeting construct that

carries the human profilin1/mouse profilin2 cassette was generated as described

in (4.1.1). Human and mouse profilin1 share 98% identity in amino acid sequence

and similar affinity for actin, PIP2, poly-L-proline stretches. The availability of a

specific antibody against human profilin1 (2H11) allowed me to easily identify the

functionality of the knock-in allele. Translation of the hP1/mP2 from the knock-in

allele is controlled by an IRES (Internal Ribosome Entry Site) sequence. Due to the

design of the targeting construct, transcription results in a mRNA composed of

human profilin1 and mouse profilin2 followed by the BGH 3’UTR and

polyadenylation signal. The expression of mouse profilin2 is achieved only after

conditional removal of hP1. The NEO resistance cassette can be removed upon FLP
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induced recombination (4.1.3). The final targeting construct contained a 0.7 kb

short homology arm and a 3.8 kb long homology arm for the recombination in the

genomic locus of mouse profilin1, as shown in Figure 3A. ES cells were

electoporated as described with the linearized targeting vector (4.1.1; 4.2.2a).

After selection, 143 clones were picked, expanded, and genomic DNA prepared.

The clones were tested by Southern blot using HindIII digest and the external

NcoI/BamHI probe, as shown in Figure 3A. A band of 10 kb was expected from the

wild type allele and a band of 8.7 kb in case of an homologous recombination

event due to the presence of a new HindIII site introduced together with the

human profilin1 coding sequence. Four ES cell clones showed the right pattern for

homologous recombination (Figure 3B). Single copy integration was subsequently

confirmed using a neomycin probe (data not shown).

Ex1 Ex2 Ex3HindIII HindIIIBamHI BamHI

BGHpABamHI BamHI
Ex1 Ex2 Ex3IVSIRES hP1 mP2 NEO

ATGTGA HindIII

10kb

NcoI

NcoI/BamHI
probe

HindIII HindIIIBGHpABamHI BamHI
Ex1 Ex2 Ex3IVSIRES hP1 mP2 NEO

ATGTGA HindIII

8kb

Profilin1 WT locus

IRES-hP1/mP2 targeting construct

IRES-hP1/mP2 targeted allele

A

IRES - Internal Ribosome Entry Site
hP1 - human profilin1
mP2 - mouse profilin2
Ex- exon
BGHpA - bovine growth hormone 3’UTR and polyadenylation signal
NEO - neomycin resistance cassette

LoxP site

Frt site
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Figure 3 Strategy used for the replacement of profilin1 by
the IRES-hP1/mP2 allele.
A) Schematic drawing representing the organization of the wild

type locus of mouse profilin1, the targeting construct and
the targeted allele. The genomic regions for homologous
recombination are 0.7kb (left arm) and 3.8kb (right arm).

B) Southern blot analysis of genomic DNA from a targeted and
a wild type ES cell clone digested with HindIII. With the
external NcoI/BamHI probe the expected 8.7kb band for
homologous recombinats was identified.

2.1.2 Generation of the IRES-hP1/mP2 knock-in mouse

One targeted ES cell clone (#50) was injected into C57 blastocysts, and

four chimeras were generated. After intercrosses performed between chimeras

and wild type C57 famales, agouti coat color mice were obtained indicating that

germline transmission had occured. Agouti offspring were genotyped by PCR

amplification of human profilin1 and the NEO genes using specific pairs of primers

as shown in Figure 4.

BGHpA Ex1 Ex2 Ex3IVSIRES hPI PII NEO
ATG

BGHpA Ex1 Ex2 Ex3IVSIRES PII
ATG

FLP recombinationCRE recombination

400bp 350bp

700bp

IRES-hP1/P2NEO allele

IRES-ΔhP1/P2ΔNEO allele
LoxP site
Frt site

BGHpA Ex1 Ex2 Ex3IVSIRES hPI PII NEO
ATG

BGHpA Ex1 Ex2 Ex3IVSIRES PII
ATG

FLP recombinationCRE recombination

400bp 350bp

700bp

IRES-hP1/mP2NEO allele

IRES-ΔhP1/mP2ΔNEO allele

Figure 4 Schematic drawing of the PCR strategy used for screening of the IRES-hP1/mP2 knock-
in mice.
The localization of specific primer pairs is illustrated. Primers #1 and #2 amplify the hP1 cDNA,
primers #3 and #4 amplify a fragment of the NEO resistance cassette and primers #5 and #6 serve for
mP2-BGHpA amplification after the FLP recombination (4.1.3). While the amplification of hP1 and the
NEO fragment confirms transmission of the knock-in allele, the presence of the mP2-BGHpA band is
specific for the deletion of the NEO cassette in the knock-in allele.

 #5                     #6

#1      #2 #3      #4

NcoI/BamHI probe

B
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2.1.3 Profilin2 expression from the IRES-hP1/mP2 knock-in allele

In order to test the functionality of the IREShP1/mP2 knock-in allele western blot

analysis was performed on mouse tissues before and after the deletion of the NEO

resistance cassette. Deletion of the NEO cassette was achieved by crossing the

IRES-hP1/mP2 mice with a FLP deleter strain (IRES-hP1/P2 ∆NEO). Subsequently

IRES-hP1/P2 ∆NEO mice were crossed with Cre deleter mice in order to excise the

human profilin1 (hP1) gene and induce mouse profilin2 (mP2) expression (IRES-P2

∆NEO∆hP1). Since thymus and spleen have high expression levels of profilin1 (P1)

and since mP2 should be transcribed under the control of profilin1 promoter, those

tissues were tested for the expression of P2 in mice heterozygous for the knock-in

allele (Figure 5).
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Figure 5 Western blot analysis of protein extracts from thymus, spleen and brain of IRES-
hP1/mP2 knock-in mice.
No profilin2 was detected in thymus and spleen extracts after replacement of the endogenous
profilin1 by the IRES-hP1/mP2 cassette using the 3003 antibody. Endogenous expression of profilin2
in the brain of these mice was not altered. Profilin1 expression detected with P1-T antibody shows
the expected pattern, before and after each deletion. Equal loading was confirmed by coomassie
staining.
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No profilin2 expression was detected in spleen and thymus of heterozygous IRES-

hP1/mP2 knock-in mice. Endogenous profilin2 expression was not altered in the

brain of knock-in mice. Profilin1 expression level from the WT allele was not altered

in these mice.

2.1.4 Alternative replacement strategy by direct knock-in of the

profilin2 cDNA into the profilin1 locus

Since IRES sequences do not always work reliably (Paulous et al. 2003) this

might be an explanation for the absence of profilin2 expression. Therefore, I

decided to use a second approach, where the coding sequence for profilin2 is

fused directly to the ATG of profilin1 (4.1.2). In this construct the profilin1

promoter structure is maintained and the profilin1 translation start site is used.

The NEO resistance cassette can be conditionally removed by FLP recombination

(Figure 6A). The targeting vector was electroporated into ES cells and 196 clones

were picked and expanded (4.2.1a).A

BGHpABamHI BamHI
Ex1 Ex2 Ex3P2 NEO

ATG

Ex1 Ex2 Ex3HindIII HindIIIBamHI BamHI

10kb

NcoI

NcoI/BamHI
probe

HindIII HindIIIBGHpABamHI BamHI
Ex1 Ex2 Ex3P2 NEO

ATG

12kb

P2 - mouse profilin2
Ex- exon
BGHpA - bovine growth hormone 3’UTR and polyadenylation signal
NEO - neomycin resistance cassette Frt site

Profilin1 WT locus

Profilin2 cDNA targeting construct

Profilin2 cDNA targeted allele

A
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Figure 6 Targeting strategy of the profilin2 cDNA into profilin1
locus.

A) Schematic drawing representing the profilin1 wild type region,
the targeting construct and the targeted allele where profilin1 is
substituted by the profilin2 cDNA fused to the start codon of
profilin1.

B) Southern blot analysis of genomic DNA from homologous
recombinant ES cell and wild type clones digested with HindIII.
After probing with NcoI/BamHI external probe the right pattern
confirming homologous recombination event was identified.

After HindIII digestion of ES cell genomic DNA and Southern blot analysis

with the external NcoI/BamHI probe, two bands were identified, one of 10 kb,

belonging to the WT allele and one of 12 kb belonging to the targeted allele

(Figure 6B). The shift in size results from the insertion of the profilin2 cDNA and

neomycin resistance cassette (Figure 6A). Five ES cell clones were correctly

targeted. Single copy integration into the profilin1 locus was confirmed by probing

with a NEO probe (data not shown).

2.1.5 Generation of profilin2 cDNA knock-in mice

Two correctly targeted ES cell clones (#3 and #7) were injected into C57

blastocysts. Eighteen male chimeras were generated and mated with wild type

C57 females for germline transmission. Agouti offspring were genotyped by PCR

using a specific pair of primers amplifying a fragment of the neomycin resistance

cassette. The design of the targeting construct outlined in Figure 6A enables the

conditional removal of the NEO cassette upon FLP recombination (P2cDNAΔNEO).

The same PCR strategy that was used for the screening of IRES-hP1/P2ΔNEO mice

was applied to genotype the P2cDNAΔNEO mice (primers #5 and #6 in Figure 4).

NcoI/BamHI probe

A)

B
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2.1.6 Profilin2 expression from the profilin2 cDNA knock-in allele

Western blot analysis was performed on the tissues isolated from the profilin2

cDNA knock-in mice before and after deletion of the NEO resistance cassette.

Profilin2 expression in thymus and spleen of the profilin2 cDNA knock-in mice was

udetectectable, suggesting that also the P2 cDNA knock-in approach was not

successful (Figure 7).
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Figure 7 Western blot analysis of the protein extracts isolated from thymus, spleen and brain of
profilin2 cDNA knock-in heterozygous mice.
3003 polyclonal antibody recognizing the C terminus of mouse profilin2 did not detect profilin2
expression in thymus and spleen isolated from profilin2 cDNA knock-in mice, regardless of the
deletion of the NEO cassette. Probing with P1-T antibody shows that profilin1 expression is not
changed in these mice. Presence of the Flp transgene did not interfere with profilin expression.
Coomassie staining shows equal sample loading.

2.1.7 Studies on functional redundancy between profilin1 and 2 in

mice, conclusions

The approaches used to substitute profilin1 by profilin2 in vivo the IRES-

hP1/mP2-NEO and the P2cDNA knock-in strategies did not result in detectable

expression of profilin2 from the mutated alleles.
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2.2 Role of the profilins ligand Mena in neuronal cell

development, brain physiology and behavior

Mice where profilin1 expression is reduced to 50% in the Mena null

background die in the course of embryogenesis due to the defects in cell migration

related to neuronal tube closure. Mena expression is localized in brain, fat, ovaries

and testes. As profilin2 is brain specific, I was interested in studying the

interaction between Mena and Profilin2 in vivo. I decided to compare the profilin2

and Mena KO mouse models with respect to neuronal cell and behavioral

phenotype in order to bring new elements to demonstrate the hypothesis that the

two proteins act on a common pathway. The behavioral analysis performed on

profilin2 KO mice by Alessia di Nardo and Pietro Pilo Boyl in our laboratory showed

hyperactivity, altered response to stress and age-dependent impairment in balance

and coordination. In vitro cultured hippocampal neurons, isolated from Profilin2 KO

mice, showed that the lack of profilin2 stimulates neurite outgrowth. In the

following chapters I will focus on the effects of the Mena mutation in neuronal cells

development and physiology and its further implications for mouse behavior.

2.2.1 Morphology and cytoskeletal organization of Mena KO

hippocampal neurons

A number of morphological changes, which occur during the establishment

of neuronal polarity, are dependent on actin cytoskeleton dynamics. Growth cone

movement to its synaptic target is powered by dynamic rearrangements of the

actin cytoskeleton. Filopodial spikes punctuate to the growth cone periphery. The

intervening space between filopodia contains a lammelipodium-like branched actin

filament network. Actin polymerization in the growth cone drives membrane

protrusion. The Ena/VASP protein family is involved in the overall cell motility by
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regulating of the actin filament length at the growth cone periphery (Bear et al.

2002). Mena is concentrated at filopodial tips in the growth cone (Lanier et al.

1999), where it may regulate filopodial extension and stability in a manner

analogous to that proposed for melanoma cell filopodia (Svitkina et al. 2003).

According to these observations, neurons deficient for the Mena gene might

exhibit alterations in the response to the guidance cues, related to changes in the

integrity of growth cone formation and function.

In order to elucidate the role of Mena in neuronal cells a comparative

analysis between wild type (WT) and Mena KO (KO) hippocampal neurons was

performed. Intercrosses between heterozygous mice for the Mena mutation were

set up and at day E16.5 embryos were dissected and genotyped, and hippocampal

neurons were prepared as described (4.2.2a). At this stage hippocampal neurons

are undifferentiated. Shortly after plating, cells attach to the extracellular matrix

and pass through specific morphological changes in a defined sequence that

eventually leads to neuronal polarization. Initially neurons are unpolarized (stage1).

After 6-12 hours in culture short neurites appear, followed by the outgrowth of

minor processes that do not show differences in morphology (stage2). Within 48

hours in culture one of the processes elongates more extensively than others: the

establishment of the axon defines cell polarization (stage3). After 12 - 16 days in

culture hippocampal neurons are able to form functional synapses as they have

gained all the features of mature neurons (Craig and Banker 1994). In my studies,

I determined neurite length and cell body area to compare neuronal differentiation

in the wild type and Mena deficient hippocampal neurons. Neurons were followed

by light microscopy at four different time points after plating: 6, 24, 48 and 72

hours (4.2.2b) Phase contrast pictures were captured and data regarding neurite

length and cell body area were collected in seven separate neuronal preparations

and analyzed with Image J 1.29X (NIH, Baltimore, USA) and Stat View 5.0 (Abacus

Concept, Berkley, USA) for statistical analysis. Figure 8A contains representative

images of neurons. The majority of the hippocampal neurons deficient for Mena
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produced primary processes already within 6 hours after plating while neurons

isolated from WT mice merely settled. 6h, 24h and 48h after plating the length of

the primary processes in Mena KO neurons were significantly longer than those in

WT cells (6h, +150%, P<0.001; 24h, +32%, P<0.05, 48h, +37%, P<0.01, one-

way ANOVA, Figure 8B). However 72h after plating the length of the dendritic

processes between Mena KO and WT neurons were similar. Measurement of the

cell body area revealed that Mena KO neurons 6h and 24h after plating are spread

significantly more compared to WT cells (6h, +60%, P<0.001; 24h, +30%,

P<0.001, one-way ANOVA, Figure 8C). 48h after plating measurements of the cell

body area of WT and Mena KO neurons appeared to be equal. Cell body area of

Mena KO neurons seems to reach a plateau in size around 24h in vitro while WT

cells keep spreading for another 24h.

6h 24h 48h 72hA
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Figure 8 Morphological analysis of E16.5 cultured hippocampal neurons.
A) Representative images (light microscopy) of the hippocampal neurons isolated from WT and Mena
KO mice 6h, 24h, 48h and 72h after plating.
B) Neurite length of Mena KO neurons 6h, 24, 48h after plating is significantly longer compared to
the WT cells (P<0.001;P<0.05; P<0.01, one-way ANOVA). At the latest time point examined (72h)
neurite length is comparable between WT and Mena KO neurons.
C) Cell body area of the Mena KO neurons 6h and 24h after plating is significantly larger compared
to the WT cells (P<0.001, one-way ANOVA). At 48h and 72h time points cell body area is
comparable between WT and Mena KO neurons.

2.2.2 Mena does not play a role in glutamate and NMDA mediated

neurodegeneration

A growing body of evidence suggests that in addition to the regulation of

the cell structure and motility, actin filaments may be involved in the modulation

of ion channels function (Johnson and Byerly 1993; Rosenmund and Westbrook

1993; Berdiev et al. 1996). Several actin-binding proteins like gelsolin, spinophilin

and PSD-Zip45 (Homer 1c) have been implicated in coupling actin cytoskeleton

dynamics with neurotransmission (Furukawa et al. 1997; Smith et al. 1999; Usui et

al. 2003). Gelsolin for example is involved in the opening and closure of NMDA

receptors and voltage dependent calcium channels (Furukawa et al. 1997).

Therefore I was interested in whether Mena might play a role in ion channels

regulation through modulation of the actin cytoskeleton.

B C

*P<0.05, **P<0.01,***P<0.001 compared to WT
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In a first approach I decided to investigate the sensitivity of Mena-deficient

cortical neurons to glutamate and NMDA insults (4.2.2g). Cortical neuronal

cultures from E16.5 embryos were established as described (Schubert and

Kaprielian 2001). On day eight of culture, WT and Mena KO neurons were

subjected to a 10 min insult of glutamate or NMDA. Cell viability was evaluated

after three days from the insult via MTS assay (4.2.2h). Cell survival mean values

were calculated from the treatment of five distinct neuronal cultures. One-way

ANOVA analysis did not show any genotype effect neither for glutamate nor for

NMDA excitotoxicity (P= 0.079, one-way ANOVA Figure 9A,B,C).
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Figure 9 Glutamate and NMDA effect on cortical neurons.
A) Increasing concentrations of glutamate resulted in an increased level of apoptotic cell death in all
genotypes: wild type (WT), heterozygous (Het) and homozygous for Mena mutation (KO) B) The
same tendency as in A) was observed upon NMDA insults. C) Summary of glutamate and NMDA
treatments on cortical neurons. The excitotoxic effect of glutamate and NMDA on cortical neurons is
independent from the Mena mutation.
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2.2.3 Mena KO neurons have an increased sensitivity to Menadione

induced oxidative stress

My initial findings that Mena plays no role in the neurodegeneration

processes regulated by NMDA/glutamate receptors, led me to the question

whether this adhesion/actin binding protein might be important in the cellular

response related to non–receptor controlled cell death upon oxidative stress. In

order to address this issue WT and Mena KO cortical neurons, prepared as

described (4.2.2a), were maintained in culture for 48 hours exposed to Menadione

and analyzed via MTS assay (4.2.2h). Menadione is a quinone that is metabolized

by the proapoptotic flavoprotein reductase to semiquinone, which can be oxidized

back to quinone in the presence of molecular oxygen. This cycle is associated with

the increased production of reactive oxygen species that are known for their high

cellular toxicity (Ko et al. 2000). Cytoskeletal components constitute one of the

principal targets of Menadione induced oxidative damage through ATP depletion,

partial mitochondrial depolarization, cytochrome C release, thiol depletion, Tau

dephosphorylation and elevation of the total cytosolic Ca2+ concentration (Thor et

al. 1982; Di Monte et al. 1984; Nicotera and Orrenius 1992).
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Figure 10 The oxidative stress effect on cortical neurons upon Menadione treatment.
Mena-deficient (KO) cortical neurons are more sensitive to the drug insult with respect to wild type
(WT) (-36%, P<0.001, Bonferroni/Dunn t test) and heterozygous (Het) cells (-18%, P=0.001,
Bonferroni/Dunn t test). Increase in the response of these neurons to oxidative stress is gene
dosage dependent.

Effect of Menadione on cortical neurons

***P<0.001 compared to WT
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Mena KO cortical neurons showed significantly enhanced vulnerability to the drug

when compared to the wild type (-36%, P<0.001, Bonferroni/Dunn t test) and

heterozygous cells (-18%, P=0.001, Bonferroni/Dunn t test). Already 50%

reduction of Mena leads to the sensitization of the cortical neurons to Menadione

insult, suggesting that this effect is gene dosage dependent.

2.2.4 Consequences of the Mena mutation on behavior

Communication between telecephalic hemispheres occurs through three

major commissures: the corpus callosum (CC), the hippocampal commissure (HC)

and anterior commissure (AC) (Abbie, 1940). In Mena KO mice axons that are

projecting from inter hemispheric cortico-cortical neurons are misrouted in early

neonates and fail decussation from the corpus callosum. Defects in the

hippocampal commissure and ponto-cerebellar pathways were also observed in

these mice, suggesting an important role of Mena in axon path-finding. To date no

studies have been performed addressing the question whether the axon path-

finding defects result in physiological alterations that can affect the behavior of

the Mena KO mice. Therefore I decided to analyze the behavior of Mena KO mice

and compare it to the findings from the profilin2 KO mice. All the behavioral tests

were performed in the collaboration with the Phenotyping Core Facility (Dr Anne

Cécile Trillat Group), EMBL-Monterotondo

2.2.5 Animals

Mena mice were generated as described (4.4.1) on a mixed genetic

background. To obtain congenic Mena mutant mice, Mena heterozygous animals

(Mena Het) were mated with wild type C57BL/6 (The Jackson Laboratory, Bar
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Harbour, ME) for 10 generations. Heterozygous mice were then intercrossed to

generate animals in which both copies of Mena were deleted.

2.2.6 Breeding strategy and Mena KO mice survival

At the age of three weeks pups born from heterozygous breeding pairs

were genotyped. Our results showed significant loss (-50%) of Mena KO mice

within the first three weeks. Examination of mice revealed that the Mena KO

young mice, mainly males, were often smaller in size and appeared dehydrated

compared to control littermates.

147536Obtained

327432Expected

KOHetWT
            Genotype
number

Table 2 Results of the breeding between mice heterozygous for Mena mutation.
50 % less of the Mena KO mice were weaned with respect to the expected 25% ratio.

2.2.7 Time line of behavioral tests

A group of thirty-one animals composed of wild type, heterozygous and

homozygous Mena mutant mice of different age and gender (Table 3) was

subjected to the panel of behavioral tasks summarized in Figure 12. Mice were

single housed for one week before the tests and remained in such housing

conditions until the end of the experimental series.

62.5 31.2531.25

36 75 14
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4

3

4

1143

1043

1033

Males Females
total

WT

Het

KO

3-4 month  old 10-16 month  old 3-4 month  old

Table 3 Composition of the population of Mena mutant mice subjected to the primary behavioral
phenotyping panel.

To make optimal use of the available animals, we performed the following

sequence of behavioral tasks with the same animals. Animals were tested and

allowed to rest as described in Figure 11.

Day 1 -5
Infra mot

7 days 
single housing 

Day 9-10
open field, 
grip test

 4 days
 rest

3 days 
rest

Day 24-29
operant task

BEGINNING
2-3 days
   rest

7 days rest

Day 17
Rota Rod

Day 21 tail
suspension

test

END

Time

Figure 11 Schematic drawing of the behavioral task panel calendar used to assess Mena mice
primary behavioral phenotype. Resting periods are indicated.

The behavioral task panel was designed to assess basic behavior of Mena KO mice.

Figure 12 groups the assays by type of functions addressed.
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Anxiety/Depression
Open Field
Tail suspension testOpen field

Infra Mot Circadian activity
Grip test
Rota Rod

Locomotion/motor response

Mena

Operant task

Learning/Memory

?

Figure 12 Schematic drawing of the behavioral task panel used to investigate the effect of the
Mena mutation in mice. Tests are grouped according to the functions they address.

2.2.8 Body weight

We observed that at weaning age some pups in the litter were much smaller

than the rest, therefore we decided to follow up the body weight of these mice. In

order to address this issue the body weight of 31 mice (Table 3) was measured

before starting the behavioral task sequence. Our results show that mice carrying

the Mena mutation suffer from significant reduction in body weight (-22%, P<0.05

when compared to the WT group, one-way ANOVA, Figure 13A).
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Figure 13 Body weight measurement
A) Mena-deficient mice (KO) show a significant reduction in body weight when compared to wild
type animals (WT) (-22%, P<0.05, one-way ANOVA).
B) Reduction in the body weight increases with the age of Mena KO mice (-28%, P<0.05, one-way
ANOVA).

Body weight
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Total animals n=31 Males (10-16 month old) n=11

*P<0.05 compared to WT
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Further analysis suggests that the decrease in body weight is even more

pronounced in aging males (-28%, P<0.05 when compared to the WT group, one-

way ANOVA, Figure 13B). In order to explain the origin of body weight deficiency

in Mena KO mice we dissected and weighted front leg muscles and fat pads. No

difference was observed in Mena-deficient mice regarding muscle weight compared

to the wild type group (Figure 14 A, B).
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Figure 14 Front legs muscle weight measurement.
A, B) There is no difference in front legs muscle weight between wild type and Mena KO mice,
regardless of animal age.
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Figure 15 Fat pads weight measurement.
A) Mena KO mice show a tendency to have a reduced fat pad weight. B) The reduction in fat pads
weigh is significant in aging KO mice (-68%, P<0.05, one-way ANOVA).
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Measurement of the fat pad weight revealed a deficit in Mena KO mice (P=0.13,

Figure 15A). Again, the difference becomes more significant in aging males       (-

68%, P<0.05 compared to WT mice, one-way ANOVA, Figure15B).

2.2.9 Home cage activity and circadian rhythm are not altered in

Mena KO mice

The significant reduction in both body weight and survival observed in Mena

KO mice suggested a potential impairment of the basic activity of these mice. In

order to address this issue, total locomotor activity during the light and the dark

phase for five consecutive days was measured using the Infra Mot test system

(4.5.1).

Figure 16 Locomotor and circadian activity of wild type (WT) and Mena KO (KO) mice over a
24h time period for 5 consecutive days. A subset of 8 male mice (n=4 for WT and n=4 for Mena KO,
3-4 month old) was tested. There was no significant difference between the two groups at any day
of the test (two-way ANOVA).
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Neither a genotype effect, nor an interaction between the genotype and time was

observed, suggesting that the general locomotor activity is similar in Mena KO and

wild type mice (Figure 16).

2.2.10 Mena KO mice display decreased locomotor activity in an open

field test

The animal body shows a high level of integration: muscles are innervated

by motor neurons, spinal and cranial motor neurons are innervated by hind brain

neurons in the medulla and cerebellum, hindbrain neurons are innervated by

projections from the midbrain and forebrain and the motor cortex contributes the

highest level of governing. Mena mutants show anatomical changes in the corpus

callosum and the hippocampal commissure, and axons are misrouted in Mena KO

neonates (Lanier et al., 1999). This axon path-finding defect may result in the

impairment of motor function of the Mena KO mice.

In order to study locomotor activity, I placed the animals (Table 3) in the

open field and tracked their path for 60 min (4.5.2). The path length (mm) was

measured every 5 min in both the center and at the periphery of the open field.

The data were analyzed using two-way ANOVA for repeated measures. No

difference in locomotor activity was found between WT and KO mice when the

animals were grouped according to the genotype (Figure 17A). However the

analysis of the 10 -16 month old male mice revealed that Mena KO mice display a

lower locomotor activity when compared to wild type mice (genotype effect

P=0.0179, two–way ANOVA for repeated measures, Figure 17B). It is interesting

to note that both WT and KO mice seem to habituate to the open field similarly

(no genotype/time interaction effect) (Figure 17C).
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Figure 17 Locomotor activity (mm) in a 60 min open field.
A) Measurements of the distance traveled in the open field every 5 min by a total of 31 animals
grouped by genotype. No difference in locomotor activity was observed between wild type (WT) and
Mena KO (KO) mice (P=0.56) B) The group of 10-18 month old Mena KO mice show less locomotor
activity that WTs (P=0.0179, two-way ANOVA). C) P values calculated for the genotype, time and
interaction effects by two-way ANOVA in the 60 min open field test. D) Total path measurement
confirmed no difference in locomotor activity when mice are grouped by genotype only. E)
Significant reduction in the total path length was shown by Mena KO aging males (47%, P<0.05, two-
way ANOVA).
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I also calculated the total path length during the entire 60 min session (one - way

ANOVA). The analysis of the total path length over 60 min confirmed the previous

findings when the animals were grouped according to the genotype (Figure 17D),

and revealed that 10 -16 month old Mena KO males exhibit an impaired locomotion

(47% reduction, P<0.05 compared to WT, one–way ANOVA, Figure 17E).

2.2.11 Motor coordination, balance and motor learning in Mena KO

mice

The expression pattern of Mena in the cerebellum, particularly in the

Purkinje cells, suggests a potential role of Mena in motor coordination and balance.

In order to test this hypothesis, a group of 30 mice (WT n=9, HET n=10, KO n=

11) was subjected to the Rota Rod test as described (4.5.3). I measured both the

latency to fall off the rod and the speed at which the animals fell. I found that

Mena KO mice show significant reduction in the latency to fall when compared to

WT mice, Figure 18A (genotype effect P=0.03, two-way ANOVA for repeated

measures on latency).
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Figure 18 Rota Rod – motor coordination and motor learning
A) Average latency to fall off the rod measured in four separate trials was significantly shorter for
Mena KO animals compared to WTs. B) The impaired performance was seen in Mena KO males
regardless of their age. C) P values regarding genotype, trial and interaction effects by two-way
ANOVA for repeated measures on latency to fall. D) Measurements of the speed at which animals
were falling off the rod confirmed impaired performance in Mena KO mice. E) The genotype effect
results from aging Mena KO males. Nevertheless both WT and Mena KO animals showed an
improvement in motor learning upon training. F) P values regarding genotype, trial and interaction
effect by two-way ANOVA for repeated measures on RPM.
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Detailed analysis of the latency to fall among the animals in the group revealed

that the low performance of males was responsible for this result Figure 18B

(genotype effect P=0.2, two-way ANOVA for repeated measures on latency). In

addition Mena KO mice fell at a lower speed than WT mice, Figure 18D (genotype

effect P=0.02, two-way ANOVA for repeated measures on RPM). Again, this effect

can be explained by the poor performance of 10 -16 month old Mena KO males

(Figure 18E). In addition I found the same significant trial effect for the two

genotypes, measuring both the latency to fall off the rod and speed at which

animals fell, indicating that WT and Mena KO mice have similar motor learning skills

(Figure 18C,F).

2.2.12 Grip test – muscle strength

Impaired performance of the Mena KO mice in the Rota Rod test might implicate a

function of Mena in motor neuron innervation of the muscle. In order to address

the question whether the decreased locomotor activity observed in Mena KO mice

is caused by impairment in muscle function, I performed the grip test in order to

measure muscle strength (4.5.4). A group of 31 mice was subjected to the grip

test (Table 3). The muscle strength of front legs and all four legs was measured in

three consecutive trials. The mean of the three trials was calculated. Mena KO

mice showed a tendency to be weaker when compared to WT animals (P=0.055

Figure 19A). The same tendency was observed in aging Mena KO males (Figure

19B).
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Figure 19 Grip test - muscle strength.
A)  Mena KO mice show a tendency to have a reduced front legs grip strength. B)  The same
tendency as in A was observed in the group of 10-16 month old Mena KO mice. C) There is a
significant reduction in the grip strength of all the legs in Mena KO mice (-17%, P<0.05, one-way
ANOVA). D) The grip strength of all the legs is not significantly reduced in aging Mena KO mice.

When the grip strength of all the legs was considered, I found a significant

reduction in the grip strength of Mena KO mice  (-17%, P<0.05 when compared to

WT mice, one-way ANOVA, Figure 19C). This finding was not confirmed for the

aging Mena KO males since the reduction in this case was not significant (P=0.06,

Figure 19D)

The reduction in muscle strength of the Mena KO mice observed in the grip test

might result from a difference in muscle weight, therefore I normalized the front

grip strength by the front legs muscle weight (2.2.8). In this analysis no genotype

Males (10 -16 month old) n=10Total animals n=31

Males (10 -16 month old) n=10Total animals n=31
Males (10 -16
month old) n=10

Front legs grip strength

All legs grip strength

C D

*P<0.05 compared to WT

A B
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effect was found between wild type and Mena KO animals, regardless of their age

(Figure 20 A, B). This indicates that Mena KO mice are weaker because they have

less muscular mass.
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Figure 20 Grip strength of the front legs divided by front legs muscle weight.
A,B) There is no difference in grip strength between WT and Mena KO mice with this analysis
regardless of the age of the animals tested.

2.2.13 Tail suspension test

To assess whether depression and stress response are affected by the Mena

mutation I performed the tail suspension test. The test consists of a 6 min session

where the animal is hung by the tail (4.5.5) and the mobility time is measured.

Final results are expressed in immobility time by subtracting the mobility time

(animal struggling, curling to get to horizontal position) from the total session

time (240 sec). A set of 31 mice (Table 3) was subjected to the test. Mena KO

mice showed a significant reduction in the immobility time (70% reduction in

immobility time, P<0.001, one-way ANOVA, Figure 21A). In a more detailed

analysis it appeared that this effect was only observed in males (77% reduction on

immobility time, P<0.001, one-way ANOVA, Figure 21B) regardless of their age

(data not shown) but not in females (Figure 21C).

Normalized grip strength of the front legs

Males (10 -16 month old) n=10Total animals n=31A B
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Figure 21 Tail suspension test - depression and stress response.
A)  Mena KO mice show significantly reduced immobility time with respect to WT mice (70%
reduction, P<0.001,one-way ANOVA). B) The observed difference results from the male population
of Mena KO animals (77%, P<0.001, one-way ANOVA). C)  Females deficient for Mena behave
similarly to WT females.

2.2.14 Time spent and distance traveled in the center of the open

field

Our previous results showed that the total locomotor activity of the Mena

KO mice in the open field is reduced (2.2.10). This, together with the observed

significant reduction of the immobility time during the tail suspension test

(2.2.13), might suggest an altered response to stress resulting, for example, in

increased freezing and/or traveling in the periphery of the open field with respect

to WT mice.

 In order to address this issue I calculated the time spent and the distance

traveled by the animals in the center of the open field. The center of the open

field is considered to induce stress, therefore mice tend to avoid this area. My

results did not reveal any difference in the percent of the path traveled in the

center of the open field calculated with respect to the total distance covered by

the animals in 60 min session of the test (Figure 22A). In addition, no significant

difference in time spent in the center of the open field was observed (Figure 22B).

A B

Total animals n=31                        Males n=21                 Females n=11

Tail suspension test

***P<0.001 compared to WT

C
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These results suggest that this type of stress response is not altered in Mena KO

mice.
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Figure 22 Center of the open field – stress response.
A) Mena KO mice show similar percentage of the path traveled in the center of the open field to WT
mice. B) No difference was observed regarding time spent in the center of the open field between
Mena KO and WT animals.

2.2.15 Operant task - learning and memory

Studies of human commissurotomy indicate that the main interhemispheric

communication pathway between hippocampi, the hippocampal commissure, is

important for normal memory and learning functions. Since the Mena mutation has

been shown to cause alterations in the corpus callosum and hippocampal

commissure and in consequence to reduce the hippocampal commissural inputs, I

performed the operant task to address learning and memory in the Mena KO mice.

A group of 20 males (WT n=7, HET n=6, KO n=7) was subjected to the test as

described (4.5.6). No genotype effect was evident looking at the total number of

responses between wild type and Mena KO mice (Figure 23A), and no difference

between the genotypes was noticed with respect to the number of inoperative

responses (Figure 23C). Despite the small size of the group, a tendency to a

A B

Stress response in the center of the open field
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reduced number of operative (correct) responses in Mena KO mice was observed

(P=0.097, compared to WT, one-way ANOVA, Figure 23B). This might suggest

impairment in learning capability of Mena KO mice. In addition I determined the

number of the animals that accomplished 50 or more operative responses during

the entire session. 6 out of 7 Mena KO mice produced less than 50 operative

responses. This further supports my previous observations (Figure 23D).
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Figure 23 Operant task - learning and memory.
A)  The total number of responses (operative and inoperative) measured during the test was
comparable between wild type and Mena KO mice. B) No difference was observed between WT and
Mena KO mice with respect to the total number of inoperative responses. C) A tendency to a
decreased number of operative responses was observed in Mena KO mice compared to WTs. D)
Mena KO mice perform poorer when compared to WTs: 6 out of 7 animals did not accomplish 50
correct responses during the entire experimental session.

A B

D

C

Number of inoperative responsesNumber of operative responsesTotal number of responses

Animals accomplishing 50 or more operative
responses

Operant task - learning and memory



Results

43

2.2.16 Phenotype of Mena KO mice - summary

In order to characterize the role of Mena in mice and the possible relation to

profilin2 I used cell biology methods and behavioral tools.

My data show that Mena-deficient hippocampal neurons settle and spread

faster after plating compared to WT cells. In addition the absence of Mena results

in the production of longer primary processes in hippocampal neurons. These

findings suggest that Mena may act as a negative regulator of neurite outgrowth.

Cortical Mena KO neurons do not show an increased sensitivity towards

glutamate and NMDA excitotoxicity. However, the exposure to Menadione insult

shows a higher sensitivity to oxidative stress of Mena-deficient neurons. The

anatomical defects lead to alterations in behavior in the Mena mutant mice.

Absence of Mena leads to impairment in the locomotor activity, motor

coordination, and balance, and the effect of the Mena mutation is always more

pronounced in aging animals. Furthermore, lack of Mena appears to alter stress

response and impairs learning capability. Summary of our findings regarding Mena

behavioral phenotype compared to the wild type is presented in Table 4.

No difference Tendency Significant difference

Circadian activity
Muscular
strength
Motor learning

Learning and
memory
(KO impaired)

Survival (KO impaired)
Body weight (KO lighter)
Fat pad weight (KO lighter)
Locomotor activity (KO impaired,
age dependent)
Motor coordination and balance
(KO impaired, age dependent)
Reaction to stress (KO very
sensitive)

Table 4 Primary behavioral phenotype of Mena KO mice – summary.
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2.2.17 Comparison of Mena and profilin2 phenotypes in mice. Is there

a common pathway?

In vitro and in vivo studies suggest that Mena and profilin2 interact. The

significance of this interaction remains to be elucidated. The comparison of the

neuronal cell phenotype and the behavior of mice where either Mena or Profilin2

gene is knocked-out might show similarities that could suggest a common pathway

in which the two proteins are involved.

Both Mena and profilin2 KO hippocampal neurons develop faster in vitro

compared to wild type cells. Hippocampal neurons isolated from Mena KO as well

as from profilin2 KO mice (Di Nardo, PhD thesis) settle and spread sooner after

plating producing longer primary processes compared to WT neurons.

A comparison of the behavioral phenotypes of Mena and profilin2 KO mice

reveals a requirement of both Mena and Profilin2 for coordination and balance.

Furthermore both mutations lead to alterations in locomotor activity. However

while loss of Mena leads to lower locomotor activity, profilin2 KO mice are

significantly hyperactive. The behavioral phenotype of Mena and Profilin2 KO mice

is summarized in Table 5.

Activity Mena KO Profilin2 KO
Survival

Locomotor activity
Balance and coordination

Body weight
Muscle strength

Depression and stress response

Reduced
Reduced
Impaired
Reduced
Reduced
Altered

Reduced
Increased
Impaired
Reduced
Reduced

Altered as in Mena KO

Table 5 Summary of the Mena and Profilin2 KO primary behavioral phenotypes in comparison to
the wild type. Profilin2 KO results were supplied by Di Nardo PhD thesis and Pilo Boyl unpublished
data.
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Functional redundancy between profilin1 and profilin2 in mice

The organization of the mouse profilin1 and profilin2 genomic locus is very

similar: both isoforms are encoded by three exons spaced by relatively short

introns and the exon-intron boundaries are absolutely conserved, suggesting that,

given the expression pattern (Introduction), profilin2 might have been derived

from a duplication of the profilin1 gene. Also biochemically profilin1 and profilin2

are similar with respect to their interactions with the main ligands: actin, PIP2 and

poly-L-proline stretches. However studies on profilin1 and profilin2 in mice showed

differences in tissue distribution as well as in ligand binding (Witke et al. 1998; Di

Nardo et al. 2000). In addition KO mice for profilin1 and profilin2 display

dramatically different phenotypes (Witke et al. 2001; Di Nardo PhD thesis).

Is the profilin-actin interaction the primary function that profilin plays in

vivo? If yes we might expect functional redundancy between profilin1 and profilin2

in mice.

One way to address this question is to gradually reduce the amount of

profilin in cells. Therefore I performed intercrosses between mice heterozygous for

both profilin1 and profilin2 mutation aiming at combining the two genotypes. Mice

with 50 % reduction of profilin1 in profilin2 null background are fertile, and do not

show anatomical alterations. This finding suggests that reduction to half amount

of profilin1 and absence of profilin2 are still enough for vital functions. However

further investigation in particular on the behavioral phenotype displayed by these

mice need to be performed.

In a second approach, to address potential functional redundancy between

profilin1 and profilin2 in vivo I used two different knock-in strategies trying to
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express profilin2 from profilin1 locus. In addition, I believed that in this way the

specific function of each of the two proteins might have been elucidated. In the

first targeting construct profilin1 was substituted by the IRES-hP1/mP2 cassette

(4.1.1). Considering the risk resulting from the replacement of mouse profilin1 by

mP2 this strategy enables the conditional knock-in of mP2 upon the removal of

hP1. In fact if mP2 is not equivalent to mP1 the phenotype of this mouse would

simply be profilin1 KO. Therefore the introduction of hP1 should guarantee the

rescue of this phenotype, given that human profilin1 is similar to mouse profilin1

with respect to actin, PIP2 and poly-L-proline stretches binding and is 98%

identitical in amino acid sequence. Moreover the use of hP1 allows an easy and

immediate verification of the functionality of the transgene using a specific hP1

antibody. RT-PCR, but not Norther blot, analysis performed on the tissues that

display the highest profilin1 expression level showed the presence of the hybrid

hP1/mP2 mRNA (data not shown). However, human profilin1 expression from this

allele was undetectable and also the removal of the hP1 did not result in profilin2

expression. These results indicate that profilin1 promoter used for transcription

control from IRES-hP1/mP2 knock-in allele was functional nevertheless protein

translation was either not efficient or abolished. One explanation for the absence

of protein expression from the IRES-hP1/mP2 knock-in allele may lie in the use of

the IRES, which has in general a lower translation initiation efficiency respect to

the standard initiation mechanism from the 5’ cap (Paulous et al. 2003). In order

to exclude the uncertainty of the IRES translational control, I used a second knock-

in approach, where the coding sequence of profilin2 was directly fused to the first

exon of profilin1. Unfortunately also this alternative strategy did not result in a

detectable expression of profilin2 from the profilin1 locus.

In the light of these results, another reason for the lack of protein

expression from both replacing strategies might lie in the design of the targeting

constructs. In both cases the coding sequence of mouse profilin2 (mP2) was used

for the replacement. It has been shown that the presence of introns as well as
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their position can regulate gene expression and might have been important for

translatability of the knock-in alleles (Kuge and Richter 1995). Furthermore, the

low amount of the hP1/mP2 messenger RNA identified might be also explained by

its instability. The use of the BGH 3’UTR and poly(A) signal sequence instead of

the  endogenous 3’UTR sequence of profilin1 might have altered the stability of

the transcript. In order to design a functional knock-in allele, further work will be

necessary to test for the function of intronic sequences as well as profilin1

translational control.

Mena as a negative regulator of neurite outgrowth

The second part of my thesis was focused on the role of the profilin ligand

Mena in neuronal development and mouse behavior. Mena KO mice exhibit

abnormalities in the structure of the corpus callosum and the hippocampal

comissure. Such brain alterations may be due to Mena involvement in the

modulation of actin dynamics, especially in response to the axonal cues and

therefore, to address the effect of the absence of Mena on the cellular level, I

analyzed the phenotype of the Mena KO hippocappal neurons.

Comparing the morphology of the WT and Mena KO hippocampal neurons I

detected significant differences concerning neurite outgrowth and spreading. Mena

deficient neurons appeared to settle and progress quicker after plating when

compared to WT cells. Within the first 48 hours from plating the length of the

primary processes produced by Mena KO neurons was significantly longer than

that of WT neurons. This time period is considered the neuronal   polarization time

therefore my results suggest that Mena is implicated in the inhibition of

polarization. Facing complex environment, growth cones weigh positive and

negative cues to make a correct decision. Axon outgrowth appears to be a

consequence of rapid remodeling of the cytoskeleton just underneath the cell
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surface (Marsh and Letourneau 1984; Bentley and Toroian-Raymond 1986).

Attractive cues seem to stimulate local actin assembly (O'Connor and Bentley

1993) whereas repellent cues provoke the collapse of actin structures (Fan and

Raper 1995). Mena has been shown to concentrate at filopodial tips in the growth

cone (Lanier and Gertler 2000), where it might be involved in the regulation of the

filopodial extension and stability. The results presented here support the theory

that implicates Mena in the regulation of the cellular response to axon guidance

cues. However a direct link between cell surface receptor proteins and the actin

based motility machinery still remains to be uncovered.

Within 24h after plating, the majority of Mena KO hippocampal neurons

were significantly more spread with respect to WT cells. While the body of Mena

KO neurons seemed to reach plateau in size within 24h from plating, WT neurons

were still in the process of spreading for another 24h. These results reinforce the

hypothesis that Mena is involved in actin cytoskeleton reorganization in response

to extracellular cues. Different signaling pathways might link Mena to distinct

cytoskeletal changes.

A growing body of evidence implicates tyrosine phosphorylation in the

downstream response to axon guidance cues (Van Vactor et al., 1998). Mena has

been shown to be phosporylated on a tyrosine residue (Tyr-296) by cAbl kinase

(Lanier et al. 1999). Drosophila data suggest that both Ena (Drosophila homolog

of Mena) and dAbl (Drosophila Abl) participate in growth cone motility control

linking the signals from the cell surface to the actin cytoskeleton. Moreover

attraction or repulsion behavior of the growth cone might be mediated by the

phosphorylation state of these proteins (Wills et al. 1999; Bashaw et al. 2000).

Another mechanism that might involve Mena in cell adhesion process for the

regulation of neurite outgrowth points to the family of Rho small GTPases. Studies

on neurons in vitro indicate that activation of Rac1 and/or Cdc42 increases axon

outgrowth, while activation of RhoA GTPase leads to growth cone collapse or

retraction (Luo 2000). My results on the increase in neurite outgrowth triggered
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by the absence of Mena might be explained by the potential direct or indirect

activation of RhoA through Mena in response to external signal received by the

neuronal growth cone. Alternatively Mena might be important in deactivation of

Rac1 and /or Cdc42. However both of the above hypotheses require further

investigation. A possible approach would be the comparison of the activation state

of the small GTPases RhoA, Rac1 and Cdc42 in hippocampal neurons deficient for

Mena versus wild type cells.

The above alterations in the morphology of Mena KO hippocampal neurons

led to the question whether Mena, as shown for other actin binding proteins, might

as well be implicated in ion channels function through actin filaments modulation.

Glutamate, despite being the predominant excitatory neurotransmitter in

mammalian brain, is also toxic to neurons. The delayed neuronal injury that occurs

after intense glutamate stimulation depends on the calcium influx through the

NMDA subtype of glutamate receptors. Sustained elevation of the ([Ca2+]i) level is

potentially toxic and leads to the disruption of cytoskeletal components, including

actin filaments (Orrenius et al. 1989), implicating calcium in neurodegeneration

disorders from cerebral ischemia to epilepsy and Alzheimer’s disease (Mattson and

Barger 1993; Wasterlain et al. 1993). Comparative analysis of the response of WT

and Mena KO cortical neurons to glutamate and NMDA insults revealed that lack of

Mena has no effect on the vulnerability of these cells. This finding suggests that

Mena is not involved in the actin cytoskeleton changes leading to neuronal

sensitization and apoptosis by the NMDA receptors upon glutamate stimulation as

in case of gelsolin (Furukawa et al. 1997).

In the cell, production of the reactive oxygen species may serve as an

alternative source of calcium load, which consequently can result in cell death.

Menadione insults lead to neurodegeneration through oxidative stress (Laux and

Nel 2001). This mechanism does not seem to be controlled by any of the known

receptors, therefore it addresses the sensitivity of the intracellular components to

superoxide generation and to elevated [(Ca2+)i] levels, mainly in mitochondria.
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Mena KO cortical neurons have shown significantly higher sensitivity to Menadione

when compared to WT cells. Moreover significant reduction in cell survival was

observed in neurons that are heterozygous for Mena gene disruption, indicating

that this effect is gene dosage dependent. The fact that Mena KO cortical neurons

showed a dramatic cell death response to Menadione and no response to

Glutamate/NMDA insults, suggests that Mena might be involved in the response to

oxidative stress, through intracellular machinery possibly influencing actin filament

dynamics or kinetics. Involvement of Mena in the control of neuronal cell spreading

(2.2.1) might be another link to this speculation.

In mouse Mena is required for coordination, balance and stress

response

The alterations in brain structures described in the Mena KO mice (Lanier et

al. 1999) were an indication that lack of Mena might result in behavioral

abnormalities. I therefore decided to study the primary behavioral phenotype of

Mena KO mice.

Intercrosses between mice heterozygous for the Mena mutation revealed a

reduction in the number of Mena KO animals expected at weaning. Statistical

analysis performed on the embryonic population at day 16.5 of embryonic

development resulted in the expected 24% of Mena KO mice while at weaning

50% of Mena KO mice were lost. The Mena KO mice, at this age, mainly males,

were often smaller in size and appeared dehydrated. The reduced Mena KO mice

survival might be caused by impairments in the basic functions of the organism,

like respiration or general motility. In order to address this issue, measurement of

the body weight as well as analysis of the general activity of the animals was

performed. My results showed that the body weight of Mena KO mice is

significantly reduced.
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To follow the locomotor activity of mice I used the Infra Mot and the open

field tasks. Mena KO mice showed no alterations in the circadian activity in their

home cage environment, however the locomotor activity in the novel situation of

the open field was significantly reduced. For this effect the age of the animals

examined was important. Since placing the animal in the open field is considered as

an exposure to stress, lower locomotor activity of Mena KO mice, might result

from a non adequate stress response, anxiety and therefore freezing at the wall of

the open field. Alternatively it could be physiological or coordination impairment. In

order to distinguish these issues, time spent and the distance traveled in the

center of the open field was analyzed. Mena KO mice displayed similar resting time

in the center of the open field when compared to WT animals, suggesting that lack

of Mena is most likely not increasing anxiety. On the other hand to address

physiological impairments the Rota Rod and the grip tests were used.

Measurements of the latency before the animals fell off the rod as well as the

speed at which the fall occurred suggested that Mena KO mice have impaired

motor coordination. This result correlates with Mena expression in the cerebellum

where its absence might result in alterations of motor coordination, postural

control and balance. Once again the age of the animals aggravates the observed

phenotype. Age dependent impairments in locomotor activity, motor coordination

and balance observed in Mena KO mice might be due to neurodegeneration of the

motor neurons. This possibility is consistent with the enhanced sensitivity of the

Mena KO neurons to oxidative stress (2.2.3).

In order to distinguish whether the impairment in locomotor activity, motor

coordination and balance detected in Mena KO mice results from neurological or

muscular defects the grip test was performed. Mena KO mice have shown a

tendency to produce less strength with the front legs when compared to WT

animals. Taking into consideration that this measure might be affected by the

muscle weight, I normalized the grip strength data with the front muscle weight.

No difference was detected with normalized values between WT and Mena KO
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animals, suggesting that Mena KO mice have reduced muscle mass and therefore

tend to be weaker.

The cerebellum is considered as a primary site for motor learning

(Schiffmann et al. 1999). Purkinje cells are the only output neurons in the

cerebellar cortex. The long - term modifications in synaptic strength of Purkinje

cells underlie motor learning (Mauk 1997; Lisberger 1998). Previously discussed

possible alterations in actin filament structure of Mena KO neuronal cells, might

suggest that synaptic plasticity of Mena KO mice and therefore, motor learning

could be impaired (Sakurai 1990; Kano et al. 1992). However, in the Rota Rod

task Mena KO mice have shown similar improvement in performance to WT

animals, suggesting that Mena is not essential for motor learning.

To obtain a more complete phenotype of the Mena KO mice I also

investigated the stress response performing the tail suspension test. Measurement

of the immobility time in this task revealed that Mena KO mice are significantly

less prone to despair and therefore less sensitive to this type of stress. However,

in order to provide conclusive data about this issue other tests, such as forced

swimming test, measurement of the social interactions in aversive environment or

the elevated zero-maze, will have to be performed.

Finally, since the hippocampal commissure is involved in learning and

memory and the disruption of the Mena gene has been shown to cause

abnormalities in the corpus callosum and hippocampal commissure (Lanier et al.

1999), I performed the operant task in order to address the role of Mena in these

processes (2.2.15). Measuring the number of operative (correct) responses

accomplished by the animals during the test session, Mena KO showed less correct

responses when compared to WT mice. To exclude a general lower activity of

Mena KO mice during the test session, I compared the number of the inoperative

(incorrect) responses produced by Mena KO and WT littermates. No difference

between Mena KO and WT animals was observed in this respect. Therefore I can

conclude that lack of Mena impairs the processes of learning and decreases
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memory, however further analyses need to be performed to evaluate fully the

involvement of Mena in these higher brain functions.

Common pathways of profilin2 and Mena in vivo?

For actin cytoskeleton reorganization the physical interaction between Mena

and profilins might be important. In mice, 50% reduction of profilin1 in Mena null

background leads to embryonic lethality due to defects in neuronal tube closure

(Lanier et al. 1999). The majority of reports concerning the functional relationship

between Mena and profilin comes from the invertebrate Drosophila, that carries

only one profilin gene (chickadee). Therefore the identification of the brain specific

profilin2 in mice enables the exploration of the specific role played by Mena in

modulating of the actin cytoskeleton through a more complex profilin prism. Mena

has been shown to associate with profilin2 in brain, however the significance of

this interaction in vivo is not clear (Witke et al. 1998). In order to address the

functional interaction between profilin2 and Mena I compared the neuronal cell

phenotype and the behavior of mice where either Mena or Profilin2 gene was

knocked-out (Profilin2 KO mice were analyzed by Alessia Di Nardo and Pietro Pilo

Boyl, Witke laboratory).

Comparative analysis of the morphology displayed by Mena and profilin2 KO

hippocampal neurons revealed that both KO cells spread quicker after plating and

produce longer primary processes than WT cells, suggesting a faster development.

Both Mena and profilin2 KO mice show significant alterations in locomotor activity.

While Mena KO mice are less active, profilin2 KO mice exhibit 2-3 times higher

activity than WTs in the open field test. Locomotion is generally linked to the

basal ganglia and to the upstream dopaminergic system. Lower activity observed

in Mena KO mice might result from less dopamine inputs reaching the striatum or

from impairments in the signal transmission within GABAergic neurons in the basal
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ganglia. Recent work showed that Mena, profilin and gephyrin colocalize at

inhibitory (GABAergic) synapses of rat spinal cord and at gephyrin clusters

generated in transfected cells (Giesemann et al. 2003), suggesting that they are

probably involved in neurotransmission. Lack of Mena might lead to impairments in

clustering of the GABA receptors and therefore lower locomotor activity. However,

an explanation for the opposite phenotype found in profilin2 KO mice and a

common functional pathway for Mena and profilin2 requires further investigation

using neurophysiological methods such as tissue neurotransmitter content, in vivo

microdialisis and electrophysiology. Profilin2 KO mice, similarly to Mena KO mice

displayed impairments in the motor coordination and balance. In addition both KO

models showed reduced grip strength.

Locomotor activity, coordination and balance are strongly age-dependent in

both Mena and profilin2 KO mice. Interestingly, about 50% of the profilin2 KO mice

die between the age of 6-10 months, apparently by paralysis. Analysis performed

on muscles of these animals revealed the absence of neuromuscular junctions.

There is some evidence that profilin2 might be important in vesicle trafficking,

resulting in a disregulation of neurotransmitter release or reuptake. This may lead

to over-stimulation of neurons in striatum or spinal cord and therefore

neurodegeneration in the long term, which can explain the death by paralysis of

profilin2 KO mice and the observed loss of neuromuscular junctions. Analysis

addressing this issue in Mena KO mice remains to be completed.

Finally, lack of profilin2 and Mena seems to affect the stress response,

however in order to specify what type of stress response is involved and whether

in both cases the outcomes are similar further investigation needs to be

performed.

Comparison of the behavior of profilin2 and Mena KO mice as well as the

morphology of the hippocampal neurons shows a remarkable overlap. This might

indicate the existence of common pathways where both profilin2 and Mena act

that lead to a similar readout in terms of behavior. However further behavioral and
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neurophysiological investigations are needed. Combining and studying both

mutations in vivo by generating a double KO mice would be one of the best

directions to follow.



4. Material and Methods
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4.1 Molecular Biology

4.1.1 Cloning strategy used for targeting of the human
profilin1/profilin2 cassette into profilin1 locus.

Generation of IRES human P1/P2 targeting construct

pIRES-FLRT-A plasmid was used as a base for generating IRES hP1/P2 targeting
construct (plasmid # 267, Witke archive).

      

IVS IRES
BamHI

BGHpA
PmeI

AscI NEO

LoxP site
Frt site

NotI

Sub-cloning of human profilin1 cDNA was performed by PCR amplification of human
profilin1 coding region from parental cDNA (plasmid # 301, Witke archive) using
the following pair of primers:

      BamHI EcoRI
HP1FOR: 5’-GATCGGATCCGAATTCAGCGCCATGGCCGGGTGGAACGCCTAC–3’

     BamHI
HP1REV: 5’-GATCGGATCCTCAGTACTGGGAACGCCGAAGGT–3’

The reaction was carried out in 50µl total volume composed of: 1× PCR buffer
(Promega), 1.5mM MgCl2, 200nM dNTPs, 100nM oligos, 5 units of TaqPol
(Promega). The PCR fragment was subsequently digestested with the BamHI
endonuclease and ligated into the pIRES-FLRT-A plasmid, BamHI digested.

pIRES-FLRT-A
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IVS IRES

BamHI

BGHpA
PmeI

AscI NEO

NotI

hP1
BamHI

In the next step, a PmeI fragment containing mouse profilin2 cDNA from parental
plasmid #32 (Witke archive) was ligated into PmeI digested the pIRES-FLRT-A-hP1
plasmid, downstream of hP1 and upstream of the bovine growth hormone 3’UTR
polyadenylation signal (BGHpA).

        

IVS IRES
BamHI

BGHpA

PmeI

AscI
NEO

BamHI
hP1NotI

P2 PmeI

The purpose of this cloning was to generate the cassette containing IRES-
hP1/P2pA followed by the NEO resistance cassette flanked with Frt sites.
The NA9 plasmid carries a fragment of the profilin1 genomic locus. In order to
facilitate the subsequent cloning steps, a DNA linker including a stop codon and
restriction sites for NotI and AscI was introduced into the NcoI site of NA9
plasmid, which overlaps the profilin1 start codon (ATG). This modification switches
off the profilin1 wild type locus.

Sequences of the STOP-NotI-AscI linker:

      STOP   NotI    AscI
STOP-NotI-AscI sense: 5’-CATGTAAGCGGCCGCGAACGGCGCGCC-3’

              AscI  NotI      STOP
STOP-NotI-AscI antisense: 5’-CATGGGCGCGCCGTTCGCGGCCGCTTA-3’

pIRES-FLRT-A-hP1/P2

pIRES-FLRT-A–hP1
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PacI

BamHI

STOP-NotI-AscI

BamHI
NcoI

ATG
Ex1 Ex2 Ex3

NA9

NotI AskIBGHpA
hPI PII NEOIVSIRES

The IRES-hP1/P2-NEO cassette was recovered from pIRES-FLRT-A-hP1/P2 plasmid
as a NotI-AskI fragment of 4.2kb and cloned into NA9/STOP plasmid. Before ES
cells transfection the targeting vector for the replacement experiment of profilin1
by profilin2 was linearized with PacI.

PacI

BamHIBamHI Ex1 Ex2 Ex3

NA9-STOP

NotI AskIBGHpA
hPI PII NEOIVSIRES

ATGSTOP

NA9-IRES-hP1/P2-NEO targeting vector

NA9-IRES-hP1/P2-NEO targeting construct was subjected to restriction analysis in
order to confirm the expected modification in profilin1 locus.

Figure 24 Confirmation of the presence and position of expected restriction sites in NA9-IRES-
hP1/P2-NEO targeting construct.
NA9-IRES-hP1\P2-NEO targeting vector was subjected to restriction digest with EcoRI, HindIII and
BamHI endonucleases. All the sites are correctly localized.

NA9/STOP
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4.1.2 Cloning strategy used for targeting proflin2 cDNA into profilin1
locus.

Generation of the Profilin2 cDNA targeting construct

The purpose for generating the following targeting construct was to enable
expression of profilin2 gene under control of profilin1 promoter, obtained by direct
fusion of profilin2 coding sequence to the ATG (start codon) of profilin1.

Profilin2 cDNA was generated by PCR amplification on the parental plasmid
carrying the coding sequence for profilin2 (plasmid #32, Witke archive). Reaction
was performed using the following pair of primers:

     NcoI
P2NcoI: 5’-GCAGCCCATGGCCGGTTGGCAGAGC-3’

    NcoIXhoI
P2XhoI-NcoI: 5’-GCTCACCATGGCTCGAGCTAGAACCCAGAGTCTCTC-3’

Introduction of the suitable restriction sites into profilin2 cDNA fragment, during
PCR amplification, makes profilin1 locus accessible for further modifications.
Because of the presence of an endogenous NcoI site in 3’ of profilin2 coding
sequence, the generated PCR fragment was subjected to partial restriction digest
with NcoI endonuclease and cloned into NA9 plasmid NcoI digested.

PacI

BamHIBamHI
ATG
Ex1 Ex2 Ex3

NA9

PIINcoI XhoI NcoI

NA9-P2cDNA

In order to enable expression of profilin2 coding sequence as well as the selection
of targeted ES clones, the cassette composed of bovine growth hormone 3’UTR
and polyadenylation signal (BGHpA) followed by the NEO resistance gene flanked
with Frt sites was cloned in NA9-P2cDNA plasmid XhoI digesed.
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NA9-P2cDNA-NEO

Before ES cells transfection the targeting vector was linearized with PacI.

NA9-P2cDNA-Neo targeting construct was subjected to restriction digest in order
to confirm the expected modification of profilin1 locus.

Figure 25 Restriction analysis of the NA9-P2cDNA-NEO targeting vector.
Resulted restriction pattern confirmed correct localization of all the sites examined (EcoRI, XhoI,
HindIII, BamHI and NcoI).

NA9-P2cDNA
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4.1.3 Validating the recombinase recognition sites by transfections
of Cre and Flp expressing bacteria with NA9-IRES-hP1/P2-NEO and
NA9-P2cDNA-NEO targeting constructs

In order to determine functionality of Frt and LoxP sites present in the targeting
constructs, E.coli bacteria that carry FLP or CRE recombinase gene as an insertion
into their genome were subjected to electroporation with NA9-IRES-hP1/P2-NEO
and NA9-P2cDNA-NEO targeting constructs. Plasmid DNA isolated from bacteria
upon the transfection was analyzed for the proper deletion.

Figure 26 Determination of the validity of the recombination recognition sites by
transformation of the targeting vectors: NA9-IRES-hP1/P2-NEO and NA9-P2cDNA-NEO into Cre
and Flpbacteria.
A) Diagnostic digest of NA9-IRES-hPI/PII-NEO targeting construct with NotI and AscI endonucleases
illustrating deletion of NEO cassette and human profilin1 cDNA after homologous recombination that
occurred in FLP and CRE expressing bacteria.
B) Diagnostic digest of NA9-PIIcDNA-NEO targeting construct with XhoI and BamHI endonucleases
illustrating expected deletion of NEO cassette after homologous recombination in FLP expressing
bacteria.

4.1.4 Genomic DNA isolation from mouse-tail biopsy and PCR analysis
of mutant mice

Mutant mice were genotyped by PCR analysis using specific primers. Genomic DNA
was prepared from a 0.5 cm tail biopsy, taken from 3-weeks old pups, after over
night digestion in 200µl of DNA lysis buffer (50 mM Tris-HCl, pH 7.5, 100 mM
NaCl, 5 mM EDTA, 1% SDS) with 100 µg/ml of proteinase K at 55°C. After the

A B
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lysis, genomic DNA was extracted by virgorous mixing with half volume of
saturated NaCl and centrifugated 10 minutes 14x103rpm.  Genomic DNA was
precipitated from the supernatant with 2,5 volume of absolute ETOH, dried and
resuspended in 300µl of sterile water. The following primer combinations and PCR
programs were used to identify mutations of interest:

Mena knock-out mice

GTF: 5’-AATCGCACACTCTGTCCATATTCC-3’
GTR: 5’-TGCCCACAACTCTGAATGTGTTG-3’
BGR: 5’-TCCCAGTCACGACGTTGTAAAAC-3’

MENA-PCR
Step 1) 98°C   2:00
Step 2) 96°C   0:30
Step 3) 55°C   1:30
Step 4) 72°C   0:30
Step 5) back to step 2) 34x
Step 6) 72°C   5:00

Expected PCR products: 500bp mutant band, 300bp wild type band.

Profilin2 knock-out mice

NestPIIfor:  5’-TCCATTCTGGAGACATAATGG-3’
NestPIIrew: 5’-CAATGCTGGAGTACACAAGG–3
NestLacZ:   5’–CTGCAAGGCGATTAAGTTGG–3’

Profilin2-PCR
Step 1) 98°C   2:00
Step 2) 96°C   0:30
Step 3) 55°C   1:15
Step 4) 72°C   0:30
Step 5) back to step 2) 34x
Step 6) 72°C   5:00

Expected PCR products: 280bp mutant band, 400bp wild type band.
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FLP- recombinase transgene

SD222: 5’-CCCATTCCATGCGGGGTATCG–3’
SD223: 5’–GCATCTGGGAGATCACTGAG–3’

FLP-PCR
Step 1) 98°C   2:00
Step 2) 90°C   1:00
Step 3) 65°C   1:00
Step 4) 72°C   0:30
Step 5) back to step 2) 30x
Step 6) 72°C   7:00

Expected PCR product: 700bp. FLP- recombinase band.

CRE-reombinase transgene

CRE1: 5’-GCCTGCATTACCGGTCGATGCAACGA–3’
CRE2: 5’-GTGGCAGATGGCGCGGCAACACCATT–3’

CRE-PCR
Step 1) 94°C   2:00
Step 2) 94°C   0:30
Step 3) 55°C   0:30
Step 4) 72°C   0:40
Step 5) back to step 2) 30x
Step 6) 72°C   5:00

Expected PCR product: 550bp. CRE recombinase band.

IRES-hP1/P2-NEO knock-in allele

(HP1FOR) #1: 5’-CGAATTCAGCGCCATGGCCGGGTGGAACGCCTAC–3’
(HP1REV) #2: 5’-GATCGGATCCTCAGTACTGGGAACGCCGAAGGT–3’
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Human P1-PCR
Step 1) 98°C   2:00
Step 2) 94°C   0:30
Step 3) 71°C   0:45
Step 4) 72°C   1:00
Step 5) back to step 2) 30x
Step 6) 72°C   7:00

Expected PCR product: 430bp. human profilin1 band.

Profilin2 cDNA knock-in allele

(FRTREV) #5: 5’-CCTATTCTCTAGAAAGTATAGC–3’
(MP2AFOR)#6: 5’-CAGGATCCATGGCCGGTTGGCAGA–3’

Profilin2cDNA/BGHpolyA-PCR
Step 1) 98°C   2:00
Step 2) 96°C   0:30
Step 3) 60°C   1:30
Step 4) 72°C   0:30
Step 5) back to step 2) 34x
Step 6) 72°C   5:00

Expected PCR product: 730bp. profilin2 cDNA/BGHpA band.

4.1.5 Genomic DNA isolation from ES cells and Southern blot analysis

To prepare genomic DNA from ES cells, cells were grown to confluency without
feeder layer in 12 well dishes (Falcon) and lysed by overnight digestion at 37°C in
0,5 ml of DNA lysis buffer (Laird et al.1991)(100mM Tris-HCl, pH 8,5, 5 mM EDTA,
0,2% SDS, 200 mM NaCl) with 100µg/ml of proteinase K. The next day genomic
DNA was precipitated by adding 1 volume of isopropanol, and gentle mixing on the
gyrator shaker, washed in 70% ETOH, dried and resuspended in 100µl of 1xTE
buffer.
For Southern blot assay 10 µ g of genomic DNA were digested with the
appropreate restriction enzyme and separated on a 0,7% agarose gel. DNA
fragments were carried on upward in a flow of alkaline buffer and were deposited
onto the surface of a charge nylon membrane (Gene Screen Plus NEF 976). After
the transfer the membrane was baked at 80°C for 1 hour and afterwards pre-
incubated in hybridization buffer (1% BSA, 1 mM EDTA, 0,5 M Na-phosphate
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buffer pH 7.2, 7% SDS) at 65°C for 30 minutes. DNA probes were labeled by
random priming with [32P]α-dGTP (Feinberg and Vogelstein 1983), added to fresh
hybridization buffer and allowed to hybridize membrane over night at 65°C. Next
day filters were washed four times in wash buffer (1mM EDTA, 40mM Na -
phoshate buffer pH 7.2, 1% SDS) at 65°C and exposed to autoradiographic film
over night or longer at -80°C.

4.2 Cell biology

4.2.1 ES cells cultures and transfection

IB10 embryonic stem (ES) cells were derived from 129sv blastocysts. ES cells
were grown on an embryonic fibroblast feeder layer (EF-feeders) plated on 0.2%
gelatin coated dishes in DMEM containing 15% fetal bovine serum, 2mM L-
glutamine, 0.1 mM nonessential amino acids, 0.1 mM β-mercaptoethanol (Sigma),
100 u/ml penicillin/streptomycin mixture, 1000 u/ml leukemia inhibitory factor
(LIF) at 37°C and 5% CO2.

4.2.1a ES cells transfection

Before transfection, cells were washed twice in PBS buffer, harvested by
tripsinization and after washing in electroporation buffer (10mM HEPES buffer in
DMEM without FCS) resuspended at 1x 107 cells/ml in a final volume of 0.7 ml. Cell
suspension was electroporated using BioRad Gene Pulser set at 250 V/cm and
500µF for one pulse at RT. 30µg of linearized plasmid DNA was used for one
transfection. After pulsing, cell suspension was diluted in 10 ml of complete
medium and plated on 10 cm dishes. Selection started 1 day after transfection in
0.25 mg/ml G418.

4.2.1b ES cell clones selection

After having reached visible size, single ES cells clones were picked and expanded
in 24 or 96 well plates on EF-feeders in selection medium. Once reached a
confluence of 70-80%, ES cells were harvested and for every well 50% was used
for freezing back up aliquots while the remaining 50% was further expanded on
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0.2% gelatin coated dishes for genomic DNA extraction Screening of the ES cells
clones for homology recombination event was performed by Southern Blot.

4.2.2 Neuronal primary cultures a n d  in v i t r o  neurodegeneration
assays

Pregnant females were sacrificed on day 16 of gestation. The embryos were
collected for primary neuronal cultures as described in section. 4.2.1a. The primary
cultures were used to study neurite outgrowth of embryonic hippocampal neurons
and cell susceptibility to apoptosis and necrosis in in vitro neurodegeneration
assays of cortical neurons.

4.2.2a Cortical and hippocampal neurons primary culture

On day 0 of the experiment, E16.5 mouse embryos were collected in 1x Tyrode’s
solution (NaCl – 8 g/L; KCl – 0.2 g/L; MgCl2x6H2O – 0.1 g/L; NaH2PO4xH2O – 50
mg/L; NHCO3  - 1 g/L; Glucose – 1 g/L; all chemicals were purchased from Sigma,
St. Louis, MO). The brains were removed and both cortex and hippocampi were
dissected out and collected separately in 1x Ca2+ and Mg2+-free Tyrode’s solution
(NaCl – 8 g/L; KCl – 0.3 g/L; KH2PO4xH2O – 25 mg/L; NaH2PO4xH2O – 50 mg/L;
NHCO3  - 1 g/L; Glucose – 2 g/L; all chemicals were purchased from Sigma, St.
Louis, MO). The tissue was cut into small pieces and incubated with 0.2 % Trypsin
(Sigma, St. Louis, MO) for 15 min at 37oC. The trypsinization reaction was stopped
by adding a 10 % fetal calf serum medium (MEM Earle’s salts (Gibco BRL, Rockville,
MD) containing 100 µg/ml penicillin/streptomycin mixture and 0.125M Glucose).
The suspension was then treated with DNaseI (0.5 mg/ml; Worthington,
Lakewood, NJ) and cells were dissociated by trituration with a Pasteur pipette.
Dissociated hippocampal cells were resuspended in a Neurobasal medium
containing Penicillin/Streptomycin (100 µg/ml, Gibco BRL, Rockville, MD), L-
Glutamine (0.292 mg/ml, Gibco BRL, Rockville, MD), serum-free B-27 supplement
(Gibco BRL, Rockville, MD). The cell density was determined and the preparation
was diluted to a density of 3x104 cells/ml with the above neurobasal medium and
plated on cover slips (BDH 19 mm,thickness #1) coated with poly-DL-Ornithine
bromamide (Sigma) for neurite outgrowth assay. The cortex preparation was also
diluted to 5 or 10 x104 cells/100 µl with the above neurobasal medium containing
10 % fetal calf serum, dependending on the following neurodegeneration assay.
Cell suspensions (100 µl/well) were plated on pre-soaked Poly-L-Ornitine/Laminin
96-well plates (Becton Dickinson, Bedford MA) and placed at 37 oC in a 5% CO2

incubator.
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4.2.2b Determination of neurite growth by digital image analysis

Mouse hippocampal neurons were prepared and plated as described in section
4.2.2a. For the neuronal differentiation process four time points were taken into
consideration performing the study on neurite outgrowth: 6, 24, 48 and 72 hours
after plating. At each time point neurons were fixed in 4% paraformaldehyde (PFA)
for 15 min, RT and subjected to immunofluorescent staining procedure as
described in section 4.2.2c. In order to determine parameters reflecting neurite
outgrowth, images of neurons were captured at the appropriate wavelength by
Leica DC500 digital camera attached to Leica DMR microscope. Images were
analyzed with freehand line and freehand area selection options of ImageJ
software, statistical analysis of the collected data was performed with two-way
analysis of variance (ANOVA) for repeated measures.

4.2.2c Immunostaining of hippocampal neurons

Neurons were fixed in 4% paraformaldehyde (PFA) for 15min, RT. Aldehyde groups
were quenched in 50 mM amonium chloride for 10 min and the cells were
extracted with 0,1% TritonX-100 for 2 min. The neurons were blocked in blocking
solution (2% FCS, 2% BSA, 0.2% fish gelatin in PBS) for 30 min, RT. Incubations
with primary and secondary antibodies were performed in antibody solution (10%
blocking solution, 0.5% FCS in PBS) for 1h and 30 min respectively.
The following dyes and primary antibodies were used for immunostaining
performed on hippocampal neurons:
TRITC- conjugated phalloidin (Molecular Probes, Leiden, Netherlands), anti- βIII
tubulin (Promega), anti-Tau1 (Roche) anti-MAP2 (Sigma).
The secondary antibodies used were: rhodamine (TRITC)-conjugated AffiniPure
goat anti-mouse (Jackson ImmunoResearch Laboratories, Inc., 1.4 mg/ml) and
fluorescein (FITC) conjugated AffiniPure Goat Anti-mouse (Jackson
ImmunoResearch Laboratories, Inc.) Detailed information about dilution used for
different assays is found in Table 5, section 4.3.2. Images were viewed with a
Leica DMR microscope equipped with epifluorescence.
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4.2.2d In vitro neurodegeneration assays

In order to assess cell viability during apoptosis and necrosis embryonic cortical
neurons were subjected to in vitro neurodegeneration assays. The experimental
design is outlined in the diagram below.

glial proliferation

glial proliferation

Insults

Vitamin K

Insults

Glutamate

NMDA

MTS
assay

MTS
assay

Cortical neurons were prepared and plated as described in section 4.4.2a. Cells to
assess necrosis by applying vitamin K (25 µM) were plated at a 5 x 104 cells per
well density. Cells used to assess glutamate (10 and 30 µM) and NMDA (30 and
100 µM) toxicity due to apoptotic cell death were seeded at a density of 10 x 104

cells per well.

4.2.2e Cytosine arabinoside treatment

After 2 days in culture, neurobasal serum-free medium (50,000 cells per well
plating) and neurobasal medium containing 10% fetal calf serum (100,000 cells
per well plating) were replaced by neurobasal serum-free medium containing
cytosine arabinoside (Ara-C, 10 µg/ml, total volume 200 µl (Sigma, St. Louis, MO),
to prevent astrocytes proliferation.

NECROSIS

APPOPTOSIS
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4.2.2f Oxidative stress - Menadione insults

The necrosis assays were performed on 50,000 cells/well density plates on day 4.
Treatment of cultures with the sodium bisulfite adduct of Menadione for 48 hours
was used as an oxidative stress paradigm. Menadione was added at a final
concentration of 25 µM and cells were incubated at 37 oC for 48hrs; afterwards
cell viability was assessed as described in section 4.4.2h.

4.2.2g NMDA-Glutamate-insults

Glutamate and NMDA insults were performed on 100,000 cells/well density plates
on day 8 of the experiment as described in (Schubert and Piasecki 2001). On day
8 of the experiment the medium was removed from the primary neuronal cultures
and saved in a new 96-well plate. The cells were treated with glutamate (5, 10
and 30 µM) or NMDA (10, 30, 100 and 500 µM) in the HCSS buffer (120 mM NaCl,
5.4 mM KCl, 0.8 mM MgCl2, 1.8 mM CaCl2, 15 mM glucose and 20 mM HEPES, pH
7.4) or with HCSS alone for 10 min at room temperature.  Then the HCSS was
aspirated and the original growth medium was returned to the cells. The effects of
glutamate and NMDA were compared to those of HCSS alone. Cell viability was
evaluated 3 hrs and/or 48 hrs after drug application as described in section
4.4.2h.

4.2.2h Determination of cell viability via MTS

Cell viability was evaluated by CellTiter 96 Aqueous One Solution Cell Proliferation
Assay (Promega Corporation, Madison, WI).  This assay is based on conversion of
MTS tetrazolium compound into a colored formazan product that is soluble in cell
culture medium. Assays are performed by adding 20 µ l of CellTiter 96 Aqueous
One Solution reagent directly to culture wells, incubating for 3 hours and then
recording absorbance at 490 nm with a 96 well plate reader. The quantity of
formazan product measured by absorbance at 490 nm is directly proportional to
the number of living cells in the culture.
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4.3 Biochemistry

4.3.1 Preparation of protein lysates from cell lines and mouse tissues
for western blot analysis

4.3.1a Primary hippocampal neurons and ES cells lysates

Cells were grown in 6 and 12 well plate dishes, coated with poly-DL-Ornithine
bromoamide (0,5 mg/ml) and gelatin (0.2%) respectively. At 70-80% confluence
cells were washed two times with 1x PBS buffer and mechanistically removed from
the culture dishes directly into 1x SDS sample buffer (22 mM Tris-HCl pH 6.8,
0.8% SDS, 4% glycerol, 1.6% β-Mercaptoethanol, Bromphenolblue). The protein
lysate is obtained boiling for 10 min 95°C.

4.3.1b Tissues lysates

In order to prepare tissue lysates, dissected mouse organs were placed in PEB
buffer (20mM Tris-HCl, pH 8.0, 100 mM NaCl, 5mM EGTA, 2 mM EDTA, 0,2%
Tween-20, 0.5 µM APMSF), and dissociated using a douncer. Lysates were
centrifuged for 45 min at 65.000 x rpm at 4 °C Clear supernatant were
transferred into the fresh tubes and aliquots were boiled with SDS sample buffer.
Protein concentration in the extracts was determined with the Bradford reagent
(BioRad).

4.3.1c Western blot analysis

For SDS-PAGE, proteins were diluted in 1x SDS sample buffer, denatured by
heating 10 min at 95°C and subjected to gel electrophoresis. Proteins were
electrophoretically transferred onto a polyvinylidene difluoride (PVDF) membrane
(Immobilon-P, Millipore) using a semi-dry apparatus by applying 20V for 1h. Gel
and membrane were equilibrated in transfer buffer (25 mM Tris, 190 mM Glycine,
20% Methanol pH 8.3) before transfer. After the transfer membrane was
incubated in blocking solution (5% non-fat powder milk dissolved in NCP buffer
(0.15 M NaCl, 20 mM Tris, 0.05% Tween-20) at 4 °C overnight. Primary and
secondary antibodies were diluted in blocking solution to the appropriate
concentrations. To detect the signal between the antibodies incubations, the
membranes were washed 5 times in NCP buffer. The enhanced chemiluminescence
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system (Amersham) was used followed by the exposure to x-ray films (X-Omat AR,
Eastman Kodak Co).

4.3.2 Primary and secondary antibodies used for western blot and
immunochemistry assays

The following primary antibodies were used: anti-Mena, anti-profilin2A, anti-
profilin1, anti-actin. For detection, horseradish peroxidase (HRP) conjugated
secondary goat anti-rabbit and goat anti-mouse antibodies (Pierce). Detailed
information regarding specificity and concentration of the antibody used in the
assays is contained in Table 6.

WB 1:1000

Primary
antibody

Specificity Description
Assay and

 used dilution

anti-Mena

3003ab

anti-profilin1

anti-actin

anti-βIII tub

anti-Tau1

anti-MAP2

2H11ab

mouse profilin 2A peptide - rabbit polyclonal

rabbit polyclonal

N-term rabbit polyclonal
80 and 140kDa
mouse human Mena

human, bovine profilin1

monoclonal clone
# AC-74

mouse,human,
bovine β-actin

mouse monoclonal

mouse profilin 1

mouse, rat, human
 MAP2 mouse monoclonal

mouse monoclonal
# PC1C6

mouse, human
bovine

anti-GFP

monoclonal clone
#5G8

mouse, rat
βIII- tubulin

Immuno-staining 1:200
WB 1:1000

WB 1:500

WB 1:1000

Immuno-staining 1:200

Immuno-staining1:5000

WB 1:2000

WB 1:1000

Immuno-staining1:500

Recombinant rGFP E.coliWt GFP, EGFP

Company

Roche

Sigma

Promega

Sigma

Clontech

Witke Lab

Witke Lab

Witke Lab

Jokusch Lab

Secondary
antibody

Specificity Description
Assay and

 used dilution

TRITC-conjugatedRhodamine ab Immuno-staining1:1000

WB 1:1000

WB 1:1000

Company

Pierce

goat anti mouse
Lackson

ImmunoResearch Lab.
Fluorescein ab goat anti mouse FITC-conjugated Lackson

ImmunoResearch Lab. Immuno-staining1:1000

goat anti mouse

goat anti rabbit

HRP-conjugated

HRP-conjugated

PierceHorse radish
peroxidase ab
Horse radish

peroxidase ab

Table 6 Collection of primary and secondary antibodies that were used for immunostaining and
western blot assays.
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4.3.3 List of dyes used for immunochemistry assays

AlexaTM 488-Phalloidin (FITC) 200u/ml, 1:200 dilution
AlexaTM 594-Phallodin (TexasRed) 200u/ml, 1:200 dilution
Hoechst 33342, 10ng/ml, 1:30000 dilution

All products were purchased from Molecular Probes Europe BV.

4.4 Mice

The following mutant mice were used in this work.

4.4.1 Mena KO mice

Mena mice were a kind gift of Frank Gertler (Departement of biology,
Massachusetts Institute of Technology, Cambridge Massachusetts)

A targeted disruption of the Mena locus was generated through homologous
recombination in AK7 ES cells (Imamoto and Soriano 1993). The β-geo cassette
with a polyadenylation signal (Friedrich and Soriano 1991) followed by the
neomycin cassette replaced exons 2 and 3 of the Mena gene. The resulting locus
produces a fusion protein containing 5’ untranslated region of Mena and the
initiating methionine fused in frame to β-geo cassette. The cloning strategy leads
to a Mena protein null mutant and the expression of LacZ reporter gene under the
control of the endogenous Mena promoter. Correctly targeted clones were
identified by PCR and verified by Southern blot analysis. Germline transmission of
the disrupted allele was verified by PCR and Southern blot analysis. Mena mice
were genotyped by PCR as described section 4.1.4.

4.4.2 Profilin2 KO mice

Conventional Profilin2 knock-out mice were generated by Alessia di Nardo (Witke
laboratory, EMBL- Monterotondo).

In order to disrupt profilin2 locus the β-gal-PGK NEO cassette was introduced into
the exon 3 of profilin2 gene resulting in a profilin2 null allele. The targeting vector
was electoporated into J1 embryonic stem cells. Correctly targeted clones
identified and confirmed by Southern blot and PCR analysis were injected into
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C57Bl/6 blastocysts as described (Friedrich and Soriano, 1991). Western blot
analysis confirmed lack of profilin2 expression. P2 KO mice were genotyped by PCR
using a pair of specific primers, as described in section 4.1.4.

4.4.3 Housing condition of the animals used for primary behavioral
phenotyping

Mice were single housed for one week before the performance of the behavioral
tests and remained in such a housing condition until the end of the experiments.
Animals were housed at a 12 hours light-dark cycle (8am-8pm) and at constant
humidity maintained at 55% in the rooms devoted for Phenotyping Core Facility,
Mouse Biology Program, EMBL – Monterotondo. Food and water were supplied ad
libitum.

4.5 Behavioral analysis

4.5.1 Infra Mot – exploratory activity in the home cage

TSE InfraMot (Technical & Scientific Equipement GmBH) is a system for
determination of circadian and locomotor activity of the mice in their home cage
environment (Figure 27 )

Figure 27 TSE Infra Mot apparatus – measurement of exploratory activity of the small laboratory
animals in their home cage.
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The system uses so called “passive infrared sensors”. These sensors register the
activity of a subject by sensing the body-heat image by the emitted infrared
radiation and its displacement over time. In this way movement in the cage can be
reliably determined. The sensors were assembled on top of animals’ home-cage.
The entire recording session lasted for 24 hours over 5 consecutive days.
Measurements were taken every 5 min. Infra Mot data were analyzed using a two-
way ANOVA for repeated measures (Statview 5.0, Abacus Concept, USA).

4.5.2 Open Field – measurement of the locomotory activity

The most standardized general measure of motor function is spontaneous activity
in the open field (Figure 28). A group of 31 animals (Table 3) was subjected to a
one-hour open field test under standard room light conditions during the light
phase of the circadian cycle. Each session was video recorded. The camera was
placed above four separate open field areas (white, round, 60 cm diameter, made
of formica), which enables for simultaneous record of four animals at the time.
Activity in the open field was quantified using TSE VideoMot 2 (Technical &
Scientific Equipment GmbH) computer software. The activity measuring system
calculates a number of relevant variables: total distance traversed, total number of
movements, time spent in the center of the open field (represents 40% of the
surface of the open field) versus time spent in the periphery of the field and time
spent in certain user-defined areas of the open field. The results were stored as
ASCII file for further statistic evaluations.

     

Figure 28 Open field apparatus – measurements of the locomotory activity
A) Setting of the four open fields for parallel video recording. B )  Computer analysis of the
locomotor activity of the mouse traced in the open field test.

A B
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Open field data were analyzed as follows: distance traveled over 5 min periods
(two-way ANOVA for repeated measures), total path traveled in 60 min. (one-way
ANOVA) as well as time spent and distance traveled in the center of the open field
(one-way ANOVA). Open field areas were cleaned after each round with 10%
ETOH, which prevents the next mouse from being influenced by the odors
deposited in the urine and the feces of the previous mouse.

4.5.3. Rota Rod – motor coordination, balance and motor learning

Rota Rod is the behavioral task used for measuring motor coordination, balance as
well as motor learning. The mouse placed in the Rota Rod apparatus     (Figure
29,TSE Technical & Scientific Equipment GmbH) must continuously walk forward to
keep from falling off the rotating bar. Fifteen minutes before the performance of
the task mice were transferred to the experimental room in order to habituate
them to the environment. The experimental room environment was maintained
constant between the sessions with respect to temperature, humidity and light
intensity. A group of 31 animals (Table 3) was subjected to the test. Five mice at
the time, blindly chosen with respect to genotype, were placed in rotating units
and the apparatus started turning. Three training trials of 60 seconds were
performed as follows:
1) 0 rpm for 60 seconds
2) 4 rpm constant speed for 60 seconds
3) 4 rpm constant speed for 60 seconds
The pause in between training trials and the test was 30 minutes. The Rota Rod
test was composed of four consecutive sessions. During the test sessions rotating
speed was gradually increased over a 5 minutes period according to a
predetermined program ramping up from 4 rpm to a maximum rotation speed of
40 rpm. Latency of falling off the rotating drum as well as rotating speed were
recorded and used as a quantitative measurement of motor coordination and
balance of the animals. Rota Rod data were analyzed using one-way ANOVA. After
each session the apparatus was cleaned with 70% ethanol.
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Figure 29 TSE Rota Rod apparatus for analysis motor coordination and balance and motor
learning.

4.5.4. Grip test - measurement of the muscle strength

In order to elucidate the connection between nerves and muscles the grip test was
used (Figure 30). A single mouse was placed on the grid. The force exerted by the
animal with its limbs while it was pulled by the tail was measured. Two separate
experimental sessions for front legs and all legs with three consecutive measures
each were performed on a group of 31 mice (Table 3). All tested animals were
weighted before the test sessions. Grip test data were analyzed using one-way
ANOVA.

Figure 30 Apparatus for measurement of the grip strength (TSE)
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4.5.5 Tail suspension test

The tail suspension test serves as a depression indicator. Mouse is subjected to
the simple suspension by the tail. Initially, vigorous movements are observed in
order to escape from the tail suspension, but after a few minutes the animal tends
to become immobile. The tail suspension test was performed manually on 31
animals (Table 3). The mobility time recorded with a stopwatch was summed up
and subtracted from the total 6 minutes observation period in order to obtain the
immobility time. The cumulative immobility time is a measure of the animal’s
degree of helplessness (“depression”). Tail suspension data were analyzed using
one-way ANOVA.

4.5.6 Operant Task- learning and memory

Animals were single-housed at least one week before the experiment and their
free-feeding weights were determined. For 2 – 4 days before the test the animals
were given limited amount of food to achieve body weights of approximately 85%
of the initial free-feeding values.
The animals were tested in mouse operant chambers (MED-Associates, Figure 31)
equipped as described (Baron and Meltzer, 2001) at the beginning of the light
phase of the light/dark cycle, between 10.00 am and 8.00 pm (lights go off at 8
pm).
On the first day of the experiment, the mice were trained to drink milk from a
dipper. The dipper training consisted of a single session of 60 min during which
access to nose - poke holes and stimulus lights were blocked with steel panels.
Dippers with milk were presented under a variable time-presentation schedule.
Mice included in the studies accessed the dipper at least 20 times (dipper entries
> 20). The response-acquisition sessions were conducted 24 hrs after dipper
training and lasted for 90 min or until 50 correct responses were obtained. Test is
carried out in complete dark. A single poke in the left hole (for one-half of the
mice) and a single poke in the right hole (for the other half of the mice) resulted in
turning on the light and presentation of the dipper after a 2 sec delay. The
“correct” responses associated with dipper presentation are referred to as
operative responses.  The “incorrect” responses that did not result in dipper
presentation are called inoperative responses; in addition center hole responses
were counted. The time when each response occurred was recorded, allowing for
the evaluation of several potential measures of learning:

-Number of operative, inoperative and center hole responses
-Percent of mice that complete 50 operative responses
-Latency to the 50th operative response
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-Index of curvature for 50 operative responses

A group of 20 males (WT n=7, Het n=6, KO n=7) was subjected to the operant
task. Collected data were analyzed by one-way ANOVA (genotype x latency of 50
operative responses, genotype x number of operative responses, genotype x
number of inoperative responses in time 90 min).

Figure 31 MED-Associate, TSE operant behavior system
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