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SUMMARY

The dopaminergic (DA) neurons of the substantia nigra and ventral tegmentum are the

main sources of dopamine in the central nervous system. They are associated with one

of the most prominent human neurodegenerative disorders, Parkinson’s Disease. Very

little is known about the mechanisms operating during the intermediate period between

induction and full differentiation of the DA neurons. The goal of this study was to

identify and characterize genes effective during this phase and which mediate the

midbrain DA neurons development. The two murine Engrailed (E n) genes are

expressed by the midbrain DA neurons from embryonic day (E) 11.5 until adulthood,

and are required for the survival of this neuronal population. In the initial part of this

study I further characterized the role of the En genes: the generation of En chimeric

animals permitted to show that the midbrain DA neurons require these genes cell

autonomously for their survival, and the over-expression experiment of En-1 in the

chick embryo suggested that the En genes are not required for the formation of

midbrain DA precursor cells. In order to identify more genes that are specifically

expressed by this neuronal population, a PCR-based differential display screen was

used, comparing mRNA from several sources of the ventral midbrain and adult

olfactory bulb. The midbrain tissue was dissected from wild-type mice at two

developmental stages (E12 and E14) and also from E12 E n double null mutant

embryos that become deficient for the midbrain dopaminergic neurons at later stages of

development. Seventy-one differentially expressed gene fragments were identified of

which four are specifically expressed by this neuronal population. Three of these genes

have been further characterized in this study: The hepatocyte nuclear factor 3α

(HNF3α), the neuronal and B-cell differentiation factor, Olf-1/Ebf, and the neuregulin

receptor, ErbB4. The HNF3α expression is highly specific, as it is only found in the

midbrain DA neurons and another cell group in the diencephalon. It may be expressed

in the precursors of the DA neurons as early as E9 and continues to be expressed in the

postmitotic cells until the adult. Detailed analysis of the midbrain DA neurons from

mice homozygous for a null mutation in HNF3α  demonstrated that HNF3α  is not
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required for the early development of midbrain DA neurons, but a role in maintenance

of this neural cell population is still possible. The ErbB4 expression begins in the DA

neurons at E11.5 and continues into adulthood, specifying the most rostral part of the

substantia nigra compacta. Analysis of the expression pattern of ErbB4 ligands

together with a detailed study of the midbrain DA neurons of adult mice with a nervous

system specific deletion of ErbB4, suggested that the expression of ErbB4 after E11 is

not essential for the midbrain DA survival, although its involvement into the early fate

determination and neural differentiation of DA neurons is nevertheless a possibility.

The Olf-1/Ebf gene is expressed transiently in mouse DA neurons from E10 to E13.

Ectopic expression of Olf-1/Ebf in the chick midbrain by in ovo electroporation leads to

an ectopic placement of DA neurons, suggesting that Olf-1/Ebf may be involved in

midbrain DA neurons specification and differentiation. Finally, it was shown that

neither HNF3α nor Olf-1/Ebf is regulated by Nurr1  or the En genes. Thereby

suggesting that multiple parallel pathways control the development of the midbrain DA

neurons. Overall, this study took us a step further towards additional insights

concerning the factors that determine the identity of such a particular cell population.
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1-General introduction

The cathecholamine dopamine is an essential regulator of many neural functions,

including motor integration, cognition [Backman and Farde, 2001], emotive

behavior and reward [Schultz, 2001] as well as sexual functions (for review

[Giuliano and Allard, 2001]). Dopamine is synthesized from tyrosine by tyrosine

hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis.

The amount of dopaminergic (DA) neurons, in mammals, is very low in proportion

to the total number of neurons in the brain. Most of them are found in three distinct

nuclei located in the ventral midbrain: the substantia nigra (SN), the ventral

tegmental area (VTA) and the retrorubral nucleus [Nelson et al., 1996]. DA neurons

arising from the SN project to the striatum and receive input from various structures

in the diencephalon and telencephalon. The ascending nigrostriatal pathway adjusts

motor control and its degeneration is related to the motor disorder characteristic of

Parkinson’s disease (PD) [Hirsch et al., 1988]. The limbic system and cortex

receive input from the VTA. Neurons from the VTA are involved in emotional and

reward behavior as well as in motivation [Schultz, 2001]. Changes in this system

have been linked with schizophrenia, addictive behavioral disorders and attention-

deficit hyperactivity disorder [Watanabe et al., 1998; Floresco et al., 2001].

The exact anatomical localization and functional differentiation of DA neurons in

the mammalian brain is accomplished through actions and gradient displays of a

variety of factors. Data from biochemical and genetic studies, from tissue

transplantation and explant culture experiments have established that midbrain

neural plate progenitors differentiate into DA neurons by the joint action of sonic

hedgehog (Shh) and fibroblast growth factor 8 (FGF8), and that these two

extracellular inducers are necessary and sufficient for the early induction of DA

neurons along the ventral neuraxis [Ye et al., 1998]. It is believed that the inductive

molecules activate cascades of other signaling molecules and transcription factors,

which lead to the final differentiation of DA neurons. Up to date, only little is

known about what happens during the intermediate period between induction and

full differentiation of DA neurons. My PhD thesis work was focused on the

identification and characterization of genes that are required for the final

differentiation of the midbrain DA neurons.
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2-Anatomy and function of the midbrain DA neurons

2-1- Location of the midbrain DA neurons in the rodent brain

The midbrain DA neurons are located in the ventral midbrain and are categorized

into three major DA cell populations. The main midbrain DA neurons

subpopulation is identified as the A9 DA cell group and is principally found in the

substantia nigra pars compacta (SNC). The second subpopulation is found in the

VTA and is identified as the A10 group [Paxinos, 1995]. The third midbrain DA

neurons subpopulation is known as the A8 DA cell group and is located in the

retrorubral field (RRF). Three-dimensional reconstructions of the SN/VTA DA

neurons are presented in Figure I.1.

The A9 cell population is formed by a layer of DA neurons in the SNC, partially

covering the substantia nigra pars reticulata (SNR) and extending laterally towards

the substantia nigra pars lateralis (SNL). The SNC contains compactly grouped DA

neurons. Often, ventral DA neurons give rise to tightly apposed groups of dendrites

that invade the SNR [Bjoerklund and Lindvall, 1975]. These dendrites release

dopamine (for review [Cheramy et al., 1981]), which can interact with dopamine

autoreceptors found on adjacent DA dendrites or/and striatonigral neurons. More

‘basal’ dendrites, of SNC DA neurons spreading medio-laterally, invade the

overlaying dorsal sheets of SNC and VTA neurons. Another kind of the SNC DA

neurons is positioned in more dorsal aspects of the SNC. They give rise to dendrites

radiating medio-laterally. This organization of split dentritic domains is the basis

for the operative partition of separate input and output areas in the SNC [Fallon et

al., 1978].

The A10 DA cell group is medial and dorsomedial to the SNC and SNR. The VTA

contains a mix of non-DA neurons (20%) and DA neurons (80%) [Halliday and

Tork, 1986]. At dorsally mid-anterior levels, the DA neurons are the continuity of

the dorsal DA neurons of the SNC, and the two DA neurons populations are very

similar. Other DA neurons have several radiating dendrites. At ventrally mid-

anterior level the DA neurons are densely packed at the midline [Paxinos, 1995].
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Figure I.1. Three-dimensional reconstructions of midbrain dopaminergic neurons.
A8 neurons are illustrated in blue (RRF), A9 neurons are illustrated in yellow
(SNC), and A10 neurons are illustrated in red (VTA). The rostral direction is in the
foreground. (A) A8, A9, A10 viewed together. (B) A8. (C) A9. (D) A10. From
German and Manaye, 1993.

Figure I.2. Summary representation of dopaminergic projection pathways arising
in the SN-VTA. Sagittal view.
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Finally, the A8 DA cell population of the RRF seems to be a caudal extension of
the SNC and SNL and have similar type of DA neurons [Paxinos, 1995].

2-2- The afferent projections from the midbrain DA neurons

The DA projections to the caudate-putamen (or striatum) arise from the ventral and

intermediate sheets of the SNC and the ventro-lateral VTA. The dorsal and

middorsal VTA and medial SNC innervate the nucleus accumbens and the olfactory

tubercle. Projections to the amygdala arise from the VTA and the lateral SNC and

SNL. The lateral septum is innervated by ventral VTA neurons and by adjacent

medial SNC neurons. The neocortex is innervated by the dorsal-most sheet of SNC

and VTA neurons. Minor DA projections reach the cerebellum, the hypothalamus,

the raphe, the hippocampus, the ventral pallidum and the locus coeruleus [Ikai et

al., 1992; MacRae-DeGuerce and Milon, 1983; Simon et al., 1979; Swanson, 1982;

Kizer et al., 1976; Fallon and Moore, 1978; Gasbarri et al., 1991; Clavier et al.,

1976; Faull and Mehler, 1978; Gerfen et al., 1982; Prensa and Parent, 2001]. A

simplified overview of the major midbrain DA neurons projections is illustrated in

figure I.2.

2-3- The inputs of the midbrain DA neurons

The γ-aminobutyric acid (GABA)-ergic neurons of the striatal patch innervate the

dendrites of ventral SNC neurons in the SNR, and the ventral SNC (for review

[Gerfen, 1992]). The GABA-ergic neurons of the globus pallidus and ventral

pallidum project to the SNR and SNC (for review [Kalivas, 1993]). Some

projections to the SNC and VTA arise from the amygdala, hypothalamus, preoptic

area and cortex [Wallace et al., 1992, Wright et al., 1980; Hurley et al., 1991].

2-4- The functions of the midbrain DA neurons

The midbrain DA neurons have a wide network of connections in the entire brain

and any changes in their amount, morphology or functionality will dramatically

affect many neuronal functions. For example, the majority of the dense fibers of the

A9 neurons project to the caudate-putamen to create the nigrostriatal pathway, this
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pathway monitors voluntary movement by adjusting the responsiveness of striatal

output neurons (for review [Gerfen, 1992]). The A10 neurons innervate extensively

the limbic system as well as a subset of the cerebral cortex to create the

mesocorticolimbic pathway. The mesocorticolimbic pathway, collaborating with

the nigrostriatal pathway, adjusts locomotor activity and mediates emotion,

motivation, and memory processing (for review [Le Moal and Simon, 1991]).

Depending on what midbrain DA sub-nucleus is altered and to which degree, the

consecutive neuronal adjustments are different. When the DA neurons of the VTA

are hyperactive, the mesocorticolimbic pathway is affected, and there is a

hyperdopaminergic state in the brain causing abnormal behavior, as observed in

schizophrenia [Watanabe et al., 1998; Floresco et al., 2001]. Degeneration of the

DA neurons of the SN and VTA will results mainly in motor behavioral

abnormalities because of the perturbation of the nigrostriatal pathway, but due to

the multifaceted role and connection of the DA neurons, these symptoms will be

associated as well with non-motor behavioral abnormalities. This

neurodegenerative disorder is particular of PD [Hirsch et al., 88], and will be

described in detail in the next chapter.



I-INTRODUCTION

6

3-Parkinson’s disease

3-1-Clinical traits and pathological findings

PD is one of the most common neurodegenerative disorders in humans, affecting

2% of the population over 65 years of age. This disease is caused mainly by a

progressive degeneration of the DA neurons of the SN and VTA, the loss is

estimated to be around 80% at the onset of symptoms [Fearnley and Lees, 1991].

Another pathological trait is the presence of degenerating ubiquitin-positive

neuronal processes (Lewy bodies), which are found in all affected brain-stem

regions [Gai et al., 1995]. The lost of DA neurons is not uniform through the

SN/VTA. Neuronal loss tends to be the most in the ventro-lateral tier of the SNC,

followed by the medial ventral tier and dorsal tier. This non-homogenous loss

results in a regional loss in the DA projections. The striatal dopamine is lost, mainly

in the dorsal and intermediate subdivisions of the putamen [Kish et al., 1988].

When dopamine is missing, inhibitory GABA-ergic output activity increases in the

basal ganglia, in the internal segment of the globus pallidus (GP), and in the SNR.

The increased output of the basal ganglia conducts to an excessive inhibition

leading to a blackout of the thalamic and brainstem nuclei because they are over-

inhibited by the internal GP and SNR through GABA (Figure I.3). Excess of

inhibition on the thalamic nuclei leads to repression of the cortical motor system,

very likely resulting in motor behavioral abnormalities, such as bradykinesia,

hypokinesia, rigidity and tremor. The excessive inhibition on the brain stem nuclei

may lead to abnormalities of gait and posture (For review [Lang and Lozano, 1998;

Hornykiewicz, 2001]). Others main characteristic symptoms of PD consist also of

autonomic failure with orthostatic hypotension, urinal incontinence and impotence.

Other non-motor behavioral abnormalities observed in PD are: mental dysfunction

with mood disorders, cognitive dysfunction and, sporadically, delusions and

hallucinations [Gibb and Lees, 1991].
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Figure I.3. Functional model of the nigrostriatal DA system and connected
pathways.
For persons with normal motor control the pathway arrows are in orange. For
persons with PD, the pathway arrows are in blue, the width of the arrows indicates
the degree of functionality of each pathway compared with the normal state. The
blue arrows inside each box indicate if there is a decrease or increase of activity of
the brain region as compared with the normal level of activity. The
neurotransmitters used by the different pathways are in gray. Plus green signs
indicate excitation and minus red signs inhibition. Dashed lines indicate the
reduction of dopamine level produce by the SNC in PD patients. PD patients have
an increased inhibition of the motor thalamus -leading to suppression of the cortical
motor system- and of the brain-stem locomotor areas resulting from over-activity of
the internal GP and SNR. The high activity of these two areas is due to diminished
inhibition from the striatum and to excess of stimulation from the overactive
subthalamic nucleus.
D1, D1 dopamine receptors; D2, D2 dopamine receptors, SNC, substantia nigra
pars compacta; SNR, substantia nigra  pars reticulata; external GP, external portion
of the globus pallidus; internal GP, internal portion of the globus pallidus;
GABA,γ-aminobutyric acid. Adapted from Lang and Lozano, 1998.
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3-2-Hypotheses of cell death mechanisms

The most relevant feature of PD neuronal degeneration is the distinct disappearance

of the DA neurons. The mechanisms responsible for cell death in PD are not well

understood. Some evidences suggest that the neuronal death in PD is abnormal

apoptotic process [Hartmann and Hirsch, 2001], while others evoke a necrotic

mechanism (for review [Andersen, 2001]). There are many causes and factors,

which have been evocated for their implication in neuronal degeneration in PD.

Among the most studied theories include, mitochondrial dysfunction (for review

[Jenner, 2001]), oxidative stress (for review [Sayre et al., 2001]), deficient

neurotrophic support [Kordower et al., 2000], and immune mechanisms (for review

[Kuhn et al., 1997]). The vulnerability of the DA neurons in PD, is likely related to

their singularity and may be due to their increased metabolic stress, high rates of

protein oxidation, generation of toxins or failure to detoxify (maybe because of the

presence of neuromelanin), and very specific needs for neurotrophic support or

their ability to take up both endogenous and extrinsic toxic complexes through

carrier mechanisms, such as the dopamine transporter.

3-3-Etiology: environmental and genetic factors

There is no real existing etiology of PD (for review [Olanow and Tatton, 1999]).

The only evidence for an environmental factor in PD is associated to the toxin

1,2,3,6-methyl-phenyl-tetrahydropyridine (MPTP). Drug addicts who took MPTP

developed a syndrome that remarkably looks like PD [Langston et al. 1983]. Some

epidemiological studies show that a couple of factors may augment the risk of

developing PD as exposure to well water, pesticides, herbicides, industrial

chemicals (for review [Tanner and Langston 1990; Jenner, 2001]). Some exogenous

toxins, like trace metals, cyanide, organic solvents, carbon monoxide, and carbon

disulfide have been related with the development of PD (for review [Montgomery,

1995]) [Bringmann et al., 1999; Hageman et al., 1999], but none of these toxins

have been found in the brain of PD patients, nor a MPTP-like factor.

The participation of genetic factors in the risk of developing PD is strengthened by

epidemiological studies. It was demonstrated that there is a higher frequency of PD

cases in relatives of PD patients than in those of controls (for review [Bandmann et
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al., 1998]), it was shown as well that there is a high concordance in monozygotic

twins [Piccini et al., 1999]. Mutations in the α-synuclein gene have been found in

some families with autosomal dominant PD [Polymeropoulos et al., 1997; Krueger

et al., 1998]. Interestingly, α-synuclein is one of the main constituents of Lewy-

bodies. Mice homozygous for a null mutation in α-synuclein exhibit a diminution

in striatal dopamine and an attenuation of dopamine-dependent locomotor response

to amphetamine [Abeliovich et al., 2000]. Another gene possibly involved in PD

predisposition is the parkin gene, which encodes an ubiquitin ligase. Deletions of

this gene have been identified in autosomal recessive juvenile forms of the disease

in humans [Kitada et al., 1998; Shimura et al., 2000]. Among other gene candidates

for a role into risk of developing PD are those involved in mitochondrial

dysfunction, oxidative stress, deficient neurotrophic support and immune

mechanisms.

The fact that either an environmental or a genetic factor could cause PD is

suggested by the existence of the association of a PD syndrome with both MPTP

and mutations in α-synuclein. Nevertheless, it is doubtful that the majority of PD

cases will be elucidated by a unique cause. It is more likely that PD results from the

co-action of genetic mutations and environmental toxins.

3-4-Treatment

Since the mid-1960s therapies which replace the lost neurotransmitter dopamine

with its precursor L-dopa have been used for the treatment of PD. These therapies

are very efficient in the early phase of the treatment and the patients experience an

impressive restoration of neurological functions. Unfortunately, the efficiency of

the L-dopa declines progressively and some side effects, like motor fluctuations

including involuntary movements, start to occur after 6 months to 5 years of

treatment depending on the patient (for review [Bezard et al., 2001]). These

problems could be avoided by very recent surgical trials accomplished on PD

patients. Embryonic mesencephalic tissues were grafted within the striatum of the

patient to provide local delivery of dopamine. However ethical and safety issues, as

well as an only partial functional recovery in PD patients necessitate additional

development of the approach  (for review [Dunnett et al. 2001]) [Freed at al., 2001].
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Finally, outstanding results have been obtained with an alternative therapy called

deep brain stimulation. Bilateral electrical stimulation of the subthalamic nucleus

significantly improved akinesia, rigidity, tremor and reduced dyskinesis [Limousin

et al., 1998].
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4- Development of the midbrain DA neurons

The midbrain DA neurons are initially detected around embryonic day (E) 12.5 in

the rat, near the mid–hindbrain boundary ([MHB] or isthmus) [Voorn et al., 1988].

The generation of DA neurons in this area depends on prior signals from organizers

located nearby the ventral midbrain progenitor neurons and involves molecular

differentiation cascades for the specification of neurotransmitter identity and the

proper integration in the developing brain (Figure I.4).

4-1-The early organizers

Along the dorso-ventral and the antero-posterior axes of the neural tube, mature

neurons develop in stereotypic positions (for review [Tanabe and Jessell, 1996]).

The MHB, the floorplate (FP) and the anterior neural ridge (ANR) are three

organizing centers, which operate along these two main axes and set up an

epigenetic grid of Cartesian coordinates where neural progenitors start different cell

fates consistent with their position on this grid [Rubenstein et al., 1994]. It is indeed

the case for the midbrain DA neurons development (for review [Hynes and

Rosenthal, 1999]).

4-1-1-Specification of the DA neurons along the dorso-ventral axis

Studies have shown that the midbrain and forebrain DA neurons differentiate near

the FP. Moreover, they can be induced ectopically by the FP in dorsal midbrain in

explants, or in transgenic mice [Hynes et al., 1995 a] and in dorsal forebrain

explants [Ye et al., 1998], respectively. The molecule responsible for the FP

activity is Shh. Indeed, it can imitate by itself the inductive effect of the FP [Hynes

et al., 1995 b; Wang et al., 1995], and FP inductive effect is not possible in

presence of Shh-blocking antibodies [Ye et al., 1998].

Therefore, it seems that DA neurons need Shh for their specification along the

dorso-ventral axis. However, Shh cannot induce DA neurons in diencephalon or

hindbrain (that do not normally contain endogenous DA neurons) [Ye et al.,1998]

suggesting that it does not specify the DA neurons along the antero-posterior axis.
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Shh

FGF8DA neuron
progenitors

Midbrain Dopaminergic
Neurons Specification

Differentiated Midbrain
Dopaminergic Neurons

       Regional Factors:
Mid-Hindbrain Boundary
Specific Genes
i.e.: Otx2, Gbx2, Pax2,
    Wnt1, En1&2 ...

Intracellular Mediators:
Nurr1, Ptx3, En1&2...

Maturation Factors:
Also participation in 
Late specification
i.e.:BDNF, TGFαααα ... 

Figure I.4. Generation of the midbrain dopaminergic neurons.
Midbrain neural plate progenitors differentiate into DA neurons by the combined
action of two extracellular inducers, Sonic Hedgehog (Shh) and fibroblast growth
factor 8 (FGF8). The inductive molecules are thought to activate cascades of other
signaling molecules and transcription factors, which lead to the final differentiation
of DA neurons.
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4-1-2-Specification of the DA neurons along the antero-posterior

axis

Forebrain DA neurons have been found to be specified in the very anterior regions

of the neural plate, in close proximity to the ANR [Ye et al., 1998]. The fact that

the developing midbrain DA neurons are close to the MHB and that the forebrain

DA neurons are close to the ANR, indicate that these two organizing centers may

supply the DA neurons for location information along the antero-posterior axis. The

molecule delimiting the position of the DA neurons along the antero-posterior axis

is FGF8. Indeed, FGF8 is expressed at E9 in both the ANR and MHB, at very high

levels in the transverse pieces of tissue that give rise to fore- and midbrain DA

neurons [Ye et al., 1998]. At E14, the DA neurons are located nearby the remaining

Fgf8 signal. It was shown that blocking FGF8 in isolated mid- and forebrain

explants prevented the development of both mid- and forebrain DA neurons [Ye et

al., 1998]. The need of FGF8 for DA neurons existence is supported by experiments

showing that mice with a mutation in the Fgf8 gene lack TH-positive DA neurons

[Ye et al., 1998]. Reverse experiments show that FGF8 is also capable of inducing

DA neurons ectopically in the ventral diencephalon [Ye et al., 1998]. This

demonstrates that FGF8 is very likely an endogenous factor that demarcates the

location of DA neurons along the anterio-posterior axis of the neural tube.

4-1-3-Specification of the DA neurons by Shh and FGF8

FGF8 and Shh can induce DA neurons in the dorsal diencephalons only when

applied together, but not alone. Therefore, a combined action is crucial for the

specification of DA neurons, and the location of DA neurons along the anterio-

posterior and dorso-ventral axes is delineated by the incorporation of these two

molecules [Ye et al., 1998].

4-1-4-The MHB and its relationship to the midbrain DA neurons

The midbrain DA neuron progenitors are located in rat at E9 on the rostral side of

(and within) the MHB, and they differentiate in this area between E9 and E14. It is
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important to characterize the MHB to comprehend how it acquires a distinctive

rostral-caudal polarity resulting in a specific rostral location to the midbrain DA

neurons. The MHB is vaguely anatomically distinguish as the ‘gap’ in between the

midbrain and hindbrain and molecularly depicted has having the ability to recreate

particular patterns when transplanted to another area of the neural tube. Because of

its ambiguous anatomical definition, a set of genes expressed within the MHB is

used to define this organizing center. These genes cover a large domain that ends at

the margin between the mid- and hindbrain (e.g. Otx2 and Gbx2), are specifically

expressed in midbrain (e.g. Wnt1), hindbrain (e.g. Otp), or are expressed within the

isthmus (e.g. Engrailed-1 and Engrailed-2 (En-1 and En-2), Lmx1b, Pax2, Pax5,

Pax8, and Fgf8) (Figure I.5).

The MHB initially covers a wide area within the neural plate, including the region

of both the future midbrain and hindbrain. Later this area progressively is reduced

in size, between the headfold stage and mid-gestation, to finally occupy a region

between the midbrain and hindbrain. En-1 and En-2, Fgf8, Wnt1, Otx2 are

expressed at early stages (5 somites) in the areas of the neural plate, which give rise

to midbrain DA neurons [Ye et al., 1998], Lmx1b is expressed throughout the

caudal forebrain, midbrain and hindbrain [Adams et al., 2000]. Fgf8, Wnt1, Otx2,

Lmx1b, En-1 and En-2 are still expressed by midgestation in close vicinity to DA

neurons, where the latter three genes now even include expression within the DA

neurons (details are given in the section 3-2-3). From E11.5 onwards, the DA

neurons can be identified and express TH their mature marker. The MHB genes

identified so far function to define, stabilize and maintain the boundaries of the

MHB, implying a function in the midbrain DA neurons positioning and likely in

their fate.

4-2-The factors that affect later events in midbrain DA neurons maturation

4-2-1-The maturation factors

The late development of midbrain DA neurons involves a lot of factors. These

factors may not only play a role in the maturation of midbrain DA neurons, but

might as well take part in their late specification. For instance, the receptor for
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 Midbrain       Isthmus        Hindbrain
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(b)  > 20 Somites
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Figure I.5. Schematic of the relative position of mid-hindbrain boundary associated
genes and of the dopaminergic neuron progenitors.
(a) Presomite stage: Otx2, Gbx2 and Pax2. (b) > 20 somites: Otx2, Gbx2, Lmx1b,
Wnt1, Fgf8, Pax2, Pax5, En-1 and En2, Emx2, Otp. Adapted from Hynes and
Rosenthal, 1999.
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thrombin was shown to be expressed in the embryonic ventral midbrain, and DA

neurons cultured in contact with thrombin change the length, branching pattern and

number of neurites [Debeir et al., 1998]. Similar changes in DA neurons are

generated by nerve growth factor proteins, such as brain-derived neurotrophic

factor (BDNF) [Alonso-Vanegas et al., 1999], neurotrophin-3 and neurotrophin-4/5

[Studer et al., 1995; Hyman et al., 1994], by bFGF [Ferrari et al., 1989], and by

members of the transforming growth factor (TGF) and GDNF protein families

[Horger et al., 1998; Strelau et al., 2000]. Moreover, mice deficient in the TGFα

gene showed a 50% reduction of DA neurons in the SN, but a normal amount in

other DA nuclei [Blum, 1998], suggesting that TGFα  may take part in the

expansion or differentiation of this specific DA neuron.

There are more factors which play a role in the development, the survival, or the

maturation of the midbrain DA neurons and/or whose receptors are expressed in the

midbrain DA neurons. Although little is known about the function of these factors

in the development of DA neurons in vivo, they could participate in late

specification into particular subtypes or serve as mitogenic or survival factors for

DA progenitors. These factors are for instance, the pituitary adenylate cyclase-

activating polypeptide [Takei et al., 1998], calcitonin gene-related peptide

[Burvenich et al., 1998], endothelin [Webber et al., 1998], neurotensin [Sotty et al.,

1998], estrogen and progesterone [Kritzer and Kohama, 1998], substance P [Futami

et al., 1998], retinoic acid [Samad et al., 1997].

4-2-2-The intracellular mediators

In contrast to the genes described above, very little is known about the intracellular

proteins that mediate the development of DA neurons in reaction to inductive

signals. Until now, five transcription factors have been identified to intervene in the

development of the midbrain DA neurons: Nurr1, Ptx3, Lmx1b and En-1 and En-2.

The data described in this chapter suggest that none of these genes, by itself, is

sufficient to induce DA neurons in the embryonic midbrain.

Midbrain DA progenitor cells, while still mitotically active, express the

homeodomain transcription factor Lmx1b at E7.5 [Smidt et al., 2000] and aldehyde

dehydrogenase 2 (AHD-2) is detected from E9.5 [Wallen et al., 1999]. After
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becoming postmitotic and beginning neuronal differentiation, the precursors of the

midbrain DA neuron express the orphan nuclear receptor Nurr1  at E10.5

[Zetterstrom et al., 1997], the homeodomain transcription factor Ptx3 at E11 [Smidt

et al., 1997] and the 2 homologues homeodomain transcription factors En-1 and En-

2 at E11.5. At E11.5, these neurons begin terminal differentiation into DA neurons

expressing TH, and L-aromatic amino acid decarboxylase (AADC), as well as other

proteins necessary for dopamine function including vesicular monoamine

transporter (VMAT) and dopamine transporter (DAT) [Lee et al., 1999; Foster et

al., 1988; Fujita et al., 1993; Hansson et al., 1998].

4-2-2-1-Nurr1

Nurr1 is an orphan member of the steroid/thyroid hormone nuclear receptor

superfamily and functions as a transcription factor (for review [Maruyama et al.,

1998]) [Eells et al., 2001]. It plays a key role in the determination of the midbrain

DA neurons identity. Mice homozygous for a null mutation in the Nurr1 gene

neither express the two enzymes of dopamine synthesis, TH and AADC, nor its

transporter vehicles, VMAT and DAT [Zetterstrom et al., 1997; Castillo et al.,

1998; Saucedo-Cardenas et al., 1998]. In the absence of Nurr1, the DA neuron

precursors rapidly lose ADH-2 expression after E10.5, while the expression of Ptx3,

En-1 and -2, and Lmx1b is maintained until at least E15.5 before it is gradually lost

[Saucedo-Cardenas et al., 1998; Wallen et al., 1999; Smidt et al., 2000]. A subset of

the DA neuron precursors undergoes apoptosis; however, a significant population

remains at birth, principally in the VTA, as shown by the continued expression of

exon 1 and 2 Nurr1 mRNA (Zetterstrom et al., 1997; Saucedo-Cardenas et al.,

1998; Wallen et al., 1999; Witta et al., 2000).

Although Nurr1 expression can be induced by Shh [Ye et al., 1998], it may be

responsible only for late steps in the differentiation of DA neurons. Furthermore,

Nurr1 does not seem to be sufficient by itself to induce DA neurons, as no ectopic

development of DA neurons is induce by Nurr1 ectopic expression in the dorsal

midbrain of mutant mice (M. Hynes, A. Rosenthal, unpublished data, mentioned in

the review [Hynes and Rosenthal, 1999]).
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4-2-2-2-Ptx3

Ptx3, a homeodomain transcription factor, has been cloned from neuronal tissues

and is exclusively expressed in midbrain DA neurons from E11 until adulthood

[Smidt et al., 1997]. The consequence of ablating Ptx3 has yet been reported.

Nevertheless, cell culture experiments with transient transfections showed that Ptx3

activates the TH gene through direct interaction with a single high-affinity binding

site within the promoter. The activation of the TH promoter appears to be cell-

dependent suggesting that Ptx3 action may be modulated by other regulatory

mechanism(s) and factor(s) [Lebel et al., 2001].

4-2-2-3-Lmx1b

Additionally to its role in the patterning of mid/hindbrain region [Adams et al.,

2000], the LIM homeobox gene Lmx1b is an essential regulator of dorsoventral

patterning of the developing limbs [Johnson and Tabin, 1997]. Mutations in this

gene evoke the nail patella syndrome [Dreyer et al., 1998; Chen et al., 1998] but no

resulting patterns of expression of Lmx1b in brain or brain abnormalities are known

to be connected to this syndrome. Lmx1b expression pattern is characterized by

expression in the DA neurons of the SNC and of the VTA. Neural Lmx1b is first

expressed at E7.5 and its expression is maintained in the SNC and VTA throughout

life [Smidt et al., 2000]. In E12.5 Lmx1b–/– mouse embryos TH-positive cells are

observed only in the VTA, and express Nurr1. These cells do not express Ptx3,

indicating that Ptx3 is not necessary for TH expression. TH-positive cells are

detected in the VTA up to E16 before they are lost. However, expression of TH is

maintained in the DA and noradrenergic neural system in other brain regions. The

absence of Ptx3 expression in the TH-positive neurons indicates that Lmx1b is

essential for the proper specification of the midbrain DA neurons. Lmx1b–/– mice

seem to lack the required molecular signals to maintain midbrain DA neurons,

resulting in their lost during maturation of the organism [Smidt et al., 2000].

It appears that Lmx1b, together with Ptx3, sets up a molecular cascade unrelated to

Nurr1 and TH. This individual pathway seems vital for proper development of the

system and may be related to neuronal specification of the midbrain DA neurons.
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4-2-2-4-Engrailed 1 and 2

En-1 and En-2, are two homeodomain transcription factors. Their identification in

mice [Joyner et al., 1985; Joyner and Martin, 1987] and later in others vertebrates,

was based on their sequence similarity to the drosophila genes Engrailed and

Invected. The drosophila genes have been shown to be required for embryonic

segmentation [Kornberg, 1981; Lawrence and Struhl, 1982] and for later

development of the nervous system [Lawrence and Johnston, 1984].

In the mouse and rat, En-1 and En-2 (and En-3 in zebrafish) play an important role

in the patterning of the mid/hindbrain region and all the En proteins have extensive

functional overlaps [Hanks et al., 1995; Scholpp and Brand, 2001]. Mice depleted

for En-1 die shortly after birth and exhibit multiple developmental defects and lack

the cerebellum and inferior colliculus [Wurst et al., 1994]. Mutants for En-2 are

viable and show no obvious defects in embryonic developement but exhibit an

abnormal foliation in the adult cerebellum [Joyner et al., 1991; Millen et al., 1994].

In chick, retrovirus-mediated misexpression of En genes [Friedman and O’Leary,

1996; Itasaki and Nakamura, 1996; Logan et al., 1996; Shigetani et al., 1997;

Shamim et al., 1999] within the developing mesencephalon results in the disruption

of the gradient of cytoarchitectonic differentiation of the optic tectum and further

aberrant arborizations and perturbed targeting of nasal retinal ganglion cell (RGC)

axons and complete degeneration of the temporal RGC axons.

En-1 and En-2 have been recently described to be involved in the development of

the SN and VTA. They are both expressed in the midbrain DA neurons from E11.5

of mouse development and up to adulthood (Figure I.6). Either of the two is

sufficient for the generation and maintenance of this cell population. Their

requirement is only apparent in the absence of both genes (Figure I.7). In En double

null mutant, the DA neurons are induced in the ventral midbrain and express at

least one of their typical differentiation markers, TH, but then fail to mature and

disappear (Figure I.8). Interestingly, α-synuclein is not expressed in the midbrain

DA neurons when no functional En-1 and En-2 protein is present [Simon et al.,

2001]. This is particularly interesting since, as mentioned earlier, mutations in the

gene α-synuclein have been found in some families with autosomal dominant PD.
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Figure I.6. DA neurons in the ventral midbrain of neonatal mice express En-1 and
En-2.
Nissl staining (A), in situ hybridization (B and C) and double immunolabeling
(D–G) of sagittal (A–C, F, G) and coronal (D, E) sections of P0 mouse brains. A, B,
C, adjacent sections of a P0 wild-type mouse hybridized with riboprobes against
En-1 (B) and En-2 (C) reveal the distribution of En transcripts in the substantia
nigra (SN), inferior colliculus (IC), and cerebellum (Cb). En-1 is expressed at high
levels throughout the ventral tegmentum (VT) and SN, whereas En-2 is expressed
at relatively high levels by only a small subset of cells and at much lower levels in
most cells. En-1 is also expressed in a subpopulation of cells in the superior olive
(SO), a hindbrain nucleus. D, E, double immunohistochemistry on a coronal section
of a P0 wild-type mouse brain using the αEnhb antibody, which recognizes both
En-1 and En-2 proteins (D, red), and an antibody against TH (E, green). En and TH
proteins are coexpressed in DA neurons of the SN and VT. En protein is located in
the nuclei, whereas TH is located in the cell somata and their axonal processes. F,
G, a lateral section of P0 mouse brain heterozygous for En-1/Tau-LacZ, double-
labeled with antibodies against β-gal, the protein product of LacZ (F, red) and TH
(G, green). TH and the β-gal reporter for En-1Ttau-LacZ are coexpressed in the
somata and axons of the midbrain DA neurons. Adapted from Simon et al., 2001.
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Figure I.7. Loss of midbrain DA neurons in En double mutant mice.
Nissl staining (A and D), immunohistochemistry on sagittal sections of P0 mouse
brains using antibodies against TH to identify DA neurons (B, C, D, E) of wild-type
(WT) mice (B and C), En double mutant (En-1-/-/En-2-/-) mouse (E and F). B and
C, TH immunostaining reveals the normal distribution of the midbrain DA neurons.
In the midline (mid) (B), the neurons of the ventral tegmentum (VT) are labeled,
and in a more lateral (lat) section (C), those of the substantia nigra (SN) are labeled.
E and F, DA neurons of the SN and VT are not detected by TH immunostaining,
however, DA neurons of the dorso-medial hypothalamic nucleus (DMH) remain
TH-positive (E), indicating that their DA phenotype does not depend on En-1 or
En-2. Adapted from Simon et al., 2001.
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Figure I.8.  DA neurons of the ventral midbrain are generated in En double
mutants.
Whole-mount immunohistochemistry of E12.5 embryos using antibodies against
TH. A, wild-type; B, En double mutants (En-1-/-/En-2-/-). Flat mount of ventral
midbrain E12.5 embryos immunostained for TH. A’, wild-type; B’, En double
mutants. A’, the immunostaining reveals the bilateral distribution of DA neurons
adjacent to the floor plate. B’, a cluster of DA neurons is detected, although it is
smaller than what is observed in wild-type or heterozygous mice. These neurons
disappear in En double mutants over the next few days of development. Adapted
from Simon et al., 2001



I-INTRODUCTION

23

5-Aim of the study

The DA system is specified in the embryonic ventral midbrain around E12 in the

mouse brain. As mentioned above, the function of this region to generate DA

neurons depends on earlier signals from organizers neighboring the ventral

midbrain progenitor neurons, and involves molecular differentiation cascades for

specification of neurotransmitter identity and appropriate integration in the

developing brain.

There are a number of genes identified that participate in the patterning of the

ventral midbrain (see above); however factors involved in midbrain DA neurons-

specific cascades and their cellular function in development of the midbrain DA

neurons system are largely unknown. Only five transcription factors described

above; Nurr1, Ptx3, Lmx1b and En-1 and En-2 are known to be implicated at this

level in the midbrain DA neuron system, however the functional relationship

between these genes is not clear.

The aim of this project was to identify and characterize genes, which mediate the

development of the DA neurons during the intermediate period between induction

and full differentiation of these neurons. Such genes would be of great value for

further studies where specific drivers of midbrain DA neurons are needed, i.e. for in

vitro experiments in tissue grafts used for therapeutic purposes.
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6-Strategy

The continuous expression of En-1 and En-2 in the adult suggests that these genes

are required for the entire life span of the animal. Indeed, in the En double null

mutant mice, the DA neurons of the SN and VTA differentiate first, but then

disappear soon after they have acquired their DA phenotype [Simon et al., 2001].

Since En-1 and En-2 are transcription factors, which bind to DNA and act as

activators or repressors of gene expression, the altered expression of downstream

genes in the double null mutants is likely to be responsible for the death of these

neurons. A comparison of the gene expression pattern between wild type mice and

En double null mutant mice should therefore reveal genes whose expression may be

directly regulated by En-1 and En-2 and genes which are generally expressed by the

midbrain DA neurons. A recently modified differential display method [Gesemann

et al., 2001] was used in order to identify such genes. Subsequently, the

characterization of the genes of interest was achieved by the study of their

developmental expression patterns, by the analysis of mice depleted for these genes

and by over-expressing them in the chick embryo.
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1- Generation and maintenance of mice

The generation of the En-2 deficient mice by targeted gene deletion has been

previously described [Joyner et al., 1991]. The En1Tau-LacZ mice were generated

by a “knock-in” strategy in which the first 71 codons, including the start codon,

were replaced by a Tau-LacZ sequence (TLZ) [Callahan and Thomas, 1994], and

resulted in an En-1 null allele. The construct and procedures are described in detail

by Saueressig et al., 1999. Parental lines for producing the mutant mice deficient

for both En-1 and En-2 were kept as En2-/-;En1+/TLZ. The initial genotyping of the

mice for En-2 wild-type and mutant alleles was done by PCR with three primers to

detect in one reaction wild-type and mutant alleles. ‘Common’ primer: TTG AGA

AGA GAG GCC CTG TA, ‘wild-type’ primer: CTG GAA CAA AAG GCC AGT

GT, ‘mutant primer’ (located in the neomycin resistance gene): TCT CAT GCT

GGA GTT CTT CG. PCR parameters: 5min-94°C, 36 cycles {45sec-94°C, 1min-

54°C, 1min-72°C}, 5min-72°C, PCR conditions: as described in 3-4, with 1.5mM

MgCl2. The presence of the En1TLZ allele was detected by β-galactosidase staining

of the toes. The toes were incubated at 37 °C for 3hr in the staining solution (4mM

K3[Fe[CN]6]; 4mM K4[Fe[CN]6]; 2mM MgCl2, and 0.4mg/ml 5-bromo-4-chloro-3-

indolyl-D-galactopyranoside), then observed under the microscope. A blue staining

had developed if the En1TLZ allele was present. The En2-/-;En1TLZ/TLZ mutant

mice were recognizable by their typical head morphology: they lack a large part of

the midbrain and the anterior hindbrain.

The Nurr-1 deficient mice were generated by targeted deletion of exons 2, 3, and

part of exon 4 [Zetterstrom et al., 1997]. The parental lines for producing the null

mice were kept as heterozygotes. The genotyping of the mice for the Nurr-1 wild-

type or mutated alleles was done by PCR. Wild-type allele detection: sense primer:

GTC GGT TTC AGA AGT GC, anti-sense primer: GTA AAC GAC CTC TCC

GG. Mutated allele detection: sense primer: CCA ATG TCG AGC AAA CC, anti-

sense primer: CGA TCC CCT CAG AAG AA. For both PCR the parameters were

the same: 4min-94°C, 35 cycles {45sec-94°C, 1min-56°C, 1min-72°C}, 4min-

72°C. PCR conditions: as described in 3-4, with 1.5mM MgCl2.

The ErbB4 conditional knock-out mice were generated by Rüdiger Klein and

kindly provided by Martin Gassemann (unpublished data). The nestin-cre
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transgenic mice [Tronche et al., 1999] were used to generate these mice in which

the ErbB4 gene was mutated by Cre-mediated recombination of loxP-flanked

ErbB4 exon 2.

The HNF3α deficient mice were generated by targeted deletion of the entire winged

helix DNA-binding domain and carboxy-terminal region of the protein and creation

of an in-frame fusion with E.coli lacZ gene [Kaestner et al., 1999].

The C57/BL6 wildtype mice were bred at the animal facility at the University of

Heidelberg. The day of vaginal plug detection is designated E0 and the day of birth,

postnatal day (P) 0. The timed pregnant females were sacrificed by cervical

dislocation.

2- Generation of the En chimeric mice

2-1- Preparation of the mouse embryo fibroblasts as feeder layer

2-1-1-Preparation of the mouse embryo fibroblasts

E12 to E14 mouse embryos were dissected in a dish with Dulbecco’s modified

eagle medium (DMEM) (high glucose, without pyruvate). The limbs, the internal

organs and the head were removed. The carcasses were put into a tube containing

DMEM and rinse 3 times with DMEM. The carcasses were then place on a dish and

minced with a razor blade, and poured into a tube containing 10ml of 0.05%

trypsin/EDTA in phosphate buffer saline (PBS) Ca++/Mg++ free and incubated for

10min on a shaker at 37°C. 5ml from the incubated tube were removed and placed

in a new 50ml tube with equal volume of DMEM plus 10% of newborn calf serum.

Another 5ml of trypsin/EDTA was added to the first tube and incubated for an

additional 10min. The second 5ml aliquot was then removed and added to the

second 50ml tube with an equal amount of DMEM plus 10% of newborn calf

serum. The latter step was repeated for five incubations. The content of the 50ml

tube was then centrifuged and resuspended with DMEM plus newborn calf serum.

The cells were then plated into eight 10-cm tissues culture dishes containing feeder

medium (DMEM, 50µg/ml penicillin and streptomycin, 2mM glutamine, 10% fetal

bovine serum (FBS) (Life Technologies, Inc., USA)). After one day in culture at
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37°C and 5% CO2 the medium was changed and then the cells were allowed to

grow until the dishes were confluent. The cells were split 1:10 and grew until they

reached confluence and then frozen into DMEM plus 20% FBS and 10% dimethyl

sulfoxide (tissue grade culture, Sigma-Aldrich, Inc., USA).

2-1-2-Preparation of mouse embryo fibroblasts feeder dishes

It is necessary to mitotically inactive the mouse embryo fibroblasts before they can

be used as feeder layer to grow ES cells. Mitomycin C (tissue grade culture, Sigma-

Aldrich, Inc, USA) was used to cross-link DNA and block cell proliferation.

Confluent plates of mouse embryo fibroblasts on gelatin were treated with DMEM

plus 10% newborn calf serum and 10µg/ml of mitomycin C for 3hr at 37°C and 5%

CO2. The dishes were washed three times with PBS. ES medium (DMEM (high

glucose, without pyruvate), 15% fetal FBS ES cell tested, 2mM glutamine, 0.1mM

non essential amino-acids, 50µg/ml penicillin and streptomycin, 0.1mM (Life

Technologies, Inc., USA), β-mercaptoethanol (tissue grade culture, Sigma-Aldrich,

Inc., USA), and leukemia-inhibiting factor (LIF) 200U/ml (Chemicon International,

Inc., Temecula, CA, USA)) was then added 2hr before plating the ES cells.

2-2- De novo isolation of embryonic stem cells from blastocysts

The E3 blastocysts were flushed out from the uterine horns with M2 medium (Life

Technologies, Inc., USA) and place individually into 10-mm-well tissue culture

dishes containing a feeder layer and ES medium. After two days of culture at 37°C

with 5% CO2, the blastocysts attached to the culture dishes. The inner cell mass

(ICM) became distinguishable and grew rapidly over the next two days. After 5 to 6

days, the ICM was disaggregated using a sealed end of a very fine Pasteur pipette.

The clumps of cells were then washed twice with PBS Ca+ +/Mg++ free (Life

Technologies, Inc., USA), and were transfered with a very fine Pasteur pipette to a

microdrop of 0.025% trypsin/EDTA (Life Technologies, Inc., USA) in PBS. The

cells were incubated for 3min at 37°C, then the clumps were gently dissociated into

smaller cellular aggregates of three to four cells. The content of the microdrop was

then transferred into a fresh 10-mm feeder cells tissue culture well (see 2-3) with
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ES medium. The individual cultures were inspected daily. Generally after 3 days,

primary colonies of cells became visible and the stem-cells-like cells could be

identified. They grow progressively but maintain the same ES-cell-like phenotype:

the colonies remain composed of a homogenous population of stem cells and no

cellular differentiation occurs. Stem cells are comparatively small, typically have a

large nucleus containing one or more prominent nucleoli, and are tightly packed

within the multi-layered colony. The colonies which fail to show any differentiation

but retain cells of an exclusively ES phenotype were selectively removed between 7

to 8 days. These colonies were then dissociated in microdops of trypsin / EDTA (as

described above) and passaged into fresh, small feeder layer wells to keep the cell

density high. Depending on the relative rate of growth, these cultures were

expanded 3-5 days later by trypsinizing the whole well and transferring its content

into a larger feeder dish. This procedure is detailed in the laboratory manual

‘Manipulation of the mouse embryo’ by [Hogan et al., 1994]. The experimental

stages of the techniques and the timings are summarized in figure II.I.

2-3- Establishment of the ES cell lines

To establish the ES cell lines it was necessary to subculture at 4-5 day intervals,

splitting at 1:3, as their cell growth rate was relatively low (instead of usually 2-3

day intervals). To improve the viability of the cells, the media of semi-confluant

cultures was changed 2-3hr before passage. The cell monolayer was washed twice

with PBS and a small amount of 0.025% trypsin/EDTA in PBS was added to the

tissue culture dish. After 3-4min of incubation at 37°C, the cells were detached

from the dish and the cell clumps were broken up to give single-cell suspension by

pipetting vigorously. The suspension was then washed with ES medium and

replated onto fresh feeder wells. The ES cells were incubated at 37°C and 5% CO2

and ES medium was changed every 1 to 2 days.
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Figure II.1. Summary of the procedure for obtaining pluripotential stem cell lines.
Blastocysts are recovered and placed into cell culture dishes with ES medium (day

0). By day 5-6, the inner cell mass (ICM) has proliferated to give a distinct cellular

mass, which is dissociated, and the cells clumps are transferred to a fresh feeder

layer well. On day 9, primary colonies are examined. Colonies that look like stem

cells (SC) are individually removed, dissociated into single cells, and reseeded into

fresh feeder wells on day 12-13. Two days later (day 14), the wells are inspected

for the presence of ES cell colonies and wells containing stem cells are subcultured

(day 16) to give permanent cell lines. Remaining wells are discarded. Adapted from

Hogan et al., 1994.
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2-4- Genotyping of the ES cell lines

The En-1 gene was used to screen ES cells for En2-/-;En1TLZ/TLZ genotype as

described by Saueressig et al., 1999. ES cells clones were screened for integration

of TLZ in the En-1 locus by Southern blot using an external 3’ genomic DNA probe.

The Southern blot analysis was carried out as described in the Basic Protocol

section of ‘Current protocols in molecular biology’ [Ausubel et al., 1998].  Briefly,

HindIII-digested genomic DNA samples from ES cells clones were run in an

agarose gel and transferred over-night on a nylon membrane. The DNA samples

were immobilized to the membrane by UV crosslinking. The membrane was then

hybridized with a denatured 800bp EcoRI/HindIII DNA probe labeled with 32P,

overnight at 65°C.  The membrane was washed at 65°C twice 15min with

2xSSC/0.1%SDS, then twice 15min with 0.2xSSC/0.1%SDS. Signals were detected

by exposure overnight of the membrane to Applied Biosystems PhosphorImager

cassettes, which were scanned on a PhosphorImager (Molecular Dynamics,

Amersham Biosciences, Sunnyvale, CA, USA).

3- Differential display PCR experiment

3-1- RNA isolation

Embryos and adult brains were dissected in L15 medium (Life technologies GmbH,

Germany), carefully removing mesodermal tissue and meningitis. The tissue pieces

were briefly washed in medium and then put directly into lysis buffer (Qiagen

GmbH, Germany). Each sample was passed through a Qiashredder (Qiagen GmbH,

Germany) and applied on an RNeasy column (Qiagen GmbH, Germany). The RNA

was then treated with RNase free DNase (Life Technologies GmbH, Germany) and

repurified over an RNeasy column. The RNA was isolated from three

independently collected samples of each of the tissue types. Small aliquots (250ng)

were snap frozen in liquid nitrogen to avoid repeated thawing and freezing.
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3-2- Reverse transcription

Each reverse transcription was done with 250ng of total RNA. One of the arbitrary

10mer primers (Operon Kit B (OPB) (Operon Technologies, Inc, Alameda, CA))

TGATCCCTGG, GGACTGGAGT, TGCTCTGCCC, GTCCACACGG, CTGCTGGGAC,

CCTTGACGCA, TCCGCTCTGG, TTTGCCCGGA, CCACAGCAGT, GGACCCTTAC,

GTTTCGCTCC, CATCCCCCTG, TGCGCCCTTC, GGTGACGCAG, TGGGGGACTC,

GTAGACCCGT, TTCCCCCGCT, GGAGGGTGTT, AGGGAACGAG or

ACCCCCGAAG), was added to the RNA to initiate first strand cDNA synthesis

using the Superscript Preamplification System for First Strand cDNA Synthesis

(Life Technologies GmbH, Germany). Reverse transcriptions were performed as

suggested by the manufacturer using a thermal cycler. The obtained cDNA was

applied to a Qiagen PCR purification column (Qiagen GmbH, Germany) and

subsequently elute with 10mM TRIS pH 8.5.

3-3- Differential display PCRs

The differential displays PCRs experiment (ddPCR) was performed as described in

detail by Gesemann et al. 2001. The cDNA of each sample was amplified using

combinations of the OPB primers as upstream and downstream primers. ddPCR

reactions were prepared on ice using 2µl of first strand cDNA and the following

final buffer concentrations: 0.5µM of the primer used for reverse transcription,

0.5µM of secondary arbitrarily primer, 10mM Tris pH 8.3, 50mM KCl, 1.5mM

MgCl2, 25nM each dNTP, 0.075µCi/µl [33P]dCTP and 0.2 U Taq polymerase

(AmpliTaq, Perkin Elmer, Foster City, CA, USA). Following an initial 4min

denaturing step the reaction mixture was subjected to three low stringency cycles

(94°C for 45sec, 36°C for 60sec and 72°C for 90sec) and 39 high stringency cycles

in which the annealing temperature was raised to 40°C. The PCR products were

separated on a 6% denaturing polyacrylamide gel until the xylene cyanol dye

reached the bottom of the gel (about 4h with 85 Watts). The sequencing gel was

subsequently transferred to a piece of Whatman 3MM paper and dried without

fixation. Gels were routinely exposed to x-ray films between 24hr and 36hr.

Differences in the intensity of the bands were analyzed by visual inspection.
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3-4- Reamplification and subcloning

Differentially expressed gene fragments were recovered from the gel by cutting

through the overlaying film. Gel pieces were rehydrated in 100µl of deionized

water and boiled for 10min. 2µl of the obtained supernatant was directly used for

reamplification. Reamplification conditions were identical to the ddPCR conditions,

except that the nucleotide concentration was raised to 200µM and no isotope was

added. In addition, the original primers were replaced by 20mers containing the

original OPB 10mers primers with added XbaI or XhoI restriction sites. The 4 bases

preceding the cut site were chosen in a way that the annealing temperature of the

new 20mer was around 62°C (XXXXTCTAGA-OPB-10mer #1-10;

XXXXCTCGAG-OPB-10mer#11-20). Cycling parameters for reamplification were

adjusted as follows: Two cycles with annealing temperature at 40°C, followed by

34 cycles in which the annealing temperature was raised to 60°C. After a final

extension time of 5 minutes, the PCR reaction was loaded on a 3% agarose gel and

the fragments were recovered using the Qiaex II gel isolation kit (Qiagen GmbH,

Germany). Fragments were digested with the appropriate enzymes (Roche

Diagnostics GmbH, Germany) and subcloned into pBluescript II SK (-) vector

(Stratagene, La Jolla, CA, USA).

4- In situ hybridization

DNA fragments subcloned into pBluescript were used as template for making

riboprobes. The linear templates used for in vitro transcription were generated

either by restriction digest (Promega GmbH or from Roche Diagnostics GmbH

(Germany)) of the plasmids or by amplifying the fragments, from the ddPCR

experiment, using the following primer pairs: if the cDNA was in antisense

direction to the T7 RNA Polymerase promoter site of the vector the primers

AGCTCCACCGCGGTGGC and GGCCAGTGAATTGTAATACGA were used, if

cDNA was in sense orientation the primer containing the T7 RNA polymerase

promotor sequence AAAAATGTAATACGACTCACTATAGGGCCCACCG

CGGTGGCGGCCGCTCTAGA and the primer GGGTACCGGGCCCCCCC

TCGAG were used. This way, all templates contained a T7 site in antisense

orientation. All templates were gel-purified and transcribed in the presence of 35S-



II-MATERIALS & METHODS

33

UTP using T7 RNA Polymerase. The protocol for in situ hybridization was adapted

from Goulding et al. (1993). Mouse embryos and postnatal mouse brains were fixed

by either emersing in or perfusing with 4% paraformaldehyde (PFA). They were

then dehydrated overnight in 70% ethanol, 2x1hr30 min in 80% ethanol, 2x30min

in 96% ethanol, 2x45min in absolute ethanol, 1hr in ethanol/acetone (1:1), 2x45min

in acetone (the dehydration times were shortened to half for embryos younger than

E11, and extended to double duration for P8 brains), then embeded in paraffin for

2x1hr (Vogel, Germany).  8µm sections were cut and deparaffinated (2x7min in

xylol, 5min each in a series of ethanol baths) then fixed in 4% PFA and then

pretreated with acetic anhydride, and dehydrated in a series of ethanol baths.

Hybridization occurred overnight at 55°C. Following hybridization, the sections

were treated with ribonuclease A (20 µg/ml) at 37 oC for 15min before being

washed at high stringency in 0.2x SSC at 55oC for 15min and 0.1 x SSC at 55oC for

15min.

The slides were exposed on a Hyperfilm (Kodak) for 3 to 6 days, and developed for

4min in the D-19 developer (Kodak) and fixed in a non-rapid Kodak fixer for

10min.  Selected sections were dipped into Amersham Hypercoat emulsion

(Amersham Pharmacia Biotech Europe GmbH, Germany) and stored for 2-3 weeks

in the dark at 4oC. The developed sections were then counterstained with DAPI,

again dehydrated and mounted in DPX (Fluka, Germany).

5- In ovo electroporation

The mouse En-1-coding region [Logan et al., 1992] was inserted into the pIRES2-

EGFP vector (Clontech laboratories, Inc., CA, USA) with the CMV promoter

replaced by the chicken β-actin promoter (kindly provided by C.Krull, University

of Missouri, USA). The chicken Olf-1/Ebf mRNA (Ebf) is registered at the

GenBank (AJ238322). Olf1/Ebf-coding region was cloned into the β-actin-IRES2-

EGFP vector (Figure II.2). The single strand Ebf cDNA was generated from E7

chick brain mRNA (extracted with the RNAeasy kit from Qiagen GmbH, Germany)

by reverse transcription, and amplified by PCR with primers containing both the

EcoRV restriction site (sense primer: TCC GAT ATC ATG TTT GGG ATC CAG

GAA AG, anti-sense primer: TCC GAT ATC TCA CAT GGG GGG AAC AAT
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CA, PCR parameters: 4min-94°C, 35 cycles {45sec-94°C, 1min-60.5°C,

1min30sec-72°C}, 4min-72°C, PCR conditions: as described in 3-4). All the

cloning procedures were done with primers synthesized by MWG-Biotech

Sequencing GmbH (Germany), with the Superscript Preamplification System for

First Strand cDNA Synthesis (Life Technologies GmbH, Germany) for reverse

transcription reactions, with the Taq polymerase (AmpliTaq, Perkin Elmer, Foster

City, CA, USA) for PCR, with restriction enzymes from Promega GmbH

(Germany) for enzymatic restriction digestions and with the Takara kit (Bio

Whittaker Europe, Germany) for the ligation reactions (100ng of insert and 100ng

of plasmid incubated with an equal amount of Takara mix I, for 1hr at 16°C). All

these procedures were done according to the manufacturer instructions.

The in ovo electroporation method [Muramatsu et al., 1997] was modified to obtain

efficient transfection into brain vesicles [Funahashi et al., 1999, Nakamura and

Funahashi, 2001]. Fertile chick eggs were incubated at 37°C for 1.5 days (stage 10-

11). The windowed chick embryos were electroporated with En1 or Olf1

overexpression vector DNA at 3µg/µl. DNA mixed with a microdrop of 0.2% Fast

green FCF dye (Sigma-Aldrich, Inc, USA) was pipetted into the midbrain vesicle

using a picospriter until the vesicle was full. Pairs of electrodes (gold plated, 5mm

distance between the electrodes, from Genetrodes by Genetronics Inc., CA, USA)

were put beside brain vesicles as shown in figure II.3. A pulse of 25Volts, 50.7msec

was charged five times by the electroporator (ECM 830 BTX, by Genetronics Inc.,

CA, USA). Eggs were sealed and embryos were allowed to develop to a specific

stage, at which time they were dissected and fixed by immersion with 4% PFA for

6hr to 12hr.

6- Immunohistochemistry

Mouse embryos and postnatal mouse brains were fixed with 4% PFA, by perfusion

for postnatal mouse brains, and/or by immersion for 12hr to 24hr for all the

specimens. Brains, entire heads or embryos were cryoprotected in 30% sucrose, and

cut at 10-12µm thickness on a cryostat. They were first blocked with 10% new born

calf serum (Life Technologies GmbH, Germany), 0.1% Triton (Merck, Germany)

in PBS for 1hr at room temperature (Rt) and then incubated overnight at 4oC with

rabbit anti-Olf-1 (a kind gift from Randall Reed, Davis and Reed, 1996) 1:200  and
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Figure II.2. Chick β-actin-IRES2-EGFP overexpression vector.
The mouse En-1-coding region or the chicken Olf1/Ebf-coding region was cloned
into the pIRES2-EGFP vector (Clontech laboratories, Inc., CA, USA) with the
CMV promoter replaced by the ubiquitous chick β-actin promoter. This vector
contains the internal ribosome entry site (IRES) between the gene of interest (En-1
or Olf-1/Ebf) and the enhanced green fluorescent protein (EGFP). This permits both
the gene of interest and the EGFP gene to be translated from a single bicistronic
mRNA. cbeta-actin, chicken β-actin; polyA, polyadenylation signals; ori, origin;
Kan-r/Neo-r, neomycin/kanamycin resistance gene; HSV TK, herpes simplex virus
thymidine kinase.

Figure II.3. In ovo electroporation into chick embryos.
A and C, dorsal view of the chick embryo brain vesicle. A, before injection, C, after
injection of plasmid DNA labeled with Fast green in the midbrain vesicle (M) done
with a pipette and a picospriter. DNA was electroporated by pulses charged
between a pair of electrodes placed besides of the brain vesicle (C). The
workstation is shown in B.
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sheep anti-TH (Chemicon International, Inc., Temecula, CA) 1:400 diluted in
blocking solution. Several washes with PBS were followed by incubation with
Cy3™ conjugated donkey anti-rabbit, 1:500 and biotin conjugated donkey anti-
sheep, 1:400 (Jackson, Inc, West Grove, PA) for 2hr at Rt. Sections were then
washed again in PBS and incubated with Cy2™ conjugated streptavidin for 1hr at
Rt. Finally, the sections were washed and mounted in Aqua Poly Mount
(Polysciences, Inc, Warrington, PA, USA). A similar procedure was applied for
chicken embryos, however the cryoprotection was done in 25% sucrose. Individual
immuno-detections of Olf-1 or TH (rabbit anti-TH (Chemicon International, Inc.,
Temecula, CA) were done with the same antibody concentrations, using either
Cy2™ or Cy3™ conjugated antibodies. For the detection of TH on whole mounts
or thick floating sections the procedure was similar, but the preincubation was done
with 1% Triton and 0.3% of H2O2 (Fluka, Germany), and the secondary antibody
used was biotin conjugated donkey anti-rabbit 1:500 (Jackson, Inc, West Grove,
PA), then the tissues were incubated in streptavidin conjugated horseradish
peroxidase 1:2000 (Jackson, Inc, West Grove, PA) for 1hr. The signal was revealed
by incubation with 1% Diaminobenzidine (Fluka, Germany) and 0.01% of H2O2 in
PBS. The floating sections were placed on a slide, dehydrated and mounted in
DPX.

7-Image processing

All images were captured with a CoolSnap Photometrics camera through a Zeiss

Axiophot, a Leica Macrophot or a Leica Confocal microscope and processed using

Adobe Photoshop 6.0.
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1-Further characterization of the role of the En genes in the midbrain DA neurons

development

1-1-The midbrain DA neurons require En-1 and En-2 cell autonomously for

their survival

Since the midbrain DA neurons express En-1 and En-2 throughout their postmitotic life

and they disappear in the En double null mutant mice after they have been generated in

the ventral midbrain [Simon et al., 2001], it is very likely that these cells require the En

genes cell autonomously for their survival. Nevertheless, since the En genes are also

required for the specification of the midbrain and anterior hindbrain which are in close

vicinity to the developing SN/VTA [Millen et al., 1994; Wurst et al., 1994], it is

possible that the embryonic environment of the DA neurons provides trophic support

essential for their survival and the lack of this support causes them to disappear in the

En double null mutant.

It was essential to address this question to determine the source of RNA for the

differential display project; either ventral midbrain in the cell autonomous case, or the

midbrain and the anterior hindbrain, which contain the entire En genes expression

domain, in the non-autonomous case.

Since a transgenic approach would have been time and resource consuming, I

generated chimeric mice made up of a mixture of wild-type and En double null mutant

cells. A cell autonomous requirement should reveal itself by the loss of midbrain DA

neurons, whereas in the case of a cell non-autonomous requirement, no changes in the

distribution and numbers of the midbrain DA neurons are expected.

Blastocysts, obtained from matings between En2-/-; En1+/TLZ mice, were placed into

culture dishes, containing embryonic fibroblasts as a feeder layer, and let grow until the

ICM had formed. 50% of the blastocysts gave raise to an ICM, which was then

removed, disaggregated and dissociated into smaller cellular aggregates and put back

into culture until ES cells colonies could be identified. 30% of the ICMs gave raise to

ES cells colonies, which were then dissociated and expanded. I obtained a total of 16

distinct ES cell lines. The genetic composition of the cell lines for En-1 was tested by



III-RESULTS

38

Southern blot (Figure III.1). Three En2-/-;En1TLZ/TLZ ES cell lines, 7 En2-/-;En1+/TLZ

ES cell lines and 5 En2-/-;En1+/+ ES cell lines were obtained. Two En2-/-;

En1TLZ/TLZ ES cell lines, and one En2-/-;En1+/TLZ ES cell line, were injected

individually into wild-type blastocysts and implanted into pseudo pregnant female

mice. A total of 13 chimeric animals generated from En2-/-;En1TLZ/TLZ ES cell lines

and 6 chimeric animals generated from the En2-/-;En1+/TLZ ES cell line were born.

Chimeric animals were genotyped by PCR (from tail genomic DNA). All animals

showed the amplification of a band positive for the presence of the wild-type En-2

allele (from the wild-type blastocyst) and a band positive for the presence of the

mutated En-2 allele (from the En2-/- ES cells) indicating that the ES cell line

participated in the generation of the tail tissue. The chimeric animals were then

sacrificed at adult stages.

The original design of this experiment was supposed to take advantage of the fact that

the mutant ES cells contained the En-1TLZ construct, making it possible to discriminate

between wild-type and mutant cells wherever the En-1 promoter is active. The initial

plan intended to analyze the chimeric mice for En1TLZ positive dopaminergic neurons

in the SN/VTA, and to compare it to a control region. Such a region is the trapezoid

body, a brain nucleus, which expresses En-1 but is unaffected in the En double null

mutant. We expected the mutant cells to evenly contribute to this nucleus. It should

have been then possible to find out the degree of chimerism by determining the

proportion of the En1TLZ positive cells among the En-1 (wild-type protein) positive

cells in the trapezoid body. Furthermore, if the requirement for En-1 and En-2 were cell

autonomous, only an insignificant amount of En1TLZ positive cells should contribute to

the SN/VTA, whereas if the requirement is non-autonomous, about the same

proportion should be detected in the SN/VTA as in the trapezoid body. The first

chimeric animals analyzed by this method did not show any En1TLZ positive cells in

the SN/VTA or anywhere in the midbrain or hindbrain, including the trapezoid body.

However, the finding alone that no En1TLZ positive cells were present in the SN and

VTA did not permit to conclude that the En genes are cell autonomously required,

indeed without En1TLZ positive cells in the trapezoid body there was no evidence for

the participation of the mutant ES cells in the generation of the CNS. The absence of
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Figure III.1. Generation of ES cell lines mutant for En-1 and En-2.
ES cell lines derived from blastocysts, obtained from En2-/-;En1+/TLZ mice matings,
were analysed for the En-1 allele.
(A) Targeting construct for inactivation of the mouse En-1 gene [Saueressig et al.,
1999]. (B) Southern blot of Hind III digested genomic DNA from heterozygous (1) and
homozygous (2) ES cell clones probed with the 0.7kb probe, indicated in (A), reveal
the wild-type (7.5kb) and the mutant (4.5kb) band.
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En1TLZ positive cells in the trapezoid body is likely due to a postnatal requirement of

the En genes in this nucleus.

Since it was not possible to use En-1 expression in the trapezoid body to determine the

degree of chimerism, I immunohistochemically labeled brain sections with an antibody

against the neomycin resistance gene: the neomycin phosphotransferase II (NPTII).

NPTII was used for both En-1 and En-2 targeted deletion construct [Saueressig et al.,

1999; Joyner et al., 1991]. Consequently, NPTII is expressed in all the mutant cells of

the chimeric animals. Only one animal, derived from the En2-/-;En1TLZ/TLZ ES cell

line, showed a significant NPTII signal when sacrificed at 16 months of age and

interestingly this mouse looked older than its siblings (i.e. loss of hair and over-

weight). A patchy NPTII expression pattern in the brain was observed (Figure III.2).

The overall proportion of NPTII signal correlated in intensity and pattern with a 40%

to 50% of chimerism in reference to a control chimeric animal (available in the

laboratory from a different experiment, kindly provided by Robert J. Hindges) where

the chimerism was estimated by the coat color. In other words, this brain contained a

heterogeneous population made up of wild-type cells and of 40% to 50% cells depleted

for En-1 and En-2. None of the animals coming from the En2-/-;En1+/TLZ ES cell line

showed a significant NPTII signal in the brain, even if a mutated En-2 allele was

detected in the initial screen by PCR. This suggests that the En2-/-;En1+/TLZ ES cell

line was enable to contribute to the brain formation.

All the chimeric animals derived from heterozygous as well as En double null mutant

ES cells, exhibited normal brain morphology. The midbrain DA neurons of these mice

were analyzed by in situ hybridization, using a TH riboprobe on coronal sections. All

analyzed chimeric animals derived from the En2-/-; En1+/TLZ ES cell line displayed a

normal pattern and distribution of the midbrain DA neurons (data not shown). Among

the chimeric animals derived from the En2-/-; En1TLZ/TLZ ES cell line, only the mouse

with a significant NPTII signal in the brain exhibited an abnormal TH expression in the

midbrain. The position of the TH expression domain is the same as in the wild-type,

but the signal is very sparse (Figure III.3, compare A and B). The in situ hybridization

results were confirmed by immunohistochemical labeling of the protein TH (data not

shown). We observed a uniform reduction of the amount of midbrain DA



III-RESULTS

41

Figure III.2. Determination of the degree of chimerism in the brain of chimeric mice.
Immunohistochemical labeling experiments were carried out on coronal brain sections
with an antibody against NPTII to estimate the level of chimerism. A, no signal can be
detected in brain sections from a wild-type mouse. B, a brain section from a control
chimeric mouse, from which the chimerism was estimated with the coat color at 40 to
50%. The antibody detects various brain constituents as well as cell bodies (arrow),
revealing a patchy NPTII expression pattern. C and D, brain sections from a chimeric
mouse generated from the En2-/-;En1TLZ/TLZ ES cell line. The same patchy NPTII
expression pattern can be observed, as described in (B). The overall proportion of
NPTII signal in the brain is similar to the one observed in the control chimera,
suggesting that the En2-/-;En1TLZ/TLZ  ES cell line contributed about 40-50% to the
cells in the brain of this chimeric mouse.
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Figure III.3. TH mRNA expression in the midbrain DA neurons of En2-/-;En1TLZ/TLZ

chimeric mice.
The DA neurons were detected by in situ hybridization using 35S-labeled TH riboprobe
on coronal sections of adult mouse brains. A and A’ (A’ a more caudal section),
mRNA encoding TH shows an expression pattern in the ventral tegmentum area (VTA)
and into the substantia nigra (SN) of wild-type mice. B and B’ (B’ a more caudal
section), TH mRNA expression in the En2-/-;En1TLZ/TLZ chimeric mouse brain
sections is weaker compared to wild-type. TH expression is still detected in the SN and
VTA but the signal is very sparse, suggesting a reduction of the amount of DA
neurons. Scale bar= 300µm.



III-RESULTS

43

neurons in the chimeric animal where the En2-/-;En1TLZ/TLZ ES cell line contributed

significantly in the brain formation.

The loss of some midbrain DA neurons in the chimeric animal made of 40-50% of

cells, which are not able to express functional En-1 and En-2, strongly suggests that the

midbrain DA neurons require the En transcription factors cell autonomously for their

survival. Whereas in the case of a non-cell autonomous requirement, we would have

expected no loss of midbrain DA neurons. The wild-type phenotype of the cerebellum,

colliculi and ventral midbrain, suggests that the wild-type cells can fully compensate in

the entire brain for the loss of the mutant cells, with one exception; the midbrain DA

neurons.

1-2-The En genes are not required for the formation of the midbrain DA

precursor cells

The En double null mutant mice show TH positive neurons in ventral midbrain until

E13, but the domain is always smaller than in the wild-type (i.e. at E12.5 see

introduction, Figure I.9). A possible explanation is that the midbrain DA precursor

cells are reduced in number due to the regionalisation deficit in the En double null

mutant embryos [Simon et al., 2001]. Alternatively and more likely, the number of

midbrain DA precursor cells formed in the En double null mutant is the same as in the

wild-type, but we observe the individual cells at different stages of maturity. These

cells are generated over two or more days. Since individual cells are at different time

points of development, an En requirement would also reveals itself at different

developmental stages. Thus, when the first cells disappear due to the lack of En, others

are just born and/or at an earlier stage of differentiation when En is not yet required.

Therefore, we would only be able to see the same amount of TH positive cells in the

En double null mutant as in the wild-type at a very specific developmental stage.

To differentiate between these two possibilities, I performed gain of function

experiments in chick embryos. If the En genes determine the number of precursor cells

which give rise to midbrain DA neurons, increasing the size of En expression domain

should increase the number of precursor cells which could be later detected as TH
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positive cells. The En genes specify the midbrain and the anterior hindbrain from

around stage 8 to 11 in the chick embryo [Araki and Nakamura, 1999]. Chick embryos

of this age were electroporated with an En-1 over-expression construct. Full-length

mouse En-1 was clone into a pIRES2-EGFP expression vector bringing the gene under

the control of an ubiquitous chick β-actin promoter. This vector contains the internal

ribosome entry site (IRES) between the En-1 gene and the enhanced green fluorescent

protein gene (EGFP). This made possible to visualize the ectopic En-1 expression in

these electroporated animals by fluorescence without the need for an antibody specific

for the mouse En-1 protein. Stage 10 chick embryos were windowed, and

overexpression vector DNA was injected into the midbrain vesicle, and electroporated.

The electroporation method directs the DNA toward one side of the brain vesicle,

having the advantage that later for the analysis, one side of the brain is normal and

serve as an internal wild-type control as a comparison for the other manipulated side.

After the electroporation process, the eggs were sealed and allowed to develop until

stage 31 (the first chick midbrain DA neurons are detectable with a TH antibody at

stage 29 (see 3-5-1-1)).

All the preliminary control experiments insuring the functionality of the En-1

overexpression vector were done as described in paragraph 3-5-2-1. An obvious

swelling of the tectum, which extends rostrally into the diencephalon, was observed on

the electroporated side of these brains. This swelling indicates an increase of the

number of neuroepithelial cells at this position or a re-specification of the diencephalon

and anterior midbrain. Indeed, the tectal swelling was previously described by Araki

and Nakamura, after a similar En mis-expression experiment to further demonstrate the

role of En in defining the position of the dorsal di-mesencephalic boundary [Araki and

Nakamura, 1999]. Next, the midbrain DA neurons were detected either on whole

mount brains or on sections with a TH antibody. Interestingly, no significant changes

were observed in the distribution and amount of the midbrain DA neurons on the

electroporated side of the midbrain (Figure III.4).

By changing the En-1 expression domain at this early stage when regionalization

occurs, we observe an enlargement of the tectum, but we find no changes in the

distribution or amount of the midbrain DA neurons. If the amount of DA precursor
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Figure III.4. Ectopic expression of En-1 in the left side of the midbrain in chick.
A and B, stage 31 entire brain vesicle, ectopic En-1 causes a tectal swelling extending
to the diencephalon. C, horizontal section of the brain presented in B, showing GFP
fluorescence restricted to the left electroporated side of the midbrain. D, whole mount
TH immunostaining on the brain presented in A, the flat mount of the ventral midbrain
shows a symmetrical TH expression pattern between the right and left side. No
significant changes have been observed in the morphology and distribution of the
midbrain DA neurons on the side of ectopic expression of En-1 as judged from the TH
signal. Tc, tectum; D, diencephalon; M, midbrain. Scale bars=1mm.
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cells were dependent on En-1, an expansion of the En-1 expression domain should

have increased the number of DA neurons. However, the lack of any additional TH

positive cells demonstrates that En-1 is not required for the generation of the midbrain

DA progenitor cells.

All together, the generation of the En2-/-;En1TLZ/TLZ chimeric mice permitted to show

that the midbrain DA neurons require the E n genes cell autonomously for their

survival, and the over-expression experiment of En-1 in the chick embryo showed that

the En genes are not required for the formation of midbrain DA precursor cells.
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2- Identification of genes expressed by the midbrain DA neurons by differential display

PCR.

Very few genes, which mediate the development of the midbrain DA neurons during

the intermediate period between induction and full differentiation of these neurons, are

known. In order to identify and characterize additional genes of this category, ddPCR

was performed with four different types of tissues containing DA neurons.

Approximately 500 µm2 large pieces of ventral midbrain, as restricted as possible to the

midbrain DA location, were dissected from E12 homozygous En double null mutant

embryos (En2-/-;En1TLZ/TLZ), from E12 En2-/-;En1+/TLZ embryos, and E14 En2-/-

;En1+/TLZ embryos (Figure III.5 A). At E12, the midbrain DA neurons express En-1

and En-2 in the wildtype and are still present in the En double null mutant [Simon et

al., 2001]. In theory, a differential display experiment comparing wildtype tissue with

En double null mutant tissue should reveal genes expressed by the midbrain DA

neurons that are either under direct transcriptional control of the En genes or further

downstream. Tissue from E14 embryos was also chosen since the DA neurons are lost

at this age in the En double null mutants. Genes that are involved in the disappearance

of the midbrain DA neurons in the mutants are likely to be expressed or downregulated

at this age. Finally, adult olfactory bulb tissue was also added to the differential display

experiment as an independent source of DA neurons. This tissue presumably expresses

genes that are necessary for dopamine synthesis, transport, release and reuptake, which

are commonly expressed by all DA neurons. Therefore the comparison of the ventral

midbrain to the olfactory bulb most probably reveals some of the genes that are

responsible for the unique characteristics of the midbrain DA neurons.

RNA was isolated from three independently collected samples of each of the four

tissues. 15 pieces of E12 or E14 ventral midbrain yielded 7 to 10 µg of total RNA. The

same amount was obtained from 3 adult olfactory bulbs. This RNA was used as a

template to make single stranded DNA. Each reverse transcription was initiated with

one of 20 arbitrary 10-mers primers (see materials & methods). 200 primer

combinations (all 20 combined with the first 10, half of the possible combinations)

were used to amplify cDNA fragments by PCR. A total of 2400 radioactive PCR
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reactions were separated on a denaturing polyacrylamide gels. Gels were exposed to x-

ray films and differences in the intensity of the bands were analyzed by visual

inspection. Only fragments, which were differentially expressed in all three

independent RNA samples, were isolated from the gels (for an example see Figure III.5

B, C). The differentially expressed gene fragments were reamplified by using 20-mers

primers containing the original 10mers primers with added XbaI or XhoI restriction

sites to facilitate the subcloning into the pBluescript II SK (-) vector. One hundred

differentially expressed gene fragments were obtained and we were able to successfully

reamplify 71 of them. Sequence comparison between each other and sequences at the

Genbank database revealed 43 unique sequencing tags (see Table III.1). For

verification of the differential expression patterns these 43 fragments were used for

RNA in situ hybridizations on sections of E13 embryos and P0 brains. Some of the

fragments (17) did not reveal any in situ signal at all. Thirteen genes were expressed

specifically in the ventral midbrain of which 4 were expressed by the DA neurons.

Seven fragments were found expressed in the double null mutant tissue but not in the

three other tissue samples or vice versa. The only one of those, which was found to be

expressed in the midbrain DA neurons, is the Microtubule-Associated Protein 1B

(MAP1B). MAP1B was not expressed in the En double null mutant tissue, suggesting

that the En genes may control its transcription. Indeed, a recent report demonstrated

that MAP1B is transcriptionally regulated by the En genes [Montesinos et al., 2001].

However the abundant expression of MAP1B made the analysis focusing only on the

midbrain DA neurons impossible. The three other genes expressed in the midbrain DA

neurons and present in the En double null mutant tissue, which have been further

characterized are the forkhead containing transcription factor HNF3α (hepatocyte

nuclear factor 3), the neuronal and B-cell differentiation factor Olf-1/Ebf and the

neuregulin (NRG) receptor ErbB4.



III-RESULTS

49

Figure III.5. Identification of genes specifically expressed by the DA neurons of the
midbrain by differential display PCR (ddPCR).
A, Illustration on sketches showing the location of the different tissue pieces dissected
for the ddPCR (red squares): E12 En2-/-;En1TLZ/TLZ embryo ventral midbrain (I),
E12  En2-/-;En1+/TLZ  embryo ventral midbrain (II), E14 En2-/-;En1+/TLZ embryo
ventral midbrain(III) and adult olfactory bulb (IV). B and C, Example of a ddPCR
experiment; PCR products were separated on a denaturing polyacrylamide gel (see
materials and methods). B, two primer pair combinations are displayed, showing the
individual amplification patterns. C, 4-11 message is amplified in all the tissue types (I
to III) except in the olfactory bulb (IV). This gene fragment was later identified as
HNF3alpha.
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Total of amplified fragments 100
Cloned fragments 7 1
Unique sequencing tags 4 3

  
In Situ Hybridization  
  
No signal 1 7
Everywhere 2
Outside of midbrain 1 1
Ventral midbrain 1 3
DA neurons 4
  
Differential Display Criteria  
  
Present in:   
All tissues except E12 En2-/-;En1TLZ/ TLZ 5 MAP1b
All tissues except E12 En2-/-;En1+/TLZ 1  
All tissues except in olfactory bulb 1 3 HNF3a, Olf-1
E14 and olfactory bulb not E12 2 1 ErbB4
E12 En2-/-;En1TLZ/ TLZ only 2  

Table III.1. Summary of the outcome of the differential display PCR experiment.

One hundred genes were differentially expressed and 71 of them were reamplified and

cloned. The number of genes is given for each category. The different categories were

made according to the gene expression location detected by in situ hybridizations, and

according to the presence of the gene in the different tissues. The right most column

indicates the candidate genes from the different categories, studied further in this work.
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3- Characterization of the newly identified genes expressed in the midbrain DA

neurons.

3-1- Developmental expression patterns in the midbrain DA neurons

In order to characterize further these genes, I carried out a detailed expression analysis

by using in situ hybridization and immunohistochemistry on brain tissue from E9 to the

adult. Their expression patterns were compared to the specific midbrain DA markers

TH, Nurr1 and En-1.

3-1-1- HNF3α expression in the DA neurons of the ventral midbrain

Previous studies found that HNF3α is expressed in the notochord and the floor plate

during early embryogenesis [Monaghan et al., 1993; Sasaki and Hogan, 1993]. Here, I

add to these data the HNF3α expression in the brain from E11 to the adult, focusing on

the midbrain DA neurons. HNF3α was found to be expressed in the ventral embryonic

midline at E9. Its anterior border of expression is approximately at the junction

between tel- and diencephalon (Figure III.6 A,B). This region includes the most ventral

part of the midbrain neuromere where the DA neurons are induced by an interaction

between SHH and FGF8 [Ye et al., 1998]. In order to determine if its early expression

is related to the DA neurons, we compared the HNF3α expression at E11 to Nurr 1, an

early differentiation marker for this neuronal subtype [Zetterström et al., 1997], as well

as to TH, the most commonly used marker to identify DA neurons. At this

developmental stage, the HNF3α  expression domain is still similar to the one found at

E9, restricted to the ventral neural tube reaching into the diencephalon (Figure III.6 C).

The smaller Nurr1 expression domain is confined within the HNF3α domain, but

Nurr1 is not expressed on the ventricular site of the neuroepithelium (Figure III.6 E).

Postmitotic DA neurons are revealed by the TH expression. The neurons are located

within the HNF3α and Nurr1 domains, but restricted to the pial surface, where

postmitotic neurons are normally located (Figure III.6 D). The nested expression of the

three genes and the early onset of the HNF3α  expression suggest that it is expressed in
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Figure III.6. HNF3α expression in the DA neurons of the ventral midbrain.
In situ hybridization using 35S-labeled riboprobes on sagittal (B-E, J, K) and coronal

/transverse (A, F-I) sections of mouse whole embryos (A-G) or P0 mouse brains (H-K).
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A, E9, the transverse section reveals the early HNF3α expression in the ventral

midbrain. B, in sagittal sections, the full extend of the HNF3α is apparent. Its rostral

expression terminates at the border between telencephalon and diencephalon C, E11,

HNF3α is expressed in the ventral midbrain from the ventricular to the pial surface. On

parallel sections, two markers for dopaminergic neurons, tyrosine hydroxylase (TH)

(D) and Nurr1 (E) are found within the HNF3α expression domain, but neither of the

two is expressed on the ventricular site of neurepithelium. F, G, two parallel transverse

sections of an E11 embryo through the anterior midbrain: both HNF3α (F) and En-1

(G) have the same distribution at this position. H, I, parallel coronal sections through

anterior midbrain of a P0 brain show an almost identical distribution of HNF3α (H)

and TH (I), identifying the cells expressing HNF3α as the dopaminergic neurons of the

substantia nigra (SN) and the ventral tegmentum (VT). J, sagittal section through a P0

brain. HNF3α is expressed only at two locations in the CNS, the midbrain DA neurons

(arrow) and another one in the hypothalamus. K, the TH labeling reveals that the

expression is specific to midbrain DA neurons and not found in any other TH positive

nucleus. T, telencephalon; D, diencephalon; M, midbrain; H, hindbrain; Cb,

cerebellum. Scale bars, A-B=100 µm, C-I=200 µm, J,K=500 µm.



III-RESULTS

54

the precursor cells of the midbrain DA neurons before they become postmitotic. To

support this idea, its expression was also compared to En-1, which is a selective marker

for this neuronal subtype in the anterior midbrain [Simon et al., 2001]. The transverse

sections show that the expressions of both, HNF3α and En-1 overlap (Figure III.6 F,

G). Finally, to determine whether the midbrain DA neurons or intermingled cells

express HNF3α, in situ hybridization analyses were performed on coronal sections of

P0 brain. The DA neurons of the SN and the VTA are well defined at this age by their

position in the brain and the unique shape of the TH expression domain (Figure III.6 I,

K). The HNF3α expression (Figure III.6 H, J) exactly coincides with TH in all sections

where the SN and VTA are present. The sagittal sections show that HNF3α  expression

is highly specific for these cells. It is only found in the midbrain DA neurons and in

several areas in the diencephalon, but nowhere else in the entire brain (Figure II.6 J).

The identical expression pattern is found in adult animals.

3-1-2- ErbB4 expression in the SN

The NRG receptor, ErbB4, was recently shown to be expressed in adult rats by the DA

neurons of the SN [Steiner et al., 1999]. Since it was one of the genes isolated in the

ddPCR, in situ hybridization on midbrain sections were performed in order to correlate

its expression to the appearance of the DA neurons of the VTA and SN. At E9,

transverse sections shows ErbB4 in the entire midbrain with an elevated ventral signal

(Figure III.7 A, B). The expression in the DA neurons is detectable from E11.5

onwards. The ErbB4 signal is found in several patches in the ventral midbrain (Figure

III.7 C) on the ventricular as well as the pial surface of the neurepithelium. The smaller

TH (Figure III.7 D) and Nurr1 (Figure III.7 E) expression domains are within the

ErbB4 expression domain, making it very likely that ErbB4 and TH are co-expressed

by the DA neurons at this age. The exclusive expression in the SN, but not in the VTA

is only evident when the two populations of DA neurons are morphologically separated

from each other at a later stage. In the rostral coronal section, the distinct shape of the

SN can be detected with a probe against TH. The VTA is not present at this position

(Figure III.7 G). In parallel sections, ErbB4 is not only found in the SN but also at the
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Figure III.7. ErbB4 expression in the SN.
In situ hybridization using 35S-labeled riboprobes on transverse sections of E9 mouse
whole embryos (A,B), on sagittal sections of E11.5 mouse whole embryos (C-E) and
on coronal sections of mouse P0 brain. (F-I). A, at E9, ErbB4 is expressed in the entire
midbrain neurepithelium. B, phase contrast image of A. At E11.5; C, ErbB4 is
expressed in the ventral midbrain on the ventricular and pial surface of the
neurepithelium. On the parallel sections, TH (D) and the Nurr1 (E) expression domain
are smaller but within the ErbB4 expression domain. At P0; F, rostral coronal section.
ErbB4 is expressed in the substantia nigra (SN), but several other domains of
expression are also detectable. G, on the parallel section, the position of the substantia
nigra is revealed by the TH labeling. H, I, sections caudal to F and G, ErbB4 is only
expressed in the midline, but not in the DA neurons of ventral tegmentum (VT) and the
caudal substantia nigra. M, midbrain. Scale bars, A,B=100 µm, C-I=500 µm.
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midline (Figure III.7 F). This midline signal is probably coming from the red nucleus.

In more caudal sections both, the SN and the VTA are detected by the probe against

TH (Figure III.7 I), however, no ErbB4 expression can be detected in any of these

structures (Figure III.7 H). This suggests that the population of DA neurons, which

make up the SN can be divided in two subpopulations, a rostral ErbB4 positive

population and a caudal ErbB4 negative population. ErbB4 expression was also

detected in regions of the striatum (data not shown) as mentioned by Meyer et al.,

1997.

3-1-3- Transient Olf-1 expression in midbrain DA neurons

Olf-1/Ebf is a transcription factor that was recently identified as a differentiation factor

for B-cells and striatal neurons [Lin and Grosschedl, 1995; Garel et al., 1999]. It acts

during early phases of cell differentiation as a transcriptional regulator with an

untypical zinc-finger binding domain. Previous reports have documentated its

expression in mouse CNS from as young as E11. In contrast to these results, I found

the onset of Olf-1 expression in the midbrain could be already detected at E9.

Furthermore, it is transiently co-expressed with TH in the midbrain DA neurons at the

embryonic stages briefly after they have become postmitotic. Co-expression of Olf-1

and TH is detectable as soon as the DA neurons express TH. At E11, radioactive in situ

hybridizations on sagittal sections show Olf-1 expression on the pial surface of the

developing colliculus (Figure III.8 A), suggesting a role in differentiated neurons. In

the ventral midbrain, there is an exact match of the expression domain with T H

expressing cells (Figure III.8 B). The immunohistochemical double labeling on a

coronal section (Figure III.8 E) reveals a co-localization of the two proteins. The Olf-1

antibody [Davis and Reed, 1996] detects the protein in the nucleus (Figure III.8 C) of

all TH positive neurons (Figure III.8 D). However, the expression is lost in the next

few days of development. The midbrain DA neurons begin to down regulate Olf-1 at

around E12.5. At E14, all TH positive neurons (Figure III.8 G) have lost the expression

of Olf-1 (Figure III.8 F). The Olf-1 protein is now only detectable at the midline of the

coronal section, whereas the TH positive neurons are distributed more laterally. At P0,
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Figure III.8. Transient Olf-1 expression in the midbrain DA neurons.
In situ hybridization using 35S-labeled riboprobes on sagittal sections of E11 mouse
whole embryos (A, B), coronal sections of P0 mouse brains (I-M) and
immunohistochemical double labeling on transverse/coronal sections of E12 (C-E),
E14 (F to H) mouse whole embryos and mouse P0 brains (N). A, Olf-1 is expressed on
the pial surface of the developing colliculus (Co) and in the DA neurons of the ventral
midbrain (arrow). B, Parallel section stained against TH. The enzyme is expressed at
the same location in the ventral midbrain as the Olf-1 (arrow). C, D, E, at E11, the Olf-
1 antibody detects the protein in the nucleus (C) of all TH (D) positive neurons;
superimposed images (E). F, G, H, at E14, the Olf-1 antibody detects the protein in
midline cells (F): The superimposed image with the TH immunolabeling (G) shows
that the Olf-1 has been downregulated by the DA neurons (H). I, J, K, L, M, in situ
hybridization on rostral sections against TH reveals the substantia nigra (J). On the
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parallel section, there are several areas where the Olf-1 is expressed (I). The false color
superimposed image (K) of the two in situ hybridizations shows that the Olf-1 and TH
are expressed in vicinity to each other but they are not co-expressed. Only low Olf-
1expression is detectable on a more caudal section (L), where the ventral tegmentum is
located (M). N, high magnification of the double labeling experiment shows a few DA
neurons co-expressing TH and Olf-1 at P0. M, midbrain; H, hindbrain; SN, substantia
nigra; VT, ventral tegmentum; Scale bars A-B, F-H= 200 µm, C-E = 100 µm, I-M=500
µm, N=50 µm
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Olf-1 and TH are both mainly expressed in vicinity to each other, but not in the same

cell populations (Figure III.8 I, J, K, L, M). However, occasionally Olf-1 expression is

found in a few DA neurons (Figure III.8 N).

3-2- En and Nurr1 independent expression of HNF3α and Olf-1 in the midbrain

DA neurons

Since HNF3α and Olf-1 were found expressed in all tissues derived from E12

and E14 embryos, including the En double null mutant, it was important to confirm

whether the two genes are not under control of En-1 and En-2. This verification is

possible since the midbrain DA neurons are still present in the En double null mutant

until E13. The in situ hybridizations on E12 sagittal sections show a small expression

domain of HNF3α in the ventral midbrain of the deformed mutant brain (Figure III.9

A). The smaller expression domain of HNF3α is very likely due to the reduced number

of DA neurons present in En double null mutants at this age [Simon et al., 2001]. The

immunostaining of En double null mutants using the antibody against Olf-1 and TH

show that all midbrain DA neurons co-express the two proteins in the mutant (Figure

III.9 B), similar to the wild-type case (Figure III.8 E). These findings are in accordance

with the results obtained from the ddPCR, where the expression of HNF3α  and Olf-1

is independent of the two En genes.

Nurr1 is one of the key regulators that determines the cell fate of the midbrain DA

neurons [Sakurada et al., 1999] and moreover, is one of the earliest genes expressed by

the postmitotic midbrain DA neurons. To determine whether Nurr1 regulates the

expression of HNF3α  and Olf-1 or whether these genes take part in other independent

differentiation pathways, their expression patterns were analyzed in Nurr1 mutant

embryos. The unambiguous identification of midbrain DA neurons with an antibody

against TH, as achieved for the En double null mutant, is not possible since the enzyme

is not expressed in the midbrain in these mutant mice [Zetterstrom et al., 1997; Castillo

et al., 1998; Saucedo-Cardenas et al., 1998]. However, the use of different markers for

this cell group, like Ptx3, En1 and 2, and Lmx1b, demonstrated that the cells are present

until at least embryonic day 15.5 [Saucedo-Cardenas et al., 1998; Wallen et al., 1999;
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Figure III.9. Expression of HNF3α and Olf-1 in the Nurr1 mutant and En double
mutant mice.
In situ hybridization using probes against HNF3α  (A, C) Olf-1 (D) and
immunohistochemical double labeling with antibodies against Olf-1 (red) and TH
(green) (B) on sections of E12 En double mutant (A, B) and Nurr1 mutant (C, D). A,
HNF3α shows a small expression domain (arrow) in the ventral midbrain on a sagittal
section of E n double mutant embryos in the same way as for T H. B,
immunohistochemical double labeling on a coronal section of the En mutant embryo
shows co-expression of Olf-1 and TH. Both genes are not regulated by En-1 and En-2.
C, D, parallel sagittal sections stained with probes against HNF3α and Olf-1 show
signals at the same location on the pial surface of the ventral midbrain (arrow). These
coincidental signals are probably the DA neurons, which do not express TH in Nurr1
mutant mice. Scale bars, A, C, D=500 µm, B=200 µm.
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Smidt et al., 2000]. In E12 Nurr1 mutant brains, an overlapping expression of HNF3α

and Olf-1 with the same size and shape as seen in wild-type sections was detected. The

point of overlap in the ventral midbrain is very likely the location of the DA neurons

(Figure III.9 C, D). These findings together with the early onset of expression of the

two genes HNF3α and Olf-1, suggest that they both are regulated independently of

Nurr1.

3-3-Investigation of the midbrain DA neurons in mice deficient for the HNF3α

gene

To determine the function of HNF3α, I investigated homologous recombinant mice.

These mice develop a complex phenotype that is characterized by abnormal feeding

behavior, progressive starvation, persistent hypoglycemia and neonatal mortality

between days 2 and 14 [Kaestner et al., 1999; Shih et al., 1999]. Dr. Kaestner provided

us with some P8 brains of HNF3α-/- mutant mice and their wild-type littermates. The

expression pattern of TH (Figure III.10), Nurr-1, En, Ptx-3, Olf-1, VMAT, DAT, c-ret,

GDNFRα, AHD2, AADC, DR2 and ErbB4, which are all genes expressed in the

midbrain DA neurons, were studied by in situ hybridization using riboprobes on

coronal sections. All of the genes that have been analyzed in this study are expressed in

the midbrain DA neurons of mouse brains deficient for HNF3α and exhibit an

expression pattern identical to the one observed in the wild-type (Table III.2). These

data suggest that, in the context of the midbrain DA neurons, none of these genes are

under the control of HNF3α.

3-4-Investigation of the midbrain DA system in nervous system specific ErbB4

mutant mice

Here, I showed that the ErbB4 expression initiates in the DA neurons at E11.5 and

continues into adult stages, later specifying the most rostral part of the SNC. In order to

get insight towards a possible role of ErbB4 in the development of the midbrain DA

neurons, I investigated the expression of molecular associates of ErbB4 in the midbrain
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Figure III.10. Normal TH expression in midbrain DA neurons for mice lacking ErbB4
in the nervous system and for mice deficient for HNF3α.
In situ hybridization using 35S-labeled TH riboprobes on coronal sections of adult (A,
B) and P8 (C, D) mouse brains. A, ErbB4 loxP/+ mouse, one allele ErbB4 flanked with
LoxP, one wild-type allele, no nestin-cre (undisturbed expression of ErbB4), showing a
wild-type expression of TH, in the substantia nigra (SN) and ventral tegmentum area
(VTA). B, ErbB4 loxP/- nestin-cre mouse, nervous system specific ErbB4 mutant. No
changes in the TH expression pattern is observed. C, wild-type mouse for HNF3α. TH
is detected in the SN and VTA. D, HNF3α -/- mutant mouse. No changes in the TH
expression pattern in the SN and VTA is detected. Scale Bars= 500µm (A and B),
450µm (C and D).
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Wild-type mice HNF3αααα - / - mice
ErbB4 loxP/-

nestin-cre  mice

Gene Expressed

In midbrain DA neurons

TH + + +

En-1 + + +

Ptx-3 + + +

Olf-1 + + +

Pbx-1 + + +

VMAT + + +

Nurr-1 + + +

DAT + + +

c-ret + + +

GDNFRα + + +

AHD2 + + +

AADC + + +

DR2 + + +

ErbB4 + + -

HNF3α + - +

Table III.2. Summary of expression analysis in the midbrain DA of wild-type, HNF3α

-/- mutant, and nervous system specific ErbB4 mutant mice.

The analysis was carried out with in situ hybridization using 35S-labeled riboprobes on

coronal section of P8 brains and adult brains for HNF3α-/- mice and ErbB4 loxP/-

nestin-cre mice, respectively. The (+) indicates the detection of the expression of the

gene of interest in the midbrain DA neurons. The (-) indicates the absence of the gene.
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DA neurons and the distribution of its ligands in the midbrain DA neurons and in the

axonal projection targets of the SN. Furthermore, I analyzed nervous system specific

ErbB4 mutant mice for alterations in the midbrain DA neurons system.

3-4-1- Expression analyses of ErbB2 and of the ligands of ErbB4 in the

midbrain DA system

The receptor tyrosine kinase ErbB4, together with ErbB1, ErbB2 and ErbB3, is part of

the very complex NRG signaling pathway. Many ligands have been described, and it

has been shown that individual ligands can bind more than one receptor and induce

different combinations of receptors, homo- or heterodimers, and transphophorylation

(for review  [Burden and Yarden, 1997]).

It is known that NRG ligands bind ErbB4 receptors and activates ErbB2 through

heterodimerization (for review  [Burden and Yarden, 1997]). Therefore, I initially

investigated if the ErbB2 receptor is present in the midbrain DA neurons by in situ

hybridization using a riboprobe on midbrain sections of wild-type P0 mice. No ErbB2

expression was detected in the midbrain DA neurons.

As a next step, I determined if the ligands with the highest binding specificities for

ErbB4 were expressed in vicinity of the midbrain DA neurons or within this cell

population or in any of their projection targets. This information would provide insight

to the co-existence and the possible interplay of the midbrain DA system and the NRG

signaling pathway. The expression of the ligands was analyzed by in situ hybridization

on brain sections of wild-type mice. Interestingly, two ligands, Type III NRG-1

[Carraway et al., 1997] and Betacellulin (for review [Dunbar and Goddard, 2000]) are

expressed in the striatum (or caudate putamen), from at least P0 onwards (Figure

III.11). I also determined the expression of Type I NRG 1, Type III NRG 2 [Carraway et

al., 1997], and NRG 3 [Zhang et al., 1997], but none of them was detected in the close

vicinity of the midbrain DA neurons, or in their projection targets.
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Figure III.11. Type III NRG1 and Betacellulin are expressed in the striatum.
In situ hybridization using 35S-labeled riboprobes on sagittal sections of wild-type P0
mouse brain. mRNA encoding Type III NRG1 (upper panel) as well as Betacellulin
(lower panel) are expressed in the striatum (St). Scale bar= 500µm.
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3-4-2- Mice deficient for ErbB4 in the nervous system

The mice with a loss-of-function mutation in ErbB4 die around E10, from aborted

development of the heart [Gassmann et al., 1995], an age when the DA neurons start to

be generated in the ventral midbrain. Therefore, an investigation focusing on this

neuronal population was not possible at this age.

As an alternative, Dr. Gassmann provided us with adult mouse mutant brains with a

nervous system specific deletion of ErbB4. The initial embryonic lethality of the total

ErbB4 knock-out was bypassed: Mice with loxP-flanked ErbB4 exon 2 were crossed

with nestin-cre transgenic mice [Tronche et al., 1999]. The nestin-cre transgenic mouse

line expressed the Cre recombinase under the control of the rat nestin promoter, which

drive the expression specifically in the nervous system. In crosses to animals carrying a

loxP-flanked ErbB4 exon 2, an excision of the LoxP-flanked exon 2 occurs, leading to

a specific deletion of ErbB4 in the nervous system. The nervous system specific ErB4

mutant mice used in this study (ErbB4 loxP/- nestin-cre) carried one ErbB4 allele with

its exon 2 flanked by LoxP, one ErbB4 null allele [Gassmann et al., 1995], and the

nestin-cre.

3-4-2-1-All the major genes expressed by the midbrain DA

neurons are present in the mice deficient for ErbB4 in the nervous system

I carried out a detailed expression analysis of 13 genes we know to be expressed in the

midbrain DA neurons by in situ hybridization on brain sections of adult ErbB4 loxP/-

nestin-cre mice. As a control, the analysis was done in parallel on adult brain tissue

from ErbB4 loxP/+ mice out of the same litter, which have one ErbB4 allele with its

exon 2 flanked by LoxP, and a wild-type allele, genotyped nestin-cre negative. I was

unable to detect any alterations of expression in the ErbB4 loxP/- nestin-cre mice

midbrain DA neurons for the following genes: TH (Figure III.10), Nurr-1, En, Ptx-3,

Olf-1, VMAT, DAT, c-ret, GDNFRα, AHD2, AADC, DR2 and HNF3α (Table III.2).

This shows that the expression of these genes in the midbrain DA neurons are not

affected by the loss of ErbB4.
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3-4-2-2-The midbrain DA axonal projections are normal in the

mice deficient for ErbB4 in the nervous system

As a next step, I examined whether the midbrain DA projections are affected in the

mice lacking ErbB4, since two ligands of ErbB4, the Type III NRG1 and Betacellulin,

as well as ErbB4 itself, are expressed in the striatum. This analysis was carried out by

immunohistochemistry, using a TH antibody on sagittal sections of brain tissue from

ErbB4 loxP/- nestin-cre adult mice in parallel with control specimens as described

above. All ErbB4 loxP/- nestin-cre animals showed a wild-type-like axonal projection

to the basal ganglia. I was also enable to detect any differences in TH staining intensity

in the basal ganglia, suggesting a normal arborization in the axonal termini (Figure

II.12). These results indicate that ErbB4 is not required for the proper establishment of

SN/VTA DA projections.

Overall, the level of my analysis of the mice deficient for ErbB4 was insufficient to

detect any function of the ErbB4/ligands signaling pathway for the development or the

maintenance of the SN. However, it is possible that the mutant phenotype is of such

subtle nature that it eluded us or that compensatory mechanisms take place.

3-5-Mis-expression of Olf-1/Ebf induces ectopic expression of TH in the chick

midbrain

I showed that the Olf-1/Ebf gene is transiently expressed in the midbrain DA neurons

from E10 to E13 in mouse. It is then down-regulated such that at E14, Olf-1/Ebf

positive midbrain DA neurons were only detected occasionally. The timing of

expression suggests a role for Olf-1/Ebf in the differentiation of the midbrain DA

neurons. To further analyze the potential role of Olf-1/Ebf in generation of DA

neurons, I applied in ovo electroporation procedures to misexpress Olf-1/Ebf within the

chick midbrain.
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Figure III.12. The midbrain DA projections are normal in the nervous system specific
ErbB4 mutant mice.
Immunohistochemical labeling with TH antibody on sagittal sections of adult mouse
brains. A and C are lateral sections, B and D are medial sections. A and B, ErbB4
loxP/+ mouse, one allele ErbB4 flanked with LoxP, one wild-type allele, no nestin-cre
(undisturbed expression of ErbB4). The projections arising from the substantia nigra
(SN) and ventral tegmentum area (VTA) are detectable along the way to their targets:
the striatum (St), the nucleus accumbens (Acb) and the olfactory tubercle (OTu). C and
D, ErbB4 loxP/- nestin-cre mouse, nervous system specific ErbB4 mutant. The DA
projections are identical to the ones observed in the wild-type. Scale bar= 500µm.
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3-5-1-Groundwork

In the chick (Gallus domesticus), the midbrain DA neurons and their axonal projections

are not as well characterized as in rodents. The innervations of the ventral forebrain

[Metzger et al., 1996] arise from a single nucleus (nucleus tegmenti pedunculopontinus

pars compacta) in the ventral midbrain [i.e. Wang et al., 1995; Kuenzel et al., 1997;

Von Bartheld and Schober, 1997; Csillag, 1999; Watanabe and Nakamura, 2000], in

contrast to mammals where these neurons can be separated in two distinct areas with

unique properties, SN and VTA. Unfortunately, little is know about the development of

the chick midbrain DA neurons. To pursue any Olf-1/Ebf over-expression experiments,

it was first necessary to determine at what embryonic stage the chick midbrain DA

neurons can be first detected, and whether they express Olf-1/Ebf.

Since the survival rate of the chick embryo after electroporation (stage 10) decreases

over the time, it was important to determine at what embryonic stage the midbrain DA

neurons can be first detected. For this purpose, chick embryos from stage 18 (E3) to

stage 33 (E8) were analyzed for TH expression within the developing midbrain region.

Depending on the age, I used either whole mount preparations or sectioned material.

The first midbrain DA neurons, which are located in the ventral midbrain, are very few

and sparse, and are first detected with an antibody against TH at stage 29 (E6.5).  This

is in contrast to rodents where the first expression of TH is detected around E11.5

(mouse), which corresponds to stage 18/19 (E3.5) in chick.

The presence of the protein Olf-1/Ebf (Ebf = chick homologue of the mouse Olf-1) in

the embryonic chick midbrain was determined by immunohistochemical labeling on

parallel sagittal sections of stage 31 chick (E7) using the same Olf-1 antibody as for the

mouse study and a TH antibody. Due to the late appearance of TH in chick midbrain

and in correspondence to the mouse data, I never detected Olf-1/Ebf co-expressed with

TH. Nevertheless, the Olf-1/Ebf expression was always confined to the pial surface

where postmitotic midbrain DA neurons are usually located (Figure III.13).
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Figure III.13. Detection of Olf-1/Ebf in the embryonic chick midbrain.
Immunohistochemical labeling on sagittal sections of stage 31 chick (E7). A, detection
of Olf-1/Ebf in the midbrain with an Olf-1 antibody (red). B, detection of TH in the
midbrain with a TH antibody on a parallel section (green). C, a superimposed image of
A and B showing that the domain of expression of Olf-1/Ebf is broader and contains
the TH expression domain. At this stage, both Olf-1/Ebf and TH are expressed in
vicinity to each other, but they are not co-expressed in the same cells.
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3-5-2-Induction of ectopic chick Olf-1/Ebf by in ovo electroporation

To examine whether Olf-1/Ebf plays a role in specifying the midbrain DA neurons, the

chick Olf-1/Ebf was ectopically expressed in the midbrain of stage 10 chick embryos

by electroporation of the Ebf-IRES2-EGFP expression vector, where the full-length

chick Olf-1/Ebf cDNA (Ebf) was cloned, and then inserted in between the chick β-actin

promoter and the IRES-EGFP.

3-5-2-1-Control experiments

To ensure that the electroporation of the pIRES2-EGFP expression vector by itself

does not induce any transformation in the chick brain, I just injected the pIRES2-EGFP

expression vector, without an insert, into the midbrain vesicle and electroporated it

towards the left side. The chick embryos were dissected at E7, sectioned and studied

under fluorescence microscope. The GFP signals were detected on the electroporated

side of the midbrain but no induction of ectopic TH or any morphological abnormality

was observed (data not shown). The average survival rate of the chick embryos until

E7 was about 50%.

When the expression vector Ebf-IRES2-EGFP was electroporated at the same

conditions as for the control experiment, the intensity of the GFP signals observed on

the unilateral side of the midbrain was similar to the one detected when the control

vector was injected. In order to verify that the bicistronic Olf-1/Ebf-IRES-EGFP

construct is functional, electroporated embryos were isolated at E7, sectioned and

inspected for double labeling of Olf-1/Ebf and GFP. Indeed, all the cells showing a

GFP signal co-express Olf-1/Ebf. The Olf-1/Ebf antibody detects both endogenous

(symmetrical expression on the left and the right side of the midbrain) and ectopic Olf-

1/Ebf protein (expression only on the left side of the midbrain) (Figure II.14). There

are no apparent morphological abnormalities found in the electroporated side of the

brain. The average survival rate after electroporation of the Ebf-IRES2-EGFP vector

was similar as in the control. However, if a larger amount of Ebf-IRES2-EGFP vector

DNA was injected into the midbrain vesicle (by way of a higher DNA concentration),
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Figure III.14.  Ectopic expression of Olf-1/Ebf in the left side of the midbrain in
chick.
Immunohistochemical Olf-1/Ebf labeling on a horizontal section of E7 (stage 31) chick
midbrain after in ovo electroporation at stage 10. A, GFP expression is detected in cells
on the left side of the midbrain (green). B, same section as A, labeled by the Olf-1
antibody. The red signal shows both endogenous (symmetrical expression on the left
and the right side of the midbrain) and ectopic Olf-1/Ebf protein (expression only on
the left side of the midbrain). C, superimposed image of A and B, all the cells showing
a GFP signal do express Olf-1/Ebf (arrows).
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the survival rate would drop dramatically, whereas when a larger amount of the control

pIRES2-EGFP vector DNA was injected, no change in the survival rate was found.

This observation indicates that an over-expression of the Olf-1/Ebf protein in the

midbrain may be toxic for the chick embryo to a certain extend.

3-5-2-2-Analyses of the TH expression in chick midbrains

expressing ectopic Olf-1/Ebf protein.

In order to analyze the effect of the ectopic Olf-1/Ebf protein on the midbrain DA

neurons, electroporated E7 midbrains were analyzed for TH expression. Fluorescent

immunohistochemical TH labeling were carried out on horizontal sections of the brain

vesicle. Ectopic TH expression was observed on the left electroporated side of the

midbrain. TH positive cells were identified as ectopic when the ‘symmetrical’

equivalent of a group of TH cells was not present on the right control side of the

midbrain. The ectopic expression of TH occurred in the ventral midbrain, only in the

vicinity of the cells expressing Olf-1/Ebf. However, it is important to note that I did not

find any cells which co-expressed TH and Olf-1/Ebf (Figure III.15 A, B, C, A’, B’,

C’).

In order to eliminate the possibility of an artifact due to a tilted cutting plane of the

sections, and therefore showing an asymmetrical view of the midbrain, additional

immunohistochemical TH labeling were carried out on E7 whole mount brain vesicles.

For all the brains investigated, the presence of GFP expression first was confirmed in

the unilateral side of the midbrain under a fluorescence microscope. The results from

these whole mount stainings showed again an asymmetrical TH expression pattern.  An

ectopic TH expression on the left side of the ventral midbrain was observed in all

brains with a strong unilateral GFP signal. The TH positive cells on the left side appear

to be delocalized, in comparison to the right control side of the midbrain (Figure III.15

D, E). All together, these results show that a mis-expression of Olf-1/Ebf leads to

ectopic TH expression in the chick midbrain, suggesting that Olf-1/Ebf can induce

ectopic formation of DA neurons in the midbrain or that upon Olf-1/Ebf

overexpression, the midbrain DA neurons do not migrate properly.
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Figure III.15. Mis-expression of Olf-1/Ebf induces ectopic expression of TH in the
chick midbrain.
Immunohistochemical TH labeling of E7 (stage 31) chick brains after in ovo
electroporation of the Ebf-IRES2-EGFP expression vector in the left side of the
midbrain. A and A’ (two different cases) horizontal sections, GFP expression is
detected in cells on the left side of the ventral midbrain (green). B, same section as A,
TH positive cells (red) are detected in both left and right side of the ventral midbrain,
with a higher amount of TH positive cells on the left side. Most of these TH positive
cells on the left side are ectopic TH cells because their ‘symmetrical’ equivalents are
not present on the right control side of the ventral midbrain. B’, same section as A’, TH
is detected only in some cells on the left side of the ventral midbrain, all of them are
considered ectopic as none are detected on the control right side of the ventral
midbrain. C and C’, superimposed images of A/B and A’/B’ respectively. In both cases
the ectopic TH positive cells are found in the vicinity of the GFP positive cells but
there are no cells co-expressing TH and Olf-1/Ebf. D and E, entire brain vesicle. The
flat mount of the midbrain (D) or whole mount (E) shows TH positive cells in brown.
In both cases, an asymmetrical TH expression pattern is observed. The TH positive
cells on the left side appear to be delocalized (arrows) when compare to the location of
the TH positive cells in the right control side of the ventral midbrain.
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Very little is known about the intracellular mediators that arbitrate the development

of the midbrain DA neurons during induction and full differentiation of this cell

population. The main focus of this study was to identify such mediators using a

differential screening method to compare ventral midbrain tissue of wild-type

versus En double null mutant mice. From this analysis, four genes were identified

that showed specific spatial and temporal expressions in the midbrain DA neurons,

suggesting a role of these genes in the determination of the midbrain DA neurons

cell fate. I investigated their potential role in DA neurons development by

analyzing mutant mice deficient in these genes, and by over-expressing them in the

chick embryo.

1-Further characterization of the role of the En genes in the midbrain DA neurons

development

 1-1-The midbrain DA neurons require En-1 and En-2 cell autonomously for

their survival

It has been previously shown that the En genes are required for the midbrain DA

neurons survival [Simon et al., 2001]. We therefore decided to use tissue from En

double null mutant mice for a differential screening method to identify other genes

involved into the midbrain DA neurons fate. However, firstly we needed to

determine whether the En genes worked in a cell autonomous fashion. The results

obtained from the generation of the En2-/-;En1-/- chimeric mice demonstrated that

the midbrain DA neurons require the En genes cell automomously for their

survival.

The activity of En in the embryonic midbrain is down regulated as soon as the

tissue is dissociated and cells are cultured (Prochiantz, unpublished data; Alberi and

Simon, unpublished data). This finding made impossible to elaborate a simple

culture experiment, involving dissociated cells of embryonic ventral midbrain of En

double null mutants together with wildtype cells to determine whether or not the En

genes are required cell automously by the midbrain DA neurons. An alternative

way to address this question was the generation of chimeric mice where wild-type

cells are intermingled with En double null mutant cells in vivo.
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The blastocysts used for making the chimeric animals were isolated from female

En2-/-;En1+/TLZ crossed with male of the same genotype. These females and males

are derived from crossing of different mouse strains (129SV, C57BL/6 and ICR)

making the blastocystes themselves originating from diverse mouse strains with

various coat colors. The normal way to determine the degree of chimerism by coat

color was therefore impossible. To detect the presence of the En-2 mutant allele in

the chimeric mice, a PCR approach was used. Positive signals were detected in

DNA from the tail of all the animals generated, indicating that the ES cell lines

participated in the generation of this tissue. Because such participation can be

uneven in the generation of different organs, and the fact that the mutated allele is

detectable by PCR, a very sensitive tool, does not mean necessary that the ES cell

line contributed significantly to the generation of a particular organ. I therefore

determined the level of chimerism in the brain by detection of NPTII.

The brain of the animal containing a heterogeneous population of wild-type cells

and of 40-50% En2-/-;En1TLZ/T L Z  cells had significantly less midbrain DA

neurons. It is very likely that the DA neurons missing are the ones originally not

expressing En-1 and En-2 corroborating that the DA neurons require En-1 and En-2

for their survival [Simon et al., 2001] and showing that no support from the wild-

type environment expressing En-1 and En-2 was supplied to rescue them. These

results support the main hypothesis: as the midbrain DA neurons express En-1 and

En-2 and disappear in the En double null mutant [Simon et al., 2001], the cells

require the genes cell autonomously.

Another significant outcome from this experiment is the fact that the brain

morphology of the chimeric animal, composed of 40-50% of En2-/-;En1TLZ/TLZ

cells, is normal and does not carry any defect in the brain regions derived from

embryonic posterior midbrain and anterior hindbrain, while the En double null

mutant mice lack the region around the isthmus [Liu and Joyner, 2001]. In this

chimeric animal, it seems that the surrounding wild-type cells compensated for the

loss of the mutant cells, or we would have observed morphological defects in these

regions relative to the proportion of En2-/-;En1TLZ/TLZ cells. Moreover, it is very

likely that the En genes are required in a cell autonomous fashion for the survival of

the cells derived from embryonic posterior midbrain and anterior hindbrain, since

no En-1TLZ positive cells were detected. The absence of any morphological defects
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could be explained by the fact that the posterior midbrain and anterior hindbrain

cell population requires the En genes while they are still proliferating. It is very

likely that the wild-type cells increase their rate of proliferation (or less are dying)

to compensate for the lost En2-/-;En1TLZ/TLZ cells in order to reach the normal

mass of the posterior midbrain and anterior hindbrain. This is an often seen

phenomenon, if the numbers of cells in the early embryo are reduced – either by

chemical damage or physical removal – there is a general elevation in proliferation

during later development to compensate for it (for review [Potter and Xu, 2001]).

Finally, it is important to mention that En double null mutant ES cell lines represent

an excellent tool to demonstrate whether genes regulated by En-1 and En-2 are

essential for the survival of midbrain DA neurons. Such genes like MAP1B (a gene

pulled out from the differential display PCR experiment identified as not expressed

in the En double null mutant tissue) or α-synuclein (a gene not expressed in the En

double null mutant mice [Simon et al., 2001]) could be reintroduced into En double

null mutant background (into the En double null mutant ES cell line). By studying

the midbrain DA neurons of the mice derived from this experiment, we could

determine whether these genes can rescue the En null mutant phenotype and if they

are essential for the survival of midbrain DA neurons.

1-2- The En genes are not required for the formation of the midbrain DA

precursor cells

The En double null mutant mice have midbrain DA neurons until E13, but the

domain is always smaller than in the wild-type embryo. Two possible explanations

exist for this observation. The precursor cells of the midbrain DA neurons are

reduced in number due to the lack of En-1 and En-2, or the analysis was not

sufficiently detailed to find a stage where an equivalent amount of midbrain DA

neurons are present in both genotypes. Indeed, a more detailed analysis would

consist of looking at mouse embryos at different ages to find one age where the

number of DA neurons in wild-type is the same as in the En double null mutant.

However, this analysis requires a lot of mouse embryos and is not fully reliable

because of the uncertainty of the equal staging of wild-type and mutant embryos. It
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was therefore necessary to use a different approach to differentiate between these

two possible explanations.

Dittrich et al., 1997, used in Drosophila an overexpression method to find out

whether or not the gene eagle is required at the level of progenitor cells or at the

level of the mature cells for the specification of serotonergic cells.  A similar

approach to this one was used and adapted to the chick animal model. En-1 was

overexpressed in the chick embryo at stage 10, inducing a change of En-1

expression domain.  The tectum was increased in size in such experiments, likely

related to the role of En-1 during regionalization. However, no changes in the

distribution or amount of the midbrain DA neurons were detected. If the formation

of midbrain DA neuron precursor cells was dependent on En-1, then an expansion

of the En-1 expression domain should increase the number and change the location

of TH positive neurons. In contrast, these presented results revealed no changes,

demonstrating that En-1 is not required or maybe not sufficient by itself for the

formation of DA neuron progenitor cells. It would be interesting to co-overexpress

En-1 with other intracellular mediators to see if changes in the midbrain DA

neurons could be induced. Lmx1b would be a good candidate to co-express with

En-1. Lmx1b has similar features when compared to the En genes, it is involved

into MHB regionalization [Adams et al., 2000] and is therefore expressed during

the DA neuron progenitors phase and later by the midbrain DA neurons [Smidt et

al., 2000]. Furthermore, similar as the En double null mutant, midbrain DA neurons

are first generated in the Lmx1b null mutant mice with a smaller domain than in the

wild-type mice before they then disappear during further development [Smidt et al.,

2000]. These common characteristics between En and Lmx1b in respect to the

midbrain DA neurons makes it very interesting to further investigate whether the

two genes co-operate together at the progenitor level to specify the midbrain DA

neurons.

2-Identification of genes expressed by the midbrain DA neurons by ddPCR

This study was aimed to identify genes specifically expressed by the DA neurons of

the ventral midbrain and/or regulated by the En transcription factors. Because the

midbrain DA neurons require the En genes cell autonomously for their survival, the
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source of the RNA for the screen was the ventral midbrain tissue, and was dissected

as restricted as possible to the midbrain DA location, rather than the midbrain and

the anterior hindbrain, which would have been taken in case of a non-autonomous

requirement.

Four genes coming from this screen were identified to be expressed by the midbrain

DA neurons. It appears that the most limiting factor to identify a greater number of

genes was the sensitivity of the in situ hybridization. A signal was detected in 60%

of the total number of probes. The size of the gene fragments might also play a role.

Most of the fragments amplified with the arbitrary primers are smaller than 500

nucleotides, which limits their efficiency for in situ hybridizations. However, a

more significant point is the part of the cDNA where the fragment is derived from.

Several fragments isolated by the ddPCR belonged to previously identified genes,

but showed only detectable signals when different probes of similar sizes than the

original amplified fragments were used.

Initially, 43 individual sequence tags differentially expressed in wildtype and En

mutant DA neurons were isolated. From these 43 fragments 7 were found to be

expressed either exclusively in the double null mutant tissue or not expressed at all

in it. It is very likely that only one of those, MAP1B, is regulated by En-1 and En-2

in midbrain DA neurons. This finding is supported by a recent article reporting that

the MAP1B promoter is regulated by En. Montesinos et al. looked for some genes

regulated by homeodomain transcription factors by internalizing the DNA-binding

domain of En into rat cerebellum, and pulled out MAP1B by ddPCR. They did

further in vitro and in vivo studies to confirm its regulation by En [Montesinos et

al., 2001]. The general expression of MAP1B in all parts of the brain made it

difficult to identify with a riboprobe its specific expression in the midbrain DA

neurons. According to the recent insights concerning MAP1B [Montesinos et al.,

2001], this gene should be seriously taken into consideration as a potential

candidate for being able to rescue the E n double null mutant phenotype and

moreover being essential for the survival of midbrain DA neurons. Consequently, it

would be necessary to characterize the MAP1B expression in the midbrain DA

neurons in more details such as using double immunohistochemistry labeling with

TH and MAP1B antibodies in order to see if some midbrain DA neurons are co-

expressing the two proteins. Finally, the study of the midbrain DA neurons in the
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MAP1B mutant mice [Edelmann et al., 1996] would be of great interest and very

valuable.

3-HNF3α and its relation with the midbrain DA neurons

This study shows that the HNF3α expression is very specific in the brain, as it is

only found in the midbrain DA neurons and in one other cell group in the

diencephalon. It may be expressed in the precursors of the DA neurons as early as

E9 and continues to be expressed in the postmitotic cells until adulthood.

Three genes belonging to the hepatocyte nuclear factor 3 (HNF3) family have been

so far identified in the murine genome, HNF3α, HNF3ß and HNF3γ  [ Lai et al.,

1993]. All of them are expressed during embryogenesis [Monaghan et al., 1993;

Sasaki and Hogan, 1993], but only HNF3α and HNF3ß are expressed in the floor

plate of the developing neural tube [Ang et al., 1993]. At E8 (4 to 10 somites),

HNF3ß is found throughout the ventral neural tube, whereas HNF3α is expressed

exclusively in the ventral midbrain. Only from E9 onwards, it is detectable in the

hindbrain and in the spinal cord. The ventral midbrain is the region where the

dopaminergic neurons are induced in the neuroepithelium by an interaction between

Shh and FGF8 [Ye et al., 1998]. This developmental stage, when the tissue is

susceptible for this signal and generates the DA neurons, coincides with the early

expression of HNF3α. It is one of the earliest identified marker for midbrain DA

neurons, preceding even AHD2 and Nurr1, which start to be expressed at E9.5 and

E10.5, respectively [Zetterström et al., 1997; Wallen et al., 1999]. From the

developmental expression data, it is conceivable to think that HNF3α is one of the

first genes upregulated in precursor cells in the midbrain DA neurons when they

become committed. Judged from the size of the expression domain, the amount of

HNF3α  positive cells exceeds the number of later postmitotic DA neurons. It is

plausible that a selection process reduces their cell number. An example for such an

event is the expression change of the Nurr1 gene: During early development, its

expression domain is far larger than the area of future DA neurons marked by the

TH expression. Nevertheless, later in development the cells surrounding the

midbrain DA neurons do not express Nurr1 any longer [Zetterstrom et al., 1996]. A

selection must have been taken place. A second scenario, where the early
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expression at E8/9 is unrelated to the one found in the postmitotic DA neurons,

requires a complicated mechanism where the HNF3α  gene is upregulated twice in

the same cells during development. The fact that neither Nurr1 nor the En genes

control the HNF3α  expression supports the idea that it is an early marker for

precursor of midbrain DA neurons and not a regional marker for the most ventral

midbrain.

It can be speculated that an ectopic expression of HNF3α could induce DA

neurons. However, overexpression of HNF3α in chick by in ovo electroporation

resulted in the death of the embryos soon after and made it therefore impossible to

analyze this in details (data not shown). Another way to assess such a hypothesis

was to study the midbrain DA neurons in HNF3α null mutant mice. In these mutant

mice, at P8 the midbrain DA neurons were present and seemed normally

developed; no alteration of expression of the major markers could be detected.

These results dismantle the statement that HNF3α  could have a major role in

midbrain DA neurons development. However, due to the limited amount of brains

provided and the lack of live animals, it was not feasible to investigate all the

anatomical failures possibly related to a defect in the midbrain DA neurons system

(i.e. it would have been necessary to analyze if the DA neurons projections targets

were well innervated). The discussion is still open towards a possible role of

HNF3α  into axonal path finding or organization of specific connectivity of the

midbrain DA system. Because the mutant mice die early (P14) it is not possible

either to see if the absence of the gene would affect the midbrain DA neurons in the

long term, when the mice mature. To know if HNF3α  was involved in the

maintenance of the midbrain DA neurons, it would be necessary to create a

conditional HNF3α  knock-out where HNF3α  is depleted only in the nervous

system to bypass metabolism defects from which they die in the homologous

recombinant mutant.

Another important issue concerning HNF3α  is related to its remote correlation

with PD. Mouse mutant studies [Kaestner et al., 1999; Shih et al., 1999] and the use

of embroid bodies [Duncan et al., 1998] implicated HNF3α in the regulation of the

blood glucose level. HNF3α null mutant mice die mainly because of severe

hypoglycemia. In embroid bodies, HNF3α  positively regulates HNF1α and

HNF4α, two genes that have been genetically related to type 2 diabetes in humans
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[Yamagata et al., 1996a; Yamagata et al., 1996b]. Interestingly, up to 80% of PD

patients have an abnormal glucose tolerance (for review [Sandyk, 1993]) and some

“slow“ environmental toxins have been implicated in both diabetes and PD [Eizirik

et al., 1996]. This correlation may be caused by the HNF3α  expression in

pancreatic islet cells [Kaestner et al., 1999] and in the DA neurons of the SN/VTA.

The link between diabetes and PD and the sensitivity to these toxins could be

related to commonly expressed genes in these two cell types. For example, we can

speculate a role of the ATP-sensitive potassium (K-ATP) channels in this scenario.

Indeed, it was shown that the loss of functional K-ATP channels in pancreatic β-

cells causes persistent hyperinsulinemic hypoglycemia of infancy (PHHI) where the

K-ATP channels are permanently enabled to govern secretion of insulin [Kane et

al., 1996]. The PHHI susceptibility locus encodes two particularly subunits of the

K-ATP channel: the receptor with high affinity for sulfonylureas 1 and the inward

rectifier potassium channel, KIR6.2 [Aguilar-Bryan et al., 1995; Sakura et al., 1995].

Interestingly, functional somatodendritic K-ATP channels on DA SNC neurons

have been identified and are composed of the same subunits combination [Liss et

al., 1999]. Moreover, Roeper and Ashcroft, 1995, showed that the inhibition of

mitochondrial complex I leads to a toxic activation of K-ATP channels and to a

complete cessation of electrical activity in midbrain DA neurons consequently

prohibiting dopamine release. This is relevant as complex I inhibition is one of the

proposed trigger mechanisms of degeneration of midbrain DA neurons (for review

[Hanna and Bhatia, 1997]). The dysfunction of the same K-ATP channel subunits

in the pancreas and in the midbrain DA neurons, with HNF3α expressed in both

tissues, leads to two PD features: abnormal glucose tolerance for review ([Sandyk,

1993]) and dopamine deficiency (for review [Lang AE, Lozano AM., 1998a,b)]

respectively. It is conceivable that the transcription factor HNF3α could play a role

as activator or repressor of genes expression for K-ATP channel subunits genes.

Further studies are necessary to elucidate this issue.

4-ErbB4 and its relation with the midbrain DA neurons

The adult expression of ErbB4 in the SN of rats has recently been demonstrated by

in situ hybridization in combination with dopamine depletion by 6-
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hydroxydopamine treatment [Steiner et al., 1999]. I extended further this study by

undergoing ontogenetic expression analyses of ErbB4 in mouse. The ErbB4

expression is initiated in the DA neurons at E11.5 and continues into adult stages,

specifying the most rostral part of the SN.

Among the ErbB tyrosine kinase receptor family, ErbB4 is the only one to be

expressed in the midbrain DA neurons (this study and [Steiner et al., 1999]). It is

then very likely that, in the midbrain DA neurons system, the signaling specificity

of the ErbB4/ligands network is going to be restricted to binding specificities and

affinities characteristic to an ErbB4 homodimer. However, Sweeney et al., 2000,

showed that ErbB4 receptor homodimers are capable of discriminating among

ligands. Different ligands elicit similar amount of ErbB4 phosphorylation, but

evoke different levels and patterns of tyrosine phosphorylation, recruit distinct

adaptor proteins and activate different intracellular kinase cascades, thus providing

a mechanism for expanding signal diversity without loss of specificity [Sweeney et

al., 2000]. I showed that none of the typical ligands for ErbB4 are located in the

midbrain DA neurons, but interestingly the Type III NRG-1 and Betacellulin genes

were found to be expressed in the striatum, one of the major projection targets of

the midbrain DA neurons. Even more relevant is the fact that Type III NRG-1 is

known to bind ErbB4 homodimers (with an intermediate affinity), and that the

strongest binding affinity of Betacellulin is for ErbB4 homodimers [Dunbar and

Goddard, 2000]. The binding of these two ligands could lead to two distinct effects

upon ErbB4 phosphorylation. However, there is one issue; the two ligands and the

receptors mRNA are expressed in two different cell populations of the nigrostriatal

pathway, how can this work? Three different hypotheses that may explain this are;

i) the ligands are picked up in the striatum by ErbB4 on the midbrain DA axons, ii)

the ligands are expressed by the GABA-ergic neurons and transported to the axons

termini in the SNC and are released, or iii) both routes could be used. Depending on

what routes are used, it is possible to speculate about different roles for

ErbB4/ligands signaling. This signaling could have a trophic effect on DA neurons.

Such a signaling exists; the midbrain DA neurons contain receptors of GDNF

(GDNFRα, c-ret) and this growth factor (expressed in the striatum) can promote

survival of DA neurons [Lin et al., 1993; Glazner et al., 1998]. The ErbB4/ligands

signaling could also have a neuronal differentiation effect as already shown in
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different tissues by Zhao and Lemke. By using retroviruses carrying a NRG-1

specific ribozyme in chicken, they demonstrated the function of NRG-1 in

regulating the proliferation of neuroepithelia and differentiation of retinal ganglion

neurons [Zhao and Lemke, 1998]. Moreover supporting this idea, it was shown in

PC12 cells that ErbB4/Betacellulin signaling can induce neurite outgrowth

[Vaskovsky et al., 2000].

All together, the results of this work jointly with previous studies suggest a possible

role of the ErbB4 receptor and its ligands in the midbrain DA neurons system. In

order to have an immediate idea regarding the importance of ErbB4 for the

midbrain DA neurons system, this neuronal population was analyzed in adult mice

deficient for ErbB4 in the nervous system. The midbrain DA neurons in these mice

are normal; all the major midbrain DA markers are present and show a normal

expression pattern. This result could be explained by the up-regulation of another

ErbB receptor, which would then complement the loss of ErbB4. But data from a

gene chip screen searching for genes differentially expressed between ErbB4

conditional knock-out and wild type brain tissues did not show any up-regulation of

any other ErbB receptors (M. Schwab and C. Lai, personal communication).

Mice lacking completely ErbB4 die at E10.5 due to a heart failure and moreover

exhibit misprojections of cranial sensory ganglion afferent axons [Gassmann et al.,

1995]. Because of this feature, it made sense to analyze the state of the midbrain

DA projections in the conditional ErbB4 knock-out mice. The results of this study

showed that these animals elaborate normal DA projections and innervate all their

targets, including the striatum.

A very important point to consider regarding the study of this conditional ErbB4

knock-out mice is that the nestin-cre mice used to generate these animals, do not

show a Cre recombinase activity in the nervous tissue before E11 (R. Klein, nestin-

cre technical sheet from The Jackson Laboratory), which means that ErbB4 is still

expressed in the ventral midbrain from E9 until E11, exactly when midbrain DA

neurons are being specified. We can only conclude from this conditional ErbB4

knock-out mice study that ErbB4 does not seems to be essential after E11 for the

midbrain DA neurons survival, and the establishment of their axonal projections.

The fact that the ErbB4/ligands signaling does not have a particular role after E11

goes in favor to the hypothesis of an earlier role of this signaling in early fate
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determination and neuronal differentiation of the midbrain DA neurons. This

hypothesis could be investigated by studying the state of the midbrain DA neurons

in the complete ErbB4 null mutants, where ErbB4 is rescued specifically in the

heart (with a cre-mediated heart-specific repair). This would ensure the survival of

the mice and the lack of ErbB4 expression in the brain at all stages.

5-Olf-1/Ebf and its relation with the midbrain DA neurons

This study shows that the Olf-1/Ebf gene is expressed transiently in mouse from

E10 to E13, then the midbrain DA neurons begin to down-regulate Olf-1/Ebf,

corroborating its possible role in the differentiation of the midbrain DA neurons.

The Olf-1/Ebf (O/E) proteins O/E-1, O/E-2 and  O/E-3 define a family of

transcription factors that share structural similarities and biochemical activities

[Wang et al., 1997]. They are expressed in the entire embryonic CNS [Garel et al.,

1997]. Although, their expression is sometimes overlapping but always confined to

postmitotic neurons. Their patterns of expression and inactivation of their genes in

C. elegans [Prasad et al., 1998] suggest a role in neuronal differentiation. This

concept has been supported by overexpression studies in Xenopus showing that

their ectopic expression converts ectodermal cells into neurons [Dubois et al., 1998;

Pozzoli et al., 2001].

Mouse mutant studies for Olf-1/Ebf revealed major defects in the immune system

[Lin and Grosschedl, 1995] and the only significant CNS defect can be detected in

the striatum, where the migration of striatal cells from the subventricular zone into

the mantle layer does not occur in absence of Olf-1/Ebf [Garel et al., 1999]. The

midbrain DA neurons have never been investigated directly, but indirect evidences

strongly suggest that they are present in the Olf-1/Ebf mutant mice. The remaining

striatum in the mutant mice is innervated by TH positive axons. Since the

dopaminergic innervation of the striatum has its origin exclusively in the midbrain,

it can be concluded that the DA neurons are present entirely or at least partially in

the Olf-1/Ebf mutant mice. However, the largely overlapping expression of the

members of the O/E genes family make it more than likely that compensatory

mechanisms are taking place in the Olf-1/Ebf mutant mice and that only double or



IV-DISCUSSION

86

triple mutants may reveal any function of the genes in respect to the midbrain DA

neurons.

In order to determine a potential role of Olf-1/Ebf in the midbrain DA neurons

specification and differentiation, in this study the chick Olf-1/Ebf was ectopically

expressed in the midbrain of chick embryos. It appears that the mis-expression of

Olf-1/Ebf induces ectopic TH expression, suggesting that Olf-1/Ebf can induce

ectopic placement of DA neurons in the midbrain. However, the ectopic expression

of TH occurred only in the vicinity of the cells expressing Olf-1/Ebf, and the two

cell populations do not co-express the two proteins. First it is important to mention

that at E7, more than 70 % of the GPF signal disappeared compared to the level at

E5 (data not shown). This is probably due to the time limit of such a transient over-

expression. This could mean that in most of the cases the initial Olf-1/Ebf-GFP

expression domain was much broader after injection, and slowly decreased with

time and appeared very reduced at E7. So it is possible that at the time of midbrain

DA neurons specification/differentiation, the cells revealing an ectopic expression

of TH did express an ectopic Olf-1/Ebf. Furthermore, as shown in the mouse, Olf-

1/Ebf is co-expressed with TH during a very short period during differentiation of

the midbrain DA neurons, and then is down-regulated. So it is very likely that E7 in

the chick is already too late to see Olf-1/Ebf co-expressed with TH. It would be

then necessary to look at earlier stages, and this would required the use of earlier

markers than TH, i.e. AHD2 or Nurr1.

The detection of ectopic DA neurons in the midbrain signifies that the mis-

expression of Olf-1/Ebf induces new midbrain DA neurons or alternatively, that the

midbrain DA neurons are disturbed in their migratory behavior and are mis-located.

The migratory behavior could be disturbed because the DA neurons express the

ectopic Olf-1/Ebf by themselves (which we never saw, but maybe justified by the

explanations described above), or the ectopic Olf-1/Ebf is only expressed in the

midbrain DA neurons environment, which is enough to disturbe their migration

route. To differentiate between the apparition of new DA neurons and mis-location

of DA neurons, it would be necessary to count and compared the total number of

DA neurons in the Olf-1/Ebf over-expressed side and in the control side of the

midbrain.
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Finally, the investigation of Nurr1  -/- and En double null mutants mice

demonstrated that Olf-1/Ebf is expressed independently of the two transcriptional

regulators. It remains to be investigated the Lmx1b mutant mice whether there is

any deficiency in the expression Olf-1/Ebf. The late onset of the Olf-1/Ebf

expression in the TH neurons could be a sign that it is under the control of Lmxb1.

All together, the data from the mouse and the chick jointly suggest that Olf-1/Ebf is

first very likely involved in midbrain DA neurons specification and differentiation,

and second, it could be involved non-autonomously in the maintenance of these

neurons as Olf-1/Ebf is still express in neighboring cells until adulthood and could

signal to the midbrain DA neurons by the way of others molecules through

transcriptional regulation.

6-Conclusion

The primary aim of this project was to identify and characterize genes involved in

the development of the midbrain DA neurons, which are active during the

intermediate period between induction and full differentiation of these neurons. The

outcomes of this study were i) the further characterization of the En genes towards

their cell-autonomous requirement by the midbrain DA neurons, and their non-

requirement for the formation of the midbrain DA precursor cells ii) the

identification of MAP1B as a gene regulated by En-1 and En-2 in the midbrain DA

neurons, iii) the identification of HNF3α, ErbB4 and Olf-1/Ebf, which are

specifically expressed in the midbrain DA neurons between induction and full

differentiation of these neurons, and finally iiii) the characterization of these three

genes toward their involvement in the midbrain DA neurons fate, particularly with

the finding that Olf-1/Ebf may be involved in the specification of these neurons.

It will be interesting to continue on the further analysis of this network of different

genes. Other genes from this screen have yet to be followed up and will give

important insights on the nature of the midbrain DA neurons.

Overall, this work took us a step further towards additional insights concerning the

factors which determine the identity of such a particular cell population.
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