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Zusammenfassung

Multikriterielle Optimierung in der inversen Strahlentherapieplanung

Die Entwicklung der intensitätsmodulierten Strahlentherapie (IMRT) hat die Möglichkeiten
zur Gestaltung der Dosisverteilung stark erweitert. Aber auch mit IMRT ist aufgrund physika-
lischer Begrenzungen eine gewisse Dosis in Risikoorganen unvermeidbar, so dass in der Be-
strahlungsplanung oft ein Kompromiss zwischen einzelnen Plankriterien geschlossen werden
muss. Diese Arbeit stellt ein neues Optimierungskonzept vor, das diesem Problemcharakter
angepasst ist. Es basiert auf der Tatsache, dass es nicht einen einzigen optimalen Plan gibt,
sondern viele sog. Pareto optimale Pläne, die in keinem Kriterium zu verbessern sind, ohne
ein anderes zu verschlechtern. Es wird eine Datenbank mit allen Pareto optimalen Plänen
erstellt und dem Planer die endgültige Entscheidung über den klinisch sinnvollsten Kompro-
miss überlassen. Wegen des erhöhten Rechenaufwandes wurde zunächst die Dosisberechnung
des vorhandenen Planungssystems durch statistisches Ausdünnen der Berechnungsmatrizen
um den Faktor drei beschleunigt. Zur Beschreibung eines Plans wird ein Vektor mit den
’equivalent uniform doses’ (EUDs) der einzelnen Strukturen verwendet. Dazu wurden zwei
Modelle der EUD analysiert, das sog. ’max & mean’ und das ’generalized mean’ Modell.
Weiterhin wurde ein Verfahren entwickelt, das das ’generalized mean’ Modell der EUD in
die Optimierung eines Plans einbezieht. Zum Abschluss der Arbeit wurde für einen klin-
ischen Beispielfall mit 1 Zielvolumen und 2 Risikoorganen die Datenbank aller Pareto op-
timalen Lösungen generiert und visualisiert. Der Planer kann damit auf einen Blick die
Abhängigkeiten der einzelnen Planstrukturen erkennen und sich für den klinisch besten Plan
entscheiden.

Abstract

Multicriteria Optimization in Inverse Radiotherapy Planning

The development of intensity-modulated radiotherapy (IMRT) has greatly enhanced the pos-
sibilities of shaping the dose distribution. However, because of physical limitations, even
with IMRT a certain dose to organs at risk is unavoidable, so in treatment planning often
a compromise between different plan criteria has to be found. This thesis presents a new
optimization concept that is dedicated to this type of problem. It is based on the fact that
there is no single optimal plan, but many so-called Pareto optimal plans, which cannot be im-
proved in one criterion without worsening another. A database with all Pareto optimal plans
is generated and the decision which compromise is clinically the best is left to the planner.
Because of the higher calculation complexity, the dose calculation of the existing planning
system was accelerated by a factor of three through statistical sampling of the calculation
matrices. To describe a plan, a vector containing the ’equivalent uniform doses’ (EUDs) of
each structure is used. Therefore two EUD models were analyzed, the ’max & mean’ and
the ’generalized mean’ model. An algorithm was developed to include the ’generalized mean’
model in the plan optimization. At the end of the thesis, the database containing all Pareto
optimal solutions of a clinical test case with 1 target volume and 2 organs at risk was gener-
ated and visualized. The planner can see at first sight the dependencies of the different plan
elements and can decide which plan is clinically the best.
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Chapter 1

Introduction

Radiotherapy is, after surgery, the second most important treatment option

against cancer. Every second cancer patient is treated with radiation, as the

only form of treatment or in combination with surgery and chemotherapy. The

goal of radiotherapy is to achieve tumor control without causing complications.

Therefore a high dose of radiation must be delivered to the tumor and, at the

same time, the dose to the surrounding normal tissue must be as low as possible.

A main research topic in radiotherapy is focussed on realizing a high degree

of dose conformality, which is the restriction of the high dose area to the tumor

target volume. During the last decade, a major improvement in this field was

achieved by the development of intensity-modulated radiotherapy (IMRT). As

the name implies, in IMRT the intensities of the incident beams can be varied

and are no longer uniform over the whole aperture. Using this technique, complex

shaped dose distributions can be realized. This allows better sparing of organs at

risks and higher doses to the target volume, especially in cases where the target

volume is concave and directly adjacent to organs at risk. Nevertheless, because of

physical limitations, even IMRT cannot deliver the ideal dose distribution, which

is 100% in the target volume and 0% everywhere else. While IMRT does allow

to achieve somewhat steeper dose gradient between normal tissue and the target

volume, especially for irregularly shaped targets, the steepness of the gradients is

still physically limited; the 20% to 80% penumbra is at least about 6 mm wide.

As a consequence of this, if the target is directly abutting to a critical structure,

the minimum target dose equals the maximal dose in the critical structure. In a
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2 CHAPTER 1. INTRODUCTION

more general sense, the goals of delivering a high dose to the target and a small

dose to the critical structures contradict each other. A realistic objective can

only be to find a suitable compromise between target coverage and normal tissue

sparing. It is part of the treatment planning to find the compromise which is

clinically the best for the individual patient.

In conventional radiotherapy forward planning, the planner usually defines

the treatment setup (e.g. number and directions of beams, wedges, apertures),

lets the computer calculate the resulting dose and changes the setup until the

plan is acceptable. This is no longer possible in IMRT because of the many de-

grees of freedom - the intensities of up to several hundred beam elements have

to be adjusted independently. Therefore the inverse planning scheme is used:

The planner prescribes what dose inside the target volume is desired and what

doses in critical structures can be tolerated, and the computer tries to find the

treatment plan which is optimal with respect to the prescriptions. Most current

inverse planning systems accomplish this task through an iterative optimization

process that grades the plans by a one-dimensional objective function, so the

optimal plan is the one with the best objective function value. It is quite obvious

that characterizing something as complex as a treatment plan by a single number

is extremely difficult. Often the resulting plan is clinically not satisfactory, and

repeated optimization runs with different constraint settings may become neces-

sary. This trial and error process is time consuming and holds the risk of clinical

sub-optimal treatment plans.

This thesis is focussed on a different optimization strategy, in which IMRT

optimization is tackled using a so-called multicriteria approach. As said, there are

several criteria in a treatment plan which cannot be optimal all at the same time.

This makes the plan optimization problem inherently multicriterial: There is no

single best solution - instead, there are many best compromises, also called Pareto

optimal or efficient. A solution is Pareto optimal if it cannot be improved in one

criterion without worsening at least one of the others. As a measure for the dose

inside each structure, the equivalent uniform dose (EUD) is used. It is defined

as the homogenous dose with the same clinical effect as the given inhomogenous

dose distribution. This is potentially of higher clinical relevance than other dose

distribution parameters like the minimum and maximum physical energy dose.
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In the multicriteria concept, a treatment plan is no longer represented by an

abstract scalar objective function value, but rather as a vector containing the

EUD values of each structure.

The goal of multicriteria optimization in treatment planning is to generate a

database containing all Pareto optimal solutions that might be of clinical interest,

and leave the decision which solution is eventually the best for the patient to the

treatment planner. The dose distributions in the relevant critical structures and

in the target volume are controlled separately and interactively. An intuitive

graphical interface assists the planner in browsing the database.

The thesis is structured as follows. Chapter 2 discusses the current state

of the art in inverse planning and the concept of multicriteria optimization in

more detail. Chapter 3 addresses the acceleration of dose calculation inside the

optimization loop. Chapter 4 introduces the equivalent uniform dose, compares

two different EUD models and fits the models to clinical data. Chapter 5 describes

how the EUD is implemented as an optimization constraint. In chapter 6 the

multicriteria concept is used to optimize a simple clinical case. All algorithms

presented so far are utilized, and some other techniques that will be necessary for

more complex cases are introduced as well. Chapter 7 summarizes the presented

material. It also includes an outlook for the future work on this project.
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Chapter 2

The multicriteria approach in

intensity-modulated

radiotherapy - A new

optimization paradigm

Intensity-modulated radiotherapy (IMRT) has a much greater potential to shape

dose distributions than conventional radiotherapy with uniform beams (IMRT

Collaborative Working Group 2001). This capability has been used to tailor

the dose distribution to the tumor target volume in conformal radiotherapy. In

general IMRT allows one to achieve a better dose conformality, especially for ir-

regularly shaped concave target volumes. The improved physical characteristics

of IMRT can lead to improved clinical results, as was suggested in recent clinical

studies (Zelefsky et al. 2000). Although IMRT is already in clinical use at several

hospitals in Europe and many in the USA, there is a lot of potential and need

for further improvements. The first hurdle is the initial implementation and the

commissioning of the IMRT system in a clinical environment. Vendors advertise

turn-key IMRT solutions but the reality may look different. Often the problem is

to link the different elements of the IMRT planning and delivery chain. Current

developments aim at more streamlined and integrated solutions. Another impor-

tant point is that - because IMRT is more complex - it requires an elaborate, if

possible patient-specific verification. More efficient tools are needed to make this

5



6 CHAPTER 2. THE MULTICRITERIA APPROACH

process less labor-intensive and time-consuming. Most vendors now offer IMRT-

ready multileaf collimators (MLC) that are able to deliver IMRT automatically,

without user intervention. The delivery time varies between the vendors but is

generally clinically acceptable. Other developments aim at improving the plan-

ning of IMRT. This involves at the far end the translation of calculated intensity

maps into sequences of MLC positions. On the other hand there is the calcu-

lation of the intensity maps itself. Some recent approaches also try to optimize

the sequence of MLC shapes directly, without going through the intermediate

step of the intensity maps. In most systems IMRT planning is considered as an

optimization problem. The goal is to find the parameters–intensity maps, some-

times also beam orientations (e.g. Pugachev 2001), energy, etc.–that yield the

best possible treatment plan under consideration of various clinical, technical,

and physical constraints. A huge number of current research activities is related

to this problem.

This thesis is focussed on the optimization problem as well. In this chap-

ter, the current status of existing systems and a new multicriteria approach (cf.

Bortfeld et al. 2002) is presented.

2.1 Current optimization strategies

In current IMRT planning systems, following techniques exist to control the op-

timization result:

1. Weight factors

One way is to combine objectives or costlets for the different critical struc-

tures (FR) and the target volume (FT ) using weight factors w (also called

penalties or importance factors). Mathematically, an objective function is

defined that is of the form F = wT FT +wR1FR1 +wR2FR2 + . . .+wKFK . By

using a large value for wT , more emphasis is placed on the target dose, and

vice versa. Figure 2.1 shows dose-volume histograms of optimized IMRT

plans for the treatment of a head and neck tumor. Two extreme values

of the weight factor were used. A problem with this approach is that the

weight factors have no clinical meaning. Suitable weight factors have to be

determined by trial and error, which may be quite time consuming.
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Figure 2.1: IMRT planning for a head and neck tumor using optimization with
weight factors. Plan 1 is the optimization result with weight factors 1000 for
target and 10 for spinal cord and brainstem, whereas plan 2 is the result with
weightings 10 for target and 1000 for spinal cord and brainstem. As can be
seen from this figure, the artificial weighting factors can radically change the
optimization result. The equivalent uniform dose (EUD, see chapter 4) for the
target volume changes from 57.8 Gy for plan 1 to 3.2 Gy for plan 2.
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Figure 2.2: Same case as in Figure 2.1. Here constrained optimization was used.
The dose constraints for the spinal cord and the brainstem were set to 37 Gy.
According to these constraints, plan 1 is mathematically equivalent to Plan 2.
However, plan 2 is clearly better in terms of sparing the brainstem.

2. Constraints

Another approach, which is also used in commercial planning systems, uses

constraints on the maximum dose in the critical structures or the minimum

dose in the target. Here the potential problem is that there is no reward for

reducing the dose in the critical structures below the tolerance. Figure 2.2

shows an example with two critical structures, one of which is dose limiting

for the target volume, but the other one is not. In fact, it is easily possible

to reduce the dose in the brainstem without compromising the dose in any

of the other structures. Hence, although both plans in figure are clinically

acceptable, plan 2 is clearly better.
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A problem with both of the above approaches (weighting and constraining) is that

in general the sensitivity of the optimization result to changes is unknown. That

means, it is unclear how dependent the dose in one structure is on the constraints

in other structures, e. g. the planner does not know how much dose in a critical

structure could be saved if he is willing to accept a certain target dose reduction.

After the first optimization run, the system will come up with a result that

is mathematically optimal with respect to the given objective function and con-

straints. However, this does not mean that the plan is also clinically acceptable.

The reason is that the optimization criteria used in the optimization may not

be clinically relevant. If a physician looks at the plan he or she usually wants

to change the plan here and there. Now the treatment planner has the task to

perform the desired modification with the available ”knobs”, that is with dose

constraints, weight factors, and so on. Often these knobs are not well suited to

do the modification. Several runs are generally required to come up with a suit-

able solution. This trial and error can take a lot of time. This is why optimized

”inverse” planning is not a push-button solution.

2.2 The new optimization paradigm

To solve the above-mentioned drawbacks and problems in IMRT planning, a new

optimization concept was developed in collaboration between the German Can-

cer Research Center (DKFZ) in Heidelberg/Germany, the Fraunhofer Institute

for Industrial Mathematics (ITWM) in Kaiserslautern/Germany, and the Mas-

sachusetts General Hospital (MGH) in Boston/USA. Instead of defining a scalar

objective function as a measure of the quality of the treatment plan, the new

approach is inherently multicriterial. The multicriteria optimization concept was

already used in planning of brachytherapy (Lahanas et al. 1999, Milickovic et

al. 2002), but up to now no solution existed for planning of external radiother-

apy. The dose distribution in each structure (critical structures and target) is

characterized by its own, separate parameter. There are several options of what

this parameter can be. One option would be the sum of quadratic differences

to a specified dose constraint, which is a common criterion in existing planning

systems. In the following, a probably clinically more relevant parameter will be
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used, the equivalent uniform dose (EUD). The EUD is defined as the uniform

dose that leads to the same clinical effect as the actual non-uniform dose in that

organ. Using EUD, volume effects (most noticable in parallel organized organs

like the lung) are automatically considered in the optimization process. The

whole plan is characterized by a vector containing the EUDs of all structures,
−→
F = (FT , FR1, FR2, . . . , FK). What we seek is an optimal compromise between

the target and the critical structures. Now, there is an infinite number of feasible

combinations of those parameter sets. To make the search tractable, we look at

so-called efficient (Pareto optimal) solutions only. These are defined as solutions

in which an improvement in one organ will always lead to a worse result in at

least one of the other organs.

The advantages of this concept are threefold:

1. Artificial weight factors, which have no clinical meaning, are avoided. The

whole concept is based on dose-like values, which are amenable to a clinical

interpretation.

2. Unnecessarily high doses in some of the critical structures, which can occur

in constrained optimization (see above), are avoided by definition of the

efficient (Pareto optimal) solution.

3. Plan tuning can be done interactively using ”knobs” that have a clinical

meaning. It is easy to do a sensitivity analysis and determine the depen-

dency of, say, the target EUD on any of the critical structure EUDs.

The optimization procedure is split into two parts: First, the system automati-

cally generates a database of Pareto optimal plans. Once started, this step does

not require user interaction and can be performed over night. The second part is

the interactive planning session in which the planner explores the database and

finally selects the plan that will be used for treatment.

2.2.1 Database generation

Goal of this stage is generating a database containing a representative system

of all Pareto optimal plans that are of clinical interest. A graphical illustration
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of the problem is shown in Figure 2.3. It is not practible to store all plans

that are Pareto optimal: E.g., all intensities set to zero will lead to zero dose

in every voxel, which is a Pareto optimal plan because due to scatter any dose

improvement in the target will worsen the dose in critical structures. But a plan

with no dose to the target is clearly not of clinical interest. Another extreme would

be a plan with intolerable high doses to vital organs at risk like the brainstem.

So, only a subset of all Pareto optimal plans is of clinical interest. Even with

restriction to this subset, there is an infinite number of Pareto optimal plans

left because the dose distributions continuously change with the intensities and

the difference between two Pareto optimal plans can become infinitesimal small.

If the differences between two plans are not visible to the human eye e.g. by

means of their isodoses or dose volume histograms, it would not make sense

to store both of these plans in the database. Instead, all plans in the database

should be significantly different (resolution criterion) and at the same time nearly

equidistantly cover the whole area of clinical interest (homogeneity criterion).

In practice, the procedure goes as follows: Initially the treatment planner

roughly specifies the desired dose in the target volume and the dose he is willing

to tolerate inside the organs at risk. This will lead to a first treatment plan,

which is stored as the starting solution. Subsequently the planning system will

produce all other plans and build the database according to the criteria given

above. Every plan will be normalized to the desired dose in the target volume,

and for each plan following information is stored in the database:

• F-vector containing the EUD values of all structures

• treatment setup (e.g. number and directions of beams, intensity maps)

• data for dose visualisation (e.g. isodose vectors, dose volume histogram, 3D

dose cube)

• relationship to the neighboring plans

The plans are calculated and the database is filled over night. One can see that

in this concept the definition of the initial constraints is not critical. It is only

used to generate a starting solution that lies somewhere in the area of clinical

interest.
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Figure 2.3: Only a subset of all Pareto optimal solutions is of clinical interest.
It is part of the multicriteria optimization concept to generate a database with
representative solutions covering the area of clinical interest.

This thesis is mainly focussed on the database generation part of the mul-

ticriteria optimization concept. As development basis and calculation platform,

an experimental inverse planning system (Nill 2001) based on KonRad (Preiser

et al. 1997) was used. The algorithms which are presented in the next chapters

were all integrated into and tested with this system. This way there was no need

for re-programming basic functionalities like CT data import, beam configuration

setup and visualization capabilities.

2.2.2 Interactive planning session

After the database has been created, the treatment planner can browse through

it interactively. Figure 2.4 shows the graphical user interface of a search tool that

was developed by mathematicians from the Fraunhofer Institute for Industrial

Mathematics in Kaiserslautern. The screen is divided into four main windows:

The information window shows basic information like patient name and irradia-

tion device. The current plan is shown in the isodose and dose volume histogram

windows. The central part of the program is the navigation window. Here, every

structure of the plan is represented with its own axis used for the EUD values.
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In the example of Fig. 2.4 there are one target and three organs at risk. All

EUD values that can be reached through the database are defining the planning

horizon, shown in the navigation window as the area with gray background. The

planner sees right from the start which EUD value in each organ can reached.

The current plan is highlighted in the navigation window by a polyhedron (purple

line fig. 2.4) defined by the EUD value of each structure. If one or more aspects of

the plan are not desirable (e.g., the EUD in one critical structure is too high), the

planner can immediately go to another plan which satisfy that specific criterion.

This is done by clicking and dragging the EUD marker of the particular organ in

the desired direction. Instantaneously, the system finds the corresponding plan

in its database and updates the information for the other structures and in the

isodose and dose volume histogram windows. This gives the planner immediate

feedback about the sensitivity of the problem. To give more control over the plan

selection, it is possible to ”lock” an organ by clicking on the box at the end of

the respective EUD bar. If an organ is ”locked”, all treatment plans with a worse

EUD than the actual one are excluded from the further database exploration.

The reduced planning horizon is visualized in the navigation window by a differ-

ent shade of the gray background (see also fig. 2.4, where the organ at risk “h3”

is locked).

As mentioned in the database generation section, all plans in the database

have the same target EUD value. This is the reason why there is no “lock” box

for the target bar. But nevertheless the target EUD can be changed. This is done

in a different way than for organs at risk: By dragging the target EUD arrow,

all plans in the database are re-scaled to the desired target EUD. All other plan

components are scaled by the same factor, so the range of EUD values that can be

reached in the organs at risk will change as well. The advantages of this concept

are that there is no restriction for the target dose, and that for every target dose

the complete database of Pareto optimal plans is accessible.

It is not necessary to look at each and every plan stored in the database.

Instead, the interface is designed to guide the planner to the best plan for the

patient in as few steps as possible.
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Figure 2.4: Prototype version of the interactive search tool developed at the
ITWM in Kaiserslautern. In the navigation window, every structure is repre-
sented by a bar indicating the range of feasible EUD values. The dose distribu-
tion of the actual treatment plan is also visualized as isodoses and as dose volume
histogram.



Chapter 3

Acceleration of dose calculation

through importance sampling

In inverse planning for intensity-modulated radiotherapy, the dose calculation

is a crucial element limiting both the maximum achievable plan quality and the

speed of the optimization process. One way to integrate accurate dose calculation

algorithms into inverse planning (implemented in the inverse planning program

used for this thesis) is to precalculate the dose contribution of each beam element

to each voxel for unit fluence. These precalculated values are stored in a big dose

calculation matrix. Then the dose calculation during the iterative optimization

process consists merely of matrix look-up and multiplication with the actual flu-

ence values. However, because the dose calculation matrix can become very large,

this ansatz requires a lot of computer memory and is still very time-consuming,

making it not practical for clinical routine without further modifications.

The time problem becomes even more serious when in a multicriteria setting

many plans have to be created. As a prerequisite for the multicriteria optimization

project, it was therefore indispensable to accelerate the dose calulation algorithm

of the inverse planning system.

This chapter presents a new method to significantly reduce the number of

entries in the dose calculation matrix. The method utilizes the fact that a photon

pencil beam has a rapid radial dose fall-off, and has very small dose values for the

most part. In this low-dose part of the pencil beam, the dose contribution to a

voxel is only integrated into the dose calculation matrix with a certain probability.

15
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Normalization with the reciprocal of this probability preserves the total energy,

even though many matrix elements are omitted. Three probability distributions

are tested to find the most accurate one for a given memory size. The sampling

method is compared with the use of a fully filled matrix and with the well-known

method of just cutting off the pencil beam at a certain lateral distance. A clinical

example of a head and neck case is presented. It turns out that a sampled dose

calculation matrix with only 1/3 of the entries of the fully filled matrix does not

sacrifice the quality of the resulting plans, whereby the cut-off method results in

a sub-optimal treatment plan.

3.1 Introduction

Various inverse treatment planning programs are now commercially available.

Common to all is that they use simplified dose calculation algorithms in the

optimization of the treatment plans. Therefore, in most cases an independent,

accurate dose calculation is recommended as the final step in inverse planning in

order to verify the dose distribution. Although this is not a big burden, it makes

the inverse planning process less efficient than it could be. More importantly, in

geometrically or physically complex cases, e.g. with severe tissue inhomogeneities,

the dose distribution calculated with inverse planning can deviate significantly

from the more accurately calculated distribution, and could therefore be sub-

optimal.

An obvious approach to overcoming this problem is the use of more accurate

dose calculation algorithms within the inverse planning program. However, be-

cause inverse planning is iterative and requires the dose to be calculated in the

order of 100 or more times, this is in conflict with the requirement that inverse

planning should be reasonably fast, and ideally interactive. In a recent publica-

tion it was reported that using a hybrid approach combining one simplified and

one more accurate dose calculation, the number of accurate calculations could be

significantly reduced down to 5-10 (Siebers et al. 2001). Nevertheless, this still

can be quite time consuming.

The inverse planning system that was used as calculation platform for this

thesis uses another method. It calculates the dose distribution only once for
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each pencil beam before the optimization, store it in a large matrix, and access

this pre-calculated dose in each iteration step of the inverse planning procedure.

The system knows the dose in each voxel, and it knows the contributions from

each bixel to this dose. In addition to the accurate dose calculation, this has the

advantage that the lateral scatter can be taken into account also in the projection

step of the optimization where the bixel intensities are updated.

Fortunately, the increased RAM storage capacity of modern computers has

almost made it possible to implement this approach practically. Unfortunately,

we are not quite there yet. Consider a realistic case in which there are 500 beam

elements (bixels) in each of 9 treatment fields, and the number of volume elements

(voxels) for which the dose is to be optimized is 200,000. If each dose value is

stored as a 2 byte integer value in combination with a 4 byte index to the voxel,

the required RAM storage space is in the order of 4-5 Gbyte, which is still too

much for most modern computers. Moreover, the calculation of all these matrix

entries (even it is done only once) and their subsequent access in the optimization

loop would be time consuming.

A simple way to reduce the required storage space and increase the calculation

speed is to calculate and store dose values only for the critical structures and the

target volume. This alone leads to a sevenfold speed increase, depending on the

specific case. For a fast calculation of specific treatment plan parameters (e.g.,

the DVH or TCP/NTCP-values) it was proposed to calculate only a small subset

of the dose points inside a region of interest (Niemierko and Goitein 1990, Lu

and Chin 1993). A speedup of the complete dose calculation is possible with the

help of certain approximations. The crude method is to cut the pencil beams at

a certain radial distance, say 15 mm, i.e., all elements beyond 15 mm radius are

ignored (Cho and Phillips 2001). However, this approach leads to obvious errors

in the scatter dose distribution and in the output factor.

The goal of this chapter (see also Thieke et al. 2002a) is to develop compact

storage and access techniques for pencil beams, particularly but not solely in

inverse treatment planning. The principal idea is to sample the pencil beam dose

distribution according to the pencil beam value. The central part of the pencil

beam is fully sampled, while outer regions are sampled with a certain probability

distribution, i.e., not every element is stored. A weighting is applied to conserve



18 CHAPTER 3. ACCELERATION OF DOSE CALCULATION

the imparted energy, even when a certain percentage of pencil beam elements

is omitted. Because in general many pencil beams contribute to each voxel, the

result is a correctly predicted dose distribution with a small statistical fluctuation.

The approach is similar to Monte Carlo integration techniques.

3.2 Methods

Because dose is defined as the absorbed energy, the dose to a volume element

(voxel) in the patient can be written as the linear superposition of dose contri-

butions from each beam. This concept can be extended to IMRT, where the

contribution from each beam element (bixel) has to be considered. If the IMRT

is delivered with a multileaf collimator (MLC), non-linearities can be introduced

by certain leaf designs, such as the tongue and groove effect (Mohan 1995). How-

ever, these effects are minor and are disregarded here. We therefore write the

dose di at voxel i in the form

di =
∑

j

Dijwj, (3.1)

where wj is the weight (proportional to fluence and intensity) of the j-th

bixel (macro pencil beam). The dose calculation matrix D is a pre-calculated

matrix where element Dij is the fractional dose contribution from a normalized

pencil beam j to the voxel i. Typical resolutions are (1 cm)2 per bixel and (2.5

mm)3 per dose voxel, resulting in an order of magnitude of 109 Dij elements for a

typical clinical case. If higher resolutions are required, the number of Dij elements

increases correspondingly. As mentioned in the introduction, a computer cannot

handle this amount of data easily, even if the latest generation is used.

Let us consider a particular macro pencil beam with index j. We should recall

that a pencil beam has a rapid lateral dose fall-off, i.e., the value of Dij strongly

depends on the radial distance r between the central ray of the pencil beam j

and the voxel i. In fig. 3.1 the lateral dose distribution of a 15 MV (1 cm)2 pencil

beam in water is shown at a depth of 10 cm (solid line).
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Figure 3.1: Dose distribution of a (1 cm)2 15 MV photon pencil beam in water
at a depth z=10 cm.

The dose was calculated by a clinically approved pencil beam algorithm de-

veloped at the German Cancer Research Center by Bortfeld et al. (1993). At a

radial distance r = 25 mm the dose has already dropped to less than 1% of the

maximum value at the central ray. Therefore a simple approach for reducing the

size of the matrix D is to omit all Dij elements above a certain radial distance

or below a certain dose value. However, the error introduced into the dose calcu-

lation by using such a reduced matrix is quite noticeable. This can be seen from

the dashed curve in fig. 3.1, which represents the integral of the pencil beam

up to the radial distance r and which can be considered as the output factor. If

the lateral cut off distance is set to 25 mm, the calculated output factor does not

increase for fields with radii larger than 25 mm. This can lead to errors of 16% for

large fields. To keep the error of the dose calculation below 4%, the pencil beam

must be taken into account up to a lateral distance of 82 mm. Wherever the term

“fully filled Dij matrix” is used in the following, it refers to a dose calculation
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matrix where all elements up to a radial distance of 82 mm from the voxel i to

the central ray of the bixel j are accounted for.

In this chapter a new approach is proposed for omitting a large percentage

of the Dij elements without causing the problems associated with the cut-off

approach. The idea is that, starting from a radial distance r0, we consider Dij

elements only with a certain probability Pij. With a probability of 1 − Pij the

element Dij will be disregarded. Elements within a circle of radius r0 are consid-

ered with a probability of Pij = 1. To preserve the total energy, the element Dij

is multiplied by P−1
ij , i.e., instead of Dij we use

D̃ij = [Dij]Pij
· P−1

ij . (3.2)

The subscript Pij indicates that the element Dij is integrated into D̃ij with the

probability Pij.This approach ensures that even outer regions of the pencil beams

are represented, and the energy delivered by the beam is completely enclosed in

the Dij matrix. The tradeoff for reducing the number of matrix elements this way

is random noise in the dose distribution, but it can be expected that the noise is

not very high due to two reasons: First, the sampling is only done in low-dose

regions, and second, usually for every voxel many pencil beams contribute dose,

so many noise patterns are superimposed and the resulting noise level is lower

than for one single pencil beam. For this to work effectively the random sampling

has to be performed individually for each pencil beam; a fixed sampling pattern

would introduce artefacts in the resulting dose distribution.

Both the number of the resulting D̃ij elements and the noise level depend

on the radius r0 and the probability distribution used for the sampling outside

r0. Three types of probability distributions have been tested: constant sampling

probability, linearly decreasing probability beginning with P = 1 at r = r0, and a

sampling probability that is proportional to the original pencil beam dose value

at the particular voxel (also beginning with P = 1 at r = r0). The latter leads to

a constant value of D̃ij at radii larger than r0. All three modes of sampling are

graphically compared in fig. 3.2.
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Figure 3.2: Sampling of the (1 cm)2 pencil beam with (a) constant, (b) linear
decreasing, and (c) dose proportional sampling probability. The voxel resolution
was set to 2 mm, the sampling starts at r = 25 mm. The probability distribution
is shown as a dashed line. For each probability distribution, an exemplary set of
nine sampling values is shown as dashed bars.



22 CHAPTER 3. ACCELERATION OF DOSE CALCULATION

The correlation between the number of D̃ij elements and the accuracy of dose

calculation was investigated for all three sampling modes, as well as for the cutoff

technique. Accuracy means the degree of agreement between the calculations

with the reduced matrices and those with the full dose calculation matrix. As

stated above, nonlinear effects of the beam delivery device like the tongue and

groove effect are disregarded in the Dij approach in general. To find the optimal

sampling parameters for clinical use, treatment plans (including beam profiles)

were compared resulting from inverse planning with fully filled and reduced ma-

trices. As a reference standard for calculating the accuracy of each method the

approved pencil beam algorithm mentioned above was used. The existing inverse

planning system (Nill 2001) was enhanced by the option of using the pencil beam

sampling technique. In both cases—full and reduced matrices—the optimized

fluences were transferred to the independent, approved dose algorithm (Bortfeld

et al. 1993) and the dose was recalculated. In the case of the cutoff technique, the

dose (and the intensity) was scaled to the correct mean target dose because, for

reasons mentioned above, this techniques did not yield the correct absolute dose

level. Several clinical cases (a head and neck tumor shown in fig. 3.3, a prostate

cancer case and a skull base tumor) have been tested, and various settings for

r0 (20, 25 and 30 mm) and the cut-off value (35, 40, 45, and 50 mm) were used

for the optimization to find out the maximum reduction of the dose calculation

matrix not affecting the quality of the resulting test plans.
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Figure 3.3: 3D model and exemplary CT slices of the tested clinical head and
neck case.

3.3 Results and Discussion

In fig. 3.4a the dose profile of a 15 MV (10 cm)2 photon beam in water at a

depth of z=10 cm is shown, calculated by different matrices: first by a full Dij

matrix, and further by reduced D̃ij matrices with approx. 1/3 of the original

size (r0=25 mm, sampling with dose-dependent and constant probability). Using

linear falling sampling probability for the matrix reduction, the quality of the
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results falls between the constant and the dose dependent sampling. As can be

seen from the figure, dose dependent sampling leads to the lowest noise level for

a given number of D̃ij elements. This fact was validated for different field sizes

and D̃ij sizes, not shown here. These results can be explained by the different

sampling densities and error distributions along the lateral axis (see also fig. 3.2):

for dose dependent sampling, all D̃ij values outside r0 are equal to the dose

at r = r0; the maximum error occurs at large radial distances with very small

dose contributions. At the inner part of the sampling area, beginning at r0, the

error is very small. Using a constant sampling probability, the error close to

r0 is higher; the denser sampling in the outer regions (in relation to the dose

dependent sampling) cannot compensate for this. Sampling with strictly linear

decreasing probability suffers from the fact that, for practical settings of r0 and a

fixed matrix reduction factor, the sampling probability drops to 0 before a radial

distance of 82 mm has been reached. In the following only the dose dependent

sampling will be used.
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Figure 3.4: Dose profile of a (10 cm)2 15 MV photon beam in water at a depth
z = 10 cm, calculated (a) by a full and by sampled matrices (constant and dose
dependent sampling probability) and (b) by a full, a dose dependent sampled and
a cut-off matrix.
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Fig. 3.4b again shows the dose profiles for the full and the dose-dependent

sampled matrices and compares them with the cutoff technique. The cutoff value

was set to r = 45 mm, so the cutoff matrix equals the size of the sampled

matrix. The profile resulting from the cutoff matrix is smooth, but consistently

underestimates the dose. Because it equals 0 for all points further than 45 mm

from the geometrical field border, the underestimation of the scatter cannot be

completely corrected by scaling the profile to the correct integral dose. In contrast

to that, the profile resulting from the sampled matrix shows little noise (about

3% of the maximum dose value), but by averaging over a small area the dose is

correctly predicted even in the outer regions.

Using the dose dependent probability for sampling has an additional potential

for reducing the matrix size: Because all sampled values at a fixed radiological

depth have the same value, it is no longer necessary to store every dose value sepa-

rately; instead, this value can be stored only once, together with all its associated

voxel indices. This technique is not implemented yet.

The optimization for the three different clinical cases shows that the optimal

setting for the dose-dependent sampled matrix D̃ij is r0=25 mm. With this

setting, the treatment plan is clinically equivalent to the respective plan achieved

by the fully filled matrix in all three tested cases. As criteria the dose volume

histograms and the isodoses were used. The head and neck case was the most

challenging due to the tumor size and the problematic locations of the organs at

risk; the other two cases could be optimized with even smaller sampled matrices

(i.e., D̃ij matrices with r0=20 mm) without degrading the plan. The head and

neck case is presented in detail and the results of the three different (full, sampled

and cutoff) optimization methods are compared. Again, for the cutoff technique

we used a cutoff value of 45 mm for a comparable matrix size. Table 3.1 lists

the key data for the three methods. The resulting optimization time of 45 min is

clearly not satisfactory for routine clinical use. Sampling the matrix reduces the

memory requirements and speeds up the calculation by a factor of approx. 3. The

quality of the final treatment plan is not affected, see also the DVH-comparison

in fig. 3.5a.

The maximum difference observed between the two DHVs is a dose deviation

of 2.2% of the mean dose at the 80% volume level of the spinal cord. In contrast
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Figure 3.5: Dose-volume-histograms for the head and neck case, extracted from
dose distributions optimized (a) by a fully filled and a sampled matrix and (b)
by a fully filled and a cutoff matrix.
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Full Sampled Cutoff
(ro = 25mm) (at r = 45mm)

Number of Dij elements ˜110,000,000 ˜35,000,000 ˜37,000,000
Total memory used (MB) ˜860 ˜ 380 ˜ 400
Optimization time (min) ˜ 45 ˜ 15 ˜ 15

Mean dose (Gy) in:
Target 60.0 60.0 60.0
Boost 61.9 62.0 62.3
Spinal Cord 22.5 22.4 24.0
Parotid 18.9 19.0 18.3
Brainstem 12.9 12.9 13.1

Table 3.1: Comparison of the optimizations for the head and neck case by differ-
ent dose calculation matrices. All computations were done on a Compaq Alpha
workstation 600 MHz.

to this plan, the simple cutoff approach results in a significantly degraded plan,

with a higher dose to the spinal cord. This is also shown in the DVH-comparisons,

see fig. 3.5b. Here the maximum difference, again at the 80% volume level of the

spinal cord, is 16.4%.

Figure 3.6: Transverse CT slices of the head and case. The outlines of the horse-
shoe formed target and the spinal cord are shown as black lines. The isodoses
of the dose distributions optimized (a) by a full, (b) by a sampled and (c) by a
cutoff matrix are labelled with the absolute dose values in Gy. Additionally, the
directions of the 7 beams are shown.

Fig. 3.6 shows a transverse slice through the neck region, showing the outlines

of the target and the spinal cord, together with the isodoses and the 7 beam

directions. The 30 Gy isodose inside the spinal cord is almost identical for the full
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and the sampled matrix optimizations, but is located more centrally for the cutoff

matrix optimization. Because the dose level rises from inner to outer portions of

the spinal cord, this is another illustration of the higher dose deposition in this

area.

The degrading of a treatment plan optimized by a cutoff matrix is due to the

fact that the optimization algorithm cannot consider scatter contributions to an

organ at risk if the central ray of a pencil beam is further away than the cutoff

distance; so the algorithm tends to over amplify such a pencil beam to gain the

required dose in the target volume.

Because the dose distribution is given by eq. 3.1, it is clear that a dose calcu-

lation matrix Dij with 1/3 of the original size results in a three-fold speed gain

of the dose calculation. However, it has to be noted that also the number of iter-

ations determines the overall length of the optimization process. Using sampled

dose calculation matrices does not increase the number of iterations, although

there are small statistical fluctuations which could have slowed down the con-

vergence. This slow down does not occur because in the iterative update of the

fluence matrix many voxels are projected to each bixel, averaging the noise out

(see also Fig. 3.4b).

The largest deviation between the DVHs for the different techniques is ob-

served in the head and neck case. Also in the other two cases (not shown here)

the sampling leads to better or at least equivalent results compared to the cutoff

method (with no differences to full-matrix optimization in the DVHs and iso-

doses for r0 =25 mm). It should also be noted that the sampling technique shows

excellent agreement with the “exact” values for both relative and absolute dose

distributions. The cutoff approach does not calculate the absolute dose (i.e., the

output factor) well.

The following calculations shown in this thesis were performed with the op-

timal setting (r0=25 mm for a 1 cm2 pencil beam) found in this investigation.

In future, tests on more clinical cases should be performed to ensure that this

parameter setting is always sufficient to gain an optimal treatment plan. The

results obtained so far, especially for the complicated head and neck case which

is a real challenge for every inverse planning system, indicate that this is likely

to be the case.
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Compared to measurements, the currently implemented dose calculation algo-

rithm achieves the same accuracy as the pencil beam algorithm by Bortfeld et al.

(1993), which is 2-3% for the wide majority of clinical treatment sites. In some

cases with complex tissue inhomogeneities (e.g., in the lung and the nasophar-

ynx), the error can be higher. For these cases, more sophisticated dose calculation

algorithms like superposition or Monte Carlo methods are preferable. These slow

calculations have to be performed only once to build the matrix Dij while the

following optimization loop remains unchanged. Therefore it will be more time

consuming to build the matrix (for the implemented pencil beam algorithm the

build time is about 8 min on a Alpha 600 MHz workstation), but the time needed

for the optimization process itself will not increase. The sampling technique pre-

sented in this chapter is applicable wherever the dose calculation is performed

through a precalculated matrix holding the dose contributions from every bixel

to every voxel, independently from the algorithm used for the generation of the

matrix.



Chapter 4

The equivalent uniform dose:

Models and parameters

Introduced in section 2.2, the concept of equivalent uniform dose (EUD) is a

central component of the multicriteria optimization project. Each treatment

plan is represented by a vector containing the EUD values of each structure. The

definition of Pareto optimality is based on the EUD values, and the EUD is used

in the interactive planning session to navigate through the database of treatment

plans.

This chapter presents the existing “generalized mean” EUD model and devel-

ops the new “max & mean” EUD model. Their parameters are determined by a

fit to published clinical tolerance doses, and their predictions for different treated

volume fractions are compared and discussed.

4.1 Introduction

Even with the most sophisticated radiotherapy techniques it is impossible to

deliver a perfect homogeneous dose to the target volume and no dose to healthy

normal structures around it. The dose in each structure will always have a more

or less inhomogenous distribution, given by a vector d containing the dose values

of the voxels. Those vectors are not well suited for plan optimization: If there

are two plans where one element of d is higher in the first plan and another

element of d is higher in the second plan, it is hard to decide which plan is

31
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better in a clinical sense. Therefore it is helpful to reduce the complex three-

dimensional dose distribution to a clinical more meaningful scalar value that

allows the ranking of different distributions. One attempt to accomplish this is

based on the ”effective dose” (Brahme 1994) or ”equivalent uniform dose” (EUD)

(Niemierko 1997, Niemierko 1999). It is defined as the homogenous dose in an

organ that has the same clinical effect as the given, arbitrary inhomogeneous dose

distribution. In organs at risk the effect of different spatial dose distributions

strongly depends on the organ type. Some organs tolerate very high dose values

in small sub-volumes, if the rest of the organ is spared. These organs have a

parallel structure: the function is preserved even if a certain fraction of the organ

is destroyed. Typical examples are the lung (Kwa et al. 1998a, Theuws et al.

1998), the parotid glands (Eisbruch et al. 1999), the kidneys and the liver. In the

other category of organs, high doses are harmful even if they are limited to small

volumes - the organ structure is serial. Typical examples for this are the spinal

cord and the bowel. The dependency of the tolerance dose on the treated volume

is called “volume effect”. For different clinical endpoints, there can be different

EUD values for the same dose distribution inside an organ, e.g. for pneumonitis

and fibrosis in the lung.

The clinical effect of tumor control in the target volume depends on the killing

of all clonogen tumor cells. Underdosage even in a small area of the target

volume might lead to the survival of some cancer cells and failure of local tumor

control. Therefore the EUD in the tumor target volume will mainly depend on

the minimum rather than the maximum dose values.

It should be noted that the concept of equivalent uniform dose does not tell

anything about the probability of a clinical effect. The EUD is still a dose, usually

given in Gray (Gy). The calculation of the tumor control probability (TCP) and

the normal tissue complication probability (NTCP) requires further biological

modelling. However, the EUD can serve as an input parameter for such models.

For NTCP models, this is equivalent to the ’DVH reduction technique’ by Kutcher

et al. (1991). Typical TCP/NTCP models have a sigmoidal shape when plotted

as a function of EUD.

There are two basic approaches for modelling equivalent uniform dose and

TCP/NTCP: the mechanistic and the phenomenological approach. The first one
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is based on biological considerations, e.g. cell kill statistics. The latter merely

tries to find analytical functions that reproduce given clinical data. The mecha-

nistic approach is inherently more satisfying, but struggles with the complexity

of biology. E.g., the mechanistic NTCP model for parallel organs by Jackson et

al. (1993) produces an unrealistic NTCP curve that is almost a step function.

Only with additional parameters identified with inter-individual heterogeneity of

functional reserves and radiosensitivities, the slope becomes shallower. Unfor-

tunately, often these parameters are unknown and cannot be determined inde-

pendently from the model. At the present time the phenomenological approach

seems to be more appropriate for practical use.

One drawback of all existing EUD models to date is that the spatial loca-

tion of the dose is not taken into account. For an organ at risk with complex

substructures it probably has a big impact on the clinical effect where exactly

a high dose area is located. Taken the heart as an example, a high dose area

in the ventricle with high blood flow should do no harm to the organ, whereas

the same dose located at one of the valves might cause complications. Future

EUD models might consider the localization of the dose values inside an organ,

e.g. by assigning weights to each voxel. At the present day the data basis, i.e.

information about 3D dose distributions and their clinical effects, is too small for

such sophisticated models. It can be expected that with the broad introduction

of 3D planning systems and computerized documentation more clinical data will

become available, and the validity of EUD and TCP/NTCP models will improve

(Trott 1996).

4.2 The generalized mean model

This section introduces the EUD model that is most widely used in radiotherapy

research. It was formulated by Niemierko (1999) in the form

EUD(d) =

(
1

N

N∑

i=1

da
i

)1/a

. (4.1)

N is the number of voxels in the structure of interest, d = (d1, .., dN) the dose

distribution inside the structure, and a is an tissue-specific parameter. Originally
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Niemierko formulated the EUD for tumor volumes using a linear-quadratic cell

survival model (1997). Eq. 4.1 is valid for both tumors (without considering

fractionation) and normal tissues. While it holds its original meaning for tumors

(Niemierko 1997), it is a phenomenological model for organs at risk. It can be

derived from the power-law relationship that describes the dose-volume effect

(Lyman et al. 1987, Mohan et al. 1992, Kwa et al. 1998b):

TD(ν) = TD(1)/νn. (4.2)

Here, TD(1) is the tolerance dose if the whole organ is treated uniformly,

and TD(ν) is the tolerance dose if the fraction ν is treated and (1 − ν) gets no

dose. The magnitude of the dose-volume effect is described by the parameter n,

whereby n = 1/a.

The EUD as formulated in eq. 4.1 is the “generalized mean” of the dose

values. The mathematical properties of the generalized mean are described in

the Handbook of Mathematical Functions by Abramowitz and Stegun (1968).

Some important properties are:

• If a is negative infinity, the EUD equals the minimum dose.

• If a is 1, the EUD equals the mean dose.

• If a is positive infinity, the EUD equals the maximum dose.

• It is convex (see next chapter for details).

The influence of the parameter a on the EUD is visualized in Fig. 4.1 (taken

from Wu et al. 2002). Usually target type structures will have a large negative

tissue parameter a, so the EUD is mainly determined by the lowest dose values.

Parallel organized organs at risk like the lung have a parameter near 1 and an

EUD near the mean dose. The parameter for serial organs like the spinal cord is

large positive, so the highest dose values have the biggest impact on the EUD.

4.3 The max & mean model

In this section an even simpler approach to describe the EUD in organs at risk is

formulated (see also Thieke et al. 2002b). It is based on the work by Dale and
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Figure 4.1: The left panel shows the dose volume histogram of the dose distri-
bution in some structure of interest. On the right panel, the EUD of this dose
distribution is plotted as a function of the tissue parameter a. Taken from Wu et
al. (2002)

Olsen (1997) who reported that the normal tissue complication probabilities of

purely serial and purely parallel organs at risk correspond to the maximum dose

and the mean dose in the organ, respectively. For organs with a mixed serial and

parallel structure, Dale and Olsen (1997) suggested to use a linear combination

of the maximum and the mean dose. In the following, this is called the max &

mean approach. The organ-specific parameters for this approach are determined,

and the hypothesis is investigated and tested.

The following linear max & mean model is used to represent the EUD:

EUD = αDmax + (1− α)D. (4.3)

Dmax is the maximum and D the mean dose of the radiation delivered to the

organ. α is an organ-specific parameter ranging from 0 to 1.

The values of α and EUD were calculated by a fit to the Emami tables (Emami

et al. 1991). In that paper tolerance doses (TD) for various organs were presented

depending on the irradiated relative volume ν (whereby ν takes values of ν1 = 1/3,

ν2 = 2/3 and ν3 = 1) and on two levels of complication rate (5% and 50%, in

the following specified as TD5 and TD50) 5 years after treatment. For each

complication rate, the associated maximum and mean dose can be determined

straightforward: Because the fraction ν gets the dose TD and the fraction (1−ν)

gets no dose, the maximum dose is given as Dmax = TD and the mean dose is

given as D = ν · TD.
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From these data the organ-specific parameter α can be deduced, which should

be independent of the complication rate, and two EUD-values (EUD5 and EUD50),

applying to a complication rate of 5% and 50%, respectively. To perform the fit,

we rewrite the max & mean model as α(D − Dmax) + EUD=D and build an

overdetermined equation system for each individual organ:




(1− ν1) 1 0

(1− ν2) 1 0

(1− ν3) 1 0

(1− ν1) 0 1

(1− ν2) 0 1

(1− ν3) 0 1




·




α

EUD5

EUD50


 =




ν1 · TD5(ν1)

ν2 · TD5(ν2)

ν3 · TD5(ν3)

ν1 · TD50(ν1)

ν2 · TD50(ν2)

ν3 · TD50(ν3)




(4.4)

This can be abbreviated as A ·x = c, and a least-square fit of the three param-

eters α, EUD5 and EUD50 can be performed by calculating x = (AT A)−1AT c. As

errors the mean quadratic deviation of all meaningful quadratic subsystems (i.e.,

subsystems with 3 equations) from the least-square fit are used. ”Meaningful”

are those subsystems which lead to an exact solution for α, EUD5 and EUD50

(e.g. it is not meaningful to select the first three lines of the above equation

system because there would be no solution for EUD50).

With regard to the simple data structure provided by Emami et al. (1991),

the universal formulation of the generalized mean model,

EUD(d) =

(
1

N

N∑

i=1

da
i

)1/a

, (4.5)

can be simplified to (cf. eq. 4.2, EUD=TD(1))

EUD = ν1/a · TD(ν), (4.6)

which leads to values for a and EUD in a very similar way as for the max & mean

model.
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Organ α EUD 5 [Gy] EUD 50 [Gy]

Larynx (necrosis) 0.83±0.13 68.6±4.1 78.3±4.1
Larynx (edema) 1.00 45.0
Lung I 0.09±0.09 18.7±2.4 26.0±2.9
Heart 0.53±0.12 39.7±2.9 48.2±3.0
Esophagus 0.90±0.03 55.7±0.7 67.6±0.9
Stomach 0.83±0.07 51.7±2.2 63.5±2.6
Small intestine 0.80±0.09 41.7±2.5 53.6±4.3
Colon 0.75±0.02 45.4±0.7 54.6±0.8
Liver 0.50±0.12 30.8±3.0 38.0±2.9
Kidney I 0.17±0.08 22.4±0.8 28.5±1.0
Bladder 0.64±0.19 67.7±4.5 77.4±2.6
T-M joint mandible 0.89±0.08 59.4±2.3 71.0±2.6
Brain 0.67±0.06 45.4±1.8 58.7±1.9
Brain stem 0.75±0.04 49.5±1.0
Brachial plexus 0.96±0.00 60.1±0.2 74.9±0.2
Ear mid/ext (acute) 1.00 30.0 40.0
Ear mid/ext (chronic) 1.00 55.0 65.0
Parotid I and II 1.00 32.0 46.0

Table 4.1: Fitting the max & mean model to the data by Emami et al. (1991).

4.4 Results

Table 4.1 shows the result of the fits (the particular clinical endpoints are only

noted for organs with more than one endpoint, the other ones can be found in

(Emami et al. 1991). For the larynx (endpoint edema) and the brain stem only

data for a complication rate of 5% are provided. Wherever no error is listed in

table 4.1, only two TD(ν)-values are given by Emami et al. (1991), making the

fit mathematical exact.

Once the values of α and EUD respectively a and EUD have been fitted, the

tolerance dose TD(ν) of an arbitrary irradiated fraction ν can be calculated. To

compare the generalized mean model with the max & mean model, the tolerance

dose TD(ν) is plotted as a function of the irradiated fraction ν. Fig. 4.2 show

these plots for the cases of the lung (α=0.09, a=1.18), the heart (α=0.53, a=2.94)

and the esophagus (α=0.90, a=16.67), representing different organ structures

from ”mostly parallel” to ”mostly serial”. Both models fit the data within a

tolerance of about 10%.
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Figure 4.2: Tolerance doses in dependency on the irradiated volume fraction.
Shown are the discrete values given by Emami et al. (1991) and the comparison
of the generalized mean and the max & mean EUD models. (a) Lung, (b) Heart
and (c) Esophagus.
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4.5 Discussion

The results show that the max & mean model can be fitted to the Emami tables

with the same accuracy as the standard generalized mean model. A single value of

α suffices to characterize most organs at different tolerance dose levels. Whether

the model can also be fitted to real clinical data remains to be seen when more

data become available. It has to be noted that all error ranges shown in this

chapter are the fit errors with respect to the tables by Emami et al. (1991).

The errors of the Emami data themselves, which for some organs are highly

speculative, are not considered.

Especially from figure 4.2c it is obvious that the max & mean model differs

from the generalized mean model in the case of small treated sub-volumes. Math-

ematically this is clear because the power law expression of the generalized mean

model has a pole at ν = 0, i.e. according to this model small sub-volumes can

be treated with extremely high doses. This is not the case for the max & mean

model, which is quite sensitive to small hot spots. On the one side this can be ad-

vantageous: If the model is used for plan evaluation in inverse treatment planning,

overdosages in small sub-volumes of a serial organ can be effectively reduced; in

some cases the use of the generalized mean model or quadratic deviations from

a subscribed physical dose penalize such overdosages not strong enough. On the

other hand, an organ at risk lying directly next to the tumor target volume has

to get a high dose at the border in order to achieve the curative dose in the tumor

volume. High doses in very few organ voxels should therefore be made possible.

So a reasonable way to deal with the characteristic of the max & mean model

is the appropriate determination of Dmax: It should be identified with the highest

mean dose over a certain sample volume, e.g. about 1.5 cm3, rather than the

highest dose value of one single point. This definition follows ICRU 50 (1993) and

ensures that the dose values in areas with a steep dose gradient (i.e. at the border

of organs at risk lying directly next to the target volume) are not overestimated.

Again, also for small treated sub-volumes more clinical data are desirable for

a better evaluation of the different models.

A benefit of the max & mean approach is that it can be applied to retrospective

data even if only the maximum and the mean doses are known. However, for

organs with a steep dose gradient it is important to know the exact definition of

the maximum dose.
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It remains to be investigated whether a similar approach as the max & mean

approach can also be used to characterize the minimum dose constraint in the

tumor target volume. Obviously, since here the minimum dose is more relevant

than the maximum dose, one should rather use a ”min & mean” approach.

One main advantage of the max & mean EUD concept is its linearity. It

allows the formulation of the multicriteria optimization problem in form of a

linear program. The EUD based on the max & mean model can be used in such

a program as maximum constraint for organs at risk. As minimum constraint for

the target volume, the standard minimum physical dose constraint can be used.

The linear program has the following setting:

Subject to the constraints

EUD(Dk) ≤ Uk(1 + tk), k=1, . . . , K ”risk constraints” (4.7)

and

Min(DT) ≥ L(1-t) ”target minimum constraint”, (4.8)

independently minimize the objectives

tk → min, k=1, . . . ,K; t → min. (4.9)

Here, the numbers Uk are ideal tolerance doses for organs at risk while L is

an ideal curative dose for the target volume. The target volume is additionally

considered as an organ at risk to ensure dose homogeneity.

The max & mean model and the generalized mean model can be fitted within a

similar error range (about 10%) to the presently available (Emami) data. At this

time, it is not clear which model describes an inhomogenous dose distribution

with a higher clinical relevance. Therefore it seems appropriate to implement

both models into the multicriteria optimization project.

The linear max & mean model has good numerical properties and can be

solved in standard linear programming tools that are commercially available. The

collaboration partners of the multicriteria optimization project at the Fraunhofer

Institute for Industrial Mathematics are working on the generation of Pareto

optimal solutions using the max & mean model and linear solver tools.
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Because of the power-law formula, the generalized mean EUD model is in

general not linear. Commercially available linear solvers cannot be used for op-

timizing plans using this EUD model. In the next chapter a new algorithm that

solves this problem is developed and tested.
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Chapter 5

The equivalent uniform dose as

an optimization constraint

Optimization algorithms in inverse radiotherapy planning need information about

the desired dose distribution. Usually the planner defines physical dose con-

straints for each structure of the treatment plan, either in form of minimum and

maximum doses or as dose-volume constraints. In the multicriteria optimiza-

tion project the equivalent uniform dose (EUD) was chosen as criterion for each

structure in the treatment plan. In consequence it should be the EUD instead

of physical dose that is used as an optimization constraint in the calculation of

treatment plans.

In this chapter, a method is presented to consider the generalized mean

EUD model as an optimization constraint by using projections onto convex sets

(POCS). The actual dose distribution is repeatedly projected onto the set of dis-

tributions that fulfil the EUD constraint, leading to voxel-based physical dose

constraints. The algorithm is easy to integrate into the existing inverse plan-

ning systems. It can also be used in existing (weighted and constrained) inverse

optimization setups as well and not exclusively in multicriteria optimization. It

is possible to choose between physical and EUD constraints separately for each

structure, allowing the planner to make use of the EUD concept in conventional

inverse planning and carefully test this new concept in radiotherapy optimization.

The following sections (see also Thieke et al. 2002c) are therefore valid for

both the existing inverse planning concepts and the multicriteria optimization

project.
43
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5.1 Introduction

In current inverse treatment planning programs for intensity-modulated radio-

therapy, the planner defines certain constraints for the desired dose distribution,

and in an optimization process the computer tries to find the treatment setup that

matches the constraints as closely as possible. Common constraints for the opti-

mization are minimum and maximum doses for target structures and maximum

doses for normal structures, each in conjunction with a penalty factor (Bortfeld

et al. 1999).

These physical dose constraints allow the implementation of fast converging

and robust gradient optimization algorithms. However, finding the best parame-

ter setting is non-intuitive. Because often the dose constraints cannot be fulfilled

for every single voxel, the penalty factors have a great impact on the optimization

result. In these cases, the prescribed maximum dose loses its original meaning of

a real constraint and is used as a mere steering parameter for the optimization

outcome. Balancing the maximum/minimum constraints and their penalties is a

trial and error process with several optimization runs.

For some organs at risk, a pure maximum dose constraint is not meaningful

at all. As presented in the previous chapter, parallel organs like liver, lung and

kidneys show a distinct volume effect, i.e. the tolerance dose for small irradiated

volume fractions is much higher compared to irradiation of large fractions. To

consider volume effects in a physical dose constrained optimization, the planner

can define dose volume histogram (DVH) constraints, i.e. instead of a maximum

dose, the constraints are formulated in the form ”not more than x % of the

organ are allowed to receive more than y Gy”, see e.g. Bortfeld et al. 1997.

Usually several DVH constraints have to be defined for one organ. This increases

the number of parameters to be defined by the treatment planner, and it may

exclude solutions that keep organs at risk inside the tolerance, but that have a

different shape of the DVH.

The concept of EUD is probably of higher clinical relevance than single physi-

cal dose values and is therefore a promising concept for overcoming the difficulties

of physical dose constrained optimization. Wu et al. (2002) used the generalized

mean based EUD for inverse treatment planning as a parameter in a sigmoid

dose-effect curve that resembles the basic shape of TCP/NTCP models.
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In this chapter, the generalized mean based EUD is directly implemented as

an optimization constraint without assuming any dose-effect-relationships. In

the following, the mathematical aspects of the implementation are described, the

differences between physical dose constrained and EUD constrained optimization

are shown, and the clinical application is discussed.

5.2 Material and Methods

The calculation platform for the investigation is the same as in chapter 2. As an

initial step prior to the optimization loop, the dose contribution of every beam

element (bixel) j to every voxel i is stored for unit fluence in a matrix Dij. For

arbitrary beam weights w = (w1, .., wM) the dose dT = (d1, .., dNT
) can then be

calculated through

di =
M∑

j=1

Dijwj i = 1, .., NT . (5.1)

M is the number of bixels, and NT the total number of voxels.

The planning system uses a Quasi-Newton gradient technique to optimize the

fluence maps. The objective function is defined as

F =
NT∑

i=1

si

(
di − d

pres
i

)2
. (5.2)

d
pres
i and si are the desired dose for the voxel i and the associated penalty

factor, based on the planner’s prescription and the current dose. For minimum

and maximum dose constraints, d
pres
i and si are given by

(
d
pres
i , si

)
=





(
dmin

i , smin
i

)
if di < dmin

i

(di, 0) if dmin
i ≤ di ≤ dmax

i

(dmax
i , smax

i ) if di > dmax
i

(5.3)

(
dmin

i , smin
i

)
and (dmax

i , smax
i ) are the minimum and maximum physical dose

constraints and penalty factors for voxel i. Note that the system internally works

with individual settings for each voxel. The planner usually defines the dose

constraints and penalties only separately for each structure (targets/organs at
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risk), which are then assigned to all voxels belonging to the particular structure.

Naturally, for organs at risk the minimum dose constraint is set to 0.

DVH constraints are considered by an extension of the above concept, whereby

up to 5 DVH constraint points per structure are transformed into adequately

chosen values of d
pres
i (Bortfeld et al. 1997).

The iterative update of the beam weights from iteration (t) to iteration (t+1)

is given by

w
(t+1)
j =

[
w

(t)
j − α

(
dF

dwj

/
d2F

dw2
j

)]

+

=


w

(t)
j − α

∑N
i=1 2si

(
di − d

pres
i

)
Dij

∑N
i=1 2siD2

ij




+

(5.4)

α is a damping dactor to ensure convergence, and because the fluence has to

be non-negative, the operator

[x]+ =





x if x ≥ 0

0 if x < 0
(5.5)

is used.

The handling of physical dose constraints is also illustrated in Fig. 5.1.
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Figure 5.1: Illustration of maximum and DVH constraints in inverse planning.
Shown is the actual dose at some point during the optimization in an organ at
risk in form of a dose-volume-histogram. Both the maximum dose constraint
and the DVH constraint for this organ are violated in this example, and so the
optimization algorithm tries to find the dose distribution whose DVH avoids the
hatched areas. All other parts of the organ dose can remain unchanged.

It shows the DVH of a dose distribution in an organ at risk at some arbitrary

point of the optimization. One DVH constraint and a maximum physical dose

constraint are defined for this organ, and both are violated by the actual dose

distribution. The planning system then generates the arrays dpres and spres in

a way that only those voxels violating the constraints contribute to the objective

function. For all other voxels the new prescribed dose equals the actual dose.

The actual dose distribution is modified as little as possible, but also as much as

necessary to match all constraints.

This concept has proven to result in a fast and stable optimization. It was

the motivation to implement EUD constraints into the system in a way that is

compatible with the existing concept and that keeps most parts of the established

algorithm unchanged.
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The generalized mean EUD model as introduced in chapter 4 (cf. eq. 4.1) is

defined as

EUD(d) =

(
1

N

N∑

i=1

da
i

)1/a

. (5.6)

Because the EUD is calculated separately for each structure, in the following

the dose vector d is restricted to those voxels belonging to the particular structure

and has N elements, d = (d1, .., dN).

Let us now assume that at any stage during the optimization we have a dose

distribution d inside the organ that violates a predefined EUD constraint, e.g.

EUD (d) > EUDmax for an organ at risk. In analogy to the handling of physical

dose constraints described above, we now want to find a new dose distribution

d′ that fulfils the constraint, i.e. EUD (d′) ≤ EUDmax, and at the same time

is as close to d as possible. The elements of d′, (d′1, .., d
′
N), can then be used as

physical dose constraints in the array dpres, see eq. (5.2).

To find d′, we make use of a mathematical property of the EUD formula, its

convexity for a < 0 and a ≥ 1 (Choi 2002). Convexity means that for two given

dose distributions within the constraint, any convex combination of these two is

also within the constraint:

αEUD (d1) + (1− α)EUD (d2) ≤ EUDmax (5.7)

for EUD (d1) , EUD (d2) ≤ EUDmax, 0 ≤ α ≤ 1, a ≥ 1 (5.8)

and

αEUD (d1) + (1− α)EUD (d2) ≥ EUDmin (5.9)

for EUD (d1) , EUD (d2) ≥ EUDmin, 0 ≤ α ≤ 1, a < 0. (5.10)

In other words, all dose distributions that satisfy a given EUD constraint form

a convex set inside the N -dimensional dose space. This property is essential to

make the projection from d to d′ unique. It is called a projection onto a convex

set (POCS) (Bregman 1965, Gubin et al. 1967), a technique known from other
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applications, e.g. in image restoration (Youla et al. 1982). POCS has also already

been used in radiotherapy planning (Lee et al. 1997), especially as an alternative

method for considering DVH constraints (Cho et al. 1998). Fig. 5.2 illustrates

the principle.

Figure 5.2: The principle of Projection onto convex sets (POCS).

For reasons of clarity, an organ with only two voxels (N = 2) is shown, so that

every dose distribution d = (d1, d2) can be represented by a point on the plane.

We look at an organ at risk with an EUD parameter of a = 2 and a prescribed

maximum constraint EUDpres. All dose distributions fulfilling the constraint

form a convex set that includes d = (0, 0) and has a border forming a circle

segment from d = (
√

2 · EUDpres, 0) to d = (0,
√

2 · EUDpres). For other organ

parameters a, the border would have a different shape, but would be still convex.

Also shown in Fig. 5.2 is a dose distribution d that violates the constraint (and

is therefore outside the convex set) and its projection to the nearest distribution

d′ of the convex set. It is clear that d′ will fulfill the EUD constraint exactly and

does not go beyond that, i.e. we will have EUD (d′) = EUDpres instead of the
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inequality used so far. The same applies for minimum EUD constraints, so the

following calculation is valid for both maximum and minimum constraints.

To calculate d′, we have to find the minimum of

f (d′) =
N∑

i=1

(di − d′i)
2

(5.11)

under the constraint EUD (d′) = EUDpres. This is a classical setup for the

use of Lagrange multipliers. We define a Lagrange function

L (d′) = f (d′) + λ
(
EUDpres − EUD (d′)

)
(5.12)

and set the gradient to zero:

(
∂L

∂d′

)

j

= −2
(
dj − d′j

)
− 1

N
λd′a−1

j

(
1

N

N∑

i=1

d′ai

) 1
a
−1

= 0 (5.13)

⇒ dj − d′j
d′a−1

j

= − λ

2N

(
1

N

N∑

i=1

d′ai

) 1
a
−1

j = 1, .., N (5.14)

The explicit value of the Lagrange multiplier λ is unknown, but it can be seen

from eq. (5.14) that for every voxel index j there is a constant expression for d′j:

dj − d′j
d′a−1

j

= const j = 1, .., N. (5.15)

The value of const that is exact for a = 1 and a = 2 and approximately correct

for all other values of a is given by

dj − d′j
d′a−1

j

≈ EUD (d)− EUDpres
(
EUDpres

)(a−1)
. (5.16)

Eq. (5.16) is an implicit definition for d′. In practice, this is as good as an

explicit definition, because each element d′j can be calculated in a short and fast

iterative sub-calculation. It is interesting to note that for a = 1 the dose is just

shifted by const = (EUD (d)− EUDpres), and for a = 2 the relative change of

the dose is constant.
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When projecting to a lower EUD, for every j it is

d′j ≤ dj j = 1, .., N, (5.17)

and when projecting to a higher EUD, used for target structures in case the

minimal EUD constraint is violated, we have

d′j ≥ dj j = 1, .., N. (5.18)

If only a minimum EUD constraint is used for target structures, eq. (5.18)

would lead to very high doses in some target voxels because they would never

be actively reduced. To assure target dose homogenity, we therefore consider

the target also as an organ at risk and prescribe a maximum EUD. There has

to be a separate target parameter a ≥ 1 for the maximum EUD constraint to

ensure the convexity. The use of both minimum and maximum EUD constraints

for target structures implies that there might be two projections directly after

one another to obtain d′: First, to a higher EUD in case the minimum EUD

constraint is violated, and starting from this dose distribution a projection down

to the maximum constraint.

In summary, the EUD constraint defined by the planner is internally trans-

formed into physical dose constraints individual for each voxel. In practice, this

is a simple replacement of eq. (5.3) by eq. (5.16). The objective function, its

gradients and all other parts of the optimization algorithm can be retained with-

out change. It is even possible to use EUD constraints only for some organs and

physical dose constraints for the others. This is illustrated in the flowchart in

Fig. 5.3. The well-established optimization program could be retained without

change, and the feature of EUD-constrained optimization is just a “plug-in” (the

part of the figure with a dotted background) into the routine that builds the array

dpres. From Fig. 5.3 one can also see how mixing of different constraint types

is implemented: Because the array dpres is calculated in a sub-loop organ by

organ, the planner can define separately for each organ either physical max/min,

DVH or EUD constraints.
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Figure 5.3: Optimization loop of the inverse planning program used for this paper.
In each iteration, a dose distribution dpres is generated, based on the current dose
and individual for each voxel. dpres is generated by processing organ after organ,
and so it is possible to chose different constraint types separately for each of them.
Because the POCS method leads to voxel-based physical dose constraints, EUD
constraints could be implemented by simply adding a branch to the generation
of dpres (marked by the dotted background in the figure).

5.3 Results

First, we will look at projections for organs at risk that violate a maximum EUD

constraint. As it can be seen from eq. (5.16), the projection from the current dose

distribution to the one that satisfies the EUD constraint depends on the tissue

parameter a. For serial organs, the EUD is mostly determined by the highest

voxel doses, so it would have little effect to change the parts of the organ that

already receive a low dose. In more parallel organs, the EUD is nearer the mean

dose, and the voxels are affected more evenly by the projection.
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Figure 5.4: Examples of projections to a lower EUD for different organ parameters
’a’. For a=1.0 (parallel organ), the DVH is shifted to the left. For a=2.0, the
DVH is scaled along the dose axis, and for a=7.4 (the parameter for the spinal
cord), higher doses are even more effected and lower dose parts are not changed
at all. The extreme case a=∞ means the equivalence of EUD and physical dose
maximum and would lead to a projection shown in fig. 5.1.
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Fig. 5.4 shows the DVHs of an arbitrary dose distribution in an organ at

risk at some point during the optimization, and its projections assuming three

different parameters a. The EUD constraint for this organ was set to 33 Gy.

Depending on a, the EUD of the current dose distribution is 50.8 Gy (a = 7.4,

which is the parameter for the spinal cord, a mostly serial organized structure),

45.4 Gy (a = 2.0) and 40.9 Gy (a = 1.0, representing a purely parallel organized

organ). For all three parameters the constraint of 33 Gy was violated, and for

each parameter the algorithm has to project to a new dose distribution. The

resulting projections are also shown in Fig. 5.4 and have an EUD of 32.4 Gy

(a = 7.4), 32.9 Gy (a = 2.0) and 34.0 Gy (a = 1.0). One can see that for a = 7.4

and a = 2.0 the EUD of the projected dose distribution meets the constraint

and is very close to it. Only for a = 1.0, the EUD of the projection is slightly

higher than the constraint. This is because the dose has to be non-negative,

and therefore shifting the dose is not completely possible in voxels with a dose

di < (EUD(d)−EUDpres). But this effect is small and becomes even smaller after

each iteration when the constraint is reached more closely, and can be neglected.

As stated in the previous chapter, for targets the situation is slightly more

complicated because there are both minimum and maximum constraints. Two

parameters are required, a negative a− for the minimum EUD constraint and

a positive a+ for the maximum EUD constraint. It is possible that the current

dose inside the target violates both constraints, or that the maximum constraint is

violated after the projection to the minimum EUD. In these cases two projections

directly after one another are necessary. Fig. 5.5 shows an exampe for a target

volume with the constraints EUDmin = 60 Gy (a− = −8) and EUDmax = 61 Gy

(a+ = 10). First, the minimum EUD constraint is reached by the first projection.

Then, the second projection ensures that also the maximum EUD constraint is

met.

In the following, we look at optimization results for a clinical case using the

common physical constraints and the new EUD constraints. The case we looked

at was an extensive head and neck tumor with a complex shaped target volume,

including a boost volume, and located very close to organs at risk: brainstem,

spinal cord and parotid gland (the same as in chapter 3, cf. fig. 3.3). Table 5.1

shows parameter settings and optimization results. Treatment plan A was calcu-
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Figure 5.5: For target structures, there is a minimum EUD constraint (associated
with a negative parameter ’a’) and, to ensure homogeneity, also a maximum
EUD constraint (associated with a positive parameter ’a’). This can lead to two
projections in one iteration to find a prescribed dose distribution that fulfills

both constraints. In this example the constraints were set to EUDmin=60Gy
and EUDmax=61Gy.
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Plan A
(physical)

Plan B
(physical/EUD)

Plan C
(EUD)

Optimization
constraints (Gy):
Target (a-=-8)
(a+=10)

Dmin=60
Dmax=60

Dmin=60
Dmax=60

EUDmin=60
EUDmax=61

Boost (a-=-8)
(a+=10)

Dmin=62
Dmax=62

Dmin=62
Dmax=62

EUDmin=62
EUDmax=63

Spinal cord (a=7.4)
Brainstem (a=4.6)
Parotid gland (a=1)

Dmax=33
Dmax=45
Dmax=25

EUDmax=25.5
EUDmax=23
EUDmax=13

EUDmax=25.5
EUDmax=23
EUDmax=13

Result EUD (Gy):
Target (a-=-8)
(a+=10)

58.5
60.2

58.5
60.5

58.5
60.7

Boost (a-=-8)
(a+=10)

61.8
62.0

62.1
62.3

61.6
62.7

Spinal cord (a=7.4)
Brainstem (a=4.6)
Parotid gland (a=1)

28.8
27.7
17.6

25.8
23.1
13.5

25.4
22.9
13.0

Iterations 216 309 500

Table 5.1: Optimization constraints and results for the head and neck case. For
plan A, only physical constraints were used, for plan B physical constraints for
the target/boost volumes and EUD constraints for the organs at risk were used,
and plan C was optimized using EUD constraints for all structures. All plans
were normalized to a target EUD of 58.5 Gy.
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lated with maximum and minimum physical dose constraints for all structures.

In treatment plan B the organs at risk were optimized using EUD constraints

while keeping the physical constraints for the target, and plan C is the optimiza-

tion result using EUD constraints for both organs at risk and the target. The

slightly more elaborate generation of the prescribed dose array dpres for EUD

constraints (compare eqs. (5.3) and (5.16)) is not noticable in terms of compu-

tation time: The time needed for one single iteration is the same for physical

and for EUD constraints; in this specific case this is approx. 7 sec on a Pentium

IV 1.4 GHz workstation. But the total number of iterations needed increases for

EUD constrained optimization, cf. Table 5.1. Fig. 5.6 shows both the DVHs of

plan A and plan B. The EUD values of all structures in plan A and the target

EUDs in plan B are displayed only for informational purposes; they were not used

during the optimization. Plan B with EUD constraints shows better sparing of

the organs at risk while keeping the dose in the target at the same level as plan

A. For the parotid gland (a parallel organ with a = 1), in plan B the maximum

dose values are higher, but the mean dose (and therefore the EUD) is lower. For

all structures, the EUD constraints are reached very closely. In Fig. 5.7, the

DVHs of plan C and, again, plan B is shown. The results are similar, but the

homogeneity of the target, especially the boost, in plan C is worse than in plan

B.

5.4 Discussion

As can be seen in the results section, the algorithm presented is capable of find-

ing a plan that reaches given EUD constraints closely. It needs more iterations

than the physical constrained optimization, but using EUD constraints only for

organs at risk, the convergence is still good. Although in the test case the EUD

constrained optimization shows better sparing of organs at risk than the physical

constrained optimization, this cannot be claimed in general. The results depend

directly on the concrete constraint settings. It is also important to note that

the EUD of an organ at risk is not optimized beyond the constraint. Without

further modifications to the algorithm (which are presented in section 6.2.1), the

planner has to define a sufficiently low constraint to minimize the EUD as much

as possible.
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Figure 5.6: Optimization results for the head and neck case. Plan A was generated
using physical maximum/minimum constraints for all structures. For plan B the
target and boost constraints were the same as in plan A, but the organs at risk
were optimized using maximum EUD constraints.
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Figure 5.7: Again optimization results for the head and neck case. Plan B is the
same as in figure 5.6, now compared to a plan C where EUD constraints were
used for all structures.
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The same optimization result as in plan B could have been also reached with

a set of DVH constraints. However, these DVH constraints were unknown, and

finding the best set would require a lot of trial and error (Wu et al. 2002). The

fact that EUD constraints can lead to a better overall result in the organs at risk

than simple maximum dose constraints becomes plausible by looking at Fig. 5.1

and Fig. 5.4: Whereas no voxel below the maximum dose constraint is optimized

(see Fig. 5.1), the EUD constraint affects, depending on the organ parameter,

much more or even all voxels of the organ (see Fig. 5.4).

The question is where the use of EUD constraints is most suitable and how

they compare to the physical constraints. From eq. (5.6) one can see that when a

is positive infinity (completely serial organized organ), the EUD equals the maxi-

mum dose in the structure. In this case, the POCS method projects exactly onto

the maximum dose constraint, so the use of “maximum physical dose constraint”

and “maximum EUD constraint” is equivalent. In analogy, a set to negative

infinity (where the EUD equals the minimum dose) implies the equivalence of

a minimum EUD constraint and a pure physical dose minimum constraint. In

that sense the pure physical maximum/minimum dose constraints are a subset of

EUD constraints, namely for structures with a set to +/-∞.

The differences become bigger and bigger when the organ structure becomes

more and more parallel (cf. parotid gland in Fig. 5.6), indicating that a physical

maximum dose constraint is no longer sufficient. Especially for these organs, ei-

ther DVH constraints or EUD constraints should be used. The EUD constraint

is easier to define and does not imply a predefined shape of the DVH. The opti-

mization will find the dose distribution that is best adapted to the specific case.

As found in the results section, even for organs considered as mostly serial (like

the spinal cord) EUD constraints can improve the optimization result.

EUD constraints for target structures using organ parameters as in plan C

resulted in more iterations and lower dose homogeneity. So for targets the use

of higher a+ (for the max. EUD constraint) and lower a− (for the min. EUD

constraint) organ parameters up to positive/negative infinity seems more suitable.

The algorithm presented makes it possible to integrate the non-linear gener-

alized mean EUD model into the multicriteria optimization concept. This will be

utilized in the next chapter where a complete set of Pareto optimal solutions is

generated and stored in a database.
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In addition to the implementation in multicriteria optimization, another main

advantage of the algorithm presented is that it can be used in the common inverse

planning concepts. It is very close to the existing physical optimization and is easy

to integrate into any inverse planning system that uses a gradient optimization

technique and voxel based dose constraints. Virtually nothing of the existing

system has to be changed; the EUD constraint is just an additional feature and

is realized by a simple plug-in, cf. Fig. 5.3. For every organ or structure the

planner can decide separately what kind of constraint should be used. It is not

necessary to change the whole planning paradigm. Inverse planning is a process

that requires a lot of experience from the planner, and the introduction of EUD

constraints as presented does not render this experience obsolete. Instead, it is

possible to make use of the EUD concept in a conservative way by using an EUD

constraint only for selected organs, and use physical dose constraints and the

knowledge about the correct settings for constraints and penalty factors for all

other organs. This ensures a smooth transition from a pure physical dose oriented

to a clinical more meaningful optimization. When more and more clinical data

become available and the parameters for tissue parameters and tolerance doses

become more valid, the planner can make use of it by using the EUD feature

for more organs. The usefulness of a smooth transition is also supported by the

fact that planning based on TCP/NTCP models was introduced several years

ago (Sodertrom et al. 1993, Niemierko et al. 1992) but is still not widely used

in clinical practice. The EUD is an intermediate concept between physical doses

and TCP/NTCP models. It is still in the dose domain and does not cope with,

but on the other hand is also not affected by the uncertainties of dose-effect

relationships.
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Chapter 6

Practical application of

multicriteria optimization in

inverse radiotherapy planning

The fundamental algorithms and analyses described in the previous chapters now

allow the practical application of multicriteria optimization. This chapter de-

scribes the first implementation of a multicriteria optimization scheme in inverse

intensity-modulated radiotherapy planning. After presenting a simple clinical

test case, some techniques that might become important for more complex cases

are introduced as well.

6.1 Clinical test case with 1 target volume and

2 organs at risk

6.1.1 Introduction

The most simple anatomic situation for radiotherapy optimization is one single

target volume next to one single organ at risk. However, for such a case there

exist also only one single Pareto optimal solution (assumed that there is only one

criterion representing the target dose distribution). Different doses to the target

volume can be achieved by scaling the whole plan to different dose levels.
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So, the clinical case investigated here is a case with one single target volume

and two organs at risk. The three structures are configured in a way that for a

given target dose both organs at risk unevitably get some dose as well. Sparing

one organ at risk at risk might lead to a higher dose to the other, i.e. there are

many Pareto optimal plans with different compromises for the two risks. The

questions are:

1. What are the Pareto optimal plans?

2. How sensitive are these plans to variations of the criteria? E.g. where is

the point at which one organ cannot be improved without heavily worsen

the other?

6.1.2 Material and Methods

The clinical case used for this study was the head and neck case introduced in

chapter 3 and 5. To reduce the complexity of the problem, the brainstem and

the boost were taken out of the optimization. Those structures have turned out

to be uncritical and not dose limiting. The remaining structures are the target

volume (now including the volume of the former boost), the parotid gland and

the spinal cord.

In this first incarnation, a simple “brute force” strategy for generating the

database of Pareto optimal plans is implemented. Following settings are used:

• The dose prescription for the target volume is set to minimum dose =

maximum dose = 60 Gy.

• For the organs at risk, EUD constraints are used. The EUD maximum

constraint is varied from 0 to 30 Gy in steps of 2 Gy for both parotid

gland and spinal cord. All combinations of constraints are fully optimized,

resulting in 16x16=256 plans.

• Each plan is normalized to a target EUD(a− = −8) of 60.0 Gy. To ensure

a certain homogeneity of the target dose distribution, a plan is rejected if

the target EUD belonging to a+ = 10 is higher than 67.0 Gy.
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• If the plan is accepted, it is added to the database. The EUD values, the

intensity matrices, and an optimization summary is saved to the harddisk.

After normalizing the plans and filtering out the plans with too inhomogeneous

target dose, the dose to the target in all remaining plans can be considered as

equivalent. This allows the graphical representation of the plan database by

plotting the EUD values of parotid gland and spinal cord on a two-dimensional

plane.

6.1.3 Results and Discussion

The total calculation time was 17 hrs for the 256 plans (approx. 4 min per plan)

on a Pentium IV 1.8 GHz workstation. 88 of these plans were rejected because

of the homogeneity criterion. The remaining 168 plans can be divided into the

subgroups “Pareto optimal” and “dominated”. A Pareto optimal plan can easily

be identified by the fact that there exists no other plan with a lower EUD in one

organ at risk without a higher EUD in the other organ at risk. It turned out that

the database contains 19 Pareto optimal and (168-19)=149 dominated plans.

Figure 6.1 shows the database of plans graphically by plotting the EUD of the

parotid gland in dependency on the EUD of the spinal cord. The Pareto optimal

plans mark the border between the physically feasible area to the non-feasible

area. The planner is only interested in the Pareto optimal plans, the dominated

plans are shown only for informational purposes. A final database contains only

the Pareto optimal subgroup.

The graphical representation gives detailed information about the concrete

planning situation very quickly. E.g., at first sight the planner realize that it is

physically impossible to achieve an EUD of 5 Gy in both spinal cord and parotid

gland (unless the target dose is scaled below 60 Gy EUD). It also becomes clear

at first sight up to which point the EUD in one organ at risk can be improved

without significantly worsening the dose in the other. In this case, most probably

a treatment planner would decide between the plans marked with A, B and C.

The DVHs of these plans are shown in Fig. 6.2.

The decision which plan will finally be used for treatment is up to the planner

and can be based on clinical considerations. If all of these plans would lead to
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Figure 6.1: Database of all plans that satisfy the target dose EUD and homo-
geneity constraints. Each plan can therefore be represented by its EUD values
for parotid gland and spinal cord. Only the Pareto optimal plans are of interest
for the treatment planner.
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Figure 6.2: DVHs of Plan A, B and C.
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inacceptable high risks of radiation damage, the dose to the target volume has to

be reduced. By scaling the whole database, all plans will remain Pareto optimal

and the planner can be sure to stay at the physical optimum.

In the future, the algorithm might detect the most interesting part of the

database automatically (in this case, the part around plans A, B and C) and

produce additional Pareto optimal plans to allow finer plan tuning (see also the

subsection “Plan interpolation” below).

In this simple example, the target dose was at a fixed level of EUD value and

dose homogeneity. However, it would be of clinical interest to consider target

type structures with two criteria: First, the dose level in terms of EUD regarding

a parameter a−, and a second criterion measuring the dose homogeneity (e.g. the

EUD regarding a high positive parameter a+). The dose homogeneity can then

be included into the multicriteria decision process as an additional parameter just

like the EUD in an organ at risk. This way no plan has to be rejected, and in

that sense a case with one target volume and one volume at risk as described in

the introduction would already have three criteria. In fact, in clinical practice it

is a frequent situation that the balance between the target dose homogeneity and

the dose to one organ at risk is the most difficult problem.

As soon as there are more than two criteria to consider, the database cannot

be represented by a simple two-dimensional plot. In this case the more elaborate

search tool from ITWM Kaiserslautern presented in chapter 2 has to be used.

However, to get an overview for the dependency of one structure on another

it might still be useful to lock all other criteria and have a look at the two-

dimensional plot of the remaining two structures.

6.2 Techniques for more complex cases

It is clear that the crude method used for the clinical test case in the previous sec-

tion is not sufficient for the multicriterial optimization of cases with more organs

at risk and probably several target volumes. If all combinations of constraints are

fully optimized, the number of necessary optimization runs would increase expo-

nentially, taking by far too much calculation time. Therefore more sophisticated

methods have to be implemented to keep the calculation time within clinically

acceptable limits.
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One method could be to restrict the multicriteria optimization to those struc-

tures of the treatment plan that are the crucial, dose-limiting elements. Usually,

in treatment plans with many structures there are some organs at risk that are

easy to keep within tolerance, and these structures can be excluded from the

multicriteria optimization process. One example is the brain stem of the head

and neck case shown in the previous chapters. Geometric considerations and test

optimization runs could be helpful for detecting and excluding those uncritical

structures. The complete generation of the Pareto optimal plan database should

not take longer than one day, even when, say, six different criteria have to be con-

sidered. In addition to the parameter reduction, in the following two techniques

are introduced that let this goal appear realistic to achieve. These techniques are

not analyzed in full depth, nor are they already integrated into the optimization

process. The following should be understood as suggestions for the future work

on this project.

6.2.1 Adaptive constraints

As can be seen from Fig. 6.1, most of the plans that are generated by the “brute

force” method are not Pareto optimal. The time needed for the generation of

a dominated plan is wasted and could be saved if every single optimization run

already ensures a Pareto optimal result. A first test suggests that this can be

achieved by the technique of adaptive constraints. Adaptive means that the con-

straints are not constant throughout the whole optimization run. If the algorithm

detects that at some point of the optimization a constraint is reached within a

very close interval, it lowers the constraints automatically and continues to im-

prove the specific criterion beyond the original constraint. This has to be done

with a lowered penalty factor to avoid unwanted violation of one of the other

constraints.

Figure 6.3 shows a first result of the adaptive constraints technique. The

first plan (non-adaptive) was optimized without adaptive constraints, so the op-

timization stopped as soon as the prescribed EUD constraints were reached. The

second plan (adaptive) was optimized beyond these constraints, so with the same

starting EUD constraints a better optimization result in brainstem and spinal

cord could be achieved. The dose to the parotid gland could not be improved
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Figure 6.3: Adaptive constraints.

beyond the prescription, indicating that the dose to this organ was already as low

as possible.

6.2.2 Plan interpolation

A second technique to further reduce calculation time also avoids unnecessary

optimization runs. It is motivated by the fact that between two Pareto solutions

a third solution can be approximated by linear interpolation. Because in the

dose calculation engine the dose depends linearily on the intensities (eq. 3.1),

both the dose distribution and the intensity matrices can be interpolated without

a new dose calculation. The interpolated plan will lie in the area of feasible

solutions. The EUD values have to be recalculated because except for perfect

parallel organized organs the EUD does not depend linearily on the dose values.

However, the linear interpolated EUD value already gives an upper limit for

the exact EUD value. Therefore in Fig. 6.1 all Pareto optimal plans could be

connected by lines; these lines give the upper EUD limits of interpolated Pareto

solutions.
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Figure 6.4: Interpolation of plans.

The question is how near the interpolated solution will be located to the

Pareto front, see Fig. 6.4.

This might be answered by adding the technique of adaptive constraints to

the interpolation: Starting from the interpolated plan, additional optimization

iterations will shift the plan to the Pareto front. One can expect that many

iterations can be saved compared to a new optimization run starting from zero.

Plan interpolation can also be useful during the interactive planning session.

If the planner cannot decide between two certain plans, plan interpolation can be

a tool to produce and present finer resolved plan alternatives on-the-fly.
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Chapter 7

Summary and Outlook

Multicriteria optimization in inverse radiotherapy planning is a collaborative re-

search project of the German Cancer Research Center (DKFZ), the Fraunhofer

Institute for Industrial Mathematics (ITWM) and the Massachusetts General

Hospital (MGH). This thesis dealt with some fundamental techniques and ques-

tions associated with the multicriterial approach. Because of the high number of

optimization runs, the optimization had to be accelerated. This could be achieved

through sampling of the dose calculation matrices. The next question was about

which criterion should be used to represent each structure in the multidimen-

sional plan description vector. Two models of the equivalent uniform dose were

analyzed and compared. It turned out that the new linear max & mean model

is a promising alternative to the established generalized mean model. While

the optimization with the max & mean EUD is investigated by the collaboration

colleagues at ITWM, a new optimization algorithm had to be developed to imple-

ment the generalized mean EUD as an optimization constraint. This problem was

solved by using the method of projection onto convex sets. Finally, all techniques

were utilized to produce a database of Pareto optimal plans of a simple clinical

test case. It gives a first impression of the new quality of treatment planning

that multicriteria optimization is capable to deliver. Some advanced techniques

for more complex cases, namely adaptive constraints and plan interpolation, are

briefly introduced as well.
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It should be noted that some of the presented material is useful for existing

inverse planning systems even outside of multicriteria optimization schemes. The

new inverse planning system at DKFZ makes use of the accelerated dose cal-

culation and is faster in all modes of photon treatment optimization. Also the

generalized mean EUD constraints can be used for inverse planning in general.

The possibility to mix EUD with physical dose constraints is especially useful to

smoothly introduce this new concept to existing systems.

This thesis can be considered as a first milestone of the multicriteria optimiza-

tion project. While fundamental techniques and algorithms could be realized,

further work has to be done to fully exploit the possibilities of the multicriteria

optimization concept. For example, the techniques presented in chapter 6 have

to be included into the optimization engine in order to produce Pareto optimal

plan databases for complex cases. Another investigation will have to deal with

the question of the planning horizon, i.e. up to which dose and in what resolution

plans have to be generated and included into the database. Maybe the integration

of TCP/NTCP models will be useful in this context. Upcoming clinical data will

further improve the reliability of both the TCP/NTCP and the EUD concept.

In conclusion, the multicriteria optimization concept provides the basis for

powerful tools that assists the radiotherapy planner in achieving the ultimate

goal: finding the treatment plan that is the best for the patient.
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