
INAUGURAL-DISSERTATION

zur
Erlangung der Doktorwürde

der

Naturwissenschaftlich-Mathematischen Gesamtfakultät
der

Ruprecht-Karls-Universität
Heidelberg

vorgelegt von

Diplom-Mathematiker Oliver Großhans, M.Sc.
aus Landau/Pfalz

Tag der mündlichen Prüfung: 13.12.2001
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1. Introduction

Chemical reactions on catalytic surfaces are a very active and intense research area.
The catalyst offers the possibility to accelerate and to control certain features of the
reactions, which can lead to higher selectivities and conversion. In other words less
natural and financial resources are needed.

A sophisticated approach for the study of this type of chemistry is based on ele-
mentary reaction models. This means all “net” or “overall” reactions are split up into
elementary reactions which occur on a molecular level exactly in the way which is
described by the reaction equation. For example the reaction of hydroxy radicals OH
with molecular hydrogen H2 forming water and hydrogen atoms is such an elementary
reaction,

OH + H2 → H2O + H .

On the contrary, the reaction

2H2 + O2 → 2H2O

is not an elementary one. Detailed investigations show that water is not produced
by a single collision between the three reacting molecules. Instead, many reactive
intermediates like H, O, OH are formed. So this reaction can be described by 38
elementary reactions [59].

For the validation of the proposed reaction mechanisms computer simulations are
performed and the results are compared to experimental data. Methods for the
mathematical parameter estimation [11,47] are still not yet as commonly used as they
should be. In many cases, it is not sufficient to purely study the reaction mechanism
on the catalytic surface, because the transport of the chemical species to and from
the catalyst is also important. Therefore it is necessary to couple the equations for
the surface reactions with the equations of the flow field. This coupling makes the
solution of the problem more complex, because chemical reactions can be expressed
as a set of ODE but the addition of the flow equations means the addition of a set
of partial differential equations.

One experimental configuration, which has received much attention over the last
few years, is the reactive stagnation point flow on a catalytic plate [5,6,17,18,26,34],
in which a flow of chemical species in gas-phase is directed towards a catalytic plate.
This setting has been used to assist in the development of reaction mechanisms for
several chemical problems. Their application has shown very good agreement with
corresponding experiments [17, 18, 60].

The software for the numerical simulation of this problem has been developed in
the research group of Prof. Warnatz over the last 10 years. It is summarized in the
package DIFRUN and simple user interfaces are provided. The reaction mechanisms

1



1. Introduction

and process parameters are taken from a number of parameter files and all other
necessary data for the reaction equations are then computed in a pre-processing step.
The model equations are discretized in space by finite differences and the resulting
differential-algebraic equations are solved by a modified LIMEX [5,38] which is based
on the original LIMEX [16].

After evaluation of the reaction mechanisms the next step is to look for optimal pro-
cess conditions, that is for example the best values for temperature, pressure, chemical
composition, or flow velocity to obtain a maximum (or minimum) of the desired out-
put. So far, trial-and-error methods have been widely used. But this optimization
by trial-and-error is extremely time consuming. A complete simulation—possibly for
a very large system of differential-algebraic equations—has to be performed for each
new value of the objective function. So this way of optimization is only feasible for
a very small number of control variables. Stationary problems with a constant con-
trol are possible examples. Transient problems with time dependent controls, leading
to 10–100 control variables after discretization, cannot be practically solved on a
trial-and-error basis anymore.

On the other hand, there has been an enormous development in the field of opti-
mization of applied problems: For example in mechanics the optimal path planning
for satellite mounted robots [51–53], or in chemistry the optimal control of distillation
columns [21, 22] to mention only a few.

Mathematical sophistication, algorithm and software development, and powerful
computing resources do now enable to tackle optimal control problems with several
hundreds or even thousands of differential algebraic equations and a high number of
control variables.

Two powerful software packages have been developed in the research group of Prof.
Bock over the last several years: MUSCOD(II) [12,36,37] and OCPRSQP [48]. Both
are based on the boundary value problem approach [11, 12], that is simulation and
optimization are done at the same time, and both have been applied very success-
fully to many application problems (see above). MUSCOD solves the optimal control
problem with a reduced SQP -method based on a multiple shooting discretization [37].
OCPRSQP uses a collocation method to discretize the DAE describing the model and
solves the resulting optimization problem with a partially reduced SQP -method [48].
So far OCPRSQP is better suited for applications with a very large number of vari-
ables and only a few control variables. It has also been successfully used in a former
investigation of homogeneous reaction systems [56, 57].

In the aforementioned studies, optimal control problems have been solved which
can be described as sets of DAE. This is an established but still very active field.
The next step is now to approach optimal control problems in partial differential
equations. This is an emerging field of research and it is possible to deal with these
very large systems only in recent times. Examples for recent research are the shape
optimization of turbine blades [24,25,50,54] and optimization problems in water flow
and transport processes in soils [23], to mention only a few.

Over the last couple of years other research groups have started working on systems
similar to that we are considering here [42–44]. But this research is always restricted
to one chemical system. In this thesis we aim for the largest possible flexibility and
efficiency of the software. That means, it takes only minimal effort to go from one
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chemical system to another and it is possible to use the software with only a rough
understanding of mathematical optimization.

Other optimal control packages have been developed based on collocation, for ex-
ample [58]. But they usually have the disadvantage that very large linear systems
have to be solved compared to codes based on multiple shooting [40]. Therefore
the development has concentrated on multiple shooting based algorithms [40,41,55].
A solution to this disadvantage of the algorithms based on collocation has been a
partially reduced SQP -method developed in [48].

Hence, a software package is needed for the practical application that includes an
easy-to-use user-interface to study various chemical systems and an optimal control
code which is efficient, robust and also easy-to-use.

In this thesis a new software package has been developed based on the simulation
code DIFRUN and the optimal control package OCPRSQP. This new code provides
us for the first time with a software tool for the optimal control of a reactive stagnation
point flow on a catalytic plate for different chemical processes. Only minimal effort is
needed going from one chemical system to another. This required an overall design to
use the desired features of DIFRUN and OCPRSQP and several conceptual changes,
new algorithms and modifications to OCPRSQP. In the present work, this package
is applied for computing the optimal solution to several practical problems.

Organization of this Thesis

The second chapter introduces the three application problems: the catalytic partial
oxidation of methane to syngas [17, 18], the epoxidation of ethylene on silver [39]
and the catalytic oxygen-free conversion of methane to ethane [60, 61]. For these
applications we want to find the optimal process conditions and these systems are
used as typical examples from everyday practice to show the performance of our new
package. A solution from a simulation is presented for each problem, which can be
used as a reference to which the optimal solution presented in Chapter 6 can be
compared.

Chapter 3 introduces the partial differential equations, which model the reactive
stagnation point flow on a catalytic plate [5, 17].

Chapter 4 shows how these model equations are discretized in space using finite
differences leading to a system of differential-algebraic equations. The dependency
of these equations on the variables is emphasized because it leads to a block band
structure of the Jacobian of this system. It is shown that this DAE is of index 1.
Afterwards a short overview of the software package OCPRSQP is given: The col-
location discretization and the partially reduced SQP -algorithm are presented. The
presentation of algorithmic details concentrates on the computation of the deriva-
tives and the recursion formulas for the condensing step of the partially reduced
SQP -algorithm. This complements the information from [48]

The fifth chapter is—besides the results in chapter 6—the heart of this thesis.
The development of the new software package based on DIFRUN and OCPRSQP is
described, especially some of the major obstacles on that way and possible solutions:
non standard interfaces, the need for analytic derivatives in contrast to the used
finite differences; to mention only a few. It turns out that the accuracy of the finite
differences to compute the derivatives for the optimization is not enough. Therefore
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1. Introduction

an interface to ADIFOR [8–10] has been developed to provide the access to analytic
derivatives. Computing the derivatives, solving the linear systems in the condensing
step and solving the QP-problem are the most time consuming steps in the partially
reduced SQP -algorithm. The structure of the derivatives has been analyzed with
the aid of the dependency relations of chapter 4. This shows a characteristic block
band structure which enables the use of a condensed mode of ADIFOR [10] for the
computation the derivatives. This reduces the computing time between 20-30%. As a
next step, a sparse LU-factorization and a corresponding sparse linear system solver
was developed, taking into account the block band structure of the matrices. These
new algorithms give a speed up of almost a factor 2 compared to the non-sparse
version. In a next step the basic formulation of the partially reduced SQP -algorithm
had to be changed. Up to that point the initial values were treated as possible control
variables but in our problem class the initial values are always fixed so it is possible
to reduce the size of the QP-problems quite considerably. New recursion algorithms
are presented taking this fact into account. Reducing the size of the QP-problem
accelerates the solution of the QP-problem by a factor of 4 for the typical problem
sizes treated in this thesis.

In the sixth chapter optimal solutions to the aforementioned applications are pre-
sented. The behavior of the control and the objective function is shown when refining
the collocation mesh or using a different spatial discretization. It can be observed
that already with a very coarse discretization in space and time a fairly good approx-
imation of the control and the objective function can be obtained. It can also be seen
that all the modifications described in chapter 5 are necessary to be able to obtain
the results in a reasonable computing time.

The seventh chapter summarizes the results and gives an outlook to further research
directions.
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2. Applications from Chemistry

All the processes described in this chapter are modeled by a reactive stagnation point
flow on a catalytic plate (figure 2.1) because in laboratory experiments, the chemical
processes are often considered in a stagnation flow configuration. The model equa-
tions are discussed in the next chapter. In this thesis the process optimization for

stagnation
point

surface
reactions

gas phase
reactions

flow

Figure 2.1.: Reactive stagnation point flow on a catalytic plate.

three different chemical application problems has been studied. These systems are
shortly described in this chapter. The first process is the catalytic partial oxidation
of methane to syngas—an industrial important process and of high potential to sub-
stitute the energy-costly conventional steam reforming [17, 18]. The second one, the
epoxidation of ethylene on silver is a well established large scale chemical process [39].
The third and last process concerns the catalytic oxygen-free conversion of methane
to ethane is currently mainly of academic interest [60, 61].

2.1. Catalytic Partial Oxidation of Methane to Syngas

Catalytic conversion of methane, the main component of natural gas, has recently
received extensive experimental and theoretical attention because of its potential to
synthesize useful chemicals. The catalytic reactors used for these processes have a
complex interaction between the reactive flow and reactions on the catalytic sur-
face. Therefore, the description of these heterogeneous reactors requires a detailed
description of the coupling of the flow field and the catalyst.

Synthesis gas is a very important chemical intermediate for many relevant pro-
cesses including the production of methanol and synthetic fuels by Fischer-Tropsch
synthesis. Syngas is currently mainly produced by the endothermic steam reforming
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2. Applications from Chemistry

of methane or by homogeneous oxidation in auto-thermal reforming. There has re-
cently been significant interest in alternate routes to syngas production. The direct
partial oxidation of light alkanes in a monolithic catalyst at very short contact times
has been shown to offer a promising route to convert light alkanes to syngas, higher
hydrocarbons, and oxygenates [13, 33]. Using this type of reactor, selectivities to
syngas in excess of 90% have been achieved at methane conversions over 90% [13].

Syngas formation from methane/oxygen mixtures on noble metal catalysts is char-
acterized by the competition between a complete oxidation channel globally written
as

CH4 + 2O2 → CO2 + 2H2O

MHR = −890 kJ/mol

and a partial oxidation channel written as

CH4 + 1
2
O2 → CO + 2H2O

MHR = −36 kJ/mol.

This process, which can be run nearly auto-thermally and adiabatically, exhibits an
extremely fast variation of temperature, velocity, and transport coefficients of the
reactive mixture near the catalyst entrance.

Optimal Process Control Problem

One main contribution to the control of the syngas production is the ratio of methane
to oxygen in the flow. If the mixture is too lean or rich, too much or too less CO2 is
obtained. Hence an optimal control problem can be stated as follows:

Maximize the ratio of the mass fluxes of CO and CO2 at the outflow
depending on the ratio of the mol fractions of CH4 and O2 at the inflow.
The sum of the mol fractions of CH4 and O2 at the inflow shall be constant.

This process is modeled by a reaction mechanism consisting of 11 surface species,
7 gas-phase species and with 32 elementary reactions which is shown in table A.1.
This leads to a system of 11 ODE coupled with 11 partial differential equations (7
species + 4 flow equations). The following simulation uses a spatial discretization of
28 non-uniformly distributed grid points (the distribution is automatically computed
by DIFRUN, for more details [6, 18]). This leads to an optimal control problem in
319 DAE (227 ODE and 92 AE ) and one control function.

After a short initial phase this problem is stationary so it is justified not to consider
time dependency. For this reason the coverages of the surface species are scalar values
and in all other figures it is sufficient to draw the spatial dependence of the variables.

Table 2.1 shows the values of the coverages of the surface species on the catalytic
plate. Figure 2.2 shows the mol fractions of the gas phase species and figure 2.3 the
flow variables. This simulation is performed with a value of 1.41 for the ratio of the
mol fractions of CH4 and O2 at the inflow. This yields a value of 149.46 for the ratio
of the mass fluxes CO and CO2 at the outflow.
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2.1. Catalytic Partial Oxidation of Methane to Syngas
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Figure 2.2.: Mol fraction of gas phase species of a solution from a simulation for the
syngas problem. The catalytic plate is on the ‘left’ of the figures (0 mm)
and the inflow on the ‘right’ (50 mm).
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2. Applications from Chemistry

Species Coverage

Pt(s) 6.10 · 10−1

H(s) 8.54 · 10−3

CH3(s) 4.41 · 10−7

CH2(s) 3.05 · 10−9

CH(s) 1.11 · 10−10

C(s) 5.44 · 10−3

Species Coverage

O(s) 4.34 · 10−7

H2O(s) 1.71 · 10−4

OH(s) 2.45 · 10−5

CO(s) 3.76 · 10−1

CO2(s) 4.74 · 10−10

Table 2.1.: Coverages for the surface species of a solution from a simulation for the
syngas problem
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Figure 2.3.: Flow variables of a solution from a simulation for syngas problem. The
catalytic plate is on the ‘left’ of the figures (0 mm) and the inflow on the
‘right’ (50 mm).
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2.2. Epoxidation of Ethylene on Silver

2.2. Epoxidation of Ethylene on Silver

The heterogeneous oxidation of olefines to epoxides by silver catalysts is of great
industrial importance. The significance of epoxides comes from their potential to be
intermediate for the production of glycols, polymers and other useful chemicals.

The process of the ethylenoxide production involves the interaction of ethylene
with oxygen over a silver catalyst to produce the corresponding ethylene epoxide
along with undesirable combustion products CO2 and H2O.

C2H4 + 1
2
O2 → C2H4O

C2H4 + 3O2 → 2CO2 + 2H2O

The task is to find optimal process parameters to maximize the production rate of
ethylenoxid.

Optimal Process Control Problem

One important parameter to control the production rate of ethylenoxid is the ratio of
ethylene to oxygen at the inflow. Also the temperature of the catalytic plate might
play a role. Hence an optimal control problem can be stated as follows

Maximize the production rate of C2H4O at the outflow depending on the
ratio of mol fractions C2H4/O2 at the inflow and the temperature of the
plate. The sum of mol fractions C2H4+O2 at the inflow shall be constant.

Here a reaction mechanism with 12 surface, 5 gas-phase species and 26 elementary
reactions is considered which is shown in A.2. This results in a system of 12 ODE
and 9 partial differential equations. The following simulation uses a uniform spatial
discretization of 40 grid points which leads after spatial discretization of the partial
differential equation to a system of 245 ODE and 127 AE and two control functions.

After a short initial phase the solution is stationary so it is again justified to focus
on this stationary part. Table 2.2 shows the values of the coverages for the surface
species on the catalytic plate. Figure 2.4 shows the mol fractions of the gas phase
species and figure 2.5 shows the flow variables. This simulation is done with a value of
0.13 for the ratio of the mol fractions C2H4 and O2 and a temperature of the catalytic
plate of 525 K. This yields a production rate of 6.1 · 10−6 mol/m2s for C2H2O at the
outflow.

Species Coverage

Ag(s) 9.69 · 10−1

O(s) 2.05 · 10−5

C2H3(s) 5.97 · 10−6

H2O(s) 5.97 · 10−4

OH(s) 1.28 · 10−9

C2H3O(s) 5.13 · 10−3

HCO(s) 8.31 · 10−4

CH2O(s) 2.70 · 10−3

Species Coverage

HCOO(s) 1.50 · 10−2

H(s) 6.32 · 10−3

CO3(s1) 6.73 · 10−7

C2H4(s) 2.17 · 10−5

Table 2.2.: Coverages for the surface species of a solution from a simulation for the
epoxidation of ethylene.
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epoxidation of ethylene. The catalytic plate is on the ‘left’ of the figures
(0 mm) and the inflow on the ‘right’ (50 mm).
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2.2. Epoxidation of Ethylene on Silver
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2. Applications from Chemistry

2.3. Catalytic Oxygen-Free Conversion of Methane to

Ethane

One way to obtain ethane from methane is via the syngas formation step of section
2.1. An alternate approach is the direct oxygen-free conversion of methane to ethane:

2CH4 → C2H6 + H2

This application possesses a very high selectivity (80%) but the conversion is rather
low. The aim is now to find process conditions which lead to a higher conversion.

Optimal Process Control Problem

The problems mentioned in the last two sections posses a stationary solution whereas
this one is transient. The production rate of ethane depends mainly on three param-
eters: the velocity of the flow at the inflow, the temperature of the plate and the
pressure. An optimal control problem can be stated as follows

Maximize the production rate of C2H6 at the outflow depending on the
flow velocity at the inflow, the temperature of the catalytic plate, and the
pressure.

This problem is described by 14 surface, 4 gas-phase species and 39 elementary re-
actions with the reaction mechanism shown in table A.3. This leads to a system of
14 ODE and 8 partial differential equations. In the following simulation a uniform
spatial discretization with 30 grid points has been used which the leads to a system of
158 ODE and 96 AE and three control functions. The whole simulation last for 300 s.
Figures 2.6 and 2.7 show the coverages of the surface species. The next figure 2.8
shows the gas phase species. The flow variables are shown in figure 2.9. This simu-
lation is done with a constant inflow velocity of 0.001 m/s, a constant temperature
of the plate of 523 K and a constant pressure of 1 bar. So an integrated production
rate of 9.817 · 10−6 mol/m2s is obtained for this simulation.
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Figure 2.6.: Coverages for the surface species of a solution from a simulation for the
catalytic oxygen-free conversion of methane to ethane.
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Figure 2.7.: Coverages for the surface species of a solution from a simulation for the
catalytic oxygen-free conversion of methane to ethane.
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Figure 2.8.: Mol fraction of gas phase species of a solution from a simulation for
the catalytic oxygen-free conversion of methane to ethane. The extreme
variations in the beginning have to do with the setup of the problem.
The initial data are not consistent a-priori so rapid changes can be seen
before a reasonable solution is established.
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Figure 2.9.: Flow variables of a solution from a simulation for the catalytic oxygen-
free conversion of methane to ethane. The extreme variations in the
beginning have to do with the setup of the problem. The initial data are
not consistent a-priori so rapid changes can be seen before a reasonable
solution is established.
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3. Reactive Stagnation Point Flow on a

Catalytic Plate

The aim of this chapter is to describe the model equations of a reactive stagnation
point flow on a catalytic plate. This gives an impression of the complexity of the
model and furthermore its structure is needed in the optimization context. For a
more detailed account of the derivation of the model equations it is refered to [5, 6,
17, 18, 20, 26, 34].

In a reactive stagnation point flow on a catalytic plate one considers an initially uni-
form flow of reacting chemicals in the gas phase leaving a pipe and hitting a catalytic
plate before escaping through a small gap between plate and pipe (figure 3.1). Only
an axial symmetric configuration is considered, which allows with certain approxima-
tions the reduction of this 3-dimensional problem to a one-dimensional. Furthermore
only chemical reactions in the gas phase and on the catalytic plate are taken into
account.

This configuration extends investigations on catalytic surface reactions, coupling
the catalytic surface reactions with the characteristics of the—possibly time dependent—
transport phenomena.

The whole model is built from three contributions: The equations describing the
flow and the chemical reactions therein, the equations modeling the chemical reactions
on the catalytic plate and the boundary conditions to the flow equations closing the
system and coupling the flow equations with the equations describing the catalytic
surface chemistry.

stagnation
point

surface
reactions

gas phase
reactions

flow

Figure 3.1.: Reactive stagnation point flow on a catalytic plate.
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3. Reactive Stagnation Point Flow on a Catalytic Plate

3.1. Gas Phase Equations

At first a look is taken at the equations describing the gas phase of the stagnation point
flow. As mentioned above the flow equations—temperature, mass, momentum—are
coupled with chemistry—species—and additionally an equation obtained through the
dimensional reduction process. The equation for the temperature

∂tT = −

[

ρvx

ρ
+

1

ρcp

Ng
∑

i=1

cp,iji

]

∂xT −
1

ρcp

Ng
∑

i=1

ω̇iMihi +
1

ρcp
∂x(λ∂xT ) (3.1)

and the Ng equations for the species

∂tYi = −
ρvx

ρ
∂xYi +

1

ρ
ω̇iMi −

1

ρ
∂xji (3.2)

describe a time evolution. The equation for the mass conservation

0 =
p

R

M̄2

T 2

[

T
∑

i

∂tYi

Mi
+
∂tT

M̄

]

− 2ρV − ∂x(ρvx) (3.3)

and the two equations for the momentum

0 = −
ρvx

ρ
∂xV − V 2 −

Λ

ρ
+

1

ρ
∂x(µ∂xV ) (3.4)

0 = ∂xΛ. (3.5)

contain no time derivative and are treated as algebraic equations in time. The inde-
pendent variables in this system are the temperature T , the species mass fraction Yi,
the axial mass flux ρvx, the radial momentum V , and the eigenvalue Λ of the momen-
tum equation. Please observe that the term ρvx is considered to be an independent
variable and not the radial velocity vx. The state equation

ρ =
pM̄

RT
(3.6)

with fixed pressure p, mean molecular mass M̄ , and universal gas constant R, can be
used to compute the density ρ.

In the following these model equations are explained in more detail. The equa-
tion (3.1) describes the evolution of the temperature T . The first term of the temper-
ature equation (3.1) plays the role of a convection term. The “convection velocity” vx

is corrected by an additional term

1

ρcp

Ng
∑

i=1

cp,iji

in which cp is the specific heat capacity of the mixture at constant pressure, cp,i the
specific heat capacity of the species i at constant pressure and Ng the number of gas
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3.1. Gas Phase Equations

phase species. The diffusion flux density ji is given by

ĵi = −

(

ρDi,M∂xYi +
DT

i

T
∂xT +

ρDi,MYi

M̄
∂xM̄

)

ji = ĵi − Yi

Ng
∑

k=1

ĵk

where the mean molecular mass M̄ is

M̄ =
1

∑Ng

i=1
Yi

Mi

with Mi the molecular mass of species i, and Di,M is the effective diffusion coefficient
of the species i in the mixture, DT

i the thermal diffusion coefficient. As a final
equation for this first term in equation (3.1) it is necessary to compute Di,M from
binary diffusion coefficients Dij

Di,M =
1 − Yi
∑

j 6=i
Xj
Dij

where the mol fraction Xi is related to the mass fraction through

Xi =
M̄

Mi
Yi.

The second term in equation (3.1) is a source term. It represents the fact that due
to the chemical reactions the temperature might change. The chemistry in the gas
phase is described by elementary reactions

Ng
∑

i=1

ν ′ikχi →

Ng
∑

i=1

ν ′′ikχi

with stoichiometric coefficients ν ′ik, ν
′′
ik of species i in reaction k, χi species symbol

and Kg the number of elementary reactions. The reaction rate ω̇i is given by

ω̇i =

Kg
∑

k=1

νikkfk

Ng
∏

i=1

[Xi]
ν′

ik

where νik = ν ′′ik − ν
′
ik and the velocity coefficients kfk

are temperature dependent and
follow a modified Arrhenius law

kfk
= AkT

βk exp(−
Eak

RT
)

with Ak as pre-exponential factor, βk as temperature exponent and Eak
as activation

energy. The specific enthalpy h is defined as

h =

Ng
∑

i

Yihi with hi =

∫ T

Tref

cp,i dT
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3. Reactive Stagnation Point Flow on a Catalytic Plate

where Tref is a reference temperature and cp,i is the specific heat at constant pressure
of species i. cp,i is modeled as a polynomial function of temperature. More details
can be found in [17].

The last term in equation (3.1) is a diffusion contribution. The mean viscosity of
the mixture λ is given by

λ =
1

2
(

Ng
∑

i=1

Xiλi + (

Ng
∑

i=1

Xi

λi
)−1)

with λi being the heat conductivity coefficient of the species i.
The species equation (3.2) has a very similar structure to the temperature equation.

The first term is of convective type, the second one represents a source term since
during chemical reactions a species might be the product of a chemical reaction of
other species, and the last one is a diffusion term.

Since it is assumed that the pressure is constant, the state equation (3.6) has been
used to eliminate the explicit time dependence which can usually be found in the
mass conservation equation, and this leads to (3.3) with the additional source term
2ρV and the convection term ∂x(ρvx).

The first term of the momentum equation (3.4) has the form of a convection term,
the second and third term represent a source and the last term is a diffusive contri-
bution with the mean viscosity µ

µ =
1

2
(

Ng
∑

i=1

Xiµi + (

Ng
∑

i=1

Xi

µi
)−1)

and µi the viscosity coefficient of the species i. The last equation (3.5) for the pressure
eigenvalue Λ is a result of reducing the dimension of the problem from two to one
dimensions. For further details it is refered again to [17].

3.2. Surface Equations

The chemical reactions on the catalytic plate are described by an additional set of
equations, which compute the change of the coverage Θi for the species i on the
surface.

∂tΘi =
ṡiσi

Γ
[i = 1, . . . , Ns] (3.7)

with the surface site density Γ, the number of surface sites σi needed for adsorption
of species i and reaction rate ṡi. Furthermore it has to be ensured that the coverages
Θi add up to one

Ns
∑

i=1

Θi = 1

The reaction rate ṡi in (3.7) is given by

ṡi =
Ks
∑

k=1

νikkfk

Ng+Ns+Nb
∏

i=1

[Xi]
ν′

ik
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3.3. Boundary Conditions

with the number of elementary surface reactions Ks, the number of species Ns and
the number of bulk species Nb. The velocity coefficients kfk

can again be described
by a modified Arrhenius law

kfk
= AkT

βk exp(−
Eak

RT
)fk(Θ1, ...,ΘNs)

in which fk depends on the coverages

fk =

Ns
∏

i=1

Θ
µik

i exp(
εikΘi

RT
)

The changed reaction order is described by µik and the coverage dependent activation
energy by εik.

3.3. Boundary Conditions

Besides the initial values one has to choose 2Ng + 7 boundary values to close the
system (3.1)–(3.5). At the inflow Dirichlet conditions are assumed for the temperature
T , the species mass fraction Yi, the axial mass flux ρvx, and the momentum V , that
is

T := T 0 Yi := Y 0
i

(ρvx) := ρ0v0
x V := 0

which gives us Ng + 3 conditions. At the outflow the situation is more complicated
and leads to a coupling between gas phase and surface equations. For the temperature
equation we have a differential equation

(

ρcp Mx+ + ρcatccatd
)

∂tT = λb∂xT − 2σε(T 4 − T 4
ref) −

Ng+Ns
∑

i=1

ṡiMihi +
I2ρel

db2

−λb(T − Tb)
κ −

Ng
∑

i=1

ω̇iMihi Mx
+

with ρcat the density, ccat the heat capacity and d the thickness of the catalytic plate.
The first term describes the conductivity of the catalytic plate with the Fourier heat
conductivity law λb∂xT in which λb is an experimental value. The second term
contains the radiative contribution as a Stefan-Boltzmann law with the Boltzmann
constant σ, the temperature dependent radiation value ε and the reference tempera-
ture Tref. The third term is a contribution from chemical surface reactions and the
forth one describes the heating of the catalytic plate. I is the electric current, ρel
the specific electric resistant and b the length of the catalytic plate. The fifth term
encompasses the heat loss of the catalytic plate and the values of λb, T0, and κ are
purely experimental. Finally the last term is a source term for the energy changes
during chemical reactions.
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3. Reactive Stagnation Point Flow on a Catalytic Plate

For the species equation (3.2) a balance of species in the gas phase just above the
plate and the species on the plate is assumed

ρ∂tYi Mx
+ = −ji − ρuYi + ṡiMi + ω̇iMi Mx

+

with the Stefan velocity

u =
1

ρ

Ng
∑

i=1

ṡiMi.

For the mass conservation equation (3.3) and for the momentum equation (3.4) one
has

(ρvx)0 = ρu and V = 0.

Altogether this gives another Ng + 3 conditions. To compensate for the lack of a
genuine boundary condition for equation (3.5) a zero gradient condition is used for
the mass flux at the inflow

∂x(ρvx) = 0

With these boundary conditions the system is well defined [17].
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4. Numerical Methods

After describing the model equations in the last chapter it is now shown how these
equations are discretized and how the resulting optimal control problem is solved.

Since OCPRSQP is used to solve the optimal control problem the model equations
are needed in the form of a system of differential-algebraic equations. Internally the
simulation tool DIFRUN uses a modified version of LIMEX which is a solver for a
system of DAE. Therefore the model equations already have the desired form. In
section 4.1 it is shown how the model equations are discretized in space by finite
differences to obtain the desired DAE. The dependency of the right hand sides on the
discretized variables is of particular interest. It is this dependency which is used later
on exploring the structure of the Jacobian, that is the derivative of the right hand
site of the DAE with respect to the discretized variables. It is shown in section 4.2
that the DAE from section 4.1 is of index 1 which is a prerequisite for the usability
of OCPRSQP. Section 4.3 is devoted to a short summary of the collocation method
which is used in OCPRSQP to discretize the DAE in time. Section 4.4 finally contains
a short summary of the partially reduced SQP algorithm implemented in OCPRSQP.
The presentation concentrates on a detailed account of the formulas and recursions
for which new ones are presented in chapter 5 to obtain a better performance of the
algorithm. For further information regarding the partially reduced SQP method the
reader is refered to [48]

4.1. The Discretization of the Model Equations

The convention used for the labeling of the spatial discretization is shown in figure 4.1.
The first grid point x1 is assumed to be just above the catalytic plate and the last one,
xN , at the inflow. The spatial discretization of the model equations uses one-sided
and central finite differences. For the first derivative either first order one-sided

(∂xf)l :=
fl+1 − fl

Mxl

or second order central finite differences

(∂xf)l :=
1

Mxl+Mxl−1

(

Mxl

Mxl−1

(fl − fl−1) +
Mxl−1

Mxl

(fl+1 − fl)

)

are used and for the second derivatives first order central finite differences

∂x(f∂xg)l :=
1

Mxl+Mxl−1

(

(fl+1 + fl)
gl+1 − gl

Mxl

− (fl + fl−1)
gl − gl−1

Mxl−1

)

(4.1)
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4x1

x1

4x2

x2

4x3

x3

x4

4xN−1

xN−1

xN

flow

Figure 4.1.: Labeling for the spatial discretization.

An important observation is that using these formulas an discretized equation only
depends on the variables of at most three neighboring grid points: the grid point at
which the equation is computed and the two neighboring grid points.

The spatial discretization of the equations is now straightforward. The discretized
gas phase equations and boundary conditions are not presented in full detail but the
presentation concentrates on the dependency of these equations on the discretized
variables because this dependency is used later on to reduce the computational com-
plexity of the optimization algorithm.

Gas Phase Equations

For ease of presentation a slightly different notation is used in the remaining of this
section: the indices for the species are now superscript and the indices for the dis-
cretization subscript. The species equation becomes

∂tY
i
l = −

(ρvx)l
ρl

Y i
l+1 − Y i

l

Mxl

+
1

ρl

ω̇i
lM

i −
1

ρl

J i
l (4.2)

with

ρl = ρ(Tl, {Y
k
l }

Ng

k=1)

ω̇i
l = ω̇i(Tl, {Y

k
l }

Ng

k=1)

and for J i
l

J i
l = (∂xĵi)l − Y i

l

Ng
∑

k=1

(∂xĵk)l
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4.1. The Discretization of the Model Equations

with

(∂xĵi)l = −[∂x(ρDi,M∂xYi)]l − [∂x(
DT

i

T
∂xT )]l − [∂x(

ρDi,MYi

M̄
∂xM̄)]l

in which formula (4.1) can be used to get

J i
l = J

i
l

(

Tl−1, Tl, Tl+1, {Y
k
l−1, Y

k
l , Y

k
l+1}

Ng

k=1

)

The boldface J
i
l is a complicated function of all the variables listed in the brackets.

In the following the precise form of this function is of no interest but the dependency
on the different variables because this defines the structure of the problem. Therefore
one obtains the following

∂tY
i
l = Y

i
l

(

(ρvx)l, Tl−1, Tl, Tl+1, {Y
k
l−1, Y

k
l , Y

k
l+1}

Ng

k=1

)

It is a bit more work to find the dependency of the temperature equation on the
discretized variables. One has

∂tTl = −





(ρvx)l
ρl

+
1

ρlcpl

Ng
∑

i=1

cp
i
l
(ji)l





Tl+1 − Tl

Mxl

−

−
1

ρlcpl

Ng
∑

i=1

ω̇i
lM

ihi
l +

1

ρlcpl

[∂x(λ∂xT )]l (4.3)

But using the results from the species equation and since there is no dependency on
V or Λ one obtains

∂tTl = Tl

(

(ρvx)l, Tl−1, Tl, Tl+1, {Y
k
l−1, Y

k
l , Y

k
l+1}

Ng

k=1

)

which can already be seen from the first and the last term of the equation. The next
step is the mass conservation equation. Since the calculations for the temperature
and species equation have already been done this is not too difficult. For

0 =
p

R
(
M̄l

Tl

)2



Tl

Ng
∑

i=1

[∂tY
i]l

M i
+

[∂tT ]l
M̄l



− 2ρlVl −
(ρvx)l+1 − (ρvx)l

Mxl

(4.4)

one obtains

0 = (ρvx)l

(

(ρvx)l, (ρvx)l+1, Vl, Tl−1, Tl, Tl+1, {Y
k
l−1, Y

k
l , Y

k
l+1}

Ng

k=1

)

The discretization of the momentum equation is straightforward

0 = −
(ρvx)l
ρl

Vl+1 − Vl

Mxl

− V 2
l −

Λl

ρl

+
1

ρl

[∂x(µ∂xV )]l (4.5)

and this equation can therefore be seen as a function Vl depending on

0 = Vl

(

(ρvx)l,Λl,Tl, Vl−1, Vl, Vl+1, {Y
k
l−1, Y

k
l , Y

k
l+1}

Ng

k=1

)
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4. Numerical Methods

The equation for Λl is easily discretized and one obtains

0 = Λl(Λl,Λl+1) =
Λl+1 − Λl

Mxl

(4.6)

Boundary Conditions

The first step is to discretize the boundary conditions at the inflow. One sets

TN := T 0 Y i
N := Y 0i (4.7)

(ρvx)N := ρ0v0
x VN := 0 (4.8)

with T 0, Y 0i, ρ0v0
x the fixed boundary values. So there are no dependencies on other

variables. At the outflow the situation is more complex. For the temperature one has

(

ρ1cp1
Mx+ + ρcatccatd

)

∂tT1 = λb
T1 − T2

Mx1

− 2σε1(T
4
1 − T 4

ref) −

Ng+Ns
∑

i=1

ṡiM ihi
l +

I2ρel
db2

−λb(Tl − Tb)
κ −

Ng
∑

i=1

ω̇iM ihi
l Mx

+

(4.9)

withMx+ = x1

2
and using the results from above this yields

∂tT1 = T1(T1, T2, {Y
k
1 , Y

k
2 }

Ng

k=1
, {Θj}Ns

j=1)

For the species one has

ρ1∂tY
i
1 Mx+ = −ji1 − ρ1uY

i
1 + ṡiM i + ω̇i

1M
i
Mx+ (4.10)

with Stefan velocity u and again with the results from above

∂tY
i
1 = Y

i
1(T1, T2, {Y

k
1 , Y

k
2 }

Ng

k=1
, {Θj}Ns

j=1)

Since u = u(T1, {Y
k
1 }

Ng

k=1, {Θ
j}Ns

j=1) the mass flux equation can be written as

(ρvx)1 = ρ1u (4.11)

and therefore

0 = (ρvx)1((ρvx)1, T1, {Y
k
1 }

Ng

k=1
, {Θj}Ns

j=1)

At the outflow the momentum has to be zero and therefore we set

V1 = 0. (4.12)

The zero gradient condition reads

0 =
(ρvx)N − (ρvx)N−1

MxN−1

= Λ1((ρvx)N , (ρvx)N−1). (4.13)
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4.2. Index of the DAE model

4.2. Index of the DAE model

In this section the index of the DAE is computed which has been obtained in the
last section discretizing the model equations by finite differences in space. Further
information about the index of a DAE can be found for example in [31,45]. In contrast
to the system considered in [44] which is of index 2 a computation shows that the
DAE of the last section is of index 1.

The following equations show again the dependencies of the model equations on
the different variables which is a summary of the results obtained in the last section.

surface equations

∂tΘ
k = (Θk)

(

T1, {Y
j
1 }

Ng

j=1, {Θ
j
1}

Ns

j=1

)

k = 1, . . . , Ns (4.14)

first spatial grid point

∂tY
i
1 = (Yi

1)
(

T1, T2, {Y
k
1 , Y

k
2 }

Ng

k=1, {Θ
j
1}

Ns

j=1

)

(4.15)

∂tT1 = (T1)
(

T1, T2, {Y
k
1 , Y

k
2 }

Ng

k=1, {Θ
j
1}

Ns

j=1

)

(4.16)

0 = ((ρvx)1)
(

(ρvx)1, T1, {Y
k
1 }

Ng

k=1, {Θ
j
1}

Ns

j=1

)

(4.17)

0 = (V1) (V1) (4.18)

0 = (Λ1) (Λ1,Λ2) (4.19)

spatial grid points l = 2, . . . , N − 1

∂tY
i
l = (Yi

l
)
(

(ρvx)l, Tl−1, Tl, Tl+1, {Y
k
l−1, Y

k
l , Y

k
l+1}

Ng

k=1

)

(4.20)

∂tTl = (Tl)
(

(ρvx)l, Tl−1, Tl, Tl+1, {Y
k
l−1, Y

k
l , Y

k
l+1}

Ng

k=1

)

(4.21)

0 = ((ρvx)l)
(

(ρvx)l, (ρvx)l+1, Vl, Tl−1, Tl, Tl+1, {Y
k
l−1, Y

k
l , Y

k
l+1}

Ng

k=1

)

(4.22)

0 = (Vl)
(

(ρvx)l,Λl,Tl, Vl−1, Vl, Vl+1, {Y
k
l−1, Y

k
l , Y

k
l+1}

Ng

k=1

)

(4.23)

0 = (Λl) (Λl,Λl+1) (4.24)

last spatial grid point

0 = (Yi

N)
(

{Y k
N}

Ng

k=1

)

(4.25)

0 = (TN) (TN ) (4.26)

0 = ((ρvx)N) ((ρvx)N ) (4.27)

0 = (VN) (VN ) (4.28)

0 = (Λl) ((ρvx)N , (ρvx)N−1) (4.29)

Now all the algebraic equations are differentiated once with respect to t. The following
table then shows that it is possible to get a complete system of ODE. Therefore the
DAE is of index 1.
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equation number index variable

4.14 0 Θk

4.15 0 Y i
1

4.16 0 T1

4.17 1 (ρvx)1
4.18 1 V1

4.19 1 Λ1

4.20 0 Y i
l for l = 2, . . . , N − 1

4.21 0 Tl for l = 2, . . . , N − 1
4.22 1 (ρvx)l for l = 2, . . . , N − 2

1 VN−1 for l = N − 1
4.23 1 Vl for l = 2, . . . , N − 2

1 ΛN−1 for l = N − 1
4.24 1 Λl for l = 2, . . . , N − 2

1 ΛN for l = N − 1
4.25 1 Y i

N

4.26 1 TN

4.27 1 (ρvx)N
4.28 1 VN

4.29 1 (ρvx)N−1

Table 4.1.: This table shows which equation gives rise to an ODE for a certain vari-
able. The first column lists the equation number, the second column the
index of the variable and the third column the variable for which one
obtains an ODE.

4.3. Collocation Discretization of a DAE

In section 4.1 the model equations have been discretized to obtain a DAE. In general
this can be written as

ẏ = f(y(t), x(t))

0 = g(y(t), x(t))

0 = r(y(0), x(0), y(tend), x(tend))

with time t, differential variables y ∈ R
nD , algebraic variables x ∈ R

nA , and boundary
conditions r ∈ R

nD . A collocation method is used to transform this DAE to a set
of nonlinear equations. The idea is to discretize the DAE in time using a fixed
mesh {τj}j∈J with t0 = τ0 ≤ · · · ≤ τj ≤ · · · ≤ τend = tend and to approximate the
solution on each interval [τj , τj+1] with length hj with a collocation polynomial yπ(see
figure 4.2) [31,48]. The collocation polynomial yπ of degree k is defined such that for
k a positive integer and ρ1, . . . , ρk real numbers (∈ [0, 1])

yπ(tj) = yj

ẏπ(tj + ρihj) = f(tj + ρihj , y
π(tj + ρihj), x(tj + ρihj))
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���

���

�
���

��	

Figure 4.2.: Collocation discretization.

which means that on each interval the collocation polynomial satisfies the DAE at
the collocation points. To compute the polynomial the following ansatz is used

yπ(t) = yj + hj

k
∑

l=1

zjlψl(
t− τj
hj

) ∀t ∈ [τj, τj+1]

on each interval where ψi is a polynomial basis of Pk+1[0, 1] with

ψi(0) = 0 and ψ̇i(ρl) =

{

1 l = i

0 else.

The algebraic variables are discretized by the vectors

xjl ∈ R
nA ,

l = 1, . . . , k
j = 1, . . . ,m− 1

representing the solution values x(tjl) with tjl := τj + ρjhj at the collocation points.
A polynomial interpolation of {xj1, . . . , xjk} yields an approximation xπ(t) in the
whole interval [τj, τj+1]. The discretized form of the DAE is then

zjl = f

(

yj + hj

k
∑

s=1

zjsψs(ρl), xjl

)

0 = g

(

yj + hj

k
∑

s=1

zjsψs(ρl), xjl

)
for

j = 1, . . . ,m− 1

l = 1, . . . , k
(4.30)

and additionally the continuity conditions

yj + hj

k
∑

s=1

zjsψs(1) − yj+1 = 0 (4.31)
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4. Numerical Methods

and discretized boundary constraints

0 = r(y1, x
π(0), ym, x

π(tend))

Further details about this collocation approach can be found in [48] and more details
about collocation in for example [2–4, 31].

4.4. The Optimal Control Algorithm

In sections 4.1 and 4.2 the model equations, a set of 1 dimensional transient partial-
differential equations have been discretized in space and time to obtain a set of non-
linear equations. The optimal control problem is therefore transformed into a large
scale structured optimization problem. ‘Structured’ in this context means the special
structures one obtains using specific discretizations, in this case finite differences for
the space and collocation for the time dependence. This section describes some parts
of the implementation of the partially reduced SQP -method in OCPRSQP in more
detail. The algorithm solves a nonlinear optimal control problem of the form

minφ(y(tend), x(tend))

ẏ = f(y(t), x(t), u(t))

0 = g(y(t), x(t), u(t))

r(y(0), x(0), y(tend), x(tend)) = 0

s(y(t), x(t), u(t)) ≥ 0

umin
i ≤ ui ≤ umax

i i = 1, . . . , nU

in which s represents the path constraints and the last expression bounds on the
controls. The DAE is now discretized with a collocation method as described in
section 4.3 and for ease of presentation we assume that the control is always constant
on each interval [τj, τj+1]. Furthermore we assume that the path constraints and the
bounds for the controls have only to be satisfied at the collocation mesh points τj.
This transforms the whole problem into a high dimensional optimization problem of
the form

minφ(ym, x
π(tend)) (4.32)

subject to the constraints — the collocation conditions ccol —

ccoljl
=







f
(

yj + hj

∑k
s=1 zjsψs(ρl), xjl, ujl

)

− zjl = 0

g
(

yj + hj

∑k
s=1 zjsψs(ρl), xjl, ujl

)

= 0
for

j = 1, . . . ,m− 1

l = 1, . . . , k

(4.33)
the continuity conditions ccon

cconj = yj + hj

k
∑

s=1

zjsψs(1) − yj+1 = 0 for j = 1, . . . ,m− 1 (4.34)
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the discretized boundary constraints

r(y1, x
π(0), ym, x

π(tend)) = 0 (4.35)

the bounds for the controls

umin
j ≤ uj ≤ umax

j for j = 1, . . . ,m− 1 (4.36)

and the discretized path constraints

s(yj, x
π(τj), u

π(τj)) ≤ 0 for j = 1, . . . ,m (4.37)

The details concerning the theoretical foundations of the partially reduced SQP -
method can be found in V. Schulz thesis [48]. Further information about the (reduced)
SQP -method can be found for example in [7, 14, 15, 27–30, 32, 35, 49]

For a closer look at some parts of the algorithm it is convenient to introduce a
grouping of the variables

ξj =
[

zj1 . . . zjk
]

y =
[

ξ1 y2 ξ2 y3 . . . ξm−1 ym

]

u =
[

y1 u1 u2 . . . um−1

]

the collocation and continuity conditions

ccolj =
[

ccolj1
. . . ccoljk

]

c =
[

ccol1 ccon1 ccol2 ccon2 . . . ccolm−1 cconm−1

]

and the discretized boundary conditions and path constraints

d =
[

d1 d2 . . . dm−1 dm

]

in which dj is the collection of boundary constraints and path constraints at the j-th
collocation mesh point.1 The original version of the algorithm keeps the initial values
of the DAE as possible controls to the problem. The formal partially reduced SQP -
algorithm is presented in figure 4.3. Computing the derivatives of the constraints
Cy := ∂c

∂y
, Cu := ∂c

∂u
, Dy := ∂d

∂y
, and Du := ∂d

∂u
, computing C−1

y and C−T
y and

solving the QP -subproblem seem to be promising starting points for the reduction
of computing time. Therefore a closer look is taken on these points. A glance at
the collocation conditions 4.33, and the continuity conditions 4.34 reveals Cy and Cu

have a certain block structure which is shown in figures 4.4 and 4.5 The matrices
Wj, Vj, and Fj are the derivatives of the collocation equations (4.33) with respect to
ξi, yi, ui:

Wj :=
∂ccolj

∂ξj
=







Wj11 · · · Wj1k

...
...

Wjk1 · · · Wjkk






(4.38)

1Actually it makes only sense to speak about the boundary constraints for j = 1 or j = m, in all

other cases there are only path constraints to be considered.
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(1) evaluate all constraints, the objective criterion
(2) determine the derivatives of the objective criterion:

∇yΦ and ∇uΦ

and of the constraints

Cy :=
∂c

∂y
, Cu :=

∂c

∂u
, Dy :=

∂d

∂y
, Du :=

∂d

∂u

(3) compute the reduced gradient

γ := ∇uΦ − CT
u C

−T
y ∇yΦ

(4) solve the quadratic program

min
4u

4uTBk4u+ γT4u

(Du −DyC
−1
y Cu)4u+DyC

−1
y c = 0

in order to obtain 4u and the adjoint variables λd

(5) determine the null space step 4yN

4yN := −C−1
y Cu4u

the range space step 4yR

4yR := −C−1
y c

and the adjoint variables λc

λc = −C−T
y (DT

y λd + ∇yΦ)

(6) perform a line search and get step length α
(7) update of the Hessian
(8) iterate y = y + α(4yR + 4yN ) and u = u+ α(4uN )

(9) k = k + 1, go to (1) until convergence

Figure 4.3.: PRSQP algorithm
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Figure 4.4.: Block structure of Cy. Nd is the number of dynamic equations, that is
the number of differential plus algebraic equations. Nkd is k times Nd, k
is the number of collocation points per interval.

with

Wjlm :=
∂ccoljl

∂ξjm
= −

[

I 0
0 0

]

+ hjψm(ρl)

[

∂f
∂y
∂g
∂y

]

xj+ρlhj

in [xj, xj+1] (4.39)

Vj :=
∂ccolj

∂yj
=







Vj1

...
Vjk






with Vjl =

[

∂f
∂y
∂g
∂y

]

xj+ρlhj

in [xj, xj+1]

Fj :=
∂ccolj

∂uj
=







Fj1

...
Fjk






with Fjl =

[

∂f
∂u
∂g
∂u

]

xj+ρlhj

in [xj, xj+1]

The matrices Aj , Ej and Ψj result from the derivatives of the continuity condi-
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Figure 4.5.: Block structure of Cu. Nd is the number of dynamic equations, that is
the number of differential plus algebraic equations. Nkd is k times Nd, k
is the number of collocation points per interval.

tions (4.34) and the first two are given by

Aj :=
∂cconj

∂yj
= I

Ej :=
∂cconj

∂yj+1

= −I

whereas the matrix Ψj has a slightly more complicated form, namely

Ψj :=
∂cconj

∂ξ
= hj

[

ψ1(1)I . . . ψk(1)I
]

with I the Nkd dimensional unit matrix. Because of its particular structure Ψj has
not to be stored explicitly and multiplication with a matrix A is done easily through
the formula

ΨjA = Ψj







A1

...
Ak






= hj

[

∑k
s=1 ψs(1)As

]
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Figure 4.6.: Block structure of Dy. Nd is the number of dynamic equations, that is
the number of differential plus algebraic equations. Nkd is k times Nd, k
is the number of collocation points per interval. l(dj) is the number of
constraints (boundary + path) at the j-th collocation mesh point.

At each collocation mesh point j one has a certain number of path constraints dj .
2

In the following it is assumed that dj only depends on yj and uj (and at j = m only
on ym) which gives the structure for Dy and Du shown in figures 4.6 and 4.7 where

Dy
j :=

∂dj

∂y
and Du

j :=
∂dj

∂u
is used.

Recursion Formulas

It has been shown in the last section that the matrices Cy, Cu, Dy, Du posses an
rich internal structure. Taking a closer look at the partially reduced SQP algorithm
shown in figure 4.3 reveals that C−1

y and C−T
y have to be computed in combination

with matrix multiplications. In the following a set of recursion formulas is presented
which uses this particular structure of Cy to obtain C−1

y (or C−T
y ) in a very efficient

way. Two vectors x and c are defined with the following internal grouping

x :=
[

ξ1 y2 ξ2 . . . ξm−1 ym

]

c :=
[

ccol1 ccon1 . . . ccolm−1 cconm−1

]

in which the variables ξi, yi, c
col
i and cconi indicate the dimension of the different

parts. First the system Cyx = c is to be solved. The block structure of Cy shown in

2And possibly boundary constraints if j = 1 or j = m
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Figure 4.7.: Block structure of Du. Nd is the number of dynamic equations, that is
the number of differential plus algebraic equations. Nu is the number of
controls. l(dj) is the number of constraints (boundary + path) at the
j-th collocation mesh point.

figure 4.4 leads to the recursion formula

ξ1 = W−1
1 ccol1

y2 = Ψ1ξ1 − ccon1

ξj = W−1
j

(

ccolj − Vjyj

)

yj+1 = yj + Ψjξj − cconj

}

j = 2, . . . ,m− 1

When solving CT
y c = x the block structure of CT

y leads to

cconm−1 = −ym

ccolm−1 = W−T
m−1

(

ξm−1 − ΨT
m−1c

con
m−1

)

cconj = cconj+1 + V T
j+1c

col
j+1 − yj+1

ccolj = W−T
j

(

ξj − ΨT
j c

con
j

)

}

j = m− 2, . . . , 1

The algorithm to compute Dy −DuC
−1
y Cu is more complex than the previous ones.

The idea is to first solve the system CyX = Cu and then multiplying X by −Du and

adding to Dy. D̄
y
j is defined to be a column ‘vector’ with −Dy

j (Dy
j if j = 1) at the

‘j-th’ position, that is equal to the matrix we obtain if we take the columns of Dy

(or Du for j = 1) containing Dy
j and multiplying by −1 if j 6= 1. The same is done

to define D̄u
j but without the multiplication by −1. This leads to a recursion of the
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form

[ D̄
y
j D̄u

j ] := [ D̄
y
j D̄u

j ] + D̄y
j+1[ I − ΨjW

−1
j Vj ΨjW

−1
j Fj ] j = m− 1, . . . , 2

[ D̄y
1 D̄u

1 ] := [ D̄y
1 D̄u

1 ] + D̄y
2 [ −I + ΨjW

−1
j V1 Ψ1W

−1
1 F1 ]

Since this is not obvious it is illustrate with a simple example with four collocation
mesh points. The first step is to solve CyX = Cu, that is
















W1

Ψ1 −I
V2 W2

I Ψ2 −I
V3 W3

I Ψ3 −I

































Y11 Y12 Y13 Y14

X21 X22 X23 X24

Y21 Y22 Y23 Y24

X31 X32 X33 X34

Y31 Y32 Y33 Y34

X41 X42 X43 X44

















=

















V1 F1

I
F2

F3

















which gives the solution
















Y11 Y12 Y13 Y14

X21 X22 X23 X24

Y21 Y22 Y23 Y24

X31 X32 X33 X34

Y31 Y32 Y33 Y34

X41 X42 X43 X44

















=

















W−1
1 V1 W−1

1 F1 0 0
−I + Ψ1Y11 Ψ1Y12 0 0

−W−1
2 V2X21 −W−1

2 V2X22 W−1
2 F2 0

X21 + Ψ2Y21 X22 + Ψ2Y22 Ψ2Y23 0

−W−1
3 V3X31 −W−1

3 V3X32 −W−1
3 V3X33 W−1

3 F3

X31 + Ψ3Y31 X32 + Ψ3Y32 X33 + Ψ3Y33 Ψ3Y34

















Multiplying X by −Dy and adding to Du yields








Dy
1 Du

1 0 0
−Dy

2X21 −Dy
2X22 Du

2 −Dy
2X23 −Dy

2X24

−Dy
3X31 −Dy

3X32 −Dy
3X33 Du

3 −Dy
3X34

−Dy
4X41 −Dy

4X42 −Dy
4X43 −Dy

4X44









Since only the Xij entries are needed one can define X ′

X ′ :=





X21 X22 X23 X24

X31 X32 X33 X34

X41 X42 X43 X44





which is then

X ′ =





−I + Ψ1W
−1
1 V1 Ψ1W

−1
1 F1 0 0

[I − Ψ2W
−1
2 V2]X21 [I − Ψ2W

−1
2 V2]X22 Ψ2W

−1
2 F2 0

[I − Ψ3W
−1
3 V3]X31 [I − Ψ3W

−1
3 V3]X32 [I − Ψ3W

−1
3 V3]X33 Ψ3W

−1
3 F3





Therefore Du −DyC
−1
y Cu can be written as









Dy
1 Du

1

−Dy
2(−I + Ψ1W

−1
1 V1) −Dy

2Ψ1W
−1
1 F1

−Dy
3 [I − Ψ2W

−1
2 V2]X21 −Dy

3 [I − Ψ2W
−1
2 V2]X22

−Dy
4 [I − Ψ3W

−1
3 V3]X31 −Dy

4 [I − Ψ3W
−1
3 V3]X32

0 0
Du

2 0

−Dy
3Ψ2W

−1
2 F2 Du

3

−Dy
4 [I − Ψ3W

−1
3 V3]X33 −Dy

4Ψ3W
−1
3 F3









(4.40)
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This form of the solution leads to a natural recursion which is illustrate in the fol-
lowing. One starts with the matrices D̄y

i and D̄u
j which are arranged in the following

order
D̄y

4 D̄y
3 D̄y

2 D̄y
1 D̄u

1 D̄u
2 D̄u

3

Dy
1 Du

1

−Dy
2 Du

2

−Dy
3 Du

3

−Dy
4

Now an update of the columns D̄y
3 and D̄u

3 is computed

D̄y
3 = D̄y

3 + D̄y
4 [I − Ψ3W

−1
3 V3] D̄u

3 = D̄u
3 + D̄y

4 [Ψ3W
−1
3 F3]

and one obtains

D̄y
3 D̄y

2 D̄y
1 D̄u

1 D̄u
2 D̄u

3

Dy
1 Du

1

−Dy
2 Du

2

−Dy
3 Du

3

−Dy
4 [I − Ψ3W

−1
3 V3] −Dy

4 [Ψ3W
−1
3 F3]

in which the column D̄y
4 is discarded because it has not changed and it is not needed

any further. A glance at the solution 4.40 shows that D̄u
3 now contains the last column

of the solution 4.40. It is not going to change nor contribute any further and therefore
it is not shown in the further steps. The next step computes updates to D̄y

2 and D̄u
2

D̄y
2 = D̄y

2 + D̄y
3 [I − Ψ2W

−1
2 V2] D̄u

2 = D̄u
2 + D̄y

3 [Ψ2W
−1
2 F2]

and one obtains

D̄y
2 D̄y

1 D̄u
1 D̄u

2

Dy
1 Du

1

−Dy
2 Du

2

−Dy
3 [I − Ψ2W

−1
2 V2] −Dy

3 [Ψ2W
−1
2 F2]

−Dy
4 [I − Ψ3W

−1
3 V3][I − Ψ2W

−1
2 V2] −Dy

4 [I − Ψ3W
−1
3 V3][Ψ2W

−1
2 F2]

The updated column D̄u
2 now contains the third column of the solution 4.40. In the

final step of this example updates to D̄y
1 and D̄u

1 are computed.

D̄y
1 = D̄y

1 + D̄y
2 [I − Ψ1W

−1
1 V1] D̄u

1 = D̄u
1 + D̄y

2 [Ψ1W
−1
1 F1]

One obtains

D̄y
1

Dy
1

−Dy
2 [−I + Ψ1W

−1
1 V1]

−Dy
3 [I − Ψ2W

−1
2 V2][−I + Ψ1W

−1
1 V1]

−Dy
4 [I − Ψ3W

−1
3 V3][I − Ψ2W

−1
2 V2][−I + Ψ1W

−1
1 V1]

D̄u
1

Du
1

−Dy
2 [Ψ1W

−1
1 F1]

−Dy
3 [I − Ψ2W

−1
2 V2][Ψ1W

−1
1 F1]

−Dy
4 [I − Ψ3W

−1
3 V3][I − Ψ2W

−1
2 V2][Ψ1W

−1
1 F1]
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D̄y
1 and D̄u

1 contain the first and second column of the solution 4.40. This example
calculation leads to the recursion

[ D̄
y
j D̄u

j ] := [ D̄
y
j D̄u

j ] + D̄y
j+1[ I − ΨjW

−1
j Vj ΨjW

−1
j Fj ] j = m− 1, . . . , 2

[ D̄y
1 D̄u

1 ] := [ D̄y
1 D̄u

1 ] + D̄y
2 [ −I + ΨjW

−1
j V1 Ψ1W

−1
1 F1 ]

which leads to the matrix

[

D̄y
1 D̄u

1 D̄u
2 . . . D̄u

m−1

]

It can explicitly be written in a closed form as





















Dy
1 Du

1 0 0 . . . 0
Dy

2Z21 Dy
2Z22 Du

2 0 . . . 0

Dy
3Z31 Dy

3Z32 Dy
3Z33 Du

3

. . . 0
...

...
Dy

m−1Zm−1,1 Dy
m−1Zm−1,2 Dy

m−1Zm−1,3 Dy
m−1Zm−1,4 . . . Du

m−1

Dy
mZm,1 Dy

mZm,2 Dy
mZm,3 Dy

mZm,4 . . . Dy
mZm,m





















with

Zi,1 = −

[

i
∏

k=3

(I − Ψi−k+2W
−1
i−k+2Vi−k+2)

]

[

−I + Ψ1W
−1
1 V1

]

i ≥ 2

Zi,j = −





i
∏

k=j+1

(I + Ψi−k+2W
−1
i−k+2Vi−k+2)



Ψj−1W
−1
j−1Fj−1 i, j ≥ 2

but the recursion formula computes this matrix much more efficiently then the explicit
computation with this product formula.
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5. New Strategies

A straightforward application of the optimal control package OCPRSQP in combina-
tion with the simulation tool DIFRUN was not possible. Several new developments,
changes and modifications to OCPRSQP were necessary to obtain a working software
package and to reduce the computing times to a reasonable level. In this chapter these
new developments, changes and modifications are presented and explained.

The first section describes the design and development of the new package based
on DIFRUN and OCPRSQP.

The finite differences used so far in OCPRSQP to obtain derivatives do not yield
enough accuracy in this problem class. An interface to use analytic derivatives has
been implemented. These derivatives are computed with ADIFOR. The second sec-
tion shows how to speed up the computation using these derivatives.

One of the most time consuming steps during the optimization is the condensing
step. The development of a fast direct band solver is described in the third section.
This solver is optimized to take advantage of a block band structure of the linear
systems which have to be solved.

A much deeper change of the optimization can be done considering the condensing
itself. In the original version of OCPRSQP the QP-variables have essentially been the
initial values and the controls. In this problem class the initial values are always fixed.
Therefore one can consider QP-problems which have only the controls as free variables
which reduces the size of the QP-problem and therefore reduces the computing time.
It is shown how the recursion formulas have to be changed for this new situation.

The convention is used that names in small capitals are subroutines. So OCPRSQP
denotes the whole software package whereas Ocprsqp is just a subroutine.

5.1. A New Software Tool based on DIFRUN and OCPRSQP

The development is based on two existing software packages: DIFRUN a simulation
tool and OCPRSQP an optimal control package.

Formally these two packages fit together very well. DIFRUN is a tool which is
very flexible to use to test new chemical systems in a reactive stagnation point flow
on a catalytic plate setting. The package already contains the spatial discretized
form of the model equations since it uses a modified version of LIMEX [5, 38]—a
DAE solver—for the simulation. OCPRSQP on the other hand is an optimal control
package which allows DAE as constraints and is especially well suited to this situation
in which there are a very large number of problem variables and constraints (around
100–1000) but only a small number of controls (1–3).

41



5. New Strategies

Number of variables Contents

Ns surface coverages Θj

Ng species Y i
1 at first grid point

1 temperature T1 at first grid point
1 mass (ρvx)1 at first grid point
1 momentum V1 at first grid point
1 Λ1 at first grid point
...

...
Ng species Y i

mspa
at grid point mspa

1 temperature Tmspa at grid point mspa

1 mass (ρvx)mspa at grid point mspa

1 momentum Vmspa at grid point mspa

1 Λmspa at grid point mspa

Table 5.1.: Ordering of the discretized variables and equations in DIFRUN.

Like in many other cases the problems are due to the practical realizations. Since
a modified version of LIMEX is used to solve the DAE system in DIFRUN there
is no standard form of an interface for function evaluations of the right hand side.
Standard form means just the dimensions of the problem and values of the variables
as input and the function values as output. Moreover the excessive use of “common
blocks” makes it even more difficult to obtain such an interface. The first step has
therefore been to provide a new subroutine Ode for all the necessary setup to call
the right hand side subroutine Dfrfcn in DIFRUN for function evaluations in a
standardized way.

This new interface has been tested using a standard form of LIMEX [16] which
confirmed the results already obtained. Since OCPRSQP uses a collocation method
for the time discretization the RADAU [31] solver based on collocation has been used
and again very satisfactory results have been obtained.

Another problem for the coupling was the ordering of differential and algebraic
equations. In DIFRUN the algebraic equations are marked by an additional array
whereas in the original OCPRSQP a fixed ordering—first differential and the alge-
braic equations—has been used. All the relevant subroutines of OCPRSQP have been
changed to adapt to the way DIFRUN handles this ordering. This is done because
the right hand sides coded in DIFRUN should be taken as they are and a manual re-
ordering of variables and functions in the subroutine Ode is just too time consuming.
Furthermore the ordering of variables in DIFRUN reveals a block band structure of
the Jacobian when computing the derivatives of the right hand sides. The ordering of
the variables is shown in table 5.1 and corresponds to the ordering of the equations.

Since all the parameters needed to compute the right hand side are kept in “com-
mon blocks” and since a minimal coupling between the source of DIFRUN and the
optimization package is desired, a point in DIFRUN has been selected to call an
interface subroutine Interface which does all the setup for Ocprsqp. With such a
minimal coupling it is very easy to update DIFRUN with newer versions with min-
imal effort if necessary. This approach is illustrated in figure 5.1. One could view
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Figure 5.1.: Coupling between the software packages DIFRUN and OCPRSQP.

the new package as an extension to DIFRUN and setting the appropriate flag in In-

terface, the new package remains just a simulation tool. DIFRUN provides all the
initialization for the chemical system and the calls the subroutine Interface. This
subroutine provides the setup for Ocprsqp which is then called for the optimization.
The whole interface package includes some additional subroutines which are called
from Interface or from subroutines of OCPRSQP, the Ode subroutine to provide
access to the right hand side Dfrfcn in DIFRUN, G Ode which is the analytic
derivative of Ode obtained with ADIFOR and Bnds for the path constraints of the
problem.

Computational tests showed that the finite difference approach used in the original
OCPRSQP cannot be used for this new problem class. So it has been decided to pro-
vide analytic derivatives using ADIFOR [8–10]. The Ode subroutine is therefore also
the starting point for the automatic differentiation. To provide this new functionality
several internal changes had to made in OCPRSQP. Additionally some“scripts” have
been developed to automatize the process of taking all the needed subroutines from
DIFRUN and calling ADIFOR, for example for the case that something has changed
in Ode and a new G Ode has to be computed. This makes it now a very easy to use
extension to the original package. The necessity of using an automatic differentiation
tool like ADIFOR instead of computing the derivatives with paper and pencil can
also be seen from figure 5.2. It shows that Dfrfcn on its own has a very complicated
structure because of all the subroutines which are called.

The major goal is to keep OCPRSQP as some kind of “black box” hiding all the
difficulties from a potential user who is not too interested in algorithmic details con-
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binomi

dfrboo

mxrsou

dfrboi

dfrfcn

dfrwtx dfrden dfrvol

mxrhcp

dfrdif

mxrlam

dfreta

mxrdth

mxrmec

inrcrv inrcrw

inrcow calmec

inrcrt calhcw

dgfdx dfdx

Figure 5.2.: Subroutines of Dfrfcn.

cerning optimization algorithms. All the features should be controllable through
parameters such that the core of the code does not have to be changed when going
to a new application. The aim is that one should have to change only a few well
defined portions of the code. This cannot be avoided because of restrictions of the
programming language Fortran77—the dimension of arrays for example—or be-
cause of changed problem settings—boundary formulations or a different objective
function for example. So far we have succeeded in keeping this necessary changes to
a minimum and therefore are able to switch to a new application problem in minimal
time.

To give an idea of the complexity of OCPRSQP figure 5.3 shows the most important
subroutines.
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bandf dger

conden

dgetrs

uphess

lagrstart

prinit

dl

int

initpol
sumprod

quickgauss

solvequig

grit

colint

dscalz

eval

myoutput

dxp2dx

uncond

drlagr dert2

prgr

estdec cdu

estdec2
dlw

bnds

pol

sqpp

nlp nlplabor

grtitle evalst

testkonv

ocprsqp

finout

e04naf

estadj

compdr

set_seed

setnonzero

colpol

getjacobi

dinit

g_ode

transpose

derb

dgetrsb

dgetrf

permut

regrid dpol

ode

lines uncomb

combds

evalag

prit

time

outlin

Figure 5.3.: Most important subroutines of Ocprsqp.
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5.2. Block Band Structure of Derivatives

Providing accurate derivatives is crucial for the optimization algorithm. Computa-
tional tests showed that for the problem class under consideration computing the
derivatives with finite differences is not accurate enough. Therefore an automatic
differentiation tool, ADIFOR [8–10], has been used. It is used as a substitute for
the finite differences: ADIFOR is applied to the subroutines describing the functions
which have to be differentiated and then generates a new set of subroutines providing
the analytic form of the derivatives for computing the Jacobian.

As can be seen in figure 4.4 and from equations 4.38 and 4.39 the Jacobian, that is
Wj has to be computed at each collocation point. Besides the number of species there
are two important variables controlling the problem size: the number of collocation
mesh points mcol and the number of spatial grid points mspa. Taking a closer look at
the equations 4.38, 4.39 and the figure 4.4 reveals that the number of operations to
compute all entries of Cy depends linearly on mcol whereas it depends quadratically
on mspa because mspa controls the size of the vectors f and g and the variables y
and ξ.

The subroutine Linear of OCPRSQP computes all the necessary entries of Cy,
Cu, Dy, and Du. Most of the time is spend on computing the Wj, j = 1, . . . ,mcol

which is done using the subroutines G Ode computing the derivatives obtained with
ADIFOR.

The absolute computing time does not play a role in the following considerations
and therefore the time measurements have been normalized to show the observed
relations more clearly.

Figure 5.4 shows the time spend in the subroutine Linear depending on the number
of collocation mesh points mcol. It shows a very good agreement with the linear
dependence expected from the considerations from above.

The next figure 5.5 shows that the time spend in the subroutine Linear depends
quadratically on the number of grid points. A closer look at the Wj matrices reveals
that they are not dense but have a special block band structure which is shown in
figure 5.6. This is due to the finite difference discretization of the spatial derivatives
of the model equations and can be obtained using the dependency relations of section
4.1. It is tempting to use this structure for computing the Wj to avoid computing
“zero” entries. Fortunately ADIFOR offers the possibility to compute “structural
independent columns”at the same time by setting a seed matrix [10]. These structural
independent columns have been marked in figure 5.7. It is easy to see that all columns
marked by diagonal lines from top left to down right are structural independent. The
same applies to the columns marked by diagonals from down left to up right and
cross hatched columns. The compressed Wj is then shown in figure 5.8. The number
of columns of this matrix is Ns + 3(Ng + 4), that is independent of the discretization
and therefore does not depend on mspa anymore. As a result it has the dimension

[Ns +mspa(Ng + 4)] × [Ns + 3(Ng + 4)]

and depends now only linear on mspa. Computing these compressed Wj is the most
important and time consuming part of the sparse subroutine Linear.

Figure 5.9 shows the time spent in the sparse Linear depending on the number
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Figure 5.4.: The time spend in Linear which computes essential parts of Cy, Cu, Dy,
and Du depends linearly on the number of collocation mesh points mcol.
The results are shown for different numbers of spatial grid points mspa.
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Figure 5.5.: The time spend in Linear which computes essential parts of Cy, Cu, Dy,
and Du depends quadratically on the number of spatial grid points mspa.
The results are shown for different numbers of collocation mesh points
mcol.
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Figure 5.7.: Structural independent columns of Wj
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Figure 5.8.: Compressed Wj
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Figure 5.9.: The time spend in Linear depending on the number of spatial grid points
mspa. The results are shown for different numbers of collocation mesh
points mcol.
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Figure 5.10.: Percentage of computing time needed for sparse Linear compared to
100% for the non-sparse Linear depending on the number of spatial
grid points mspa for different numbers of collocation mesh points mcol.

of spatial grid points mspa for different numbers of collocation mesh points mcol.
There is almost a linear dependence on mspa but the number of other computations
in Linear grows with higher then linear order (Dy for example). Still the result is
much better then using the non-sparse Linear as can be seen comparing the results
with the one shown in figure 5.5

The sparse Linear needs 70–80% less computing time than the non-sparse Linear

for medium to large size problems. This can be seen in figure 5.10 in which the
percentage of time which the sparse Linear needs is compared to the 100% of the
non-sparse Linear. Looking at the total time it is possible to save around 20–30%
computational time using the sparse Linear. Figure 5.11 shows the percentage of
total computing time needed with the sparse Linear compared to the 100% with the
non-sparse Linear.
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Figure 5.11.: Percentage of total computing time needed with sparse Linear com-
pared to 100% with the non-sparse Linear depending on the number
of spatial grid points mspa for different numbers of collocation mesh
points mcol.
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5.3. Sparse Linear Algebra Solver

The last section showed that one bottleneck in the partially reduced SQP -algorithm
is the computation of the derivatives and one possibility has been shown to con-
siderably reduce the computing time. A closer inspection of the partially reduced
SQP -algorithm reveals that another bottleneck is the computation of the inverse of
the matrix Cȳ (or CT

ȳ ). The recursion formulas of section 4.4 show that this re-

duces to compute the inverse of Wj (or W T
j ). In the non-sparse implementation of

OCPRSQP inverting is done by first computing an LU decomposition and the solving
linear systems using standard linear algebra subroutines (Dgetrf for the LU factor-
ization and Dgetrs for the solution of the linear systems [1]). Figure 5.12 shows
time measurements for computing the LU decomposition of all Wj, j = 1, . . . ,mcol.
This clearly depends linear on mcol because the LU factorization has to be computed
for all Wj , 1 ≤ j ≤ mcol as can easily be seen from the recursion formulas. The
condensing step, that is computing all the data for the QP problem does also lin-
early depend on mcol which can be expected from the recursion formulas and which
is confirmed through time measurements as can be seen in figure 5.13. Looking at
the dependence of the linear algebra on the number of spatial grid points mspa shows
a dramatically worse behavior. It is well known that the number of operations of the
algorithms for a LU decomposition is of the order O(n3), with n being the dimension
of the problem. Since the size of the matrices Wj depend on mspa—the size of Wj is
[Ns + (Ng + 4)mspa]nk—the time for factorization is expected to grow with O(m3

spa).
This can be seen in figure 5.14 in which the Dgetrf LU factorization subroutine
has been used. Again it is well known that solving a linear system after obtaining a
LU decomposition of the coefficient matrix is of order O(n2). Since the condensing
subroutine contains the repeated solution of n linear systems an O(n3) behavior of
the algorithm is expected (as can be seen from the recursion formulas in section 4.4).
This is confirmed by computational tests as shown in figure 5.15. In the following a
modified LU factorization and corresponding algorithm for the solution of the linear
systems is presented. It takes into account the particular block band structure of Wj.

LU Factorization

As mentioned above it takes order O(n3) operations to compute a LU factorization
if the structure of the matrix is not take into account. The structure of Wj for which
the LU factorization has to be computed is shown in figure 5.6. Using a standard
LU decomposition unnecessarily operates on too many zeros and produces unwanted
fill in through pivoting. One can get around these disadvantages by restricting the
pivoting to certain areas and only performing computations on nonzero entries. The
algorithm is illustrated in the following pictures. One starts in the upper left corner
of figure 5.16(left) and computes a LU decomposition of the cross hatched part using
column pivoting, that is looking only up to the Ns-th row for a pivot element. This
yields the situation shown in figure 5.16(right) in which the horizontal lines mark the
upper part (U) and the vertical lines the lower part (L) of the LU decomposition.
Now the entries in the cross hatched part of figure 5.16(right) can be eliminated
which leads to the situation shown in figure 5.17(left) in which the cross hatched part
might have been modified through the elimination process. Now a LU decomposition
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Figure 5.12.: The Time for LU factorization of Wj , j = 1, . . . ,mcol depending linearly
on the number of collocation mesh points mcol for different numbers of
spatial grid points mspa.
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Figure 5.13.: The time for the condensing depends linearly on the number of col-
location mesh points mcol for different numbers of spatial grid points
mspa.
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Figure 5.14.: Time for LU factorization of Wj depending on the number of spatial
grid points mspa for different numbers of collocation grid points mcol.
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Figure 5.15.: The computing time for the condensing depending on the number of
spatial grid points mspa for different numbers of collocation mesh points
mcol.
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Figure 5.16.: First step (left) and second step (right) in modified LU algorithm.
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Figure 5.17.: Third step (left) and forth step (right) in modified LU algorithm.
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Figure 5.18.: Third step (left) and after the last step (right) in modified LU algorithm.

is performed on the cross hatched part of figure 5.17(left) which has as the result
shown in figure 5.17(right). Again the cross hatched area of figure 5.17(right) can be
eliminated can be eliminated with the result shown in figure 5.18(left). Here the cross
hatched area has been modified during the elimination. Continuing this procedure
leads to the particular form of the LU factorized matrix shown in figure 5.18(right). It
has the advantage that there is no additional fill in and that all necessary operations
are performed purely on the non-zero entries of this particular problem structure.
It is not difficult to see that this algorithm depends only linearly on mspa since by
construction essentially mspa times a fixed size LU factorization has to be performed.
Computational test confirm this behavior as can be seen in figure 5.19. Not only the
linear dependence, but also a much lower computing time for the factorization has
been obtained which can also be seen in figure 5.19 compared to figure 5.14. The
result is even more obvious if the sparse factorization is compared directly with the
non-sparse factorization which is done in figure 5.20. A speed up of a factor of more
than 200 for large problems is obtained.

Solving the Linear System

In the last paragraph it has been shown that it is possible to considerably speed up the
factorization of Wj by taking into account the problem structure, that is the structure
of the spatial discretization of the model equations. The condensing algorithm mainly
solves n linear systems in order O(n2) each. This leads to a O(n3) behavior as shown
in figure 5.12. An algorithm corresponding to the factorization algorithm described
in the last section has been developed to solve these linear systems. For similar
reasons as above this algorithm is only linearly dependent on mspa. But since O(mspa)
systems have to be solved an O(m2

spa) behavior is expected for the sparse condensing.
This is fully confirmed by computational experiments as can be seen in figure 5.21.
Figure 5.22 shows the factors which the sparse solver is faster than the non-sparse
solver. This can be up to factor of 4.5 for large problems.
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Figure 5.19.: The time for sparse LU factorization of Wj, j = 1, . . . ,mcol depend-
ing on the number of spatial grid points mspa for different numbers of
collocation mesh points mcol.
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Figure 5.20.: Sparse LU factorization is several times faster than none-sparse LU fac-
torization of Wj, j = 1, . . . ,mcol depending on the number of spatial
grid points mspa for different numbers of collocation mesh points mcol.
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Figure 5.21.: Time for sparse condensing depending on the number of spatial grid
points mspa for different numbers of collocation mesh points mcol.
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Figure 5.22.: Sparse condensing is several times faster than non-sparse condensing de-
pending on the number of spatial grid points mspa for different numbers
of collocation mesh points mcol.
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Results

It has been shown that taking the problem structure into account when developing
solvers for linear systems can lead to quite dramatic reductions of computing time.
But this has to be considered in relation to the total computing time and there the
improvements are still remarkable. Using the sparse factorization and sparse solver in
the condensing gives almost a factor of 2 as can be seen in figure 5.23. If in addition
the sparse Linear is used, then improvements of more than a factor 5 are obtained for
large problems. The results are presented in figure 5.24. The stability of this sparse
algorithm for the LU factorization and the linear system solver has been observed in
all computations of this problem class.
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Figure 5.23.: The sparse LU factorization and sparse solver for the condensing is
several times faster than the non-sparse algorithm depending on the
number of spatial grid points mspa for different numbers of collocation
mesh points mcol.
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Figure 5.24.: Sparse LU factorization, sparse solver for the condensing and sparse
Linear is several times faster than the non-sparse algorithm depend-
ing on the number of spatial grid points mspa for different numbers of
collocation mesh points mcol.
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5.4. Reduced Problem Size of QP

The partially reduced SQP -algorithm described in section 4.4 uses the discretized
controls and the initial values as possible ‘control’ variables, the variables denoted by
u. In this thesis a problem class is considered in which the initial values are always
fixed. So it seems desirable to reformulate the algorithm in such a way that this fact
is recognized, that is to have only the original discretized controls as control variables.
This would reduce the number of variables for the QP-problem considerably because
usually there are several hundred equations and therefore several hundred initial
values and far less than a hundred control variables. To fix the initial values y at
t = 0 another NND equations—ccon0 —are added to the continuity conditions 4.34

ccon0 = y0 − y1 = 0

with the initial values y0 := y(t = 0) fixed. Furthermore the grouping of the variables
and the collocation and continuity conditions is changed in the vectors y, u, c and is
now

y =
[

y1 ξ1 y2 ξ2 . . . ξm−1 ym

]

u =
[

u1 u2 . . . um−1

]

c =
[

ccon0 ccol1 ccon1 ccol2 ccon2 . . . ccolm−1 cconm−1

]

Through this new ordering the matrices Cy, Cu, Dy and Du are changed and the
figures 5.25–5.28 show the modified matrices in which the derivatives are computed
like in the original algorithm. In the Cy matrix Nd rows and columns have to be
added which are additionally marked by diagonal lines in figure 5.25. In the modified
Cu the first Nd columns have been removed from the original Cu and additionally Nd

rows, which are marked in figure 5.26 have been added. Nd columns have been added
to the original Dy and are marked by diagonal lines in figure 5.27. Finally the first
Nd columns have been removed from the original Du as can be seen in figure 5.28
compared to figure 4.7. In a next step the recursion formulas are adapted to the block
band structure of these matrices. As above a partition of two variables x and c is
defined as

x :=
[

y1 ξ1 y2 ξ2 . . . ξm−1 ym

]

c :=
[

ccon0 ccol1 ccon1 . . . ccolm−1 cconm−1

]

With these and taking into account the block band structure of Cy (figure 5.25) one
obtains the following recursion to solve Cyx = c

y1 = −ccon0

ξj = W−1
j

(

ccolj − Vjyj

)

yj+1 = yj + Ψjξj − cconj

}

j = 1, . . . ,m− 1
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Figure 5.25.: Block structure of modified Cy

Similarly one obtains the recursion to solve CT
y c = x

cconm−1 = −ym

ccolj = W−T
j

(

ξj − ΨT
j c

con
j

)

cconj−1 = cconj − yj − V T
j c

col
j

}

j = m− 1, . . . , 1

As in the original algorithm the recursion to computeDu−DyC
−1
y Cu is more complex.

To illustrate the recursion a simple example with four collocation mesh points is

62



5.4. Reduced Problem Size of QP

���

���

���

���
	 �

���
	��

�� �� �� �� ��

� � � � � � � �
	 � � �
	��

��

�� �

 �

 � �

 �

 � �

 �

 �

 � �

 �

�� �

��

��������

��������

��������

� ������

��������

��������

��������

��������
	 �

��������
	 �

� ������
	 �

��������
	��

��������
	��

Figure 5.26.: Block structure of modified Cu
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Figure 5.28.: Block structure of modified Du

considered. The first step is to solve CyX = Cu





















−I
V1 W1

I Ψ1 −I
V2 W2

I Ψ2 −I
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I Ψ3 −I









































X11 X12 X13

Y11 Y12 Y13

X21 X22 X23

Y21 Y22 Y23

X31 X32 X33

Y31 Y32 Y33

X41 X42 X43
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which gives the solution




















X11 X12 X13

Y11 Y12 Y13

X21 X22 X23

Y21 Y22 Y23

X31 X32 X33

Y31 Y32 Y33

X41 X42 X43





















=





















0 0 0

W−1
1 F1 0 0

Ψ1Y11 0 0

−W−1
2 V2X21 W−1

2 F2 0
X21 + Ψ2Y21 Ψ2Y22 0

−W−1
3 V3X31 −W−1

3 V3X32 W−1
3 F3

X31 + Ψ3Y31 X31 + Ψ3Y32 Ψ3Y33





















Multiplying X by −Dy and adding to Du yields








Du
1 −Dy

1X11 −Dy
1X12 −Dy

1X13

−Dy
2X21 Du

2 −Dy
2X22 −Dy

2X23

−Dy
3X31 −Dy

3X32 Du
3 −Dy

3X33

−Dy
4X41 −Dy

4X42 −Dy
4X43









Since only the Xij entries are needed one can define X ′ by

X ′ :=









X11 X12 X13

X21 X22 X23

X31 X32 X33

X41 X42 X43
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and obtains

X ′ =









0 0 0

Ψ1W
−1
1 F1 0 0

[I − Ψ2W
−1
2 V2]X21 Ψ2W

−1
2 F2 0

[I − Ψ3W
−1
3 V3]X31 [I − Ψ3W

−1
3 V3]X32 Ψ3W

−1
3 F3









Therefore Du −DyC
−1
y Cu can be written as









Du
1 0 0

−Dy
2Ψ1W

−1
1 F1 Du

2 0

−Dy
3 [I − Ψ2W

−1
2 V2]X21 −Dy

3Ψ2W
−1
2 F2 Du

3

−Dy
4 [I − Ψ3W

−1
3 V3]X31 −Dy

4 [I − Ψ3W
−1
3 V3]X32 −Dy

4Ψ3W
−1
3 F3









(5.1)

This form of the solution leads to a natural recursion which is illustrate in the fol-
lowing. Starting with the matrices D̄y

i and D̄u
j which are arranged in the following

order
D̄y

4 D̄y
3 D̄y

2 D̄y
1 D̄u

3 D̄u
2 D̄u

1

Dy
1 Du

1

−Dy
2 Du

2

−Dy
3 Du

3

−Dy
4

an update of the columns D̄y
3 and D̄u

3 is computed

D̄y
3 = D̄y

3 + D̄y
4 [I − Ψ3W

−1
3 V3] D̄u

3 = D̄u
3 + D̄y

4 [Ψ3W
−1
3 F3]

and one obtains

D̄y
3 D̄y

2 D̄y
1 D̄u

3 D̄u
2 D̄u

1

Dy
1 Du

1

−Dy
2 Du

2

−Dy
3 Du

3

−Dy
4 [I − Ψ3W

−1
3 V3] −Dy

4 [Ψ3W
−1
3 F3]

in which the column D̄y
4 is not shown anymore because it has not changed and it is

not needed any further. A glance at the solution 5.1 shows that D̄u
3 contains now the

last column of the solution 5.1. This will not change nor contribute any further and
therefore it is not displayed in further steps. The next step computes updates to D̄y

2

and D̄u
2

D̄y
2 = D̄y

2 + D̄y
3 [I − Ψ2W

−1
2 V2] D̄u

2 = D̄u
2 + D̄y

3 [Ψ2W
−1
2 F2]

and one obtains

D̄y
2 D̄y

1 D̄u
2 D̄u

1

Dy
1 Du

1

−Dy
2 Du

2

−Dy
3 [I − Ψ2W

−1
2 V2] −Dy

3 [Ψ2W
−1
2 F2]

−Dy
4 [I − Ψ3W

−1
3 V3][I − Ψ2W

−1
2 V2] −Dy

4 [I − Ψ3W
−1
3 V3][Ψ2W

−1
2 F2]
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The updated column D̄u
2 now contains the second column of the solution 5.1. In the

final step of this example updates to D̄y
1 and D̄u

1 are computed.

D̄y
1 = D̄y

1 + D̄y
2 [I − Ψ1W

−1
1 V1] D̄u

1 = D̄u
1 + D̄y

2 [Ψ1W
−1
1 F1]

and one obtains

D̄y
1

Dy
1

−Dy
2 [I − Ψ1W

−1
1 V1]

−Dy
3 [I − Ψ2W

−1
2 V2][I − Ψ1W

−1
1 V1]

−Dy
4 [I − Ψ3W

−1
3 V3][I − Ψ2W

−1
2 V2][I − Ψ1W

−1
1 V1]

D̄u
1

Du
1

−Dy
2 [Ψ1W

−1
1 F1]

−Dy
3 [I − Ψ2W

−1
2 V2][Ψ1W

−1
1 F1]

−Dy
4 [I − Ψ3W

−1
3 V3][I − Ψ2W

−1
2 V2][Ψ1W

−1
1 F1]

D̄u
1 contains the first column of the solution 5.1. In contrast to the original algorithm

the computation of the update to D̄y
1 is not really needed. This example calculation

leads to the recursion

[ D̄
y
j D̄u

j ] := [ D̄
y
j D̄u

j ] + D̄y
j+1[ I − ΨjW

−1
j Vj ΨjW

−1
j Fj ] j = m− 1, . . . , 1

which is very similar to the original one. But now one is only interested in the solution
matrix of the form

[

D̄u
1 D̄u

2 . . . D̄u
m−1

]

Again this can explicitly be written in closed form as





















Du
1 0 0 . . . 0

Dy
2Z11 Du

2 0 . . . 0

Dy
3Z21 Dy

3Z22 Du
3

. . . 0
...

...
Dy

m−1Zm−2,1 Dy
m−1Zm−1,2 Dy

m−1Zm−2,3 . . . Du
m−1

Dy
mZm−1,1 Dy

mZm−1,2 Dy
mZm−1,3 . . . Dy

mZm−1,m−1





















with

Zi,j =





i
∏

k=j+1

(I − Ψi−k+2W
−1
i−k+2Vi−k+2)



ΨjW
−1
j Fj 1 ≤ i ≤ j ≤ m− 1

Comparison with Original Algorithm

Implementing the necessary regrouping of the variables and changing the recursion
subroutines is unfortunately not a trivial task and would be a major reprogramming
of the software package OCPRSQP. But fortunately one important aspect of this
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Figure 5.29.: Percentage of total computing time of optimization algorithm spend for
solving the QP-problem depending on the number of collocation mesh
points mcol for different numbers of spatial grid points mspa.

reduction can be tested. The speed up through solving only the much smaller QP-
problem. The QP-solver E04NAF which is used in OCPRSQP allows to fix some of the
variables and takes advantage of it. So it is possible to obtain a very good estimation
of the speed up due to the reduction of the size of the QP problem. Figure 5.29
shows the percentage of the computing time of the otherwise optimized code which is
spend for solving the QP-problem. For medium sized problems this is around 5–15%.
Fixing the initial values in the QP-solver, reduces this to 2.5–5% which can be seen in
figure 5.30. Figure 5.31 shows the computing time spend on solving the QP-problem
during an optimization. Figure 5.32 shows the computing time spent on solving the
QP-problem for fixed initial data for the same optimization. So fixing the initial data
leads to a speed up for solving the QP-problem of at least 2 to up to 5 as can be seen
in figure 5.33.
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Figure 5.30.: Percentage of total computing time of optimization algorithm spend
for solving the QP-problem with fixed initial data depending on the
number of collocation mesh points mcol for different numbers of spatial
grid points mspa.
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Figure 5.31.: Time spend on solving the QP-problem depending on the number of
spatial grid points mspa for different numbers of collocation mesh points
mcol.
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Figure 5.32.: Time spend on solving the QP-problem with fixed initial data depend-
ing on the number of spatial grid points mspa for different numbers of
collocation mesh points mcol.
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Figure 5.33.: The solver for the QP-problem with fixed initial data is several times
faster than without fixed initial data. The results are shown depend-
ing on the number of spatial grid points mspa for different numbers of
collocation mesh points mcol
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6. Numeric Results

In this chapter optimal solutions to the application problems introduced in chapter 2
are presented. Several observations have been made during the optimization process
which might show directions for further research.

The first problem, the catalytic conversion of methane to syngas, mainly serves as
a benchmark problem. The optimal solution to this problem is presented and it is
shown how the control and the objective function depend on the number of collocation
mesh points mcol. The computational time spent in a SQP iteration of the sparse
algorithm is compared to the time for the non-sparse algorithm and it is shown that
the sparse code is much faster then the non-sparse one in a real application. This
enables to study many different scenarios in an acceptable time.

Then the optimal solution to the epoxidation of ethylene is presented. For this
application it is not too difficult to find suitable spatial discretizations so one can
look at how the optimal control code performs with respect to different spatial and
time discretizations. In this context it is especially interesting to look at the behavior
of the objective function and the controls.

The last section of this chapter is devoted to the optimal control problem of the
catalytic oxygen free conversion of methane to ethane. From the viewpoint of op-
timal control this is the most interesting example because it is a transient system.
An optimal solution is presented which could not have been found with the current
simulation tool on a trial-and-error basis. Again it is shown how the control and the
objective function behave when the time discretization is changed.

6.1. Catalytic Conversion of Methane to Syngas

A solution to this problem which has been obtained through simulation is presented
in section 2.1. This solution is now taken as a starting point. So starting from a mol
fraction of 0.41 for CH4 at the inflow on has to find an optimal ratio of CH4/O2 of mol
fractions (keeping the sum of the mol fractions of CH4 and O2 constant) such that
the ratio of the fluxes CO/CO2 at the outflow is maximized. A non-uniform spatial
grid with 28 points, which has been obtained from the simulation, and a uniform time
discretization of 28 points has been used to obtain an optimal solution which is shown
in table 6.1 and figures 6.1, and 6.2. Table 6.1 shows the coverages of the different
surface species and figure 6.1 the mol mass of the gas phase species. Figure 6.2 finally
shows the behavior of the flow variables. Starting from an initial solution with the
mol fraction of 0.41 for CH4 at the inflow the algorithm needs 29 SQP iterations to
converge. It takes 287 s for the sparse algorithm to converge whereas the non-sparse
algorithm needs 1201 s. In this optimal control problem the value of the control has
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Figure 6.1.: Mol fraction of gas phase species for the optimal solution of the syngas
problem.
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Species Coverage

Pt(s) 5.58 · 10−1

H(s) 8.35 · 10−3

CH3(s) 5.28 · 10−7

CH2(s) 2.85 · 10−9

CH(s) 6.87 · 10−10

C(s) 5.04 · 10−3

Species Coverage

O(s) 3.92 · 10−7

H2O(s) 1.73 · 10−4

OH(s) 2.90 · 10−5

CO(s) 4.28 · 10−1

CO2(s) 4.04 · 10−10

Table 6.1.: Coverages for surface species for the optimal solution of the syngas prob-
lem
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Figure 6.2.: Flow variables for the optimal solution of the syngas problem.
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Figure 6.3.: Objective functional, the ratio of the fluxes CO/CO2, depending on time
and different numbers of collocation mesh points mcol.

been fixed at t = 0 to the initial value. The control, that is the mol fraction of the CH4

of the optimal solution has increased from 0.41 to 0.443, that is the ratio of CH4

O2
has

increased from 1.414 to 1.724. At the same time the value of the objective function,
that is the ratio of the fluxes CO and CO2 has increased from 149.46 (section 2.1) to
now 159.06. Figure 6.3 shows the objective function for the initial solution and for
different time discretizations. Of interest for the final problem solution is only the
constant value and one can see that this value is already obtained at the end of the
time interval with a time discretization of only three points. The next figure 6.4 shows
how the control behaves when the time discretization changes. Already with three
points the optimal value is obtained. Increasing the number of mesh points shows
that some oscillations at the beginning of the time interval occur. At the end of the
time interval there is a non-physical decrease of the control when the discretization
increases. So far these observations cannot be accounted for. The last figure 6.5 in
this section shows that the effort spent in identifying the structure of this problem
class and using it in several places to reduce the computational cost has really payed
off because for the problem with 56 collocation mesh points the sparse algorithm is
4.3 times faster than the non-sparse.
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Figure 6.4.: Optimal control, mol fraction of CH4, depending on time and different
numbers of collocation mesh points mcol.
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6.2. Epoxidation of Ethylene on Silver

The results of a simulation of this process is presented in section 2.2. The objective
function of the optimization is the production rate of C2H4O which has to be max-
imized. The parameters which can be controlled are the C2H4

O2
ratio of mol fractions

and the temperature of the catalytic plate. This optimal control problem has been
solved with 40 points for the spatial and 40 points for the time discretization. Ta-
ble 6.2 shows the coverages of the surface species and figure 6.6 the mol fractions of
the gas phase species. The flow variables can be seen in figure 6.7. The optimization
decreases the mol fraction of C2H4 at the inflow from 0.045 to 0.0368 yielding an
optimal ratio of C2H4

O2
= 0.257. The temperature has decreased to 525 K which is

set as a lower bound since. It would decrease further so it has been decided to set
a value of 525 K as operating value for this process. An increase of the production
rate from 6.10 · 10−5 mol/m2s to 6.50 · 10−5 mol/m2s is obtained. This is about 6.6
percent. The sparse algorithm needs 22 SQP iterations and 530 s in contrast to the
non-sparse algorithm which needs 2450 s.

As in the last section it is interesting to look at the performance of the algorithm
if the discretization is changed. The primary interest is not so much a very accurate
solution of the model equations but the accuracy of the control and the objective
function. In figure 6.8 the number of spatial grid points has been fixed to 40 and the
objective function is shown for different numbers of collocation mesh points mcol. The
values of the objective function for the starting solution are plotted as a reference.
Already with 14 collocation mesh points a good approximation of the final values of
the objective function is obtained. Almost a constant since a stationary problem is
considered. In figure 6.9 the control is shown for 40 spatial grid points and different
numbers of collocation points. This is the control corresponding to the objective
function shown in figure 6.8. There again a good approximation of the constant
control of a mol fraction of 0.0368 for C2H4 is already obtained with 14 collocation
mesh points. So far it is not possible to account for the oscillations of the control at
the beginning of the time interval and the behavior of the control and the objective
function at the end of the time interval.

In the next two figures 6.10 and 6.11 the objective function and the control are
shown for an optimization wit 20 spatial grid points and the same number of col-

Species Coverage

Ag(s) 9.72 · 10−1

O(s) 2.54 · 10−5

C2H3(s) 5.31 · 10−6

H2O(s) 6.84 · 10−4

OH(s) 1.49 · 10−9

C2H3O(s) 4.56 · 10−3

HCO(s) 7.58 · 10−4

CH2O(s) 2.40 · 10−3

Species Coverage

HCOO(s) 1.33 · 10−2

H(s) 5.94 · 10−3

CO3(s1) 9.47 · 10−7

C2H4(s) 1.82 · 10−5

Table 6.2.: Coverages of the surface species for optimal solution of epoxidation of
ethylene.

76



6.2. Epoxidation of Ethylene on Silver

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

0.1425

0.1426

0.1427

0.1428

0.1429

0.143

0.1431

0.1432

O
2

mm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50
0

1

2

3

4
x 10

−4
H

2
O

mm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50
0

1

2

3

4

5

x 10
−4

CO
2

mm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50
0.0362

0.0363

0.0364

0.0365

0.0366

0.0367

C
2
H

4

mm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50
0

0.5

1

1.5

2

x 10
−4

C
2
H

4
O

mm

Figure 6.6.: Mol fraction of gas phase species for optimal solution of epoxidation of
ethylene.
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Figure 6.7.: Flow variables for optimal solution of epoxidation of ethylene.

location points as before. All other parameters are kept the same. The interesting
observation is that it has almost no influence on the final shape of the objective func-
tion or control. But, the constant values of both, that are the numbers we are finally
interested in, are slightly different than before. So one could say that only a rather
coarse discretization is needed to solve the optimal control problem but to get better
values a finer discretization is necessary.

As in the last section a look is taken at the computing times. The table 6.3 shows
that there is a great difference between the times needed to compute a solution with
the non-sparse and the sparse version of the algorithm. The sparse version is up
to a factor of 5 faster than the non-sparse. The observations of the last paragraph
show that only a coarse discretization of the problem is necessary to obtain good first
values for the control and the objective function. So choosing 20 points in space and
14 points in time gives already a satisfactory answer in about 1 minute.
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Figure 6.8.: Objective function, the production rate of C2H4O, depending on time
and different numbers of collocation mesh points mcol for a fixed number
of spatial grid points mspa = 40.
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Figure 6.9.: Optimal control, the C2H4 mol fraction at the inflow, depending on time
and different numbers of collocation mesh points mcol for a fixed number
of spatial grid points mspa = 40.
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Figure 6.10.: Objective function, the production rate of C2H4O, depending on time
and different numbers of collocation mesh points mcol for a fixed number
of spatial grid points mspa = 40.
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Figure 6.11.: Optimal control, the C2H4 mol fraction at the inflow, depending on time
and different numbers of collocation mesh points mcol for a fixed number
of spatial grid points mspa = 40.
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3pt 7 pt 14 pt 28 pt 56 pt

full 156 462 865 1695 3427
40 pt

sparse 38 84 163 332 654

full 41 91 172 349 733
20 pt

sparse 16 27 57 111 237

Table 6.3.: Total time for OCPRSQP in seconds.
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6.3. Catalytic Oxygen-Free Conversion of Methane to

Ethane

The solution of a simulation of the catalytic oxygen-free conversion of methane to
ethane is presented in section 2.3. As mentioned earlier and in contrast to the previous
two applications this one is time-dependent. So a time-dependent control is expected.
A difficulty for the setup of this problem comes directly from the chemistry: After
a certain time the catalytic surface is covered to a high percentage with carbon
reducing considerably the surface activity. In the previous applications it has been
possible to generate initial values by just computing a simulation and then using
the result as starting point for the optimization. This is not possible in this case
because due to the pollution with carbon the optimization would start with a not so
interesting situation. Since well defined initial values are needed for the optimization
it is not possible to start from ‘scratch’ as it is done in simulations using DIFRUN.
The solution of these difficulties is to do a simulation for a short time compared to
the overall time interval of the optimization and then using this initial data for an
optimization on the remaining time interval. ‘Short’ in this context means that this
time should not play a role for the optimization process but should be long enough to
obtain well defined initial data. For the application under investigation it turns out
that computing a simulation for 6 s can provide the necessary initial data and is still
short enough compared to the whole process time of 300 s. For the reduction of the
computing time, if testing different time discretizations, a simulation is computed for
the first 5 s—which takes around 2 min—and then used as input to DIFRUN which
then computes another simulation of 1 s—this takes about 2 s—before starting the
optimization.

As mentioned in section 2.3 there are three possible controls: the temperature of
the catalytic plate, the pressure, and the inflow velocity. A few simulations have been
done to obtain an idea for good starting values for these parameters. It turns out
that the temperature and the pressure have a fairly clear influence on the objective
function, the production rate of C2H6. The higher the temperature or pressure, the
higher the production rate of C2H6. These values would always approach the bounds
and for this reason they are set to 523 K and 1 bar to study the effect of the inflow
velocity on the production rate of C2H6. Like in [60] three different fixed inflow
velocities v = 0.01 cm/s, or 0.1 cm/s, or 53 cm/s are chosen and the results for the
production rate for these simulations can be seen in figure 6.12. It is obvious that
the inflow velocity v = 0.1 cm/s produces the largest integrated production rate of
all three simulations. This can also be seen from the following table:

v[ cm/s] integrated production rate [ mol/m2]

53 4.4194 · 10−6

0.1 9.8185 · 10−6

0.01 5.8552 · 10−6

The inflow velocity of v = 0.1 cm/s is now used as a starting value for the optimiza-
tion. As described above a simulation is then computed with these parameter values
for the first six seconds and then the optimization starts. The values for these first
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Figure 6.12.: Production rate of C2H6 depending on time for different inflow veloci-
ties.

six seconds are not shown in the following figures because they do not play any role
for the optimization.

For practical reasons the control is bounded from below by 0.05 cm/s and from
above by 1 cm/s. A uniform mesh of 30 collocation points and 30 spatial grid points
is chosen. Figure 6.13 then shows the result of this optimization for the production
rate of C2H6 (dotted line) compared to the corresponding production rate for the
constant inflow velocity (solid line). Integrating this rate gives a rise of 3% compared
to the initial profile. The next figure 6.14 shows the corresponding control to this
optimal solution. The inflow velocity increases immediately to 1 cm/s, the upper
bound, then after around 40 s decreases fast to approach a value around 0.1 cm/s.
It then decreases slowly until hitting the lower bound of 0.05 cm/s at around 210 s
at which it stays up to the end at 300 s. The shape of this solution is stable if
the collocation discretization is changed (figures 6.15 and 6.16). Already with
10 collocation mesh points the general shape of the new control and the objective
function are visible. If the collocation mesh gets refined the solution then seems to
converge to a specific shape which can be seen looking at the solutions for 20, 30, and
50 collocation mesh points.

To complete the presentation of an optimal solution to this application problem
figures 6.17 and 6.18 show the coverages of the surface species. Figure 6.19 shows the
mol fraction of the gas phase species and figure 6.20 the flow variables. To conclude
this section a look is taken at the number of variables and computing times for this
problem.

This application contains 14 surface and 4 gas-phase species which leads to a system
of 14 ODE and 8 partial differential equations. For the spatial discretizations 30 grid
points are used which leads to a system of 254 DAE. The following table shows the
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Figure 6.13.: Objective function, production rate of C2H6, depending on time for an
optimal solution.
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Figure 6.14.: Optimal control, inflow velocity, depending on time for an optimal so-
lution.
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Figure 6.15.: Objective function, production rate of C2H6, depending on time for
optimal solution for different numbers of collocation mesh points mcol.
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mesh points mcol.

85



6. Numeric Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

Pt(s)

time [s]

co
ve

ra
ge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

H(s)

time [s]

co
ve

ra
ge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5
x 10

−8
CH

3
(s)

time [s]

co
ve

ra
ge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300
0

0.5

1

1.5

x 10
−13

CH
2
(s)

time [s]

co
ve

ra
ge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300
0

2

4

6

8

x 10
−18 CH(s)

time [s]

co
ve

ra
ge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

C(s)

time [s]

co
ve

ra
ge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300
0

1

2

3

4

5

6

x 10
−18

C
2
H

4
(1s)

time [s]

co
ve

ra
ge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300
0

0.5

1

1.5

2

x 10
−16

C
2
H

4
(2s)

time [s]

co
ve

ra
ge

Figure 6.17.: Coverages of the surface species for optimal solution of the catalytic
oxygen-free conversion of methane to ethane.
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Figure 6.18.: Coverages of the surface species for optimal solution of the catalytic
oxygen-free conversion of methane to ethane.
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Figure 6.19.: Mol fraction of gas phase species for optimal solution of the catalytic
oxygen-free conversion of methane to ethane.

total number of variables and constraints—collocation, continuity, boundary, and
path constraints—for this problem after the collocation discretization.

collocation mesh points variables constraints

10 6070 5964
20 12460 12344
30 18850 18724
50 31630 31484

The computing times are quite high, between 6 min for the sparse version and mcol =
10 and 5 h for the non-sparse algorithm and mcol = 50. Again the great benefit of
the sparse algorithm can be seen very clearly from the following table

10pt 20 pt 30 pt 50 pt

full 1417 5038 12725 13353
30 pt

sparse 408 1042 2438 2974
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Figure 6.20.: Flow variables for optimal solution of the catalytic oxygen-free conver-
sion of methane to ethane.

in which the computing time for the optimization is given in seconds.
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7. Conclusions and Outlook

The work in this thesis focused on the development of a reliable and easy-to-use
software package for the optimal control of a reactive stagnation point flow on a
catalytic plate. Several problems on the software engineering, the algorithmic and
the application level had to be solved to reach this goal. The code has been applied
to three application problems to illustrate its performance.

This thesis also shows the need for further research in this area. There is still
potential in reducing the computing time even further. For example, the time for
computing the Jacobian could be reduced considerably by using new specialized au-
tomatic differentiation tools, which would have to be developed along the lines of the
work by Rücker [46] taking into account the problem structure and the structure of
chemical equations. This would also reduce the high memory requirements, which in
turn enables to study more realistic chemical models with dozens of species resulting
in thousands of DAE.

The methodology of the successful coupling can now be imitated and applied to
other reactor configurations such as the reactive channel flow. For this system the
simulation tool is now finished and available. Another potential area of research is
the study of the effect of the spatial and time discretization on the quality of the
control.

The new software is based on two existing packages: DIFRUN, a tool for the
simulation of a reactive stagnation point flow on a catalytic plate, and OCPRSQP,
an optimal control package based on a collocation discretization in time and a partially
reduced SQP method to solve the optimization problem.

In a first step these two packages have been coupled to provide a solid basis for
further developments. Here the major two difficulties were the identification of the
interface to the discretized model equations in DIFRUN and the development of a
new interface for OCPRSQP to use analytic derivatives provided by ADIFOR as a
substitute for the finite differences, which had been used before but turned out to be
not accurate enough for this problem class. This first step was successfully finished,
keeping the enormous flexibility of DIFRUN to modify the chemical systems studied
with minimal effort. Furthermore only a very limited number of unavoidable changes
have to be made to the new code to switch from one chemical system to another.

Since the number of equations in the considered problem class can easily reach
several hundred or even thousands of DAE, the pure coupling of the two packages
did not provide an efficient tool. The computing times were too high and more
effort had to be made on the algorithms, for example using the problem structure
when computing the Jacobian, or for the condensing step of the partially reduced
SQP -algorithm. This new algorithms reduced considerably the computing time.
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7. Conclusions and Outlook

Furthermore it has been focused to apply the new package for the optimization of
practical problems. Three problems have been studied to demonstrate the perfor-
mance of this new tool: The catalytic partial oxidation of methane to syngas, the
epoxidation of ethylene on silver and the catalytic oxygen-free conversion of methane
to ethane. Optimal solutions have been presented. In the case of the catalytic oxygen-
free conversion of methane to ethane, it has been possible to present a solution which
could not have been obtained on a trial-and-error basis using the original DIFRUN.

For the first time a software package is available for the very fast computation of
the optimal control for arbitrary chemical systems in a reactive stagnation point flow
on a catalytic plate. The user of the software needs only little effort to set up a new
problem.
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A. Reaction Mechanisms

In this chapter, all surface reaction mechanisms are listed. The major reference for
the format of these mechanisms is [19]

Species with the suffix (s) are adsorbed species. The species named Pt(s) and
Ag(s) denote uncovered surface sites available for adsorption on platinum and silver,
respectively.

The kinetic data are given according to [19]. The units are A [mol, cm, s], S 0, β
and µ [−], Ea and ε [kJ mol−1]. S0 denotes the initial (uncovered surface) sticking
coefficient. If the reaction kinetic exhibits an additional dependence on surface cover-
age, the line under the reaction equation names the species, to which the dependence
is referred, and gives the kinetic parameters µ and ε, µ and ε are zero for all other
reactions.

A.1. Catalytic Partial Oxidation of Methane to Syngas

Reaction mechanisms A / S0 β / µ Ea / ε

Adsorption

H2 +Pt(s) +Pt(s) → H(s) +H(s) 0.046E-00 0.0 0.0
$Pt(s) 0.0 -1.0 0.0
O2 +Pt(s) +Pt(s) → O(s) +O(s) 1.891E+21 -0.5 0.0
CH4 +Pt(s) +Pt(s) → CH3(s) +H(s) 0.600E+00 0.0 52.0
H2O +Pt(s) → H2O(s) 7.500E-01 0.0 0.0
CO2 +Pt(s) → CO2(s) 5.000E-03 0.0 0.0
CO +Pt(s) → CO(s) 8.400E-01 0.0 0.0

Desorption

H(s) +H(s) → Pt(s) +Pt(s) +H2 3.700E+21 0.0 67.4
$H(s) 0.0 0.0 6.0
O(s) +O(s) → Pt(s) +Pt(s) +O2 3.700E+21 0.0 213.2
$O(s) 0.0 0.0 188.3
H2O(s) → H2O +Pt(s) 4.500E+12 0.0 41.8
CO(s) → CO +Pt(s) 1.000E+13 0.0 146.0
$CO(s) 0.0 0.0 33.0
CO2(s) → CO2 +Pt(s) 1.000E+13 0.0 27.1
CH3(s)+H(s) → CH4 +Pt(s) +Pt(s) 1.850E+22 0.0 21.5
$H(s) 0.0 0.0 7.0
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A. Reaction Mechanisms

Surface Reactions

O(s) +H(s) → OH(s) +Pt(s) 1.280E+22 0.0 11.2
OH(s) +Pt(s) → O(s) +H(s) 1.070E+21 0.0 82.5
$O(s) 0.0 0.0 73.2
$H(s) 0.0 0.0 -3.0
H(s) +OH(s) → H2O(s) +Pt(s) 2.040E+22 0.0 66.2
H2O(s) +Pt(s) → H(s) +OH(s) 1.680E+20 0.0 106.8
$O(s) 0.0 0.0 -167.4
$H(s) 0.0 0.0 -3.0
OH(s) +OH(s) → H2O(s) +O(s) 7.400E+21 0.0 74.0
H2O(s) +O(s) → OH(s) +OH(s) 1.000E+21 0.0 43.1
$O(s) 0.0 0.0 -240.6
CO(s) +O(s) → CO2(s)+Pt(s) 3.700E+21 0.0 118.0
$CO(s) 0.0 0.0 33.0
CO2(s)+Pt(s) → CO(s) +O(s) 3.700E+21 0.0 173.3
$O(s) 0.0 0.0 -94.1
C(s) +O(s) → CO(s) +Pt(s) 3.700E+21 0.0 0.0
CO(s) +Pt(s) → C(s) +O(s) 3.700E+21 0.0 236.9
$CO(s) 0.0 0.0 -95.0
$O(s) 0.0 0.0 31.3
CH3(s)+Pt(s) → CH2(s)+H(s) 1.262E+22 0.0 64.8
CH2(s)+H(s) → CH3(s)+Pt(s) 3.700E+21 0.0 0.0
$H(s) 0.0 0.0 7.0
CH2(s)+Pt(s) → CH(s) +H(s) 7.000E+22 0.0 61.2
CH(s) +H(s) → CH2(s)+Pt(s) 3.700E+21 0.0 0.0
$H(s) 0.0 0.0 7.0
CH(s) +Pt(s) → C(s) +H(s) 3.000E+22 0.0 0.0
$H(s) 0.0 0.0 7.0
C(s) +H(s) → CH(s) +Pt(s) 3.700E+21 0.0 126.3
H2 +C(s) +Pt(s) → CH(s) +H(s) 5.580E+20 0.0 83.8
CH(s) +H(s) → Pt(s) +C(s) +H2 3.090E+22 0.0 30.1
C(s) +H2 → CH2(s) 5.870E+11 0.0 17.6
CH2(s) → C(s) +H2 7.690E+13 0.0 25.1

Table A.1.: Surface reaction mechanisms for syngas problem. [17]
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A.2. Epoxidation of Ethylene on Silver

A.2. Epoxidation of Ethylene on Silver

Reaction mechanisms A / S0 β / µ Ea / ε

Adsorption

O2 +Ag(s) +Ag(s) → O(s) +O(s) 1.000E-06 0.0 0.0
C2H4 +Ag(s) → C2H4(s) 1.500E-03 0.0 0.0
C2H4 +Ag(s) +Ag(s) → C2H3(s) +H(s) 6.000E+19 0.0 8.0
CO2 +O(s) → CO3(s) 1.000E-03 0.0 46.2
H2O +Ag(s) → H2O(s) 7.500E-01 0.0 0.0

Desorption

O(s) +O(s) → Ag(s) +Ag(s) +O2 2.800E+20 0.0 135.0
$O(s) 0.0 -0.7 60.0
C2H4(s) → Ag(s) +C2H4 1.000E+13 0.0 44.9
C2H3(s) +H(s) → Ag(s) +Ag(s) +C2H4 3.700E+21 0.0 12.0
CO3(s) → CO2 +O(s) 1.000E+13 0.0 147.0
$O(s) 0.0 0.0 -40.0
H2O(s) → H2O +Ag(s) 1.000E+13 0.0 50.4

Surface Reactions

C2H4(s) +O(s) → Ag(s) +C2H4O +Ag(s) 3.500E+19 0.0 8.0
$O(s) 0.0 0.0 -40.0
C2H4O +Ag(s) +Ag(s) → C2H4(s) +O(s) 1.000E+13 0.0 31.2
C2H3(s) +O(s) → C2H3O(s) +Ag(s) 3.700E+21 0.0 23.8
C2H3O(s) +Ag(s) → C2H3(s) +O(s) 3.700E+21 0.0 224.3
C2H3O(s) +O(s) → HCO(s) +CH2O(s) 3.700E+21 0.0 54.3
HCO(s) +CH2O(s) → C2H3O(s) +O(s) 3.700E+21 0.0 119.8
CH2O(s) +O(s) → HCOO(s)+H(s) 3.700E+21 0.0 51.4
HCOO(s)+H(s) → CH2O(s) +O(s) 3.700E+21 0.0 131.2
HCO(s) +O(s) → HCOO(s)+Ag(s) 3.700E+21 0.0 46.2
HCOO(s)+Ag(s) → HCO(s) +O(s) 3.700E+21 0.0 210.0
HCOO(s)+O(s) → CO2 +OH(s) +Ag(s) 3.700E+21 0.0 56.0
CO2 +OH(s) +Ag(s) → HCOO(s)+O(s) 3.700E+21 0.0 192.5
H(s) +O(s) → OH(s) +Ag(s) 3.700E+21 0.0 88.2
OH(s) +Ag(s) → H(s) +O(s) 3.700E+21 0.0 67.2
OH(s) +H(s) → H2O(s) +Ag(s) 3.700E+21 0.0 8.4
H2O(s) +Ag(s) → OH(s) +H(s) 3.700E+21 0.0 168.8

Table A.2.: Surface reaction mechanisms for epoxidation of ethylene. [39]

95



A. Reaction Mechanisms

A.3. Catalytic Oxygen-Free Conversion of Methane to

Ethane

Reaction mechanisms A / S0 β / µ Ea / ε

Adsorption

H2 +Pt(s) +Pt(s) → H(s) +H(s) 0.046E-00 0.0 0.0
$Pt(s) 0.0 -1.0 0.0
CH4 +Pt(s) +Pt(s) → CH3(s) +H(s) 9.000E-04 0.0 72.2
CH4 +C(s) → C2H4(2s) 7.290E+01 0.5 0.0
$C(s) 0.0 0.0 -47.5
$C2(2s) 0.0 0.0 -47.5
C2H6 +Pt(s) +Pt(s) → C2H6(2s) 1.000E+00 0.0 0.0
C2H4 +Pt(s) → C2H4(1s) 1.000E-03 0.0 0.0

Desorption

H(s) +H(s) → H2 +Pt(s) +Pt(s) 3.700E+21 0.0 75.0
$H(s) 0.0 0.0 15.0
$C2(2s) 0.0 0.0 15.0
$C(s) 0.0 0.0 15.0
CH3(s) +H(s) → CH4 +Pt(s) +Pt(s) 1.000E+21 0.0 50.0
$H(s) 0.0 0.0 15.0
C2H4(2s) → CH4 +C(s) 1.000E+14 0.0 2.5
$C(s) 0.0 0.0 -47.5
$C2(2s) 0.0 0.0 -47.5
C2H6(2s) → Pt(s) +Pt(s) +C2H6 1.000E+16 0.0 20.9
C2H4(1s) → Pt(s) +C2H4 1.000E+14 0.0 50.2

Surface reactions

CH3(s) +Pt(s) → CH2(s) +H(s) 1.262E+22 0.0 70.3
CH2(s) +H(s) → CH3(s) +Pt(s) 3.090E+22 0.0 0.0
CH2(s) +Pt(s) → CH(s) +H(s) 7.314E+22 0.0 58.9
$C(s) 0.0 0.0 -50.0
$C2(2s) 0.0 0.0 -50.0
CH(s) +H(s) → CH2(s) +Pt(s) 3.090E+22 0.0 0.0
CH(s) +Pt(s) → C(s) +H(s) 3.090E+22 0.0 0.0
C(s) +H(s) → CH(s) +Pt(s) 1.248E+22 0.0 138.0
C2H4(1s) → C2H4(2s) 1.000E+13 0.0 83.3
C2H4(2s) → C2H4(1s) 1.000E+13 0.0 75.3
C2H5(s) +H(s) → C2H6(2s) 3.700E+22 0.0 41.8
C2H6(2s) → C2H5(s) +H(s) 1.000E+13 0.0 57.7
CH3(s) +CH3(s) → C2H6(2s) 1.000E+21 0.0 00.0
C2H6(2s) → CH3(s) +CH3(s) 1.000E+13 0.0 124.5
CH2(s) +CH3(s) → C2H5(s) +Pt(s) 1.370E+22 0.0 00.0
C2H5(s) +Pt(s) → CH2(s) +CH3(s) 1.370E+20 0.0 128.9
C2H5(s) +Pt(s) → C2H4(2s)+H(s) 1.370E+22 0.0 54.4
C2H4(2s)+H(s) → C2H5(s) +Pt(s) 1.370E+22 0.0 29.3
C2H5(s) +Pt(s) +Pt(s) → C2H4(3s)+H(s) 1.370E+22 0.0 16.7
C2H4(3s)+H(s) → C2H5(s) +Pt(s) +Pt(s) 1.370E+20 0.0 28.9
C2H4(3s) → C2H4(2s)+Pt(s) 1.000E+13 0.0 87.4
C2H4(2s)+Pt(s) → C2H4(3s) 1.370E+21 0.0 37.2
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C2H4(2s)+Pt(s) → C2H3(1s)+H(s) 1.370E+20 0.0 99.1
C2H3(1s)+H(s) → C2H4(2s)+Pt(s) 1.370E+22 0.0 75.3
C2H3(1s)+Pt(s) → CH3(s) +C(s) 1.370E+22 0.0 46.9
$C(s) 0.0 0.0 -50.0
$C2(2s) 0.0 0.0 -50.0
CH3(s) +C(s) → C2H3(1s)+Pt(s) 1.370E+22 0.0 46.0
C2(2s) +C2(2s) → C2(1s) 1.370E+21 0.0 220.0
$C2(2s) 0.0 0.0 60.0
C(s) +C(s) → C2(2s) +Pt(s) 1.370E+21 0.0 180.0
$C(s) 0.0 0.0 50.0
C2(2s) +Pt(s) → C(s) +C(s) 1.370E+21 0.0 185.0
$C(s) 0.0 0.0 50.0
H2 +C(s) → CH2(s) 4.000E-02 0.0 29.7
$C(s) 0.0 0.0 4.6
$C2(2s) 0.0 0.0 4.6
CH2(s) → C(s) +H2 7.690E+13 0.0 25.1
$C(s) 0.0 0.0 -50.0
$C2(2s) 0.0 0.0 -50.0

Table A.3.: Surface reaction mechanisms for catalyitc oxygen-free conversion of methane to
ethane. [61]
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E. D. Gilles, A. Kienle, J. P. Schlöder, and E. Stein. Real-time optimization of large scale
process models: Nonlinear model predictive control of a high purity distillation column.
In M. Groetschel, S. O. Krumke, and J. Rambau, editors, Online Optimization of Large
Scale Systems: State of the Art. Springer, 2001.

[23] Angelika Dieses. Numerical methods for optimization problems in water flow and reactive
solute transport processes of xenobiotics in soils. Technical Report SFB Preprint 2001-07,
University of Heidelberg, 2001. Ph.D. Thesis.

[24] Wolfgang Egartner. Working range optimization for turbine and compressor blading.
Journal for Computational and Applied Mathematics, 120(1–2):59–65, 2000.

[25] Wolfgang Egartner and Volker H. Schulz. Partially reduced SQP methods for optimal
turbine and compressor blade design. In ENUMATH 97, Proceedings of the 2nd Euro-
pean Conference on Numerical Mathematics and Advanced Applications. World Scientific
Publishing, November 1998.

[26] G. Evans and R. Greif. A numerical model of the flow and heat transfer in a rotating disk
cemical vapor deposition reactor. Transactions of the ASME, Journal of Heat Transfer,
109:928–935, 1987.

[27] Daniel Gabay. Minimizing a differentiable function over a differential manifold. Journal
of Optimization Theory and Applications, 37(2):177–219, 1982.

[28] Daniel Gabay. Reduced quasi-newton methods with feasibility improvement for nonlin-
early constrained optimization. Mathematical Programming Study, 16:18–44, 1982.

[29] Daniel Gabay and David G. Luenberger. Efficiently converging minimization methods
based on the reduced gradient. SIAM J. Control and Optimization, 14(1):42–61, 1976.

[30] Chaya Bleich Gurwitz and Michael L. Overton. Sequential quadratic programming meth-
ods based on approximating a projected hessian matrix. SIAM J. Sci. Stat. Comput.,
10(4):631–653, 1989.

[31] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Stiff and differ-
ential algebraic problems. Springer, Berlin-Heidelberg-New York, 2nd edition, 1996.

100



Bibliography

[32] Matthias Heinkenschloss. Projected sequential quadratic programming methods. SIAM
J. Optimization, 6(2):373–417, 1996.

[33] D. A. Hickman and L. D. Schmidt. Steps in CH4 oxidation on Pt and Rh surfaces:
High-temperature reactor simulations. AIChE J., 39:1164, 1993.

[34] Robert J. Kee, James A. Miller, Gregory H. Evans, and Graham Dixon-Lewis. A com-
putational model of the structure and extinction of strained, opposed flow, premixed
methane-air flames. In Twenty-Second Symposium (International) on Combustion, pages
1479–1494, 1988.

[35] F.-S. Kupfer. An infinite-dimensional convergence theory for reduced SQP methods in
hilbert space. SIAM J. Optimization, 6(1):126–163, 1996.

[36] D.B. Leineweber. Analyse und Restrukturierung eines Verfahrens zur direkten Lösung
von Optimal-Steuerungsproblemen. Master’s thesis, Ruprecht-Karls-Universität, 1995.

[37] D.B. Leineweber. Efficient Reduced SQP Methods for the Optimization of Chemical
Processes Described by Large Sparse DAE Models. VDI, Düsseldorf, 1999.

[38] U. Maas. Mathematische Modellierung instationärer Verbrennungsprozesse unter Ver-
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