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Chapter 1

Introduction and Overview

Identifying causal relationships is of central concern in many applied economic research.

For example, political groups might be interested in how union membership affects labor

market outcomes of union members. The government might want to know how certain ac-

tive labor market programs help improve participants’ labor market status. Frequently, for

the sake of evaluation of such programs, candidate causal variables are simply compared

with their supposed effects. However, a simple bivariate comparison might generally lead

to misinterpretations and wrong conclusions. Most likely, there might be other – so-called

confounding – forces determining both the supposed cause and its effect. For example,

participants in an active labor market program might systematically differ from non-

participants, say, they have higher motivation or higher program-specific skills, such that

they would be more successful in the labor market anyway, even without the program.

Thus, the association of participation and success in the labor market might wrongly

be interpreted as a causal relationship. Applied econometric research attempts to take

account of confounding background variables by multivariate estimation techniques such

as the classical linear multivariate regression approach.

Recently, the econometric literature has been incorporating a new alternative statis-

tical technique which does not need to rely intensively on parametric or functional form

assumptions (see Heckman, LaLonde & Smith, 1999, and Angrist & Krueger,

1999). Rather, this technique is based on directly matching individuals who are equal in
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all observable respects with the only exception that one individual has experienced the

impact of a potentially causal variable while the other has not. Their difference in the

outcome variable under scrutiny will then be attributable to the effect of the interven-

tion. The idea of matching originates in the randomized controlled trial (RCT). In an

RCT with binary causal variable, units are randomly assigned to one of two states, either

the treatment or the control state. Then, the treatment effect is estimated by taking the

difference between the mean outcome of treated and control units. The estimate is unbi-

ased since the randomization property of the experiment – if implemented appropriately

– ensures that, on average, all covariates of treated and control units – be they observed

or unobserved – are balanced. In contrast to an RCT, in an observational study treated

and untreated units may differ considerably because of their being self-selected into the

treatment state in lieu of being selected by an exogenous random mechanism.

Matching aims at removing systematic imbalance of covariates in an observational

study by selecting controls from the untreated group, the control reservoir, who are “sim-

ilar” to treated units in all relevant variables. In other words, it aims at constructing

an artificial control group. Of course, imbalance in unobservable characteristics cannot

be remedied. Insofar, both matching and the classical linear regression model control for

observable confounding variables. Yet, the difference is that the first technique is non-

parametric while the latter interpolates linearly when there are no perfectly equal units.

However, note that even a saturated linear model would not necessarily identify the same

parameter as matching if heterogeneity in the effect was present (see Angrist, 1998

or Angrist & Krueger, 1999). This is because OLS and matching impose different

weighting schemes when averaging over individual effects.

If the relevant variables are of high dimension exact matching in a finite sample is,

in all likelihood, impossible. As an alternative, Rosenbaum & Rubin (1983) suggest

in their seminal paper to match on the one-dimensional probability of participation in

the treatment, the propensity score. They show that matching on the propensity score

is a valid approach whenever matching on all covariates is valid. However, since the

propensity score is unknown, further problems might arise in its estimation. For example,

it is often unclear how to specify the selection equation, which variables to include in
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the estimation, and how to define a propensity score distance. Furthermore, in case of

parametric binary choice models – probit or logit – the question arises whether to match

on the estimated index, i.e. the probits or logits, that is linear in the covariates or to

match on the estimated propensity score that, in order to be located in the unit interval,

depends on the covariates in a nonlinear fashion.

In this thesis the matching approach is used to evaluate postsecondary education and

to contrast estimation results with conventional ordinary least squares estimation. To this

end, data are drawn from the National Longitudinal Survey of Youth 1979 (NLSY), an

American panel data set that started in 1979, comprising young individuals aged between

14 and 22 who have been re-interviewed annually until 1994 and biennially thereafter. In

terms of the matching methodology, postsecondary education constitutes the treatment

while the control reservoir is made up of individuals having a high school diploma only.

All empirical chapters of this thesis will use these data.

It turns out that selection into college, especially into four-year colleges, is extraordinar-

ily strong. Observable variables such as ability test scores and socio-economic background

variables are essential determinants affecting the decision to take up a college education.

Unfortunately, matching treated and untreated units in such a case is no easy matter. For

instance, in the extreme case, if selection were perfectly predictable, matching would be

impossible because there would be no unit in the control reservoir having the same char-

acteristics as any treated. Note that also a linear model interpolating the extremes would

not be promising either. Consequently, pair matching, i.e. matching exactly one treated

and one untreated, as frequently pursued in applied work to evaluate active labor market

programs (see e.g. Lechner, 1999), might be inappropriate in the schooling example. It

would have to drop great a number of treated units at the high end of the propensity

score scale and, thus, it would produce matched pairs which are not anymore representa-

tive of the whole treated population. Hence, if the treatment effect is heterogeneous pair

matching estimates might be severely biased.

In order to keep as many treated units as possible, one control should be matched to

more than one treated person, something which is often referred to as matching with re-
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placement. Dehejia & Wahba (1998) suggest an algorithm which follows this approach.

Usually, however, this algorithm lacks some optimality criterion in that it does not neces-

sarily achieve to minimize the overall distance between treated and control units. What

is more, several controls could also be matched to one treated unit to increase statistical

precision. In the end, the full sample might be stratified into small strata consisting of

either one treated and one or more controls or one control and more than one treated

unit.

Rosenbaum (1991) suggests an optimal full matching algorithm which not only

matches all units in the sample but which also manages to minimize the total distance

between treated and controls. In general, however, exact matches on the propensity score

are not possible and a certain small distance between the matched treated and the con-

trol has to be accepted. Greedy algorithms address this issue by matching a randomly

chosen treated unit to the closest untreated available who will then be removed from the

sample. By contrast, the optimal algorithm is apt to find the overall minimum distance

by reconsidering and possibly rearranging already matched units.

Chapter 2 examines several steps in the practical implementation of the method of

matching. Typically, the applied researcher has to make decisions on how to adapt cer-

tain parameters in the matching algorithm. In contrast to the simulation study of Gu

& Rosenbaum (1993), this chapter performs a sensitivity analysis with data from the

NLSY. First, it analyses whether matching on the propensity score or on the linear index

is to be preferred. Second, it suggests to use a so-called propensity score caliper approach

which ensures that the distance between the treated and control unit does not exceed a

certain pre-specified range. Otherwise, arbitrarily large distances might occur. A broad

and a narrow caliper width are set against. Third, the question arises how to define dis-

tance within calipers. The literature suggests to either use the propensity score distance

or the Mahalanobis metric, both of which will be investigated. Fourth, three matching

algorithms are compared: optimal full, a greedy full, and a greedy pair matching. Fifth,

suitable stratum weighting schemes are built to identify the mean effect of treatment on

the treated and the mean effect on a randomly assigned person. The results will be dis-

cussed with respect to three measures of success: balance of covariates after matching,
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variance of the matching estimates, and how systematic treated units are discarded by

the algorithms.

Sensitivity of the decision parameters as to the estimated treatment effects appears

to be rather modest. Systematic variation in the estimates caused by variation of the

distance measures between treated and untreated units or by altering matching algorithms

is negligible and statistically insignificant. Moreover, roughly 80% of the initial bias in the

observable covariates is removed by full matching algorithms and 87% by pair matching.

Yet, mean propensity scores of pair-matched treated individuals are markedly lower than

in the original treatment group before matching. If high-propensity score individuals

experience a higher effect of their education pair matching estimates are expected to be

biased.

Alas, heterogeneity is too weak to unanimously favor full matching since its disad-

vantages clearly emerge. Full matching estimates are accompanied by relatively large

standard errors because a full stratification is far from being as uniform as pair matching.

For example, the more strata consist of a large number of treated units sharing only one

control the higher standard errors of the estimated mean effect on the treated individual

are. It turns out that the specific greedy full algorithm as implemented in this thesis

achieves a more uniform stratification than the optimal one. Notwithstanding, in order

to attain a more uniform stratification, greedy algorithms can always be replaced by a

suitable optimal one when restrictions on the size of the strata are incorporated in the

optimization process. Therefore, greedy algorithms should be abandoned. Furthermore,

matching on the linear index score turns out to better discriminate between units at the

low end of the propensity score scale. As a result, it drops many low-score untreated

individuals who would almost all be used in matching on the propensity score.

Chapter 3 is dedicated to specific problems that might arise under strong selection

into college as in Chapter 2. If treatment effects are heterogeneous and selection into

treatment is exceptionally strong, pair matching is an efficient evaluation strategy. In the

heterogeneous case, it is unclear which matching method to prefer. This chapter, however,

suggests to concentrate less on the choice of method but, alternatively, to carefully recon-
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sider the selection equation. Some variables might be strong determinants of the selection

but exhibit a rather modest impact on the outcome. If they are omitted randomness of

the selection process increases or, in other words, some observable self-selection is left to

stochastic noise. This will result in a smaller propensity score difference between treat-

ment and comparison group and, consequently, matching will become easier. Only the

relevant variables which rule both the selection and the outcome have to be balanced.

On the other hand, a consistent estimation of the propensity score might make it

necessary to include into the selection equation all the variables that rule the selection

process even if they do not determine the outcome. Many applied research emphasizes

the importance of consistent estimation of the selection equation. For instance, Lechner

(1999, 2000) performs and recommends several specification tests to examine whether a

probit model is adequate for describing the selection decision. Heckman, Ichimura &

Todd (1997: section 8) choose the predictor variables to maximize the within-sample

correct prediction rates of participation. Although a selection process well understood

might in itself be an important contribution, it is not the main objective of propensity

score matching envisaging to identify the mean effect of treatment. What is to be achieved

by propensity score matching is balance of the relevant covariates in order to eliminate

selection bias, even if the propensity score is inconsistently estimated. Obviously, there

is a trade-off between feasible matching on the one hand and consistent estimation of the

propensity score on the other.

To assess this trade-off Chapter 3 performs a simulation study. It turns out that even

when matching builds on quite inconsistent propensity score estimates, estimation results

of the mean effect of treatment can still be superior, in terms of the mean squared error, to

results produced by a consistent propensity score estimation which might separate treated

and untreated units too successfully. The findings of this simulation study recommend

to only include variables into the selection equation that are highly significant. Variables

with low significance levels are obvious candidates for exclusion, even if they might play

a role in the outcome equation. Furthermore, if established research suggests that certain

variables are irrelevant to the outcome under study, they should solely be included if there

are other strong reasons for doing so. In sum, the main criterion to judge the success of
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matching is how well it balances the relevant covariates. This aim is more likely to be

obtained if self-selection is weak or the control reservoir is large.

Chapter 4 concentrates on the evaluation of post-secondary education by the method of

matching incorporating the findings of the previous two chapters. A somewhat different

concept of return to education is introduced, namely the effect of college education on

earnings, which takes account of the effect of education on labor market experience,

as well. Its primary aim is estimation of the effect of the associate’s, the bachelor’s,

and graduate degrees on hourly wages for both men and women during the first ten

years after they have finished their college education. Moreover, heterogeneity in the

effect ruled by family background and inherent ability will be considered. The results are

compared to conventional OLS estimation which allows (i) to verify the linear specification

of the earnings equation and (ii) to bring out the determinants why matching and OLS

estimates differ. Indeed, there is evidence that matching and OLS deviate particularly

when heterogeneity in the effect is substantial. For men, the effect of college education on

wages seems to depend significantly on ability and parents’ education, while, for women,

estimates do not support such clear heterogeneity. At the same time, matching and OLS

estimates differ less for women than for men.

Basically, the empirical results are along the lines of the existing literature. Estimates

of the effect of college education are larger for women. Individuals who obtained their

degree more recently experience a higher effect, i.e. there is evidence in favor of a general

increase. Moreover, the effect seems to grow gradually over the first ten years after leaving

college. Yet, this growth cannot be attributed to a positive interaction between experience

and education but partly to a faster accumulation of labor market experience on the part

of college graduates.

Apart from evaluating the effects by the method of matching, Chapter 5 examines the

functional form assumption of the typical Mincerian human capital earnings equation.

A formal framework recently proposed by Card (1995, 1999) is used to take account of

endogeneity of the schooling decision. If the return to education depends positively on

inherent earnings abilities, individuals with higher abilities tend to opt for more schooling.
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If ability is itself rewarded in the labor market but is not controlled for in regression anal-

yses, coefficient estimates of the return to schooling might be upward biased. Griliches

(1977) discusses this classical ability bias. However, this chapter shows that not con-

trolling for ability might additionally bias the estimated functional form of the earnings

equation. Indeed, this bias leads to returns to education that increase with years of

schooling acquired, thus rejecting constant returns as generally assumed in the literature

(Becker, 1967, Mincer, 1974). Other empirical studies also implicitly report increasing

marginal returns to schooling as years of education rise. This suggests that postsecondary

education might work as some magic potion.

However, these findings seem to be prompted by endogeneity of schooling as a result

of the optimization behavior. Explicit control for ability, especially for an interaction

between ability and schooling, shows that, in fact, the return to education diminishes as

more schooling is acquired, especially for men. In particular, the results show that the

interaction term is mostly statistically significant, i.e. that heterogeneity in the returns is

substantial.

Finally, Chapter 6 treats self-selection on unobservables and compares possible solu-

tions to problems raised by this additional dimension in a numerical simulation study.

While it is straightforward to tackle selection on observables, selection on unobservables

provides a serious intellectual challenge. Researchers have proposed several alternative

strategies to overcome this identification problem, by invoking a priori information on the

process of selection into treatment in an observational study (Heckman & Robb, 1985,

Angrist & Krueger, 1999) or by designing an appropriate randomized experiment.

In the natural sciences, the RCT has become the method of choice for the evaluation of

interventions.

While emphasis in methodological work is on the individual level, practical applications

frequently concern the case of group-level or community-based interventions. Implemen-

tation of policy measures at the community level is often a matter of necessity. Moreover,

analysts might choose a community-level approach to evaluation for reasons of costs.

Nothing seems more natural as a methodological approach to the evaluation of these in-
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terventions than the translation of the RCT paradigm to the community level. Objects

of randomized assignment into treatment and control samples are then entire communi-

ties. The possible correlation of outcomes within communities, clusters, or groups might

seriously distort conclusions regarding the statistical precision of the results.

Although one might be able to collect data on sizeable numbers of individuals within

each community participating in the study, the number of communities is typically limited.

Thus, while group-randomized experiments produce unbiased estimates it is difficult to

enhance precision. Observational studies, by contrast, typically include a respectable num-

ber of communities, yet, they might suffer from the selection problem. Possibly, a biased

but more precise estimate from an observational study may yield a lower mean squared

error than the corresponding estimate of program impact from a group-randomized ex-

periment. In other words, there might be a serious trade-off to consider in the choice of

the evaluation strategy.

Chapter 6 investigates the potential and the limits of experimental and non-

experimental approaches to the evaluation problem. In particular, it contrasts the use

of instrumental variables as a quasi-experimental technique against the particular back-

ground of community-based interventions. In the simulations, trade-off between bias and

precision is emphasized by imposing a smaller number of communities in a randomized

experiment, and by allowing for a correspondingly larger number of communities in all

cases where selection into the program is not controlled by the analyst.

Obviously, standard estimators perform well as long as more or less restrictive assump-

tions on the selection process are satisfied. The randomized experiment – appropriately

implemented – always performs well without imposing strong assumptions. However, its

small sample size involves disadvantages, especially at group level. Instrumental variable

estimation may be a helpful device to circumvent the small sample problem and may open

the field for less costly large scale observational studies, provided that a suitable instru-

ment is available. The simulation results suggest that correlations between instrument

and endogenous treatment indicator of around 0.3 to 0.4 can be considered to make up a

good instrument if the observational study comprises ten times more observations than a
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randomized experiment.

IV estimation yields inconsistent estimates, though, if treatment effects are heteroge-

neous and individuals or groups decide whether to undergo treatment upon their true

effects. In this case, IV identifies the mean effect of treatment on compliers, the so-called

local average treatment effect (LATE), see e.g. Angrist, Imbens & Rubin (1996). In

case of a binary instrument, for example, LATE identifies the mean effect of those indi-

viduals who opt for participation in accordance with the value of their instrument. That

is, they participate if the instrument takes the value 1 and they do not if it is 0. Note

that this parameter might also be policy relevant, for instance, in answering the question

whether to install additional treatment sites or not, when proximity to treatment site is

a valid instrument.



Chapter 2

Matching the Extremes – A

Sensitivity Analysis Based on Real

Data

May 1999/October 2000

Abstract. This chapter uses observational data to estimate the effect of a bachelor’s

degree on earnings for men by the method of matching. The data exhibit an extraor-

dinarily large bias in terms of observable confounding variables between treatment and

comparison group. Therefore, an appropriate implementation of the matching technique

is crucial. Usually, several ad hoc decisions have to be made in advance, e.g. decisions on

which distance measure or which matching algorithm to use. Sensitivity of the estimation

results with respect to some decisions is investigated. In particular, optimal full matching,

a greedy full matching, and a greedy pair matching are compared. Furthermore, a simple

extension permitting heterogeneous treatment effects is suggested.
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2.1 Introduction

Recently, the statistical technique of matching has found widespread attention in econo-

metrics to evaluate effects of policy interventions or welfare programs (Heckman,

Ichimura & Todd, 1997, Kluve, Lehmann & Schmidt, 1999, or Lechner, 1999,

2000), or to estimate labor market impacts of military service (Angrist, 1998). Heck-

man, LaLonde & Smith (1999) provide a comprehensive overview. The technique rests

on matching untreated individuals to treated ones with the same (observable) character-

istics, thus generating an artificial counterfactual of the treatment group. In effect, this

approach attempts at mimicking a randomized experiment using data from an observa-

tional study to estimate the mean effect of treatment.

Unlike ordinary least squares estimation (OLS) matching as a non-parametric technique

need not rely on functional form or distributional assumptions. What is more, in contrast

with OLS, if the treatment effect is heterogeneous the estimated mean effect of treatment –

a weighted average of individual effects – builds on a more appropriate weighting scheme

than OLS. Angrist & Krueger (1999) or Angrist (1998) show how in case of

heterogeneous treatment effects a saturated linear model estimated by OLS weights the

individual effects by the individual variances of the treatment indicator. In contrast,

matching weights the individual effects by the probability to participate in treatment

which is considered a more appropriate weighting scheme.

Often, applied research using propensity score matching has to make many ad hoc

decisions at various steps of the implementation. For example, decisions have to be made

on the concrete definition of a distance measure between treated and untreated units and

on which matching algorithm and weighting scheme to use. In an extensive simulation

study, Gu & Rosenbaum (1993) examine several alternatives. This chapter uses real

observational data from the National Longitudinal Survey of Youth 1979 to investigate

sensitivity of the estimation results with respect to some crucial decisions, specifically

decisions on the distance measure and the algorithm to be employed, and, furthermore,

on which propensity score estimate to match on.
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The empirical example evaluates college education by estimating the effect of the bach-

elor’s degree for men during the first ten years after graduation from college.1 It turns

out that selection into college is extremely strong such that treatment and comparison

group are quite distinct. Hence, matching adequate individuals can be expected to be a

serious challenge. As a result, the matching algorithm should take account of potential

pitfalls which is why three matching algorithms will be explored: optimal full matching

proposed by Rosenbaum (1991), a greedy full matching, and a greedy pair matching.

Pair matching produces a stratification composed of non-overlapping pairs of treated

and control units. It drops all untreated individuals who are not matched which might

reduce efficiency. More importantly, given a certain distance measure some treated might

not find a control which would give rise to biased estimates if the loss of treated individuals

were systematic and the treatment effect were heterogeneous. In this case, a full matching

procedure which uses all treated and all untreated units in the sample might be preferred.

In a full matching, one control may be matched to more than one treated person and,

likewise, one treated may also be matched to numerous controls. The latter event will

occur particularly at the low end of the propensity score scale while the first event will

mainly happen at the high end. What is more, in a natural way, full matching provides

weighting schemes that permit estimation of the mean effect of treatment on the treated

as well as the mean effect on a randomly assigned person.

Dehejia & Wahba (1998) suggest a solution where controls are allowed to be used

more than once in a matching algorithm with replacement. However, their strategy gen-

erally produces overlapping strata, i.e. certain individuals might be member of more

than one stratum. This makes statistical inference more difficult due to dependencies

across strata. In contrast, this study adopts the optimal full stratification strategy which

produces non-overlapping strata and achieves to effectively minimize the total distance

between treated and untreated units. It will be contrasted to a greedy full matching.

“Greedy” means that the algorithm does not necessarily attain the minimum. In addi-

tion, the framework presented in Rosenbaum (1995) facilitates to estimate variances

and to calculate p-values of the estimated treatment effect. This chapter adjusts this

1Chapter 4 extends this analysis to other degrees and to both sexes.
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framework to the present example and, in giving the statistical model more structure,

suggests a simple extension to allow for a special form of heterogeneous treatment effects.

The remainder of the chapter is organized as follows. The next section presents the

methodological framework. Section 3 describes the data, the treatment group and the

control reservoir. It specifies the sensitivity parameters and, in particular, explains the

matching algorithms. Results are discussed in section 4. Section 5 concludes.

2.2 Methodology

Following Rosenbaum (1995), this section starts with outlining the formal setup for the

ideal case of a randomized experiment to which the more general case of an observational

study can be reduced under certain assumptions. Assume that N units under observation

are being stratified into S strata on the basis of their covariates. Let Zsi be a dummy

variable indicating whether unit i in stratum s, s = 1, ..., S, is randomly assigned to

treatment (Zsi = 1) or not (Zsi = 0). Each stratum s comprises ns units, ms =
∑ns

i=1 Zsi

treated and ns −ms controls. Since in this study either one treated unit will be matched

to one or more controls or one control to more than one treated, ms will either be 1 or

ns − 1. Furthermore, let Zs = (Zs1, ..., Zsns)
′ and Z = (Z′

1, ...,Z
′
S)

′. Let the random

variable Rsi be the outcome of unit i in stratum s after treatment and R be the N -tuple

of Rsi arranged in the same order as Z. If unit si exhibits the same value of Rsi in

both states, treatment and control, the treatment has no effect on that unit. This null

hypothesis implies that the response of that unit is fixed, denoted rsi, and that the only

random variable left is Z.

The mean stratum effect ∆s is estimated as the difference in the mean outcomes of the

treated units and their controls in stratum s

∆̂s =
1

ms

Z′
srs −

1

ns −ms

(1− Zs)
′rs =

ns

ms(ns −ms)
(Z′

srs −msr̄s), (2.1)

for all s = 1, ..., S, where 1 is a suitable vector of ones and r̄s denotes the mean over the

rsi in stratum s. The overall mean effect τ is a weighted average of the stratum effects
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∆s, estimated by

τ̂ =
S∑

s=1

ωs∆̂s, (2.2)

where ωs are positive stratum weights summing to one:
∑S

s=1 ωs = 1. τ̂ identifies the

mean effect of treatment on the treated if the stratum weights ωs are proportional to ms

and provided all treated units are being matched or treated units are not systematically

discarded by the matching algorithm. τ̂ identifies the mean effect of treatment on a ran-

domly assigned person if the stratum weights are proportional to ns and if all treated and

untreated individuals are being matched (full matching)2. Estimates of both parameters

will be reported in section 4.

The moments under the null hypothesis of no treatment effect are3

IE∆̂s = 0, IEτ̂ = 0,

where IE denotes the expectation operator,

σ2
s = V ar(∆̂s) =

ns

(ns − 1)2

ns∑
i=1

(rsi − r̄s)2, (2.3)

V ar(τ̂) =
S∑

s=1

ω2
sσ

2
s . (2.4)

The stratum differences ∆̂s are mutually independent, and their variances differ across

strata. Under very mild assumptions Lindeberg’s condition is fulfilled and asymptotic

normality of τ̂ is established.

Statistical inference will be based on large sample theory exploiting the moments of

the relevant test statistics. Alternatively, it could rest on an exact permutation test.

Calculating all feasible permutations of zeroes and ones of the vector Z and counting how

often the test statistic of the permuted data exceeds the sample test statistic (2.2) would

produce exact p-values. Though, for a large number of strata such a test would exceed

current computer power by far.4

2Sample weights will also be taken into account in order to identify the US population parameters.
3Using the distribution of Zs yields V ar(Z′

srs) =
ms(ns−ms)
ns(ns−1)

∑ns

i=1(rsi − r̄s)2. Moreover, note that
ms = 1 or ms = ns − 1 and that rsi is no random variable under the null hypothesis.

4Good (1994) provides a practical guide to permutation tests and resampling methods in general.
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Observational Studies With Overt Bias

In contrast to a randomized experiment, in an observational study the distribution of the

assignment vector Z is unknown because individuals themselves decide whether to par-

ticipate in treatment or not. If the treatment and control group differ prior to treatment

in ways that matter for the outcome under study an observational study is biased. An

overt bias is one that is produced by observable covariates X and that, in general, can be

controlled using adjustments such as matching.

Assuming that there is only overt bias5 matching on X mimics ex post a randomized

experiment in each stratum defined by X. Thus, the formalism for the randomized ex-

periment outlined above can be applied. Alas, whenever X is of high dimension exact

matching will, in all likelihood, be impossible. Alternatively, Rosenbaum & Rubin

(1983) suggest to match on the one-dimensional propensity score, i.e. the probability to

participate in treatment given X, p(x) = IP(Z = 1|X = x), where IP denotes probability.

They show that if matching on X removes overt bias matching on p(X) will do so, too.

Unfortunately, the propensity score is unknown and has to be estimated. In this

study, this is done by a probit model. Three objections against the estimation might be

raised. First, using estimated instead of true propensity scores gives rise to additional

error potentially increasing the variance of the treatment effect estimates. Second, exact

matching on the propensity score being itself a continuous variable is not feasible either.

Its necessary discretization may induce further errors. Third, the special parametric form

of the probit model might be misspecified and estimates of the propensity score might

thus be inconsistent.6 Albeit, recalling that balance of the relevant covariates between

treatment and control group is exactly the main property of success, these objections

will be of minor concern as long as matching on the estimated propensity score achieves

acceptable balance. Chapter 3 investigates this issue in a simulation study and conclude

that the specification of the selection equation is, in fact, of minor relevance.7

5This guarantees that the conditional independence assumption formulated in Rubin (1977) is fulfilled.
6Note, however, that consistency of the coefficients of the probit model is irrelevant as long as p(X)

is estimated consistently.
7A method circumventing objections in special cases is described in Rosenbaum (1995: 3.5.1) or in

Rosenbaum (1984).
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Confidence Intervals and a Test for Heterogeneity

Under the null hypothesis of no treatment effect the variance of τ̂ is given in equation (2.4).

Yet, if the null hypothesis is rejected (2.4) is not correct anymore. Assuming a constant

treatment effect could easily be coped with by just subtracting it from the estimates such

that the null hypothesis expresses again a zero effect. In this study, however, the treatment

effect may be heterogeneous varying with certain covariates. Therefore, a simple two-step-

model is proposed to address this issue. Alternatively, a direct one-step-model is discussed

in appendix B. However, it is not used due to an unfavorable weighting scheme.

Assume that the treatment effect differs across strata, but is constant within strata.

The response Rsi of unit i in stratum s is

Rsi = rsi +∆sZsi

with rsi being the outcome when the treatment has no effect. ∆s is the stratum effect

and is estimated according to equation (2.1) replacing rs by Rs. Let the stratum effects

∆s alter with certain covariates

∆s = τ + α(As − Ā) + β(Fs − F̄ ) + γ(Ys − Ȳ ), (2.5)

with Ā =
∑S

s=1 ωsAs and As =
1

ms

∑ns

i=1AsiZsi, and likewise for F̄ , Fs, Ȳ , Ys. Asi denotes

inherent earnings abilities of individual i in stratum s, Fsi characterizes family background,

and Ysi is the year in which the college degree is obtained. Family background and ability

are often considered not only as main determinants of the acquired amount of schooling

but also as determinants of the return to education, see e.g. Card (1999) and Willis

(1986). Ysi intends to capture a possible time trend in the effects. The variables will be

specified in section 3 and in appendix A.

Write

δ = (τ, α, β, γ)′,

Hs = (1 , As − Ā , Fs − F̄ , Ys − Ȳ ),
∆̂ = (∆̂1, ..., ∆̂S)

′.
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The variance of ∆̂ under the null hypothesis δ = δ0 is V (δ0) = V ar(∆̂) = diag(σ
2
s(δ0))

S
s=1

with

σ2
s(δ0) =

ns

(ns − 1)2

ns∑
i=1

[(Rsi −Hsδ0 · Zsi)− (R̄s −Hsδ0 · Z̄s)]
2 (2.6)

depending on the null hypothesis δ = δ0.
8 For δ0 = 0, equation (2.6) reduces to (2.3).

Although heteroskedasticity of ∆̂ might be a reason for using generalized least squares,

weighted ordinary least squares with stratum weights ωs will be used for estimation to

keep control over the weighting scheme. Writing H = (H ′
1, ..., H

′
S)

′ and ∆̂ = Hδ+ ε with

an error term ε = ∆̂ −∆, and a diagonal S × S weighting matrix W = diag(ωs)
S
s=1, a

consistent estimate of δ is δ̂ = (H ′WH)−1H ′W∆̂, with variance under the null δ = δ0

Ṽ (δ0) = V ar(δ̂) = (H ′WH)−1H ′W V (δ0)WH(H ′WH)−1.

This variance formula permits calculation of standard errors and p-values. For example,

a test against the null hypothesis of no mean treatment effect, τ = 0, would make use

of τ̂ /
√
V ar(τ̂)

as.∼ N (0, 1). However, a (1 − α)-confidence region for δ solving (δ̂ −
δ0)

′Ṽ (δ0)−1(δ̂−δ0) ≤ χ2
4,1−α for δ0 would be quite cumbersome.9 Therefore, in the following

application, Ṽ (δ0) will be replaced by the approximation Ṽ (δ̂).

2.3 Practical Implementation

Data

The data are taken from the National Longitudinal Survey of Youth 1979 (NLSY) admin-

istered by the US Bureau of Labor Statistics. The NLSY is a sample of 12,686 youths

first interviewed in 1979 when they were aged between 14 and 22 and re-interviewed

annually until 1994. A detailed description of the data is given by the NLS Handbook

8This is due to the fact that V ar(∆̂s) = V ar(∆̂s −∆s), ∆s = IE∆̂s, and

∆̂s −∆s =
ns

ns − 1(Z
′
sRs −msR̄s)−∆s =

ns

ns − 1(Z
′
srs +∆sZ′

sZs −msr̄s −ms∆sZ̄s)−∆s

=
ns

ns − 1(Z
′
srs −msr̄s).

The variance of ns

ns−1 (Z
′
srs −msr̄s) is known to be (2.3). Insert rsi = Rsi −∆sZsi to achieve (2.6).

9For instance, in the case of β = γ = 0, the left hand side is a polynomial in τ4 and α4.
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(1997) and the NLSY79 User’s Guide (1997). Data on wages are extracted until 1994 for

men. Oversampling of Non-whites and economically disadvantaged Whites suggests the

use of sample weights pertaining to 1979 in order to identify the population mean effect

of treatment on the treated and on a randomly assigned person.

The treatment period is the time to achieve the bachelor’s degree, approximately four

years at college and maybe some years out of college as well. The treated individuals

are those who obtained the degree and left college immediately thereafter, i.e. who have

not tried to continue college but eventually dropped out before achieving a higher degree.

Controls are drawn from the pool of individuals with only a high school diploma who

never attended college. High school dropouts and individuals with a general educational

development (GED) are removed from the sample.

The year in which a respondent received his high school diploma marks the beginning

of the treatment phase of those who went to college. In turn, the year in which he received

his bachelor’s degree marks the end. A treated and a control person are supposed to finish

high school in the same year and at the same age. The control, then, starts to work and

gain labor market experience while the treated is allowed to either go to college straight

away, interrupt college for a while, or even start to work a certain time before finally

attending college. Note that the estimation strategy pursued here does not identify the

return to education but the effect of the college degree on earnings which also includes

indirect effects on labor market experience. Chapter 4 discusses the differences of the two

concepts and provides empirical evidence that although college degree holders start with

less experience, accumulation of experience after college is faster for college than for high

school graduates.

The outcome measure is the hourly rate of pay inflated to 1996 dollars using the US

consumer price index and transformed into logarithms. For presentation of the results,

the estimate τ̂ will be retransformed to exp(τ̂)− 1. To eliminate outliers, all values below

$1 are set equal to $1 and maximum or minimum wages of observations whose wages oscil-

late enormously across years are removed as well.10 Socioeconomic background variables,

10For example, an hourly wage of $5 in one year, $1000 in the second, and again $5 in the third
seems more likely to reflect inconsistencies in the calculation of the hourly wage by the NLSY than
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Table 2.1: Distribution of Estimated Propensity and Index Score.

Estimated Estimated
Prop. score Untreated Treated Index score Untreated Treated

[0.0 , 0.1) 946 29 [−4.70 , −3.94) 11 0

[0.1 , 0.2) 150 23 [−3.94 , −3.18) 74 0

[0.2 , 0.3) 80 21 [−3.18 , −2.42) 285 2

[0.3 , 0.4) 56 20 [−2.42 , −1.66) 407 9

[0.4 , 0.5) 29 21 [−1.66 , −0.90) 298 37

[0.5 , 0.6) 33 35 [−0.90 , −0.14) 175 54

[0.6 , 0.7) 15 34 [−0.14 , +0.62) 64 96

[0.7 , 0.8) 20 60 [+0.62 , +1.38) 24 139

[0.8 , 0.9) 9 79 [+1.38 , +2.14) 4 86

[0.9 , 1.0] 4 128 [+2.14 , +2.90] 0 27

Mean score 0.11 0.67 -1.77 0.61

Observations 1342 450 1342 450
Comparison of the number of treated and untreated individuals by propensity score and index
score intervals.

information about the high school career, and ability measures play an important role in

modeling the selection decision to estimate the propensity score. The NLSY provides ten

ability measures, the Armed Services Vocational Aptitude Battery scores. Since respon-

dents participated in the tests at different ages the scores are adjusted by regressing the

raw scores on age dummies and using the residuals subsequently as explanatory variables,

analogous to Blackburn & Neumark (1993). Math scores will be used to describe As

and parents’ education to describe Fs in equation (2.5).

The variables and the probit estimation are presented in appendix A. It successfully

separates college and high school graduates which, unfortunately, makes matching at the

boundaries a difficult project. Note, however, that this aspect does not favor a linear

model either because its ad hoc linear interpolations between the extremes would not nec-

essarily be correct. Table 2.1 compares the absolute frequencies of treated and untreated

men for certain propensity score and index score intervals. The index or probits is Φ−1(p̂),

real fundamental economic changes which is why $1000 would be removed. See e.g. the NLSY79 User’s
Handbook (1997: p. 266): “... the calculation procedure [...] produces, at times, extremely low and
extremely high pay rate values.”
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where Φ is the cumulative normal density function. It is linear in the matching vari-

ables X and might be better suited to reflect the underlying distribution of the estimated

propensity scores.

Using p̂ might make individuals at the high end of the propensity score scale look more

similar than they actually are and, analogously, make individuals at the low end look

more identical. Indeed, for low index scores, there are numerous untreated units in cells

with hardly any treated while for low p̂ there is still a reasonable number of treated units.

Matching on the index will drop countless low-score untreated individuals while matching

on the propensity score will keep several of them. In the high end of the distribution, the

situation is comparable but less pronounced. Results will be discussed for both matching

on the propensity score and on the index. For the sake of brevity, “propensity score” will

denote both scores in the main text below if closer specification is not necessary.

Distance Measures

A propensity score caliper approach within cells defined by race, age and high school

graduation year is pursued, see e.g. Cochran & Rubin (1973). First, the cells are

defined. Only individuals of the same race are matched. Furthermore, the age structure

is taken into account: individuals of the same age, one year younger or one year older are

permitted to be matched. Similarly, only those who receive their high school degree in

the same year, one year earlier or later than the treated may become potential controls.

This guarantees that untreated individuals within a stratum share a similar economic

environment at the beginning of their treatment phase. Exact matches on age and the

year of the high school diploma would be preferable, but would substantially reduce the

number of potential controls.

Second, within these cells a pool of potential controls is generated for each treated by

excluding all untreated units who exceed a certain propensity or index score caliper ε.

The final decision of who becomes an actual control will then be made by minimizing

either the Mahalanobis or the propensity score distance. The Mahalanobis distance is a

weighted Euclidean distance d(xt,xc) = (xt − xc)
′V −1(xt − xc), where xt and xc are the
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vectors comprising the observable covariates of the treated and the potential control unit,

respectively. V is the pooled covariance matrix of these variables which serves to norm

the vectors. If the propensity score is inconsistently estimated the Mahalanobis metric

within calipers might help circumvent possible problems. In sum, the distance is

d(xt,xc) =




∞ if |p(xt)− p(xc)| > ε

(xt − xc)
′V −1(xt − xc)

or |p(xt)− p(xc)| else.

(2.7)

An infinite distance indicates that matching is forbidden.11

Two different caliper widths ε will be compared, a narrow and a broad one. For

propensity score matching, the narrow one will be set equal to 0.05 while the broad one

will be 0.10. For index score matching, the respective numbers are 0.30 and 0.60. They

are chosen such that both matching on the propensity score and on the index employ

an approximately equal number of treated units. Broad calipers allow matching more

individuals at the expense of a potentially less favorable balance of covariates. Narrow

calipers generate closer similarity of matched units but might have to drop several high-

and low-score units. No calipers would have adverse consequences. First, any arbitrarily

large distance between treated and controls would then be possible, and, second, matching

algorithms would consume substantially more time.12

After having constructed the pool of potential controls appropriate wages serving as

the counterfactual wages of the treated are assigned. The time span between the year

in which the treated unit received his college degree and his high school diploma – the

treatment phase – is added to the year in which his potential controls received their high

school diploma. The result is considered as the counterfactual year in which his potential

controls would have received a college degree. Note that the treatment phase is not

necessarily just the years at college because the treated individual might have interrupted

education for a while. Figure 2.1 illustrates the procedure. The counterfactual outcome

11Matching using the Mahalanobis distance is discussed in Rubin (1980). A comparison of three
distance measures is provided in Gu & Rosenbaum (1993). Furthermore, propensity score calipers are
discussed in Rosenbaum & Rubin (1985: 3) and Rosenbaum (1989: 3.4).

12In each step of the algorithm every treated would have to be compared to the whole control reservoir.
Given a caliper, the treated has to be compared to only a small number of suitable untreated units.
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Figure 2.1: Illustration of the Evaluation Procedure.
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The first diagram demonstrates the optimal case when treated and control individuals receive their high
school diploma in the same year. The second indicates how things change when there is one year difference.

one year after treatment is the wage of the potential control one year after his hypothetical

end of college. If wage information is missing the potential control is dropped for that

year after treatment but is still used for other years. If the wage of the treated is missing

the treated is removed, too. Ten years after college will be examined and each year will be

stratified separately such that individuals who are removed in some year due to missing

wage information may still be available in other years.

The Matching Algorithms

The final decision regarding the matching procedure is how to implement the chosen

matching criteria, in other words, how the distances between treated and controls is

minimized. Three algorithms will be compared in this study, one greedy pair matching

and two full matching, optimal full matching as proposed by Rosenbaum (1991) and

an own greedy full matching. Greedy pair matching randomly selects one treated person
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and chooses – within calipers – the closest untreated as control. Then, the matched pair

is removed and a second treated chooses among the remaining control reservoir. The

procedure continues until treated units cannot find controls of finite distance anymore.

These treated units will then be dropped.

The particular greedy full algorithm used here first shuffles randomly all treated in-

dividuals. Then, the first treated is matched to the closest untreated available. This

untreated is removed from the control reservoir and the next treated selects the nearest

untreated unit. If a treated does not find a control he is taken out for this part of the

procedure. After the last treated found his control the first treated starts to search a

second control. The algorithm continues until there is no untreated left anymore. By

now, some treated have one or more controls and some still none. Those who have none

are distributed over the strata consisting of exactly one treated and one control. To this

end, the controls of these strata are shuffled randomly and the first control is matched to

the closest treated. The next control searches among the remaining treated until there is

no one left. Controls may be used more than once.

Although this algorithm attempts to minimize the total distance between treated and

their controls it will, in general, not attain the minimum. Rosenbaum (1991) shows in

a simple but extreme example how a greedy algorithm might be arbitrarily worse than

the optimal. A further unpleasant side effect is that results are different each time the

algorithm is used because of the initial random order of records. For illustration, greedy

pair and full matching are performed twenty times for each year after college. It turns

out that the greedy full algorithm is quite stable and variation over the 20 iterations is

negligible. Therefore, standard errors induced by the inherent randomness will only be

reported for greedy pair matching.

Optimal full matching circumvents these shortcomings. It attains the overall minimum

in that it works backwards and rearranges already matched units if a treated would be

better matched to an already matched untreated. In such a case, the first match is broken

up and the corresponding treated is again available for matching. Optimal full matching

can easily be transformed into a minimum cost flow problem13 (Rosenbaum, 1991).

13
Bertsekas (1991) discusses linear network optimization and provides FORTRAN-algorithms for



Chapter 2: Matching the Extremes 25

In sum, the sensitivity analysis is carried out along five dimensions. First, matching

on the propensity and on the index score will be compared. Second, distance within

calipers is either defined by the scores or by the Mahalanobis metric. Third, the caliper

width is varied. Fourth, the three matching algorithms are compared. Finally, weighting

schemes are altered to identify (i) the mean effect of treatment on the treated and (ii) the

mean effect on a randomly assigned person. Three measures of success will be discussed:

balance of covariates after matching, the variance of the matching estimates, and how

systematic treated units are dropped by the algorithms.

2.4 Results

General Remarks

Estimation results of the treatment effects are reported in tables 2.2 to 2.5. For reasons

of parsimony, only results for the first, third, fifth, seventh and ninth year after college

are shown. The first column of the tables indicates the year after college. Note that the

results are not stochastically independent over the years. The first and second columns

for the full matching algorithms report estimates of the mean effect of treatment on

the treated and on a randomly assigned person, respectively. For greedy pair matching,

the two estimates coincide and a supplementary column reports the standard deviations

induced by the initial random order of records. They are calculated for the estimates of

the effect as well as for its sampling standard errors in parentheses.

The third and fourth columns display the number of strata, of treated, and of untreated

individuals used for stratification. For pair matching, all three numbers are identical. The

last column of the full matching algorithms reports the mean and maximum number of

treated units in strata that consist of more than one treated. Large numbers typically

increase the standard errors. Furthermore, note that the number of individuals and strata

diminishes continuously from the first to the ninth year. This is because many individuals

minimum cost flow problems. Furthermore, there is an operations research procedure called netflow in
SAS for these kinds of problems. Gu & Rosenbaum (1993) examine the performance of optimal full
matching in a simulation study.
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Table 2.2: Estimated Effects. Matching on the p.score, Within caliper: p.score.

Optimal Full Greedy Full Greedy Pair
On the On R’d S T Mean On the On R’d S T Mean Simul. S

Year Treated Assigned C Max Treated Assigned C Max Effect Error Error

Narrow Caliper
1 -0.007 -0.026 150 287 4.9 0.028 0.027 152 286 4.0 -0.011 0.021 151

(0.088) (0.079) 898 27.0 (0.088) (0.077) 898 27.0 (0.057) (0.004) 1.34
3 0.188*** 0.211** 149 250 4.0 0.175** 0.156** 149 250 3.2 0.188*** 0.028 148

(0.076) (0.091) 880 16.0 (0.075) (0.079) 880 15.0 (0.066) (0.003) 0.97
5 0.201*** 0.019 137 230 4.0 0.234*** 0.097 137 229 3.2 0.217*** 0.026 138

(0.072) (0.083) 893 14.0 (0.073) (0.083) 893 11.0 (0.077) (0.004) 1.02
7 0.260*** 0.216** 123 197 3.7 0.276*** 0.222*** 123 197 3.2 0.275*** 0.032 123

(0.091) (0.100) 789 14.0 (0.086) (0.089) 789 11.0 (0.081) (0.004) 0.54
9 0.355*** 0.244** 93 151 3.9 0.299*** 0.234** 92 150 3.1 0.314*** 0.059 92

(0.130) (0.117) 578 12.0 (0.113) (0.104) 578 9.0 (0.119) (0.010) 0.78

Broad Caliper
1 -0.020 0.059 159 333 5.2 0.006 0.151** 163 332 4.2 -0.022 0.026 164

(0.090) (0.090) 1122 28.0 (0.082) (0.082) 1122 21.0 (0.054) (0.004) 1.46
3 0.158 0.253** 158 308 5.1 0.164* 0.204*** 163 307 4.1 0.206*** 0.031 162

(0.117) (0.110) 1116 34.0 (0.101) (0.086) 1116 24.0 (0.067) (0.004) 1.26
5 0.179** 0.054 148 285 5.2 0.192*** 0.205*** 150 283 4.0 0.221*** 0.035 152

(0.089) (0.090) 1084 32.0 (0.075) (0.081) 1084 20.0 (0.072) (0.005) 1.56
7 0.228** 0.219** 130 242 4.5 0.256*** 0.269*** 134 242 3.8 0.278*** 0.044 134

(0.112) (0.101) 959 32.0 (0.103) (0.088) 959 21.0 (0.076) (0.004) 1.10
9 0.362*** 0.271*** 99 188 4.7 0.361*** 0.297*** 101 188 3.9 0.327*** 0.057 102

(0.152) (0.117) 730 27.0 (0.107) (0.104) 730 16.0 (0.113) (0.008) 0.85

Standard errors are in parentheses. Stars denote statistical significance in a two-sided test, *: 10%, **: 5%, ***: 1%. The weighting schemes
take account of the NLSY sample weights. The first columns of the full matching algorithms show estimates of the mean effect of treatment on
the treated while the second show the mean effect on a randomly assigned person. For greedy pair matching, simulation standard deviations
are additionally reported in an own column. Columns denoted by S, T, and C display the number of strata, of treated, and of control units,
respectively. For pair matching all three numbers are equal, simulation standard deviations for S are reported. Finally, columns titled “Mean”
and “Max” show the mean and maximum number of treated units in strata that comprise more than one treated, respectively.
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Table 2.3: Estimated Effects. Matching on the p.score, Within caliper: Mahalanobis.

Optimal Full Greedy Full Greedy Pair
On the On R’d S T Mean On the On R’d S T Mean Simul. S

Year Treated Assigned C Max Treated Assigned C Max Effect Error Error

Narrow Caliper
1 0.023 0.025 153 287 4.9 0.019 0.010 151 286 3.9 -0.027 0.019 152

(0.090) (0.077) 898 27.0 (0.087) (0.074) 898 27.0 (0.059) (0.003) 1.07
3 0.214*** 0.209*** 151 250 3.9 0.172*** 0.151** 151 249 3.5 0.143** 0.020 150

(0.078) (0.087) 880 17.0 (0.071) (0.075) 880 16.0 (0.061) (0.003) 1.14
5 0.219*** 0.119 139 230 3.9 0.225*** 0.094 137 229 3.4 0.162** 0.030 138

(0.075) (0.090) 893 14.0 (0.075) (0.082) 893 12.0 (0.073) (0.004) 1.19
7 0.298*** 0.258*** 123 197 4.9 0.302*** 0.238*** 122 196 3.4 0.216*** 0.028 123

(0.093) (0.097) 789 15.0 (0.090) (0.090) 789 12.0 (0.074) (0.005) 0.85
9 0.318*** 0.286*** 91 151 4.2 0.304*** 0.253*** 92 151 3.2 0.249*** 0.041 92

(0.121) (0.118) 578 14.0 (0.104) (0.109) 578 10.0 (0.097) (0.007) 0.97

Broad Caliper
1 0.028 0.232*** 167 333 5.4 0.002 0.140* 165 333 4.1 -0.003 0.021 166

(0.086) (0.097) 1122 25.0 (0.078) (0.079) 1122 20.0 (0.056) (0.006) 1.70
3 0.177* 0.248*** 166 308 4.9 0.162* 0.196*** 168 308 3.9 0.165*** 0.037 166

(0.111) (0.099) 1116 29.0 (0.094) (0.082) 1116 21.0 (0.057) (0.006) 1.62
5 0.174** 0.243*** 156 285 4.9 0.216*** 0.196*** 158 285 4.0 0.142** 0.025 156

(0.085) (0.101) 1084 27.0 (0.075) (0.081) 1084 14.0 (0.069) (0.004) 0.95
7 0.261*** 0.309*** 138 242 5.0 0.275*** 0.283*** 137 242 3.6 0.232*** 0.036 137

(0.107) (0.104) 959 27.0 (0.086) (0.085) 959 17.0 (0.064) (0.004) 0.78
9 0.372*** 0.352*** 104 188 4.7 0.324*** 0.292*** 103 187 3.8 0.263*** 0.043 103

(0.142) (0.125) 730 22.0 (0.114) (0.104) 730 13.0 (0.090) (0.007) 1.42

Standard errors are in parentheses. Stars denote statistical significance in a two-sided test, *: 10%, **: 5%, ***: 1%. The weighting schemes
take account of the NLSY sample weights. The first columns of the full matching algorithms show estimates of the mean effect of treatment on
the treated while the second show the mean effect on a randomly assigned person. For greedy pair matching, simulation standard deviations
are additionally reported in an own column. Columns denoted by S, T, and C display the number of strata, of treated, and of control units,
respectively. For pair matching all three numbers are equal, simulation standard deviations for S are reported. Finally, columns titled “Mean”
and “Max” show the mean and maximum number of treated units in strata that comprise more than one treated, respectively.



C
hapter

2:
M
atchin

g
the

E
xtrem

es
28

Table 2.4: Estimated Effects. Matching on the index, Within caliper: index.

Optimal Full Greedy Full Greedy Pair
On the On R’d S T Mean On the On R’d S T Mean Simul. S

Year Treated Assigned C Max Treated Assigned C Max Effect Error Error

Narrow Caliper
1 0.001 0.010 159 300 4.5 0.033 0.024 166 299 3.8 -0.008 0.017 165

(0.079) (0.062) 669 19.0 (0.088) (0.062) 669 19.0 (0.055) (0.005) 1.65
3 0.199*** 0.205*** 160 268 4.1 0.230*** 0.186*** 167 268 3.2 0.232*** 0.030 166

(0.076) (0.073) 692 18.0 (0.071) (0.067) 692 15.0 (0.067) (0.006) 1.67
5 0.202*** 0.093 148 249 4.4 0.205*** 0.098 151 249 3.5 0.216*** 0.033 153

(0.072) (0.071) 712 15.0 (0.070) (0.070) 712 12.0 (0.072) (0.004) 1.48
7 0.284*** 0.249*** 130 214 3.8 0.278*** 0.246*** 135 214 3.3 0.264*** 0.034 136

(0.090) (0.079) 635 15.0 (0.079) (0.078) 635 12.0 (0.075) (0.004) 1.09
9 0.354*** 0.239*** 99 165 3.9 0.339*** 0.262*** 102 165 3.0 0.310*** 0.040 102

(0.127) (0.101) 465 14.0 (0.104) (0.097) 465 11.0 (0.111) (0.007) 1.06

Broad Caliper
1 -0.017 0.019 167 340 5.1 0.077 0.053 189 339 3.9 0.021 0.025 190

(0.087) (0.072) 878 25.0 (0.079) (0.064) 878 18.0 (0.053) (0.003) 1.31
3 0.162 0.200** 164 322 5.2 0.192** 0.174*** 185 322 3.7 0.235*** 0.029 184

(0.116) (0.087) 865 34.0 (0.090) (0.068) 865 18.0 (0.064) (0.006) 2.26
5 0.192** 0.072 153 301 5.4 0.205*** 0.113* 173 300 3.8 0.236*** 0.024 175

(0.092) (0.078) 874 32.0 (0.063) (0.069) 874 13.0 (0.066) (0.003) 2.92
7 0.248** 0.245*** 134 258 4.9 0.310*** 0.276*** 151 257 3.4 0.290*** 0.044 153

(0.111) (0.091) 788 31.0 (0.088) (0.082) 788 12.0 (0.071) (0.004) 1.80
9 0.356*** 0.253*** 104 195 4.8 0.366*** 0.274*** 118 194 3.2 0.341*** 0.051 116

(0.152) (0.105) 621 27.0 (0.109) (0.093) 621 9.0 (0.107) (0.008) 1.55

Standard errors are in parentheses. Stars denote statistical significance in a two-sided test, *: 10%, **: 5%, ***: 1%. The weighting schemes
take account of the NLSY sample weights. The first columns of the full matching algorithms show estimates of the mean effect of treatment on
the treated while the second show the mean effect on a randomly assigned person. For greedy pair matching, simulation standard deviations
are additionally reported in an own column. Columns denoted by S, T, and C display the number of strata, of treated, and of control units,
respectively. For pair matching all three numbers are equal, simulation standard deviations for S are reported. Finally, columns titled “Mean”
and “Max” show the mean and maximum number of treated units in strata that comprise more than one treated, respectively.
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Table 2.5: Estimated Effects. Matching on the index, Within caliper: Mahalanobis.

Optimal Full Greedy Full Greedy Pair
On the On R’d S T Mean On the On R’d S T Mean Simul. S

Year Treated Assigned C Max Treated Assigned C Max Effect Error Error

Narrow Caliper
1 0.046 0.035 173 300 4.8 0.027 0.024 172 300 3.7 -0.014 0.030 172

(0.083) (0.063) 669 19.0 (0.081) (0.060) 669 19.0 (0.054) (0.005) 1.89
3 0.212*** 0.169*** 173 268 4.3 0.178*** 0.159*** 171 268 3.2 0.154** 0.032 172

(0.074) (0.067) 692 18.0 (0.067) (0.062) 692 16.0 (0.058) (0.004) 1.40
5 0.180*** 0.133* 158 249 4.1 0.177*** 0.093 158 249 3.2 0.126* 0.027 157

(0.069) (0.075) 712 14.0 (0.061) (0.067) 712 10.0 (0.065) (0.004) 1.62
7 0.290*** 0.257*** 141 214 4.3 0.280*** 0.244*** 140 214 3.1 0.215*** 0.037 140

(0.087) (0.081) 635 15.0 (0.076) (0.076) 635 9.0 (0.066) (0.006) 1.24
9 0.312*** 0.282*** 106 165 4.0 0.280*** 0.252*** 104 165 3.1 0.220** 0.042 105

(0.109) (0.103) 465 14.0 (0.100) (0.096) 465 11.0 (0.087) (0.007) 0.92

Broad Caliper
1 0.036 0.055 195 340 5.1 0.005 0.040 207 340 3.5 0.023 0.027 202

(0.074) (0.068) 878 19.0 (0.068) (0.062) 878 15.0 (0.053) (0.003) 2.15
3 0.165* 0.147** 193 322 5.0 0.168** 0.154** 195 322 3.5 0.151*** 0.032 198

(0.092) (0.072) 865 19.0 (0.087) (0.065) 865 16.0 (0.052) (0.003) 1.78
5 0.211*** 0.141* 179 301 4.6 0.207*** 0.130** 186 301 3.2 0.188*** 0.028 185

(0.075) (0.079) 874 18.0 (0.059) (0.068) 874 10.0 (0.062) (0.003) 1.87
7 0.316*** 0.295*** 158 258 4.8 0.260*** 0.259*** 163 254 3.1 0.228*** 0.037 162

(0.098) (0.091) 788 16.0 (0.072) (0.077) 788 9.0 (0.066) (0.006) 1.84
9 0.302*** 0.264*** 121 195 4.5 0.358*** 0.276*** 125 195 3.1 0.199** 0.034 123

(0.118) (0.104) 621 13.0 (0.095) (0.093) 621 7.0 (0.089) (0.007) 1.44

Standard errors are in parentheses. Stars denote statistical significance in a two-sided test, *: 10%, **: 5%, ***: 1%. The weighting schemes
take account of the NLSY sample weights. The first columns of the full matching algorithms show estimates of the mean effect of treatment on
the treated while the second show the mean effect on a randomly assigned person. For greedy pair matching, simulation standard deviations
are additionally reported in an own column. Columns denoted by S, T, and C display the number of strata, of treated, and of control units,
respectively. For pair matching all three numbers are equal, simulation standard deviations for S are reported. Finally, columns titled “Mean”
and “Max” show the mean and maximum number of treated units in strata that comprise more than one treated, respectively.
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Table 2.6: Balance of Covariates, Aggregate Measures.

Optimal Full Greedy Full Greedy Pair
Match Within Caliper

on Caliper Width Mean -1 Math Educ ∆p̂ Mean -1 Math Educ ∆p̂ Mean -1 Math Educ ∆p̂

p.score p.score narrow 82 90 98 89 -.09 84 89 98 88 -.09 85 90 97 93 -.24
p.score p.score broad 76 89 98 85 -.05 78 87 95 81 -.05 87 91 98 91 -.22
p.score Mahal narrow 81 88 96 85 -.09 84 88 98 87 -.09 86 90 97 91 -.24
p.score Mahal broad 74 87 98 77 -.05 79 87 94 79 -.05 87 90 97 87 -.22
index p.score narrow 81 92 98 91 -.09 85 91 98 88 -.09 87 91 98 92 -.23
index p.score broad 75 90 98 84 -.04 83 90 91 79 -.04 89 91 97 87 -.20
index Mahal narrow 80 89 98 91 -.09 86 91 97 95 -.09 88 91 98 93 -.22
index Mahal broad 80 88 93 77 -.04 85 88 88 77 -.04 85 87 93 85 -.18

The first three columns specify the sensitivity parameters. The first column of each matching algorithm represents mean overall percent bias reduction,
the second is the mean reduction when the variable born in south is disregarded. The third and fourth display bias reduction in math scores and in
parents’ education, respectively. The fifth column reports the difference in mean propensity scores between treated units before and after matching.
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are not in the sample for the whole nine-year period after college. In 1994, the last year

in the panel, some individuals – especially younger ones – are just in their, say, seventh

year after college.

The estimates of all tables indicate a clear upward trend in the effects. While the

effect of the bachelor’s degree (in short BA) on BA holders in the first year after college

is not significantly different from zero, it rises up to 35% in the ninth year. Chapter 4

underscores that part of the increase can be explained by the fact that college graduates

accumulate experience more quickly after leaving college than high school graduates.

However, interaction between labor market experience and schooling does not appear to

be existent.

Estimation results for (α, β, γ) are omitted since they would occupy too much space

without gaining further insight. The results can easily be summarized as follows. α̂

and γ̂ are almost always positive in the ten years after college, β̂ oscillates around zero.

Nonetheless, never are they statistically significant. Chapter 4 pools all ten years and finds

statistical significance for α̂ and γ̂, i.e. math test scores seem to have some positive impact

on the effect of a bachelor’s degree and individuals who receive their degree more recently

experience a higher effect. In contrast, parents’ education appears to be negligible.

Table 2.6 is dedicated to the balancing properties of the matching algorithms. Since

there are numerous variables and ten years after college, i.e. ten stratifications, some

aggregate measures of balance are introduced to facilitate assessment. Tables in appendix

C report detailed results. First, an average over all percent bias reductions in each variable

and for each year after college is calculated. Then, the weighted average over all ten years

is reported under the heading “Mean”. The weights correspond to the number of strata in

each year. As can be seen in the appendix tables, the matching algorithms, particularly

the full ones, face severe problems in balancing the variable born in south, actually, they

even tend to worsen its balance. Therefore, the columns headed “-1” report the average

percent bias reduction disregarding born in south.

The third and fourth columns for each algorithm show mean percent bias reductions for

the presumably most important single variables math scores and parents’ education. Math
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scores exhibit the highest t-value in the probit estimation (appendix A). Also, they are

important determinants of wages as documented in other studies (Blackburn & Neu-

mark, 1993, or Murnane, Willett & Levy, 1995). Parents’ education exhibits the

second largest t-value. Finally, the last columns headed ∆p̂ display the propensity score

difference between treated individuals before and after matching. A negative sign points

to a systematic loss of treated units in the high end of the propensity score distribution

and, thus, to a possible bias in the estimates if the treatment effect is heterogeneous.

Specific Comparisons

Optimal Vs. Greedy Full. The greedy full algorithm as constructed in this study

achieves to produce a more favorable, i.e. a more uniform, stratification. This is expressed

by the mean and maximum number of units in strata consisting of more than one treated

which is smaller for greedy matching. The number of strata is slightly larger in the greedy

case, especially when calipers are broad. This pattern is more pronounced for index score

matching. Though, the estimates are not very distinct. As noted in Gu & Rosenbaum

(1993), this might be because greedy and full use the same individuals even though the

specific stratification differs. As a result, a good greedy algorithm need not be inferior to

the optimal one.14

Surprisingly, overall balance is somewhat superior for greedy full matching, too. The

main reason is that the optimal one faces severe problems in balancing the variable born in

south. Disregarding this variable, balancing success is more or less equal.15 This finding

is in line with Gu & Rosenbaum (1993) who observe that when it comes to balance,

optimal matching seems to have no advantage over greedy matching. Yet, notice that

optimal matching tends to better balance math scores.

Full Vs. Pair Matching. Greedy pair matching is performed twenty times. The

14Alas, the greedy algorithm as programmed by the author consumes considerably more time than the
optimal – a factor between 50 and 100.

15A weakly significant interaction between parents’ education and born in south has been included in the
probit estimation, but improvements were not attained; other interactions were statistically insignificant.
Moreover, exact matching on born in south reduced the matched sample size to roughly 80%, though,
the number of strata did not diminish much; estimates of the treatment effects increased slightly.
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averages and standard deviations over all twenty repetitions are reported in the tables. It

produces approximately the same number of strata as greedy full matching, i.e. the effec-

tive sample size is constant across algorithms, nevertheless, standard errors are smaller

for pair matching. This is because, in contrast with full matching, stratification is most

uniform.

In case of pair matching, there is no reason to distinguish between the two treatment

effect parameters for two reasons. First, there is only one weighting scheme for pair

matching and, second, since the majority of treated and untreated units are not matched,

on a priori grounds, identification of the respective population parameters is doubtful

anyway. These doubts are substantiated when one considers ∆p̂ in table 2.6. As expected,

on the one hand, pair matching produces the most favorable balance but, on the other,

the loss of treated units with high propensity scores is dramatic.

This systematic loss may well be a reason why pair matching estimates are generally

lower than the full matching estimates of the effect on the treated. Though, the differences

are small and statistically insignificant. Almost exclusively for Mahalanobis-within-caliper

distance are pair matching estimates lower than on-the-treated-effect estimates and some-

times lower than the on-a-randomly-assigned-effect estimates. Thus, the results do not

point to strong heterogeneity in the treatment effects. Similarly, coefficient estimates of

α – as noted above – are positive in all ten years but almost never significantly so. In

such a case pair matching seems to be a superior strategy. However, large variation of the

results caused by the inherent randomness of the greedy algorithm should be overcome

by using an optimal pair matching approach. Alternatively, restrictions on the stratum

sizes might be imposed on full matching approaches in order to achieve a more uniform

stratification.

Effect on the Treated Vs. Effect on a Randomly Assigned Person. The effect

on a randomly assigned person appears to be lower than the effect on the treated in almost

all specifications. The difference is never statistically significant and might therefore be

interpreted as only weak evidence in favor of heterogeneous effects. Yet, the results do

not contradict the hypothesis that individuals opt for higher education taking account
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of their expected gains from education inter alia. Results of the effect on a randomly

assigned person are more or less of the same magnitude as results of the greedy pair

matching. When Mahalanobis is within-caliper distance greedy pair matching estimates

are, on average, lower; when the propensity score distance is chosen they are higher.

Narrow Vs. Broad Calipers. Broad calipers produce more strata because less

treated and untreated units have to be dropped. The difference in the number of strata

is more pronounced when the Mahalanobis distance is used within calipers. Nonetheless,

estimates do not differ systematically and standard errors are not lower for the broad

calipers case because the larger amount of strata is offset by a substantially reduced

uniformity across strata, especially for optimal full matching. It is not offset for pair

matching where standard errors do decrease.

For the full matching algorithms, percent bias reduction is larger for narrow than for

broad calipers. For pair matching, the discrepancy is negligible. However, once born in

south is disregarded, narrow and broad calipers produce an overall balance close to equal.

A clear distinction can be made with respect to ∆p̂; narrow calipers put more obstacles

on high-score treated individuals in finding an adequate control which is why ∆p̂ is more

negative.

Within-Caliper Distance: Score Vs. Mahalanobis. While estimation results

of the effect on the treated do not differ much, estimates of the effect on a randomly

assigned person are higher using the Mahalanobis distance. The reason for this divergence

is unclear. Moreover, the Mahalanobis case tends to supply more strata, though based on

the same number of treated and untreated units. This observation is especially evident for

index score matching. As a result, standard errors tend to be lower in the Mahalanobis

case.

Matching on the Propensity Score Vs. on the Index. The most striking dif-

ference is the number of controls used for stratification. Index score matching drops

numerous untreated units consistent with table 2.1. For instance, in the first year, index

matching utilizes over 200 controls less than propensity score matching. Because of that,

it is dubious whether index matching really identifies the effect on a randomly assigned
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person. Though, a clear distinction between estimates can hardly be established except

for the fact that standard errors of the randomly-assigned-effect estimates are lower for

index matching. The reason is that the mean number of controls in low-score strata,

which typically consist of numerous controls, is smaller for index than for propensity

score matching. With regard to balance there seems to be no discrepancy noteworthy.

2.5 Discussion and Conclusion

This chapter addresses the sensitivity with respect to various decisions that have to be

made in practical implementations of the method of matching. Observational data from

the NLSY79 are employed for illustration. The treatment group comprises individuals

who obtained a bachelor’s degree while controls are drawn from the pool of individuals

with only a high school diploma. It turns out that selection into college is extremely

strong. Thus, bias in the relevant covariates prior to treatment is unusually large and

matching becomes a serious challenge.

Sensitivity of the decision parameters as to the estimated treatment effects appears to

be rather modest. Systematic variation in the estimates caused by variation of the distance

measures between treated and untreated units or by altering matching algorithms is minor

and statistically insignificant. Therefore, one can generally conclude that the effect of a

bachelor’s degree on BA holders is fairly low immediately after leaving college but rises

during the first ten years after college completion. In the ninth year it approaches 30%.

Roughly 80% of the initial bias in the observable covariates is removed by full matching

algorithms and 87% by pair matching. However, the latter produces a matched sample

which excludes many high-score treated individuals.

A distinction is made between the effect of treatment on the treated, i.e. the BA holder,

and the effect on a randomly assigned person. Identification of these two parameters is a

matter of applying the appropriate weighting scheme when averaging over single stratum

effects. The two parameters might differ if treatment effects are heterogeneous. Results

suggest that the mean effect on a treated person is somewhat larger than that on an
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average person. Yet, since the deviations are statistically imprecise there is only weak

evidence in favor of systematic heterogeneity. A full matching of all individuals automat-

ically delivers appropriate weighting schemes while additional distributional information

would be necessary for pair matching. Therefore, no distinction is made for the latter.

Pair matching estimates tend to be, on average, slightly lower than estimates of the mean

effect on the treated. Although results are again very imprecise, they are in line with the

overall picture. Pair matching drops countless high-propensity-score treated individuals

and, therefore, yields estimates closer to the randomly-assigned-person estimates which

put more weight on low-score strata.

Alas, heterogeneity is too weak to unanimously favor full matching since its disad-

vantages clearly emerge. Full matching estimates are accompanied by relatively large

standard errors because the full stratification is far from being as uniform as pair match-

ing. For example, the more strata consist of a large amount of treated units sharing

only one control the higher estimated standard errors of the on-the-treated-estimates are.

Surprisingly, the greedy full matching algorithm as proposed in this study achieves to

produce more uniformity across strata than its optimal counterpart.

However, greedy algorithms, specifically greedy pair, yield estimation results that de-

pend on the random initial order of records. This unpleasant disadvantage can easily be

overcome by using an optimal algorithm. The superior uniformity of the special greedy

full algorithm used here might also be copied by an optimal procedure when restrictions

on the maximum number of units within each stratum would be imposed or when the

caliper width would be reduced. See also Ming & Rosenbaum (2000) for a related

discussion. Further note that using the Mahalanobis distance within calipers generates

more strata from the same number of units than using the propensity score distance, in

other words, the first constructs a more uniform stratification.

Furthermore, matching on the linear index score might be preferred since it drops

numerous untreated units at the low end of the propensity score scale who would all

be used in matching on the propensity score. Dropping them helps generate a more

uniform stratification with respect to the estimation of the randomly-assigned-effect. For



Chapter 2: Matching the Extremes 37

index matching, however, the distribution of matched controls across strata might not be

representative of the initial distribution in the comparison group anymore.

In sum, in finite samples with strong selection into treatment and substantial het-

erogeneity, there is a trade-off between bias and variance. To remove bias in covari-

ates between treatment and control group and, specifically, to maintain similarity of the

matched sample with the initial population, strata tend to be less uniform, thus increasing

the variance. On the other hand, a uniform stratification, though, is accompanied by a

considerable reduction of the sample size, so bias might be severe. In contrast, from an

asymptotic point of view, removing bias would be the strictly recommended strategy. In

this study, pair matching has done a good job because heterogeneity does not seem to be

very important. Consequently, heterogeneity should be checked in empirical applications

with strong selection in order to be able to decide among certain matching algorithms.



Chapter 2: Matching the Extremes 38

Appendix A: The Probit Estimations

Appendix A discusses the estimation of the propensity score by a probit model. Table

2.7 displays the results. The model includes several covariates that reflect socioeconomic

background and variables characterizing the high school career. Furthermore, it comprises

two ability variables: scores on math and auto and shop information tests (adjusted for

age). The first tend to capture academic while the second tend to capture non-academic

abilities. See also the classification in Blackburn & Neumark (1995). Two variables

are generated in the following way. Parents’ education is the mean of the father’s and

mother’s education, it is the mother’s if the father’s is missing and vice versa. The

variable parents’ occupational status is a binary variable indicating the social status of

parents’ occupation – high or low – which is the mean of the mother’s and father’s status.

It is only the father’s if the mother’s is missing and vice versa.

Table 2.7: Probit Estimation Results.

Variables Mean Coeff. t-value P-value
Black 0.263 0.274 1.971 0.049
Hispanic 0.091 0.256 1.443 0.149
Math test scores -0.442 0.098 15.384 0.000
Auto and shop test scores 4.911 -0.018 -2.857 0.004
Attended private school 0.052 0.432 2.397 0.017
Ever expelled or suspended from school 0.272 -0.536 -4.314 0.000
High school curriculum: college preparatory 0.288 0.972 6.392 0.000
High school curriculum: general program 0.509 0.358 2.439 0.015
Parents’ education 11.185 0.154 6.857 0.000
Parents’ occup. status high when resp. was 14 0.129 0.432 2.361 0.018
Number of siblings 3.600 -0.065 -2.796 0.005
Born in the south 0.365 0.346 3.333 0.001
Constant 1.000 -3.142 -9.750 0.000

Observations 1792
χ2(12) 1046.4
Overall p-value 0.000
Pseudo R2 0.518

All variables with “yes/no” answers are dummy variables with 1 for “yes” and 0 for “no”.
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Except for Hispanic all variables are statistically significant at conventional levels.

Family income is not included because (a) there are countless missing observations and

(b) it is not significant at a 70%-level. This surprising result might be explained by the

fact that other socioeconomic background variables seem to capture already the effect

of family income. Furthermore, note that the more variables are included, especially

insignificant ones, the more missing observations occur which should be avoided in a

data-hungry non-parametric technique such as matching.

Apparently, selection into college is fairly strong confirmed by other studies, too.

Ashenfelter & Rouse (1998a) report that (observed and unobserved) family back-

ground explains about 60% of the variance in schooling attainment and Murnane, Wil-

lett & Levy (1995) assert that math test scores are a strong predictor of subsequent

educational attainment.

Appendix B: An Alternative “One-Step-Model”

Estimation of the parameter vector δ as outlined in this chapter is a two-step approach.

This appendix concentrates on the mean effect of treatment on the treated and presents

a one-step approach to be compared to the two-step approach. It clarifies why the latter

is preferred in this chapter.

The Two-Step Approach

In the first step, the stratum effects ∆s are estimated for all s according to the following

equation

Rsi = rsi +∆sZsi. (2.8)

rsi is the outcome of individual i in stratum s if there is no treatment effect. It can be

written as the sum of a stratum effect rs and an individual effect r̃si with
∑ns

i=1 r̃si = 0,

thus, rsi = rs + r̃si.

Introduce some useful notation. First, define a stratum-to-individual-transformation-
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matrix Γ

Γ =



1 · · · 1 0 · · · 0 · · · 0 · · · 0
0 · · · 0 1 · · · 1 · · · 0 · · · 0

. . .
0 · · · 0 0 · · · 0 · · · 1 · · · 1




′

of format N×S that contains 1’s in the sth column if individual i, i.e. row i, belongs to

stratum s and 0’s otherwise. Furthermore, define S×1-vectors r and ∆ consisting of rs

and ∆s, respectively. Let R be an N×1-vector of all individual Rsi ordered by strata,

likewise, r̃ be the N×1-vector of r̃si, and, finally, let Z be an N×N -diagonal matrix with

diagonal elements Zsi ordered by strata. Then, equation (2.8) can be rewritten as

R = Γr+ ZΓ∆+ r̃,

and

∆̂ = (Γ′ZMΓZΓ)
−1Γ′ZMΓR,

withMΓ being the “residual maker” in each stratum: MΓ = IN −Γ(Γ′Γ)−1Γ′, IN being the

N×N -identity matrix. Define Q = (Γ′ZMΓZΓ) which turns out to be an S×S-diagonal
matrix with diagonal elements ms(ns−ms)

ns
. It can be shown that ∆̂s =

ns

ms(ns−ms)
(Z′

sRs −
msR̄s) reproducing equation (2.1).

In the second step, the estimated stratum effects are regressed on (As, Fs, Ys), and a

constant to obtain an estimate for δ. Let (As, Fs, Ys) be measured as deviations from

their overall means. The regression is weighted by stratum weights ωs = ms, ignoring the

NLSY sample weights. Further let W be the S×S-diagonal matrix of weights and H be

the S×4-matrix (1 A F Y), then δ is estimated by

δ̂ = (H ′WH)−1H ′W∆̂.

The One-Step Approach

A formulation that incorporates all steps in one leads to the following equation

Rsi = rs + (τ + αAs + βFs + γYs)Zsi + r̃si,
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alternatively,

R = Γr+ ZΓHδ + r̃.

An estimate for δ is

δ̂1 = (H ′Γ′ZMΓZΓH)−1H ′Γ′ZMΓR

= (H ′QH)−1H ′Q∆̂ 	= δ̂

Consistency of the estimates. Since δ̂ = (H ′WH)−1H ′WQ−1Γ′ZMΓ(ZΓHδ +

r̃) = δ + (H ′WH)−1H ′WQ−1Γ′Z r̃, δ̂ is consistent if 1
S
(H ′WH) does not vanish as S

tends to infinity and if 1
S
H ′WQ−1Γ′Z r̃ tends to zero. WQ−1 is an S×S-diagonal matrix

with elements 1
1−ms/ns

which remain finite provided the relation between treated and

control individuals remains finite. Likewise, δ̂1 = (H ′QH)−1H ′Γ′ZMΓ(ZΓHδ + r̃) =

δ + (H ′QH)−1H ′Γ′Z r̃; δ̂1 is consistent if 1
S
(H ′QH) does not vanish and 1

S
H ′Γ′Z r̃ tends

to zero as S → ∞.

Variances. Consider δ̂ − δ = (H ′WH)−1H ′WQ−1Γ′Z r̃. Note that Γ′Z r̃ is an S×1-

vector of the elements
∑ns

i=1 Zsi(rsi−rs) and V ar (
∑ns

i=1 Zsirsi) =
ms(ns−ms)
ns(ns−1)

∑ns

i=1(rsi−r̄s)2.
Thus,

V ar(δ̂) = (H ′WH)−1H ′WV (δ)WH(H ′WH)−1,

with the S×S-diagonal matrix V (δ) and diagonal elements ns

ms(ns−ms)(ns−1)

∑ns

i=1(rsi − rs)2

as already mentioned in equation (2.6). Analogously, the variance of δ̂1 turns out

V ar(δ̂1) = (H ′QH)−1H ′QV (δ)QH(H ′QH)−1.

Why the Two-Step Estimator Is Preferred? While δ̂ weights the strata by the

number of its treated ms, δ̂1 weights each stratum by ms(ns−ms)
ns

. If ms is either 1 or

ns − 1, the weights become 1 − 1
ns

which increase with the number of individuals ns in

stratum s irrespective of how many treated units there are. However, when focus is on

the mean effect of treatment on the treated each stratum should be weighted according to

the number of its treated units, consequently, the two-step procedure is to be preferred.
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Appendix C: Detailed Balance of Covariates

Tables 2.8 to 2.11 display the balancing properties for all covariates and for all eight

sensitivity specifications. They show the means of covariates by treatment status before

and after matching. The latter are weighted averages over all stratifications of the ten

years after college. The weights correspond to the number of strata in each year. The

means are compared by a conventional t-test under the assumption of equal variances in

both groups. A “1” indicates that the means are not significantly different. Fractions are

due to averaging. Moreover, the percent bias reduction is shown for each variable and as

an average over all variables. Since the full matching algorithms face severe problems in

balancing the variable born in south, the last row displays the average over all variables

when it is excluded.
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Table 2.8: Balance of Covariates: Matching on the p.score, Within calipers: p.score.
Initially Optimal Full Greedy Full Greedy Pair

C T t C T t % C T t % C T t %

Narrow Caliper

Propensity score 0.11 0.67 0 0.57 0.58 1.00 99 0.57 0.58 1.00 99 0.43 0.43 1.00 100

Index score -1.77 0.61 0 0.17 0.21 1.00 99 0.16 0.21 1.00 98 -0.28 -0.27 1.00 100

Black 0.30 0.16 0 0.15 0.15 1.00 100 0.15 0.15 1.00 100 0.23 0.23 1.00 100

Hispanic 0.10 0.07 1 0.04 0.04 1.00 100 0.04 0.04 1.00 100 0.06 0.06 1.00 100

Age 17.50 17.65 1 17.89 17.85 1.00 70 17.90 17.85 1.00 63 17.82 17.79 1.00 75

Year of high school diploma 79.37 78.74 0 78.57 78.54 1.00 94 78.56 78.54 1.00 95 78.64 78.66 1.00 95

Math test scores -3.95 10.02 0 8.35 8.36 1.00 98 8.20 8.35 1.00 98 5.25 5.02 1.00 97

Auto+shop test scores 3.88 7.98 0 7.95 7.78 1.00 94 8.02 7.79 1.00 94 7.62 6.54 1.00 73

Attended private school 0.03 0.12 0 0.11 0.09 1.00 80 0.11 0.09 1.00 79 0.08 0.08 1.00 83

Expelled or susp. from school 0.33 0.10 0 0.14 0.11 0.71 88 0.16 0.11 0.71 82 0.15 0.14 1.00 94

Curriculum: college prepar. 0.16 0.67 0 0.60 0.57 1.00 93 0.62 0.57 1.00 91 0.49 0.46 1.00 94

Curriculum: general 0.59 0.28 0 0.33 0.37 1.00 86 0.31 0.37 1.00 82 0.41 0.44 1.00 88

Highest grades of parents 10.50 13.21 0 12.44 12.59 1.00 89 12.40 12.60 0.55 88 11.93 12.03 1.00 93

Occupation parents high 0.08 0.29 0 0.24 0.22 1.00 94 0.24 0.23 1.00 92 0.18 0.18 1.00 94

Number of siblings 3.92 2.64 0 2.80 2.75 1.00 90 2.79 2.75 1.00 91 2.93 2.82 1.00 88

Born in south 0.38 0.33 1 0.25 0.30 0.88 -27 0.27 0.30 1.00 18 0.31 0.34 1.00 17

Mean percent bias reduction 82 84 85
– born in south excluded 90 89 90

Broad Caliper

Propensity score 0.11 0.67 0 0.61 0.62 1.00 98 0.59 0.62 1.00 95 0.43 0.45 1.00 98

Index score -1.77 0.61 0 0.27 0.37 1.00 96 0.20 0.37 0.31 93 -0.25 -0.22 1.00 98

Black 0.30 0.16 0 0.17 0.17 1.00 100 0.17 0.17 1.00 100 0.24 0.24 1.00 100

Hispanic 0.10 0.07 1 0.04 0.04 1.00 100 0.04 0.04 1.00 100 0.08 0.08 1.00 100

Age 17.50 17.65 1 17.91 17.89 1.00 73 17.97 17.89 1.00 45 17.83 17.82 1.00 79

Year of high school diploma 79.37 78.74 0 78.57 78.50 1.00 89 78.53 78.50 1.00 93 78.63 78.63 1.00 94

Math test scores -3.95 10.02 0 8.97 9.04 1.00 98 8.34 9.05 0.95 95 5.33 5.24 1.00 98

Auto+shop test scores 3.88 7.98 0 7.14 7.63 1.00 88 7.20 7.65 1.00 89 7.34 6.44 1.00 78

Attended private school 0.03 0.12 0 0.10 0.10 1.00 78 0.11 0.10 1.00 78 0.08 0.08 1.00 83

Expelled or susp. from school 0.33 0.10 0 0.13 0.11 0.83 89 0.14 0.11 0.71 86 0.14 0.15 1.00 93

Curriculum: college prepar. 0.16 0.67 0 0.65 0.63 1.00 94 0.65 0.63 1.00 94 0.50 0.47 1.00 94

Curriculum: general 0.59 0.28 0 0.29 0.32 1.00 88 0.28 0.32 1.00 84 0.40 0.43 1.00 90

Highest grades of parents 10.50 13.21 0 12.36 12.76 0.37 85 12.25 12.76 0.37 81 11.88 12.10 1.00 91

Occupation parents high 0.08 0.29 0 0.23 0.24 1.00 91 0.24 0.24 1.00 93 0.18 0.17 1.00 93

Number of siblings 3.92 2.64 0 2.79 2.76 1.00 90 2.77 2.76 1.00 91 2.93 2.82 1.00 88

Born in south 0.38 0.33 1 0.23 0.32 0.11 -99 0.25 0.32 0.76 -37 0.32 0.34 1.00 38

Mean percent bias reduction 76 78 87
– born in south excluded 89 87 91

For reasons of parsimony, weighted averages over all ten years after college are shown. Weights correspond to the number of strata in each year after
college. C denotes the control or comparison units while T represents treated units, t indicates whether a t-test accepts balance of covariates (t = 1),
and % represents the percent bias reduction. The last two rows report the simple average over all single percent bias reductions excluding those of the
propensity and index score.
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Table 2.9: Balance of Covariates: Matching on the p.score, Within calipers: Mahalanobis.
Initially Optimal Full Greedy Full Greedy Pair

C T t C T t % C T t % C T t %

Narrow Caliper

Propensity score 0.11 0.67 0 0.57 0.58 1.00 99 0.57 0.58 1.00 98 0.43 0.43 1.00 99

Index score -1.77 0.61 0 0.17 0.21 1.00 98 0.15 0.21 1.00 98 -0.30 -0.27 1.00 99

Black 0.30 0.16 0 0.15 0.15 1.00 100 0.15 0.15 1.00 100 0.23 0.23 1.00 100

Hispanic 0.10 0.07 1 0.04 0.04 1.00 100 0.04 0.04 1.00 100 0.06 0.06 1.00 100

Age 17.50 17.65 1 17.89 17.85 1.00 69 17.92 17.84 1.00 49 17.82 17.77 1.00 63

Year of high school diploma 79.37 78.74 0 78.57 78.54 1.00 94 78.55 78.54 1.00 96 78.63 78.68 1.00 91

Math test scores -3.95 10.02 0 8.83 8.36 1.00 96 8.19 8.38 1.00 98 5.31 5.04 1.00 97

Auto+shop test scores 3.88 7.98 0 8.44 7.78 1.00 84 7.99 7.77 1.00 93 7.82 6.56 0.98 69

Attended private school 0.03 0.12 0 0.09 0.09 1.00 80 0.11 0.09 1.00 78 0.07 0.08 1.00 83

Expelled or susp. from school 0.33 0.10 0 0.15 0.11 0.71 86 0.15 0.11 0.71 83 0.16 0.14 1.00 93

Curriculum: college prepar. 0.16 0.67 0 0.62 0.57 1.00 89 0.61 0.57 1.00 91 0.48 0.46 1.00 95

Curriculum: general 0.59 0.28 0 0.32 0.37 0.88 83 0.32 0.37 1.00 83 0.44 0.44 1.00 94

Highest grades of parents 10.50 13.21 0 12.23 12.59 0.37 85 12.36 12.59 0.45 87 11.82 12.04 1.00 91

Occupation parents high 0.08 0.29 0 0.20 0.22 1.00 89 0.24 0.22 1.00 93 0.17 0.17 1.00 94

Number of siblings 3.92 2.64 0 2.88 2.75 0.78 87 2.85 2.75 1.00 88 2.77 2.82 1.00 93

Born in south 0.38 0.33 1 0.25 0.30 0.88 -10 0.27 0.30 0.88 34 0.31 0.33 1.00 35

Mean percent bias reduction 81 84 86
– born in south excluded 88 88 90

Broad Caliper

Propensity score 0.11 0.67 0 0.60 0.62 1.00 95 0.58 0.62 0.88 93 0.42 0.45 1.00 95

Index score -1.77 0.61 0 0.21 0.36 0.89 93 0.16 0.36 0.13 91 -0.33 -0.20 1.00 95

Black 0.30 0.16 0 0.17 0.17 1.00 100 0.17 0.17 1.00 100 0.24 0.24 1.00 100

Hispanic 0.10 0.07 1 0.04 0.04 1.00 100 0.04 0.04 1.00 100 0.08 0.08 1.00 100

Age 17.50 17.65 1 17.95 17.89 1.00 61 17.97 17.89 1.00 45 17.85 17.82 1.00 68

Year of high school diploma 79.37 78.74 0 78.57 78.50 1.00 88 78.53 78.50 1.00 94 78.63 78.62 1.00 93

Math test scores -3.95 10.02 0 8.94 9.04 1.00 98 8.24 9.04 0.95 94 4.96 5.36 1.00 97

Auto+shop test scores 3.88 7.98 0 7.73 7.63 1.00 95 7.52 7.63 1.00 96 7.32 6.48 1.00 79

Attended private school 0.03 0.12 0 0.08 0.10 1.00 78 0.11 0.10 0.88 77 0.07 0.08 1.00 82

Expelled or susp. from school 0.33 0.10 0 0.13 0.11 0.83 90 0.14 0.11 0.71 87 0.14 0.15 1.00 94

Curriculum: college prepar. 0.16 0.67 0 0.68 0.63 1.00 90 0.64 0.63 1.00 95 0.47 0.48 1.00 96

Curriculum: general 0.59 0.28 0 0.26 0.32 0.76 79 0.29 0.32 1.00 88 0.44 0.43 1.00 93

Highest grades of parents 10.50 13.21 0 12.14 12.76 0.17 77 12.18 12.76 0.36 79 11.75 12.11 0.90 87

Occupation parents high 0.08 0.29 0 0.20 0.24 0.80 80 0.23 0.24 1.00 91 0.17 0.18 1.00 93

Number of siblings 3.92 2.64 0 2.89 2.76 0.89 89 2.80 2.76 1.00 91 2.82 2.81 1.00 93

Born in south 0.38 0.33 1 0.23 0.32 0.00 -92 0.25 0.32 0.77 -35 0.32 0.34 1.00 45

Mean percent bias reduction 74 79 87
– born in south excluded 87 87 90

For reasons of parsimony, weighted averages over all ten years after college are shown. Weights correspond to the number of strata in each year after
college. C denotes the control or comparison units while T represents treated units, t indicates whether a t-test accepts balance of covariates (t = 1),
and % represents the percent bias reduction. The last two rows report the simple average over all single percent bias reductions excluding those of the
propensity and index score.
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Table 2.10: Balance of Covariates: Matching on the index, Within calipers: index.
Initially Optimal Full Greedy Full Greedy Pair

C T t C T t % C T t % C T t %

Narrow Caliper

Propensity score 0.11 0.67 0 0.57 0.58 1.00 99 0.56 0.58 1.00 97 0.43 0.44 1.00 98

Index score -1.77 0.61 0 0.18 0.21 1.00 99 0.14 0.21 1.00 97 -0.26 -0.23 1.00 99

Black 0.30 0.16 0 0.16 0.16 1.00 100 0.16 0.16 1.00 100 0.24 0.24 1.00 100

Hispanic 0.10 0.07 1 0.05 0.05 1.00 100 0.05 0.05 1.00 100 0.08 0.08 1.00 100

Age 17.50 17.65 1 17.90 17.89 1.00 82 17.92 17.89 1.00 74 17.84 17.83 1.00 79

Year of high school diploma 79.37 78.74 0 78.56 78.50 1.00 91 78.57 78.50 1.00 89 78.62 78.61 1.00 94

Math test scores -3.95 10.02 0 8.34 8.27 1.00 98 8.09 8.27 1.00 98 5.26 5.25 1.00 98

Auto+shop test scores 3.88 7.98 0 7.73 7.58 1.00 92 7.73 7.58 1.00 92 7.40 6.47 1.00 76

Attended private school 0.03 0.12 0 0.10 0.10 1.00 84 0.11 0.10 1.00 82 0.08 0.08 0.99 83

Expelled or susp. from school 0.33 0.10 0 0.13 0.12 0.95 90 0.14 0.12 0.83 90 0.14 0.15 1.00 93

Curriculum: college prepar. 0.16 0.67 0 0.61 0.58 1.00 93 0.61 0.58 1.00 93 0.50 0.47 1.00 93

Curriculum: general 0.59 0.28 0 0.32 0.36 0.88 85 0.32 0.36 1.00 85 0.40 0.44 1.00 88

Highest grades of parents 10.50 13.21 0 12.32 12.53 0.88 91 12.23 12.53 0.45 88 11.88 12.06 1.00 92

Occupation parents high 0.08 0.29 0 0.23 0.23 1.00 95 0.23 0.23 1.00 95 0.18 0.18 1.00 94

Number of siblings 3.92 2.64 0 2.80 2.77 1.00 92 2.79 2.77 1.00 91 2.92 2.84 1.00 91

Born in south 0.38 0.33 1 0.24 0.31 0.58 -59 0.28 0.31 1.00 18 0.33 0.35 1.00 41

Mean percent bias reduction 81 85 87
– born in south excluded 92 91 91

Broad Caliper

Propensity score 0.11 0.67 0 0.61 0.63 1.00 96 0.56 0.63 0.06 87 0.43 0.47 0.98 92

Index score -1.77 0.61 0 0.28 0.38 1.00 96 0.13 0.38 0.00 89 -0.25 -0.13 1.00 95

Black 0.30 0.16 0 0.17 0.17 1.00 100 0.17 0.17 1.00 100 0.23 0.23 1.00 100

Hispanic 0.10 0.07 1 0.06 0.06 1.00 100 0.06 0.06 1.00 100 0.09 0.09 1.00 100

Age 17.50 17.65 1 17.92 17.91 1.00 78 17.96 17.91 1.00 56 17.81 17.81 1.00 82

Year of high school diploma 79.37 78.74 0 78.55 78.47 1.00 87 78.53 78.48 1.00 92 78.64 78.61 1.00 94

Math test scores -3.95 10.02 0 9.09 9.19 1.00 98 7.95 9.19 0.55 91 5.48 5.93 1.00 97

Auto+shop test scores 3.88 7.98 0 7.34 7.71 1.00 91 7.84 7.72 1.00 97 7.74 6.75 1.00 76

Attended private school 0.03 0.12 0 0.10 0.10 1.00 76 0.10 0.10 1.00 86 0.08 0.08 0.99 85

Expelled or susp. from school 0.33 0.10 0 0.12 0.11 0.83 88 0.13 0.11 0.76 91 0.14 0.15 1.00 94

Curriculum: college prepar. 0.16 0.67 0 0.66 0.63 1.00 94 0.63 0.63 1.00 97 0.50 0.49 1.00 97

Curriculum: general 0.59 0.28 0 0.29 0.32 1.00 89 0.30 0.32 1.00 93 0.42 0.43 1.00 94

Highest grades of parents 10.50 13.21 0 12.31 12.75 0.29 84 12.18 12.76 0.25 79 11.85 12.17 0.82 87

Occupation parents high 0.08 0.29 0 0.23 0.24 1.00 93 0.23 0.24 1.00 93 0.18 0.18 1.00 94

Number of siblings 3.92 2.64 0 2.77 2.79 1.00 91 2.75 2.78 1.00 92 2.92 2.80 0.99 86

Born in south 0.38 0.33 1 0.22 0.32 0.00 -118 0.27 0.32 1.00 -5 0.33 0.34 1.00 59

Mean percent bias reduction 75 83 89
– born in south excluded 90 90 91

For reasons of parsimony, weighted averages over all ten years after college are shown. Weights correspond to the number of strata in each year after
college. C denotes the control or comparison units while T represents treated units, t indicates whether a t-test accepts balance of covariates (t = 1),
and % represents the percent bias reduction. The last two rows report the simple average over all single percent bias reductions excluding those of the
propensity and index score.
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Table 2.11: Balance of Covariates: Matching on the index, Within calipers: Mahalanobis.
Initially Optimal Full Greedy Full Greedy Pair

C T t C T t % C T t % C T t %

Narrow Caliper

Propensity score 0.11 0.67 0 0.56 0.58 1.00 97 0.55 0.58 1.00 95 0.43 0.45 1.00 96

Index score -1.77 0.61 0 0.15 0.21 1.00 98 0.11 0.21 1.00 96 -0.27 -0.21 1.00 98

Black 0.30 0.16 0 0.16 0.16 1.00 100 0.16 0.16 1.00 100 0.23 0.23 1.00 100

Hispanic 0.10 0.07 1 0.05 0.05 1.00 100 0.05 0.05 1.00 100 0.08 0.08 1.00 100

Age 17.50 17.65 1 17.91 17.89 1.00 79 17.93 17.89 1.00 72 17.85 17.82 1.00 71

Year of high school diploma 79.37 78.74 0 78.60 78.50 1.00 84 78.55 78.50 1.00 92 78.62 78.62 1.00 95

Math test scores -3.95 10.02 0 8.48 8.27 1.00 98 7.86 8.27 1.00 97 5.39 5.39 1.00 98

Auto+shop test scores 3.88 7.98 0 8.20 7.58 1.00 84 7.76 7.57 1.00 92 7.46 6.51 0.99 76

Attended private school 0.03 0.12 0 0.08 0.10 1.00 83 0.11 0.09 1.00 82 0.08 0.09 1.00 81

Expelled or susp. from school 0.33 0.10 0 0.13 0.12 0.83 91 0.14 0.12 0.82 90 0.15 0.15 1.00 95

Curriculum: college prepar. 0.16 0.67 0 0.63 0.58 0.88 89 0.60 0.58 1.00 95 0.46 0.47 1.00 96

Curriculum: general 0.59 0.28 0 0.30 0.36 0.88 80 0.32 0.37 1.00 86 0.45 0.44 1.00 94

Highest grades of parents 10.50 13.21 0 12.18 12.53 0.37 86 12.22 12.53 0.37 88 11.85 12.07 1.00 92

Occupation parents high 0.08 0.29 0 0.21 0.23 1.00 91 0.23 0.23 1.00 95 0.17 0.18 1.00 93

Number of siblings 3.92 2.64 0 2.89 2.77 1.00 89 2.78 2.77 1.00 93 2.74 2.83 1.00 92

Born in south 0.38 0.33 1 0.26 0.31 0.88 -29 0.28 0.31 1.00 17 0.33 0.35 1.00 48

Mean percent bias reduction 80 86 88
– born in south excluded 89 91 91

Broad Caliper

Propensity score 0.11 0.67 0 0.56 0.63 0.05 87 0.53 0.63 0.00 83 0.42 0.49 0.05 87

Index score -1.77 0.61 0 0.13 0.38 0.00 89 0.05 0.38 0.00 86 -0.29 -0.07 0.14 91

Black 0.30 0.16 0 0.17 0.17 1.00 100 0.17 0.17 1.00 100 0.22 0.22 1.00 100

Hispanic 0.10 0.07 1 0.06 0.06 1.00 100 0.06 0.06 1.00 100 0.08 0.08 1.00 100

Age 17.50 17.65 1 17.97 17.91 1.00 62 17.98 17.91 1.00 52 17.83 17.80 1.00 76

Year of high school diploma 79.37 78.74 0 78.55 78.47 1.00 88 78.51 78.47 1.00 94 78.64 78.61 1.00 94

Math test scores -3.95 10.02 0 8.28 9.19 1.00 93 7.52 9.19 0.00 88 5.39 6.31 0.99 93

Auto+shop test scores 3.88 7.98 0 8.40 7.71 1.00 83 8.01 7.72 1.00 92 7.76 6.87 1.00 78

Attended private school 0.03 0.12 0 0.09 0.10 1.00 78 0.10 0.10 1.00 85 0.07 0.09 1.00 77

Expelled or susp. from school 0.33 0.10 0 0.12 0.11 0.88 93 0.14 0.11 0.82 90 0.12 0.15 1.00 87

Curriculum: college prepar. 0.16 0.67 0 0.64 0.63 1.00 99 0.58 0.63 0.88 90 0.43 0.50 0.96 86

Curriculum: general 0.59 0.28 0 0.30 0.32 1.00 94 0.34 0.32 1.00 93 0.48 0.42 0.98 80

Highest grades of parents 10.50 13.21 0 12.12 12.75 0.00 77 12.14 12.75 0.13 77 11.80 12.21 0.59 85

Occupation parents high 0.08 0.29 0 0.21 0.24 1.00 87 0.22 0.24 1.00 93 0.16 0.19 0.98 85

Number of siblings 3.92 2.64 0 2.87 2.79 1.00 91 2.73 2.79 1.00 93 2.83 2.81 1.00 94

Born in south 0.38 0.33 1 0.26 0.32 0.93 -30 0.29 0.32 1.00 37 0.35 0.34 1.00 59

Mean percent bias reduction 80 85 85
– born in south excluded 88 88 87

For reasons of parsimony, weighted averages over all ten years after college are shown. Weights correspond to the number of strata in each year after
college. C denotes the control or comparison units while T represents treated units, t indicates whether a t-test accepts balance of covariates (t = 1),
and % represents the percent bias reduction. The last two rows report the simple average over all single percent bias reductions excluding those of the
propensity and index score.
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Abstract. Propensity score matching is a prominent strategy to reduce imbalance in

observational studies. However, if imbalance is considerable and the control reservoir is

small, either one has to match one control to several treated units or, alternatively, discard

many treated persons. The first strategy tends to increase standard errors of the estimated

treatment effects while the second might produce a matched sample that is not anymore

representative of the original one. As an alternative approach, this chapter argues to

carefully reconsider the selection equation upon which the propensity score estimates are

based. Often, all available variables that rule the selection process are included into the

selection equation. Yet, it would suffice to concentrate on only those exhibiting a large

impact on the outcome under scrutiny, as well. This would introduce more stochastic

noise making treatment and comparison group more similar. We assess the advantages

and disadvantages of the latter approach in a simulation study.
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3.1 Introduction

In contrast to a randomized experiment, in an observational study the treatment and

the comparison group usually differ systematically in terms of their observable and un-

observable covariates. Yet, appropriate weighting schemes may provide for a convincing

evaluation strategy. In particular, balancing all observable covariates by the method of

matching allows the identification of the mean effect of treatment if the remaining unob-

servable covariates are irrelevant. Usually, the number of covariates is high, thus making

exact matching – in all likelihood – impossible. Rosenbaum & Rubin (1983) suggest

to alternatively balance the one-dimensional propensity score, which is the conditional

probability to participate in treatment given all relevant covariates. They show that this

strategy, on average, achieves overall balance, thus circumventing the curse of dimension-

ality.

However, if treatment and comparison group differ to a considerable extent, i.e. if selec-

tion into treatment is remarkably strong, achieving an acceptable balance will be difficult.

A full matching using all treated and untreated units in the sample might produce many

strata consisting of one control and more than one treated unit. Generally, one would

like to achieve a stratification which is more uniform. Uniform stratifications tend to

produce smaller standard errors of the matching estimates. See, for instance, Chapter 2

and Dehejia & Wahba (1998) whose matching is far from producing a uniform strati-

fication because treated units with high propensity scores hardly find adequate controls.

Alternatively, pair matching tends to discard the majority of treated individuals at the

high end of the propensity score scale. As a result, it restricts evaluation of the treatment

effect to individuals with low and medium propensity scores. If effects are different for

different locations on the propensity score scale pair matching estimates will be biased.

This chapter argues to carefully reconsider the selection equation upon which the

propensity score estimates are based. It is common practice to include all available vari-

ables that might rule the selection process, with the objective of capturing the selection

decision precisely. Yet, we will argue in this chapter that, if selection turns out to be ex-

tremely strong, one should better concentrate on only those variables with a large impact
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on both the selection and the outcome under scrutiny. This procedure increases the ran-

dom part of the participation process – the whole approach rests on sufficient randomness

being retained after deriving individuals’ propensity score. Alas, a consistent estimation

of the propensity score might require including into the selection equation variables which

rule the selection process but which are excluded from or only play a minor role in the

outcome equation.

In contrast to our arguments, current applied research emphasizes the importance of

consistent estimation. For instance, Lechner (1999, 2000) performs and recommends

several specification tests to examine whether a probit model is adequate for describing

the selection decision. Chapter 2 includes into the probit model several variables that

might determine the selection. Heckman, Ichimura & Todd (1997: section 8) choose

predictor variables to maximize the within-sample correct prediction rates. Although a

thorough understanding of the selection process might in itself be an important contribu-

tion, it is not the main objective of propensity score matching for identifying the mean

effect of treatment. At best, it is a side effect. What is to be achieved by propensity

score matching is balance of all relevant covariates as reflected, for example, in Dehejia

& Wahba’s (1998) pragmatic estimation strategy concerning the selection equation.

To put it otherwise, there is a trade-off between a consistent estimation of the selection

equation that probably balances irrelevant variables, too, and a pragmatic – but probably

inconsistent – estimation that concentrates on balancing the relevant variables only. We

assess this trade-off in a simulation study relying on the mean squared error criterion. The

next section discusses matching as an evaluation strategy and, in particular, outlines the

idea behind propensity score matching. Section 3 presents the data generating processes

and the dimensions of the simulation study while section 4 explains the algorithm used for

matching. Section 5 is dedicated to results for some interesting parameter constellations

and the last section summarizes the findings and offers recommendations for applied

research.



Chapter 3: The Propensity Score: A Means to An End 50

3.2 The Matching Approach

In this section, the framework and the idea of propensity score matching are briefly

discussed. Rosenbaum (1995), Heckman, LaLonde & Smith (1999), and Schmidt

(1999) provide a thorough overview of estimation strategies via matching. Let R1
i denote

the potential response of individual i under the treatment state and R0
i the potential

response if i receives no treatment. Furthermore, letDi denote a binary variable indicating

treatment status, thus, Ri = DiR
1
i +(1−Di)R

0
i is the observed outcome. This framework

has become known as the potential outcome approach to causality suggested by Roy

(1951), Rubin (1974, 1977), and Holland (1986). It requires that the response of an

individual be independent of the decisions of all other individuals. This implies that there

are only two potential outcomes, namely R0
i and R1

i , one for the personal state Di = 0,

and one for Di = 1, respectively. There are no further potential outcomes depending on

the assignment of any other individual. This requirement is often referred to as stable

unit treatment value assumption (sutva, see Rubin, 1986).

The individual treatment effect is δi = R
1
i −R0

i which, however, is not observable since

either R1
i or R

0
i is missing. Alternatively, one might focus on the mean effect of treatment

on the treated individuals

IE(δi|Di = 1) = IE(R1
i |Di = 1)− IE(R0

i |Di = 1). (3.1)

Yet, while the first expectation IE(R1
i |Di = 1) can be identified in the subsample of the

treatment group, the counterfactual expectation IE(R0
i |Di = 1) is not identifiable without

invoking further assumptions.

Somehow one has to rely on the untreated units (Di = 0) of the comparison group to

obtain information on the counterfactual outcome of the treated in the no-treatment state.

A simple replacement of IE(R0
i |Di = 1) by IE(R0

i |Di = 0) is unlikely to be the appropriate

strategy, though, since treated and untreated units tend to differ considerably in their

characteristics that determine the outcome if they themselves select into treatment. An

ideal randomized experiment solves this problem, see Heckman (1996) or Schmidt,

Baltussen & Sauerborn (1999). It generates a treatment and a control group by a
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randomization process ensuring exogenous selection into treatment and thus resulting, on

average, in balance of all covariates between treatment and control group, in particular

those determining outcome.

In contrast, in an observational study, where self-selection into treatment is typically

non-negligible, matching tries to mimic ex post a randomized experiment by stratifying

the sample of treated and untreated units with respect to covariates Xi that rule both the

selection into treatment and the outcome under study. Such a stratification eliminates

selection bias provided all variables Xi are observed and balanced. In this case, each

stratum would represent a separate small randomized experiment and simple differences

between treated and controls would provide an unbiased estimate of the treatment effect.

This technique does not require linearity, parametric, or distributional assumptions.

Formally, assume that the response R0
i is conditionally independent of Di given Xi

yielding IE(R0
i |Xi, Di = 1) = IE(R0

i |Xi, Di = 0). Moreover, assume IP(Di = 0|Xi = x) >

0 for all x which guarantees that, with positive probability, there are untreated units for

each x. The data generating processes of the simulation presented in the next section are

such that these requirements for matching will be fulfilled. The conditional mean response

of the treated under no treatment for a given X can thus be estimated by the conditional

mean response of the untreated under no treatment. The overall estimated mean effect is

the weighted average over all stratum effects. The stratum weights are proportional to

the number of treated units in the stratum in order to identify IE(δi|Di = 1).

However, in a finite sample balancing X is difficult or even impossible if the vector

of observables is of high dimension. To escape this curse of dimensionality, Rosenbaum

& Rubin (1983) suggest to alternatively use the conditional probability to participate

in treatment p(x) = IP(Di = 1|Xi = x), the propensity score, for purposes of stratifying

the sample. They show that if R0
i is independent of Di given Xi, R

0
i and Di are also

independent given p(Xi). Matching treated and untreated units with the same propensity

scores and placing them into one stratum means that the decision whether to participate

or not is random in such a stratum. The probability of participation in this stratum

equals the propensity score. Alas, some disadvantages accompany this strategy. First, the
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propensity score itself has to be estimated. Second, since it is a continuous variable exact

matches will hardly be achieved and a certain distance between treated and untreated

units has to be accepted nonetheless. Prominent candidates measuring the distance are

the difference in propensity scores or the Mahalanobis metric (Rubin, 1980).

The Idea Behind Propensity Score Matching

Let there be three kinds of covariates X, Y , and Z characterizing individuals. Generally,

both potential outcomes and the participation probability depend on all three variables.

For reasons of clarity of the argument further assume that Y and Z are binary and let

all considerations to follow be conditional on X. In sum, R0 = R0(Y, Z), R1 = R1(Y, Z),

and p = p(Y, Z).

There are four cells

Z = 0 Z = 1

Y = 0 n00 n01

Y = 1 n10 n11

each comprising njk individuals, j, k ∈ {0, 1}. For the sake of notational convenience,

abbreviate cell-wise expectations as follows

R1
jk = IE(R1|Y = j, Z = k,D = 1)

R0
jk = IE(R0|Y = j, Z = k,D = 1) = IE(R0|Y = j, Z = k,D = 0),

∆jk = R1
jk − R0

jk, and pjk denotes the propensity score in the corresponding cell. As a

result, the mean effect ∆ (conditional on X) can be written

∆ =
1

nt

(∆00 p00 n00 +∆01 p01 n01 +∆10 p10 n10 +∆11 p11 n11) , (3.2)

nt denotes the total number of treated individuals, nt =
∑
pjknjk.

Selection on Z only. If the propensity score merely depends on Z, p00 = p10 = p.0

and p01 = p11 = p.1. This implies that Y can be expected to be already balanced and
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that cells with the same value of Z can be combined. Defining n.k = n0k + n1k and the

effect in the combined cell ∆.k = (∆0k n0k +∆1k n1k)/n.k, equation (3.2) reduces to

∆ =
1

nt

(∆.0 p.0 n.0 +∆.1 p.1 n.1) . (3.3)

The combination of cells that share the same propensity score is the very advantage of

propensity score matching with regard to exact covariate matching. On the one hand,

this means that individuals with different characteristics might be matched, here with

different values of Y . As a result, in finite samples where Y may still be unbalanced the

combined-cell-specific estimates of the treatment effect may deviate from the true value.

On the other hand, combination of cells avoids that cells comprising only treated or only

untreated units have to be dropped. This would give rise to both larger variance of the

estimates and possibly a bias if the treatment effect is heterogeneous and the loss of cells

is systematic.

Angrist & Hahn (1999) assess this bias-variance trade-off both theoretically and

by means of a simulation study. They argue that the very virtue of propensity score

estimation emerges when cells are finite. If cell sizes themselves increased beyond all

bounds propensity score matching would not be advantageous to exact matching, see

Hahn (1998).

Exclusion Restriction of Z. A symmetric special case arises if the outcome does

not but the selection does vary with Z. Consequently, cells with the same value of Z

could be combined even though they are subject to a different selection process, i.e.

their propensity score differs. Analogously to above, it follows that ∆00 = ∆01 = ∆0.

and ∆10 = ∆11 = ∆1., implying that imbalance of Z has no effect on the estimation of

the outcome and that cells with the same value of Y can be combined without loss of

information. Let nk. = nk0 + nk1 and pk. = (pk0nk0 + pk1nk1)/nk., equation (3.2) can be

reduced to

∆ =
1

nt

(∆0. p0. n0. +∆1. p1. n1.) . (3.4)

If both cases are fulfilled, i.e. the outcome depends on Y and the selection process

is ruled by Z only, all four cells can be combined to one and ∆ is just the difference

between the unconditional responses of treated and untreated persons in the combined
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cell (merely defined by X). This point reflects the fact that solely covariates which rule

both the outcome and the selection into treatment need to be balanced by matching.

Consequently, the question is raised whether the propensity score depending on X and Z

is the right measure to match upon or whether it might be better replaced by the marginal

propensity score depending solely on X. Matching on the latter would not unnecessarily

balance Z. Therefore, one could concentrate on the balance of X. This would probably

result in a more uniform stratification of the sample. That is, one control would not be

matched to an overwhelmingly large number of treated persons.

In other words, omitting irrelevant variables increases randomness of the selection

process and diminishes its deterministic part. For example, if selection were completely

determined by certain known variables the propensity score of treated units would be 1

and that of untreated 0. Consequently, no reasonable strategy whatsoever would be able to

match controls to any given treated person. In contrast, the more variables determining

the selection process can be regarded as stochastic noise because their impact on the

outcome variable is negligible, the more randomness will enter the process and the easier

treated individuals will find adequate controls. One might equate the Pseudo R2 of a

probit model as reflecting the degree of the selection determination.

3.3 The Data Generating Processes

As above, let Ri denote the outcome of individual i, i = 1, ..., n, and Di the binary

treatment indicator. On average, there will be 150 treated individuals and between 300

and 900 comparison units. The latter number is variable such that finding adequate

controls is more or less difficult. The outcome is a linear function of confounding covari-

ates, (X1, X2, Y1, Y2, Z1, Z2), an individual treatment effect δi, and normally distributed

stochastic noise εi ∼ N (0, 9)

Ri = β0 + β1X1i + β2X2i + β3Y1i + β4Y2i + β5Z1i + β6Z2i + δiDi + εi. (3.5)

The selection equation depends on the same covariates

Di = 1[α0 + α1X1i + α2X2i + α3Y1i + α4Y2i + α5Z1i + α6Z2i + ηi > 0] (3.6)
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where 1, the indicator function, is 1 if its argument holds and zero otherwise, and η ∼
N (0, 1) is standard normal.

The coefficients of the Z-variables β5, β6 in the outcome equation (3.5) are compara-

tively small and, likewise, the same is assumed for those of the Y -variables in the selection

equation (3.6), α3, α4. This means that Y tends to be already partly balanced between

treated and untreated units and, furthermore, although Z will be highly unbalanced its

impact on the outcome is minor. The X-variables are the strongest predictors of both

the outcome and the selection and most effort should therefore be spent on balancing

them. The simulation aims at examining the relative performance of the matching esti-

mator when the propensity score is estimated by means of a probit model including all

variables (X,Y, Z) and when based on the most relevant variables X only. Furthermore,

the treatment effect δi depends on i reflecting heterogeneity in the following manner

δi = γ0 + γ1X1i + γ2X2i + γ3Y1i + γ4Y2i + γ5Z1i + γ6Z2i.

Depending on the parameter setting self-selection into treatment plays a more or less

important role resulting in more or less severe imbalance of covariates. If Y and Z are

of minor relevance, merely X should actively be balanced by matching on IP(D = 1|X).

However, IP(D = 1|X,Y, Z) follows a probit specification in accordance with equation

(3.6)

IP(D = 1|X,Y, Z) = Φ(α0 + α1X1 + α2X2 + α3Y1 + α4Y2 + α5Z1 + α6Z2),

where Φ is the cumulative normal density function. Thus, a probit estimation using co-

variates X, Y , and Z – henceforth called the full probit – would yield consistent estimates

of individual propensity scores but matching on them would unnecessarily balance Z,

as well. On the other hand, a misspecified probit estimation merely on X – henceforth

called the partial probit – would indeed use only the most relevant variables but might

yield inconsistent estimates of IP(D = 1|X). The choice to proceed as if a probit model

held might therefore be one reason for bias in estimates of the mean treatment effect.1

1Note, though, that consistent estimation of the coefficients α in the probit model are not of any
interest. Furthermore, see Yatchew & Griliches (1984) for a discussion of specification errors in
probit models.
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In general, the functional form of IP(D = 1|X) = IE(IE(D|X,Y, Z)|X) does not follow a

probit specification

IP(D = 1|X) =

∫
Φ(α0 + α1X1 + α2X2 + α3y1 + α4y2 + α5z1 + α6z2) f(Y,Z)|X(y, z) d(y, z)

where f(Y,Z)|X is the conditional density of (Y1, Y2, Z1, Z2) given X.2 Another source of

bias arises if the impact of Y and Z on the outcome and on the selection are not zero.

In consequence, the questions of this chapter are (i) whether neglecting to balance

(Y, Z) produces a bias which is offset by a larger variance of the estimates of the full

model, and (ii) whether the functional specification error in estimating IP(D = 1|X) by

a probit model causes severe problems. We assess the trade-off on the basis of the mean

squared error criterion.

The described setup allows to perform simulations along five dimensions. First, the

impact of Z on R and of Y on D may be altered. To this end, β5, β6 and α3, α4 are

varied between 0 and 0.1 while the remaining α- and β-coefficients are set equal to 1, and

the constant β0 equals 0. This strategy allows an exploration of the question whether

near exclusion restrictions carry the same implications as genuine exclusion restrictions.

Second, the average number of comparison units in the sample is gradually increased from

300 to 900 while the average number of treated is fixed at 150 by accordingly adjusting

the constant α0. Thereby, we address the issue by how much the described trade-off is

altered as more and more comparison observations become available.

Third, the deterministic part of the selection equation is successively weakened which

means that all α-coefficients except for α0 are simultaneously reduced until they reach 25%

of their original value. This shows how the degree of selection determination influences

the stratification results. Fourth, effects δi may be homogeneous or heterogeneous cor-

responding to whether γ = (1, 0, 0, 0, 0, 0, 0) or γ = (0.5, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25).

The homogeneous case presents an interesting benchmark to compare the full and partial

probit model. Pair matching might be an unbiased and a more efficient evaluation strat-

2Since it is not easy to solve the integral analytically the true values are calculated by ways of an
auxiliary Monte Carlo simulation: 200 times adequate (Y,Z)’s are generated and IP(D = 1|X,Y =
y, Z = z) is calculated for each iteration inserting the given (Y,Z) = (y, z). The mean over all iterations
is an approximation to IP(D = 1|X).
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egy than full matching when effects are homogeneous. Yet, in this study, the choice of

the matching algorithm will not be explored.

Finally, the distribution of (X1, X2, Y1, Y2, Z1, Z2) is varied. In a basic model all six

variables are independently and identically (iid) standard normal implying that omission

of (Y, Z) from the probit model does not bias propensity score estimates because the

omitted variables are perfectly absorbed in normally distributed stochastic noise. To

avoid this favorable aspect, Z will alternatively be distributed in an odd fashion. Several

alternatives have been investigated but those maintaining independence between Z and

X and reducing to an exchange of the distribution of Z have been unable to produce

biased propensity score estimates.3

Apparently, the probit model seems quite insensitive to misspecification of the error

distribution as far as the overall fit is concerned and coefficients are of no interest. Yet,

as soon as independence of X and Z is abandoned omission of Z leads to heteroskedastic

errors of the selection equation and to arbitrarily large biased propensity score estimates,

up to estimates that are almost constant for all values of X. One specification that

is presented below – called alternative model – defines (X1, X2, Y1, Y2) as iid uniformly

distributed random variables with mean zero and variance one. In contrast, Zj will follow

the functional form

Zj = Uj exp(−µXj), j = 1, 2, (3.7)

where Uj is a uniform random variable in the unit interval and µ = 1.35. In addition, Zj is

standardized to have mean zero and variance one in each iteration of the simulation. This

is necessary to ensure that selection due to Z is normalized and comparable to the basic

model.4 Furthermore, interactions between Z and X are introduced into the selection

equation (3.6) such that it becomes

Di = 1[α0 + α1X1i + α2X2i + α3Y1i + α4Y2i + α5Z1i + α6Z2i +

α7X1iZ1i + α8X1iZ2i + α9X2iZ1i + α10X2iZ2i + ηi > 0]

3Even very asymmetric strange densities of Z failed to generate inconsistencies.
4If Z has high variance it will strongly determine selection. To normalize its impact with respect to

the basic model the variance is required to be 1.
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Table 3.1: The Simulation Setup.

Distribution Parameters

Variable Basic Alternative∗ Outcome Selection

Constant – – 1 α0 (adjusted)

X1 N (0, 1) U [−0.5, 0.5] β1 = 1 α1 = 1

X2 N (0, 1) U [−0.5, 0.5] β2 = 1 α2 = 1

X1X2 – – β12 ∈ {0, 1} 0

Y1 N (0, 1) U [−0.5, 0.5] β3 = 1 α3 ∈ {0, 0.05, 0.10}
Y2 N (0, 1) U [−0.5, 0.5] β4 = 1 α4 ∈ {0, 0.05, 0.10}
Y1Y2 – – β34 ∈ {0, 1} 0

Z1 N (0, 1) U1 exp(−µX1) β5 ∈ {0, 0.05, 0.10} α5 = 1

Z2 N (0, 1) U1 exp(−µX1) β6 ∈ {0, 0.05, 0.10} α6 = 1

Z1Z2 – – β56 ∈ {0, 1} 0

X1Z1 – – 0 α7 ∈ {0, 1}
X1Z2 – – 0 α8 ∈ {0, 1}
X2Z1 – – 0 α9 ∈ {0, 1}
X2Z2 – – 0 α10 ∈ {0, 1}
Di – – δi see below

U1 – U [0, 1] 0 0

U2 – U [0, 1] 0 0

εi N (0, 9) N (0, 9) 1 1

ηi N (0, 1) N (0, 1) 1 1

Size of the control reservoir ∈ {300, 600, 900}
Size of the treatment group: 300

Importance of the deterministic part ∈ {0.25, 0.50, 0.75, 1.00}
δi = γ0 + γ1X1i + γ2X2i + γ3Y1i + γ4Y2i + γ5Z1i + γ6Z2i and

γ ∈ {(1, 0, 0, 0, 0, 0, 0), (0.5, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25)}
µ = 1.35

∗ Furthermore, all variables are standardized to have mean zero and variance 1.

Omission of Z might lead to severe misspecification problems which, however, can

substantially be alleviated by adding higher order terms of X into the probit specification.

The conditional expectation of Zj given X1, X2 is a function of X1, X2

IE(Zj|X1, X2) = f(X1, X2). (3.8)

Hence, inclusion of higher order terms of (X1, X2) approximates a Taylor expansion of

f(X1, X2) such that, again, almost only the stochastic part of Z will be absorbed by the
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error term of the model. Three alternative probit models will therefore be specified to

demonstrate this issue. The first model consists of linear terms in X only, the second one

includes an interaction X1X2, and the third one further adds quadratic terms in X.

Other interesting features consider (i) whether asymmetry of the parameters (β1, β2) =

(0.5, 2) or (ii) whether interaction terms in the outcome equation as follows

R = β0 + β1X1 + β2X2 + β12X1X2 + β3Y1 + β4Y2 + β34Y1Y2

+ β5Z1 + β6Z2 + β56Z1Z2 + ε (3.9)

might cause additional problems. To keep the presentation of the alternative model simple

only a certain parameter constellation of the basic model will be considered more closely:

a medium impact of Y on R and Z on D, i.e. with coefficients α3 = α4 = β5 = β6 = 0.05,

a medium size of the control reservoir (600), and a selection determination of 0.75. The

setup is summarized in table 3.1.

3.4 The Matching Algorithm

Consider the basic specification retaining independence between X and Z, with Z having

no impact on the outcome R, and Y none on selection D but all other α and β-coefficients

are 1, and, furthermore, where there are 600 comparison units. This constellation already

motivates the use of the special matching algorithm presented below. The columns un-

der the heading full probit of table 3.2 compare the absolute frequencies of treated and

untreated individuals by propensity score intervals. Obviously, the distribution is very

unfavorable for matching at the boundaries. In effect, the full probit model successfully

separates the treated from the untreated. Unfortunately, high predictive ability of the

model implies difficulties in finding adequate controls for high propensity score treated in-

dividuals. The picture improves substantially if Z (and Y ) are omitted from the selection

equation. Estimation results of the partial probit are presented in the last two columns

of the table. Apparently, the difference in the distributions of the estimated propen-

sity scores for treated and untreated is less extreme than in the full probit. Therefore,

matching can be expected to be much easier.
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Table 3.2: Distribution of Treated and Untreated Individuals.

Estimated Full Probit Partial Probit
Propensity score untreated treated untreated treated

0.0 ≤ p̂ < 0.1 459.58 6.80 293.39 12.41
0.1 ≤ p̂ < 0.2 49.59 8.69 135.02 23.67
0.2 ≤ p̂ < 0.3 29.39 9.77 75.58 24.86
0.3 ≤ p̂ < 0.4 19.88 9.86 45.08 23.71
0.4 ≤ p̂ < 0.5 14.29 10.74 25.49 20.54
0.5 ≤ p̂ < 0.6 10.11 12.48 14.16 16.63
0.6 ≤ p̂ < 0.7 7.18 13.47 6.93 12.65
0.7 ≤ p̂ < 0.8 5.22 15.83 3.01 9.11
0.8 ≤ p̂ < 0.9 3.04 18.90 1.01 4.98
0.9 ≤ p̂ ≤ 1.0 1.46 43.50 0.07 1.70

Mean propensity score 0.09 0.65 0.15 0.38

Observations 600 150 600 150
The means are averages over 100 iterations. Comparison of number of treated and untreated individuals
by certain propensity score intervals.

After estimation of individual propensity scores a distance between treated and un-

treated individuals has to be defined because exact matching on the continuous score

is impossible. Here a propensity score caliper approach is pursued (Cochran & Ru-

bin, 1973). A small pool of potential controls is generated for each treated unit by

excluding all untreated units whose propensity score distance to the chosen treated ex-

ceeds a certain caliper ε. Within the caliper, the distances from treated individual to

potential control is defined in terms of the Mahalanobis metric based on variables W

consisting of the estimated propensity score and all matching covariates, either (X,Y, Z)

or X for the full or partial specification, respectively. It is a weighted Euclidean distance

d(wt, wc) = (wt − wc)
′V −1(wt − wc), where indices t, c represent the treated and the po-

tential control units, respectively. V is the pooled covariance matrix of W which serves

to norm the vectors. In sum, the distance is

d(wt, wc) =




∞ if |pt − pc| > ε

(wt − wc)
′V −1(wt − wc) else.

(3.10)

An infinite distance indicates that matching is forbidden.
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Table 3.3: Specification of Caliper Width ε.

Basic Model Alternative Model
Selection Full Probit Partial Probit Full Partial Probit
Determ. 300 600 900 300 600 900 Probit Order

0.25 .030 .020 .010 .015 .010 .005 .03 1 .002
0.50 .040 .030 .020 .030 .015 .010 2 .010
0.75 .050 .040 .030 .040 .020 .010 3 .010
1.00 .060 .050 .040 .050 .025 .010

The first column of the basic model presents the factors which the α-coefficients of the selection equation
are multiplied with. The next columns headed by the size of the control reservoir display the critical
ε. The first column of the alternative model shows the caliper width used in the full probit, the second
shows whether no interactions (1), interactions (2), and additionally squares (3) are included in the partial
probit, and the last displays ε.

Matching using the Mahalanobis distance is discussed in Rubin (1980). Gu &

Rosenbaum (1993) perform simulations to compare three distance measures. Fur-

thermore, propensity score calipers are discussed in Rosenbaum & Rubin (1985) and

Rosenbaum (1989). Calipers help substantially reduce the number of potential controls

and, thus, considerably accelerate the matching algorithm and, what is more, they pre-

vent that too distant individuals are being matched. The critical ε is chosen such that

there are enough but not too many potential controls in the vicinity of each treated which

otherwise would considerably slow down the algorithm without improving results. Table

3.3 summarizes the choices of the critical ε. The results may depend on the choice of ε. A

small ε will come with a loss of many treated (and untreated) individuals. On the other

hand, however, it increases similarity of the matched units.

The final decision is how to implement the chosen matching criteria, in other words,

how the distances between treated units and controls is to be minimized. A stratification

producing small strata is preferable in order to ensure that the distance between the units

within a stratum is not too large and stratum members are very similar to each other.

This yields strata with either one treated and one or more controls or one control and

more than one treated unit. It turns out that strata with very high propensity scores

contain more than one treated and strata with low scores consist of a large number of

controls.
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In this study, optimal full matching as proposed by Rosenbaum (1991) is imple-

mented. It minimizes the overall distances between treated and controls in that it works

backwards and rearranges already matched units if an unmatched treated would better

be matched to an already used untreated. In such a case, the existing match is broken up

and its treated is available for matching again.5 The strata will be non-overlapping, i.e.

individuals are not members of more than one stratum, which facilitates the calculation

of variances.6 Optimal full matching can easily be transformed into a minimum cost flow

problem, a special case of linear network optimization.7

Matching produces different strata in terms of number of treated and controls per

stratum. Some might be very extreme comprising numerous treated units and only one

control. It is they who substantially increase the variance of the estimated mean effect

of treatment on the treated. On the other hand, strata with one treated but countless

controls will work in the opposite direction but receive less weight. Therefore, an aggregate

measure assessing the uniformity of a given stratification with respect to a benchmark

stratification is helpful. To this end, suppose all estimated stratum treatment effects have

the same variance, the following formula measures variance inflation due to unfavorable

stratification8

1

(
∑S

s=1ms)2

S∑
s=1

m2
s

(1− 1/ns)2

where ms indicates the number of treated units and ns the number of all individuals in

stratum s = 1, ..., S.

In order to make the formula meaningful it ought to be compared to a benchmark

stratification which is defined as follows. Let all treated units get their own stratum

with exactly one control. Therefore, redefine m̃s̃ = 1 and ñs̃ = 2 for all s̃ = 1, ..., S̃

with S̃ =
∑S

s=1ms, yielding a variance inflation of 4/
∑S

s=1ms. The ratio of the two

5This is in contrast to so-called greedy algorithms which do not generally achieve a minimum, see
Rosenbaum (1991).

6Statistical inference is described in Rosenbaum (1995) and adapted to this setup in Chapter 2.
However, non-overlapping strata are not necessary if different techniques are used, see Quade (1981) or
Heckman, Ichimura & Todd (1998).

7
Bertsekas (1991) discusses linear network optimization and provides FORTRAN-algorithms for

minimum cost flow problems. Furthermore, there is an operations research procedure called netflow in
SAS for these kinds of problems.

8See Chapter 2 or Rosenbaum (1995) for the deduction of the general variance formula.
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expressions yields a relative variance inflation factor denoted κ2

κ2 =
1

4
∑S

s=1ms

S∑
s=1

m2
s

(1− 1/ns)2
. (3.11)

For example, pair matching produces κ = 1, 1-k-matching, i.e. one treated and k controls

share a common stratum, leads to κ = 0.5 (1+1/k), k-1-matching has κ = (k+1)/(2
√
k).

Note that the benchmark stratification can in general never be achieved since all treated

who are used in the optimal stratification would have to find an own control. This would

only be possible if there are no high propensity score treated units or else if several high

propensity score treated individuals were matched to medium score controls which is either

ruled out by a caliper approach or which otherwise would compare the incomparable. As

such, κ incorporates neither the balance of covariates after matching nor how many treated

units remain unmatched but only the uniformity of the stratification.

As outlined in the introduction, pair matching might be more efficient than full match-

ing. What is more, if the treatment effect is homogeneous pair matching estimates are

unbiased. Nevertheless, pair matching is disregarded in this study even in the case of

homogeneous effects. The principal aim is to shed more light on the estimation of the

propensity score when selection is strong. The homogeneous case is for illustrative pur-

poses only and serves as a valuable benchmark.

Finally, matching should produce balance of all important covariates implying that at

least their means for treated and controls be approximately equal. Therefore, to verify

balance, simple t-tests of the hypothesis of equal means under equal variances are per-

formed for each of the six variables j = 1, ..., 6. If the null hypothesis cannot be rejected

at a 5% significance level let tj = 1 and zero otherwise. Then, for an overall measure of

balance, define the aggregate balance τ as

τ =

∑6
j=1 βj tj∑6
j=1 βj

, (3.12)

the β’s being the coefficients of the outcome equation (3.5). Weighting by β takes into

account that imbalance of the less important variables Z would cause less problems than

that of X and Y .9

9Percent bias reduction has also been examined. Yet, results were quite unsatisfactory because a
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3.5 Results

Each simulation is performed 100 times and mean estimation results over all iterations

are presented and discussed for the parameter constellations mentioned above. Variability

across simulations is reflected by simulation standard errors which, however, are not

presented in the tables below for reasons of clarity. Figure 3.1 shows propensity score

estimation results of the basic model with true and estimated scores on the vertical axis

and the true ones on the horizontal axis. The data are taken from the constellation where

the critical coefficients of Y and Z are 0.1, with 600 untreated individuals, and with

selection determination of 0.75.

Apparently, the estimates of both the full and the partial specification are unbiased.

Tables 3.4 and 3.5 go into the estimation and stratification results of the full and partial

model. The first three columns characterize the simulation scenario. The first column

reports the values of the coefficients β5, β6, α3, and α4, the second the size of the control

reservoir, and the third shows the factor the α-coefficients of the selection equation are

multiplied with. The lower this factor the larger the randomness of the selection process

and the less severe self-selection is. The next four columns report the bias and the

rmse in the homogeneous and the heterogeneous case. The remaining columns are self-

explanatory.

The most striking result is that matching on the propensity score estimated by the full

probit model produces almost always unbiased estimates of the mean effect of treatment

on the treated while the bias of the partial probit matching rises to roughly 40% when

the impacts of Y and Z are largest. Nevertheless, root mean squared errors of the latter

are markedly lower when selection determination is highest. As selection determination

successively increases, the full model puts an increasingly heavy burden upon treated

individuals in finding appropriate controls, a fact reflected in the diminishing number

of strata and the growing number of lost treated individuals. For instance, full probit

matching ends with roughly 57 strata if selection determination is highest and the control

negative percent bias reduction is basically unbounded. If balance before matching is already given the
denominator in the formula is close to zero. On the other hand, percent bias reduction is at most +100%.
Therefore, the mean reduction turned out to be rather low in each single iteration.
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Figure 3.1: Basic Model, Full Probit and Partial Probit

true score

 true score  estimated score

0 1

0

.2

.4

.6

.8

1

true score

 true score  estimated score

0 1

0

.2

.4

.6

.8

1

True and estimated propensity scores on the vertical axis versus true
scores on the horizontal. The figures represent one iteration of the
simulation study, the full model on the top, the partial one on the
bottom.

reservoir is smallest. By contrast, partial probit matching still produces around 101 strata

under these circumstances. That is, stratification in the latter case is more uniform as

can also be seen from its lower value of κ which never surpasses 0.92 whereas full probit

matching even surpasses κ = 1. However, the difference in rmse decreases for a more

extensive control reservoir.

Furthermore, the partial probit estimates are unbiased if the omitted variables Y and
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Table 3.4: Basic Model, Full Probit.

Effects Stratification

Scenario Homogeneous Heterogeneous No of Lost κ ∆P- Bal.

(a) (b) (c) Bias rmse Bias rmse strata tr’d score τ

0.00 300 0.25 -0.01 0.37 -0.04 0.50 129.97 3.36 0.84 -0.02 1.00
0.50 -0.08 0.57 -0.14 0.67 97.15 8.99 0.97 -0.05 0.96
0.75 0.09 0.79 0.03 0.84 73.58 13.10 1.14 -0.05 0.82
1.00 0.15 1.15 0.11 1.16 56.49 11.34 1.36 -0.04 0.60

600 0.25 0.03 0.34 0.01 0.41 143.34 3.22 0.71 -0.03 1.00
0.50 0.03 0.43 -0.02 0.43 115.43 9.17 0.80 -0.07 0.99
0.75 -0.01 0.56 -0.05 0.51 89.35 12.04 0.95 -0.06 0.90
1.00 0.05 0.88 -0.00 0.79 72.28 15.59 1.10 -0.06 0.72

900 0.25 0.03 0.30 -0.00 0.34 141.79 4.58 0.66 -0.04 1.00
0.50 -0.00 0.39 -0.05 0.37 122.68 9.96 0.74 -0.08 0.99
0.75 0.01 0.46 -0.04 0.40 100.08 15.10 0.86 -0.09 0.92
1.00 -0.01 0.61 -0.06 0.51 81.95 17.82 0.99 -0.09 0.79

0.05 300 0.25 -0.01 0.36 -0.04 0.48 128.32 4.02 0.84 -0.02 1.00
0.50 0.09 0.52 0.05 0.58 98.90 8.18 0.98 -0.04 0.96
0.75 0.07 0.78 0.02 0.82 73.53 12.51 1.15 -0.05 0.85
1.00 0.16 1.15 0.11 1.15 57.15 13.50 1.34 -0.05 0.59

600 0.25 -0.01 0.35 -0.03 0.42 142.70 3.06 0.71 -0.03 1.00
0.50 0.02 0.42 -0.03 0.43 116.97 8.19 0.82 -0.06 0.99
0.75 0.04 0.56 -0.02 0.52 90.68 13.99 0.94 -0.08 0.91
1.00 -0.02 0.81 -0.08 0.71 72.17 17.17 1.09 -0.07 0.68

900 0.25 -0.04 0.32 -0.08 0.38 141.98 4.63 0.66 -0.05 1.00
0.50 0.04 0.38 -0.01 0.35 122.73 10.51 0.74 -0.09 0.99
0.75 0.09 0.43 0.03 0.36 98.23 14.25 0.86 -0.09 0.92
1.00 0.10 0.71 0.03 0.57 79.78 18.32 0.99 -0.09 0.79

0.10 300 0.25 0.03 0.38 0.01 0.51 129.60 3.43 0.85 -0.02 1.00
0.50 0.09 0.52 0.05 0.57 96.04 8.77 0.98 -0.04 0.97
0.75 0.09 0.80 0.03 0.82 72.43 13.22 1.15 -0.05 0.79
1.00 0.22 0.93 0.16 0.93 58.69 14.34 1.32 -0.05 0.63

600 0.25 -0.01 0.36 -0.04 0.45 143.86 3.26 0.71 -0.03 1.00
0.50 -0.07 0.46 -0.11 0.46 116.51 7.92 0.81 -0.06 0.98
0.75 0.14 0.55 0.07 0.48 90.84 13.78 0.95 -0.07 0.88
1.00 0.03 0.69 -0.03 0.61 73.88 18.28 1.07 -0.08 0.75

900 0.25 0.00 0.30 -0.04 0.34 140.43 4.84 0.66 -0.05 1.00
0.50 -0.01 0.44 -0.06 0.41 121.32 10.77 0.74 -0.09 1.00
0.75 0.09 0.48 0.02 0.40 100.14 15.97 0.86 -0.10 0.97
1.00 0.09 0.68 0.02 0.54 80.22 18.47 0.99 -0.09 0.77

The results are averages over all 100 iterations. The first block represents the scenario: (a) value of the
coefficients β5, β6, α3, α4, (b) size of control reservoir, (c) selection determination. The next block reports
bias and rmse for the homogeneous and the heterogeneous case. The last block shows stratification
results: the number of strata and of lost treated units, the stratification measure κ, the difference in true
propensity scores of treated units after and before matching, and the aggregate balance τ .
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Table 3.5: Basic Model, Partial Probit.

Effects Stratification

Scenario Homogeneous Heterogeneous No of Lost κ ∆P- Bal.

(a) (b) (c) Bias rmse Bias rmse strata tr’d score τ

0.00 300 0.25 0.01 0.40 -0.01 0.54 129.07 2.92 0.82 -0.01 0.96
0.50 -0.05 0.49 -0.07 0.56 117.00 4.36 0.85 -0.02 0.93
0.75 0.03 0.46 0.01 0.48 107.81 4.24 0.89 -0.01 0.93
1.00 0.06 0.45 0.05 0.46 101.21 4.46 0.92 -0.01 0.90

600 0.25 0.04 0.39 0.04 0.47 144.00 2.24 0.69 -0.01 0.95
0.50 0.05 0.42 0.03 0.42 130.61 5.02 0.71 -0.03 0.94
0.75 -0.02 0.44 -0.04 0.40 124.04 6.19 0.74 -0.02 0.94
1.00 -0.01 0.39 -0.02 0.35 120.12 6.36 0.76 -0.02 0.92

900 0.25 0.00 0.32 -0.01 0.37 143.61 3.16 0.63 -0.02 0.95
0.50 0.00 0.37 -0.02 0.35 137.36 5.66 0.66 -0.03 0.95
0.75 0.02 0.35 -0.00 0.30 130.95 8.91 0.69 -0.03 0.94
1.00 -0.03 0.40 -0.04 0.33 125.78 11.50 0.70 -0.03 0.92

0.05 300 0.25 0.04 0.34 0.04 0.45 128.47 2.95 0.81 -0.01 0.94
0.50 0.18 0.46 0.19 0.51 116.53 3.52 0.86 -0.01 0.91
0.75 0.14 0.50 0.13 0.52 108.82 4.67 0.89 -0.01 0.90
1.00 0.18 0.51 0.16 0.50 101.76 4.48 0.91 -0.01 0.87

600 0.25 0.04 0.39 0.04 0.47 143.15 2.35 0.68 -0.01 0.94
0.50 0.12 0.39 0.11 0.39 134.06 5.59 0.72 -0.03 0.91
0.75 0.17 0.38 0.14 0.34 123.44 6.57 0.74 -0.02 0.91
1.00 0.18 0.44 0.14 0.38 120.77 6.40 0.75 -0.02 0.87

900 0.25 0.02 0.31 0.01 0.36 143.88 3.13 0.63 -0.02 0.93
0.50 0.20 0.42 0.17 0.38 137.84 5.33 0.66 -0.03 0.93
0.75 0.20 0.42 0.15 0.35 129.33 9.10 0.68 -0.04 0.90
1.00 0.30 0.48 0.23 0.38 124.34 12.18 0.69 -0.03 0.89

0.10 300 0.25 0.19 0.46 0.24 0.60 129.41 2.85 0.82 -0.01 0.90
0.50 0.32 0.50 0.34 0.55 115.86 4.19 0.85 -0.02 0.87
0.75 0.33 0.56 0.32 0.57 107.64 4.46 0.89 -0.01 0.84
1.00 0.42 0.65 0.41 0.64 103.05 3.53 0.91 -0.01 0.83

600 0.25 0.14 0.38 0.15 0.46 144.53 2.49 0.68 -0.01 0.92
0.50 0.24 0.42 0.22 0.40 132.97 4.84 0.71 -0.02 0.86
0.75 0.41 0.56 0.35 0.49 125.63 6.26 0.74 -0.02 0.84
1.00 0.44 0.60 0.37 0.51 121.74 6.22 0.76 -0.02 0.82

900 0.25 0.17 0.35 0.18 0.39 142.11 3.56 0.63 -0.02 0.88
0.50 0.29 0.48 0.25 0.43 134.63 5.81 0.66 -0.03 0.86
0.75 0.38 0.52 0.30 0.43 131.07 9.05 0.68 -0.03 0.85
1.00 0.41 0.57 0.31 0.44 123.81 11.76 0.70 -0.03 0.83

The results are averages over all 100 iterations. The first block represents the scenario: (a) value of the
coefficients β5, β6, α3, α4, (b) size of control reservoir, (c) selection determination. The next block reports
bias and rmse for the homogeneous and the heterogeneous case. The last block shows stratification
results: the number of strata and of lost treated units, the stratification measure κ, the difference in true
propensity scores of treated units after and before matching, and the aggregate balance τ .
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Z do not have an impact on the selection or outcome equation, respectively. However,

there is an increasing bias if their impact increases. Note that there appears to be also a

weak upward bias in the full probit model if selection determination is highest, specifically

in the homogeneous case. This bias arises due to the remaining imbalance expressed by

a τ of around 0.6. An additional bias of opposite direction emerges in the heterogeneous

case partly offsetting the initial bias. This is because many high propensity score treated

units who tend to experience a higher effect in the heterogeneous case are discarded by

the matching algorithm. Furthermore, the rmse in the heterogeneous case seems to be

as large as or larger than in the homogeneous case. Yet, it is smaller for high selection

determination and for large control reservoir. This finding might be explained by the

additional variability of a heterogeneous δi. Since δi depends on the observable covariates,

its variability diminishes as selection caused by the observables becomes more important.

As far as balancing success is concerned, no strategy surpasses the other in all scenarios.

If selection determination is weak full probit always achieves perfect balance. However,

its performance diminishes quickly as selection determination is growing. On the other

hand, partial probit’s balancing success starts worse but does not reduce as fast as full

probit’s. Part of this finding is explicable by the choice of the caliper width ε. It is wider

for strong selection (see table 3.3), hence, treated individuals might choose controls with a

relatively low propensity score. For the same reason, τ deteriorates faster in the full than

in the partial probit model. However, a constant ε for all scenarios would have produced

a large casualty list of treated units in the full model.

In spite of non-constant ε, the full probit loses more treated units such that the relative

difference in the true full propensity scores between treated individuals before matching

and the remaining treated after matching ∆P.score is more pronounced than in the partial

probit. The negative signs show that treated individuals are lost in the high end of

the propensity score scale. However, while partial probit matching never exceeds 3%,

full probit matching even reaches 10%. Note, however, that the number of lost treated

increases with the size of the control reservoir. This counterintuitive result arises because

of decreasing caliper widths, see table 3.3.



Chapter 3: The Propensity Score: A Means to An End 69

In sum, partial probit produces a better overall performance than full probit for the

examined parameter constellations. Alas, if the coefficients of Y and Z grew above the

0.1 considered here, full probit could be expected to be the preferred strategy. Moreover,

if there is no strong selection into treatment full probit matching is not at a disadvantage,

in contrast, it even sometimes outperforms partial probit. Yet, strong selection as in

Dehejia & Wahba (1998) or Chapter 2 calls for a careful assessment of the importance

of the variables included in the selection equation.

The basic model seems to be overly optimistic as far as the distributions of Y and

Z are concerned. The top panel of figure 3.2 presents propensity score estimates under

the alternative partial probit model. Apparently, it underestimates propensity scores for

individuals with high IP(D = 1|X) and overestimates for those with low scores. This is

in contrast to the next two pictures which present estimated propensity scores built on

probit models with higher order terms. Pictures of the full probit are not presented for

they are virtually identical to those of the basic model.

One might ask whether the order of treated and untreated units with regard to their

estimated biased propensity scores would be similar to the order of individuals in accor-

dance with their true scores IP(D = 1|X). In this case, treated and untreated would

hardly change their ranks within the sample. As a result, stratification might be similar

to that if the true scores were used for matching and the biased propensity score estimates

would not be a source of bias in the matching estimates. However, as illustrated in table

3.6, the mean rank of treated units has diminished considerably for the alternative model

with no higher order terms implying that a large number of untreated and treated units

must have interchanged their ranks. Alas, once higher order terms are taken into account

– particularly interaction between X1 and X2 – there is no difference in mean ranks worth

mentioning anymore.

Table 3.7 presents simulation results for the alternative model in simulation scenario

(0.05, 600, 0.75) for the full and the partial probit. Consider first the partial probit results.

Surprisingly, they are still better than the comparable ones of the full probit basic model,

though worse than those of the partial probit basic model. Interactions in the outcome

equation (3.9) lead to an increase of the rmse and produce a larger bias if no higher order
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Figure 3.2: Alternative Model, Partial Probit With and Without Higher Order
Terms
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True and estimated propensity scores on the vertical axis versus true
scores on the horizontal. The figures represent one iteration of the
simulation study. The first picture shows results when no interactions
are included; the second contains interactions, the third additionally
contains squares in X.
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Table 3.6: Mean Ranks.

Full probit Partial probit

untreated treated untreated treated

Basic Model

True propensity score 313.59 625.75 332.14 550.78

Estimated propensity score 313.28 627.01 331.79 552.19

Alternative Model

True propensity score 329.87 557.76 335.14 536.65

Estimated, without higher order terms 328.67 562.54 367.40 407.94

Estimated, w/ interactions 328.67 562.54 336.59 530.82

Estimated, w/ inter. & squares 328.67 562.54 335.43 535.44

The results are mean ranks in the treatment and in the comparison group. They are further averaged
over all iterations.

terms in the probit model are accounted for. Yet, this pattern disappears once they are

included. Asymmetry in the coefficients (β1, β2) = (0.5, 2) instead of (1, 1) of the response

equation does not at all alter the results which is why they are omitted. In contrast to

the basic model, heterogeneous effects lead to substantially worse estimation results in

that biases and rmses are markedly larger than in the homogeneous case.

These still surprisingly favorable results in spite of severe misspecifications expressed

in the first picture of figure 3.2 might be explained by the fact that within the propensity

score calipers the Mahalanobis distance, which is not misspecified, still matches the correct

individuals. To explore this hypothesis all results are repeated replacing the Mahalanobis

distance by the propensity score distance within calipers. The results are also shown

in table 3.7. They are fairly similar to the previous results with one notable exception:

the bias and rmse are markedly larger in case interactions in the response model are

introduced but none in the probit model.

For the sake of comparability, the table displays estimates of the full probit model,

as well. The most striking result is that it achieves an almost perfect overall balance τ .

This unexpected finding, however, may partly be explained by the fact that a considerable

number of high propensity score treated units is lost facilitating balancing the variables of
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Table 3.7: Alternative Model.

Effects Stratification

Homogeneous Heterogeneous No of Lost κ ∆P- Bal.

Bias rmse Bias rmse strata tr’d score τ

Full Probit

Mahalanobis distance within calipers
– no interactions in outcome equation

0.08 0.48 0.05 0.80 118.82 13.51 0.74 -0.12 0.98

– with interactions in outcome equation

0.11 0.53 0.11 0.87 118.82 13.51 0.74 -0.12 0.98

Propensity score distance within calipers
– no interactions in outcome equation

0.08 0.51 0.06 0.84 113.16 13.51 0.75 -0.12 0.98

– with interactions in outcome equation

0.07 0.56 0.04 0.92 113.16 13.51 0.75 -0.12 0.98

Partial Probit

Mahalanobis distance within calipers
– no interactions in outcome equation

1 0.14 0.43 0.23 0.72 134.37 0.50 0.72 -0.00 0.91

2 0.16 0.47 0.24 0.78 128.72 7.82 0.72 -0.05 0.92

3 0.19 0.49 0.30 0.81 128.16 6.58 0.73 -0.04 0.93

– with interactions in outcome equation

1 -0.33 0.56 -0.55 0.94 134.37 0.50 0.72 -0.00 0.91

2 -0.06 0.48 -0.13 0.81 128.72 7.82 0.72 -0.05 0.92

3 -0.03 0.48 -0.07 0.80 128.16 6.58 0.73 -0.04 0.93

Propensity score distance within calipers
– no interactions in outcome equation

1 0.13 0.42 0.21 0.71 140.85 0.50 0.71 -0.00 0.92

2 0.12 0.49 0.17 0.81 127.86 7.82 0.73 -0.05 0.92

3 0.18 0.47 0.27 0.77 126.94 6.58 0.73 -0.04 0.92

– with interactions in outcome equation

1 -0.80 0.95 -1.34 1.58 140.85 0.50 0.71 -0.00 0.92

2 -0.10 0.52 -0.21 0.88 127.86 7.82 0.73 -0.05 0.92

3 -0.05 0.46 -0.11 0.78 126.94 6.58 0.73 -0.04 0.92

The means are averages over all 100 iterations for scenario (0.05, 600, 0.75) of table 3.5. The first column
refers to the partial probit model, 1: no higher order terms, 2: interactions, 3: interactions and squares.
The first block reports bias and rmse for the homogeneous and the heterogeneous case. The last block
shows stratification results: the number of strata and of lost treated units, the stratification measure κ,
the difference in true propensity scores of treated units after and before matching, and the aggregate
balance τ . Interactions in outcome equation means that (β12, β34, β56) = (1, 1, 1).
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the remaining sample. As a result, the superior balance is accompanied by an unfavorably

∆P.score of 12% making the matched sample less representative. Similarly, κ is almost as

small as in the partial probit model because it merely reports uniformity of the realized

stratification given the number of lost treated units. Finally, using a propensity score

distance within calipers does not alter the results except for slightly increased rmse. In

sum, the partial probit does not do worse than the full probit even if the partial probit

model is severely misspecified. Including higher order terms into the selection equation

might be a way to alleviate problems caused by omission of variables which are correlated

with the included ones.

3.6 Conclusion

This chapter investigates propensity score matching when selection into treatment is re-

markably strong and thus the treatment and comparison group differ considerably in their

observable covariates. In such a scenario, matching adequate units is demanding. To alle-

viate this problem, we suggest to carefully reconsider the selection equation with respect

to variables that might play a subordinate role in the outcome equation. Omission of these

variables helps increase the randomness of the selection process and reduce the variance of

the matching estimates. However, their omission from the selection equation might lead

to inconsistent propensity score estimates and hence biased matching estimates. This

study assesses the bias-variance trade-off in a simulation resting on the mean squared

error criterion.

To this end, we presuppose existence of variables Z which strongly influence the se-

lection decision but which, on the other hand, do not or do only weakly determine the

outcome under scrutiny. For a large enough sample size, specification tests of the probit

model would then recommend the inclusion of Z to consistently estimate the propensity

score. Likewise, we introduce variables Y which are relevant to the outcome but irrelevant

to the participation decision. Matching on a propensity score estimate based on Z and Y

will balance Z at the expense of balance of the variables most relevant for both the out-

come and the selection. Moreover, unnecessary effort is spent to remove small imbalance
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in the variable Y . In consequence, (i) some treated have to be systematically discarded

from the sample because they do not find adequate controls and, (ii) more treated have

to share one control, a fact that reduces uniformity of the stratification and thus increases

standard errors.

In effect, the results show that matching on inconsistent estimates of the propensity

score, i.e. those achieved when Z (and Y ) are excluded, produces estimation results of the

mean effect of treatment that are often better in terms of the rmse than those achieved by

matching on estimates that rest on all covariates relevant for the selection. This remains

true even if Z shows some impact on the outcome as long as this impact is limited. Drake

(1993) points to a similar direction in concluding that misspecifying the propensity score

results in smaller biases than misspecifying the response model. Therefore, we recommend

to only include variables into the selection equation that are highly significant. Variables

with low significance levels are obvious candidates for exclusion even if they might play

a role in the outcome equation. Moreover, if established research suggests that certain

variables Z are irrelevant to the outcome under study they should solely be included into

the selection equation if there are other strong reasons for doing so.

If, nevertheless, imbalance of some variables seems to be inacceptable after matching,

an additional linear regression adjustment might be pursued with presumably less cost

than balancing all the remaining variables in advance. If misspecification of the propen-

sity score seems to be inacceptable, one might additionally take account of statistically

significant higher order terms of those variables included in the selection equation. A

sensitivity analysis that compares partial models with the full model might be a way to

assess different approaches, see e.g. Heckman, Ichimura & Todd (1997: section 13)

or Chapter 4. In sum, the main criterion of success for matching remains the balance of

the relevant covariates and not the proper estimation of the selection equation. This aim

is easily obtained by a full probit model only if selection determination is low and/or the

control reservoir is large but in several applied situations it might be better obtained by

a partial model.
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Abstract. This chapter uses the statistical technique of matching on the propensity score

to evaluate the effect of the associate’s, the bachelor’s, and graduate degrees on hourly

wages for men and women during the first ten years after college completion. Moreover,

it discusses heterogeneity in the effects ruled by ability and family background. Selection

into college education turns out to be extremely strong, notably for the bachelor’s and the

graduate degrees. As a result, bias in observable covariates prior to matching is immense.

An optimal full matching algorithm is implemented to address this issue. Furthermore,

sensitivity with respect to the specification of the selection equation is investigated. All

results are compared to conventional OLS estimation which allows (i) to verify the lin-

ear specification of the earnings equation and (ii) to bring out the determinants of why

matching and OLS estimates differ.
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4.1 Introduction

The debate on the subject of identification of the returns to education has a long tradition

in labor economics. Mincer (1974) specified a theoretical model where log earnings are

a linear function of education, labor market experience, and experience square. Numerous

studies have estimated the coefficient of the schooling variable by least squares techniques,

see Willis (1986), Ashenfelter & Rouse (1998b), and Card (1999) for a compre-

hensive overview. This chapter investigates the return to college degrees by means of

the nonparametric technique of matching. To this end, a somewhat different concept of

the return to education is introduced, namely the effect of college education on earnings

which takes account of the effect of education on labor market experience, as well.

The ideal setup for identifying the effect of schooling on earnings would be a ran-

domized experiment with a treatment group that receives education and a control group

that is refused access to education. For obvious reasons, however, such randomization is

impossible and one has to rely on observational studies. In an observational study, individ-

uals themselves decide whether to participate in treatment or not, thus self-selection into

treatment poses a major problem. Matching treated and untreated individuals with re-

spect to all observable variables that both determine the selection into college and exhibit

an impact on earnings removes systematic observable differences between the treatment

and the comparison group. In balancing these variables matching mimics a randomized

experiment provided the relevant variables are observed. Matching on the probability to

participate in treatment, the propensity score, is an alternative whenever the covariates

are high dimensional, see Rosenbaum & Rubin (1983).

This chapter performs matching on the propensity score to evaluate the effect of the

associate’s, the bachelor’s, and graduate degrees on hourly wages for men and women

during the first ten years after college completion. Graduate degrees subsume master’s,

professional, and doctoral degrees. Heterogeneity in the effects ruled by ability and family

background is explicitly modeled and discussed. Selection into college education turns

out to be extremely strong, notably for the bachelor’s and the graduate degrees. As

a result, bias in observable covariates prior to matching is immense. The optimal full
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matching algorithm proposed by Rosenbaum (1991) is implemented to address this issue.

A full matching seems to be most suitable when it comes to evaluate the mean effect of

treatment on the treated (see also Chapter 2). Furthermore, sensitivity with respect to

propensity score estimation as discussed in Chapter 3 is being investigated. All results are

compared to conventional OLS estimation which allows (i) to verify the linear specification

of the earnings equation and (ii) to bring out the determinants of why matching and OLS

estimates deviate.

The structure of the remainder is as follows. The second section elucidates the estima-

tion strategies applied in this chapter. Section 3 describes their practical implementation,

specifically the matching algorithm, and presents the data drawn from the National Lon-

gitudinal Survey of Youth 1979. Finally, results for all three college degrees are presented

and discussed in section 4. Section 5 summarizes the findings and concludes. The appen-

dices are dedicated to the estimation of the propensity score, to a more detailed description

of the statistical tools, and to estimation results for the graduate degrees.

4.2 Estimation Strategies

Identifying the effect of college education is primarily a question of identifying a causal

relationship between earnings and education which requires specifying a counterfactual

state of the world. Individuals who opted for post-secondary education, henceforth al-

ternatively called treatment, have to be compared to themselves had they not opted for

post-secondary education. Given a certain outcome measure, frequently the hourly rate

of pay, the difference in outcomes between both states is the individual effect of the treat-

ment. Several strategies have been proposed to address this identification problem, see,

for example, Angrist & Krueger (1999) for an overview.

A formal description helps illuminate the idea. Concentrating on the hourly rate of pay

as response variable, education can be considered as an investment into human capital

that, on average, increases wages. Indeed, there is strong international evidence of a

positive correlation between schooling and earnings (see e.g. Psacharopoulos, 1994).
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However, there is a long and ongoing debate on whether this correlation is an expression

of a causal relationship between education and earnings or whether it is spurious, see

the discussion in Griliches & Mason (1972) and Griliches (1977). Confounding

variables might substantially mislead the causal interpretation of the education-earnings

relationship. For instance, family background might be an important determinant of the

choice of the amount of education but might also be a direct component of the earnings

equation. The same holds for personal innate earnings abilities which might even more

so determine both the selection into higher education and wages. Describing schooling as

a dummy variable S taking the value 1 if a certain amount of education is acquired and

0 if not, the earnings equation can be summarized as follows

R = f(S,E(S), F, A) (4.1)

where F and A denote family background and abilities, respectively, and E(S) represents

labor market experience measuring cumulative training on the job as a further investment

into human capital. It will itself depend on the schooling decision in that E tends to be

lower for a certain point in time if more schooling is acquired.

Prior to the schooling decision there are two potential states

R1 = f(S = 1, E(S = 1), F, A) (4.2)

denoting potential earnings when the amount of education S = 1 would be acquired, and

R0 = f(S = 0, E(S = 0), F, A) (4.3)

denoting potential earnings in case S = 0 would be chosen. Hence, the individual effect

of education equals R1−R0. This framework has become known as the potential outcome

approach to causality suggested by Roy (1951), Rubin (1974, 1977), and Holland

(1986). It requires that the response of an individual be independent of the schooling

decisions of all other individuals. This implies that there are only two potential outcomes,

namely R0 and R1, one for the personal state S = 0, and one for S = 1, respectively. There

are no further potential outcomes depending on the assignment of any other individual.

This requirement is often referred to as stable unit treatment value assumption (sutva,

see Rubin, 1986).
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Unfortunately, only one of the two potential responses can ever be observed, and the

individual treatment effect R1−R0 cannot be identified without imposing extraordinarily

strong assumptions as, for example, a constant treatment effect for everybody. Therefore,

focus will be on the mean effect of education on those who opted for college education

IE(R1 −R0|S = 1) = IE(R1|S = 1)− IE(R0|S = 1).

The conditional expectation IE(R1|S = 1) is identified in the subsample of treated in-

dividuals. However, the counterfactual IE(R0|S = 1) is merely identified when further

assumptions are invoked. One is referred to as the conditional independence assump-

tion. If all covariates F and A that determine both the outcome under scrutiny and

the selection into schooling are known, R0 is independent of S given (F,A), yielding

IE(R0|F,A, S = 1) = IE(R0|F,A, S = 0). The conditional mean response of the educated

S = 1, if they had opted for S = 0, can thus be inferred for given (F,A) from the condi-

tional mean response of the less educated individual S = 0, who are observed in schooling

level S = 0.

However, if some variable in equation (4.1) cannot be observed, which is usually the

case for A, the conditional independence assumption might be invalid. The literature

suggests three distinct methods to cope with this problem. First, the instrumental vari-

ables technique is a prominent – though often statistically imprecise – way to address

this issue (see e.g. Angrist & Krueger, 1991, Card, 1995a). A second approach rests

on comparing education and earnings levels between individuals who are supposed to be

equal with respect to unobserved A. This idea is best implemented in twin studies but

suffers particularly from measurement error in the schooling variable (see e.g. Griliches,

1979, Ashenfelter & Krueger, 1994). Third, some observed ability measures as, for

instance, scores on mathematical ability tests are explicitly included into equation (4.1).

However, these variables might themselves be prone to either endogeneity or measurement

error (see e.g. Griliches & Mason, 1972, Griliches, 1977, Blackburn & Neumark,

1995, Murnane, Willett & Levy, 1995, Chapter 5).

This chapter combines the second and third approach but does not consider the special

econometric problems that occur with these strategies. It rather focuses on the functional
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form of f by comparing three estimation methods: a conventional linear model, and two

variants of the matching approach, a pure matching and a regression adjusted matching.

Recently, the statistical method of matching has found widespread attention in econo-

metrics, especially for evaluating active labor market programs. For a discussion, see e.g.

Heckman, LaLonde & Smith (1999). Rosenbaum (1995) summarizes the statistical

literature. Usually, the parameter of interest is the mean effect of treatment on the treated,

which in this study translates to the mean effect of college education on those individuals

who went to college.

Matching

Matching tries to mimic ex post a randomized experiment by stratifying the sample of

treated and untreated units with respect to the relevant covariates (F,A) that rule the se-

lection into treatment as well as the outcome under study.1 As a result, matching balances

the relevant covariates between treatment and comparison group to achieve comparabil-

ity. In other words, selection into treatment can be considered to have been random

within each stratum defined by (F,A). In contrast, in a true randomized experiment all

covariates are a priori balanced up to stochastic deviations.

Although the data used in this study provide detailed information on F and A, fur-

ther complications emerge in practice. It is almost impossible to match individuals with

exactly the same covariates whenever (F,A) is of high dimension. To escape this curse

of dimensionality, Rosenbaum & Rubin (1983) suggest to use the one-dimensional

conditional probability to participate in treatment p(f, a) = IP(S = 1|(F,A) = (f, a)),

the propensity score, on which to stratify the sample instead. They show that if R0 is

independent of S given (F,A), R0 and S are also independent given p(F,A). Matching

treated and untreated units with the same propensity score and putting them into one

stratum means that the decision whether to go to college or not can be considered as

having been random in the stratum. With probability p(F,A) members of a given stra-

1In this study, the strata will be non-overlapping, i.e. individuals cannot be in more than one stratum,
which facilitates statistical inference. However, this is not necessary if different techniques are used in
case of overlapping strata, see Quade (1981) or Heckman, Ichimura & Todd (1998).
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tum attend college and with probability 1− p(F,A) they do not. Section 3 discusses the

practical problems arising from the stratification specific to this study and appendix B

provides a brief framework for statistical inference which is established in Rosenbaum

(1995) and adapted to this setup in Chapter 2.

The mean effect of college education is estimated by a weighted average over all stratum

effects. The stratum weight corresponds to the number of treated individuals within the

stratum multiplied by their sample weights provided by the data set. The resulting

estimate will be labeled the pure matching estimate. However, it turns out that balance

of covariates is not always fully achieved which is why the pure matching estimate might

still be biased. Therefore, an additional regression adjustment is made based on the

stratum as unit of observation. Let

Rt = α0 + α1Ft + α2At + δ(Ft, At) + εt, (4.4)

Rc = α0 + α1Fc + α2Ac + εc

be the wage of the treated t and the control c, respectively, in a certain stratum. δ(Ft, At)

denotes the treatment effect which may vary with F and A.

If overall balance is not achieved, the difference between Rt and Rc keeps on depending

systematically on the unbalanced covariates

∆R = α1∆F + α2∆A+ δ(Ft, At) + ∆ε,

with ∆F = Ft − Fc, and analogously ∆A, ∆ε. Further assume

δ(Ft, At) = δ0 + δ1(Ft − F̄t) + δ2(At − Āt) (4.5)

where bars denote the respective mean over all treated units. The mean effect of college

education is thus captured by δ0. Finally, a regression of ∆R on differences in the covari-

ates and on the level of the treated units’ covariates is supposed to remove any bias due

to incomplete balance if linearity holds. Note that linear regression after matching might

be less prone to functional form misspecifications since linearity is only required to bridge

remaining small differences in the variables.2 What is more, heterogeneity in the effect

2A linear Taylor approximation between two points of a well-behaved function is the more accurate
the closer two values of the function are.
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of college education can be investigated by assessing the statistical significance of δ1 and

δ2. For this latter reason, pure matching, too, is followed by an additional regression on

the level variables Ft and At, see also Chapter 2. Since in this study strata will contain

either one treated and one or more controls or one control and more than one treated,

(Rt, Ft, At) and (Rc, Fc, Ac) of equation (4.4) are understood as averages over the treated

and untreated individuals within strata, respectively.

OLS Regression

Reconsider equation (4.1). In a linear model, it specializes to

R = γ0 + β(F,A) S + α1E(S) + α2E
2(S) + γ1F + γ2A+ ε. (4.6)

Analogously to equation (4.5), the treatment coefficient β depends linearly on F and A.

Yet, it does not identify the mean effect of college education, R1 − R0, for treatment

also acts through accumulated experience E(S). Individuals tend to acquire less labor

market experience while they attend college. If they do work while being enrolled their

acquired experience might be less valuable because many college students work part-time

or during vacations without much training on the job. As such, experience acquired

while being enrolled at college might differ from experience gained in the labor market

after education is completed. Hence, usual work experience E(S) is distinguished from

experience acquired while being enrolled at college EC(S).

Furthermore, since experience is a cumulative measure, missing information in certain

years would accumulate at the end of the sample period. Therefore, missing value indi-

cators mis(S) and misC(S) for E(S) and EC(S), respectively, are introduced in equation

(4.6) counting the number of years with missing information up to the year under scrutiny.

Finally, the experience-earnings profile for high school and college graduates might differ,

which is taken into account by adding interaction terms between experience and schooling.

In sum, equation (4.6) extends to

R = γ0 + β(F,A)S + α1E(S) + α2E
2(S) + α3EC(S) + α4E

2
C(S)

+ α5S · E(S) + α6S · E2(S) + α7S · EC(S) + α8S · E2
C(S) (4.7)
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+ α9 mis(S) + α10 misC(S) + γ1F + γ2A+ ε.

The mean effect of college education can thus be estimated by

R̄1 − R̄0 = β̂(F̄ , Ā) + α̂1 (Ē(1)− Ē(0)) + α̂2 (E2(1)− E2(0))

+ α̂3 (ĒC(1)− ĒC(0)) + α̂4 (E2
C(1)− E2

C(0))

+ α̂5 Ē(1) + α̂6 E2(1) + α̂7 ĒC(1) + α̂8 E2
C(1) (4.8)

+ α̂9 (mis(1)−mis(0)) + α̂10 (misC(1)−misC(0)).

Bars denote means over the treated subsample except for the experience variables in the

no-treatment state which are averages over all untreated units because the OLS framework

does not provide suitable counterfactual averages.

4.3 The Practical Implementation

The Data

The data are taken from the National Longitudinal Survey of Youth 1979 (NLSY) admin-

istered by the US Bureau of Labor Statistics. The NLSY is a sample of 12,686 youths first

interviewed in 1979 when they were aged between 14 and 22 and re-interviewed annually

until 1994. A detailed description of the data is given by the NLS Handbook (1997) and

the NLSY79 User’s Guide (1997). For this study, data on wages are extracted until 1994

for men and women; the military subsample is skipped.3 Oversampling of Non-whites

and economically disadvantaged Whites suggests the use of the sample weights of 1979.

The outcome measure is the hourly rate of pay inflated to 1996 dollars using the US

consumer price index and transformed into logarithms. To eliminate outliers, all values

below $1 are set equal to $1 and maximum or minimum wages of observations whose wages

oscillate enormously across years are removed.4 In particular, the data contain numerous

3The self-employed are kept. Kane & Rouse (1995) who also use the NLSY report that their results
are not sensitive to the exclusion of self-employed.

4For example, an hourly wage of $5 in one year, $1000 in the second, and again $5 in the third
seems more likely to reflect inconsistencies in the calculation of the hourly wage by the NLSY than
real fundamental economic changes which is why $1000 would be removed. See e.g. the NLSY79 User’s
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variables about the socioeconomic background, the high school careers of respondents,

and labor force status (since 1975). The latter is used to generate a measure of actual

experience based on weeks worked per year. What is more, the NLSY provides information

on some ability measures collected in 1980 when 94.3% of all respondents participated in

tests to update the Armed Services Vocational Aptitude Battery (ASVAB) consisting of

ten different test scores. Since respondents participated in the tests at different ages the

scores are adjusted by regressing the raw scores on age dummies and using the residuals

subsequently, analogous to Blackburn & Neumark (1993).

In terms of the formal setup, treated individuals are those who obtained a college

degree and left college immediately thereafter. Those who attempted to continue or start

college to obtain a (further) degree but eventually dropped out before achieving it are

neither considered as treated nor as potential control units and are removed. Potential

controls are individuals with only a high school diploma who never attended college. High

school dropouts and individuals with a general educational development are removed from

the sample.

Matching

Three college degrees are evaluated: the associate’s degree (AA) which is obtained at

two-year colleges, the bachelor’s degree (BA) which is usually obtained after four years at

college and the graduate degrees (MA) which, for example, include the master’s, doctoral

and professional degrees. Unfortunately, the number of persons in the latter group remains

too low to draw sensible statistical inference.

The year in which respondents receive their high school diploma marks the beginning

of the treatment phase of those who went to college.5 In turn, the year in which the

treated units receive their college degree marks the end. An exception is the graduate

group which also contains individuals who continued college beyond a graduate degree

Handbook (1997: p. 266): “... the calculation procedure [...] produces, at times, extremely low and
extremely high pay rate values.”

5A considerable number of individuals do not start college right after finishing high school. Roughly
45% wait more than one year. This means that they are compared with their controls for a period that
comprises more than merely the time at college.
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but then dropped out. These college dropouts are kept in order not to reduce the sample

size even more and because this group comprises various degrees of different time lengths

anyway. Within a stratum, treated and controls are ideally supposed to finish high school

in the same year and to be of the same age and race. After high school, the control starts

to work and gain labor market experience while the treated is allowed to either go to

college right away, interrupt it for a while or even start to work a certain amount of time

before finally attending college. Moreover, individuals of the same stratum should have

similar propensity scores.

The propensity score is estimated by ways of a probit model. Although such a paramet-

ric approach to modeling the selection equation seems to dilute the idea of matching as

being nonparametric, the specification of the selection equation is in fact of minor impor-

tance as long as the estimated propensity score achieves to balance all relevant covariates.

Albeit, it is of major importance which covariates are really required to be included in the

selection equation. Chapter 3 suggests not to include all the possibly numerous variables

that might determine the selection, even if they are statistically significant, but to con-

sider only those that are relevant for the outcome as well. Above all, in samples with a

relatively low number of adequate untreated units there is a trade-off between balancing

the most important variables and consistent specification of the selection equation. Bal-

ancing irrelevant variables might well be at the expense of balancing the important ones.

In this context, “adequate units” means untreated persons with similarly high propensity

scores as the treated.

Because of that, this chapter offers two distinct specifications, a broad and a narrow

probit model. The first comprises several variables describing F and A which are sta-

tistically significant in the probit estimation while the latter uses only one variable for

each F and A, namely parents’ education6 as family background and math test scores of

the ASVAB as ability measure. The probit estimations are discussed in appendix A. Yet,

matching will be pursued with respect to the index or probits Φ−1(p̂), where Φ is the cu-

mulative normal density function, in place of the estimated propensity score p̂. The index

6Parents’ education is defined as the mean of father’s and mother’s education. It is mother’s if father’s
is missing and vice versa.
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is linear in (F,A) and might better reflect the diversity of individuals at the boundaries

than p̂ which is constrained to the unit interval, see also the discussion in Chapter 2.

Table 4.1 presents the distribution of treated and untreated individuals by certain in-

dex intervals. Obviously, the probit models for the decision to take up a bachelor’s or a

graduate degree clearly separates the college from the high school graduates. Unfortu-

nately, this high predictive ability of the probit model also implies that it will be difficult

to find enough controls for treated individuals characterized by high propensity scores.

The picture differs for members of the group with an AA who are more resembling to the

high school graduates; therefore, they will be easier to match. Moreover, although the

narrow and broad probit model do not differ much with regard to the estimated mean

propensity scores it is evident that the broad model produces an even less favorable prior-

distribution than the narrow one. What is more, the broad one has to rely on a smaller

sample size for it depends on more covariates coming with more missing observations.

Once the propensity score has been estimated, a distance between treated and un-

treated individuals has to be defined. Within cells characterized by race, sex, age, and

the high school graduation year, a propensity score caliper approach is pursued.7 Only

individuals of the same age, one year younger or one year older are allowed to be matched.

Similarly, only those who receive their high school degree in the same year, one year ear-

lier or later than the treated might become potential controls. Exact matches on these

variables would be preferable, but would substantially reduce the number of potential

controls. Furthermore, only individuals of the same race and sex are matched. Three

races are distinguished, Blacks, Hispanics, and Non-black/Non-hispanics, subsequently

called Whites. Results are presented separately for men and women, but not for races 8.

Within these cells a pool of potential controls is generated for each treated by excluding

all untreated units who exceed an index score caliper ε. The final decision of who becomes

an actual control will then be made by minimizing the index score distance. Thus, the

7Propensity score calipers are discussed in Rosenbaum & Rubin (1985: 3) and Rosenbaum (1989:

3.4).
8Apart from the inacceptable reduction of the sample size if one considered Blacks and Hispanics

separately, Ashenfelter & Rouse (1998b) find that there is little variability in the estimates of the
return to schooling (annual earnings) by race.
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Table 4.1: Distribution of the Estimated Index Score.
AA BA MA

Estimated Narrow Broad Narrow Broad Narrow Broad
Index C T C T C T C T C T C T
Men
[−6.50 , −5.00) 0 0 0 0 0 0 0 0 17 0 3 0
[−5.00 , −3.50) 0 0 0 0 11 0 39 0 378 1 320 1
[−3.50 , −2.50) 0 0 0 0 173 3 288 2 511 3 504 4
[−2.50 , −1.75) 163 6 310 7 446 12 408 7 264 5 256 3
[−1.75 , −1.00) 1100 96 829 77 449 42 310 34 163 12 140 10
[−1.00 , −0.25) 228 68 199 64 263 68 188 50 85 16 64 9
[−0.25 , +0.50) 3 3 10 7 113 114 75 86 38 39 36 32
[+0.50 , +1.50) 0 0 0 0 30 208 30 178 6 72 2 67
[+1.50 , +2.50) 0 0 0 0 1 43 4 85 0 22 0 30
[+2.50 , +3.50] 0 0 0 0 0 0 0 8 0 0 0 0

Mean index -1.37 -1.10 -1.43 -1.04 -1.51 0.32 -1.77 0.61 -2.74 0.39 -2.72 0.59
Mean p. score 0.10 0.15 0.09 0.17 0.13 0.62 0.11 0.67 0.04 0.64 0.04 0.69

Observations 1494 173 1348 155 1396 458 1342 450 1462 170 1325 156

Women
[−6.50 , −5.00) 0 0 0 0 0 0 0 0 22 0 10 0
[−5.00 , −3.50) 0 0 0 0 9 0 10 0 293 0 296 0
[−3.50 , −2.50) 0 0 7 0 172 2 237 2 524 1 527 1
[−2.50 , −1.75) 230 9 271 6 420 15 444 9 392 7 319 8
[−1.75 , −1.00) 943 96 799 87 508 44 417 34 166 18 152 12
[−1.00 , −0.25) 367 101 318 88 281 84 203 76 105 33 78 24
[−0.25 , +0.50) 18 29 33 36 131 133 76 86 34 31 28 34
[+0.50 , +1.50) 0 0 0 2 33 212 37 169 5 39 7 31
[+1.50 , +2.50) 0 0 0 0 0 33 2 94 0 21 0 27
[+2.50 , +3.50] 0 0 0 0 0 0 0 13 0 0 0 1

Mean index -1.29 -0.89 -1.32 -0.82 -1.45 0.27 -1.63 0.56 -2.60 0.11 -2.66 0.29
Mean p. score 0.12 0.21 0.12 0.24 0.14 0.61 0.12 0.65 0.05 0.54 0.04 0.57

Observations 1558 235 1428 219 1469 495 1426 483 1541 150 1417 138

Comparison of the number of untreated (C) and treated (T) individuals by certain estimated index score intervals.
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distance is defined as

d(xt,xc) =




∞ if |p(xt)− p(xc)| > ε

|p(xt)− p(xc)| else,

(4.9)

where xt and xc denote the matching covariates, and p(·) represents the index score for

given covariates. An infinite distance indicates that matching is forbidden. The caliper

width ε will be set equal to 0.2 for the associate’s degree and to 0.4 for the other degrees.

The latter caliper width lies close to 0.3 which has been chosen as the narrow width in

Chapter 2. A comparatively narrow width is advantageous when it comes to balance of

covariates but might drop many treated individuals who do not find controls within their

caliper. Yet, results for male BA holders in Chapter 2 indicate that the loss of treated

units does not lead to adverse consequences. Note that no calipers might allow arbitrarily

large distances between treated and controls, and, moreover, matching algorithms would

consume substantially more time.9

After having constructed the pool of potential controls appropriate wages serving as

the counterfactual wage of the treated person are assigned. The time span between the

year in which the treated unit receives the college degree and the high school diploma –

the treatment phase – is added to the year in which his or her potential controls receive

their high school diploma. The result is considered as the counterfactual year in which his

or her potential controls would have received a college degree. Note that the treatment

phase is not necessarily just the years at college because the treated individual might have

interrupted education for a while. Figure 4.1 illustrates the procedure. The counterfactual

outcome one year after treatment is the wage of the potential control one year after his

hypothetical end of college. If wage information is missing the potential control is dropped

for that year after treatment but is still used for other years. If the wage of the treated

is missing the treated is removed, too. Ten years after college will be examined and each

year will be stratified separately such that individuals who are removed in some year due

to missing wage information may still be available in other years.

9In each step of the algorithm every treated would have to be compared to the whole control reservoir.
Given a caliper, the treated has to be compared to only a small number of suitable untreated units.
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Figure 4.1: Illustration of the Evaluation Procedure.
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The first diagram demonstrates the optimal case when treated and control individuals receive their high
school diploma in the same year. The second indicates how things change when there is one year difference.

Additionally, a model is estimated which pools all years after college, i.e. δ0 in equation

(4.5) remains different in each year but δ1 and δ2 are restricted to be time-invariant.10

Moreover, the year in which the treated individual obtained the college degree has an

impact on the effect of college if there is a general (positive or negative) trend in the returns

to education in the economy as a whole. Therefore, the treatment effect in equation (4.5)

will additionally depend on the year, YC , in which the college degree is obtained, so

δ = δ(F,A, YC).

The final decision regarding the matching procedure is that on the implementation of

the chosen matching criteria. The question is how the overall distance between treated and

controls is minimized. In this study, optimal full matching as proposed by Rosenbaum

(1991) is used. First, fullmatching means that all treated and, in particular, all untreated

individuals who have finite distances to treated units and for whom information on all

10Coefficients of the other covariates in OLS estimations are also restricted to be constant over time.
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variables is available are used for stratification. The size of the strata is as small as

possible to ensure that the distance of the units within a stratum is not too large. This

yields strata with either one treated and one or more controls or one control and more

than one treated unit. In the end, strata with very high propensity scores tend to contain

more than one treated and strata with low scores tend to consist of a large number of

controls.

In contrast, pairmatching that produces strata with exactly one treated and one control

would force individuals to find exactly one partner to be matched to, which, in this

study, might produce a long casualty list of treated (and also untreated) units who do

not find a match within the cells and the propensity score calipers. As a result, the

matched sample might be extremely distinct from the original sample and the estimate

of the population mean effect might be biased.11 Moreover, if untreated individuals were

dropped efficiency would be reduced. On the other hand, full matching gives each stratum

a weight according to the number of treated persons in the stratum in order to identify

the mean effect of treatment on the treated. Since a few strata contain many treated

units in case of the bachelor’s and graduate degrees, the overall variance increases. Under

these circumstances, full matching estimates are less biased at the expense of reduced

efficiency.

Second, optimal matching means that the sum of distances between treated and un-

treated individuals is effectively minimized. In many applications, a so-called greedy

procedure is used. In the case of greedy pair matching, for example, a treated unit would

be randomly chosen and the closest untreated would be searched in the control reservoir

and matched to the treated. The resulting pair would then be removed and the proce-

dure would restart. The outcome of matching would be determined by the random order

of records in the sample. Rosenbaum (1991) shows in a simple but extreme exam-

ple how greedy matching might produce a stratification with an arbitrarily large overall

distance. In contrast, an optimal procedure also works backwards and rearranges previ-

ously matched units if necessary. It can easily be transformed into a minimum cost flow

11However, Chapter 2 finds that for male BA holders this bias seems to be relatively small.
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problem.12 Finally, optimal full matching produces non-overlapping strata facilitating

statistical inference.

OLS Regression

Since a conventional cross-sectional OLS estimator would be an inappropriate comparison

to the matching estimator presented above, individuals and their wages are taken from the

stratified samples produced by matching. Then, each year after college can separately be

investigated by OLS, as well. The coefficient β in equation (4.7) will additionally depend

on the year, YC , when the college degree was received and, moreover, equation (4.7) will

be augmented by the regressor year in which the high school diploma was received to

make it comparable to matching. Results presented in the next section report both the

mean coefficient estimate β̂(F̄ , Ā, ȲC) for the treatment group and the estimated effect

(4.8) resting on two different weighting schemes. The first one utilizes the weights each

observation receives in the matching estimation, the second one utilizes the conventional

OLS weights. In addition, both schemes are adjusted by NLSY sample weights of 1979.

The two weighting schemes help investigate why OLS and matching estimates might

deviate.

4.4 Results

First, balancing properties after matching are discussed for all college degrees and for

both probit models. They are presented in tables 4.2, 4.3, and 4.4. Since there are ten

different stratifications, one for each year after college, means after matching are weighted

averages over all these years. The weights correspond to the number of strata. The means

are compared by a conventional t-test under the assumption of equal variances in both

groups. A “1” indicates that the means are not significantly different. Fractions are due

12
Bertsekas (1991) discusses linear network optimization and provides fortran-algorithms for min-

imum cost flow problems. Furthermore, there is an operations research procedure called netflow in sas for
these kinds of problems. Gu & Rosenbaum (1993) examine the performance of optimal full matching
in a simulation study.
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Table 4.2: Balance of Covariates, AA.
Men Women

Before After Before After

Year After College C T t C T t % C T t C T t %

Narrow Probit Model

Propensity score 0.10 0.15 0 0.15 0.15 1.00 98 0.12 0.21 0 0.19 0.20 1.00 98

Index score -1.37 -1.10 0 -1.10 -1.10 1.00 97 -1.29 -0.89 0 -0.95 -0.95 1.00 98

Black 0.29 0.21 1 0.22 0.22 1.00 100 0.24 0.30 1 0.25 0.25 1.00 100

Hispanic 0.13 0.18 1 0.19 0.19 1.00 100 0.14 0.14 1 0.13 0.13 1.00 100

Age 17.56 17.61 1 17.85 17.83 1.00 42 17.84 17.71 1 17.92 17.86 1.00 58

Year of high school diploma 79.42 79.14 1 78.80 78.77 1.00 90 78.86 78.76 1 78.53 78.50 1.00 65

Math test scores -4.14 1.17 0 1.15 1.23 1.00 98 -4.56 0.84 0 0.59 0.62 1.00 98

Highest grades of parents 10.29 10.94 0 10.89 10.97 1.00 78 10.21 11.13 0 11.05 11.14 1.00 89

Average percent bias reduction 85 85

Broad Probit Model

Propensity score 0.09 0.17 0 0.16 0.16 1.00 99 0.12 0.24 0 0.22 0.22 1.00 98

Index score -1.43 -1.04 0 -1.08 -1.07 1.00 98 -1.32 -0.82 0 -0.89 -0.88 1.00 98

Black 0.30 0.22 1 0.23 0.23 1.00 100 0.25 0.31 1 0.25 0.25 1.00 100

Hispanic 0.10 0.14 1 0.13 0.13 1.00 100 0.12 0.12 1 0.12 0.12 1.00 100

Age 17.49 17.65 1 17.89 17.90 1.00 86 17.80 17.68 1 17.90 17.84 1.00 45

Year of high school diploma 79.42 78.98 1 78.70 78.66 1.00 90 78.87 78.79 1 78.55 78.52 1.00 47

Math test scores -3.97 1.64 0 0.95 1.36 1.00 93 -4.50 1.07 0 0.77 0.74 1.00 96

Auto+shop test scores 3.85 6.94 0 7.37 6.89 1.00 84 -5.31 -3.65 0 -3.43 -3.73 1.00 82

Attended private school 0.03 0.05 1 0.05 0.04 1.00 63 0.04 0.06 1 0.08 0.06 0.94 -1

Expelled or susp. from school 0.33 0.20 0 0.21 0.19 1.00 79 0.18 0.10 0 0.10 0.09 1.00 79

Curriculum: college prepar. 0.16 0.34 0 0.31 0.34 1.00 83 0.16 0.35 0 0.30 0.37 0.89 65

Curriculum: general 0.59 0.52 1 0.56 0.47 0.94 -18 0.60 0.51 1 0.55 0.47 0.76 11

Highest grades of parents 10.49 11.21 0 11.06 11.12 1.00 88 10.32 11.25 0 11.22 11.18 1.00 90

Occupation parents high 0.08 0.15 0 0.14 0.13 1.00 81 0.07 0.13 0 0.12 0.12 1.00 82

Number of siblings 3.92 3.59 1 3.65 3.44 1.00 36 4.02 3.61 1 3.65 3.54 1.00 67

Born in south 0.38 0.28 1 0.29 0.31 1.00 70 0.40 0.35 1 0.33 0.33 1.00 67

Average percent bias reduction 74 67

For reasons of parsimony, weighted averages over all ten years after college are shown. Weights correspond to the number of strata in each year after
college. C denotes the control or comparison units while T represents treated units, t indicates whether a t-test accepts balance of covariates (t = 1), and
% represents the percent bias reduction. The last row report the simple average over all single percent bias reductions excluding those of the propensity
and index score.
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Table 4.3: Balance of Covariates, BA.
Men Women

Before After Before After

Year After College C T t C T t % C T t C T t %

Narrow Probit Model

Propensity score 0.13 0.61 0 0.55 0.56 1.00 97 0.14 0.59 0 0.57 0.57 1.00 98

Index score -1.51 0.32 0 0.10 0.15 1.00 97 -1.45 0.27 0 0.17 0.20 1.00 98

Black 0.29 0.16 0 0.15 0.15 1.00 100 0.24 0.19 0 0.17 0.17 1.00 100

Hispanic 0.13 0.09 0 0.06 0.06 1.00 100 0.14 0.07 0 0.05 0.05 1.00 100

Age 17.56 17.63 1 17.73 17.73 1.00 72 17.84 17.82 1 18.10 18.08 1.00 -11

Year of high school diploma 79.36 78.77 0 78.71 78.65 1.00 91 78.83 78.49 0 78.21 78.18 1.00 90

Math test scores -4.11 9.84 0 9.29 9.08 1.00 98 -4.55 8.10 0 8.17 7.83 1.00 97

Highest grades of parents 10.30 13.06 0 12.13 12.61 0.12 82 10.22 12.84 0 12.36 12.83 0.12 82

Average percent bias reduction 91 76

Broad Probit Model

Propensity score 0.11 0.67 0 0.59 0.60 1.00 98 0.12 0.65 0 0.60 0.61 1.00 99

Index score -1.77 0.61 0 0.22 0.27 1.00 98 -1.63 0.56 0 0.31 0.34 1.00 98

Black 0.30 0.16 0 0.17 0.17 1.00 100 0.26 0.19 0 0.18 0.18 1.00 100

Hispanic 0.10 0.07 1 0.06 0.06 1.00 100 0.12 0.06 0 0.03 0.03 1.00 100

Age 17.50 17.65 1 17.90 17.87 1.00 77 17.79 17.79 1 18.03 18.02 1.00 –

Year of high school diploma 79.37 78.74 0 78.57 78.51 1.00 90 78.85 78.51 0 78.32 78.22 1.00 72

Math test scores -3.95 10.02 0 8.59 8.58 1.00 98 -4.50 8.35 0 7.62 7.67 1.00 98

Auto+shop test scores 3.88 7.98 0 7.55 7.54 1.00 95 -5.31 -1.60 0 -2.32 -1.45 0.79 76

Attended private school 0.03 0.12 0 0.11 0.10 1.00 80 0.04 0.13 0 0.11 0.09 0.88 65

Expelled or susp. from school 0.33 0.10 0 0.12 0.12 0.95 88 0.18 0.06 0 0.04 0.06 1.00 90

Curriculum: college prepar. 0.16 0.67 0 0.63 0.60 1.00 94 0.16 0.59 0 0.56 0.55 1.00 95

Curriculum: general 0.59 0.28 0 0.31 0.35 1.00 87 0.60 0.33 0 0.36 0.37 1.00 91

Highest grades of parents 10.50 13.21 0 12.31 12.59 0.46 89 10.32 12.95 0 12.31 12.72 0.38 84

Occupation parents high 0.08 0.29 0 0.23 0.23 1.00 95 0.07 0.32 0 0.26 0.27 1.00 96

Number of siblings 3.92 2.64 0 2.78 2.76 1.00 91 4.02 2.91 0 3.32 2.94 0.30 64

Born in south 0.38 0.33 1 0.24 0.31 0.88 -49 0.40 0.37 1 0.36 0.36 0.93 -25

Average percent bias reduction 81 77

For reasons of parsimony, weighted averages over all ten years after college are shown. Weights correspond to the number of strata in each year after
college. C denotes the control or comparison units while T represents treated units, t indicates whether a t-test accepts balance of covariates (t = 1), and
% represents the percent bias reduction. The last row report the simple average over all single percent bias reductions excluding those of the propensity
and index score. For women, the bias reduction in age could not be calculated because of an almost diminishing denominator.
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Table 4.4: Balance of Covariates, MA.
Men Women

Before After Before After

Year After College C T t C T t % C T t C T t %

Narrow Probit Model

Propensity score 0.04 0.64 0 0.48 0.51 1.00 94 0.05 0.54 0 0.38 0.39 1.00 97

Index score -2.74 0.39 0 -0.19 -0.07 1.00 96 -2.60 0.11 0 -0.47 -0.41 1.00 98

Black 0.29 0.08 0 0.09 0.09 1.00 100 0.24 0.10 0 0.05 0.05 1.00 100

Hispanic 0.13 0.09 1 0.05 0.05 1.00 100 0.14 0.10 1 0.06 0.06 1.00 100

Age 17.58 18.05 1 17.79 17.85 1.00 86 17.85 18.20 1 18.61 18.60 1.00 91

Year of high school diploma 79.24 78.29 0 78.53 78.48 1.00 93 78.77 78.05 0 77.72 77.66 1.00 92

Math test scores -4.01 14.00 0 12.21 12.61 1.00 98 -4.51 11.05 0 8.49 8.72 1.00 98

Highest grades of parents 10.31 14.12 0 12.47 12.82 1.00 91 10.22 13.75 0 12.97 13.08 1.00 95

Average percent bias reduction 95 96

Broad Probit Model

Propensity score 0.04 0.69 0 0.44 0.46 1.00 96 0.04 0.57 0 0.41 0.42 1.00 97

Index score -2.72 0.59 0 -0.38 -0.29 1.00 97 -2.66 0.29 0 -0.36 -0.29 1.00 97

Black 0.30 0.06 0 0.07 0.07 1.00 100 0.26 0.11 0 0.06 0.06 1.00 100

Hispanic 0.10 0.07 1 0.04 0.04 1.00 100 0.12 0.07 1 0.05 0.05 1.00 100

Age 17.51 17.96 1 18.40 18.28 1.00 73 17.80 18.24 1 18.48 18.45 1.00 94

Year of high school diploma 79.27 78.40 0 78.12 78.08 1.00 91 78.81 77.97 0 77.88 77.77 1.00 86

Math test scores -3.86 14.20 0 10.26 11.35 1.00 94 -4.47 10.89 0 8.39 8.50 1.00 99

Auto+shop test scores 4.00 9.38 0 7.90 8.95 1.00 78 -5.29 -0.78 0 -0.74 -1.19 1.00 90

Attended private school 0.03 0.14 0 0.07 0.05 1.00 83 0.04 0.13 0 0.10 0.16 1.00 39

Expelled or susp. from school 0.33 0.07 0 0.17 0.15 1.00 88 0.18 0.02 0 0.03 0.03 1.00 95

Curriculum: college prepar. 0.16 0.81 0 0.67 0.67 1.00 97 0.16 0.70 0 0.56 0.61 1.00 92

Curriculum: general 0.58 0.17 0 0.26 0.29 1.00 90 0.60 0.25 0 0.38 0.31 1.00 80

Highest grades of parents 10.51 14.27 0 12.15 12.31 1.00 92 10.32 13.82 0 12.98 13.03 1.00 97

Occupation parents high 0.08 0.41 0 0.31 0.22 0.75 73 0.07 0.35 0 0.26 0.28 1.00 94

Number of siblings 3.91 2.31 0 2.99 2.51 1.00 70 4.02 2.72 0 3.26 2.80 1.00 65

Born in south 0.38 0.27 0 0.17 0.21 1.00 68 0.40 0.33 1 0.32 0.28 1.00 3

Average percent bias reduction 85 81

For reasons of parsimony, weighted averages over all five years after college are shown. Weights correspond to the number of strata in each year after
college. C denotes the control or comparison units while T represents treated units, t indicates whether a t-test accepts balance of covariates (t = 1), and
% represents the percent bias reduction. The last row report the simple average over all single percent bias reductions excluding those of the propensity
and index score.
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to averaging. Moreover, the percent bias reduction is shown for each variable and as an

average over all variables. For the associate’s degree, overall bias reduction amounts to

85% for the narrow and to roughly 70% for the broad model. For male BA holders, the

reductions are 91% in the narrow and 81% in the broad model; for female BA holders

both numbers are roughly 77%. For the graduate degrees, bias reduction amounts to 95%

in the narrow and to 83% in the broad model. Apparently, percent bias reduction is larger

for higher college degrees. This is because initial biases are markedly more pronounced

for these degrees.

Furthermore, although the broad models achieve less overall bias reduction than the

narrow models, math scores are sometimes as well balanced in the broad as in the narrow

model, and, surprisingly, the broad one achieves a superior balance in parents’ education.

That is, the broad model is as successful with respect to balancing as the narrow one.

The only disadvantage remains that it rests on less observations. In all cases the mean

propensity score of matched treated individuals is lower than the original mean of the

unmatched indicating that treated individuals at the high end of the propensity score

scale have been lost. As expected, this feature is more pronounced in the narrow than in

the broad model. Finally, notice that even after matching covariates of control units are

on average less favorable than those of treated units. Thus, regression adjustment after

matching seems to be a useful tool to further smooth these differences.

Second, estimation results are discussed thoroughly for the associate’s and the bach-

elor’s degrees for men and women, and, moreover, for the narrow and the broad probit

models. Tables 4.5 to 4.12 present matching and OLS estimates for the first ten years

after college completion. Results for the graduate degrees are relegated to the appendix.

They are not very reliable due to small sample size and due to a small common support of

treatment and comparison group. Since δ̂0 is rarely close to 0, the estimates reported in

the tables are retransformed as exp(δ̂0)− 1. For the sake of comparability, equally trans-

formed OLS estimates of Kane & Rouse (1995), who also investigate college degrees

using the NLSY, are reported in the tables, too.

All estimations have been repeated replacing the propensity score distance within
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calipers in equation (4.9) by the Mahalanobis metric. Chapter 2 finds favorable prop-

erties of the latter distance measure for male BA holders. However, this could not be

generalized. Balance of covariates in the Mahalanobis case turned out to be less advan-

tageous, and the stratification to be even less uniform than in the present version. For

that reason, standard errors remained high although more strata were produced from the

same number of treated and control units.

Associate’s Degree

Tables 4.5 and 4.6 are dedicated to men’s results. First note that stratification by optimal

full matching has produced almost only 1-k-strata, i.e. strata consisting of one treated and

one or more controls. “k” is supposed to indicate that the number of controls is variable

but at least 1. This structure is responsible for the relatively low ratio of standard errors

between matching and OLS estimates compared to the bachelor’s degree, where numerous

strata contain more than one treated. Furthermore, the number of strata diminishes over

the years. This is because many individuals are not in the sample for the whole ten-year

period after college. In 1994, the last year in the panel, some individuals – especially

younger ones – are just in their, say, seventh year after college.

The effect of the AA on men’s wages seems to increase with years after college for

both the pure and the regression adjusted matching. There appears to be no systematic

difference between the two estimates. In contrast, OLS coefficient estimates resting on

the stratum weighting scheme do not show a clear time trend. This picture changes when

labor market experience is taken into account to calculate the effect of the degree. Then,

OLS results are more in line with the matching results: though being smaller, the effect

seems to increase, too. Based on the conventional OLS weighting scheme the estimates

of the effects are even smaller than those using stratum weights. This suggests that

OLS might generally identify a parameter that is different from what matching identifies.

However, in comparison with Kane & Rouse (1995) the conventional OLS coefficient

estimates are already rather small.

As far as interaction between experience and schooling is concerned, there seems to
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Table 4.5: Treatment Effects, Men, AA, Narrow Probit Model.

OLS Stratification

Matching Stratum Weighted Convent. Weighted S T Mean

Year Pure Adjusted Coeff. Effect Coeff. Effect C Max

1 0.068 0.065 0.131*** 0.067*** 0.136** 0.027 132 134 3.0
(0.056) (0.056) (0.038) (0.026) (0.060) (0.045) 1146 3.0

2 0.021 0.025 0.118*** 0.019 0.038 -0.020 134 136 3.0
(0.053) (0.053) (0.037) (0.025) (0.050) (0.039) 1146 3.0

3 0.028 0.064 0.040 0.029 0.038 0.008 131 134 3.0
(0.055) (0.062) (0.036) (0.026) (0.053) (0.043) 1090 4.0

4 0.041 0.065 0.083** 0.060** 0.061 0.053 123 126 4.0
(0.059) (0.063) (0.036) (0.026) (0.059) (0.050) 1087 4.0

5 0.076 0.079 0.218*** 0.067** 0.061 0.001 114 117 2.5
(0.065) (0.070) (0.043) (0.029) (0.058) (0.047) 1043 3.0

6 0.103* 0.111* 0.163*** 0.073*** 0.162*** 0.061 110 110 2.0
(0.062) (0.063) (0.038) (0.027) (0.065) (0.052) 1055 2.0

7 0.161** 0.115 0.255*** 0.126*** 0.187*** 0.096* 101 103 2.0
(0.070) (0.078) (0.047) (0.033) (0.070) (0.057) 1027 2.0

8 0.111* 0.096 0.132*** 0.085*** 0.143** 0.092 88 91 2.5
(0.063) (0.081) (0.045) (0.033) (0.071) (0.061) 976 3.0

9 0.172** 0.209** 0.134*** 0.151*** 0.169** 0.143** 73 75 3.0
(0.075) (0.117) (0.043) (0.035) (0.080) (0.074) 858 3.0

10 0.210*** 0.219*** 0.187*** 0.150*** 0.187** 0.120* 64 65 2.0
(0.078) (0.079) (0.044) (0.035) (0.084) (0.075) 778 2.0

Kane & Rouse (1995) 0.230
(0.049)

Heterogeneity, Pooled Model

Year 0.017*** 0.018*** 0.006*** 0.007
degree (0.006) (0.006) (0.002) (0.005)

Math -0.006*** -0.005** -0.007*** -0.004***
scores (0.002) (0.002) (0.001) (0.002)

Educ 0.013* 0.010 0.014*** 0.011*
parents (0.007) (0.011) (0.004) (0.006)

Standard errors are in parentheses. Stars denote statistical significance in a two-sided test, *:
10%, **: 5%, ***: 1%. Stratum weighted denotes the weighting scheme that corresponds to
matching and conventionally weighted denotes the usual OLS weighting. All weighting takes
account of the NLSY sample weights. The last three columns reflect stratification results; S:
number of strata, T: number of treated, and C: number of control units. The last three rows
report pooled model estimates of variables which might drive heterogeneity. The critical ε is set
equal to 0.2.
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Table 4.6: Treatment Effects, Men, AA, Broad Probit Model.

OLS Stratification

Matching Stratum Weighted Convent. Weighted S T Mean

Year Pure Adjusted Coeff. Effect Coeff. Effect C Max

1 0.088 0.027 0.099** 0.043 0.112* -0.010 117 117 –
(0.071) (0.065) (0.045) (0.031) (0.064) (0.047) 946 –

2 -0.010 0.007 0.120*** -0.020 0.057 -0.034 118 118 –
(0.057) (0.053) (0.043) (0.028) (0.055) (0.042) 922 –

3 0.023 0.044 0.063 0.037 0.028 0.016 118 118 –
(0.063) (0.066) (0.042) (0.031) (0.057) (0.048) 935 –

4 0.055 0.065 0.064* 0.065** 0.065 0.052 112 112 –
(0.061) (0.069) (0.040) (0.029) (0.064) (0.053) 933 –

5 0.084 0.097 0.152*** 0.071** 0.109* 0.060 102 102 –
(0.069) (0.081) (0.041) (0.030) (0.067) (0.056) 901 –

6 0.100 0.126* 0.195*** 0.082*** 0.132** 0.061 97 97 –
(0.073) (0.077) (0.045) (0.031) (0.068) (0.056) 888 –

7 0.163** 0.059 0.227*** 0.126*** 0.158** 0.091 93 93 –
(0.074) (0.084) (0.050) (0.036) (0.073) (0.062) 880 –

8 0.111* 0.164** 0.157*** 0.130*** 0.087 0.082 83 83 –
(0.067) (0.085) (0.050) (0.039) (0.071) (0.064) 810 –

9 0.126* 0.185** 0.166*** 0.102*** 0.138* 0.087 68 68 –
(0.081) (0.093) (0.048) (0.037) (0.079) (0.071) 694 –

10 0.086 0.152 0.091* 0.062 0.098 0.079 58 58 –
(0.106) (0.124) (0.050) (0.040) (0.086) (0.079) 622 –

Kane & Rouse (1995) 0.230
(0.049)

Heterogeneity, Pooled Model

Year 0.018*** 0.013* 0.008*** 0.016***
degree (0.006) (0.007) (0.003) (0.005)

Math -0.004 -0.002 -0.003*** -0.002
scores (0.002) (0.003) (0.001) (0.002)

Educ 0.011 0.006 0.016*** 0.026***
parents (0.009) (0.016) (0.004) (0.007)

Standard errors are in parentheses. Stars denote statistical significance in a two-sided test, *:
10%, **: 5%, ***: 1%. Stratum weighted denotes the weighting scheme that corresponds to
matching and conventionally weighted denotes the usual OLS weighting. All weighting takes
account of the NLSY sample weights. The last three columns reflect stratification results; S:
number of strata, T: number of treated, and C: number of control units. The last three rows
report pooled model estimates of variables which might drive heterogeneity. The critical ε is set
equal to 0.2.
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be no evidence for it to be of any importance. If interaction between experience and

education is omitted, OLS results hardly change. This means that experience of college

graduates is not rewarded any more than experience of high school graduates. Rather, the

data reveal that the increasing effect can partly be attributed to a faster accumulation of

experience after college on the part of AA holders than of high school graduates. Besides,

heterogeneity in the treatment effect is detected for the pooled model, whose results are

presented in the last three rows of the tables. Math scores lower the effect of two-year

college education while parents’ education has only a weakly significantly positive impact.

However, for each single year after college – not shown in the tables –, the coefficients

are not statistically significant even though the signs almost always coincide with the

signs of the pooled models’ estimates. A time trend in the effect captured by year of the

college degree obviously plays an important role confirming rising returns to education

as recently reported in the literature, see e.g. Bound & Johnson (1992), Katz &

Murphy (1992), or Levy & Murnane (1992).

Results based on the broad model are similar in structure, estimates of the ninth and

tenth year tend to be somewhat smaller. As expected, the number of strata diminishes.

This is because there are more missing observations when more covariates are included,

but obviously not because there are more strata containing at least two treated units.

For the bachelor’s degree, the latter will be a main reason for reduction of the number of

strata in the broad model.

Tables 4.7 and 4.8 present results for women. The most striking difference to the results

for men are markedly higher estimates which are even comparable to estimates for male

BA holders. Kane & Rouse (1995) attribute the high results for female AA holders to

the nursing degree which considerably increases their estimate based on data from the

National Longitudinal Survey of the High School Class of 1972. Based on the NLSY their

estimate is more or less in accordance with the corresponding OLS estimates in this study.

However, returns to college are generally found to be higher for women than for men, see

for instance Ashenfelter & Rouse (1998b).

A clear time trend in women’s estimates does not emerge. In contrast to men, pure
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Table 4.7: Treatment Effects, Women, AA, Narrow Probit Model.

OLS Stratification

Matching Stratum Weighted Convent. Weighted S T Mean

Year Pure Adjusted Coeff. Effect Coeff. Effect C Max

1 0.185*** 0.233*** 0.156*** 0.191*** 0.206*** 0.184*** 179 183 3.0
(0.052) (0.062) (0.039) (0.028) (0.061) (0.047) 1212 4.0

2 0.259*** 0.264*** 0.107*** 0.224*** 0.219*** 0.217*** 167 170 2.5
(0.058) (0.070) (0.038) (0.030) (0.064) (0.050) 1193 3.0

3 0.217*** 0.171*** 0.133*** 0.188*** 0.129** 0.157*** 163 166 2.5
(0.067) (0.069) (0.039) (0.031) (0.055) (0.046) 1187 3.0

4 0.401*** 0.413*** 0.359*** 0.370*** 0.320*** 0.320*** 151 153 3.0
(0.070) (0.078) (0.049) (0.037) (0.070) (0.058) 1179 3.0

5 0.362*** 0.342*** 0.293*** 0.303*** 0.236*** 0.281*** 149 150 2.0
(0.077) (0.085) (0.044) (0.034) (0.063) (0.054) 1122 2.0

6 0.282*** 0.247*** 0.268*** 0.258*** 0.244*** 0.272*** 135 135 –
(0.069) (0.073) (0.040) (0.032) (0.068) (0.060) 1087 –

7 0.311*** 0.318*** 0.195*** 0.276*** 0.239*** 0.273*** 121 122 2.0
(0.077) (0.104) (0.043) (0.035) (0.070) (0.060) 1032 2.0

8 0.179*** 0.137* -0.015 0.158*** 0.033 0.163*** 98 99 2.0
(0.073) (0.082) (0.036) (0.033) (0.060) (0.059) 930 2.0

9 0.269*** 0.279*** 0.043 0.251*** 0.070 0.248*** 85 85 –
(0.085) (0.095) (0.038) (0.036) (0.071) (0.072) 851 –

10 0.298*** 0.314*** 0.077* 0.290*** 0.154** 0.291*** 80 80 –
(0.099) (0.115) (0.047) (0.043) (0.084) (0.081) 768 –

Kane & Rouse (1995) 0.206
(0.044)

Heterogeneity, Pooled Model

Year -0.005 -0.004 -0.023*** -0.023***
degree (0.005) (0.005) (0.002) (0.004)

Math 0.002 0.003 0.003*** 0.001
scores (0.002) (0.002) (0.001) (0.002)

Educ 0.015** 0.014 0.004 0.007
parents (0.006) (0.013) (0.004) (0.005)

Standard errors are in parentheses. Stars denote statistical significance in a two-sided test, *:
10%, **: 5%, ***: 1%. Stratum weighted denotes the weighting scheme that corresponds to
matching and conventionally weighted denotes the usual OLS weighting. All weighting takes
account of the NLSY sample weights. The last three columns reflect stratification results; S:
number of strata, T: number of treated, and C: number of control units. The last three rows
report pooled model estimates of variables which might drive heterogeneity. The critical ε is set
equal to 0.2.
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Table 4.8: Treatment Effects, Women, AA, Broad Probit Model.

OLS Stratification

Matching Stratum Weighted Convent. Weighted S T Mean

Year Pure Adjusted Coeff. Effect Coeff. Effect C Max

1 0.230*** 0.242*** 0.188*** 0.199*** 0.173*** 0.163*** 169 171 2.0
(0.061) (0.062) (0.042) (0.030) (0.060) (0.047) 1051 2.0

2 0.288*** 0.290*** 0.083** 0.227*** 0.176*** 0.180*** 156 159 2.5
(0.066) (0.072) (0.041) (0.033) (0.059) (0.047) 1008 3.0

3 0.197*** 0.145** 0.083** 0.162*** 0.128** 0.160*** 152 156 2.0
(0.059) (0.065) (0.041) (0.032) (0.059) (0.050) 1009 2.0

4 0.336*** 0.382*** 0.263*** 0.311*** 0.263*** 0.274*** 138 142 2.0
(0.077) (0.091) (0.048) (0.037) (0.071) (0.059) 988 2.0

5 0.335*** 0.326*** 0.207*** 0.273*** 0.165*** 0.231*** 138 139 2.0
(0.069) (0.083) (0.042) (0.033) (0.062) (0.054) 945 2.0

6 0.387*** 0.363*** 0.231*** 0.355*** 0.183*** 0.285*** 124 124 –
(0.091) (0.087) (0.046) (0.041) (0.067) (0.063) 916 –

7 0.403*** 0.376*** 0.168*** 0.327*** 0.217*** 0.253*** 109 110 2.0
(0.090) (0.093) (0.048) (0.041) (0.075) (0.065) 861 2.0

8 0.197** 0.126 -0.015 0.176*** 0.013 0.089 91 91 –
(0.093) (0.087) (0.044) (0.040) (0.066) (0.061) 745 –

9 0.197** 0.159* -0.007 0.162*** 0.057 0.134** 80 80 –
(0.087) (0.095) (0.044) (0.041) (0.072) (0.068) 677 –

10 0.242*** 0.193** 0.023 0.202*** 0.089 0.188*** 75 75 –
(0.100) (0.107) (0.050) (0.045) (0.081) (0.076) 631 –

Kane & Rouse (1995) 0.206
(0.044)

Heterogeneity, Pooled Model

Year 0.005 0.009 -0.016*** -0.018***
degree (0.006) (0.006) (0.002) (0.004)

Math 0.005** 0.005* 0.006*** 0.001
scores (0.002) (0.003) (0.001) (0.002)

Educ 0.018** 0.017 -0.001 0.003
parents (0.007) (0.013) (0.004) (0.006)

Standard errors are in parentheses. Stars denote statistical significance in a two-sided test, *:
10%, **: 5%, ***: 1%. Stratum weighted denotes the weighting scheme that corresponds to
matching and conventionally weighted denotes the usual OLS weighting. All weighting takes
account of the NLSY sample weights. The last three columns reflect stratification results; S:
number of strata, T: number of treated, and C: number of control units. The last three rows
report pooled model estimates of variables which might drive heterogeneity. The critical ε is set
equal to 0.2.
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and adjusted matching as well as OLS effect estimates are all fairly similar. Surprisingly,

they are even not lower than the OLS coefficient estimates indicating that labor market

experience is either negatively rewarded or that women with an AA have more experience

than high school graduates. Inspecting the data more closely reveals that although labor

market experience is smaller for college-educated women, it is larger when it is augmented

by experience acquired while being enrolled at school. This fact is further emphasized by

an even higher return to the latter experience. This rather strange pattern might explain

why women’s estimates of the effect are extraordinarily high. Their OLS coefficient esti-

mates, however, would be more akin to men’s AA results. Moreover, heterogeneity in the

effects is not supported by the data except for some negative time trend statistically sig-

nificant only for OLS estimation and except for a significant impact of parents’ education

in pure matching only. Note that stratification produced again almost always 1-k-strata.

Almost all OLS coefficient estimates of the broad model are slightly smaller than those

of the narrow model. OLS effect estimates of the broad model tend to be smaller than

matching estimates. Furthermore, conventionally weighted OLS effect estimates are lower

than the stratum weighted ones. In contrast to the narrow model, heterogeneity in the

effects appears to be driven by the math scores. Finally, the number of strata is only

reduced a little indicating that the additional covariates in the broad model do not have

a great impact on selection into college.

Bachelor’s Degree

Estimation results for male BA holders are summarized in tables 4.9 and 4.10. As for the

associate’s degree, the effects seem to increase over time reaching 30% to 40%. Regres-

sion adjusted matching estimates are, on average, higher than the pure matching ones

suggesting that there might still be a certain downward bias in the latter.

OLS coefficient estimates do not show an increase with years after college; however,

once labor market experience is taken into account a certain trend in the effects reappears.

This means that at the beginning experience is either rewarded more than in late years

or that college-educated individuals tend to successively accumulate more labor market
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Table 4.9: Treatment Effects, Men, BA, Narrow Probit Model.

OLS Stratification

Matching Stratum Weighted Convent. Weighted S T Mean

Year Pure Adjusted Coeff. Effect Coeff. Effect C Max

1 0.028 0.071 0.186** 0.015 0.302*** 0.029 206 364 5.3
(0.092) (0.090) (0.081) (0.024) (0.087) (0.036) 971 28.0

2 0.153* 0.217*** 0.431*** 0.135*** 0.420*** 0.119*** 206 367 5.7
(0.084) (0.083) (0.086) (0.026) (0.086) (0.037) 973 28.0

3 0.209** 0.241** 0.695*** 0.240*** 0.494*** 0.203*** 201 352 5.4
(0.104) (0.115) (0.098) (0.029) (0.089) (0.042) 967 26.0

4 0.213** 0.258** 0.568*** 0.219*** 0.348*** 0.188*** 205 343 5.5
(0.107) (0.123) (0.075) (0.027) (0.074) (0.039) 959 22.0

5 0.229*** 0.275*** 0.118 0.487*** 0.298*** 0.247*** 195 322 5.7
(0.082) (0.105) (0.077) (0.049) (0.073) (0.044) 931 24.0

6 0.281*** 0.309** 0.399*** 0.271*** 0.396*** 0.228*** 183 306 5.8
(0.122) (0.154) (0.067) (0.032) (0.080) (0.045) 896 22.0

7 0.341*** 0.419** 0.349*** 0.279*** 0.339*** 0.267*** 169 279 5.6
(0.150) (0.195) (0.066) (0.032) (0.075) (0.046) 833 20.0

8 0.420*** 0.565*** 0.633*** 0.600*** 0.424*** 0.301*** 146 247 5.4
(0.193) (0.247) (0.122) (0.061) (0.091) (0.054) 758 19.0

9 0.261** 0.327*** 0.434*** 0.299*** 0.504*** 0.293*** 118 200 5.6
(0.132) (0.125) (0.091) (0.042) (0.110) (0.061) 649 21.0

10 0.301** 0.321*** 0.491*** 0.301*** 0.416*** 0.295*** 94 157 5.8
(0.138) (0.141) (0.108) (0.044) (0.119) (0.069) 488 16.0

Kane & Rouse (1995) 0.403
(0.043)

Heterogeneity, Pooled Model

Year 0.052*** 0.050*** 0.025*** 0.017***
degree (0.011) (0.012) (0.003) (0.004)

Math 0.009*** 0.005* 0.008*** 0.004***
scores (0.004) (0.003) (0.001) (0.001)

Educ -0.011 0.026 0.040*** -0.004
parents (0.010) (0.017) (0.004) (0.004)

Standard errors are in parentheses. Stars denote statistical significance in a two-sided test, *:
10%, **: 5%, ***: 1%. Stratum weighted denotes the weighting scheme that corresponds to
matching and conventionally weighted denotes the usual OLS weighting. All weighting takes
account of the NLSY sample weights. The last three columns reflect stratification results; S:
number of strata, T: number of treated, and C: number of control units. The last three rows
report pooled model estimates of variables which might drive heterogeneity. The critical ε is set
equal to 0.4.
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Table 4.10: Treatment Effects, Men, BA, Broad Probit Model.

OLS Stratification

Matching Stratum Weighted Convent. Weighted S T Mean

Year Pure Adjusted Coeff. Effect Coeff. Effect C Max

1 -0.001 0.002 0.183** -0.019 0.326*** -0.030 162 316 4.6
(0.081) (0.078) (0.083) (0.024) (0.096) (0.035) 754 22.0

2 0.160** 0.188** 0.630*** 0.190*** 0.508*** 0.097** 162 307 4.8
(0.080) (0.079) (0.122) (0.033) (0.107) (0.041) 801 20.0

3 0.183** 0.234*** 0.288*** 0.159*** 0.391*** 0.214*** 163 287 4.4
(0.079) (0.087) (0.082) (0.029) (0.093) (0.045) 756 23.0

4 0.188*** 0.238*** 0.365*** 0.223*** 0.385*** 0.196*** 159 284 4.5
(0.078) (0.083) (0.085) (0.032) (0.089) (0.046) 794 20.0

5 0.202*** 0.207*** 0.287*** 0.204*** 0.341*** 0.187*** 150 267 4.5
(0.074) (0.081) (0.061) (0.029) (0.079) (0.044) 785 20.0

6 0.232*** 0.215*** 0.275*** 0.209*** 0.368*** 0.223*** 145 252 4.7
(0.085) (0.078) (0.064) (0.032) (0.085) (0.050) 720 19.0

7 0.279*** 0.292*** 0.403*** 0.242*** 0.363*** 0.260*** 133 227 3.9
(0.093) (0.091) (0.079) (0.036) (0.085) (0.052) 707 19.0

8 0.288*** 0.251** 0.487*** 0.293*** 0.458*** 0.282*** 119 206 4.3
(0.107) (0.121) (0.097) (0.044) (0.106) (0.061) 573 19.0

9 0.357*** 0.431*** 0.380*** 0.291*** 0.484*** 0.286*** 102 175 4.2
(0.134) (0.154) (0.103) (0.051) (0.119) (0.067) 529 17.0

10 0.422*** 0.477*** 0.726*** 0.434*** 0.512*** 0.270*** 74 138 4.0
(0.162) (0.178) (0.137) (0.052) (0.137) (0.074) 425 16.0

Kane & Rouse (1995) 0.403
(0.043)

Heterogeneity, Pooled Model

Year 0.037*** 0.043*** 0.007** 0.007
degree (0.009) (0.010) (0.004) (0.004)

Math 0.006** 0.009** 0.010*** 0.004***
scores (0.003) (0.004) (0.001) (0.001)

Educ 0.005 0.021 0.014*** -0.001
parents (0.011) (0.022) (0.004) (0.005)

Standard errors are in parentheses. Stars denote statistical significance in a two-sided test, *:
10%, **: 5%, ***: 1%. Stratum weighted denotes the weighting scheme that corresponds to
matching and conventionally weighted denotes the usual OLS weighting. All weighting takes
account of the NLSY sample weights. The last three columns reflect stratification results; S:
number of strata, T: number of treated, and C: number of control units. The last three rows
report pooled model estimates of variables which might drive heterogeneity. The critical ε is set
equal to 0.4.
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experience than high school graduates. A closer inspection of the data reveals that the

difference in labor market experience (acquired while not enrolled at college) between

BA holders and high school graduates is 3.65 years in the first year after college and

decreases monotonically to 2.28 in the tenth year. Thus, the bachelor’s degree has a

direct effect on the growth of experience which might be explained by a lower probability

to get unemployed or by a distinct labor supply behavior of highly educated individuals.

A comparison of estimates with and without interaction between experience and schooling

exhibits almost no differences. Therefore, they are omitted.

Further note that the OLS estimates of the effect are relatively similar to the matching

estimates, but with roughly three to four times lower standard errors. This is because the

effective sample size of matching corresponds to the number of strata while OLS relies on

all treated and untreated units together. What is more, since stratum effects are weighted

according to the number of treated they comprise, variances are larger if the stratification

is not very uniform. This is confirmed by the mean and maximum number of treated

units in strata with more than one treated. Specifically, the latter reason leads to a high

standard error ratio between matching and OLS estimates.

Interestingly, OLS effect estimates resting on the stratum weighting scheme are higher

than those resting on the conventional weights. This might confirm the finding in An-

grist & Krueger (1999) although OLS in this study does not build on a saturated

linear model. They show that due to different weighting schemes matching and a satu-

rated linear model estimated by OLS produce different estimates if the treatment effect is

heterogeneous. Indeed, heterogeneity plays an important role in the effect of the bache-

lor’s degree: scores on the math test tend to significantly increase the effect. Yet, parents’

education seems to have no clearly directed impact on the effects. In addition, the row

labeled “Year degree” shows that there is a clear time trend in the effects of the bachelor’s

degree in that individuals who obtained their degree more recently experience a higher

effect of their education.

All results of the broad model are somewhat smaller than those of the narrow one which

indicates that the additional covariates of the broad model might have an additional
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impact on earnings. Besides, their impact on selection into college is strong which is

why the number of strata is substantially reduced. Nevertheless, standard errors of the

matching estimates do not increase because stratification of the broad model is more

uniform; only those of the OLS estimates are slightly higher than in the narrow model.

Results for women are presented in tables 4.11 and 4.12. Once more they are larger

than men’s. Alas, in contrast to men, there is no clearly increasing trend in the pure

matching effects over the years. There might be some weak positive trend in regression

adjusted estimates which tend to be lower than pure matching estimates in early years.

OLS coefficient estimates exceed the matching estimates by far and do not display a time

pattern while, once experience is accounted for, the resulting OLS effects are smaller and

appear to increase over time. One reason is, as for men, that labor market experience is

accumulated more rapidly by college graduates than by high school graduates. The differ-

ence in experience in the first year after college is 3.56 years and diminishes monotonically

to 1.25 – even faster than for men.

Moreover, there is no marked difference between OLS effects using stratum weights and

effects using conventional weights. This might be explained by the heterogeneity pattern

expressed in the last two rows. While math scores exhibit a positive impact on the effect

of a bachelor’s degree, education of parents seems to have a negative influence. In sum,

these two opposing interactions might explain the finding. Furthermore, there is again

strong evidence in favor of a time trend in the effects expressed by the row “Year degree”.

That is, women who received their degree more recently appear to benefit more from

their education. Finally, optimal full matching produced a stratification that is hardly

more uniform than men’s stratification; the mean and maximum number of treated units

in strata consisting of more than one treated is only somewhat reduced. However, since

there are more treated women more strata are generated.

The broad model produces lower matching but higher OLS coefficient estimates than

the narrow model. By contrast, OLS effect estimates are again lower. Alas, they show

an increase with years after college that appears somewhat more pronounced than the

increase in the matching estimates. Finally, the broad model relies on a smaller sample
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Table 4.11: Treatment Effects, Women, BA, Narrow Probit Model.

OLS Stratification

Matching Stratum Weighted Convent. Weighted S T Mean

Year Pure Adjusted Coeff. Effect Coeff. Effect C Max

1 0.221*** 0.163** 0.399*** 0.234*** 0.414*** 0.208*** 242 424 5.2
(0.085) (0.086) (0.087) (0.032) (0.084) (0.042) 1032 30.0

2 0.297*** 0.239*** 0.508*** 0.264*** 0.666*** 0.293*** 234 412 5.2
(0.087) (0.101) (0.076) (0.028) (0.093) (0.044) 1037 28.0

3 0.413*** 0.278*** 0.712*** 0.325*** 0.761*** 0.368*** 230 407 5.2
(0.099) (0.109) (0.088) (0.031) (0.094) (0.046) 1022 26.0

4 0.372*** 0.297*** 0.783*** 0.332*** 0.664*** 0.342*** 222 382 5.2
(0.099) (0.100) (0.082) (0.031) (0.090) (0.048) 984 23.0

5 0.440*** 0.365*** 0.767*** 0.376*** 0.607*** 0.392*** 203 352 4.5
(0.108) (0.130) (0.093) (0.039) (0.093) (0.054) 935 20.0

6 0.515*** 0.542*** 0.918*** 0.465*** 0.710*** 0.406*** 191 345 4.9
(0.141) (0.156) (0.102) (0.043) (0.103) (0.059) 891 25.0

7 0.462*** 0.417*** 0.733*** 0.411*** 0.574*** 0.492*** 185 318 4.7
(0.142) (0.139) (0.095) (0.041) (0.094) (0.062) 825 22.0

8 0.472*** 0.424*** 0.604*** 0.429*** 0.628*** 0.506*** 162 278 5.3
(0.145) (0.155) (0.090) (0.045) (0.108) (0.068) 744 18.0

9 0.569*** 0.565*** 0.566*** 0.599*** 0.737*** 0.665*** 129 205 4.1
(0.163) (0.176) (0.107) (0.058) (0.131) (0.085) 653 10.0

10 0.531*** 0.436** 0.292*** 0.526*** 0.622*** 0.515*** 104 151 4.0
(0.188) (0.215) (0.105) (0.063) (0.142) (0.087) 554 10.0

Kane & Rouse (1995) 0.392
(0.042)

Heterogeneity, Pooled Model

Year 0.041*** 0.031*** 0.011*** 0.012***
degree (0.008) (0.008) (0.003) (0.004)

Math 0.011*** 0.012*** 0.013*** 0.011***
scores (0.003) (0.003) (0.001) (0.001)

Educ -0.018** -0.042*** -0.030*** -0.006
parents (0.008) (0.013) (0.004) (0.004)

Standard errors are in parentheses. Stars denote statistical significance in a two-sided test, *:
10%, **: 5%, ***: 1%. Stratum weighted denotes the weighting scheme that corresponds to
matching and conventionally weighted denotes the usual OLS weighting. All weighting takes
account of the NLSY sample weights. The last three columns reflect stratification results; S:
number of strata, T: number of treated, and C: number of control units. The last three rows
report pooled model estimates of variables which might drive heterogeneity. The critical ε is set
equal to 0.4.
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Table 4.12: Treatment Effects, Women, BA, Broad Probit Model.

OLS Stratification

Matching Stratum Weighted Convent. Weighted S T Mean

Year Pure Adjusted Coeff. Effect Coeff. Effect C Max

1 0.223*** 0.189** 0.364*** 0.187*** 0.355*** 0.149*** 201 361 4.8
(0.087) (0.087) (0.097) (0.034) (0.088) (0.041) 806 16.0

2 0.276*** 0.205** 0.621*** 0.235*** 0.588*** 0.235*** 190 349 5.0
(0.089) (0.090) (0.101) (0.032) (0.098) (0.045) 800 18.0

3 0.335*** 0.289*** 0.690*** 0.276*** 0.538*** 0.295*** 184 341 4.8
(0.102) (0.111) (0.104) (0.035) (0.095) (0.048) 786 18.0

4 0.296*** 0.207** 0.775*** 0.245*** 0.517*** 0.235*** 176 326 5.1
(0.097) (0.101) (0.102) (0.033) (0.094) (0.049) 756 16.0

5 0.441*** 0.468*** 0.962*** 0.363*** 0.536*** 0.327*** 164 299 5.1
(0.117) (0.158) (0.138) (0.046) (0.102) (0.057) 709 15.0

6 0.530*** 0.521*** 1.600*** 0.448*** 0.690*** 0.415*** 154 287 5.3
(0.157) (0.171) (0.198) (0.054) (0.118) (0.066) 681 17.0

7 0.354*** 0.386*** 0.851*** 0.307*** 0.402*** 0.354*** 141 265 4.9
(0.128) (0.157) (0.132) (0.044) (0.100) (0.065) 677 17.0

8 0.367*** 0.326** 0.927*** 0.267*** 0.453*** 0.369*** 125 232 4.8
(0.138) (0.158) (0.132) (0.043) (0.114) (0.072) 623 18.0

9 0.664*** 0.507*** 0.954*** 0.599*** 0.613*** 0.613*** 104 179 4.3
(0.167) (0.166) (0.146) (0.063) (0.138) (0.092) 525 17.0

10 0.501*** 0.392** 0.528*** 0.478*** 0.537*** 0.492*** 80 129 4.8
(0.222) (0.191) (0.133) (0.063) (0.161) (0.100) 442 13.0

Kane & Rouse (1995) 0.392
(0.042)

Heterogeneity, Pooled Model

Year 0.038*** 0.033*** 0.006 0.011***
degree (0.009) (0.009) (0.004) (0.004)

Math 0.011*** 0.008** 0.006*** 0.006***
scores (0.004) (0.004) (0.001) (0.002)

Educ 0.001 -0.027* -0.027*** -0.009*
parents (0.010) (0.015) (0.004) (0.005)

Standard errors are in parentheses. Stars denote statistical significance in a two-sided test, *:
10%, **: 5%, ***: 1%. Stratum weighted denotes the weighting scheme that corresponds to
matching and conventionally weighted denotes the usual OLS weighting. All weighting takes
account of the NLSY sample weights. The last three columns reflect stratification results; S:
number of strata, T: number of treated, and C: number of control units. The last three rows
report pooled model estimates of variables which might drive heterogeneity. The critical ε is set
equal to 0.4.
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size due to the reasons already mentioned above. On the other hand, its stratification is

unequivocally more uniform than that of the narrow model.

Graduate Degrees

Owing to small sample size results are only briefly discussed. Tables are relegated to

appendix C. The effect of a graduate degree is higher than the effect of an AA or of a

BA for both men and women. There is no clear structure in estimation results for men,

e.g. OLS effects do not coincide with matching estimates. In contrast, for women, there

is still the clear relationship between matching and OLS effect estimates.

There is one interesting result worthy of mention. For men, the OLS effect estimate is

larger when the stratum weighting scheme is used in place of conventional OLS weighting.

At the same time, heterogeneity is very strong in that math scores and education of

parents exhibit a significantly positive impact on the effect. By contrast, for women,

the positive impact of math scores and the negative impact of parents’ education might

weaken overall heterogeneity. This might explain why there is no systematic difference

between the stratum weighted and the conventionally weighted OLS effect estimates. This

observation is also in line with results discussed above.

As a general remark, hence, although the linear model estimated by OLS is no saturated

one, the results do not contradict the theoretical finding that in calculating the mean effect

of treatment, matching puts the most weight on individuals most likely to participate in

treatment while a saturated OLS estimation puts the most weight on individuals with

a participation probability of 1/2 (Angrist & Krueger, 1999). Since those men who

are most likely to attend college also gain most from their education, matching estimates

for men are higher than OLS estimates. For those women who are most likely to attend

college, however, evidence is weak for a larger gain from their education which is why

OLS and matching do not differ much.
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4.5 Summary and Conclusion

This chapter evaluates college education as to its effects in the labor market. It slightly

modifies the concept of the return to education frequently used in the literature. While

college students are enrolled, high school graduates might acquire labor market experi-

ence in the meantime. The control group should therefore comprise individuals with a

higher level of labor market experience than the treatment group. The concept of return

to education would impose equality in the experience levels of treated and controls. Fur-

thermore, after college, there might also be an effect of treatment on the accumulation of

labor market experience. Thus, focus is on the effect of college education on earnings.

In contrast to the existing literature the method of matching is used to estimate the

effects. It relaxes linearity and parametric assumptions on the model. However, even if

alternatively the linear model was augmented by numerous interaction terms up to a fully

saturated linear model to account for an arbitrary functional form, Angrist & Krueger

(1999) show that it would not necessarily identify the same parameter as matching. This is

because matching and OLS implicitly impose a different weighting scheme on observations

which might lead to different results if the treatment effect is heterogeneous. To assess

the difference, the matching results are compared to conventional OLS estimation.

Indeed, there seems to be evidence that matching and OLS differ systematically when

heterogeneity in the effect is substantial. The effect of a BA or MA on men’s wages looks

as if it depends significantly on ability and parents’ education. The effect of a BA or MA

on women’s wages appears to be positively influenced by math scores, too, but negatively

by parents’ education. At the same time, matching and OLS estimates differ less for

women than for men. The case for AA is inconclusive.

BA or MA recipients are quite distinct from high school graduates, in other words,

selection into postsecondary education is extremely strong. This fact makes it very diffi-

cult to find adequate controls for each treated unit. In contrast, individuals with an AA

are much less self-selected which is why matching AA holders is unburdensome. Under

these circumstances, optimal full matching has the advantage for being data-adaptive. It
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keeps almost all treated individuals of the sample and generates suitable strata in accor-

dance with the necessities of the sample. For example, it produces strata with one treated

and a variable number of controls in case of the associate’s degree, while, in case of the

bachelor’s degree, it also produces strata with more than one treated unit. Besides, it

minimizes the total distance between treated and control units.

Albeit, matching is accompanied by considerably larger standard errors than OLS

which, however, has not come as a surprise. As a nonparametric technique matching is

data-hungry; the effective sample size roughly equals the number of strata while for OLS

it is the sum of treated and untreated units that matters. As a further disadvantage, full

matching comes with a rather non-uniform stratification. Some strata comprise a large

number of treated units. As a result, estimated standard errors are inflated.

Moreover, matching on two different propensity score estimates is performed. First,

the propensity score is estimated by a narrow probit model based on ability and parents’

education only, and by a broad probit model augmented by numerous further socioe-

conomic indicators and another ability variable. Yet, results of the two models do not

differ considerably, with the exception that for some degrees matching estimates of the

broad model tend to be slightly lower than estimates of the narrow model. This points

to a possible small upward bias in the latter. In consequence, however, one might argue

that already the two variables parents’ education and math scores capture the abstract

concepts of family background and ability quite well.

The empirical results are along the lines of the existing literature. For men, results

obtained by conventionally weighted OLS are similar to results reported in Kane &

Rouse (1995: table 3). In contrast, for women, results seem to be larger in this study,

specifically for female BA and MA recipients. What is more, female AA holders experience

a surprisingly large effect, almost as large as that of male BA holders. Nevertheless,

estimates of the effect of college education are generally larger for women than for men,

which is confirmed by this study, as well. Individuals who obtained their degree more

recently experience a higher effect, i.e. there is some general increase as also witnessed in

the literature. Moreover, the effect looks to be increasing during the first ten years after
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college completion. Yet, this increase cannot be attributed to an interaction between

experience and education but partly to a faster accumulation of experience for college

graduates.

In sum, the method used in this chapter leads to results that, basically, do not con-

tradict the existing literature which means that the linear approach to the human capital

earnings function appears to adequately capture information provided by the data. What

is more, due to its stronger assumptions OLS estimates are accompanied by consider-

ably lower standard errors. Yet, OLS and matching might identify distinct parameters

if heterogeneity in the effect is systematic in those variables relevant for selection into

treatment.
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Appendix A: The Probit Estimations

Appendix A discusses the estimation of the propensity score by probit models for all three

college degrees. Table 4.13 displays the results. Two models are specified: a narrow and

a broad one. The broad model includes several covariates that reflect socioeconomic back-

ground which is condensed into education of parents in the narrow model. Furthermore,

it comprises two ability variables: scores on math and auto and shop information tests.

The latter is omitted in the narrow model due to its weak explanatory power. Two vari-

ables are generated in the following way. Parents’ education is the mean of the father’s

and mother’s education, it is the mother’s if the father’s is missing, and vice versa. The

variable occupation parents’ high is a binary variable indicating the social status of the

parents’ occupation which is the mean of the mother’s and father’s status. It is only the

father’s if the mother’s is missing, and vice versa.

Although several variables are insignificant for some degrees; in the broad model they

are not removed for the corresponding degrees to maintain overall comparability. By

contrast, in the narrow model all variables are significant. As expected, the coefficients

on math scores and education of parents increase with higher college degrees. This means

that selection into higher degrees is stronger, leading to a more pronounced distinction

between recipients of higher college degrees and high school graduates. Thus, matching

will be a difficult project for the graduate and bachelor’s degrees. This is somewhat

alleviated by the narrow model because several variables that rule selection are omitted.

As discussed in the main text, the omitted variables seem to have only a minor influence

on the outcome under study and usually they are not even included into typical Mincerian

human capital earnings equations. Further note that the omission of variables increases

the sample size, too.

Other studies also find that selection into college is quite strong. Ashenfelter &

Rouse (1998a) report that (observed and unobserved) family background explains about

60% of the variance in schooling attainment and Murnane, Willett & Levy (1995)

assert that math test scores are a strong predictor of subsequent educational attainment.
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Table 4.13: Probit Estimation Results.
Men Women

Variables AA BA MA AA BA MA

Narrow Probit Model

Black 0.119 0.462*** 0.415** 0.598*** 0.811*** 0.597***

Hispanic 0.464*** 0.552*** 0.739*** 0.530*** 0.640*** 0.924***

Math test scores 0.042*** 0.107*** 0.142*** 0.056*** 0.111*** 0.125***

Parents’ education 0.043** 0.155*** 0.182*** 0.060*** 0.153*** 0.250***

Constant -1.735*** -2.874*** -4.256*** -1.858*** -2.797*** -4.865***

Observations 1667 1976 1632 1793 2077 1691

χ2(4) 78.6 943.7 652.4 144.0 952.4 536.8

Overall p-value 0.000 0.000 0.000 0.000 0.000 0.000

Pseudo R2 0.071 0.426 0.598 0.103 0.406 0.530

Broad Probit Model

Black 0.207 0.274** 0.031 0.708*** 0.841*** 0.588**

Hispanic 0.352** 0.256 0.343 0.475*** 0.437** 0.667**

Math test scores 0.035*** 0.098*** 0.117*** 0.050*** 0.110*** 0.117***

Auto+shop test scores 0.005 -0.018*** -0.018* 0.008 -0.007 -0.012

Attended private school 0.096 0.432** 0.204 0.114 0.364** 0.279

Expelled or susp. from school -0.249** -0.536*** -0.151 -0.333** -0.268* -0.548

Curriculum: college prepar. 0.521*** 0.972*** 0.829*** 0.501*** 0.751*** 0.867***

Curriculum: general 0.257** 0.358** 0.254 0.240** 0.231* 0.370

Parents’ education 0.028 0.154*** 0.137*** 0.040** 0.078*** 0.160***

Occupation parents high 0.503** 0.432** 0.736*** 0.377* 1.222*** 0.926***

Number of siblings 0.005 -0.065*** -0.035 -0.014 -0.037* -0.035

Born in south -0.093 0.346*** 0.084 -0.123 0.198** 0.111

Constant -1.877*** -3.142*** -3.867*** -1.796*** -2.469*** -4.314***

Observations 1503 1792 1481 1647 1909 1555

χ2(12) 101.7 1046.4 639.0 169.8 1056.0 531.9

Overall p-value 0.000 0.000 0.000 0.000 0.000 0.000

Pseudo R2 0.102 0.518 0.641 0.132 0.489 0.571

Standard errors are omitted. Stars denote statistical significance in a two-sided test, *: 10%,
**: 5%, ***: 1%.
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Appendix B: Statistical Inference

Matching generates S strata defined by the covariates Xsi where s = 1, ..., S indicates

the stratum and i = 1, ..., ns the individual in stratum s. Let δs be the treatment effect

in stratum s. Then, the overall mean effect τ =
∑

s ωsδs is the weighted average of the

stratum effects. The weights ωs are proportional to the number of treated units in stratum

s; the number of controls is not taken into account. The variance of δ̂s under the null

hypothesis of no treatment effect is

σ2
s = V ar(δ̂s) =

ns

(ns − 1)2

ns∑
i=1

(rsi − r̄s)2,

where ns is the number of individuals in stratum s, rsi is the log wage of person i, and r̄s

the mean over rsi in stratum s. As a result, the variance of τ̂ is
∑S

s=1 ω
2
sσ

2
s . See Chapter

2 for further details.

In case of a constant treatment effect for all individuals it is easy to construct confidence

intervals for the mean effect τ (see Rosenbaum, 1995: chapter 2). Since one advantage

of matching is that, by construction, it allows for heterogeneity in the effect and that it

weights individual effects appropriately (see Angrist & Krueger, 1999) when calcu-

lating the overall mean effect τ , assuming constant effects would impose an unnecessary

restriction. On the other hand, unrestricted heterogeneity in the effects leaves too much

freedom and makes statistical inference impossible. A compromise solution restricts the

variability of the stratum treatment effects δs.

To this end, the stratum effect

δs = δ(Fs, As, YCs) = δ0 + δ1(Fs − F̄s) + δ2(As − Ās) + δ3(YCs − ȲCs) (4.10)

depends on the education of the parents, Fs, on the math scores, As, and on the year

in which the respondent obtained the college degree, YCs. Since there might be more

than one treated unit in a stratum, Fs, As, and YCs are averages over all treated in such

strata. YCs takes into account rising returns to education as suggested in the literature,

e.g. by Bound & Johnson (1992), Katz & Murphy (1992), or Levy & Murnane

(1992).
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The model allows to build asymptotic confidence intervals for δ = (δ0, δ1, δ2, δ3) and

to perform tests whether the mean effect of treatment δ0 is positive and whether there is

heterogeneity, a test for (δ1, δ2, δ3). The asymptotic variance of the estimate δ̂ is calculated

by exploiting the sample variability within strata. A (1−α)-confidence region for δ would

be obtained solving (δ̂ − δ)′Ṽ (δ)−1(δ̂ − δ) ≤ χ2
4,1−α for δ, the parameter under the null

hypothesis. Ṽ (δ) denotes the variance of δ̂ which depends on δ.13 The procedure is

outlined in Chapter 2.

It turns out that the parameter estimates for (δ1, δ2, δ3) in the first ten years after

college are almost always insignificant although taken together they often exhibit a cer-

tain structure. Therefore, further insight might be obtained by requiring time constant

(δ1, δ2, δ3) but still allowing a time-variant δ0. To this end, all ten years are pooled and

equation (4.10) is augmented to

δsj = δ0,1 d1 j + ...+ δ0,10 d10 j + δ1(Fsj − F̄sj) + δ2(Asj − Āsj) + δ3(YCsj − ȲCsj)

with j = 1, ..., 10 indexing the year after college and s = 1, ..., Sj denoting the stratum of

the jth year after college. The indicator variable dkj is one if k = j and zero otherwise.

Appendix C: Results for the Graduate Degrees

Tables 4.14 and 4.15 present estimation results for the graduate degrees for the first five

years after college. Late years are omitted because sample size would be too small.

13Since statistical inference based on Ṽ (δ) is extremely cumbersome, Ṽ (δ) is replaced by Ṽ (δ̂).
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Table 4.14: Treatment Effects, Men, MA.

OLS Stratification

Matching Stratum Weighted Convent. Weighted S T Mean

Year Pure Adjusted Coeff. Effect Coeff. Effect C Max

Narrow Model

1 0.454 0.486*** 0.494** 0.898*** 0.443*** 0.332*** 51 93 5.2
(0.342) (0.212) (0.233) (0.111) (0.198) (0.086) 374 14.0

2 0.460 0.369* 0.472*** 0.359*** 0.374** 0.322*** 45 79 6.7
(0.337) (0.255) (0.156) (0.050) (0.213) (0.090) 328 13.0

3 0.436*** 0.592*** 0.941*** 0.405*** 0.555*** 0.364*** 44 68 5.0
(0.145) (0.220) (0.203) (0.046) (0.241) (0.092) 300 10.0

4 0.501** 0.214 0.366** 0.249*** 0.514** 0.248*** 42 65 4.8
(0.272) (0.211) (0.196) (0.059) (0.253) (0.096) 291 10.0

5 0.516*** 0.455** 0.286** 0.330*** 0.554*** 0.476*** 37 54 4.4
(0.235) (0.230) (0.150) (0.049) (0.245) (0.109) 275 10.0

Heterogeneity, Pooled Model

Year 0.088** 0.095** 0.065*** 0.016
degree (0.038) (0.041) (0.008) (0.011)

Math 0.032*** 0.019** 0.032*** 0.026***
scores (0.011) (0.009) (0.004) (0.004)

Educ 0.029 0.078* 0.070*** -0.005
parents (0.029) (0.043) (0.011) (0.012)

Broad Model

1 0.362** 0.523*** 0.686*** 0.495*** 0.472** 0.401*** 41 61 5.0
(0.170) (0.238) (0.179) (0.063) (0.224) (0.105) 345 7.0

2 0.441** 0.449** 0.707*** 0.375*** 0.471** 0.323*** 35 52 4.4
(0.215) (0.215) (0.189) (0.059) (0.261) (0.104) 300 7.0

3 0.524*** 0.566** 1.103*** 0.560*** 0.875*** 0.484*** 33 47 3.8
(0.157) (0.306) (0.283) (0.069) (0.396) (0.129) 254 5.0

4 0.283 -0.066 0.336 0.114* 0.365 0.098 29 42 3.2
(0.204) (0.186) (0.262) (0.070) (0.319) (0.107) 241 6.0

5 0.498*** 0.218* 0.780*** 0.501*** 0.618** 0.355*** 28 37 3.3
(0.153) (0.141) (0.217) (0.064) (0.307) (0.119) 230 4.0

Kane & Rouse (1995) 0.556
(0.084)

Heterogeneity, Pooled Model

Year 0.024 0.019 0.000 0.016
degree (0.018) (0.020) (0.009) (0.013)

Math 0.031*** 0.028*** 0.030*** 0.026***
scores (0.006) (0.008) (0.003) (0.005)

Educ -0.003 -0.042 0.008 0.006
parents (0.022) (0.035) (0.011) (0.016)

Standard errors are in parentheses. Stars denote statistical significance in a two-sided test, *: 10%,
**: 5%, ***: 1%. Stratum weighted denotes the weighting scheme that corresponds to matching and
conventionally weighted denotes the usual OLS weighting. All weighting takes account of the NLSY
sample weights. The last three columns reflect stratification results; S: number of strata, T: number of
treated, and C: number of control units. The last three rows report pooled model estimates of variables
which might drive heterogeneity. The critical ε is set equal to 0.4.
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Table 4.15: Treatment Effects, Women, MA.

OLS Stratification

Matching Stratum Weighted Convent. Weighted S T Mean

Year Pure Adjusted Coeff. Effect Coeff. Effect C Max

Narrow Model

1 0.429*** 0.473*** 0.962*** 0.433*** 1.158*** 0.463*** 70 87 3.1
(0.118) (0.122) (0.247) (0.062) (0.285) (0.092) 442 6.0

2 0.443*** 0.441*** 0.293* 0.437*** 0.718*** 0.430*** 62 75 3.5
(0.171) (0.187) (0.172) (0.066) (0.248) (0.101) 382 6.0

3 0.543*** 0.514*** 0.784*** 0.522*** 0.949*** 0.620*** 52 64 3.4
(0.137) (0.145) (0.219) (0.065) (0.294) (0.124) 364 6.0

4 0.839*** 0.807*** 1.130*** 0.817*** 0.930*** 0.901*** 48 55 2.6
(0.174) (0.190) (0.285) (0.092) (0.321) (0.155) 292 5.0

5 0.787*** 0.717*** 1.038*** 0.751*** 1.451*** 0.656*** 35 40 4.0
(0.176) (0.199) (0.330) (0.107) (0.492) (0.162) 189 6.0

Heterogeneity, Pooled Model

Year 0.019 0.025 -0.025*** -0.051***
degree (0.016) (0.017) (0.008) (0.012)

Math 0.012** 0.017** 0.009*** 0.004
scores (0.006) (0.007) (0.003) (0.005)

Educ -0.057*** -0.061** -0.047*** -0.010
parents (0.021) (0.027) (0.010) (0.015)

Broad Model

1 0.380*** 0.452*** 1.114*** 0.355*** 1.124*** 0.357*** 63 78 4.0
(0.130) (0.168) (0.294) (0.059) (0.300) (0.085) 352 8.0

2 0.331** 0.878*** 0.124 0.360*** 0.523** 0.399*** 52 67 3.1
(0.185) (0.254) (0.182) (0.070) (0.261) (0.113) 308 7.0

3 0.509*** 0.617*** 1.165*** 0.483*** 1.023*** 0.523*** 48 57 3.3
(0.132) (0.217) (0.254) (0.059) (0.314) (0.119) 289 5.0

4 0.952*** 1.046*** 0.467* 1.012*** 0.947*** 0.730*** 41 46 2.3
(0.283) (0.364) (0.290) (0.138) (0.388) (0.167) 224 3.0

5 0.651*** 0.530*** 1.065*** 0.644*** 1.802*** 0.562*** 30 35 3.5
(0.180) (0.163) (0.394) (0.107) (0.700) (0.187) 128 4.0

Kane & Rouse (1995) 0.532
(0.085)

Heterogeneity, Pooled Model

Year 0.038** 0.015 -0.021** -0.041***
degree (0.018) (0.021) (0.009) (0.012)

Math 0.009 0.013 0.006 0.001
scores (0.007) (0.009) (0.004) (0.005)

Educ -0.036 -0.066** -0.055*** -0.028*
parents (0.022) (0.030) (0.011) (0.016)

Standard errors are in parentheses. Stars denote statistical significance in a two-sided test, *: 10%,
**: 5%, ***: 1%. Stratum weighted denotes the weighting scheme that corresponds to matching and
conventionally weighted denotes the usual OLS weighting. All weighting takes account of the NLSY
sample weights. The last three columns reflect stratification results; S: number of strata, T: number of
treated, and C: number of control units. The last three rows report pooled model estimates of variables
which might drive heterogeneity. The critical ε is set equal to 0.4.
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Abstract. Frequently, a log-linear relationship between earnings and years of education

is assumed based on the classical human capital earnings equation suggesting constant

returns to schooling. This chapter reconsiders this functional relationship employing

an extended stylized human capital earnings function. If endogeneity of schooling as a

result of optimization behavior is neglected returns to schooling appear to be larger for

postsecondary than for high school education. This relationship can be found implicitly

in several studies and is confirmed by this chapter as well. However, taking account of

endogeneity of schooling leads to returns to education that diminish with more schooling

acquired as predicted by the theoretical model.
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5.1 Introduction

Frequently, a log-linear relationship between earnings and years of education is assumed

based on the classical human capital earnings equation (Becker, 1967, Mincer, 1974).

This suggests constant returns to schooling independently of how much schooling is ac-

quired. In addition, Card (1999: fig. 2) presents empirical evidence in favor of a log-linear

relationship between earnings and schooling using Current Population Survey (CPS) data.

This chapter reconsiders the functional relationship using the theoretical framework re-

cently proposed by Card (1995b) and data provided by the National Longitudinal Survey

of Youth 1979 (NLSY). The analysis extends over the years 1989 to 1994 and over both

sexes.

Some empirical studies presented below implicitly report increasing marginal returns

to schooling as years of education rise suggesting that postsecondary education works

as some magic potion. Although this fact is confirmed by this study, these findings

seem to be driven by endogeneity of schooling as a result of optimization behavior. If

individuals with higher inherent earnings abilities opt for more schooling because their

personal return to schooling depends positively on their abilities the relationship between

observed schooling and earnings is biased. Yet, explicitly controlling for ability in the

manner proposed by the theoretical model shows that, indeed, the return to education

diminishes as more schooling is acquired, especially for men. In other words, neglecting

ability not only yields classical ability bias in the rate of return to education but might

also bias the functional form between earnings and schooling.

Math test scores of the Armed Services Vocational Aptitude Battery (ASVAB) provided

by the data are used as measures for ability. Alas, they might themselves be prone to

endogeneity in that respondents who had already acquired more education than others

of the same age while ability tests took place in 1980 might do better in such tests by

virtue of their experience with test situations in general. To address this issue schooling

is divided into a pre-test and post-test variable as already proposed by Griliches &

Mason (1972). Moreover, measurement error in the test scores is tackled by means of

the instrumental variables technique.
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The following section briefly outlines the theoretical foundation of the human capital

model used in this study. Section 3 presents selective empirical evidence in the literature

while section 4 discusses evidence from the National Longitudinal Survey of Youth 1979.

Finally, the last section summarizes the findings.

5.2 An Extended Human Capital Earnings Function

Card (1995b, 1999) develops an analytically tractable version of the human capital earn-

ings function that builds on Becker (1967). To provide a frame of reference his model

is briefly presented. Abstracting from labor market experience, let y(S) denote potential

earnings after an individual acquires S years of education and let h(S) be an increasing

convex function reflecting costs of (or tastes for) schooling. Assume that individuals max-

imize the utility function U(S) = log y(S)− h(S) to derive their optimal schooling choice
S∗. Individual heterogeneity is modeled by personal differences in the benefits people

derive and the costs they face from schooling as follows

y′i(S)/yi(S) = bi − k1S, (5.1)

h′i(S) = ri + k2S (5.2)

where bi and ri are jointly distributed random variables, possibly correlated, and k1, k2

are non-negative constants. Equation (5.1) reflects diminishing returns to education while

(5.2) mirrors increasing costs. As a result, the optimal schooling choice S∗
i for individual

i is

S∗
i = (bi − ri)/(k1 + k2). (5.3)

Equation (5.1) implies

log yi(S) = ai + biS − 0.5k1S
2 (5.4)

where ai is an individual-specific constant of integration. To the extent that ai and

bi vary across the population, this is a random coefficients model suggesting a concave

relationship between schooling and potential log earnings at the individual level. However,
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endogeneity of schooling owing to the optimization behavior of individuals expressed by

equation (5.3) leads to a positive correlation of earnings abilities bi and years of schooling

Si as bi − b̄ = ψ(Si − S̄)+νi where S̄ represents the population mean of schooling, b̄ mean

abilities, and ψ is a positive coefficient. Likewise, ai is related to schooling (via bi) as

ai − ā = λ(Si − S̄)+ εi with positive λ. Inserting these linear projections of ai and bi into

(5.4) yields

log yi(Si) = (ā− λS̄) + (b̄+ λ− ψS̄)Si + (ψ − 0.5k1)S
2
i + εi + νiSi (5.5)

and expected log earnings are a quadratic function of schooling; it is strictly convex if

ψ−0.5k1 > 0, strictly concave if ψ−0.5k1 < 0, and linear in schooling otherwise. Thus, the

observed relationship is convex if there is a strong positive correlation between earnings

abilities and schooling.

In this chapter, the model is slightly extended replacing equation (5.2) by

h′i(S) = ri + k2S − k3S2

with a non-negative k3. This extension might reflect the idea that some education, e.g.

postgraduate studies, is not acquired solely to increase valuable human capital but also to

concentrate on subjects one has a strong personal interest in, to broaden one’s horizons

etc.; in other words, that education tends to have an additional consumptive character

apart from investment in future earnings streams alone. Further suppose that individual

borrowing rates ri = r̄+νi are independent of individual earnings abilities bi, IE(νi|bi) = 0,

then optimization behavior implies

bi = r̄ + (k1 + k2)Si − k3S2
i + νi = b̄+ (k1 + k2)(Si − S̄)− k3(S2

i − S2) + νi.

Inserted into (5.4) leads to

log yi(Si) = (ā−λS̄)+(b̄+λ−(k1+k2)S̄−k3S2)Si+(0.5k1+k2)S
2
i −k3S3

i +εi+νiSi. (5.6)

In contrast to equation (5.5) which allows for an arbitrary quadratic relationship due

to possible correlation between bi and ri, equation (5.6) requires that the coefficient of

the quadratic term be non-negative implying increasing returns but additionally that the

return to education diminish again after having reached a certain peak (k3 > 0).
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Likewise, Willis (1986, p. 551) discusses a comparable model that produces increasing

rates of return to education: Suppose that each individual faces rising borrowing costs as

investment into education increases and each individual invests to the point at which the

marginal borrowing rate is equal to the own internal rate of return itself depending on

personal abilities. If everybody faced the same schedule of borrowing rates, there would

be a positive correlation between the return to education and the level of schooling chosen.

Individuals with low internal rate of return would leave school earlier, others later.

Modeling Individual Abilities

Reconsider equation (5.4) and assume that the random coefficients ai and bi capturing

earnings abilities depend on inherent abilities Ai as follows

ai = α0 + α1Ai + ε̃i

bi = β0 + β1Ai + ν̃i

with IE(ε̃i|Ai) = IE(ν̃i|Ai) = 0 and the mean of Ai normalized to zero. Moreover, let

Si be uncorrelated with ε̃i and ν̃i. This is justified by the assumption that individuals

themselves merely know their Ai but are ignorant about their ν̃i and therefore choose their

optimal schooling level on behalf of their expected ability IE(bi|Ai). Thus (5.4) becomes

log yi = α0 + α1Ai + β0Si + β1AiSi − 0.5k1S
2
i + ε̃i + ν̃iSi, (5.7)

and, in contrast to (5.4), the schooling variable in this earnings equation is free of corre-

lation with the residual. Further assume that scores of the math sub-test of the Armed

Services Vocational Aptitude Battery (ASVAB) provided by the data reflect Ai.
1

Although the test scores will be adjusted for age they might still be prone to endogeneity

as individuals who had acquired already more schooling in 1980 when the ASVAB tests

took place might have done better in the tests than they would have without their above-

average education. To take account of this possible problem schooling is divided into

1Other scores out of the ten different scores in the ASVAB might be used, as well. However, there are
no substantial changes compared to results produced by math scores. Other studies also rely on math
scores, see e.g. Murnane, Willett & Levy (1995) or Kjellström (1999).
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two parts, one part capturing education obtained until 1980 and another one capturing

education acquired beyond 1980 similar toGriliches & Mason (1972) who divided their

schooling variable in one before and one after military service during which their ability

tests were performed. The idea is that the test scores are not influenced by schooling

acquired after the tests.

Formally, let S1i denote education acquired before ASVAB tests took place and S2i

education after that date. Further let A∗
i denote inherent ability which does not change

for any given individual during life-time2 and which, unfortunately, is unobservable to

the analyst. What can be measured instead are test scores Ai after individuals have

already acquired a certain amount of education. Suppose education makes it easier to

solve test problems because of a general experience in how to cope with test situations and

because some knowledge acquired at school helps solve test problems more quickly. Thus,

participants with much education tend to fare better in ability tests than they would do

with less education.

Abstracting from any confounding variables Xi the following equations summarize the

idea

log yi = α0 + α1A
∗
i + β0Si + β1A

∗
iSi + β2S

2
i + u (5.8)

Ai = A∗
i + δS1i.

The last equation rests on the assumption that ability tests Ai would measure A∗
i without

error if everybody had the same level of education at the time the tests took place, i.e.

measurement error in test scores is ruled out. Instrumental variables regressions presented

in section 4 will address the additional issue of measurement error. Regression on A as

in (5.7) leads to biased estimates. Alternatively, replacing A∗
i by Ai − δS1i yields the

following regression equation

log yi = α0 + α1Ai + β0Si + β1AiSi + β2S
2
i − α1δS1i − β1δS1iSi + u. (5.9)

Hence, the coefficient estimates of Si and S
2
i should identify β0 and β2, respectively.

2It might depend on age which, however, is already controlled for.
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5.3 Received Evidence

Usually, omission of ability is considered to yield a bias in the estimates of the return

to education, the classical ability bias. In addition, as outlined above, it might also bias

the functional relationship between schooling and earnings from concavity to convexity.

Unfortunately, most studies a priori assume constant returns and thus make it impossible

to examine this relationship. Nevertheless, some report more detailed estimation results

that suggest increasing rather than constant or diminishing returns to education even

though this was not necessarily their principal aim.

For example, Blackburn & Neumark (1993: table 2), in a certain specification of

their model, mention an estimate of the return to high school education that is significantly

lower than that to college (about 25%) based on NLSY data. Yet, they have not pursued

this issue any further. Cawley et al. (1996) find that returns to education for white

collar workers are significantly higher than those for blue collar workers who have usually

acquired less education. By investigating the high school premium using PSID data of

1976 to 1981 for men, Weiss’ (1988) specification of schooling as a cubic polynomial yields

estimates which are larger for higher levels of schooling. Table 5.1 shows own calculations

based on his coefficient estimates.3 Note, however, that Weiss reports strong evidence in

favor of a procyclical additional high school premium of 7% in counties with unemployment

rates of around 6%. If added to the twelfth schooling year, this would disturb the strict

monotonicity of the estimates.

Table 5.1: Return to Education for Men According to Weiss.

Years of Schooling 10 12 14 16 18 Mean HS Premium
Estimates of the Return 0.041 0.054 0.075 0.102 0.137 0.070
Own calculations based on Weiss (1988: table 9). Standard errors cannot be imputed. The
last column reports mean high school premium.

In a quantile regression approach based on CPS data Buchinsky (1994) reports sub-

stantial heterogeneity in the returns to education with higher returns for upper quantiles

in his restricted one-group model. His more flexible 16-group-model leads to the general

3Variances cannot be imputed because of missing covariance information. Alas, each coefficient esti-
mate in Weiss’ specification itself is statistically significant.
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Table 5.2: Return to Education for Men According to Park.

Years of Schooling ≤ 12 13, 14 15 16 > 16 HS Premium
Year 1979 0.057 0.066 0.010 0.071 0.046 0.026

1981 0.061 0.071 0.009 0.051 0.037 0.021
1983 0.057 0.079 -0.010 0.019 0.010 0.058
1985 0.061 0.086 0.023 0.065 0.048 0.077
1987 0.058 0.096 0.010 0.045 0.047 0.077
1988 0.043 0.084 0.037 0.091 0.043 0.094
1989 0.040 0.098 0.016 0.124 0.096 0.095
1990 0.044 0.108 -0.013 0.081 0.087 0.096
1991 0.056 0.106 0.008 0.089 0.088 0.078

Own calculations based on Park (1994: equation 7). Standard errors cannot be imputed. The
last column reports high school premium.

point that “the return to college education is higher, in general, than for high school

graduation at every quantile and for all experience groups”.4 Moreover, Kane & Rouse

(1995: table 2) investigating labor market returns to two-year and four-year colleges re-

port estimates based on the National Longitudinal Survey of the high school class of 1972

using hourly rate of pay which suggest increasing returns if ability is not controlled for,

but constant returns once it is controlled for. Yet, they do not discuss this finding any

further.

Park (1994) explicitly examines the functional form of the earnings equation with

respect to schooling using data for men from the CPS for the years 1979 to 1991. Al-

though he concludes that linearity may be maintained except for a peculiar deviation at

the fifteenth year of schooling it is illuminating to calculate marginal returns based on

estimates from his broadest model (his equation 7). Table 5.2 presents own calculations

for some years. Although standard errors cannot be calculated due to missing covariance

information, the estimates suggest that returns are low for individuals with merely high

school education. They are larger for undergraduate education but diminish again for

individuals with more than 16 years of schooling. This pattern would be in line with

equation (5.6) except for the high school premium and the dip at the fifteenth schooling

year.

Altonji & Dunn (1996) investigate the impact of family characteristics and IQ scores

4However, this is not the case for high school dropouts.
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Table 5.3: Return to Education According to Altonji & Dunn.

Schooling Increment 10 to 12 12 to 14 14 to 16
Return to the Increment
Men, Fixed Effects 0.047 0.097 0.132
Men, No Fixed Effects 0.087 0.097 0.096
Women, Fixed Effects 0.122 0.125 0.112
Women, No Fixed Effects 0.135 0.154 0.151
Own calculations based on Altonji & Dunn (1996: footnote 23). Standard errors cannot be
imputed. The estimates represent returns to two years of education.

on the return to education. Their baseline specification of the earnings function includes

a cubic polynomial in schooling and excludes all IQ measures and parents’ education

interaction terms (see their footnote 23). They obtain estimated returns as shown in

table 5.3. Their results are based on data of the Young Men and Young Women cohort of

the NLS during 1966 and 1981 for men, and 1968 and 1988 for women. Their preferred

approach – a fixed effects analysis based on sibling differences – yields increasing returns

for men and constant returns for women. The increase seems to disappear for the analysis

without fixed effects. Finally, Ashenfelter & Rouse (1998b: figure 1) present a simple

graph based on CPS data from 1993 which indicates low, almost zero, returns for low

educated workers and positive returns for workers with 11 or more years of education.

The next section aims at replicating the findings of this section using the NLSY and

shows how increasing returns disappear if ability is controlled for in the right manner.

5.4 Evidence from the NLSY

The Data

The data are taken from the National Longitudinal Survey of Youth 1979 (NLSY) admin-

istered by the US Bureau of Labor Statistics. The NLSY is a sample of 12,686 youths first

interviewed in 1979 when they were aged between 14 and 22 and re-interviewed annually

until 1994. A detailed description of the data is given in the NLS Handbook (1997) and

the NLSY79 User’s Guide (1997).
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In 1989 respondents were aged 24 to 32 and most had finished their education. Begin-

ning in that year, returns to education are estimated for all subsequent years until 1994,

each year taken as a single cross-section. Variables that change their values after 1989, in

particular educational attainment or labor force experience, are updated each year. Men

and women are examined separately, but races are pooled. Individuals who are enrolled

at school or at college in the year under scrutiny are removed from the sample, yet, the

self-employed are kept.5 Oversampling of Blacks, Hispanics, and economically disadvan-

taged Whites suggests the use of sample weights provided by the NLSY for each year. The

outcome measure is the hourly rate of pay inflated to 1996 dollars using the US consumer

price index. Outliers in wages are removed, i.e. observations with an hourly wage above

$1000 are deleted and wages below $1 are set equal to $1. Furthermore, extraordinarily

large changes in wages between two subsequent years are smoothed by removing the local

outliers, as well.

The data contain numerous variables describing socioeconomic background, the high

school career, and labor force status (since 1975) used to generate a measure of actual

experience based on weeks worked per year. What is more, the NLSY provides informa-

tion on ten ability measures collected in 1980 when 94.3% of all respondents participated

in tests to update the Armed Services Vocational Aptitude Battery (ASVAB). Since re-

spondents participated in the tests at different ages the scores are adjusted by regressing

the raw scores on age dummies and using the residuals subsequently as explanatory vari-

ables in the wage equation analogous to Blackburn & Neumark (1993). A descriptive

summary of the variables used in this study is provided in table 5.4 weighted by the

sample weights of the NLSY. Two different types of variables in addition to the standard

ones, education and experience, will be considered: background variables that determine

earnings apart from investment into human capital and ASVAB test scores adjusted by

age.

5
Kane & Rouse (1995), who also use the NLSY, report that their results are not sensitive to the

exclusion of self-employed.
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Table 5.4: Description of Variables.

Men Women
mean std.dev. mean std.dev.

Log hourly wage in 1989 7.055 0.500 6.806 0.538
Age in 1979 17.731 2.348 17.639 2.288
Years of education (in 1989) 13.005 2.337 13.228 2.138
Years of education before ASVAB tests 11.153 1.874 11.299 1.797
Years of education after ASVAB tests (in 1989) 1.852 2.092 1.929 2.120
Experience in years (in 1989) 8.260 2.723 7.376 2.895

Background Variables

Black 0.130 0.337 0.140 0.347
Hispanic 0.060 0.237 0.054 0.227
Lived in urban area 1987 0.775 0.417 0.781 0.414
Lived in north-east 1987 0.194 0.396 0.201 0.401
Lived in north-central 1987 0.303 0.460 0.277 0.447
Lived in south 1987 0.334 0.472 0.357 0.479
Lived in an area with high unempl. 1987 (1 to 6) 2.880 0.891 2.915 0.911
Physical height in 1985 (inches) 70.441 2.887 64.527 2.708
Health limit begun under age 18 0.080 0.272 0.096 0.295
Married (in 1989) 0.531 0.499 0.564 0.496
Member of a union (in 1989) 0.137 0.344 0.087 0.282

ASVAB Scores, Adjusted for Age

Paragraph comprehension 1.456 10.493 4.232 9.077
Word knowledge 2.537 10.086 3.624 8.974
Math knowledge 2.375 10.087 2.115 9.462
Arithmetic reasoning 3.624 9.958 1.633 9.191
General science 4.113 10.044 1.365 8.762
Auto and shop information 7.604 9.563 -2.092 6.561
Numerical operations 0.951 10.133 4.147 8.935
Electronic Information 5.971 9.813 -0.530 8.002
Mechanical Comprehension 6.189 9.929 -0.661 7.856
Coding speed -0.225 9.407 4.695 9.071

Number of observations 3413 3305
Means and standard deviations for variables in 1989. Observations are weighted by the NLSY
sample weights.

Estimation Results

A model of earnings as broad as possible will be specified in advance and tested against

polynomial specifications as proposed in equation (5.6) in order to distinguish between

a linear, quadratic, and a cubic relationship. Ability will not yet be controlled for. The

most general model possible uses dummy variables for each education level nesting the
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polynomial models. It maintains the additive structure of the human capital earnings

function: log y(S) = f(S) + Xβ + ε.6 Individuals are distributed across 17 schooling

categories S ∈ {4, 5, ..., 20} as shown in the appendix table 5.10. Alas, owing to small cell

size observations with less than seven years of schooling are completely removed. Using

incremental dummy variables 1(S ≥ i), where 1 is the indicator function, the functional

relationship between schooling and earnings is modeled as

f(S) =
S∑

i=7

δi 1(S ≥ i), S ∈ {7, 8, ..., 20}.

Thus, the marginal return to an additional year of schooling at level S = s equals δs+1.
7

Tables 5.5 and 5.6 present estimation results for men and women, respectively, also

controlling for the background variables. Both for men and women estimates vary consid-

erably, yet, a certain pattern seems to emerge. Returns to the earlier years of education

are not significantly different from zero, the signs of the point estimates are sometimes

positive sometimes negative. For men, only the last high school year (11 to 12 years)

yields positive significant results for almost all years, indicating a potential high school

premium. The estimates remain high until the last two years when they are again insignif-

icant and sometimes negative. The peak of the return to education seems to be achieved

during college education with a possible premium for graduation from college at age 16

close to Park’s (1994) results. Women’s results are similar but with generally higher

estimates than men’s and no clear premium structure after certain schooling levels. Their

returns are positive after high school education and remain so even unto the 19th grade

with a peak around 14 to 16 and another at 19.

This general specification is tested against the null hypothesis of linearity implying

δ8 = ... = δ20, against the null of a quadratic relationship, and against a cubic relation-

ship. Results of F-tests are reported in the respective panels of the tables. Linearity is

clearly rejected in all six years for men and for women alike. The less restrictive quadratic

6Nonparametric estimation of f by means of a partially linear additive model as outlined in Hastie

& Tibshirani (1990), for instance, would be an alternative way to proceed. However, since S takes on
only discrete values numerous ties would be produced although a conventional nonparametric smoother
would generally consume less degrees of freedom for reasonable smoothing parameters than the dummy
variables approach.

7Actually, the return is exp(δs+1)− 1 which is approximately δs+1 for small values.
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Table 5.5: Local Returns to Education, Men.

Education 1989 1990 1991 1992 1993 1994 Pooled

7 to 8 years 0.068 -0.010 -0.173 -0.050 0.037 0.239 0.005

8 to 9 years -0.027 0.005 0.020 -0.081 -0.046 -0.079 -0.030

9 to 10 years -0.049 0.090 -0.005 0.022 0.037 -0.027 0.009

10 to 11 years 0.008 -0.072 0.049 -0.002 -0.000 0.008 0.001

11 to 12 years 0.103*** 0.100*** 0.033 0.119*** 0.072 0.119*** 0.091***

12 to 13 years 0.084*** 0.131*** 0.128*** 0.114*** 0.103*** 0.139*** 0.118***

13 to 14 years 0.068* 0.037 0.059 0.046 0.094** 0.017 0.051***

14 to 15 years 0.084* 0.059 0.083 0.071 0.107* 0.093* 0.081***

15 to 16 years 0.122*** 0.130*** 0.095** 0.169*** 0.116** 0.150*** 0.129***

16 to 17 years -0.006 0.080 0.041 0.048 -0.030 -0.040 0.013

17 to 18 years 0.036 0.038 0.027 0.071 0.155** 0.187*** 0.088***

18 to 19 years 0.133 0.017 0.045 -0.106 -0.083 -0.158* -0.037

19 to 20 years -0.043 -0.165* -0.120 -0.127 0.276*** 0.339*** 0.059

H0: Linear specification

Coefficient 0.066*** 0.068*** 0.065*** 0.071*** 0.080*** 0.078*** 0.071***

F-value 4.238 4.365 4.554 5.977 3.392 4.050 20.157

P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000

H0: Quadratic specification

Linear coeff. -0.017 0.038 0.021 0.049* -0.014 -0.005 0.015

Quadr. (÷10) 0.030*** 0.011 0.016* 0.008 0.034*** 0.030*** 0.020***

F-value 3.639 4.628 4.706 6.464 2.786 3.701 19.654

P-value 0.000 0.000 0.000 0.000 0.001 0.000 0.000

H0: Cubic specification

Linear coeff. -0.693 -0.717 -0.846 -1.037* -0.614 -0.532 -0.718***

Quadr. (÷10) 0.550*** 0.589 0.680* 0.837 0.487*** 0.427*** 0.579***

Cubic (÷100) -0.129*** -0.143*** -0.164*** -0.204*** -0.110*** -0.096*** -0.137***

F-value 0.952 1.275 0.438 0.794 1.328 2.721 3.049

P-value 0.484 0.238 0.929 0.635 0.209 0.002 0.001

Number of obs. 3413 3355 2976 2838 2874 2834 18290

Incremental dummies reflect the return to schooling for each education category between seven
and twenty years of schooling. Background variables, experience, and its square are controlled.
The regressions are weighted by the sample weights. Standard errors are omitted. Heteroskedas-
ticity is not adjusted for. Stars denote statistical significance in a two-sided test, *: 10%, **:
5%, ***: 1%.
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Table 5.6: Local Returns to Education, Women.

Education 1989 1990 1991 1992 1993 1994 Pooled

7 to 8 years -0.111 0.124 -0.126 -0.040 0.068 0.112 -0.006

8 to 9 years 0.058 -0.099 0.180 0.007 0.001 -0.088 0.023

9 to 10 years 0.130* 0.148* 0.115 0.036 -0.050 -0.002 0.060

10 to 11 years -0.117* -0.077 0.016 0.015 -0.072 -0.077 -0.044

11 to 12 years 0.067 0.089* -0.052 0.091 0.123* 0.089 0.073***

12 to 13 years 0.095*** 0.081*** 0.108*** 0.058* 0.069** 0.031 0.078***

13 to 14 years 0.082** 0.114*** 0.139*** 0.162*** 0.113*** 0.153*** 0.126***

14 to 15 years 0.086* 0.075 0.124** 0.106** 0.141*** 0.131** 0.105***

15 to 16 years 0.154*** 0.170*** 0.068 0.145*** 0.139*** 0.146*** 0.137***

16 to 17 years 0.078 0.092* 0.093* -0.032 -0.069 0.080 0.030

17 to 18 years -0.019 -0.056 0.068 0.126* 0.123* -0.004 0.051*

18 to 19 years 0.242** 0.123 0.069 0.208** 0.298*** 0.355*** 0.219***

19 to 20 years 0.073 0.141 0.038 -0.022 0.038 0.137 0.059

H0: Linear specification

Coefficient 0.086*** 0.090*** 0.093*** 0.097*** 0.092*** 0.099*** 0.092***

F-value 4.358 3.538 3.151 3.219 4.752 6.433 18.942

P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000

H0: Quadratic specification

Linear coeff. -0.087** -0.018 0.006 -0.006 -0.086** -0.157*** -0.046***

Quadr. (÷10) 0.062*** 0.039*** 0.031** 0.036*** 0.063*** 0.090*** 0.049***

F-value 2.406 2.916 2.886 2.705 3.110 2.529 12.101

P-value 0.006 0.001 0.001 0.002 0.000 0.004 0.000

H0: Cubic specification

Linear coeff. -0.558** -0.618 -0.569 -0.630 -0.637** -0.592*** -0.581***

Quadr. (÷10) 0.422*** 0.495*** 0.468** 0.509*** 0.480*** 0.420*** 0.455***

Cubic (÷100) -0.089*** -0.112*** -0.108*** -0.116*** -0.102*** -0.081*** -0.100***

F-value 1.625 1.554 1.743 1.279 2.283 2.030 6.007

P-value 0.093 0.114 0.066 0.236 0.012 0.027 0.000

Number of obs. 3305 3269 2851 2666 2766 2732 17589

Incremental dummies reflect the return to schooling for each education category between seven
and twenty years of schooling. Background variables, experience, and its square are controlled.
The regressions are weighted by the sample weights. Standard errors are omitted. Heteroskedas-
ticity is not adjusted for. Stars denote statistical significance in a two-sided test, *: 10%, **:
5%, ***: 1%.
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model is rejected, as well, for men and women, and, what is more, in all years estimates

show increasing rather than diminishing returns to education. Finally, a cubic relation-

ship between education and earnings as proposed by equation (5.6) is not rejected at

conventional levels for men in five years and for women in four years.

Since estimates vary considerably an average over all years is reported in the last col-

umn of the tables. To this end, observations of all six years are pooled and the dummy

variables model is re-estimated.8 However, the pooled estimates are for illustrative pur-

poses only because stochastic dependencies among observations in the pooled model are

not accounted for, thus exaggerating statistical precision.

Note that actual experience might be endogenous especially for women. Replacing

actual by Mincer potential experience, i.e. age - education - 6, does not markedly alter

the patterns found in tables 5.5 and 5.6 and points to a polynomial specification of order

3 as well. Moreover, additionally dropping the first and the last education cell, coefficient

estimates of the remaining cells virtually remain unchanged. In sum, empirical evidence

seems to support low returns to secondary education for individuals who opted for low

education, comparatively high returns for the first four college years for college gradu-

ates, and again lower returns for postgraduate education. Alas, these findings do not

necessarily reject diminishing personal returns to education as stated initially in equa-

tion (5.1). Endogeneity of schooling owing to the optimization behavior may well lead

to a reduced-form relationship as is found here and stated in equation (5.6). Therefore,

ability measures are included next; both of which might drive individual heterogeneity

coefficients ai and bi.

The first panel of tables 5.7 and 5.8 show estimation results of the basic equation (5.7)

for men and women, respectively. The schooling variable is transformed into years of

education exceeding the minimum level of seven years. This ensures that the coefficient

of ability expresses the return to ability at seven years of education. For men, coefficient

estimates of the linear schooling term are positive in all years and those of the quadratic

term are mainly negative although not significantly different from zero.

8A further model comprising an additional time trend for all coefficients has not produced convincing
evidence in favor of a trend. Therefore, the trend is omitted.
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Table 5.7: Estimation Results for Men.
1989 1990 1991 1992 1993 1994 Pooled

Basic Model

Ability (÷100) 0.080 -0.190 -0.289 0.374 0.257 0.268 0.132
Abil*School (÷100) 0.135** 0.162*** 0.183*** 0.107* 0.115* 0.123* 0.133***
Schooling 0.035* 0.072*** 0.066*** 0.062*** 0.037 0.041* 0.051***
Schooling2 (÷10) -0.000 -0.025 -0.024 -0.018 0.008 0.002 -0.009
Homosk., p-value 0.028 0.132 0.045 0.118 0.003 0.000 0.000

Pre-test and Post-test Schooling

Ability (÷100) 0.080 -0.185 -0.278 0.368 0.319 0.279 0.142
Abil*School (÷100) 0.135** 0.161*** 0.182*** 0.109* 0.105 0.121* 0.131***
Schooling 0.036 0.076*** 0.083*** 0.074*** 0.047* 0.047* 0.054***
Schooling2 (÷10) -0.004 -0.034* -0.045** -0.026 -0.013 -0.006 -0.017*
S1 -0.003 -0.013 -0.037** -0.021 -0.037* -0.016 -0.012
S1 ∗ S (÷10) 0.006 0.021 0.039 0.011 0.051* 0.018 0.020*
Homosk., p-value 0.027 0.129 0.042 0.118 0.003 0.000 0.000
F-test 0.049 0.453 2.134 1.799 1.766 0.340 28.316
P-value 0.952 0.636 0.119 0.166 0.171 0.712 0.000

Basic Model, IV for Ability

Ability (÷100) 0.410 1.059 1.103 1.726** 0.911 1.198 1.152***
Abil*School (÷100) 0.172 0.016 0.020 -0.029 0.080 0.034 0.039
Schooling 0.030 0.029 0.018 0.019 0.018 0.010 0.018
Schooling2 (÷10) -0.009 0.006 0.010 0.010 0.015 0.021 0.011
Homosk., p-value 0.032 0.129 0.045 0.133 0.003 0.000 0.000
Hausman, p-value 0.014 0.071 0.052 0.024 0.127 0.143 0.000
Canonical correl. 0.252 0.248 0.238 0.238 0.244 0.253 0.248

0.306 0.297 0.299 0.320 0.316 0.336 0.312
Overid., p-value 0.366 0.315 0.979 0.818 0.271 0.427 0.459

Pre-test and Post-test Schooling, IV for Ability

Ability (÷100) 0.423 1.092 1.194 1.797** 1.042 1.241 1.179***
Abil*School (÷100) 0.170 0.012 0.011 -0.035 0.066 0.029 0.036
Schooling 0.032 0.033 0.033 0.029 0.027 0.016 0.022
Schooling2 (÷10) -0.012 -0.003 -0.009 0.004 -0.005 0.013 0.002
S1 -0.004 -0.014 -0.038** -0.022 -0.039* -0.017 -0.014*
S1 ∗ S (÷10) 0.007 0.022 0.040 0.011 0.051* 0.019 0.020*
Homosk., p-value 0.032 0.128 0.044 0.134 0.004 0.000 0.000
Hausman, p-value 0.032 0.089 0.080 0.038 0.091 0.150 0.000
Canonical correl. 0.253 0.248 0.238 0.239 0.242 0.253 0.247

0.306 0.297 0.300 0.322 0.318 0.338 0.313
Overid., p-value 0.357 0.284 0.993 0.839 0.354 0.459 0.496

Number of obs. 3413 3355 2976 2838 2874 2834 18290

Background variables, experience, and its square are controlled. The regressions are weighted
by the sample weights. Standard errors – adjusted for heteroskedasticity – are omitted. Stars
denote statistical significance in a two-sided test, *: 10%, **: 5%, ***: 1%. F-tests in the second
panel test the augmented pre-/post-test schooling model against the basic model.
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Table 5.8: Estimation Results for Women.
1989 1990 1991 1992 1993 1994 Pooled

Basic Model

Ability (÷100) 0.268 -0.178 -0.602 0.450 0.656 0.767* 0.293
Abil*School (÷100) 0.106 0.173*** 0.220*** 0.107 0.041 0.030 0.105***
Schooling 0.003 0.054** 0.079*** 0.041 -0.010 -0.042 0.024**
Schooling2 (÷10) 0.040* 0.003 -0.012 0.016 0.055** 0.083*** 0.029***
Homosk., p-value 0.129 0.159 0.634 0.001 0.041 0.239 0.000

Pre-test and Post-test Schooling

Ability (÷100) 0.176 -0.227 -0.710 0.394 0.614 0.606 0.232
Abil*School (÷100) 0.111* 0.175*** 0.227*** 0.105 0.042 0.043 0.108***
Schooling 0.038 0.071** 0.112*** 0.070** 0.012 -0.003 0.047***
Schooling2 (÷10) 0.005 -0.003 -0.044* -0.006 0.036 0.038 0.005
S1 -0.074*** -0.027 -0.067*** -0.055** -0.045* -0.088*** -0.048***
S1 ∗ S (÷10) 0.059** 0.001 0.054* 0.033 0.031 0.080*** 0.040***
Homosk., p-value 0.132 0.159 0.615 0.001 0.042 0.231 0.000
F-test 12.896 7.041 8.334 10.558 4.673 11.682 51.973
P-value 0.000 0.001 0.000 0.000 0.009 0.000 0.000

Basic Model, IV for Ability

Ability (÷100) -0.307 -0.799 -0.919 -0.980 0.389 0.018 -0.402
Abil*School (÷100) 0.204* 0.278** 0.288** 0.314*** 0.081 0.144 0.212***
Schooling 0.022 0.076** 0.092*** 0.087** -0.002 -0.018 0.047***
Schooling2 (÷10) 0.022 -0.017 -0.025 -0.022 0.048* 0.062** 0.009
Homosk., p-value 0.124 0.153 0.610 0.001 0.041 0.214 0.000
Hausman, p-value 0.600 0.510 0.647 0.092 0.926 0.505 0.000
Canonical correl. 0.236 0.247 0.247 0.252 0.252 0.241 0.246

0.299 0.331 0.319 0.323 0.346 0.332 0.325
Overid., p-value 0.226 0.844 0.764 0.906 0.711 0.017 0.074

Pre-test and Post-test Schooling, IV for Ability

Ability (÷100) -0.132 -0.745 -0.815 -0.791 0.510 0.128 -0.310
Abil*School (÷100) 0.187 0.274** 0.276** 0.289** 0.067 0.133 0.202***
Schooling 0.049 0.091** 0.117*** 0.110*** 0.016 0.014 0.066***
Schooling2 (÷10) -0.009 -0.023 -0.053* -0.042 0.031 0.022 -0.013
S1 -0.074*** -0.028 -0.065*** -0.058*** -0.044* -0.087*** -0.049***
S1 ∗ S (÷10) 0.059** 0.003 0.053* 0.038 0.031 0.080*** 0.041***
Homosk., p-value 0.126 0.152 0.593 0.001 0.041 0.202 0.000
Hausman, p-value 0.750 0.664 0.744 0.273 0.874 0.737 0.000
Canonical correl. 0.244 0.252 0.254 0.260 0.258 0.248 0.252

0.299 0.331 0.320 0.322 0.348 0.333 0.326
Overid., p-value 0.195 0.845 0.724 0.888 0.677 0.016 0.056

Number of obs. 3413 3355 2976 2838 2874 2834 18290

Background variables, experience, and its square are controlled. The regressions are weighted
by the sample weights. Standard errors – adjusted for heteroskedasticity – are omitted. Stars
denote statistical significance in a two-sided test, *: 10%, **: 5%, ***: 1%. F-tests in the second
panel test the augmented pre-/post-test schooling model against the basic model.
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Women’s results are in contradiction to what the theoretical model above predicts.

The coefficient of squared schooling tends to be positive, even significantly so in three

years, rather than negative. Due to possible endogeneity of women’s actual experience,

potential experience is used instead which leads to more confirmative results shown in the

appendix table 5.12. Indeed, then, five of six coefficient estimates of schooling squared

are not significantly different from zero (with three of them having a negative sign), only

one remains significantly positive. Notice that men’s second order coefficients look more

confirmative, too, when potential experience is used (see table 5.11). Another reason for

women’s results might be that the math scores themselves are inappropriate as a measure

of inherent ability Ai which will be discussed below.

Interaction between ability and schooling yields positive and significant estimates for

men suggesting strong heterogeneity in the returns to education. Alas, for women, esti-

mates provide only weak evidence underscoring heterogeneity. Chapter 4 reports similar

results. Heterogeneity plays an important role in other studies, too, e.g. Buchinsky

(1994). In particular, heterogeneity caused by variation in personal abilities is detected

by Altonji & Dunn’s (1996) preferred fixed effects specification. They report signifi-

cantly positive coefficient estimates of the interaction between education and IQ scores,

yet without overall convincing evidence. Furthermore, Blackburn & Neumark (1993:

table 4) discover that the importance of the interaction between ability and education has

increased significantly during the 1980s. Murnane, Willett & Levy (1995) confirm

this observation for men but not for women.

In addition, the tables indicate that the ability-schooling interaction seems to be less

pronounced in the early 90s for both sexes. Therefore, findings in Ashenfelter &

Rouse (1998b: table A2) who report an insignificantly negative interaction coefficient

are not in contrast to this study. They used data of the NLSY in 1993, pooled men and

women, and controlled for age instead of experience. Taken together, their estimate is

comparable to the average of men’s and women’s interaction estimate of 1993 shown in

the appendix tables 5.11 and 5.12.

The last row of the basic model reports p-values of a test whether homoskedasticity
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is compatible with the data by regressing the square of the estimated residuals on the

square of schooling in accordance with equation (5.7). The significance of the coefficient

estimate of squared schooling asymptotically equals the significance of a test against

homoskedasticity (see e.g. Greene, 1993: p. 396).9 To take account of heteroskedastic

errors in the main model, OLS covariance estimates are adjusted by the estimated error

variances derived from the coefficient estimates of the auxiliary regression. If equation

(5.7) is correctly specified errors should be heteroskedastic. This is confirmed for men,

yet, for women, the tests indicate that heteroskedasticity is only weak.

The second panel of the tables present estimation results based on equation (5.9) when

test scores may depend on schooling attainment before the tests took place. The first

six rows report coefficient estimates of the corresponding variables. Interaction between

schooling and ability remains positive. Coefficient estimates of S and S2 appear to confirm

diminishing returns to education for men as already in the basic model. Interestingly, for

women, estimates of the coefficient of squared schooling do not support increasing returns

anymore. Coefficient estimates of S1 and S1S yield some contradictory results concerning

the sign of δ with some more weight on a negative than on a positive δ. This would mean

that more pre-test schooling would have negatively influenced ability test achievements.

Moreover, heteroskedasticity tests produce almost the same p-values as in the basic

model. All variance estimates are again adjusted for heteroskedasticity. A comparison of

the broader model augmented by pre- and post-test schooling with the basic model by

means of an F-test leads to the conclusion that endogeneity of the math scores plays, on

average, a minor role for men but is strongly confirmed for women. As before, results

based on potential experience are more pronounced than those based on actual experience.

Finally, note that the coefficient estimates of the interaction between ability and schooling

remain almost unchanged with respect to the basic model.

9The variance of the coefficient estimate is adjusted for heteroskedasticity in this auxiliary regression
using White’s (1980) covariance estimate.
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Measurement Error in Test Scores

Math test scores measure certain aspects of abilities or skills. One might argue that

they only imperfectly capture inherent earnings abilities A∗. A similar observation can

be made for the other ASVAB scores. Suppose they all measure some sort of skills but

their errors in capturing true A∗ are independent of each other because different skills vary

unsystematically aroundA∗. Then, if some of them have no impact on earnings given math

scores they are valid instruments for math scores. Examining some alternatives shows

that scores on general science and electronic information seem to fulfill the requirements.

Griliches (1977) already suggested to use one test score as instrument for another

provided more than one is available.

Estimations of the basic and the broader model are repeated using the two additional

scores as instruments for math scores. Results are reported in the third and fourth panels

of the tables. Hausman as well as overidentification tests assess the instrumental variables

estimations. Furthermore, canonical correlations between the instruments and the math

scores are presented as an indication for instrumental relevance.10 The lowest canonical

correlation amounts to 0.24 for both men and women and overidentification tests indicate

that the instruments are valid except for women in the last year 1994.

Unfortunately, in the basic IV model, almost all estimates of the schooling coefficients

for men are statistically insignificant rendering a sound interpretation difficult. Neverthe-

less, Hausman tests point to significant differences between the IV and OLS regressions.

For women, coefficient estimates of schooling squared are still not overly convincing un-

derpinned by the Hausman tests indicating that IV is not significantly different from OLS.

IV regressions of the broader model resting on the pre-test schooling variable S1 (fourth

panels of the tables) also yield insignificant estimates for men. Women’s estimates seem

to weakly confirm a negative quadratic relationship at least for earlier years, however,

estimates are statistically imprecise. Again, estimation results on coefficients of S1 and

10Canonical correlations are discussed in Bowden & Turkington (1984: Ch. 2) and in Hall,

Rudebusch & Wilcox (1996). They can easily be calculated as the square root of the eigenvalues of the
matrix (X ′X)−1(X ′Z)(Z ′Z)−1(Z ′X) where Z is the matrix of instruments for the possibly endogenous
regressors X. If there are only two endogenous variables solely two eigenvalues differ from 1.
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S1S do not really confirm a positive δ, similar to the second panel. Furthermore, replac-

ing actual experience by potential experience leads again to similar but more pronounced

results.

5.5 Summary and Conclusion

This chapter departs from an extension of the human capital model recently proposed

by Card (1995b). The model incorporates unobserved ability parameters ruling both

the absolute level of earnings and the individual return to education. Assuming that

individuals are rational agents maximizing the present value of their life-time earnings and

that their return to education diminishes as they acquire more education, their optimal

schooling level will depend on their personal earnings abilities. Neglecting this relation

between education and ability leads to a reduced form with indeterminate functional

form linking earnings and schooling, i.e. increasing, constant, or diminishing returns to

education.

Data from the NLSY show that the functional relationship without ability controls

follows a polynomial of order 3 yielding returns to education that increase with years

of schooling acquired but diminish again after passing a certain peak. This pattern is

consistent with strong correlation between education and ability and with the hypothesis

that education has an additional consumptive character apart from mere investment into

future earnings. To a certain extent, similar results can be found in the literature.

Yet, these findings do not give information about the true personal development of

the returns to education as long as the ability components are not taken into account.

In other words, omission of ability not only yields classical ability bias in estimates of

the return to education but might also bias the functional form between log earnings

and education. Indeed, controlling for ability in form of math test scores shows that

personal returns to education diminish as schooling increases, specifically for men. This

finding is only obtained if interaction between schooling and ability is introduced reflecting

differing personal returns to education. The results show that the interaction term is
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statistically significant for men, i.e. heterogeneity in the returns is substantial. However,

this observation is in contrast to earlier findings inGriliches (1977) who has not detected

interaction terms. For women, heterogeneity seems to play a less important role. These

findings are in line with Chapter 4.

Furthermore, endogeneity of the math scores – even adjusted for age – is a source of

bias in estimates of rates of return to education for women in that education acquired

before ability tests took place might influence the test results. Dividing schooling into

pre-test and post-test education addresses this issue. Measurement error in the scores is

tackled by conventional IV estimation techniques. Yet, IV estimation does not produce

conclusive results.

Diminishing returns are also reported byMurnane, Willett & Tyler (2000: tables

5 and 6) who analyze the general educational development (GED). They include math test

scores in their regressions and report estimates of the return to post-secondary education

that are markedly lower than those to secondary education. The results also confirm

recent studies that cope with endogenous schooling by the technique of instrumental

variables finding estimates that are usually higher than corresponding OLS estimates (see

e.g. Card, 1999). The deviation might be explained by the fact that IV estimates do

not necessarily identify the mean effect of education but the effect of education on those

individuals who are mostly affected by the chosen instruments, the so-called local average

treatment effect. Angrist, Imbens & Rubin (1996) discuss this framework; see also

Imbens & Angrist (1994) and Angrist & Krueger (1999). In case of systematic

heterogeneity the two parameters differ. Since the instruments that are generally used

mainly affect low-educated individuals, higher IV estimates might be interpreted as higher

returns to early years of schooling than to later years.

In sum, endogeneity of education mainly caused by heterogeneous inherent earnings

ability plays an important role. Omission of ability measures might lead to classical

ability bias in estimates of the rate of return to education but, as shown in this study,

it might also bias the functional form of the human capital earnings equation. Without

correctly controlling for ability one might detect increasing rather than diminishing returns
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and thus one might wrongly wonder whether post-secondary education was some sort of

magic potion. Data from the NLSY seem to support this view and does not contradict

the theoretical approach this study is based on, particularly for men. Results are less

convincing for women. One reason might be endogeneity of female labor market experience

due to more complex female participation decisions supported by results using potential

instead of actual experience. Therefore, a better understanding of women’s optimization

behavior appears to be necessary.
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Appendix: Additional Results

For reasons of parsimony, the appendix presents detailed OLS regression results solely for

the basic model. Table 5.9 presents OLS estimates for men and women. The standard

errors, which are not explicitly presented, are adjusted for heteroskedasticity. The regres-

sion results in the main text are not sensitive to the exclusion of the background variables.

Furthermore, table 5.10 reports absolute frequencies over all schooling categories and, fi-

nally, tables 5.11 and 5.12 are analogous to the tables in the main text; they show results

if actual experience is replaced by the Mincer potential experience.
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Table 5.9: Detailed Regression Results.
1989 1990 1991 1992 1993 1994 Pooled

Men

Math scores 0.080 -0.190 -0.289 0.374 0.257 0.268 0.132

Math scores * Schooling 0.135** 0.162*** 0.183*** 0.107* 0.115* 0.123* 0.133***

Schooling 0.035* 0.072*** 0.066*** 0.062*** 0.037 0.041* 0.051***

Schooling squared -0.000 -0.025 -0.024 -0.018 0.008 0.002 -0.009

Experience 0.039** 0.050*** 0.043*** 0.038** 0.042** 0.061*** 0.047***

Experience squared -0.000 -0.001 -0.001 -0.000 -0.000 -0.001* -0.001***

Black -0.096*** -0.130*** -0.111*** -0.111*** -0.124*** -0.110*** -0.117***

Hispanic 0.032 -0.053** -0.025 -0.020 -0.025 -0.023 -0.021*

Lived in urban area ’87 0.100*** 0.114*** 0.116*** 0.089*** 0.134*** 0.085*** 0.106***

Lived in north-east ’87 -0.005 -0.008 -0.024 -0.000 -0.019 -0.028 -0.014

Lived in north-cent. ’87 -0.077*** -0.104*** -0.120*** -0.092*** -0.120*** -0.118*** -0.106

Lived in south ’87 -0.081*** -0.100*** -0.096*** -0.092*** -0.085*** -0.123*** -0.096

Area of hi. unempl. ’87 -0.052*** -0.036*** -0.032*** -0.051*** -0.028** -0.039*** -0.041

Height in 1985 (inches) 0.008** 0.007** 0.006* 0.009*** 0.007* 0.010*** 0.008

Health limit under 18 -0.118*** -0.090*** -0.065** -0.107*** -0.098*** -0.099*** -0.099

Married 0.116*** 0.111*** 0.122*** 0.134*** 0.154*** 0.136*** 0.133

Member of a union 0.256*** 0.254*** 0.235*** 0.232*** 0.237*** 0.233*** 0.245

Constant 5.978*** 5.842*** 5.936*** 5.799*** 5.862*** 5.644*** 5.860

Number of observations 3413 3355 2976 2838 2874 2834 18290

Women

Math scores 0.268 -0.178 -0.602 0.450 0.656 0.767* 0.293

Math scores * Schooling 0.106 0.173*** 0.220*** 0.107 0.041 0.030 0.105***

Schooling 0.003 0.054** 0.079*** 0.041 -0.010 -0.042 0.024**

Schooling squared 0.040* 0.003 -0.012 0.016 0.055** 0.083*** 0.029***

Experience 0.044*** 0.021 0.025* 0.025** 0.034** 0.035*** 0.039***

Experience squared 0.001 0.001* 0.001 0.001 0.001 0.001 0.000

Black 0.002 -0.023 -0.041 -0.006 0.005 0.024 -0.014

Hispanic 0.116*** 0.122*** 0.075** 0.122*** 0.093*** 0.114*** 0.104***

Lived in urban area ’87 0.053** 0.049* 0.089*** 0.082*** 0.072** 0.071*** 0.072***

Lived in north-east ’87 0.032 0.063* 0.043 0.014 0.097** 0.035 0.051

Lived in north-cent. ’87 -0.084*** -0.098*** -0.125*** -0.098*** -0.038 -0.058* -0.082

Lived in south ’87 -0.036 -0.044 -0.075** -0.081*** -0.052 -0.073** -0.058

Area of hi. unempl. ’87 -0.068*** -0.062*** -0.054*** -0.057*** -0.035*** -0.055*** -0.056

Height in 1985 (inches) 0.009** 0.008** 0.009** 0.010*** 0.014*** 0.008** 0.010

Health limit under 18 -0.035 -0.054* 0.004 0.009 -0.045 -0.046 -0.034

Married -0.029 -0.032 -0.033 0.017 -0.032 -0.066*** -0.030

Member of a union 0.230*** 0.174*** 0.207*** 0.228*** 0.240*** 0.220*** 0.219

Constant 5.823*** 5.831*** 5.583*** 5.585*** 5.378*** 5.875*** 5.657

Number of observations 3305 3269 2851 2666 2766 2732 17589

Estimates obtained from the basic model with only one schooling variable and actual expe-
rience. Observations are weighted by the NLSY sample weights. Standard errors – adjusted
for heteroskedasticity – are omitted. Stars denote statistical significance, *: 10%, **: 5%,
***: 1%.
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Table 5.10: Observations Per Education Cell.

Years 1989 1990 1991 1992 1993 1994 1989 1990 1991 1992 1993 1994
Men Women

4 4 4 4 3 3 1 2 1 0 1 1 0
5 6 6 1 3 2 1 2 3 1 1 2 0
6 15 14 9 7 6 8 7 9 6 7 8 10
7 27 24 18 14 11 9 18 16 14 12 12 14
8 101 95 69 67 61 59 40 45 32 27 24 23
9 167 158 113 107 100 92 88 90 57 55 56 42
10 172 155 130 112 111 100 108 105 73 72 70 78
11 210 200 166 156 147 138 123 120 86 78 80 80
12 1582 1542 1377 1350 1350 1328 1536 1516 1283 1213 1245 1213
13 239 242 227 201 218 217 287 280 276 263 278 278
14 236 229 222 206 220 219 317 309 285 273 275 278
15 102 105 99 91 92 102 152 135 143 121 125 139
16 413 414 372 352 362 355 477 472 409 370 394 382
17 64 73 64 67 65 66 76 82 85 75 88 88
18 48 55 57 57 69 79 53 64 67 63 70 70
19 24 33 31 28 29 28 16 17 19 22 25 26
20 28 30 31 30 39 42 14 18 22 22 24 21

Total 3438 3379 2990 2851 2885 2844 3316 3282 2858 2675 2777 2742
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Table 5.11: Men, Potential Experience.

1989 1990 1991 1992 1993 1994 Pooled
Basic Model

Ability (÷100) 0.375 0.049 -0.011 0.667 0.564 0.587 0.361**
Abil*School (÷100) 0.104* 0.140** 0.155** 0.079 0.089 0.096 0.112***
Schooling 0.068*** 0.088*** 0.090*** 0.094*** 0.053** 0.056** 0.068***
Schooling2 (÷10) -0.010 -0.026 -0.036* -0.039** 0.005 -0.003 -0.014*
Homosk., p-value 0.059 0.225 0.089 0.177 0.007 0.000 0.000

Pre-test and Post-test Schooling

Ability (÷100) 0.359 0.011 0.011 0.671* 0.591 0.570 0.335**
Abil*School (÷100) 0.097 0.136** 0.138** 0.061 0.068 0.086 0.110***
Schooling 0.041 0.060** 0.073*** 0.065** 0.034 0.031 0.053***
Schooling2 (÷10) -0.026 -0.049* -0.099*** -0.100*** -0.061** -0.034 -0.013
S1 0.026 0.026 -0.003 0.009 -0.004 0.017 0.014*
S1 ∗ S (÷10) 0.023 0.032 0.099*** 0.097*** 0.107*** 0.050 0.006
Homosk., p-value 0.071 0.187 0.094 0.217 0.009 0.000 0.000
F-test 4.353 6.092 12.090 13.772 10.331 5.662 34.075
P-value 0.013 0.002 0.000 0.000 0.000 0.004 0.000

Basic Model, IV for Ability

Ability (÷100) 0.863 1.503** 1.551** 2.247*** 1.461* 1.738** 1.529***
Abil*School (÷100) 0.126 -0.028 -0.027 -0.093 0.016 -0.023 0.000
Schooling 0.059* 0.040 0.038 0.043 0.025 0.019 0.031**
Schooling2 (÷10) -0.017 0.008 0.001 -0.005 0.019 0.021 0.010
Homosk., p-value 0.068 0.238 0.093 0.198 0.008 0.000 0.000
Hausman, p-value 0.005 0.029 0.026 0.016 0.099 0.079 0.000
Canonical correl. 0.250 0.246 0.238 0.240 0.248 0.258 0.248

0.308 0.299 0.301 0.322 0.317 0.338 0.312
Overid., p-value 0.203 0.129 0.945 0.624 0.288 0.508 0.191

Pre-test and Post-test Schooling, IV for Ability

Ability (÷100) 0.775 1.367* 1.521* 2.143*** 1.474* 1.667** 1.442***
Abil*School (÷100) 0.127 -0.023 -0.039 -0.101 -0.003 -0.028 0.007
Schooling 0.042 0.021 0.030 0.026 0.014 0.002 0.022
Schooling2 (÷10) -0.030 -0.018 -0.065** -0.068** -0.047 -0.012 0.006
S1 0.018 0.018 -0.011 0.000 -0.012 0.010 0.009
S1 ∗ S (÷10) 0.018 0.036 0.103*** 0.099*** 0.107*** 0.052 0.008
Homosk., p-value 0.077 0.196 0.099 0.236 0.011 0.000 0.000
Hausman, p-value 0.023 0.071 0.093 0.080 0.154 0.167 0.000
Canonical correl. 0.244 0.239 0.232 0.233 0.237 0.248 0.243

0.298 0.292 0.294 0.315 0.311 0.331 0.311
Overid., p-value 0.208 0.129 0.930 0.734 0.347 0.525 0.222

Number of obs. 3413 3355 2976 2838 2874 2834 18290

Background variables, experience, and its square are controlled. The regressions are weighted
by the sample weights. Standard errors – adjusted for heteroskedasticity – are omitted. Stars
denote statistical significance in a two-sided test, *: 10%, **: 5%, ***: 1%. F-tests in the second
panel test the augmented pre-/post-test schooling model against the basic model.
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Table 5.12: Women, Potential Experience.

1989 1990 1991 1992 1993 1994 Pooled
Basic Model

Ability (÷100) 1.119** 0.498 0.014 1.118** 1.696*** 1.606*** 1.001***
Abil*School (÷100) -0.001 0.087 0.146** 0.021 -0.083 -0.059 0.019
Schooling 0.058** 0.090*** 0.109*** 0.081*** 0.059* -0.003 0.064***
Schooling2 (÷10) 0.013 -0.010 -0.021 -0.002 0.025 0.070*** 0.014
Homosk., p-value 0.302 0.470 0.968 0.017 0.129 0.592 0.011

Pre-test and Post-test Schooling

Ability (÷100) 1.091** 0.477 0.000 1.103** 1.637*** 1.598*** 0.991***
Abil*School (÷100) -0.006 0.090 0.147** 0.019 -0.084 -0.066 0.019
Schooling 0.065* 0.068** 0.099*** 0.069** 0.052 0.009 0.060***
Schooling2 (÷10) -0.044 0.014 -0.015 -0.006 -0.012 0.028 0.014
S1 -0.022 0.033 0.015 0.014 0.001 -0.024 0.004
S1 ∗ S (÷10) 0.085** -0.039 -0.011 0.005 0.054 0.066* 0.002
Homosk., p-value 0.276 0.458 0.973 0.014 0.124 0.573 0.010
F-test 4.119 0.844 0.197 0.750 3.140 1.850 34.575
P-value 0.016 0.430 0.821 0.472 0.043 0.157 0.000

Basic Model, IV for Ability

Ability (÷100) 0.595 -0.154 -0.272 -0.342 1.459 0.931 0.368
Abil*School (÷100) 0.064 0.181 0.196 0.226* -0.053 0.037 0.109**
Schooling 0.073** 0.110*** 0.119*** 0.123*** 0.066* 0.017 0.084***
Schooling2 (÷10) 0.002 -0.027 -0.030 -0.036 0.020 0.054* -0.002
Homosk., p-value 0.302 0.457 0.984 0.014 0.130 0.562 0.009
Hausman, p-value 0.748 0.623 0.865 0.125 0.953 0.660 0.000
Canonical correl. 0.236 0.244 0.244 0.248 0.253 0.241 0.247

0.297 0.330 0.316 0.314 0.344 0.331 0.324
Overid., p-value 0.409 0.972 0.801 0.963 0.742 0.007 0.057

Pre-test and Post-test Schooling, IV for Ability

Ability (÷100) 0.556 -0.244 -0.329 -0.413 1.395 0.966 0.342
Abil*School (÷100) 0.059 0.191 0.202 0.229* -0.060 0.023 0.111**
Schooling 0.079** 0.089** 0.110*** 0.110*** 0.058 0.027 0.080***
Schooling2 (÷10) -0.056 -0.004 -0.023 -0.038 -0.017 0.013 -0.003
S1 -0.021 0.034 0.015 0.017 0.002 -0.024 0.004
S1 ∗ S (÷10) 0.086** -0.039 -0.013 0.001 0.055 0.065 0.002
Homosk., p-value 0.274 0.444 0.989 0.012 0.125 0.548 0.008
Hausman, p-value 0.831 0.773 0.947 0.215 0.905 0.842 0.000
Canonical correl. 0.229 0.236 0.240 0.244 0.245 0.235 0.247

0.296 0.328 0.311 0.307 0.339 0.325 0.324
Overid., p-value 0.316 0.975 0.805 0.962 0.754 0.005 0.057

Number of obs. 3413 3355 2976 2838 2874 2834 18290

Background variables, experience, and its square are controlled. The regressions are weighted
by the sample weights. Standard errors – adjusted for heteroskedasticity – are omitted. Stars
denote statistical significance in a two-sided test, *: 10%, **: 5%, ***: 1%. F-tests in the second
panel test the augmented pre-/post-test schooling model against the basic model.



Chapter 6

The Evaluation of Community-Based

Interventions: A Monte Carlo Study

September 1998/September 2000

Together with Christoph M. Schmidt

Abstract. The evaluation of interventions such as active labor market policies or medical

programs by means of a randomized controlled trial is often considered the gold standard.

However, randomized experiments might face severe shortcomings especially if performed

at the group level. One such problem is caused by small sample size which might prevent

the experiment from developing its fundamental virtue in balancing all relevant covariates.

This paper investigates the potential and limits of experimental and non-experimental ap-

proaches to the evaluation problem, in particular the use of instrumental variables, in a

numerical simulation study, against the particular background of community-based inter-

ventions. In our simulations, we emphasize the trade-off between bias and precision by

imposing a smaller number of communities whenever we model a randomized experiment,

and by allowing for a correspondingly larger number of communities in all cases where

selection into the program is not controlled completely by the analyst.
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6.1 Program Evaluation: The Perils of Self-Selection

Self-selection is a fundamental obstacle for the evaluation of policy interventions. In the

classical case of an individually-based program, for instance a voluntary training program

for unemployed workers, potential trainees will in all likelihood base their participation

decision on a comparison of their perceived post-intervention outcomes with the cost of

undergoing treatment. It will often be the candidates with better schooling, and the more

talented or motivated individuals who tend to enter the program. As a consequence of

such self-selection, analysts cannot base the assessment of program impact on a simple

comparison of mean outcomes between participant and non-participant groups. Whereas

it is straightforward how to tackle selection on observables – schooling in the example

of the training program –, selection on unobservables – talent, motivation – provides a

serious intellectual challenge.

In the overwhelming majority of applications the mean effect of treatment on the

treated, that is the population average over the individual gains from treatment for all

individuals participating in the program, is the principal object of interest. One can easily

construct an estimate of the mean outcome after treatment for program participants from

observed data. Yet, to perform an appropriate comparison, one has also to construct

the average counterfactual outcome that trainees would have achieved had they not been

trained, a problem of identification.

Observable data alone will not suffice to construct this entity. Researchers have pro-

posed several alternative strategies to overcome this identification problem, either by in-

voking a priori information on the process of selection into treatment or other aspects of

the program (Heckman & Robb, 1985, Angrist & Krueger, 1999) in a so-called

observational study, or by designing an appropriate experiment. In an experiment (the

classical reference is Fisher, 1935), participation is still voluntary, but some of the appli-

cants are withheld the treatment. Who receives treatment and who does not is chosen by a

random mechanism, allowing the construction of the desired counterfactual as the simple

average over randomized-out controls. In the natural sciences this randomized controlled

trial (RCT) has become the method of choice for the evaluation of interventions.
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While emphasis in methodological work is on the individual, practical applications fre-

quently concern the case of group-level or community-based interventions. Implementa-

tion of policy measures at the community-level is often a matter of necessity – whenever

it would be difficult to treat some individuals in a community while excluding others,

evaluation has also to be at the community-level. For instance, the evaluation of an anti-

smoking information campaign at schools would require that some schools as a whole

be assigned to treatment. Obviously, it would be quite cumbersome, if not impossible,

to plan the intervention and its evaluation at the student level. Spill-over effects from

the treated to the control students would easily contaminate the experiment. Hence, the

units of interest should be groups. Moreover, analysts might choose a community-level

approach to evaluation for reasons of costs. In general, interventions relevant to the social

sciences often have a community-based character.

Nothing seems more natural as a methodological approach to the evaluation of

community-based interventions as the translation of the RCT paradigm to the commu-

nity level. Objects of randomized assignment into treatment and control samples are then

entire communities, while outcomes are typically still measured at the individual level.

A comprehensive overview of the theory and practice of such group-randomized trials

is Murray (1998). It has long been recognized in the literature in various fields, for

instance in the epidemiological literature cited in Murray (1998) and in the economics

literature (see e.g. Kloek, 1981, Moulton, 1986, 1990), that the possible correlation

of outcomes within communities, clusters, or groups might seriously distort conclusions

regarding the statistical precision of the results.

Although one might be able to collect data on sizeable numbers of individuals within

each community participating in the study, the number of communities is typically lim-

ited. If within-community correlation is substantial the effective number of observations is

closely tied to the number of included communities, irrespective of the number of individ-

uals. Thus, although group-randomized experiments implemented appropriately always

produce unbiased estimates1, it is difficult to increase precision.

1Contamination of randomized experiments as, for instance, attrition of treated and control units is
disregarded in this paper.
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Observational studies, by contrast, typically include a respectable number of communi-

ties, yet they might suffer from the selection problem. Possibly a biased but more precise

estimate from an observational study might yield a lower mean squared error than the cor-

responding estimate of program impact from a group-randomized experiment. Thus, there

might be a serious trade-off to consider in the choice of evaluation strategy (Schmidt,

Baltussen & Sauerborn, 1999).

Moreover, the context of community-based interventions makes it unlikely that a ran-

domization study can be conducted at all. Problems preventing the researcher from

implementing a group-randomized experiment may be political or ethical in nature, or

reflect cost considerations. However, contrary to what many practitioners apparently be-

lieve to be the state of the art – either analyze an experiment or rely on simple regression

analysis to alleviate some of the disadvantages of observational data – does not properly

reflect the spectrum of identification strategies for dealing with observational data. While

the economic literature has long emphasized the potential of the instrumental variables

method (see e.g. Bowden & Turkington, 1984, Angrist, Imbens & Rubin, 1996,

Heckman, 1996), this method has not been prominent in the epidemiological literature

(where it has been advocated recently by Schmidt et al., 1999).

This paper investigates the potential and limits of experimental and non-experimental

approaches to the evaluation problem, in particular the use of instrumental variables,

in a numerical simulation study, against the particular background of community-based

interventions. In our simulations, we emphasize the trade-off between bias and preci-

sion by imposing a smaller number of communities whenever we model a randomized

experiment, and by allowing for a correspondingly larger number of communities in all

cases where selection into the program is not controlled completely by the analyst. We

specify several variants of selection, on the individual and the community-level, and on

the basis of observable and unobservable factors. Specifically, we explore the potential

of instrumental variables in approximating the performance of randomized experiments

(for a complementary simulation study on instrumental variables at the group-level see

Shore-Sheppard, 1996).
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The following section formulates the basic evaluation problem and presents several

estimation techniques that have been suggested for its solution. The conceptual design

of our simulation study is explained in section 3. Section 4 discusses the results with a

focus on the assessment of estimator performance, while section 5 concludes.

6.2 Evaluation Strategies

This section provides the formal background for our simulation study by a statement of

the evaluation problem and of several solutions suggested in the literature, in particular

the method of instrumental variables. Assume that Y is the outcome variable of interest.

For notational convenience, subscripts indicating individuals are suppressed. Let Y0 be

the potential outcome if the individual would not participate in treatment and Y1 be the

potential outcome if the individual would. Note that only one of the potential outcomes is

realized for each individual. Furthermore, let T ∈ {0, 1} be a dummy variable indicating

whether a unit is treated, T = 1, or not, T = 0. Under the assumption of independence of

potential outcomes from the treatment status of other individuals (sutva, Rubin, 1986)

the expected effect of treatment on the treated unit can formally be written as

∆ = IE(Y1 − Y0|T = 1). (6.1)

While IE(Y1|T = 1) is easily identified in the subsample of all treated units, there is no

way to identify the counterfactual IE(Y0|T = 1) unless further assumptions are imposed.

The least restrictive way to gather information on IE(Y0|T = 1) is presented in Manski

(1990, 1995) who demonstrates how upper and lower bounds for the counterfactual can be

obtained on the basis of indisputable a priori information. For instance, a dichotomous

outcome variable cannot take a value lower than 0 and higher than 1. In this fashion,

at least some values of IE(Y0|T = 1) can be excluded. If one desires point estimation of

the counterfactual, however, one cannot avoid either imposing additional assumptions or

addressing the issue already at the stage of designing the study.

A randomized experiment is following the second route to solve this problem as follows2.

2
Heckman & Smith (1995) discuss the problems of contamination that might arise in randomized
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Units who decide to participate in the program, i.e. units with T = 1, are randomly

assigned to either an experimental treatment group or control group. The units of the

control group are denied treatment and, thus, realize the potential outcome Y0. It follows

that the control group provides an unbiased estimate of the counterfactual IE(Y0|T = 1).

Yet, while randomization at the individual level is arguably an ideal way to identify

causal relationships, randomized experiments usually suffer from low sample sizes if pur-

sued at the group level. On the other hand, observational studies do much better with

regard to the sample size but additional assumptions have to be invoked to identify the

counterfactual IE(Y0|T = 1). To this purpose, several estimators have been proposed.

Some of them are presented in this section including necessary assumptions that make

them valid; abstracting from finite sample variations only population moments are con-

sidered.

Cross-Section and Before-After Estimators

A first assessment of an intervention might be based on comparing treated and untreated

individuals after treatment occurred. Unfortunately, the mean difference of their outcomes

identifies the mean effect of treatment, equation (6.1), only under strong assumptions

on the selection process. Formally, IE(Y0|T = 0) must be a valid substitute for the

counterfactual IE(Y0|T = 1) which requires that treated and untreated individuals be

equal with respect to characteristics that rule both the selection process and the outcome

equation.

Another straightforward approach to identifying the effect of an intervention rests on

the availability of data for a period t′ prior to treatment. In this case, the mean outcome

before treatment (at time t′) is compared with the outcome after the treatment (at time

t), IE(Y t
1 − Y t′

0 |T = 1). As above, this approach requires equally restrictive assumptions

to hold; otherwise following it might cause severe biases. If external disturbances over

time and beyond treatment influence the outcome variable of some units these might

experiments. Nonrandom attrition of participants or randomization biases are prominent examples. Such
problems are not considered in this paper. In general, analysts stress the advantages of randomization,
though. For instance, Burtless (1995) emphasizes the positive aspects of randomized experiments.
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wrongly be attributed to the intervention, producing biased estimates. For instance, it

is inappropriate to perform a before-after comparison when the economic environment is

characterized by cyclical swings that typically affect individuals under study.

Difference-in-Differences Estimator

A combination of the before-after comparison and the cross-section estimator leads to the

difference-in-differences approach (d-i-d). It rests on the assumption that – apart from

treatment – both the treated and the untreated units experience the same time-varying

shocks. Assuming the time trend in the outcome variable is the same for treated and

untreated units

IE(Y t
0 − Y t′

0 |T = 1) = IE(Y t
0 − Y t′

0 |T = 0),

the before-after comparison of the untreated group IE(Y t
0 − Y t′

0 |T = 0) on average re-

flects exactly the bias inherent in the simple before-after comparison of the treated units.

Subtracting this correction term yields

∆ = IE(Y t
1 − Y t′

0 |T = 1)− IE(Y t
0 − Y t′

0 |T = 0).

In other words, d-i-d requires that the difference (Y t
0 − Y t′

0 ) be mean independent of the

treatment T . This is violated, e.g., if the decision to participate is determined by the

individual pre-treatment outcome Y t′
0 .

3 The simulation study takes account of such a

selection process when opportunity costs reflected by Y t′
0 are involved.

Instrumental Variable Estimator

Finally, instrumental variable estimation (IV) is an evaluation strategy that enjoys con-

siderable prominence in economics (see Angrist et al., 1996 and Heckman, 1996).

It has been advocated in the epidemiological literature as a possible tool to evaluate

community-based interventions by Schmidt et al. (1999). Consider initially the con-

text of a constant-effects model and assume a variable Z exists that (i) is correlated with

3If Y t′
0 determines selection unobserved stochastic noise in period t′ will be unevenly distributed

between treated and untreated units but noise in t – if only weakly correlated with that in t′ – will again
be more evenly distributed. Thus, the difference (Y t

0 − Y t′
0 ) will depend on T .
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the endogenous treatment indicator T , but that (ii) does not have a direct influence on

the outcome variable Y except through T . This variable is called an instrument for T .

The IV technique rests on the idea that the covariance between the outcome and the

instrument reflects the impact of the endogenous regressor – the parameter of interest ∆

– multiplied by the covariance between the regressor and the instrument.

In case of a binary instrument, the IV estimation technique provides a consistent

estimator of the mean effect of treatment on the treated, resting on the ratio4

∆ =
Cov(Y, Z)

Cov(T, Z)
=
IE(Y |Z = 1)− IE(Y |Z = 0)

IE(T |Z = 1)− IE(T |Z = 0)
.

In randomized experiments, T is its own perfect instrumental variable. Since the ran-

domized experiment is by definition independent of the outcome, and individuals per-

fectly comply with their treatment assignment indicated by the dichotomous indicator

Z, the correlation between T and Z is 1 in absolute value (see also Heckman, 1996).

Correspondingly, an instrument Z can be interpreted as a variable that is randomly dis-

tributed across units but, in contrast to a fully randomized experiment, only imperfectly

induces units to behave according to its realized value. In other words, IV estimation is a

quasi-experimental technique. Although the IV estimator is consistent if the two principal

assumptions (i) and (ii) are satisfied, it might be accompanied by large variance in finite

samples, especially if the correlation between the instrument and the endogenous variable

T is weak (Bound, Jaeger & Baker, 1995).

A subtle issue is added to estimation with instrumental variables if the treatment

effect is heterogeneous, though, i.e. if we leave the realm of the constant-effects model.

Furthermore, if selection into treatment is based on the individual effects of the treatment,

IV does not identify the mean effect of treatment on the treated. Rather, the IV estimator

4The second equation is easily verified

Cov(Y,Z) = IE(Y Z)− IEY IEZ

IE(Y Z) = IE(Y |Z = 1)IP(Z = 1)
IEY = IE(Y |Z = 1)IP(Z = 1) + IE(Y |Z = 0)IP(Z = 0)
IEZ = IP(Z = 1),

Thus, Cov(Y,Z) = IE(Y |Z = 1)IP(Z = 1) (1− IP(Z = 1))︸ ︷︷ ︸
=IP(Z=0)

−IE(Y |Z = 0)IP(Z = 0)IP(Z = 1). Likewise,

Cov(T,Z) is transformed.
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converges to the average treatment effect for all those individuals who are induced by the

instrument to enter the treatment but who would have stayed off treatment otherwise.

This entity is the so-called local average treatment effect (LATE). Recent research typically

re-interprets the IV estimate as a LATE, see e.g. Angrist et al. (1996) and Heckman

(1997). Its peculiarities are discussed in section 4.

Conditioning on Observables

Whenever researchers succeed in capturing observable elements of the process jointly de-

termining outcomes and program participation, they can improve upon their evaluation

strategy by conditioning on these observable covariates. In anticipation of the simulation

setup implemented below, let X be an explanatory binary variable that takes the values

0 and 1. If self-selection depends in part on the realization of X, then within the sub-

samples defined by X = 0 and X = 1, any remaining bias can only reflect the presence of

other factors. The selection bias would even disappear completely if selection depended

exclusively on X apart from random disturbances.

Then, participation is purely random within the two subsamples characterized byX = 0

and X = 1, i.e. T is independent of (Y0, Y1) given X. It follows that the untreated units

in the subsamples {X = x, T = 0} provide the counterfactual IE(Y0|X = x, T = 1).5

The unconditional mean IEX IE(Y0|X,T = 1) is obtained as weighted average over the

conditional means. In sum, if IE(Y0|X = x, T = 1) = IE(Y0|X = x, T = 0) it follows

IE(Y1 − Y0|T = 1) =
∑
x∈X
IE(Y1 − Y0|X = x, T = 1)IP(X = x) (6.2)

=
∑
x∈X

(IE(Y1|X = x, T = 1)− IE(Y0|X = x, T = 0))IP(X = x)

where X is the set of all possible values of X.

Since unobservable variables might additionally play a role in determining the selec-

tion process, conditioning on observables alone might not enable the researcher to avoid

selection bias. Yet, at least conditioning on observables might achieve to mitigate the

5However, in the extreme case when selection is fully determined by an observable X without any
stochastic components left the set {X = x, T = 0} is either empty or equals {X = x} making it impossible
to obtain the counterfactual from untreated individuals.
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problem. Because of that, it is recommended whenever possible. In this study, it is very

easy to follow this advice due to the binary nature of the observable variables. In practice

however, X might be of high dimension, thus, conditioning on all observables would be

quite cumbersome or even impossible. This problem is alleviated by imposing a regression

model or by conditioning on the propensity score, which is the probability of participa-

tion given the observable variables. Then, the sample would be stratified into subsamples

of units with equal or similar propensity scores and the overall treatment effect estimate

would be constructed as a weighted average as in (6.2); the technique is often referred to as

matching. For further discussion of this topic, see e.g. Rubin (1973, 1974), Rosenbaum

& Rubin (1983, 1984, 1985), and Heckman, Ichimura & Todd (1997).

6.3 The Simulation Setup

The simulation is based on a data generating process that consists of two main equations,

the outcome and the selection equation, and two time periods, one before and one after

treatment. While the outcome equation always combines observable and unobservable

characteristics with heterogeneous treatment effects, we consider two conceptually distinct

modes of selection into treatment. In one set of experiments, selection into treatment

is at the individual level – here we do not expect group level variables to introduce

any fundamental difficulties; we also consider situations, though, in which selection into

treatment is decided upon at the group level. It is these simulations where we particularly

expect new insights to emerge from our simulations.

The outcome Yigt of individual i, i = 1, ..., ng, in group g, g = 1, ..., G, at time t ∈ {0, 1}
depends linearly on time-invariant individual and group characteristics X1ig and X2g,

respectively, which are observable, as well as on unobservable characteristics, ν1ig and

ν2g. Furthermore, a variable µt captures exogenous time-variant shocks being constant

for all individuals in a given time period but displaying an upward time trend. The

unobservable variables ε1igt and ε2gt reflect white noise at the individual and the group

level. The treatment effect is a sum of an individual effect δ1ig and a group effect δ2g which

are both random variables resulting in heterogeneity in the impact of treatment across
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Table 6.1: Variables and Parameters.

Variable Comment Parameter Comment

Outcome Equation

Constant – α0 0

X1ig binomial(1, 1
2) α1 1

X2g binomial(1, 1
2) α2 1

ν1ig N (0, 14) 1 –

ν2g N (0, 14) 1 –

δ1ig N (12 , 1
4) 1 –

δ2g N (12 , 1
4) 1 –

ε1igt N (0, 12) Corr(ε1ig0, ε1ig1) 0.25

ε2gt N (0, 12) Corr(ε2g0, ε2g1) 0.25

µt N (12 t, 1
16) 1 –

Cost Equation

Constant – τ0 such that 50% of the sample participate

Z1ig binomial(1, 1
2) τ1 suitable for given correlation (Z1, T )

Z2g binomial(1, 1
2) τ2 suitable for given correlation (Z2, T )

ηig N (0, 1) 1 –

The variables are independently and identically distributed if not mentioned otherwise.

individuals and groups. The dichotomous variable Tigt indicates the treatment status. In

sum,

Yigt = α0 + α1X1ig + α2X2g + (δ1ig + δ2g)Tigt + ν1ig + ν2g + µt + ε1igt + ε2gt. (6.3)

In our simulations X1 and X2 are binary variables taking the values 0 and 1 with equal

probability. Both treatment effects δ1ig and δ2g follow a normal distribution with mean 1
2

and variance of 1
4
, the ν’s and ε’s are distributed normally with mean zero and variance

1
4
and 1

2
, respectively. Both individual and group ε’s are positively correlated over time

with value 0.25, and µ0 ∼ N (0, 1/16) and µ1 ∼ N (0.5, 1/16). The constant α0 equals 0

while α1 = α2 = 1. Table 6.1 summarizes parameters and variables.

When selection into treatment is considered to be an individual decision, it is mod-

eled as an optimization process as in Heckman, LaLonde & Smith (1999: ch. 8).
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Individuals decide to participate if they expect to gain from treatment and, thus,

Tigt =



1[Gig > 0] : t = 1

0 : t = 0.
(6.4)

The individual net gain Gig represents the difference between benefits and cost of treat-

ment. The benefits comprise all future treatment effects δ1ig + δ2g discounted to present

value assuming a constant discount factor of 0.1 and constant effects beyond period t = 1.

The cost of treatment is the sum of opportunity costs and other costs Cig to be specified

below. The opportunity costs of undergoing treatment comprise outcome before treat-

ment Yig0 reflecting the presence of observable and unobservable characteristics. Finally,

net gains are contaminated by stochastic noise ηig.

It has been recognized in the evaluation literature (see Heckman, 1997) that the

information available to individuals at the time of their decision whether to participate

in a program is a decisive element of the selection effects to be expected. Specifically, if

individuals know their own treatment effect and act upon it, the presence of heterogeneous

treatment effects will necessarily lead – ceteris paribus – high-impact individuals to be

over-represented among the individuals receiving treatment. In consequence, the mean

effect of treatment on the treated will exceed the population average of the treatment

effects.6

On the other hand, individuals acting upon the precise knowledge of their opportunity

costs during the treatment period t = 0 will – ceteris paribus – typically choose to receive

treatment if their time-invariant characteristics generate relatively low outcomes in both

periods. While observable characteristics are controlled for easily enough, it is the unob-

servables which create the selection effects any successful evaluation strategy has to deal

with. We will consider situations in which individuals select treatment on the basis of in-

formation on (i) opportunity costs Yig0 and their expectation of treatment IE(δ1ig + δ2g),

on (ii) precise information about both Yig0 and δ1ig + δ2g, and on (iii) expected oppor-

tunity costs IEYig0 and on expected effects IE(δ1ig + δ2g) conditional on time-invariant

6Naturally, as long as the evaluation strategy will be able to identify the mean treatment effect for
this subpopulation, this is not a fundamental flaw of the setup, but rather a beneficial consequence of
the liberation from a constant-effects model.
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characteristics, respectively7. These various alternatives of Gig can generally be written

as

Gig = IE

(
δ1ig + δ2g

0.1

∣∣∣∣Ω
)
− IE (Yig0|Ω)− Cig + ηig (6.5)

with IE(·|Ω) denoting a conditional expectation given information set Ω. This set may

contain a subset of all relevant variables, but may also contain all variables, observable

and unobservable, rendering the expectation operator unnecessary. Thus, depending on

the fineness of Ω either one or even both of the two expectation terms in equation (6.5)

may coincide with identity.

Other costs Cig allow the introduction of instrumental variables most naturally. Con-

sider costs being a function of two variables Z1ig and Z2g, where Z1ig is defined at the

individual and Z2g at the group level; they take the values 0 and 1 with probability 0.5

each. These variables reflect aspects such as, for example, the distance to the treatment

site. In effect, other costs are

Cig = τ0 − τ1Z1ig − τ2Z2g. (6.6)

The constant τ0 is chosen such that 50% of all units undergo treatment8 and τ1 and τ2

are adapted such that the correlation between the instruments Z1 and Z2 and treatment

choice T correspond to a given value (see also table 6.1)9.

Treatment choice is a completely different matter if it is decided upon at the group

level. Most importantly, if one of the individuals in a group receives treatment, so do

all other members of the group. In our study some democratic majority decision rule is

supposed to govern treatment choice. That is, the form of the selection equation (6.4)

is retained, albeit with the group specific expected gain Gg as its argument, and thus

Tig1 = 1(Gg > 0). The gain Gg of a group is simply the sum over all individual expected

gains. The same information scenarios arise as under individual treatment choice. Thus,

groups join treatment if their aggregate expected gain is positive. Note that summing

up individual gains Gig of the group members reduces considerably the importance of all

7The timing of treatment choice and outcome realization renders the scenario IEYig0 and δ1ig + δ2g

irrelevant.
8In fact, this is done by replacing the criterion Gig > 0 in equation (6.4) by Gig > median(Gig).
9The costs might be dependent on the other covariates X and ν, too, but this would complicate the

setup without further illuminating the main aspects of the simulation study.
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individual level variables as far as selection into treatment is concerned and the group

variables clearly dominate the decisions.

Any observational study would proceed along the following lines: take the sample of

treated and untreated individuals (with treatment varying within groups or not), and

observed individual-level and group-level characteristics (X and Z), under a specific iden-

tification assumption, e.g. mean independence of treatment and outcomes conditional on

observable X. Alternatively, one might be able to tackle the evaluation problem by de-

sign, namely by constructing a randomized controlled trial. In this study, we consider

randomized experiments which are performed at the individual and at the group level.

Throughout, these experiments are assumed not to be contaminated by attrition or by

randomization bias and, throughout, they recruit their volunteers from the pool of in-

dividuals (or groups) who are willing to participate, i.e. those with a positive net gain.

Irrespective of the level of implementation, these experiments identify the mean effect of

treatment on the treated under all combinations of parameters.

However, since randomized experiments, in particular those conducted on the group

level, usually suffer from small sample size, the corresponding impact estimates might dis-

play a high variance compared to estimates of large scale observational studies: although

an experiment achieves to balance all covariates on average, it might drastically fail to

do so in a particular small sample. To alleviate this problem, our simulated random-

ized experiments follow the recommendation to stratify samples prior to randomization

with respect to observable covariates and then to perform randomization within the strata

(Murray, 1998). This procedure ensures that at least observable covariates are balanced.

Nevertheless, the sample size of randomized trials is comparatively small. Thus, the

number of groups in randomized experiments is set equal to 20 while the corresponding

number in observational studies varies between at least 40 and up to 300. This range

is used to investigate the relative performance of estimates produced by observational

studies and randomized experiments. In both experimental and observational scenarios,

each group consists of 50 individuals. In the field, it typically is the involvement of further

communities, not of individuals within communities, which raises the cost of a study.
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6.4 Simulation Results

The discussion of results focuses on two main features. First, all estimators of section

2 are presented for different more or less favorable scenarios both at the group and at

the individual level and compared with regard to the root mean squared error (rmse).

Apart from root mean squared errors – reported in squared parentheses – variation net

of bias, calculated as
√
RMSE2 − bias2, will be reported in round parentheses. This

serves to assess the importance of the estimator’s bias component when switching from

one scenario to another. Second, separate more extensive simulations are performed

to compare particularly the quasi-experimental technique of IV with fully randomized

experiments.

Individual Level Selection

Table 6.2 is dedicated to estimation results when selection into treatment occurs at the

individual level. In the basic scenario reported in column (1) only observable variables

determine both the outcome and the selection equation. In particular, selection depends

on the expected treatment effect IE(δ1 + δ2), similarly, opportunity costs are captured by

IE(Y0|X), while ν and µ are excluded from the equations. Thus, as documented in column

(1), identification problems do not arise except for the simple cross-section estimator that

does not control for X and thus misses to control for self-selection. The difference in rmse

between the cross-sectional and the before-after estimator is due mainly to the fact that

the first is based on more observations than the latter even though correlated ε’s over

time help reduce the rmse of the before-after comparison. Increasing this correlation

would successively diminish the rmse of the before-after comparison.10 Similarly, the

d-i-d estimator is affected by this correlation, too.

On the other hand, IV based on the individual instrument Z1 suffers from the largest

rmse among all non-experimental estimators owing to its high variance but not to in-

consistent estimation; a fact that is common in IV estimation: the lower the correlation

10The conditional before-after-comparison is omitted since X-variables are time-constant and thus the
conditional and unconditional estimates coincide.
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Table 6.2: Estimation Results, Selection at the Individual Level.

ν’s µ’s Indiv. Indiv.
Basic included included opport. treatm.

costs effects
Estimators (1) (2) (3) (4) (5)

True effect 0.999 0.999 0.999 1.000 1.466
(0.040) (0.040) (0.039) (0.039) (0.039)

Standard Estimators

Cross-section 0.430 0.033 0.032 0.012 1.233
(0.050) (0.066) (0.068) (0.071) (0.085)
[0.572] [0.969] [0.970] [0.990] [0.248]

– controlled for X 0.999 0.458 0.456 0.360 1.326
(0.045) (0.062) (0.062) (0.066) (0.074)
[0.045] [0.545] [0.547] [0.643] [0.159]

Before-after 1.000 1.001 1.495 1.796 2.030
(0.067) (0.068) (0.363) (0.357) (0.362)
[0.067] [0.068] [0.614] [0.872] [0.671]

Difference-in-differences 0.999 1.000 0.998 1.586 1.605
(0.054) (0.061) (0.061) (0.064) (0.074)
[0.054] [0.061] [0.061] [0.590] [0.157]

– controlled for X 0.999 1.000 0.998 1.638 1.605
(0.053) (0.062) (0.062) (0.066) (0.074)
[0.053] [0.062] [0.062] [0.642] [0.157]

Instrumental Variables Estimators

IV Z1 0.999 0.999 1.001 1.003 1.000
(0.087) (0.101) (0.103) (0.102) (0.102)
[0.087] [0.101] [0.103] [0.102] [0.478]

– controlled for X 0.997 1.001 1.001 1.003 0.996
(0.090) (0.100) (0.101) (0.096) (0.091)
[0.090] [0.100] [0.101] [0.096] [0.479]

– Corr(Z1, T ) 0.302 0.301 0.301 0.298 0.299
(0.010) (0.011) (0.011) (0.011) (0.013)

IV Z2 1.023 1.042 1.026 1.018 0.998
(0.432) (0.509) (0.510) (0.511) (0.506)
[0.433] [0.511] [0.510] [0.512] [0.689]

– controlled for X 1.003 1.042 1.022 1.030 0.980
(0.404) (0.481) (0.473) (0.477) (0.461)
[0.404] [0.483] [0.474] [0.478] [0.670]

– Corr(Z2, T ) 0.300 0.299 0.299 0.298 0.298
(0.022) (0.026) (0.026) (0.029) (0.036)

Experimental Evaluations

Experiment 0.999 0.996 0.998 0.998 1.465
(0.097) (0.101) (0.104) (0.103) (0.087)
[0.097] [0.101] [0.104] [0.103] [0.087]

Stratified experiment 0.998 0.996 0.996 0.997 1.465
(0.099) (0.108) (0.107) (0.108) (0.092)
[0.099] [0.108] [0.107] [0.108] [0.092]

Means over all simulation iterations. Root mean squared errors are in square parentheses. Round
parentheses show variation net of bias. Number of groups in observational studies: 200, number of
iterations: 5000. Controlling for X in the before-after-comparison does not change estimation results and
is omitted.
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between instrument and endogenous regressor T the larger the variance of the IV esti-

mate. The coefficients of Z1 and Z2, τ1 and τ2, are chosen such that the correlations are

approximately 0.3,11 the realized values and their standard deviations across simulation

iterations are shown in the table. In practice, such correlations are usually considered

producing good instruments (Hall, Rudebusch & Wilcox, 1996). Further note that

IV estimation controlling for X does not reduce the rmse which can be explained by the

independence of Z and X in this simulation study. Moreover, the IV estimates based on

the grouped instrument Z2 are accompanied by substantially higher variance caused by

the intra-group correlation among group members which reduces the effective sample size.

The detrimental effects of intra-group correlations on the precision of impact estimates

is the topic of a large literature in economics (Kloek, 1981, Moulton, 1986) and epi-

demiology (e.g. Murray, 1998). Recently, Shore-Sheppard (1996) has extended this

discussion to the problem of grouped instruments.

Experimental estimates are reported in the last two rows of the table. Taking into

account their small sample size they still perform quite well: compared to the large ob-

servational studies consisting of 200 groups or 10000 individuals, the randomized experi-

ments have to rely on only 20 groups or 1000 individuals. Yet, under these circumstances,

one would prefer the standard observational approaches and the IV estimate using the

individual-level instruments.

Column (2) reports estimates if unobservable characteristics ν enter the outcome equa-

tion. Naturally, this does not influence the true effect but poor performance (= low

opportunity costs) might mistakenly be attributed to a poor effect of the treatment. Ob-

viously, the cross-section estimator breaks down because it is unable to control for the

unobservable ν’s. However, since the ν’s are time-constant, both the before-after com-

parison and the d-i-d are entirely unaffected by them, the unobservables just cancel out,

and the estimates do not display higher variance. This is in contrast to IV: though it

is consistent as a cross-sectional estimator its variance increases to a small extent. The

experimental estimator, however, remains basically unaffected and performs as well as the

11The values of τ1 and τ2 are adapted step by step by performing additional simulations until the
correlations take the desired value.



Chapter 6: The Evaluation of Community-Based Interventions 164

IV estimator.

Including time-variable shocks µ into the outcome equation destroys the before-after

comparison (column 3) while the other estimators remain unaffected. Since all individuals

experience a higher outcome in the post-treatment compared to the pre-treatment period

irrespective of having received treatment or not, the before-after comparison wrongly

attributes this general increase to the treatment. D-i-d successfully achieves to correct for

this bias by exploiting the before-after comparison of the untreated units who experienced

the same upward trend as the treated individuals, thus serving as controls.

The fourth column shows estimates when more severe endogeneity problems are in-

troduced. Opportunity costs are assumed to be captured by individual outcomes before

treatment, Yig0, instead of their conditional expectation, IE(Yig0|X, ν, µ), as above. Con-
sequently, ε1ig0 and ε2g0 determine selection, too, so they systematically differ between

treated and untreated. Since the ε’s vary over time and units, the d-i-d estimator cannot

difference out the bias caused by them. The problem is the more severe the less is the

correlation between ε’s before and after the intervention. In the simulation the correlation

is set equal to 0.25; a perfect correlation would eliminate the bias in the d-i-d estimate.

Note that the first two non-experimental estimators are also negatively affected in this

scenario where more unobservables than before rule selection. Specifically, the before-

after-comparison suffers from regression to the mean: while ε1ig0 and ε2g0 determine se-

lection and hence are unevenly distributed across treated and untreated individuals, ε1ig1

and ε2g1 are more evenly distributed depending on the strength of the correlation ρ. On

the other hand, IV still produces estimates of the same quality as before, that is, IV based

on Z1 and the experimental approach are the preferred estimation strategies.

Finally, column (5) presents results of a scenario that additionally assumes that indi-

viduals correctly anticipate their individual gain (δ1ig + δ2g) from participation. Although

the assumption is strong, it might be fulfilled if the setup of the program is transparent

to the public and people are able to judge well how they succeed in the treatment. In this

case, only the most successful individuals undergo treatment and, therefore, the mean

effect on the treated increases from 1 to 1.47.
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Under this optimization behavior IV breaks down12; it does not anymore identify the

mean effect of treatment on the treated but the so-called local average treatment effect

(LATE) which is the effect of treatment on someone who complies with the instrument,

i.e. who participates, T = 1, if Z = 1 and who does not, T = 0, if Z = 0. In accordance

with Angrist et al. (1996) and Imbens & Angrist (1994) further denote always-

takers as individuals who always undergo treatment irrespective of the realization of their

Z and, likewise, never-takers as those who never participate.13 Disregarding the group

variables for simplicity compliers are characterized by the set

{i : 10δi − Yi0 − τ0 + ηi ≤ 0 and 10δi − Yi0 − τ0 + τ1 + ηi > 0}. (6.7)

Since exactly half of the sample undergoes treatment it can be shown that the individual

treatment effects of never-takers, compliers, and always-takers are ordered symmetrically

around the mean value of δi with never-takers at the bottom, compliers in the middle,

and always-takers at the top. Thus, under these special circumstances, the mean effect

on compliers coincides with the mean effect on a randomly chosen person, namely 1.

On the other hand, the mean effect on the treated – the always-takers and compliers

who participate – exceeds 1. If the selection criterion were replaced such that exactly

40% of the sample participated, LATE would increase to above 1, if 60% underwent

treatment LATE would fall below 1. LATE answers the question of how large the gain

from treatment would be if the costs Cig were reduced by τ1 (or τ2 in case of Z2).
14

Alas, the other non-experimental estimators do improve in this scenario which is due

mainly to adverse effects which cancel out some biases. No general pattern underlies this

improvement. It is merely an artefact of the special model used here. In this last scenario,

solely the randomized experiment is still able to identify the parameter of interest.

Interestingly, the stratified experiments in all scenarios do not do better than the

unstratified ones. This is not completely unexpected, since with a sample size of 1000

12Notice that the heterogeneity is not caused by observable covariates which could be coped with, but
by hidden characteristics only known to the individual.

13A fourth category, so-called defiers who simply do the opposite of what their Z indicates are ruled
out since T is monotonic in Z.

14Moreover, the set of compliers (6.7) offers an interesting intuitive interpretation of the relationship
between instrumental relevance measured by correlation between Z and T and the variance of the IV
estimator. High correlation induces large τ1 and thus a large set of compliers which, in turn, increases
the number of observations IV is based on, i.e. reduces its sample variance.
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randomization already balances the two-dimensional observable covariates X. This will

be demonstrated to be different in the context of group randomization.

Selection at the Group Level

If treatment occurs at the group level, the effective sample size shrinks because the limited

variability of treatment receipt within groups confronts similarly limited variability of

observable and unobservable characteristics. In fact, results presented in table 6.3 clearly

demonstrate how rmse’s have increased, particularly because the estimator’s variances

have done so. However, the main pattern of results remains almost unchanged compared

to table 6.2. The rmse’s of the cross-section estimator increases whereas that of before-

after comparison only slightly rises. This is because a before-after-comparison still works

at the individual level since all group variables, which are time-constant, just cancel out

and individual level variation caused by ε1igt gains the upper hand again. Therefore, table

6.3 presents an additional before-after-estimator based on data where ε1 is removed and

the variance of ε2 is increased to 1. Then, the efficiency of this estimator worsens, too.

The difference-in-differences estimator doubled its rmse and that of its counterpart

controlling for X is even three times larger. Controlling for X would reduce bias caused

by X, though, it increases the variance because subsamples defined by X might be rather

small, specifically at the group level. Albeit, all standard estimators continue to be

consistent. Concerning instrumental variables estimation, only Z2 is a relevant instrument

while correlation between Z1 and T is negligible and therefore results are omitted.15

Compared to table 6.2 the grouped IV estimates display higher variance which might

be attributed to substantially increased variance of the instrumental correlation. If in

some iteration of the simulation the correlation happens to be very small, close to zero,

this iteration will contribute an extremely high variance to the mean over all iterations,

particularly if X is controlled for. Yet, there are no grounds for failure of the IV in

identifying the treatment effect. Finally, the experimental estimator’s variance quadrupled

but achieves to outperform IV. IV estimation and the randomized experiment will be

15At the group level, Z2 dominates the selection equation because individual Z1’s aggregated to the
group level are almost equal across all groups and, consequently, do not influence the selection process.
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Table 6.3: Estimation Results, Selection at the Group Level.

ν’s µ’s Indiv. Indiv.
Basic included included opport. treatm.

costs effects
Estimators (1) (2) (3) (4) (5)

True effect 0.999 0.999 1.001 1.000 1.364
(0.050) (0.051) (0.051) (0.051) (0.043)

Standard Estimators

Cross-section 0.284 -0.057 -0.054 0.059 1.185
(0.114) (0.122) (0.120) (0.126) (0.143)
[0.724] [1.064] [1.062] [0.949] [0.229]

– controlled for X 1.001 0.287 0.294 0.358 1.257
(0.177) (0.164) (0.161) (0.134) (0.125)
[0.177] [0.731] [0.725] [0.655] [0.165]

Before-after 0.999 0.998 1.503 1.768 1.919
(0.087) (0.087) (0.366) (0.363) (0.363)
[0.087] [0.087] [0.621] [0.850] [0.663]

Before-after, no ε1 0.999 0.997 1.503 1.874 1.941
(0.122) (0.122) (0.376) (0.373) (0.373)
[0.122] [0.122] [0.627] [0.950] [0.687]

Difference-in-differences 0.999 1.000 1.001 1.548 1.475
(0.123) (0.122) (0.124) (0.117) (0.123)
[0.123] [0.122] [0.124] [0.561] [0.165]

– controlled for X 1.000 1.000 1.001 1.648 1.475
(0.217) (0.173) (0.177) (0.133) (0.124)
[0.217] [0.173] [0.177] [0.661] [0.167]

Instrumental Variables Estimators

IV Z2 1.041 1.101 1.068 1.065 1.000
(0.496) (0.730) (0.590) (0.649) (0.530)
[0.497] [0.737] [0.594] [0.652] [0.643]

– controlled for X 1.004 1.089 1.049 1.104 1.037
(0.540) (0.680) (0.625) (0.825) (4.545)
[0.540] [0.686] [0.627] [0.831] [4.557]

– Corr(Z2, T ) 0.307 0.295 0.302 0.288 0.306
(0.067) (0.067) (0.067) (0.067) (0.067)

Experimental Evaluations

Experiment 0.998 1.007 1.006 1.006 1.362
(0.390) (0.415) (0.408) (0.432) (0.463)
[0.390] [0.416] [0.408] [0.432] [0.463]

Stratified experiment 0.996 0.999 1.006 0.996 1.363
(0.360) (0.397) (0.398) (0.402) (0.427)
[0.360] [0.397] [0.398] [0.402] [0.427]

Means over all simulation iterations. Root mean squared errors are in square parentheses. Round
parentheses show variation net of bias. Due to negligible correlation between Z1 and T corresponding
results are not meaningful and left out. Number of groups in observational studies: 200, number of
iterations: 5000.
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compared in detail under several settings below. Notice that at the group level – or,

in general, in small samples – stratifying the sample prior to randomization produces

estimates with lower variance.

As one moves from column (1) to (4) the standard estimators worsen considerably.

Note, however, that their rmse’s (in column (4) or (5)) though substantially rising do

not exceed those of table 6.2 to a large extent. It is specifically the variation net of

bias that has increased at the group level. Compared to the rmse of the IV estimator

the standard estimators still perform quite well. Albeit, their low rmse’s in column (5)

should be taken with a grain of salt for different biases tend to cancel out due to special

model constellations. This cannot be generalized. As above, in column (5) IV identifies

the mean effect on compliers instead of the effect on treated units, yet, its rmse merely

slightly increases with regard to columns (2) to (4).

Exploring the Potential of IV Estimators

Up to this point, results are generated under a certain simulation setup. Neither sample

size nor the correlation between instrument and treatment indicator have been varied. For

a thorough assessment of the relative performance of IV with respect to pure randomiza-

tion it is necessary to perform a further simulation that varies these two parameters. The

variables and parameters of the scenario reported in the fourth columns of tables 6.2 and

6.3 are selected and fixed. Table 6.4 presents ratios of the root mean squared error of IV

and experimental estimates for certain correlations and number of groups.

As expected, IV produces more precise estimates as the correlation and the relative

sample size increase. At the individual level, for a reasonable correlation of 0.3, the obser-

vational study should comprise ten times as many groups as the randomized experiment

to generate a more efficient IV estimator. At the group level, the observational study

should be at least 15 times as large as the group level experiment for the same correlation

of instrument and treatment participation. Holding the relative sample size of the obser-

vational study at ten times as many groups a sufficient instrumental correlation would

be around 0.4. This is already a high correlation but not completely utopian in practical
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Table 6.4: IV Versus Experiment.

Number of groups in observational study

Correlation 40 80 120 200 300

Individual Level

0.105 11.740 5.094 4.003 2.794 2.196

0.199 5.419 2.734 1.964 1.502 1.181

0.301 3.454 1.847 1.354 0.993 0.788

0.401 2.705 1.355 0.988 0.746 0.586

0.502 2.042 1.104 0.800 0.621 0.471

0.601 1.728 0.915 0.695 0.511 0.406

0.703 1.469 0.762 0.564 0.418 0.348

0.799 1.214 0.669 0.536 0.380 0.298

0.904 1.057 0.579 0.451 0.322 0.267

0.991 0.961 0.521 0.416 0.305 0.226

Group Level

0.100 +∞ +∞ +∞ +∞ +∞
0.200 +∞ +∞ +∞ +∞ 2.030

0.303 +∞ +∞ 2.035 1.379 0.987

0.403 +∞ 1.797 1.233 0.892 0.708

0.500 +∞ 1.179 0.914 0.703 0.569

0.602 1.459 0.961 0.723 0.558 0.455

0.703 1.135 0.736 0.609 0.448 0.367

0.802 0.958 0.648 0.496 0.388 0.316

0.910 0.818 0.565 0.442 0.324 0.259

0.941 0.789 0.537 0.427 0.309 0.260

The table reports the ratio of root mean squared errors of the IV over the experimental estimate.
The number of groups in the experimental setting is 20. Number of iterations: 2000.
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applications.

Moreover, note that although the ratios of rmse’s at the group level are infinitely

large for low correlations and low sample sizes, they diminish faster than they do at the

individual level as correlations rise. Break-even points, i.e. points where the ratios are

approximately 1 or less, are bold faced in the table; in general, they are later at the

group level than at the individual level indicating that IV suffers more from the grouped

structure than a randomized experiment. Only for the lowest number of groups in the

first column reaches group-level IV its break-even point earlier. In all other columns the

break-even point is reached for a slightly higher correlation.

6.5 Conclusion

This paper performs simulations in order to assess several standard estimation strategies

such as the cross-sectional differences between treated and untreated units, before-after

comparisons, and, specifically, instrumental variable estimators as a prime example of a

quasi-experimental estimation strategy. These are compared to conventional randomized

experiments under the assumption that experiments generally suffer from small sample

problems. Therefore, they rely on markedly less observations than observational studies.

Standard estimators perform well as long as somewhat restrictive assumptions on the

selection process are satisfied. In practical applications, it is typically difficult to justify

the applicability of these assumptions. Therefore, randomized controlled experiments

often provide the only credible counterfactual control group. However, situations are

conceivable – particularly in social sciences – where randomized trials reach their limits.

For instance, non-compliance, attrition, or randomization bias are well-known hazards of

any experiment.16 Focus here is rather on the problems caused by the small sample size

typical for experiments which might set even more severe limits to evaluation. In this

case, randomization might lose its persuasiveness for it cannot be expected to achieve

16Since these problems are disregarded in our simulations they show randomized experiments in a
favorable light. Other fundamental objections might be of ethical nature since treatments that produce
positive effects are withheld the control group.
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balance of all relevant covariates between the treatment and control group.

Specifically, small sample sizes arise if randomization occurs at the group level and/or if

cost considerations prevent analysts from establishing a large scale experiment. Therefore,

alternatives should be considered as well. Instrumental variable estimation as a quasi-

experimental technique might be a helpful device to circumvent the small sample problem

and open the field for less costly large scale observational studies if a good instrument

is available. The simulation results suggest that correlations of around 0.3 to 0.4 can

be considered to characterize a good instrument if the observational study comprises ten

times more observations than a corresponding randomized experiment. In practice, one

might even encounter ratios larger than 10 which would thus allow to utilize instruments

with lower correlations. Moreover, contaminations of randomized experiments – especially

at the group level – would also be avoided in observational studies.

Albeit, IV estimation yields inconsistent estimates in case treatment effects are hetero-

geneous and individuals or groups decide whether to undergo treatment upon their true

effects. In this case, IV identifies the mean effect of treatment on compliers, i.e. the local

average treatment effect. Thus, it would answer the question of how large the treatment

effect would be if the binary instrument Z were increased from 0 to 1, for example, if

more treatment sites were established such that some individuals or groups had a shorter

distance to their site. This measure would only affect compliers while always- and never-

takers would be unaffected. From this point of view, LATE might give answers to policy

relevant questions, too.17 Nevertheless, it seems fairly unlikely that individuals know their

own treatment effects in advance; in contrast, it seems more probable that they have to

make their participation decision upon some sort of expected gains.

In sum, if a randomized experiment is infeasible because of practical reasons or because

it would not provide enough observations, observational studies are not necessarily a

contemptible alternative. They often contain valuable and detailed information that might

still help to identify causal relationships. On the other hand, absent randomization bias

and systematic attrition or noncompliance, randomized controlled experiments are the

17See Angrist (1990), Angrist & Krueger (1991), and Imbens & Angrist (1994) for examples
and a formal discussion.
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most convincing evaluation approach as long as a sufficient number of units are involved

in the trial.
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