Utah State University DigitalCommons@USU

All Graduate Theses and Dissertations

**Graduate Studies** 

5-1961

# The Hydrogen Peroxide Catalase Treatment of Milk for Swiss Cheese Manufacture

Theodore Ricks Kowallis Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

Part of the Food Science Commons

# **Recommended Citation**

Kowallis, Theodore Ricks, "The Hydrogen Peroxide Catalase Treatment of Milk for Swiss Cheese Manufacture" (1961). *All Graduate Theses and Dissertations*. 4760. https://digitalcommons.usu.edu/etd/4760

This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.



## THE HYDROGEN PEROXIDE CATALASE TREATMENT OF MILK

FOR SWISS CHEESE MANUFACTURE

by

Theodore Ricks Kowallis

A thesis submitted in partial fulfillment of the requirements for the degree

of

## MASTER OF SCIENCE

in

Dairy Manufacturing

UTAH STATE UNIVERSITY -Logan, Utah

378,2 17849 0.2

## ACKNOWLEDGMENTS

My gratitude and appreciation are expressed to Professors A. J. Morris, P. B. Larsen, and R. L. Hurst for their advice and guidance.

I am indebted to Dr. Z. D. Roundy and Dr. L. W. Jones for their cooperation.

A grant was furnished by Mr. Edwin Gossner of Cache Valley Dairy Association for this study. This help was appreciated.

Theodore R. Kowallis

## TABLE OF CONTENTS

|      |           |      |      |       |      |      |       |     |   |   |  |  | Page |
|------|-----------|------|------|-------|------|------|-------|-----|---|---|--|--|------|
| Summ | nary.     |      |      |       |      |      |       |     |   |   |  |  | vii  |
| Intr | oduction  |      |      |       |      |      |       |     |   |   |  |  | 1    |
|      | Purpose   |      |      |       |      |      |       |     |   |   |  |  | 1    |
| Revi | lew of li | tera | tur  | е     |      |      | ٥     |     |   |   |  |  | 2    |
| Proc | edure     | ÷    |      |       |      |      |       |     | : |   |  |  | 8    |
|      | Selecti   | ng a | nd i | hand  | ling | of   | milk  |     |   | o |  |  | 8    |
|      | Prepara   | tion | an   | i tro | eatm | ent  | of m  | ilk |   |   |  |  | 8    |
|      | Bacteri   | olog | ica  | l te: | sts  | on t | he m: | ilk |   |   |  |  | 12   |
| Resu | ilts and  | disc | uss  | ion   | o    |      |       |     |   |   |  |  | 14   |
| Conc | lusions   |      |      | ٥     |      |      |       |     |   |   |  |  | 31   |
| Lite | rature c  | ited |      |       |      |      |       |     |   |   |  |  | 32   |
| Appe | ndixes    |      |      |       |      |      |       |     |   |   |  |  | 35   |
|      | Appendi   | хA   |      |       |      |      |       |     |   |   |  |  | 36   |
|      | Appendi   | хB   |      |       |      |      |       |     |   |   |  |  | 56   |
|      | Appendi   | x C  |      |       |      |      |       |     |   |   |  |  | 65   |
|      |           |      |      |       |      |      |       |     |   |   |  |  |      |

## LIST OF TABLES

| able |                                                                                                                                                                                                       | Page |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.   | Preliminary series showing average percent kill at various concentrations of hydrogen peroxide                                                                                                        | 15   |
| 2.   | Standard plate counts showing bacterial destruction<br>with different concentrations of hydrogen peroxide at<br>two temperatures                                                                      | 16   |
| 3.   | Analysis of variance on standard plate count organisms                                                                                                                                                | 16   |
| 4.   | Plate count on coliform organism showing bacterial<br>destruction in day old manufacturing milk treated with<br>different concentrations of hydrogen peroxide at two<br>temperatures                  | 18   |
| e    | Analysis of variance on coliform organisms                                                                                                                                                            | 18   |
| 5.   | Analysis of variance on colliorm organisms                                                                                                                                                            | 10   |
| 6.   | Plate counts on lactic acid producing organisms showing<br>bacterial destruction in day old manufacturing milk<br>treated with different concentrations of hydrogen                                   |      |
|      | peroxide at two temperatures                                                                                                                                                                          | 20   |
| 7.   | Analysis of variance on lactic acid producing organisms                                                                                                                                               | 21   |
| 8.   | Plate counts on aerobic spore-forming organisms showing<br>bacterial destruction in day old manufacturing milk<br>treated with different concentrations of hydrogen                                   |      |
|      | peroxide at two temperatures                                                                                                                                                                          | 23   |
| 9.   | Analysis of variance on aerobic spore-forming organisms                                                                                                                                               | 23   |
| 10.  | Plate counts on anaerobic spore-forming organisms<br>showing bacterial destruction in day old manufacturing<br>milk treated with different concentrations of hydrogen<br>peroxide at two temperatures | 25   |
|      | peroxide at two temperatures                                                                                                                                                                          | 2.)  |
| 11.  | Analysis of variance on anaerobic spore-forming organisms                                                                                                                                             | 25   |
| 12.  | Bacterial destruction in day old manufacturing milk treated with hydrogen peroxide as affected by                                                                                                     |      |
|      | treated with hydrogen peroxide as affected by                                                                                                                                                         | 28   |

## Table

| 13. | Bacterial destruction in fresh manufacturing milk                                        |    |
|-----|------------------------------------------------------------------------------------------|----|
|     | treated with hydrogen peroxide and held for 16 hours at 4 C as affected by concentration | 29 |
| 14. | A comparison of potassium iodide tests on milk samples                                   |    |

Page

## LIST OF FIGURES

| igure |                                                                                                                                                                                                                                                                               | Page |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.    | Plating procedure used on the preliminary lots in the first series                                                                                                                                                                                                            | . 10 |
| 2.    | Comparison of mean standard plate counts showing a<br>three dimensional representation of bacterial<br>destruction in day old manufacturing milk using three<br>concentrations of hydrogen peroxide and two temper-<br>ature levels for 10 minutes                            | . 17 |
| 3.    | Comparison of mean coliform plate counts showing a<br>three dimensional representation of bacterial<br>destruction in day old manufacturing milk using<br>three concentrations of hydrogen peroxide and two<br>temperature levels for 10 minutes                              | . 19 |
| 4.    | Comparison of mean plate count for lactic acid<br>producing organisms showing a three dimensional<br>representation of bacterial destruction in day old<br>manufacturing milk using three concentrations of<br>hydrogen peroxide and two temperature levels for<br>10 minutes | . 22 |
| 5.    | Comparison of mean aerobic plate counts showing a<br>three dimensional representation of bacterial<br>destruction in day old manufacturing milk using<br>three concentrations of hydrogen peroxide and two<br>temperature levels for 10 minutes                               | . 24 |
| 6.    | Comparison of mean anaerobic plate counts showing a<br>three dimensional representation of bacterial destruc-<br>tion in day old manufacturing milk using three con-<br>centrations of hydrogen peroxide and two temperature                                                  |      |
|       | levels for 10 minutes                                                                                                                                                                                                                                                         | . 26 |

SUMMARY

Various temperatures and concentrations of the hydrogen peroxide catalase treatment of milk were studied in an attempt to discover the optimum temperature and concentration that would destroy unfavorable organisms and yet allow favorable ones to grow. The Federal Food and Drug Administration in their November, 1959, Definitions and Standards of Cheeses and Cheese Products states that "the amount of the hydrogen peroxide solution used shall be such that the weight of the hydrogen peroxide added thereby does not exceed 0.05 percent of the weight of the milk treated." Within the maximum level allowed, it was found that in day old manufacturing milk treated with 0.05 percent peroxide for 10 minutes at either 32 C or 49 C, more than 64 percent of all microorganisms present were destroyed. Coliform organisms were very sensitive to peroxide, exhibiting a 92 percent kill at 32 C, and a 100 percent kill at 49 C. Lactic acid producing organisms were next in sensitivity to bacterial destruction, showing an 80 and 83 percent kill respectively for the same temperatures. Spore-forming organisms showed a 42 and 73 percent kill respectively at the above temperatures, but due to the refractory nature of spores to peroxide, the difference was not significant (p .05).

In addition to the foregoing, related studies were conducted on the hydrogen peroxide treatment of milk without the addition of catalase. Storage milk was treated over night at 4 C for 16 hours with two peroxide concentrations, 0.025 and 0.05 percent. At the lower concentration the kill was not satisfactory, while at the higher concentration 50 percent of the

vii

spore-formers and 99 percent of the coliforms were killed. There was, however, a peroxide residue which would have to be eliminated to meet Federal Food and Drug Administration standards.

## INTRODUCTION

Hydrogen peroxide has gained importance in the production of Swiss cheese because of its excellent germicidal properties. It would be beneficial to the cheese industry to know exactly what concentration of hydrogen peroxide to use in order to destroy unfavorable organisms and allow some of the favorable ones with the enzymes to survive. Also, it would be of importance to develop new procedures using hydrogen peroxide to reduce the cost or time involved in making Swiss cheese. This method of milk treatment may give greater uniformity in the quality of Swiss cheese.

#### Purpose

It is, therefore, the purpose of this study to reach the following objectives:

1. To determine the smallest effective concentration of hydrogen peroxide which will destroy spore-formers, coliforms, and other undesirable organisms and yet permit survival of a large percentage of favorable lactic acid producing organisms.

2. To adapt a technique and procedure in treating milk with hydrogen peroxide in order to reduce the cost of the process through the reduction of time, temperature, and the amount of materials used.

3. To ascertain the types and relative percentages of organisms which survive the various peroxide treatments.

## REVIEW OF LITERATURE

Swiss cheese originated, as the name implies, in Switzerland. It is called Emmentaler after the Emmen Valley in the Canton of Bern. It is one of the oldest varieties of hard rennet cheese and was known to be exported from Switzerland as early as 1650 (Curren, Evans and Leviton, 1940). In the United States commercial production began in Ohio in the 1860's and has since expandedtto other states, notably Wisconsin, New York, Pennsylvania, Wyoming, Utah and Idaho (Fernou, 1923).

Hydrogen peroxide was first brought to the attention of the scientific world by the French chemist Thenard (1819). His discovery was brought about by the combined use of hydrochloric and sulphuric acid reacting upon barium peroxide to produce hydrogen peroxide and barium sulfate. He recognized the value of this discovery and later presented it in a paper to the French Academy of Science.

Jablin and Gonnet (1901) used hydrogen peroxide in the preservation of milk and found that consumption of the treated milk produced no noticeable ill effects.

Budde (1903) presented a new method of treating milk called "buddized" milk. This process consisted of heating the milk to 50 C and then adding enough hydrogen peroxide to give a final concentration of from 0.03 to 0.035 percent. After stirring the milk for 15 to 30 minutes it was poured into tightly stoppered bottles, held in a 50 C water bath for two or three hours, cooled and placed on the market.

Much and Romer (1906) experimented with the use of hydrogen peroxide and a catalase containing material as a means of sterilizing milk. They soon discovered, however, that the impurities associated with the catalase materially limited the usefulness of the two chemicals. This particular method for treating milk could not be utilized to any extent in any part of the world for the next several years because the chemical industry was not yet able to supply peroxide and catalase of high stability, high concentration, and of such a degree of purity as public health authorities required for chemical products used in food (Rifaat, 1950).

Matheson, Boyer, and Warren (1927) studied the effects of different forms of oxygen in the treatment of milk to check gassy and other abnormal fermentations in Swiss cheese. They reported that ozone and oxygen have similar effects in checking gassy fermentation in Swiss cheese caused by spore-forming anaerobes. The oxygen treatment brought favorable results by checking "nissler" fermentation. The action of oxygen seemed germicidal as well as inhibitory.

Curran, Evans and Leviton (1949) experimenting with the action of peroxide and crystalline catalase, found that the germ killing activity of peroxide is greatly influenced by the temperature at which it reacts.

From their results, it is apparent that even high concentrations of hydrogen peroxide cannot be relied upon to kill all of the spores in a culture, because a time lag of variable length occurs between the addition of hydrogen peroxide and its measurable effects on most spores. They further state that the growth of S. lactis was retarded, even up to 48 hours, in milk which had received the hydrogen peroxide-catalase treatment. This was in all probability due to the unfavorable oxidationreduction potential.

They further conclude that temperature, pH. concentration of reagent, and concentration of exposed organisms are important factors influencing the sporicidal activity of hydrogen peroxide. In neutral

solutions the snoricidal action of peroxide tended to increase with rising temperatures; however, an exception to this rule has been noted. The influence of pH seemed to be closely correlated with its effect upon the stability of the peroxide, hence in acid solutions the sporicidal activity was enhanced while alkaline reactions which promote its decomposition tended to reduce the germicidal activity of peroxide. Organic matter, apart from its possible catalase content, seemed to have comparatively little influence upon the germicidal activity of peroxide.

Robertson, Roper and Bauer (1941) did work on the degradation of mucins and polysaccharides by ascorbic acid and hydrogen peroxide. They found that ascorbic acid and hydrogen peroxide react to cause the degradation of fluid mucin. This degradation involved a breakdown of the micro-molecules without the liberation of detectable amounts of reducing substances or amino-sugars. They also reported that the ascorbic acid hydrogen peroxide system acted on gastric and salivary mucins as well as on polysaccharides such as starch, protein, flaxseed mucilage and the polysaccharide of synovial mucins and cartilage. It also destroyed the capsules of various types of pneumococci. This system caused no change in vomucin, agar-agar of gelatin. It did however, cause a dephosphorylation of B-glycerophosphate (Rifaat, 1950).

Payne and Foster (1945) carried out a quantitative investigation on the action of hydrogen peroxide on glyceric aldehyde, erythritol, d-arabinose, d-glucose, and sucrose. They found that hydrogen was a characteristic reaction product in every case. A satisfactory reaction mechanism placed the origin of the hydrogen in formaldehyde, produced in the oxidative degradation of the compounds.

Glyceric aldehyde undergoes a dismutation reaction in the presence

of low concentrations of hydrogen peroxide.

At Linate, Italy, near Milan, in 1945, an electrolytic plant produced 39 percent hydrogen peroxide of high purity. This product was utilized for the treatment of milk in the Milan area as a substitute for pasturization. According to the investigation of Drs. L. Morandi and Squatrite, extensive laboratory studies had indicated its suitability for this purpose. It was indicated by the investigation that this practice would be expanded when production could be increased. A "solid" hydrogen peroxide of 35 percent strength plus 65 percent urea also had been developed at the same time for milk treatment (Department of Commerce, 1945).

Brown (1947) working with a modified peroxide treatment (a glycerite of hydrogen peroxide) found that when tested by a modified cylinder plate method, peroxide-glycerol solutions, made from either urea peroxide or hydrogen peroxide, showed bacteriostatic action on both gram-positive and gram-negative organisms. A greater bacteriostatic effect was noted with gram positive rather than gram negative bacteria.

In comparison with 12 mercurial solutions, the glycerol-peroxide solutions showed, in general, greater bacteriostatic action on grampositive organisms than did the mercurial solutions. The latter were, in general, the more effective on gram-negative bacteria. In specific cases, however, the peroxide-glycerol solutions proved more efficacious than some of the mercurial solutions, particularly when water was the principal solvent for the mercurial compound.

Brown and Slanitz (1947) showed that a glycerite of hydrogen peroxide healed "cold abscesses" in tuberculosis patients when applied in wet dressings.

Wyss et al. (1948) discovered in experiments on irradiated broth

that there is a marked similarity between certain biological effects produced by ultra-violet irradiation of nutrient broth and by the addition of hydrogen peroxide to the broth. It was also found that the effects of both can be negated by catalase. This work further confirmed work done by Fernau (1923) when he concluded that the results of a treatment with Roentgen rays, ultra-violet, and alpha particles on albumin solutions were identical with those produced by peroxide.

From 1947 to the present time considerable interest has been directed toward the use of hydrogen peroxide in the dairy industry by Morris (1948-1960), who has published articles (1950, 1951) and directed research on three theses on this subject (Johnson, 1952; Nagmoush, 1949; Rifaat, 1950). Roundy also has done work in this field (1948-1950, 1958, 1959).

Nagmoush (1949) completed a thesis on the use of hydrogen peroxide in treating milk for making Cheddar cheese. He stated that the hydrogen peroxide treatment successfully reduced the bacterial count including coliforms, aerobic and anaerobic spore-former organisms. He also stated that treatment with hydrogen peroxide caused greater retention of moisture in the curd and the finished cheese. It was also noted that cheese treated with the peroxide catalase treatment seemed to ripen more rapidly than untreated cheese.

Rifaat (1950) made a study of the use of hydrogen peroxide as a substitute for pasteurization in market milk. He concluded that the use of a 0.20 percent solution showed a higher reduction than pasteurization in total bacterial count and aerobic spore-forming organisms. He also stated that this treatment destroyed anaerobic spore-formers entirely. Treated milk also seemed to hold up for longer periods of storage than did pasteurized milk. The peroxide-catalase treatment

appeared to retard the development of oxidized flavor in milk.

Johnson (1952) made a comparative study of raw, pasteurized and hydrogen peroxide treated milk in the production of Swiss cheese. He concluded that eye development, flavor, body and texture were all superior in the hydrogen peroxide treated cheese as compared to the raw and pasteurized cheese.

Teply <u>et al</u>. (1958) made composition and nutritional studies on cheese produced from milk treated with peroxide and catalase. The results of these studies indicate no marked changes in the composition or nutritional value of milk treated with 0.1, 0.2, and 0.5 percent hydrogen peroxide or in the cheese or whey obtained from such milk under the conditions described.

Jasiwicz and Porges (1959) in their work on whey preservation by hydrogen peroxide showed that peroxide addition to grossly contaminated wheys of 2.8 x  $10^7$  micro-organisms per milliliter resulted in a 97 percent bacterial kill within one hour. They also showed that the 0.02 percent hydrogen peroxide concentration was relatively ineffective against greater numbers of bacteria.

With these developments in the use of the peroxide-catalase treatment it is being successfully used as a tool in the Swiss cheese industry. Research is presently being done at the University of Wisconsin and other universities throughout the country to determine the effect of time of exposure and the temperature and concentration of hydrogen peroxide on various pathogenic organisms which have importance in the industry.

#### PROCEDURE

#### Selection and handling of milk

The milk used in preliminary studies on this experiment was obtained from the Utah State University Dairy Farm and from the Cache Valley Dairy Association. Both good and poor milk were used in the preliminary studies. It was soon found, however, that high quality raw milk could not be used because of the low number of micro-organisms present. As a result of the preliminary studies, only manufacturing milk was used for the final tests. This milk was obtained from mixed herd samples taken from plant storage tanks at the Cache Valley Dairy Association. This milk in all cases was held at least one day before use after arriving at the plant and being cooled to 4 C. The milk was collected in clean, well-tinned five gallon cans and held under refrigeration until used. Preparation and treatment of the milk

In the first of three series of preliminary experiments each lot of milk was divided into six portions of 3000 cc each. These portions were heated to 49 C and immediately treated with 0.003, 0.005, 0.01, 0.03 and 0.05 percent hydrogen peroxide respectively. The treatment with hydrogen peroxide was applied by first heating the milk to 49 C in order to reduce the catalase enzyme normally present and thus increase the effectiveness of the hydrogen peroxide.<sup>1</sup> A control portion of milk was heated in like manner, but no hydrogen peroxide was added. The treated milk was agitated and held for 20 minutes at 49 C after which

<sup>&</sup>lt;sup>1</sup>Roundy (1948-1959) used this method in an attempt to increase the effectiveness of the hydrogen peroxide. Rogers <u>et al.</u> (1912) found that catalase was effectively destroyed with a flash heat treatment at 70 C.

it was cooled to 43 C or below in order to permit survival of the added catalase. The purified liquid catalase, of 100 keil units per ml, was added at the rate of one cc per 31.8 ml of hydrogen peroxide.<sup>1</sup> The milk was then cooled and agitated until the complete decomposition of hydrogen peroxide had taken place, usually within 10 minutes. The presence of hydrogen peroxide was checked by the Potassium Iodide Test. This test consisted of adding 5 cc of a 30 percent solution of potassium iodide solution to 10 cc of the treated milk (Morris, Larsen, Johnson, 1951). A brown colored milk indicated a positive test for hydrogen peroxide; a natural colored milk indicated a negative test. In running the Potassium Iodide Test, two test tubes were used, one containing treated milk plus catalase and the other containing the same plus potassium iodide solution. With this procedure a better comparison was made. As soon as a negative test was obtained bacteriological plates were run on the samples.

The first series of preliminary tests were performed on eight different lots of milk. Figure 1 illustrates the procedure on each lot.

The second series of preliminary tests were performed on five different lots of milk. The procedure in the second series was the same as for the first except that the concentrations were increased to 0.08, 0.10 and 0.12 percent.

The third series of preliminary experiments were run the same as the first two except that the concentrations of hydrogen peroxide were increased to 0.14, 0.16 and 0.18 percent with a control in every lot of five tested.

<sup>&</sup>lt;sup>1</sup>The hydrogen peroxide used was approximately a 35 percent solution of a purified edible grade manufactured by the E. I. DuPont de Memours and Company, Electrochemical Division, Elmonte, California. Its brand name is "perone,"

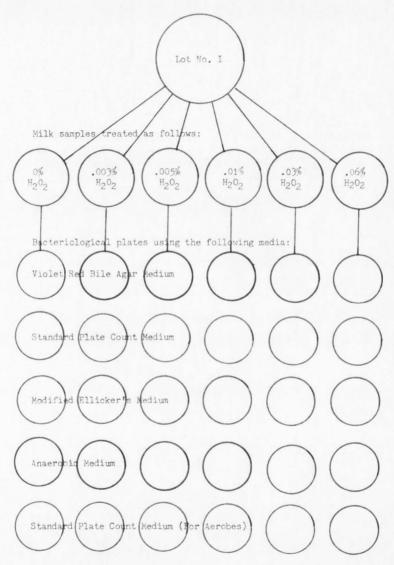



Figure 1. Plating procedure used on the preliminary lots in the first series

After the preliminary tests were completed and the results studied a practical application of the procedure was attempted at a nearby Swiss cheese plant. It was found that the application of hydrogen peroxide treatment accomplished work of organism destruction in approximately 10 minutes at the 0.18 percent level of concentration in a 25,000 pound Swiss cheese vat where the milk had been previously preheated to 49 C and cooled back to 32 C. It was also found that catalase added at the rate of 5 cc per pound of "perone" dissipated all hydrogen peroxide in the vat within 10 minutes after application was made, as shown by the Potassium Iodide Test. As a result of the preliminary studies and the practical application in a plant, certain changes were made for the final experiment.

In the final series of experiments four lots of manufacturing milk were used. Each lot of milk was divided into eight 100 ml samples and placed in 8 oz sterile screw-top bottles. In the first lot, four of these samples were heated in a water bath to 32 C. A theromometer was inserted in one sample to determine when it reached 32 C. Upon reaching this temperature the samples were removed, and two of them were treated with 0.02 percent hydrogen peroxide and another two with 0.05 percent hydrogen peroxide and then all four samples were thoroughly agitated and returned to a water bath which had been previously tempered to 32 C. Here they were held with agitation for 10 minutes after which the peroxide was dissipated with catalase. At this time, the samples were again agitated, and then held for 10 minutes and plated.

The other four samples of each lot were treated the same as the first except that they were heated to 49 C before adding hydrogen peroxide and were cooled to 43 C before adding catalase.

Eighty percent of the four lots of milk were treated in the above manner for three of the five groups of organisms tested. In the treatments for the other two groups of organisms (aerobic and anaerobic spore-forming) the remaining 20 percent of the four lots of milk used were heated in a steam injection water bath at 80 C for 10 minutes in order to destroy all of the vegatative and facultative organisms present. After this holding period, the samples were immediately cooled to 49 C. At this point half of these samples were treated with hydrogen peroxide, held with agitation for 10 minutes, and cooled to 43 C before adding catalase. The other half of these samples were cooled to 32 C and handled as the other lots in the final series.

## Bacteriological tests on the milk

The milk was tested for five groups of organisms: coliforms, aerobic and anaerobic spore-formers, lactic acid producing organisms and standard plate count organisms. In the first series, these tests were plated according to <u>Standard Methods for the Examination of Dairy</u> <u>Products</u> (American Public Health Association, 1960) with the exception of the lactic acid producing organisms and the anaerobic spore-formers.

In the case of the lactic acid producing organisms, an agar culture medium recommended by Elliker (1955) was used, but with modification. The agar consisted of 20 grams tryptone, 2.5 grams gelatin, 5 grams sucrose, 5 grams yeast extract, 4 grams sodium chloride, 1.5 grams sodium acetate, 15 grams agar and water added to make 1000 ml. The modifications were as follows: The agar was buffered with CaCO<sub>3</sub> (calcium carbonate) at the rate of 0.4 percent or 4 grams/liter of agar. Two-tenths ml of a 1.6 percent solution of brom cresol purple was added. These modifications were to improve the readibility of the plates by buffering the acid zones produced by the lactic acid producing organisms

and thus retard them from spreading into one another. The dye indicator colored the agar purple, and the acid zones produced by the organisms were immediately changed to a clear yellow as the indicator was changed by the acid. These modifications facilitated a quick and accurate determination of the plate colony numbers after the incubation period.

The anaerobic organisms were plated in the following manner: Standard Baltimore Biological Laboratory anaerobic agar medium was used. Milk samples were first heat-treated to 80 C for 10 minutes to destroy the vegetative cells and then were plated with 10 cc of the medium. In the first series the procedure was modified by using regular petri dishes. After the initial 10 cc of medium was poured and innoculated the agar was allowed to solidify and an additional amount of agar was poured on its surface until each plate was nearly full. The agar was allowed to harden and the plates were inverted and incubated at 30 C from three to four days until the slow growing colonies were readily discernable. Plates were counted according to <u>Standard Methods for the</u> <u>Examination of Dairy Products</u>. After the first trial series was completed the results on the anaerobes proved inconclusive, so further tests were plated according to standard methods. After plating, the plates were evacuated and flooded with nitrogen gas before incubation.

## RESULTS AND DISCUSSION

Results of this study are tabulated in table and graph form showing statistical analyses on each of the five groups of organisms tested as well as the percent kill at the various temperatures and peroxide concentrations. Milk samples in Tables 2 through 12 were held for 10 minutes after peroxide-catalase treatments before bacterial plate counts were made.

Table 1 shows the general trends or effects of increasing concentrations of peroxide on milk organisms. It is evident from the table that colliform organisms are most sensitive to the destructive effects of hydrogen peroxide. Lactic acid producing organisms and aerobic spore-forming organisms rank next in sensitivity to the treatment. The results are inconclusive regarding the spore-forming organisms. The organisms grown on the standard plate count medium showed a generally increased kill with an increase in percent of peroxide used.

Table 2 shows that the temperature had very little effect on bacterial destruction. Table 3 bears this out in the analysis of variance showing that the difference in temperatures is not significant. The interaction between temperatures and concentrations is also not significant (p .05). It can be readily noted from Figure 2, that the concentrations of hydrogen peroxide have a highly significant (p .01) effect on bacterial destruction.

Two possible reasons for this destruction are: First, it may be due to the collform organisms present which are sensitive to the peroxide treatment; and secondly, the presence of lactic acid producing

|                                                                       | Coliform<br>Count            | Lactic Acid<br>Producing<br>Organisms | Standard<br>Plate Count               | Aerobic<br>Plate Count                | Anaeribic<br>Plate<br>Count       |
|-----------------------------------------------------------------------|------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-----------------------------------|
|                                                                       |                              | Se                                    | eries I                               |                                       |                                   |
| Total                                                                 |                              |                                       |                                       |                                       |                                   |
| Raw Count <sup>b</sup><br>.003% H <sub>2</sub> 0 <sub>2</sub><br>.005 | 556,000<br>100<br>99.7       | 2,271,000<br>57.16<br>53.28           | 2,367,000<br>31.82<br>40.90           | 3,175,000<br>58.52<br>53.64           | 1,000                             |
| .01<br>.03<br>.06                                                     | 100<br>100<br>100            | 76.49<br>76.97<br>99.38               | 73.43<br>76.68<br>99.32               | 83.66<br>82.58<br>98.02               | 99.92<br>97.80<br>99.98           |
|                                                                       |                              | Se                                    | eries II                              |                                       |                                   |
| Total                                                                 |                              |                                       |                                       |                                       |                                   |
| Raw Count<br>.08<br>.10<br>.12                                        | 714,000<br>100<br>100<br>100 | 4,400,000<br>97.32<br>97.27<br>93.64  | 15,860,000<br>75.22<br>95.65<br>94.01 | 23,200,000<br>86.16<br>97.28<br>96.34 | 28.300<br>96.82<br>99.29<br>98.94 |
|                                                                       |                              | Se                                    | eries III                             |                                       |                                   |
| Total<br>Raw Count<br>.14<br>.16<br>.18                               |                              | 16,250,000<br>98.03<br>98.03<br>99.14 | 6,280,000<br>99.57<br>96.98<br>96.18  | 10,520,000<br>97.43<br>97.62<br>99.98 | 6,500<br>46.16<br>52.31<br>53.85  |

Table 1. Preliminary series showing average percent kill at various concentrations of hydrogen peroxide<sup>a</sup>

a All organisms were treated with the stated amount of hydrogen peroxide and then held for 20 minutes before dissipation with catalase. The plates were incubated according to <u>Standard Methods for the</u> <u>Examination of Dairy Products</u> with the exception of the anaerobic spore-formers. (See preparation and treatment of the milk, page 8.)

b These counts are average figures taken from Appendix A.

G

organisms on the plate count medium would also influence the count because these organisms are sensitive to the peroxide treatment.

Original .02% Percent .05% Percent Count 0% H202 Killed H202 Killed H202 2.23 x 10<sup>6</sup> 32 C 2 x 107/mla 89  $1.1 \times 10^{6}$ 94 2.56 x 10<sup>6</sup> 1.85 x 10<sup>7</sup> 86 4.6 x 105 49 C

Table 2. Standard plate counts showing bacterial destruction with different concentrations of hydrogen peroxide at two temperatures

a All figures are accumulated totals derived from four lots of milk with five replicate plates on each concentration and temperatures in each lot. b Bacterial plate counts on nutrient agar incubated at 35 C for 48 hours.

| Source of<br>Variation | d.f. | s.s.    | m.s.      | F           |
|------------------------|------|---------|-----------|-------------|
| Replications           | 3    | 26,956  |           |             |
| Temperature            | 1    | 285     | 285       | .13         |
| Error (a)              | 3    | 6,750   | 2,250     | 13,419.53** |
| Concentrations         | 2    | 208,809 | 104,405.5 | .85         |
| Temp. x Conc.          | 2    | 723     | 361.5     |             |
| Error (b)              | 12   | 93,599  | 7,799.9   |             |
| Sampling               | _96  |         | 96.6      |             |
| Total                  | 119  | 346,393 |           |             |

Table 3. Analysis of variance on standard plate count organisms<sup>a</sup>

\*\* Highly significant at p .01.

a From data presented in Table 2.



Figure 2. Comparison of mean standard plate counts showing a three dimensional representation of bacterial destruction in day old manufacturing milk using three concentrations of hydrogen peroxide and two temperature levels for 10 minutes

 $^{\rm a}{\rm Plate}$  counts on nutrient agar medium incubated at 36 C for 48 hours.

Table 4 shows a complete destruction of coliforms organisms at the 0.05 percent peroxide level even at initial bacterial concentrations of 158,000 organisms per milliliter. Temperature alone has some effect on coliform destruction at the concentrations shown. From the analysis of variance in Table 5, it is indicated that temperatures alone have some effect on coliform destruction but this is not significant (p .05). Coliform organisms are very sensitive to the destructive effects of 0.02 and 0.05 percent hydrogen peroxide (p .01). The interaction between temperatures and concentrations on coliform organisms is also highly significant (p .01) as shown in Figure 3.

Table 4. Plate count on coliform organism showing bacterial destruction in day old manufacturing milk treated with different concentrations of hydrogen peroxide at two temperatures

|      | Original<br>Count 0%<br>H2O2             | .02%<br>H <sub>2</sub> O <sub>2</sub> | Percent<br>Killed | .05%<br>H <sub>2</sub> O <sub>2</sub> | Percent<br>Killed |
|------|------------------------------------------|---------------------------------------|-------------------|---------------------------------------|-------------------|
| 32 C | 3.65 x 10 <sup>5</sup> /ml <sup>ab</sup> | 7.2 x 10 <sup>4</sup>                 | 80                | 2.75 x $10^4$                         | 92                |
| 49 C | 1.58 x 10 <sup>5</sup>                   | $1 \times 10^2$                       | 99                | 0                                     | 100               |

a All figures are accumulated totals derived from four lots of milk with five replicate plates on each concentration and temperature in each lot.

b Bacterial plate counts on violet red bile agar incubated at 35 C for 48 hours.

Table 5. Analysis of variance on coliform organismsa

| Source of<br>Variation | d.f. | s.s.      | m.s.                       | F           |
|------------------------|------|-----------|----------------------------|-------------|
| Replications           | 3    | 296.324   | a harden av sen alterna de |             |
| Temperature            | 1    | 78.387    | 78.387                     | 3.46        |
| Error (a)              | 3    | 67.911    | 22,637                     |             |
| Concentrations         | 2    | 374,895   | 187,448                    | 69.220.00** |
| Temp. x Conc.          | 2    | 122,248   | 61.124                     | 22,572.00** |
| Error (b)              | 12   | 34.291    | 2,708                      |             |
| Sampling               | 96   | 296,991   | 3.094                      |             |
| Total                  | 119  | 1,268,247 |                            |             |

\*\* Highly significant at p .01.

a From data presented in Table 4.

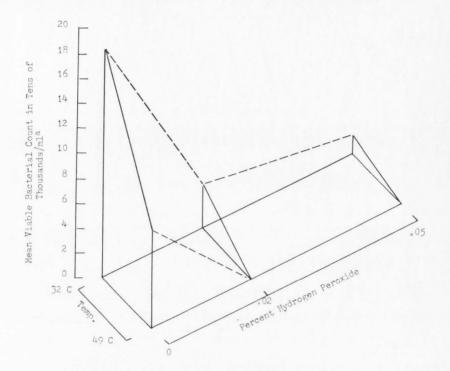



Figure 3. Comparison of mean coliform plate counts showing a three dimensional representation of bacterial destruction in day old manufacturing milk using three concentrations of hydrogen peroxide and two temperature levels for 10 minutes

<sup>a</sup>Bacterial plate counts on violet red bile agar incubated at  $35\ \mathrm{C}$  for  $48\ \mathrm{hours}$ 

It is possible that the destruction of coliform organisms in the presence of hydrogen peroxide may be due to the excessive amount of peroxide to which the organisms are exposed. It is understood that coliform organisms produce catalase as a protective mechanism but this mechanism does not seem to protect them at the concentrations to which they were exposed in this experiment.

In analyzing the data on the lactic acid producing organisms the information in Tables 6 and 7 as well as Figure 4 shows a very marked similarity to the data on coliforms in Figure 3. The only marked difference is in the extent of destruction which is less in the lactic acid producing organisms than in the coliforms.

Table 6. Plate counts on lactic acid producing organisms showing bacterial destruction in day old manufacturing milk treated with different concentrations of hydrogen peroxide at two temperatures

|      | Original<br>Count 0%<br>H2O2 | .02%<br>H <sub>2</sub> 0 <sub>2</sub> | Percent<br>Killed | .05%<br>H <sub>2</sub> O <sub>2</sub> | Percent<br>Killed |
|------|------------------------------|---------------------------------------|-------------------|---------------------------------------|-------------------|
| 32 C | $2.97 \times 10^7 / mlab$    | $1.34 \times 10^{7}$                  | 55                | 5.89 x 10 <sup>6</sup>                | 80                |
| 49 C | $1.55 \times 10^{7}$         | 4.36 x 107                            | 72                | $2.62 \times 10^6$                    | 83                |

a All figures are accumulated totals derived from four lots of milk with five replicate plates on each concentration and temperature in each lot. Bacterial plate counts on modified Ellikers (1955) medium incubated at 30 C for 48 hours.

From Table 8 it can be noted that a greater bacterial destruction of aerobic spore-formers was obtained at 32 C than at 49 C at both levels of peroxide (see Figure 5). This may be explained by the procedure used in treating the milk. The samples were heated to 80 C for 10 minutes, then cooled to 49 C and treated. The remaining samples were cooled to 32 C before treatment. This heat treatment was meant to destroy all vegetative cells. After cooling the samples to 32 C the

spores may have begun to germinate again, thus making them more susceptable to the peroxide than at the higher temperature of 49 C. At the higher temperature the spores may not have begun to germinate, thus explaining the lower bacterial destruction at the higher temperature.

The analysis of variance on the aerobic spore-formers, Table 9, was not significant (p .05) at the temperatures and concentrations of peroxide applied. This was probably due to the resistance of the organisms to peroxide while in the spore state.

| Source of     | d.f. | S.S.    | m.s.   | F       |
|---------------|------|---------|--------|---------|
| Variance      |      |         |        |         |
| Replications  | 3    | 294,714 |        |         |
| Temperature   | 1    | 58,565  | 58,565 | 4.23    |
| Error (a)     | 3    | 41,668  | 13,889 |         |
| Concentration | 2    | 181,508 | 90,754 |         |
| Temp. x Conc. | 2    | 73,412  | 36,706 | 22.30** |
| Error (b)     | 12   | 48,874  | 4,073  | 9.01**  |
| Sampling      | _96  | 110,563 | 1,152  |         |
| Total         | 119  | 809,304 |        |         |

Table 7. Analysis of variance on lactic acid producing organisms<sup>a</sup>

\*\* Highly significant at the p .01.

a From data presented in Table 6.



Figure 4. Comparison of mean plate count for lactic acid producing organisms showing a three dimensional representation of bacterial destruction in day old manufacturing milk using three concentrations of hydrogen peroxide and two temperature levels for 10 minutes

 $^{\mathbf{a}}\mathsf{Bacterial}$  plates on modified Ellikers medium incubated at 30 C for 48 hours

Table 8. Plate counts on aerobic spore-forming organisms showing bacterial destruction in day old manufacturing milk treated with different concentrations of hydrogen peroxide at two temperatures

|      | Original<br>Count 0%<br>H2O2 | .02%<br><sup>H</sup> 2 <sup>0</sup> 2 | Percent<br>Killed | .05%<br>H <sub>2</sub> O <sub>2</sub> | Percent<br>Killed |
|------|------------------------------|---------------------------------------|-------------------|---------------------------------------|-------------------|
| 32 C | 2.16 x $10^4$ /mlab          | $1.54 \times 10^4$                    | 51                | 1.15 x 10 <sup>4</sup>                | 64                |
| 49 C | 3.61 x 10 <sup>4</sup>       | 3.1 x 10 <sup>3</sup>                 | 14                | $2.07 \times 10^4$                    | 42                |

a All figures are accumulated totals derived from four lots of milk with five replicate plates on each concentration and temperature in each lot. b Bacterial plate counts on nutrient agar incubated at 30 C for 48 hours.

| Source of<br>Variance | d.f. | S.S.   | m.s. | F    |
|-----------------------|------|--------|------|------|
| Replications          | 3    | 2,647  |      |      |
| Temperature           | 1    | 720    | 720  | .99  |
| Error (a)             | 3    | 2,173  | 724  |      |
| Concentration         | 2    | 1,588  | 794  | 1.39 |
| Temp. x Conc.         | 2    | 875    | 838  | 1.46 |
| Error (b)             | 12   | 6,862  | 572  |      |
| Sampling              | _96  | 50,747 | 529  |      |
| Total                 | 119  | 65,612 |      |      |

Table 9. Analysis of variance on aerobic spore-forming organisms<sup>a</sup>

a From data presented in Table 8.

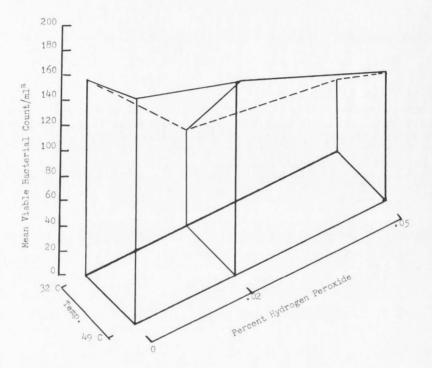



Figure 5. Comparison of mean aerobic plate counts showing a three dimensional representation of bacterial destruction in day old manufacturing milk using three concentrations of hydrogen peroxide and two temperature levels for 10 minutes

<sup>a</sup>Pacterial plate counts on nutrient agar incubated at 30 C for 48 hours

The anaerobic spore-forming organisms in Table 10 show some resistance to peroxide treatment. At 49 C and 0.05 percent peroxide, with an initial count of 13,700 organisms per milliliter, a 73 percent kill was obtained. From the analysis of variance in Table 11 it is evident that some of the destruction is due to concentration alone as may be observed in Figure 6; this however, is not significant (p.05). The remainder of the analysis on anaerobic spore-formers showed no significance at the 0.05 level. This lack of destruction of anaerobes is again probably due to the resistance of the organisms to the peroxide treatment while in the spore state.

Table 10. Plate counts on anaerobic spore-forming organisms showing bacterial destruction in day old manufacturing milk treated with different concentrations of hydrogen peroxide at two temperatures

|      | Original<br>Count 0%<br>H2O2            | .02%<br>H <sub>2</sub> 0 <sub>2</sub> | Percent<br>Killed | .05%<br>H <sub>2</sub> 0 <sub>2</sub> | Percent<br>Killed |  |
|------|-----------------------------------------|---------------------------------------|-------------------|---------------------------------------|-------------------|--|
| 32 C | 9.3 x 10 <sup>3</sup> /ml <sup>ab</sup> | 4.6 x 10 <sup>3</sup>                 | 50                | 2.8 x 10 <sup>3</sup>                 | 70                |  |
| 49 C | 1.37 x 10 <sup>4</sup>                  | 5.2 x 10 <sup>3</sup>                 | 62                | $3.7 \times 10^3$                     | 73                |  |

a All figures are accumulated totals derived from four lots of milk with five replicate plates on each concentration and temperature in each lot. b Bacterial plate counts on BBL anaerobic agar incubated at 37 C for 72 hours after being evacuated and flooded with nitrogen gas.

| Source of<br>Variance | d.f. | s.s.   | m.s.   | F    |
|-----------------------|------|--------|--------|------|
| Replications          | 3    | 130    |        |      |
| Temperature           | 1    | 29     | 29     | 17.4 |
| Error (a)             | 3    | 5      | 1.67   |      |
| Concentrations        | 2    | 381    | 190.00 | 1.6  |
| Temp. x Conc.         | 2    | 52     | 26     | .2   |
| Error (b)             | 12   | 1,440  | 120    |      |
| Sampling              | 96   | 10,028 | 104    |      |
| Total                 | 119  | 12,065 |        |      |

Table 11. Analysis of variance on anaerobic spore-forming organisms<sup>a</sup>

a From data presented in Table 10.

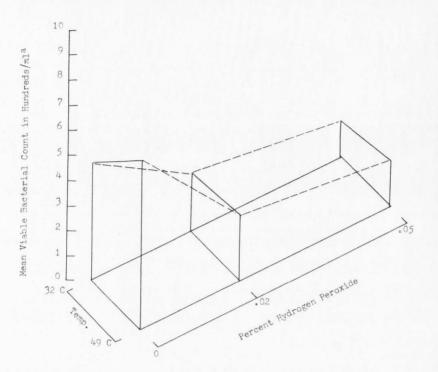



Figure 6. Comparison of mean anaerobic plate counts showing a three dimensional representation of bacterial destruction in day old manufacturing milk using three concentrations of hydrogen peroxide and two temperature levels for 10 minutes.

<sup>a</sup>Bacterial plate counts on BBL anaerobic agar no. 139 incubated at 37 C for 72 hours after being evacuated and flooded with nitrogen gas.

Table 12 brings together for comparison the data in Tables 2 through 10. According to the data presented it can be concluded that the groups of organisms rank in sensitivity to hydrogen peroxide in the following order: Coliform organisms are most sensitive followed by the organisms grown on standard plate count medium. The next most sensitive group is the lactic acid producing organisms, closely followed by the two groups of spore-formers.

It is desirable to know just what would happen when manufacturing tank milk was treated with hydrogen peroxide and held for 16 hours at 4 C and then plated as in the author's previous work. This work was done and the results are tabulated in Table 13. Details of the procedure may be found in Appendix C.

When fresh milk was treated with two concentrations of hydrogen peroxide at 4 C and held for 16 hours before plating, the results were as follows: The coliforms, as expected, were nearly all destroyed (> 99 percent). Sixty-six percent of the lactic acid producing organisms were destroyed at the 0.05 percent level, showing that they were next to coliforms in sensitivity at this temperature. These were closely followed by aerobic spore-formers, 55 percent, standard plate count organisms, 52 percent, and anaerobic spore-formers with 50 percent destruction at the 0.05 percent level of hydrogen peroxide. At the lower concentration of peroxide, the number of spore-forming organisms actually increased markedly. One theory to explain the increased spore counts at the lesser concentration is: The 0.025 percent concentration of peroxide seemed to stimulate an increased number of vegetative cells to form spores which protected them from being destroyed in the heat treatment which followed. When these spores were bacteriologically plated they germinated, thus accounting for the high number of organisms.

Table 12. Bacterial destruction in day old manufacturing milk treated with hydrogen peroxide as affected by temperature and concentration

|                          |                                                                                      | Standard                                                           | Plate Coun                                                                                                       | ts                                                               |                   |
|--------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------|
|                          | Original<br>Count <sup>a</sup>                                                       | .02%                                                               | Percent<br>Killed                                                                                                | .05%                                                             | Percent<br>Killed |
| 32 C                     | $2 \times 10^7 / ml$                                                                 | 2.23 x 10 <sup>6</sup>                                             | 89                                                                                                               | 1.1 x 10 <sup>6</sup>                                            | 94                |
| 49 C                     | 1.85 x 10 <sup>7</sup>                                                               | 2.56 x 10 <sup>6</sup>                                             | 86                                                                                                               | 4.6 x 10 <sup>5</sup>                                            | 98                |
| Bacteri                  | al plate counts c                                                                    | on nutrient agar                                                   | incubated                                                                                                        | at 35 C for 48                                                   | B hours.          |
|                          | Plate                                                                                | Counts on Coli                                                     | form Organi                                                                                                      | lsms                                                             |                   |
| 32 C                     | 3.65 x 10 <sup>5</sup>                                                               | 7.2 x $10^4$                                                       | 80                                                                                                               | 2.75 x $10^4$                                                    | 92                |
| 49 C                     | 1.58 x 10 <sup>5</sup>                                                               | $1 \times 10^{2}$                                                  | 99.99                                                                                                            | 0                                                                | 100               |
| Bacteria<br>hours.       | al plate counts c                                                                    | n violet red bi                                                    | le agar inc                                                                                                      | cubated at 35 (                                                  | for 48            |
|                          | Plate Counts                                                                         | on Lactic Acid                                                     | Producing                                                                                                        | Organisms                                                        |                   |
| 32 C                     | 2.97 x 10 <sup>7</sup>                                                               | 1.34 x 107                                                         | 55                                                                                                               | 5.89 x 10 <sup>6</sup>                                           | 80                |
| 49 C                     | 1.55 x 10 <sup>7</sup>                                                               | $4.36 \times 10^{6}$                                               | 72                                                                                                               | $2.62 \times 10^{6}$                                             | 83                |
| Bacteria                 | 1 plate counts o                                                                     | n modified Elli                                                    | er's (1955                                                                                                       | ) medium incub                                                   | ated at           |
| 30 C for                 | . 48 hours.                                                                          |                                                                    |                                                                                                                  |                                                                  |                   |
| 30 C for                 |                                                                                      | on Aerobic Spor                                                    | e-forming                                                                                                        | Organisms                                                        |                   |
| 30 C for<br>32 C         | Plate Counts                                                                         | on Aerobic Spor                                                    | and the second |                                                                  | 64                |
| 30 C for<br>32 C         | Plate Counts                                                                         |                                                                    | 51                                                                                                               |                                                                  | 64<br>42          |
| 30 C for<br>32 C<br>49 C | Plate Counts<br>3.16 x 10 <sup>4</sup>                                               | $1.54 \times 10^4$<br>$3.1 \times 10^3$                            | 51<br>14                                                                                                         | $1.15 \times 10^4$<br>2.08 × 10 <sup>4</sup>                     | 42                |
| 30 C for<br>32 C<br>49 C | Plate Counts<br>3.15 x 10 <sup>4</sup><br>3.61 x 10 <sup>4</sup><br>I plate counts o | $1.54 \times 10^4$<br>$3.1 \times 10^3$                            | 51<br>14<br>incubated                                                                                            | $1.15 \times 10^{4}$<br>2.08 × 10 <sup>4</sup><br>at 30 C for 48 | 42                |
| 30 C for<br>32 C<br>49 C | Plate Counts<br>3.15 x 10 <sup>4</sup><br>3.61 x 10 <sup>4</sup><br>I plate counts o | 1.54 x 10 <sup>4</sup><br>3.1 x 10 <sup>3</sup><br>n nutrient agar | 51<br>14<br>incubated<br>ore-forming                                                                             | $1.15 \times 10^{4}$<br>2.08 × 10 <sup>4</sup><br>at 30 C for 48 | 42                |

a All figures are accumulated totals derived from four (4) lots of milk with five (5) replicate plates on each concentration and temperatures in each lot.

| Mean<br>Organisms/ml           | 0%<br>H <sub>2</sub> 0 <sub>2</sub> | .025%<br>H <sub>2</sub> O <sub>2</sub> | Percent<br>Killed | .05%<br>H <sub>2</sub> O <sub>2</sub> | Percent<br>Killed |
|--------------------------------|-------------------------------------|----------------------------------------|-------------------|---------------------------------------|-------------------|
| Standard Plate<br>Count        | 5.87 x 10 <sup>6</sup>              | 3.64 x 10 <sup>6</sup>                 | 47                | 2.83 x 10 <sup>6</sup>                | 52                |
| Coliform Count                 | $4.66 \times 10^4$                  | 1.5 x 10 <sup>3</sup>                  | 68                | 2                                     | 99                |
| Lactic Acid<br>Organisms Count | 3.2 x 10 <sup>6</sup>               | 2.2 x 10 <sup>6</sup>                  | 31                | 1.1 x 10 <sup>6</sup>                 | 66                |
| Aerobic Spore<br>Count         | 3 x 10 <sup>4</sup>                 | 1.14 x 10 <sup>5</sup>                 | increase<br>381   | 1.35 x 10 <sup>4</sup>                | 55                |
| Anaerobic Spore<br>Count       | 1.1 x 10 <sup>3</sup>               | 3.17 x 10 <sup>3</sup>                 | increase<br>286   | 5.51 x $10^2$                         | 50.               |

Table 13. Bacterial destruction in fresh manufacturing milk treated with hydrogen peroxide and held for 16 hours at 4 C as affected by concentration

See page 12 for plating procedure on all groups of organisms.

Conversely, at the 0.05 percent concentration of peroxide, 50 percent of the spore-forming organisms were destroyed in the vegetative state, thus accounting for the increased kill at this level of treatment.

Practically speaking, if we apply the peroxide catalase treatment to raw manufacturing milk in a Swiss cheese plant, just how should the treatment be applied?

If there are approximately two million organisms per milliliter in the raw milk (normally distributed as in Table 13) the application of 0.05 percent hydrogen peroxide for 16 hours at 4 C will assure the destruction of over 99 percent of the coliform organisms and at least 50 percent of other normally present types of organisms in bulk tank milk for manufacturing purposes. With this type of treatment it is necessary to check the milk before use with the Potassium Iodide Test to make sure that it is free from residual peroxide. If it is not, it must be treated with catalase so as not to destroy the starter organisms added later to the cheese milk.

It would be desirable to perform further experiments to determine the effect of hydrogen peroxide on specific types of organisms including pathogens. The use of the peroxide-catalase treatment of milk appears to be both practical and economical for use in the cheese industry.

The results of these experiments agree favorably with the work of other researchers in this field (Jasewicz and Porges, 1959; Johnson, 1952; Morris, 1950; Negmoush, 1949; Roundy, 1958).

The Federal Food and Drug Administration has tentatively set a maximum limit of 0.05 percent hydrogen peroxide to be used in the treatment of milk for cheese products. This level of peroxide appears from all practical purposes to be sufficient to destroy enough organisms to permit satisfactory manufacture of cheese.

30

#### CONCLUSIONS

 Hydrogen peroxide added to manufacturing milk at a concentration of 0.05 percent killed 92 to 100 percent of the coliform organisms at 4 C, 32 C and 49 C under the conditions of this experiment.

 Lactic acid producing organisms normally present in manufacturing milk were found to be more sensitive to the peroxide treatments than were the spore-forming organisms.

3. Spore-forming organisms were more resistant to peroxide treatment than the other groups of micro-organisms studied. Further study is needed to determine resistence of specific varieties of spore-formers.

The bacterial destruction by 0.05 percent hydrogen peroxide at
 C and 49 C was practically the same. Therefore, the use of the
 lower temperature may prove to be an economical procedure.

5. From 50 to 99 percent of the bacteria in fresh milk were destroyed when exposed to 0.05 percent peroxide for 16 hours at 4 C; however, most of the samples showed the presence of residual peroxide at the end of the treatment. If by some procedure peroxide residues can be eliminated, this process may provide a more economical and practical method for treating milk during storage.

#### LITERATURE CITED

AMERICAN PUBLIC HEALTH ASSOCIATION. 1960. Standard Methods for the Examination of Dairy Products. 11th Edition. American Public Health Association. 448 p.

BROWN, E. A. 1947. Glycerite of Hydrogen Peroxide; Comparison of its Bacteriotoxic Action with that of Mercurial Solutions. J. Bact. 53: 793-9.

BROWN, E. A., AND SLANITZ, L. W. 1947. Antiseptic Action of Glycerite of Hydrogen Peroxide on Mycobacterium Tuberculosis (var. Hominis). Science. 105: 312.

BUDDE, C. C. L. G. 1903. A New Method of Sterilizing Milk. Nord. Nejeritidning. 18: 65-66.

CURRAN, H. R., EVANS, F. R. AND LEVITON, A. 1940. The Sporicidal Action of Hydrogen Peroxide and the Use of Crystalline Catalase to Dissipate Residual Peroxide. J. Bact. 40: 423-34.

ELLIKER, P. R. 1949. Practical Dairy Bacteriology. 1st Edition. McGraw Hill Publishing Company, New York. 391 p.

ELLIKER, P. R. 1955. The Bacteriophage Problem and Control in Cheese Making. Utah State Agricultural College. Dairy Manufacturers Short Course Program. (Mimeograph)

FERNAU, V. A. 1923. Einige Falle analoges Werkung von Strahlung und Ozon auf chemische und Kolloidreaktionen. Kolloid Z. 33: 89-92.

FOSTER, F. M. et al. 1957. Dairy Microbiology. Prentice-Hall Inc. Inglewood Cliffs, New Jersey. pp. 372-385.

JABLIN, L., AND GONNET, N. 1901. Hydrogen Peroxide as a Preservative of Foods with Special Reference to Milk. Ann. Chem. Anal. Appl. 6: 129; Chem. Zentr., 1173.

JASEWICZ, L., AND PORGES, N. 1959. Whey Preservation by Hydrogen Peroxide. J. Dairy Sci. 42: 1119-1125.

JOHNSON, J. D. 1952. Comparative Study of Raw, Pasteurized and Hydrogen Peroxide treated Milk in the Production of Swiss Cheese. MS Thesis. School of Agriculture. Utah State Agricultural College. Logan, Utah. 69 p.

LEPPER, H. A. et al. 1955. Official Methods of Analysis of the Association of Official Agricultural Chemists. 8th Edition. AOAC. P.O. Box 540. Benjamin Franklin Station. Washington 4, D.C. 1008 p. MATHESON, K. J., BOYER, A. J., AND WARREN, D. H. 1927. The Use of Various Forms of Oxygen in the Treatment of Abnormal Fermentation in Swiss Cheese. J. Dairy Sci. 10: 54.

MILK INDUSTRY FOUNDATION. 1952. Laboratory Manual. Methods of Analysis of Milk and Its Products. 2nd Edition. Milk Industry Foundation. Washington 6, D.C. 838 p.

MORRIS, A. J. 1950. A Comparative Study of the Treatment of Milk with Hydrogen Peroxide and Pasteurization. Proceedings, Thirty-first Annual Meeting. Western Division. American Dairy Science Association. Utah State Agricultural College. Logan, Utah. pp. 123-133.

MORRIS, A. J. 1948-1960. Dept. Head. Dept. of Dairy Industry. Utah State University. Personal Correspondence and Reports.

MORRIS, A. J., LARSEN, P. B., AND JOHNSON, J. D. 1951. Hydrogen Peroxides Place in the Making of High Quality Swiss Cheese. Farm and Home Sci. Utah Agricultural Experiment Station. Logan, Utah. 12: 79.

MUCH, H., AND ROMER, P. H. 1906. Ein Vefahren zur Gewinnung einer von lebenden Tuberkelbozillen und andern lebensfahigen Keimen freien, in ihren genuines Eigenschaften im wesentlichen unveranderten Kuhmilch. Bietr. Klin. Tuberk. 5: 349.

NAGMOUSH, M. R. 1949. A Comparative Study of Hydrogen Peroxide in Treating Milk for Cheddar Cheese Making. MS Thesis. School of Agriculture. Utah State Agricultural College. Logan, Utah. 53 p.

PAYNE, J. H. AND FOSTER, L. 1945. The Action of Hydrogen Peroxide on Carbohydrates. Am. Chem. Soc. J. Pt. 2. 67: 1654-1656.

REPORT OF THE OFFICE OF TECHNICAL SERVICE. DEPT. OF COMMERCE. WASHINGTON D.C. 1945. Hydrogen Peroxide of High Purity and its Use for Sterilization of Milk. Montecatine, Societa Generale Per L' Industria Mineraria E Chemica. Milan, Italy. 43 p.

RIFAAT, I. EL D. 1950. The Use of Hydrogen Peroxide and Catalase as a Substitute for Pasteurization in Market Milk. MS Thesis. School of Agriculture. Utah State Agricultural College. Logan, Utah. 65 p.

ROPERTSON, W. V., ROPER, W. AND BAUER, W. V. 1941. Degradation of Mucins and Polysaccharides. Biochem. J. 35: 903-908.

ROGERS, L. A., et al. 1912. U.S. Dept. Agr. Bur. Animal Ind. Circ. 189. Did not see original. Quoted from HAMMER, B. W. AND BABEL, F. J. 1957. Dairy Bacteriology. 4th Edition. John Wiley and Sons Inc. New York. pp. 310-311.

ROUNDY, Z. D. 1959. Preparation of Swiss Cheese. U.S. Pat. 2900257. 8 p.

ROUNDY, Z. D. 1958. Treatment of Milk for Cheese with Hydrogen Peroxide. J. Dairy Sci. 41: 1460-65. ROUNDY, 7. D. 1948-1959. Armour and Company. Chicago 9, Illinois. Personal Correspondence and Reports.

TEPLY, L. J. et al. 1958. Composition and Nutritive Value of Cheese Produced from Milk Treated with Hydrogen Peroxide and Catalase. J. Dairy Sci. 41: 593-605.

THENAPD, F. 1819. Traite 'de Chimie. France. Original not seen. Quoted from RIFAAT, I. EL D. 1950. The Use of Hydrogen Peroxide and Catalase as a Substitute for Pasteurization in Market Milk. MS Thesis. School of Agriculture. Utah State Agricultural College. Logan, Utah. p. 3.

WYSS, O. et al. 1948. The Role of Peroxide in the Biological Effects of Irradiated Broth. J. Bact. 56: 51-57.

APPENDIXES

Appendix A contains the data from the preliminary series of experiments. Detailed information concerning the selction, preparation and treatment of the milk may be found on pages 8 through 12 in the body of this thesis. The procedure used in plating the various groups of organisms may be found on pages 12 and 13.

# Lot I

49 C for 20 minutes using raw Grade A milk

| Coliforms 1/100  | Lactic Organisms 1/1000 |
|------------------|-------------------------|
| Blank - negative | Blank - negative        |
| R - negative     | R = 4                   |
| A - negative     | A - 3                   |
| B - negative     | B - negative            |
| C - negative     | C - negative            |
| D - negative     | D - 2                   |
| E - negative     | E - 3                   |
| F                |                         |

| Standard Plate 1/1000 | Aerobic Plate 1/1000 |
|-----------------------|----------------------|
| Blank - negative      | Blank - negative     |
| R - 16                | R – 16               |
| A = 2                 | A - 6                |
| B - 8                 | B - 4                |
| C - 3                 | C = 5                |
| D - 1                 | D - 1                |
| E = 2                 | E - negative         |

| Anaerobic Plate 1/100 | C |
|-----------------------|---|
| Blank - negative      |   |
| R - 1                 |   |
| A - negative          |   |
| B - negative          |   |
| C - negative          |   |
| D - 1                 |   |
| E - negative          |   |

# Lot II -- first series

49 C for 20 minutes using raw Grade A milk

| Coliforms 1/100       | Lactic Organisms 1/1000 |
|-----------------------|-------------------------|
| Blank - negative      | Blank - negative        |
| R = negative          | R – 1                   |
| A - negative          | A = 2                   |
| B - negative          | B - negative            |
| C - negative          | C - negative            |
| D - negative          | D - negative            |
| E - negative          | E - negative            |
| Standard Plate 1/1000 | Aerobic Plate 1/1000    |
| Blank - negative      | Blank - negative        |
| R = 2                 | R – 1                   |
| A - 2                 | A - 2                   |
| B = 4                 | B <b>-</b> 5            |
| C = 2                 | C - negative            |
| D - 1                 | D - 1                   |
| E = negative          | E - 1                   |
|                       |                         |

| Bla | nk - negative |
|-----|---------------|
| R - | negative      |
| A - | negative      |
| в – | negative      |
| С - | negative      |
| D - | negative      |
| Ε - | negative      |

## Lot III -- first series

| 49 0 | for | 20 | minutes | using | raw | Grade | A | milk |
|------|-----|----|---------|-------|-----|-------|---|------|
|------|-----|----|---------|-------|-----|-------|---|------|

| ty o soy the many source usang the stand it is |                         |
|------------------------------------------------|-------------------------|
| Coliforms 1/1000                               | Lactic Organisms 1/1000 |
| Blank - negative                               | Blank - negative        |
| R - negative                                   | R = 2                   |
| A - negative                                   | A - negative            |
| B - negative                                   | B - negative            |
| C - negative                                   | C - negative            |
| D - negative                                   | D - negative            |
| E - negative                                   | E - negative            |
| Standard Plate 1/1000                          | Aerobic Plate 1/1000    |
| Blank - negative                               | Blank - 1               |
| R – 5                                          | R - 3                   |
| A - 3                                          | A - negative            |
| B - 4                                          | B - negative            |
| C - negative                                   | C - negative            |
| D - 15 1 spreading lg. colony                  | D - 1                   |

E = 2 surface colonies

Anaerobic Plate 1/1000 Blank - negative R - negative A - negative B - negative C - negative D - 1 E - negative E - 1

# Lot IV--first series

49 C for 20 minutes using raw Grade C milk

| Coliforms 1/100       | Lactic Organisms 1/1000 |
|-----------------------|-------------------------|
| Blank - negative      | Blank - negative        |
| R - 60                | R - TNC                 |
| A - negative          | A - TNC                 |
| B - negative          | B - TNC                 |
| C - negative          | C - TNC                 |
| D - negative          | D - TNC                 |
| E - negative          | E - 440                 |
| Standard Plate 1/1000 | Aerobic Count 1/1000    |
| Blank - negative      | Blank - negative        |
| R - TNC               | R - TNC                 |
| A - TNC               | A - TNC                 |
| B - TNC               | B - TNC                 |
| C - TNC               | C - TNC                 |
| D - TNC               | D - TNC                 |
| E - TNC               | E - TNC                 |

| В | la | nk – negative |
|---|----|---------------|
| R | -  | negative      |
| A | -  | negative      |
| В | -  | negative      |
| С | -  | negative      |
| D | -  | negative      |
| Ε | -  | 1             |

#### Lot V--first series

49 C for 20 minutes using raw Grade C milk

| Coliforms 1/100                       | Lactic Organisms 1/1000 |
|---------------------------------------|-------------------------|
| Blank - negative                      | Blank - negative        |
| $R_{-}F_{-}$ TNC - completely covered | R-F - TNC               |
| G = 7                                 | G - TNC                 |
| H - negative                          | H - TNC                 |
| I - negative                          | I - TNC                 |
| J - negative                          | J - TNC                 |
| K - negative                          | K - TNC                 |
| Standard Plate 1/1000                 | Aerobic Count 1/1000    |
| Blank - negative                      | Blank - negative        |
| R - TNC                               | R-F - TNC               |
| A - TNC                               | G - TNC                 |

B = TNCH = TNCC = TNCI = TNCD = TNCJ = TNCE = TNCK = TNC

<u>Anaerobic Count</u> Blank - negative R-F - negative G - negative H - negative I - 4 J - 1 K - 1

# Lot VI -- first series

49 C for 20 minutes using fresh raw Grade C milk

| Coliforms 1/1000 | Lactic Organisms 1/10,000 |
|------------------|---------------------------|
| Blank - negative | Blank - negative          |
| R = 243          | R - 200                   |
| A - negative     | A - 93                    |
| B - negative     | B <b>-</b> 80             |
| C - negative     | C - 33                    |
| D - negative     | D = 49                    |
| E - negative     | E - 1                     |

| Standard Plate 1/10,000 | Aerobic Count 1/18,000 |
|-------------------------|------------------------|
| Blank - 1               | Blank - negative       |
| R - 107                 | R - 127                |
| A <b>-</b> 66           | A = 70                 |
| B - 73                  | B - 82                 |
| c - 46                  | C - 20                 |
| D = 47                  | D = 28                 |
| E - negative            | E - negative           |

| A | na | erobic Plate 1/100 |
|---|----|--------------------|
| B | la | nk – negative      |
| R | -  | 2                  |
| A |    | 44                 |
| В | -  | 2                  |
| С | -  | 4                  |
| D | -  | negative           |
| E | _  | negative           |

## Lot VII -- first series

49 C for 20 minutes using day old raw Grade C milk

| Coliforms 1/1000                                       | Lactic Organisms 1/10,000                               |
|--------------------------------------------------------|---------------------------------------------------------|
| Blank - negative                                       | Blank - negative                                        |
| R - negative                                           | R = 9                                                   |
| A - negative                                           | A - negative                                            |
| B - negative                                           | B - 13                                                  |
| C - negative                                           | C - 16                                                  |
| D - negative 1/1000                                    | D - 3                                                   |
| E - negative 1/1000                                    | E - negative                                            |
|                                                        |                                                         |
|                                                        |                                                         |
| Standard Plate 1/10,000                                | Aerobic Plate 1/10,000                                  |
| Standard Plate 1/10,000<br>Blank - 1                   | <u>Aerobic Plate 1/10,000</u><br>Blank - negative       |
|                                                        |                                                         |
| Blank - 1                                              | Blank - negative                                        |
| Blank - 1<br>A - negative                              | Blank - negative<br>R - 36                              |
| Blank - 1<br>A - negative<br>B - 29                    | Blank - negative<br>R - 36<br>A - 1                     |
| Blank = 1<br>A = negative<br>B = 29<br>C = 35          | Blank - negative<br>R - 36<br>A - 1<br>B - 31           |
| Blank - 1<br>A - negative<br>B - 29<br>C - 35<br>D - 3 | Blank - negative<br>R - 36<br>A - 1<br>B - 31<br>C - 29 |

| B | la | nk – negative |
|---|----|---------------|
| R | -  | negative      |
| A | -  | 38            |
| В | -  | 28            |
| С | -  | 3             |
| D | -  | negative      |
| Е | _  | negative      |

49 C for 20 minutes using day old raw Grade C milk

| Coliforms 1/1000        | Lactic Organisms 1/10,000 |  |
|-------------------------|---------------------------|--|
| Plank - negative        | Blank - negative          |  |
| R - negative            | R – 1                     |  |
| A - negative            | A - negative              |  |
| B - negative            | B - negative              |  |
| C - negative            | C - negative              |  |
| D - negative            | D - negative              |  |
| E - negative            | E - negative              |  |
| Standard Plate 1/10,000 | Aerobic Plate 1/10,000    |  |

| Blank - negative | Blank - negative |
|------------------|------------------|
| R - 3            | R - 6            |
| A - 1            | A - 5            |
| B - 4            | B - 1            |
| C - 1            | C - 2            |
| D - negative     | D - negative     |
| E = negative     | E - 2            |

Anaerobic Plate 1/100 Blank - negative R - negative A - 1 B - 69 C - negative D - negative

E - negative

## Lot IX -- first series

49 C for 20 minutes using day old mixed raw Grade A milk

| Coliforms 1/1000               | Lactic Organisms 1/1000 1/10,000 |          |  |
|--------------------------------|----------------------------------|----------|--|
| Blank - negative               | Blank - negative                 | negative |  |
| R - 307                        | R - TNC                          | 16       |  |
| A = negative                   | A - 263                          | 2        |  |
| B - 17 1/100                   | B - 251                          | 10       |  |
| C - negative                   | C = 230                          | 4        |  |
| D - negative                   | D - 72                           | negative |  |
| E – negative                   | E - 35                           | negative |  |
| Standard Plate 1/1000 1/10,000 | Aerobic Plate 1/1000 1/          | 10,000   |  |
| Blank - negative               | Blank - negative ne              | gative   |  |

| DIANK - Negacive |    | Drank - negactic | ino Baroz i i |
|------------------|----|------------------|---------------|
| R - TNC          | 76 | R - TNC          | 144           |
| A - TNC          | 17 | A - TNC          | 14            |
| B - TNC          | 12 | B - 782          | 16            |
| C = 842          | 10 | C - 914          | 15            |
| C = 189          | 3  | D - 238          | 4             |
| E - 135          | 1  | E - 144          | 2             |

| B1 | ar | nk - negative |
|----|----|---------------|
| R  | -  | negative      |
| A  | -  | 2             |
| В  | -  | 38            |
| С  | -  | negative      |
| D  | -  | 2             |
| E  | -  | 1             |

## Lot X -- first series

49 C for 20 minutes using day old mixed raw Grade A milk

| Coliforms 1/1000      | Lactic Organisms 1/1000 |
|-----------------------|-------------------------|
| Blank - negative      | Blank - negative        |
| R - negative          | R = 4                   |
| A - 2 1/100           | A - 18                  |
| B = 5 1/100           | B - 31                  |
| C - negative          | C - 4                   |
| D - negative          | D - 1                   |
| E - negative          | E - 1                   |
| Standard Plate 1/1000 | Aerobic Plate 1/1000    |
| Blank - negative      | Blank - negative        |
| R = 24                | R _ 25                  |
| A - 467               | A = 409                 |
| B - 133               |                         |
|                       | B - 163                 |
| C = 14                | B = 163<br>C = 17       |
|                       |                         |

| A | nae | erobic 1/100  |
|---|-----|---------------|
| B | laı | nk - negative |
| R | -   | negative      |
| A | -   | 30            |
| B | -   | 41            |
| С | -   | 1             |
| D | -   | negative      |
| E | -   | 1             |

#### Lot I -- second series

49 C for 20 minutes using day old Grade C milk

| Coliforms 1/1000 | Lactic Organisms 1/10,0 |
|------------------|-------------------------|
| Blank - negative | Blank - negative        |
| R = 663          | R - 134                 |
| A = negative     | A - 23                  |
| B = negative     | B - negative            |
| C - negative     | C - 10                  |

# Standard Plate 1/10,000

# Aerobic Plate 1/10,000

| Blank - negative | Blank - negative |
|------------------|------------------|
| R = 346          | R - 327          |
| A - 24           | A = 25           |
| B - negative     | B - 2            |
| C - 16           | C - 10           |

| B | la | nk - negative |
|---|----|---------------|
| R | -  | negative      |
| A | -  | negative      |
| В | -  | negative      |
| С | -  | negative      |

49 C for 20 minutes using day old Grade C milk

| Coliforms | 4.1 | 11000 |  |
|-----------|-----|-------|--|
| COTTOURS  | 1/  | 1000  |  |

Blank - negative

R - negative

- A negative
- B negative
- C negative

#### Standard Plate 1/10,000

Blank - negative

R - 2

- A negative
- B negative
- C negative

# Lactic Organisms 1/10,000

- Blank negative R - negative
- A negative
- B negative
- C negative

#### Aerobic Plate 1/10,000

| B. | lar | nk - negative |
|----|-----|---------------|
| R  | -   | negative      |
| A  | -   | negative      |
| В  | -   | negative      |
| C  | -   | negative      |

| B | la | nk - negative |
|---|----|---------------|
| R | -  | negative      |
| A | -  | 5             |
| B | -  | negative      |
| С | _  | negative      |

## Lot III -- second series

49 C for 20 minutes using day old Grade C milk

| Coliforms 1/1000 | Lactic Organisms 1/10,000 |
|------------------|---------------------------|
| Blank - negative | Blank - negative          |
| R - 40           | R <b>-</b> 86             |
| A - negative     | A = 25                    |
| B - negative     | B <b>-</b> 5              |
| C - negative     | C = 6                     |

| Standard Plate 1/10,000 | Aerobic Plate 1/10,000 |
|-------------------------|------------------------|
| Blank - negative        | Blank - negative       |
| R - 230                 | R - 190                |
| A - 99                  | A - 74                 |
| B - 23                  | B = 13                 |
| c = 36                  | C - 34                 |

| R] | lar | nk – negative |
|----|-----|---------------|
| R  | -   | 53            |
| A  | -   | 1             |
| В  | -   | negative      |
| С  | _   | negative      |

49 C for 20 minutes using day old Grade C milk

| Coliforms 1/1000      | Lactic Organisms 1/10,000 |
|-----------------------|---------------------------|
| Blank - negative      | Blank - negative          |
| R = 9                 | R - 75                    |
| A - negati <b>v</b> e | A <b>-</b> 6              |
| B - negative          | B - negative              |
| C - negative          | C = 2                     |

| Standard Plate 1/10,000 | Aerobic Plate 1/10,000 |
|-------------------------|------------------------|
| Blank - negative        | Blank - negative       |
| R = 144                 | R = 201                |
| A - 38                  | A - 40                 |
| B = 7                   | B - 2                  |
| C - 10                  | C - 10                 |

| Anaerobic Plate 1/100 |
|-----------------------|
| Blank - negative      |
| R - 3                 |
| A - negative          |
| B - negative          |
|                       |

c - 3

49 C for 20 minutes using day old Grade C milk

| Coliforms 1/1000 | Lactic Organisms 1/10,000 |  |
|------------------|---------------------------|--|
| Blank - negative | Blank - negative          |  |
| R - 2            | R - 1250                  |  |
| A - negative     | A - 37                    |  |
| B - negative     | B - 7                     |  |
| C - negative     | C = 10                    |  |

| Standard Plate 1/10,000 | Aerobic Plate 1/10,000 |  |  |
|-------------------------|------------------------|--|--|
| Blank - negative        | Blank - negative       |  |  |
| R = 864                 | R - 1602               |  |  |
| A - 232                 | A - 182                |  |  |
| B - 39                  | B - 46                 |  |  |
| C = 33                  | C - 31                 |  |  |

| Anaerob   | in I | atel | 11 | 100 |
|-----------|------|------|----|-----|
| ALLACT OF | 10 1 | TUCC | +1 | 100 |

| B | lai | nk - negative |
|---|-----|---------------|
| R | -   | 227           |
| A |     | 3             |
| В | -   | 2             |
| С | -   | negative      |

# Lot I -- third series

49 C for 20 minutes using day old Grade C milk

| Lactic Organisms 1/10,000 | Aerobic Plate 1/10,000 |  |  |
|---------------------------|------------------------|--|--|
| Blank - negative          | Blank - negative       |  |  |
| R = 41                    | R = 82                 |  |  |
| A - 11                    | A - 14                 |  |  |
| B - 9                     | B <b>-</b> 10          |  |  |
| C - 6                     | C = 6                  |  |  |

| Standard Plate 1/10,000 | Anaerobic Plate 1/100 |  |  |
|-------------------------|-----------------------|--|--|
| Blank - negative        | Blank - negative      |  |  |
| R - 62                  | R - 39                |  |  |
| A - 11                  | A - 24                |  |  |
| B - 8                   | B - 26                |  |  |
| C - 7                   | C - 21                |  |  |

# Lot II -- third series

49 C for 20 minutes using day old Grade milk

| Lactic Organisms 1/10,000 | Aerobic Plate 1/10,000 |
|---------------------------|------------------------|
| Blank - negative          | Blank - negative       |
| R - 30                    | R - 24                 |
| A - negative              | A - negative           |
| B - negative              | B - negative           |
| C - negative              | C - negative           |
|                           |                        |

| Anaerobic Plate 1/100 |  |  |
|-----------------------|--|--|
| Blank - negative      |  |  |
| R - 1                 |  |  |
| A - 3                 |  |  |
| B - 2                 |  |  |
| C - negative          |  |  |
|                       |  |  |

## Lot III -- third series

49 C for 20 minutes using day old Grade C milk

| Lactic | 2 | Organisms | 1/10,000 |
|--------|---|-----------|----------|
| Blank  | - | negative  |          |

- R 182
- A negative
- B negative
- C = negative

| Aerobic Plate 1/10,000 |
|------------------------|
| Blank - negative       |
| R - 146                |
| A - negative           |
| B - negative           |
| C - 1                  |

| Standard Plate 1/10,000 | Anaerobic Plate 1/100 |  |  |
|-------------------------|-----------------------|--|--|
| Blank - negative        | Blank - negative      |  |  |
| R = 149                 | R - 1                 |  |  |
| A - 1                   | A - negative          |  |  |
| B - negative            | B - negative          |  |  |
| C - 1                   | C - negative          |  |  |
|                         |                       |  |  |

# Lot IV -- third series

49 C for 20 minutes using day old Grade C milk

| Lactic Organisms 1/10,000 | Aerobic Plate 1/10,000 |  |  |
|---------------------------|------------------------|--|--|
| Blank - negative          | Blank - negative       |  |  |
| R - 949                   | R = 800                |  |  |
| A - 21                    | A - 13                 |  |  |
| B = 10                    | B - 18                 |  |  |
| C - 8                     | C - 14                 |  |  |

| Standard Plate 1/10,000 | Anaerobic Plate 1/100 |
|-------------------------|-----------------------|
| Blank - negative        | Blank - negative      |
| R = 392                 | R - 23                |
| A = 13                  | A - 8                 |
| B - 11                  | B - 3                 |
| 0 - 15                  | C - 9                 |

The following tables show the experimental design used in this work as well as the data used to make up the analysis of variance on each of the five groups of organisms involved in the experiment.

 $CO_{1}$  CO<sub>2</sub> and  $CO_{5}$  designate the percent concentrations of peroxide used.  $T_{90}$  and  $T_{120}$  designate the temperatures in degrees fahrenheit used in the experiment. The four lot numbers conform to the four different lots of milk used on each group of organisms. Where there are double sets of figures the second set represents a second dilution concentration from the same sample of milk at the given temperature and hydrogen peroxide concentration shown.

Agar and water blank controls were run on all lots for every group of organisms and were negative in every instance.

The data given under the sum totals portion of the tables contains the sums of the plate counts for each individual lot as well as the totals of those sums.

## Lactic acid producing organisms

Add four (4) zeros to all figures to convert them to raw numbers.

|      |                                                |                                              | Lot I                                    |                                                |                                                |                                           | Lot II                                   |                                                |
|------|------------------------------------------------|----------------------------------------------|------------------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------------|
|      | CO                                             | C02                                          | co5                                      | Totals                                         | CO                                             | C02                                       | co <sub>5</sub>                          | Totals                                         |
| T90  | 10<br>10<br>7<br>12<br><u>9</u><br>48          | 6<br>8<br>7<br>5<br>7<br>25                  | 3<br>2<br>3<br>5<br>16                   | 19<br>21<br>12<br>20<br><u>17</u><br>89        | 35<br>32<br>42<br>36<br><u>31</u><br>176       | 43<br>19<br>23<br>33<br><u>22</u><br>140  | 18<br>18<br>19<br><u>20</u><br>93        | 96<br>69<br>83<br>88<br><u>73</u><br>409       |
| T120 | 0 8<br>4<br>8<br>6<br><u>6</u><br>32           | 0<br>1<br>0<br>0<br>0<br>1                   | 0000000                                  | 8<br>5<br>8<br>6<br>6<br>3<br>3                | 25<br>17<br>26<br>22<br><u>20</u><br>110       | 1<br>1<br>0<br>0<br>2                     | 1<br>1<br>0<br><u>0</u><br>3             | 27<br>19<br>27<br>22<br><u>20</u><br>115       |
|      |                                                |                                              | Lot III                                  |                                                |                                                |                                           | Lot IV                                   |                                                |
|      | CO                                             | C02                                          | C05                                      | Totals                                         | CO                                             | C02                                       | C05                                      | Totals                                         |
| T90  | 200<br>366<br>168<br>240<br><u>314</u><br>1288 | 75<br>130<br>160<br>220<br><u>130</u><br>715 | 30<br>29<br>40<br>29<br>40<br>168        | 305<br>525<br>368<br>489<br><u>484</u><br>2171 | 334<br>270<br>262<br>258<br><u>330</u><br>1454 | 86<br>99<br>71<br>99<br><u>109</u><br>464 | 65<br>65<br>57<br>70<br><u>55</u><br>312 | 485<br>434<br>390<br>427<br><u>494</u><br>2230 |
| T120 | 214<br>140<br>180<br>200<br><u>190</u><br>924  | 53<br>62<br>63<br>52<br><u>57</u><br>287     | 38<br>43<br>35<br>28<br><u>33</u><br>177 | 305<br>145<br>278<br>280<br><u>280</u><br>1388 | 89<br>98<br>125<br>92<br>80<br>484             | 25<br>26<br>32<br>33<br><u>30</u><br>146  | 11<br>16<br>22<br>21<br><u>12</u><br>82  | 125<br>140<br>179<br>146<br><u>122</u><br>712  |
|      |                                                | Sum                                          | Totals                                   |                                                |                                                | Sum                                       | Totals                                   |                                                |
|      | CO                                             | C02                                          | c0 <sub>5</sub>                          | Totals                                         | CO                                             | C02                                       | C05                                      | Totals                                         |
| Т90  | 48<br>176<br>1288<br><u>1454</u><br>2966       | 25<br>140<br>715<br><u>464</u><br>1344       | 16<br>93<br>168<br><u>312</u><br>589     | 89<br>409<br>2171<br><u>2230</u><br>4899       | T120 32<br>110<br>924<br><u>484</u><br>1550    | 1<br>2<br>287<br><u>146</u><br>436        | 0<br>3<br>177<br><u>82</u><br>262        | 33<br>115<br>1388<br><u>712</u><br>2248        |

#### Anaerobic plate counts

Add two (2) zeros to all figures to convert them to raw numbers.

|      |                                                                                                                          |                                   | Lot I                                                                                                     |                                        |      |                                                                                                                      | 1                                                                          | Lot II                           |                                       |
|------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------|------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------|---------------------------------------|
|      | CO                                                                                                                       | C02                               | C <b>0</b> 5                                                                                              | Total                                  |      | CO                                                                                                                   | C02                                                                        | C05                              | Total                                 |
| Т90  | $15 \\ 8 \\ 13 \\ 13 \\ 1 \\ 50 $                                                                                        | 8<br>0<br>0<br>11                 | 0<br>2<br>1<br>1<br>5                                                                                     | 23<br>13<br>14<br>14<br><u>2</u><br>66 |      | $1 \\ 11 \\ 3 \\ 1 \\ \frac{1}{17}$                                                                                  | 5<br>8<br>1<br>1<br><u>3</u><br>18                                         | 3<br>4<br>1<br>0<br><u>1</u> 9   | 9352<br>5254                          |
| T120 | 17<br>1<br>28<br>9<br><u>19</u><br>74                                                                                    | 0<br>1<br>1<br>1<br>1<br>4        | 0<br>0<br>3<br>0<br>1<br>4                                                                                | 17<br>2<br>32<br>10<br><u>21</u><br>82 |      | 1<br>22<br>4<br>5<br>34                                                                                              | $ \begin{array}{r} 1 \\ 5 \\ 1 \\ - 4 \\ \underline{2} \\ 13 \end{array} $ | 3<br>0<br>2<br><u>2</u><br>10    | 5<br>10<br>23<br>10<br><u>9</u><br>57 |
|      |                                                                                                                          | Ī                                 | ot III                                                                                                    |                                        |      |                                                                                                                      | Ī                                                                          | ot IV                            |                                       |
|      | CO                                                                                                                       | C02                               | C05                                                                                                       | Total                                  |      | СО                                                                                                                   | C02                                                                        | c05                              | Total                                 |
| Т90  | $     \begin{array}{r}       1 \\       6 \\       4 \\       \underline{6} \\       18 \\       18 \\     \end{array} $ | 0<br>1<br>6<br>0<br><u>1</u><br>8 | 3<br>4<br>1<br>0<br>9                                                                                     | 4<br>11<br>8<br>5<br><u>7</u><br>35    |      | 2<br>1<br>3<br>1<br><u>1</u><br>8                                                                                    | 1<br>1<br>2<br>2<br>9                                                      | 1<br>0<br>1<br>2<br>5            | 4 36 4 <u>5</u><br>22                 |
| T120 | 3<br>1<br>5<br>1<br>13                                                                                                   | 2<br>4<br>3<br><u>1</u><br>18     | $     \begin{array}{c}       1 \\       3 \\       3 \\       \underline{3} \\       11     \end{array} $ | 6<br>16<br>7<br><u>7</u><br>42         |      | $     \begin{array}{r}       6 \\       1 \\       0 \\       4 \\       \underline{5} \\       16     \end{array} $ | 4<br>0<br>7<br>4<br><u>2</u><br>17                                         | $1 \\ 3 \\ 6 \\ 1 \\ 1 \\ 12$    | 11<br>4<br>13<br>9<br><u>8</u><br>45  |
|      |                                                                                                                          | Sum                               | Totals                                                                                                    |                                        |      |                                                                                                                      | Sum                                                                        | Totals                           |                                       |
|      | CO                                                                                                                       | C02                               | C05                                                                                                       | Totals                                 |      | CO                                                                                                                   | C02                                                                        | c05                              | Totals                                |
| T90  | 50<br>17<br>18<br><u>8</u><br>93                                                                                         | 11<br>18<br>8<br><u>9</u><br>46   | 5<br>9<br>9<br>5<br>28                                                                                    | 66<br>44<br>35<br><u>22</u><br>167     | T120 | 74<br>34<br>13<br><u>16</u><br>137                                                                                   | 4<br>13<br>18<br><u>17</u><br>52                                           | 4<br>10<br>11<br><u>12</u><br>37 | 82<br>57<br>42<br>45<br>226           |

## Standard plate counts

Add four (4) zeros to all figures to convert them to raw numbers.

|             |                                               |                                                      | Lot I                          |                                                      |      |                                               | I                                      | lot II                             |                                               |
|-------------|-----------------------------------------------|------------------------------------------------------|--------------------------------|------------------------------------------------------|------|-----------------------------------------------|----------------------------------------|------------------------------------|-----------------------------------------------|
|             | CO                                            | C02                                                  | C05                            | Totals                                               |      | CO                                            | C02                                    | c05                                | Totals                                        |
| T90         | 32<br>31<br>42<br>62<br><u>31</u><br>198      | 4<br>8<br>12<br>23<br><u>10</u><br>57                | 9<br>3<br>4<br>22              | 45<br>41<br>57<br>89<br>44<br>277                    |      | 102<br>76<br>130<br>76<br><u>74</u><br>458    | 11<br>9<br>20<br>3<br><u>10</u><br>43  | 14<br>7<br>59<br>9<br>43           | 127<br>92<br>145<br>87<br><u>93</u><br>544    |
| T120        | 30<br>33<br>11<br>204<br><u>29</u><br>307     | 6<br>4<br>21<br>7<br><u>9</u><br>47                  | 3<br>2<br>70<br><u>5</u><br>13 | 39<br>39<br>35<br>211<br><u>43</u><br>367            |      | 25<br>15<br>22<br>37<br><u>18</u><br>117      | 5<br>2<br>13<br>6<br>4<br>30           | 4<br>7<br>2<br>4<br><u>2</u><br>19 | 34<br>24<br>37<br>47<br>24<br>166             |
|             |                                               |                                                      | Lot III                        |                                                      |      |                                               | Ī                                      | ot IV                              |                                               |
|             | CO                                            | C02                                                  | co <sub>5</sub>                | Totals                                               |      | CO                                            | co <sub>2</sub>                        | C05                                | Totals                                        |
| T90         | 117<br>181<br>149<br>110<br><u>132</u><br>689 | 11<br>11<br>15<br>9<br><u>12</u><br>58               | 11<br>7<br>7<br>9<br>41        | 139<br>199<br>171<br>126<br><u>153</u><br>788        |      | 100<br>92<br>166<br>164<br><u>133</u><br>655  | 12<br>12<br>7<br>26<br><u>8</u><br>65  | 0<br>0<br>1<br>2<br>4              | 112<br>104<br>174<br>191<br><u>143</u><br>724 |
| T120        | 147<br>82<br>106<br>121<br><u>107</u><br>563  | 12     17     41     16     16     102     102     1 | 0<br>1<br>1<br>6<br>9          | 159<br>100<br>148<br>138<br><u>674</u><br><u>674</u> |      | 166<br>207<br>182<br>144<br><u>160</u><br>859 | 13<br>14<br>16<br>9<br><u>25</u><br>77 | 202015                             | 181<br>221<br>200<br>153<br><u>186</u><br>941 |
|             |                                               | Sun                                                  | n Totals                       |                                                      |      |                                               | Sum                                    | Totals                             |                                               |
|             | CO                                            | C02                                                  | C05                            | Totals                                               |      | CO                                            | C02                                    | C05                                | Totals                                        |
| <b>T</b> 90 | 198<br>458<br>689<br><u>655</u><br>2000       | 57<br>43<br>58<br><u>65</u><br>233                   | 22<br>43<br>41<br>4<br>110     | 277<br>544<br>788<br>724<br>2333                     | T120 | 307<br>117<br>563<br><u>859</u><br>1846       | 47<br>30<br>102<br><u>77</u><br>256    | 13<br>19<br>9<br>5<br>46           | 367<br>166<br>674<br><u>941</u><br>2148       |

# Coliforms

Add three (3) zeros to all figures to convert them to raw numbers.

|      |                                                |                                                |                                          |                                          | Lot I                                    |                                      |                                                |                                                |
|------|------------------------------------------------|------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|--------------------------------------|------------------------------------------------|------------------------------------------------|
|      |                                                | 0                                              | C                                        | 02                                       |                                          | 05                                   | To                                             | otal                                           |
| T90  | 300<br>238<br>256<br>342<br><u>362</u><br>1498 | 330<br>340<br>390<br>350<br><u>370</u><br>1780 | 71<br>94<br>80<br>51<br><u>85</u><br>381 | 70<br>40<br>110<br>20<br>280             | 37<br>19<br>32<br>10<br>16<br>114        | 0<br>10<br>10<br>0<br><u>0</u><br>20 | 408<br>351<br>368<br>403<br><u>463</u><br>1993 | 400<br>390<br>440<br>460<br><u>390</u><br>2080 |
| T120 | 186<br>150<br>202<br>130<br><u>118</u><br>786  | 150<br>120<br>110<br>130<br>150<br>660         | 0000000                                  | 000000                                   | 0<br>0<br>0<br>0<br>0<br>0               | 000000                               | 186<br>150<br>202<br>130<br><u>118</u><br>786  | 150<br>120<br>110<br>130<br><u>150</u><br>660  |
|      |                                                |                                                |                                          |                                          | Lot II                                   |                                      |                                                |                                                |
| T90  | 398<br>402<br>378<br>438<br><u>384</u><br>2000 | 420<br>380<br>410<br>430<br><u>470</u><br>2110 | 68<br>71<br>55<br>74<br><u>71</u><br>339 | 60<br>90<br>50<br>90<br><u>50</u><br>340 | 41<br>33<br>27<br>16<br><u>44</u><br>161 | $30 \\ 20 \\ 50 \\ 50 \\ 10 \\ 160 $ | 507<br>506<br>460<br>528<br>499<br>2500        | 510<br>490<br>510<br>570<br><u>530</u><br>2610 |
| T120 | 230<br>118<br>138<br>162<br><u>142</u><br>790  | 290<br>100<br>160<br>130<br><u>270</u><br>950  | 1<br>0<br>0<br>0<br><u>0</u><br>1        | 0000000                                  | 0<br>0<br>0<br>0<br>0<br>0               | 0000000                              | 231<br>118<br>138<br>162<br><u>142</u><br>791  | 290<br>100<br>160<br>130<br><u>270</u><br>950  |
|      |                                                |                                                |                                          |                                          | Lot III                                  |                                      |                                                |                                                |
| T90  | 17<br>8<br>10<br>18<br><u>25</u><br>78         | 30<br>30<br>20<br>30<br><u>30</u><br>130       | 000000                                   | 00000                                    | 0<br>0<br>0<br>0<br>0                    | 00000000                             | 17<br>8<br>10<br>18<br><u>25</u><br>78         | 30<br>30<br>20<br><u>30</u><br>130             |
| T120 | 000000                                         | 000000                                         | 000000                                   | 000000                                   | 0<br>0<br>0<br>0<br>0                    | 000000                               | 0<br>0<br>0<br>0<br>0                          | 0000000                                        |

|             |                                          |                                          |                              |                                    | Lot IV                                         |                            |                                         |                                          |
|-------------|------------------------------------------|------------------------------------------|------------------------------|------------------------------------|------------------------------------------------|----------------------------|-----------------------------------------|------------------------------------------|
|             |                                          | CO                                       | _                            | C02                                | _                                              | C05                        | 1                                       | Fotal                                    |
| T90         | 14,<br>12<br>18<br>16<br><u>13</u><br>73 | 30<br>10<br>10<br>20<br><u>20</u><br>90  | 0<br>0<br>0<br>0<br>0        | 0000000                            |                                                | 000000                     | 14<br>12<br>18<br>16<br><u>13</u><br>73 | 30<br>10<br>20<br><u>20</u><br>90        |
| T120        | 0000000                                  | 0<br>0<br>0<br>0<br>0                    |                              | 000000                             | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 000000                     |                                         | 000000                                   |
| <b>T</b> 90 | 1498<br>2000<br>78<br><u>73</u><br>3649  | 1780<br>2110<br>130<br><u>90</u><br>4110 | 381<br>339<br>0<br>720       | 280<br>340<br>0<br><u>0</u><br>620 | 114<br>161<br>0<br>275                         | 20<br>160<br>0<br>0<br>180 | 1993<br>2500<br>78<br><u>73</u><br>4644 | 2080<br>2610<br>130<br><u>90</u><br>4910 |
| T120        | 786<br>790<br>0<br>1576                  | 660<br>950<br>0<br><u>0</u><br>1610      | 0<br>1<br>0<br><u>0</u><br>1 | 00000                              | 0<br>0<br>0<br>0<br>0                          | 000000                     | 786<br>791<br>0<br><u>0</u><br>1577     | 660<br>950<br>0<br>0<br>1610             |

# Aerobic plates

Add one (1) zero to all figures to convert them to raw numbers.

|      |                                                                                                                           |                                   |                                                                                                                            |                                         | <u>Lot I</u>               |                       |             |                                           |                                           |
|------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------|-----------------------|-------------|-------------------------------------------|-------------------------------------------|
|      |                                                                                                                           | CO                                |                                                                                                                            | C02                                     | _                          | C05                   | -           | T                                         | otal                                      |
| т90  | 10<br>20<br>20<br>10<br><u>0</u><br>60                                                                                    | 100<br>0<br>0<br>0<br>100         | 10<br>10<br>10<br>0<br><u>0</u><br><u>30</u>                                                                               | 100<br>0<br>0<br>0<br>0<br>100          |                            |                       | )<br>)<br>) | 50<br>30<br>30<br>10<br><u>0</u><br>120   | 300<br>0<br>0<br>0<br>300                 |
| T120 | 10<br>20<br>50<br>0<br>80                                                                                                 | 100<br>300<br>100<br>0<br>500     | 80<br>10<br>20<br>0<br><u>0</u><br>110                                                                                     | 300<br>0<br>0<br>0<br>300               | 1<br>1<br>1<br>3<br>7      |                       |             | 100<br>40<br>80<br>10<br><u>30</u><br>260 | 600<br>300<br>100<br>0<br>1000            |
|      |                                                                                                                           |                                   |                                                                                                                            |                                         | Lot II                     |                       |             |                                           |                                           |
| T90  | $     \begin{array}{r}       10 \\       10 \\       30 \\       40 \\       40 \\       \overline{130}     \end{array} $ | 100<br>100<br>0<br>0<br>200       | 10<br>10<br>0<br><u>0</u><br>20                                                                                            | 100<br>100<br>0<br>0<br>200             |                            |                       |             | 30<br>30<br>40<br>40<br>170               | 200<br>200<br>0<br>0<br>400               |
| T120 | 30<br>20<br>50<br>70<br>40<br>210                                                                                         | 100<br>100<br>0<br>0<br>200       | $     \begin{array}{r}       10 \\       20 \\       30 \\       20 \\       \underline{40} \\       120     \end{array} $ | 200<br>0<br>0<br>0<br>200               | 30<br>50<br>10<br>()<br>90 | 0 100<br>0 100<br>0 0 |             | 70<br>90<br>90<br>80<br>420               | 400<br>200<br>100<br>0<br><u>0</u><br>700 |
|      |                                                                                                                           |                                   |                                                                                                                            | ]                                       | Lot III                    |                       |             |                                           |                                           |
| T90  | 21<br>10<br>21<br>10<br><u>14</u><br>76                                                                                   | 10<br>10<br>40<br>20<br>20<br>100 | 7<br>9<br>12<br>12<br><u>8</u><br>48                                                                                       | 20<br>10<br>10<br>40<br><u>10</u><br>90 | 14<br>6<br>7<br>1<br>36    | 0<br>10<br>30<br>10   |             | 36<br>33<br>39<br>29<br><u>23</u><br>160  | 40<br>20<br>60<br>90<br>40<br>250         |
| T120 | 8<br>5<br>6<br><u>12</u><br>33                                                                                            | 40<br>10<br>10<br><u>20</u><br>90 | 11<br>9<br>7<br>9<br>7<br>43                                                                                               | 0<br>20<br>20<br>40                     | 6<br>7<br>6<br>5<br>32     | 10<br>30<br>40        |             | 25<br>21<br>15<br>21<br>24<br>106         | 70<br>20<br>60<br>70<br>20<br>240         |

|             |                                            | co                                      |                                        | CO2                                    | _                                  | C05                                   | _                                       | Total                                                                                                             |
|-------------|--------------------------------------------|-----------------------------------------|----------------------------------------|----------------------------------------|------------------------------------|---------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| <b>T9</b> 0 | 6<br>15<br>10<br>9<br><u>10</u><br>50      | 10<br>10<br>20<br>10<br><u>30</u><br>80 | 13<br>16<br>10<br>4<br><u>13</u><br>56 | 20<br>20<br>20<br><u>30</u><br>90      | 5<br>5<br>8<br>9<br>2<br>29        | 20<br>20<br>0<br><u>10</u><br>50      | 24<br>36<br>28<br>22<br>25<br>135       | 50<br>30<br>40<br>30<br><u>70</u><br>220                                                                          |
| T120        | 8<br>4<br>10<br>9<br>7<br>38               | 20<br>10<br>10<br>30<br><u>10</u><br>80 | 9<br>8<br>10<br>3<br>7<br>37           | 20<br>0<br>20<br>10<br><u>10</u><br>60 | 2<br>4<br>5<br>2<br>5<br>18        | 10<br>10<br>20<br><u>20</u><br>60     | 19<br>16<br>25<br>14<br><u>19</u><br>93 | 50<br>20<br>30<br>60<br><u>40</u><br>200                                                                          |
|             |                                            |                                         |                                        | Sum                                    | Total                              |                                       |                                         |                                                                                                                   |
| <b>T</b> 90 | 60<br>130<br>76<br><u>50</u><br>316        | 100<br>200<br>100<br><u>80</u><br>480   | 30<br>20<br>48<br><u>56</u><br>154     | 100<br>200<br>90<br><u>90</u><br>480   | 30<br>20<br>36<br><u>29</u><br>115 | $100 \\ 00 \\ 60 \\ 50 \\ 210$        | 120<br>170<br>160<br><u>135</u><br>585  | 300<br>400<br>250<br><u>220</u><br>1170                                                                           |
| T120        | 80<br>210<br><u>33</u><br><u>38</u><br>361 | 500<br>200<br>90<br><u>80</u><br>870    | 110<br>120<br>43<br><u>37</u><br>310   | 300<br>200<br>40<br><u>60</u><br>600   | 70<br>90<br>30<br><u>18</u><br>208 | 200<br>300<br>110<br><u>60</u><br>670 | 260<br>420<br>106<br><u>93</u><br>879   | $   \begin{array}{r}     1000 \\     700 \\     240 \\     \underline{200} \\     \overline{2140}   \end{array} $ |

Appendix C contains the data obtained from the treatment of various lots of milk with 0, 0.025 and 0.05 percent hydrogen peroxide at 4 C and held for 16 hours before plating. Prior to bacteriological plating, the treated milk was tested with potassium iodide to determine the presence of residual peroxide. The result of these tests may be found in Table 14, page 65. The plating procedure was the same as shown on pages 12 through13.

| Sample                                 | Standard Plate<br>Initial Count                                                                             | Untreated | 。025%            | .05%             |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------|------------------|------------------|
| Bulk (Nov. 7)<br>D 24<br>R 22<br>D 33  | $4 \times 10^5$<br>$4.05 \times 10^5$<br>$2.17 \times 10^4$<br>$5.77 \times 10^5$                           |           | +<br>-<br>-      | +<br>-<br>+<br>+ |
|                                        | Coliforms                                                                                                   |           |                  |                  |
| Bulk (Nov. 11)<br>A 21<br>D 35<br>A 38 | $\begin{array}{c} 2.5 & x & 105 \\ & 8 & x & 105 \\ 8.4 & x & 103 \\ 2.38 & x & 105 \end{array}$            | Ē         | -<br>-<br>+<br>- | +<br>+<br>+<br>= |
|                                        | Lactic Acid<br>Organisms                                                                                    |           |                  |                  |
| Bulk (Dec. 16)<br>S 12<br>S 39<br>S 57 | $2.08 \times 10^{6}$<br>$1.85 \times 10^{5}$<br>$7.12 \times 10^{6}$<br>$8.9 \times 10^{4}$                 | -         | -<br>+<br>-      | +<br>+<br>-      |
|                                        | Aerobic                                                                                                     |           |                  |                  |
| Bulk (Nov. 19)<br>R 30<br>R 29<br>R 22 | $ \begin{array}{r} 1 \times 10^{4} \\ 6 \times 10^{3} \\ 7.2 \times 10^{4} \\ 2 \times 10^{3} \end{array} $ | E         | Ē                | +<br>+<br>-<br>+ |
|                                        | Aerobic<br>Organisms                                                                                        |           |                  |                  |
| Bulk (Nov. 28)<br>5 12<br>5 18<br>5 37 | $6.11 \times 1048.9 \times 1037.48 \times 1045.14 \times 104$                                               | E         | -                | +<br>+<br>-      |

Table 14. A comparison of potassium iodide tests on milk samples<sup>a</sup> treated with hydrogen peroxide and held at 4 C for 16 hours with variations caused by unknown initial amounts of catalase or catalase producing organisms

a Milk samples obtained from bulk tanks and individual patrons of the Cache Valley Dairy Association.

## Coliform plate counts

Add three (3) zeros to all figures to convert them to raw numbers.

|     |                                                |                                           |                         |                                 | Lot I  |         |          |                                                |                             |
|-----|------------------------------------------------|-------------------------------------------|-------------------------|---------------------------------|--------|---------|----------|------------------------------------------------|-----------------------------|
|     | (                                              | 00                                        | (                       | CO <sub>2</sub>                 |        | CO.     | <u>5</u> | T                                              | otal                        |
| T40 | 6<br>14<br>22<br>27<br><u>57</u><br>126        | 60<br>0<br>60<br>10<br>0<br>130           | 6<br>5<br>4<br>4<br>25  | 0<br>0<br>10<br><u>10</u><br>20 |        | 1 3005  | 0 0 0 0  | 1)<br>20<br>3)<br>6)<br>150                    | 0 0<br>1 60<br>1 20<br>1 10 |
|     |                                                |                                           |                         |                                 | Lot II |         |          |                                                |                             |
| T40 | 1<br>1<br>1<br>0<br>4                          | 10<br>0<br>0<br>0<br><u>0</u><br>10       | 3 0<br>1<br>0<br>2<br>6 | 0<br>0<br>10<br>0<br>0<br>10    |        | 000213  | 0 0 0 0  | 1<br>2<br>1<br>1                               |                             |
|     |                                                |                                           |                         | L                               | ot III |         |          |                                                |                             |
| T40 | 16<br>4<br>18<br>2<br><u>4</u> 2               | 000000                                    | 0<br>0<br>0<br>0<br>0   | 000000                          |        | 0000000 | 0 0 0 0  | 16<br>4<br>18<br>2<br><u>2</u><br>42           |                             |
|     |                                                |                                           |                         |                                 | Lot IV |         |          |                                                |                             |
| T40 | 332<br>248<br>212<br>200<br><u>200</u><br>1192 | 80<br>50<br>90<br>110<br><u>30</u><br>360 | 0<br>0<br>0<br>0<br>0   | 000000                          |        | 0000000 | 000000   | 332<br>248<br>212<br>200<br><u>200</u><br>1192 | 50<br>90<br>110             |

#### Aerobic plate counts

Add one (1) zero to all figures to convert them to raw numbers.

|     |                                                | CO                                            |                                                      | CO25                                           | C                                              | 05                                         | Tot                                                  | als                                            |
|-----|------------------------------------------------|-----------------------------------------------|------------------------------------------------------|------------------------------------------------|------------------------------------------------|--------------------------------------------|------------------------------------------------------|------------------------------------------------|
| T40 | 325<br>975<br>650<br>455<br>650<br>3055        | 80<br>80<br>90<br>80<br><u>90</u><br>420      | 715<br>690<br>388<br>500<br><u>390</u><br>2683       | 180<br>90<br>150<br>90<br><u>100</u><br>610    | 188<br>142<br>150<br>142<br><u>80</u><br>702   | 110<br>70<br>0<br>40<br><u>0</u><br>220    | 1228<br>1807<br>1188<br>1097<br><u>1120</u><br>6440  | 370<br>240<br>240<br>210<br>190<br>1250        |
|     |                                                |                                               |                                                      |                                                | Lot II                                         |                                            |                                                      |                                                |
| T40 | 100<br>88<br>92<br>105<br><u>60</u><br>445     | 40<br>20<br>10<br><u>30</u><br>110            | 1820<br>1700<br>1320<br>1365<br><u>1225</u><br>7930  | 320<br>240<br>260<br>300<br><u>410</u><br>1530 | 120<br>115<br>85<br>60<br><u>35</u><br>415     | 20<br>30<br>20<br>40<br><u>20</u><br>130   | 2040<br>1903<br>1997<br>1530<br><u>1320</u><br>8790  | 380<br>290<br>290<br>350<br>460<br>1770        |
|     |                                                |                                               |                                                      |                                                | Lot III                                        |                                            |                                                      |                                                |
| T40 | 975<br>715<br>780<br>520<br><u>750</u><br>3740 | 150<br>150<br>260<br>250<br><u>170</u><br>980 | 2600<br>2470<br>2600<br>2760<br><u>2500</u><br>12930 | 300<br>370<br>420<br>270<br><u>300</u><br>1660 | 390<br>325<br>390<br>411<br><u>300</u><br>1816 | 20<br>30<br>40<br>40<br>160                | 3965<br>3510<br>3770<br>3691<br><u>3550</u><br>18486 | 470<br>550<br>710<br>560<br><u>510</u><br>2800 |
|     |                                                |                                               |                                                      |                                                | Lot IV                                         |                                            |                                                      |                                                |
| Τ40 | 650<br>455<br>585<br>455<br>425<br>2570        | 170<br>70<br>110<br>140<br><u>100</u><br>590  | 930<br>1040<br>1105<br>720<br><u>910</u><br>4705     | 190<br>400<br>180<br>320<br><u>350</u><br>1440 | 240<br>380<br>368<br>300<br><u>365</u><br>1653 | 20<br>100<br>80<br><u>30</u><br><u>310</u> | 1820<br>1875<br>2058<br>1475<br><u>1700</u><br>8928  | 380<br>570<br>370<br>540<br>480<br>2340        |

# Anaerobic plate count

Add one (1) zero to all figures to convert them to raw numbers.

|     |                                                |                                              |                                          |                                        |                                                | Lot I   |                                               |                                        |                  |                                               |                                                |
|-----|------------------------------------------------|----------------------------------------------|------------------------------------------|----------------------------------------|------------------------------------------------|---------|-----------------------------------------------|----------------------------------------|------------------|-----------------------------------------------|------------------------------------------------|
|     |                                                | CO                                           |                                          | CO                                     | 25                                             |         | C                                             | 05                                     |                  | To                                            | tal                                            |
| T40 | 134<br>72<br>80<br>35<br><u>120</u><br>441     | 10<br>10<br>0<br><u>10</u><br><u>30</u>      |                                          | 112<br>72<br>140<br>120<br>120<br>564  | 50<br>0<br>40<br>40<br><u>110</u><br>240       |         | 24<br>28<br>25<br>30<br><u>21</u><br>128      | 0<br>10<br>10<br><u>10</u><br>20       |                  | 270<br>172<br>245<br>185<br><u>261</u><br>133 | 60<br>10<br>50<br>40<br><u>130</u><br>290      |
|     |                                                |                                              |                                          |                                        |                                                | Lot II  |                                               |                                        |                  |                                               |                                                |
| T40 | 56<br>48<br>70<br>45<br>60<br>279              | 10<br>0<br>10<br>0<br>20                     |                                          | +80<br>+10<br>+55<br>390<br>390<br>125 | 10<br>30<br>40<br><u>30</u><br>140             |         | 18<br>27<br>14<br>4<br><u>19</u><br>82        | 0<br>0<br>0<br><u>10</u><br>10         |                  | 554<br>485<br>539<br>439<br>469<br>486        | 20<br>30<br>40<br>40<br>40<br>170              |
|     |                                                |                                              |                                          |                                        |                                                | Lot III |                                               |                                        |                  |                                               |                                                |
| T40 | 455<br>390<br>325<br>333<br>248<br>1751        | 110<br>200<br>110<br>70<br><u>120</u><br>610 | 12<br>13<br>9<br>9                       | 235<br>300<br>275<br>60                | 250<br>250<br>270<br>180<br><u>160</u><br>1110 |         | 142<br>236<br>236<br>140<br><u>100</u><br>854 | 40<br>0<br>20<br>10<br><u>20</u><br>90 | 1<br>1<br>1<br>1 | 637<br>861<br>861<br>383<br><u>323</u><br>065 | 400<br>450<br>400<br>260<br><u>300</u><br>1810 |
|     |                                                |                                              |                                          |                                        | 1                                              | Lot IV  |                                               |                                        |                  |                                               |                                                |
| T40 | 400<br>120<br>240<br>342<br><u>120</u><br>1222 | 10<br>10<br>10<br>0<br><u>40</u><br>70       | 57<br>39<br>45<br>65<br><u>40</u><br>246 | 500                                    | 130<br>110<br>130<br>120<br><u>70</u><br>560   |         | 195<br>260<br>150<br>172<br><u>194</u><br>971 | 0<br>20<br>10<br>20<br><u>10</u><br>50 | 1                | 165<br>770<br>345<br>164<br>714<br>558        | 140<br>140<br>150<br>130<br><u>120</u><br>680  |

# Lactic acid producing organisms

Add three (3) zeros to all figures to convert them to raw numbers.

| Lot I       |                                                       |                                                           |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |                                                      |                                                         |                                                             |  |  |
|-------------|-------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------|--|--|
|             | CO                                                    |                                                           | C025                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C05                                                 |                                                      | Totals                                                  |                                                             |  |  |
| T40         | 2600<br>3250<br>1200<br>650<br>2600<br>10400          | 2600<br>3250<br>3900<br>3900<br>4550<br>18200             | 585<br>650<br>650<br>520<br>3005                                                                                                                                                 | 2480<br>1120<br>1400<br>1480<br>2100<br>8580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 184<br>128<br>172<br>300<br><u>320</u><br>1104      | 1520<br>720<br>1000<br>880<br><u>960</u><br>5080     | 3369<br>4028<br>2122<br>1550<br><u>3440</u><br>14509    | 6600<br>5090<br>6300<br>6260<br><u>7610</u><br><u>31860</u> |  |  |
| Lot II      |                                                       |                                                           |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |                                                      |                                                         |                                                             |  |  |
| <b>T</b> 40 | 188<br>160<br>214<br>220<br><u>145</u><br>927         | 180<br>120<br>160<br>130<br><u>100</u><br>690             | 14<br>14<br>14<br>21<br><u>15</u><br>78                                                                                                                                          | $     \begin{array}{r}       10 \\       10 \\       20 \\       0 \\       0 \\       \overline{} \\       \overline{ } \\       \overline{ } \\       \overline{ } \\       \phantom{$ | 10<br>4<br>11<br>5<br>35                            | 10<br>20<br>20<br>0<br>50                            | 212<br>178<br>239<br>246<br><u>165</u><br>1040          | 200<br>150<br>200<br>130<br><u>100</u><br>780               |  |  |
|             |                                                       |                                                           |                                                                                                                                                                                  | Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t III                                               |                                                      |                                                         |                                                             |  |  |
| T40         | 10530<br>5850<br>8210<br>4720<br><u>6280</u><br>35590 | 12350<br>10500<br>13000<br>11700<br><u>13000</u><br>60550 | 2275<br>2275<br>1950<br>1190<br><u>1990</u><br>9680                                                                                                                              | 8450<br>4550<br>7150<br>9100<br><u>6500</u><br>35750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1925<br>1500<br>1375<br>1625<br><u>1780</u><br>8205 | 6500<br>3900<br>6500<br>4550<br><u>7150</u><br>28600 | 14730<br>9625<br>11535<br>7535<br><u>10050</u><br>53475 | 27300<br>18950<br>26650<br>25350<br><u>26650</u><br>124900  |  |  |
|             |                                                       |                                                           |                                                                                                                                                                                  | Lot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IV                                                  |                                                      |                                                         |                                                             |  |  |
| т40         | 60<br>83<br>100<br>92<br><u>110</u><br>445            | 130<br>150<br>260<br>250<br><u>300</u><br>1090            | $     \begin{array}{r}             83 \\             26 \\             0 \\             36 \\             \underline{67} \\             \overline{212}         \end{array}     $ | 90<br>80<br>90<br><u>50</u><br>390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 65<br>58<br>78<br>70<br><u>60</u><br>331            | 30<br>100<br>120<br>90<br><u>80</u><br>420           | 208<br>167<br>178<br>198<br><u>237</u><br>988           | 250<br>330<br>470<br>420<br><u>430</u><br>1900              |  |  |

## Standard plate count

Add two (2) zeros to all figures to convert them to raw numbers.

|         | Lot I                                                |                                                                |                                                      |                                                            |                                                      |                                                            |                                                           |                                                                  |  |  |  |
|---------|------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------|--|--|--|
|         | CO                                                   |                                                                | C025                                                 |                                                            | C05                                                  |                                                            | Totals                                                    |                                                                  |  |  |  |
| T40     | 4550<br>3250<br>3055<br>3960<br><u>5200</u><br>20015 | 91200<br>97500<br>100000<br>78000<br><u>60000</u><br>423700    | 2990<br>3900<br>1950<br>3250<br><u>2600</u><br>14690 | 43400<br>65000<br>52000<br>45500<br><u>71500</u><br>277400 | 1495<br>1950<br>2600<br>3250<br><u>2210</u><br>11505 | 40200<br>65000<br>45500<br>39000<br><u>40000</u><br>229700 | 9035<br>9100<br>7605<br>10460<br><u>10010</u><br>46210    | 174800<br>227500<br>197500<br>162500<br><u>171500</u><br>933800  |  |  |  |
| Lot II  |                                                      |                                                                |                                                      |                                                            |                                                      |                                                            |                                                           |                                                                  |  |  |  |
| T40     | 3990<br>3100<br>3700<br>5200<br><u>4875</u><br>20265 | 117000<br>130000<br>104000<br>94500<br><u>116000</u><br>561500 | 2925<br>2470<br>2600<br>3055<br><u>4000</u><br>15050 | 71500<br>65000<br>45500<br>39000<br><u>52000</u><br>27300  | 2925<br>3120<br>5000<br>3770<br><u>3445</u><br>18260 | 65000<br>52000<br>58500<br>39000<br><u>52000</u><br>266500 | 9840<br>8690<br>10700<br>12025<br><u>12320</u><br>53575   | 253500<br>247000<br>208000<br>172500<br><u>220000</u><br>855300  |  |  |  |
| Lot III |                                                      |                                                                |                                                      |                                                            |                                                      |                                                            |                                                           |                                                                  |  |  |  |
| T40     | 256<br>260<br>256<br>160<br><u>152</u><br>1084       | 2100<br>2000<br>3100<br>2000<br>2300<br>11500                  | 68<br>68<br>56<br>132<br><u>108</u><br>432           | 700<br>600<br>900<br>600<br><u>800</u><br><u>3600</u>      | 32<br>80<br>60<br><u>36</u><br>268                   | 300<br>200<br>200<br>200<br><u>300</u><br>1200             | 356<br>408<br>372<br>352<br>296<br>1784                   | 3100<br>2800<br>4200<br>2800<br><u>3400</u><br>16300             |  |  |  |
| Lot IV  |                                                      |                                                                |                                                      |                                                            |                                                      |                                                            |                                                           |                                                                  |  |  |  |
| T40     | 7020<br>5850<br>5850<br>5850<br>4290<br>28860        | 110000<br>104000<br>130000<br>91000<br><u>78000</u><br>513000  | 4499<br>5200<br>4550<br>5850<br><u>6000</u><br>26099 | 58500<br>65000<br>65000<br>78000<br><u>71500</u><br>338000 | 1560<br>2350<br>2795<br>3250<br><u>2600</u><br>12555 | 52000<br>0<br>65000<br>45500<br>45500<br>208000            | 13079<br>13400<br>13195<br>14950<br><u>12890</u><br>67514 | 220500<br>169000<br>260000<br>214500<br><u>195000</u><br>1059000 |  |  |  |