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ABSTRACT

A Spatiotemporal Mountain Pine Beetle Outbreak Model

Predicting Severity, Cycle Period, and Invasion Speed

by

Jacob P. Duncan, Doctor of Philosophy

Utah State University, 2016

Major Professor: Dr. James Powell
Department: Mathematics and Statistics

The mountain pine beetle (MPB, Dendroctonus ponderosae), a tree-killing bark

beetle, has historically been part of the normal disturbance regime in lodgepole pine

(Pinus contorta) forests. In recent years, warm winters and summers have allowed

MPB populations to achieve synchronous emergence and successful attacks, result-

ing in widespread population outbreaks and resultant tree mortality across western

North America. We develop an age-structured forest demographic model that incorpo-

rates temperature-dependent MPB infestations: the Susceptible-Infested-Juvenile (SIJ)

model. Stability of fixed points is analyzed as a function of population growth rates, and

indicates the existence of periodic outbreaks that intensify as growth rates increase. We

devise analytical methods to predict outbreak severity and duration as well as outbreak

return time.

To assess the vulnerability of natural resources to climate change, we develop a

thermally-driven mechanistic model to predict MPB population growth rates using a

distributional model of beetle phenology in conjunction with criteria for successful tree

colonization. The model uses projected daily minimum and maximum temperatures

for the years 2025 to 2085 generated by three separate global climate models. Growth

rates are calculated each year for an area defined by latitude range 42◦ N to 49◦ N

and longitude range 108◦ W to 117◦ W on a Cartesian grid of approximately 4km
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resolution. Using these growth rates, we analyze how the optimal thermal window for

beetle development is changing with respect to elevation as a result of climate change

induced warming. We also use our combined model to evaluate if thermal regimes exist

that would promote life cycle bivoltinism and discuss how yearly growth rates would

change as a result.

Outbreaks of MPB are largely driven by host tree stand demographics and spa-

tial effects of beetle dispersal. We augment the SIJ model to account for the spatial

effects of MPB dispersal throughout a forest landscape by coupling it with a Gaussian

redistribution kernel. The new model generates a train of sustained solitary waves of

infestation that move through a forest with constant speed. We convert the resulting

integrodifference equation into a partial differential equation and search for travelling

wave solutions. The resulting differential equation provides predictions of the shape

of an outbreak wave profile and of peak infestation as functions of wave speed, which

can be calculated analytically. These results culminate in the derivation of an explicit

formula for predicting the severity of an outbreak based on the net reproductive rate of

MPB and host searching efficiency.

(152 pages)
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PUBLIC ABSTRACT

A Spatiotemporal Mountain Pine Beetle Outbreak Model

Predicting Severity, Cycle Period, and Invasion Speed

by

Jacob P. Duncan, Doctor of Philosophy

Utah State University, 2016

Major Professor: Dr. James Powell
Department: Mathematics and Statistics

The mountain pine beetle (MPB, Dendroctonus ponderosae), a tree-killing bark

beetle, has historically been part of the normal disturbance regime in lodgepole pine

(Pinus contorta) forests. In recent years, warm winters and summers have allowed

MPB populations to achieve synchronous emergence and successful attacks, result-

ing in widespread population outbreaks and resultant tree mortality across western

North America. We develop an age-structured forest demographic model that incorpo-

rates temperature-dependent MPB infestations: the Susceptible-Infested-Juvenile (SIJ)

model. Stability of equilibria is analyzed as a function of population growth rates, and

indicates the existence of periodic outbreaks that intensify as growth rates increase. We

devise methods to predict outbreak severity and duration as well as outbreak return

time.

To assess the vulnerability of natural resources to climate change, we develop a

thermally-driven mechanistic model to predict MPB population growth rates using a

distributional model of beetle phenology in conjunction with criteria for successful tree

colonization. The model uses projected daily minimum and maximum temperatures

for the years 2025 to 2085 generated by three separate global climate models. Growth

rates are calculated each year for an area defined by latitude range 42◦ N to 49◦ N

and longitude range 108◦ W to 117◦ W on a rectangular grid with approximately 4km
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resolution. Using these growth rates, we analyze how the optimal thermal window for

beetle development is changing with respect to elevation as a result of climate change

induced warming. We also use our combined model to evaluate if thermal regimes exist

that would promote two generations per year and discuss how yearly growth rates would

change as a result.

Outbreaks of MPB are largely driven by host tree stand demographics and spatial

effects of beetle dispersal. We augment the SIJ model to account for the spatial effects of

MPB dispersal throughout a forest landscape by coupling it with a probability distribu-

tion for beetle location after dispersal. The new model generates a train of solitary waves

of infestation that move through a forest with constant speed. We move from a discrete

to a continuous modelling framework and search for travelling wave solutions which re-

sults in predictions of the shape of an outbreak wave profile and of peak infestation as

functions of wave speed, which can be calculated analytically. These results culminate

in the derivation of an explicit formula for predicting the severity of an outbreak based

on the net reproductive rate of MPB and host searching efficiency.

(152 pages)
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Régnière et al. (2012). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Model variables and parameters. Estimates for NJ and d were determined
using reference values consistent with field observation. Powell and Bentz
(2009, 2014) estimated β, R, and σ from data taken during a recent
outbreak of MPB in the Sawtooth National Recreation Area (SNRA),
Idaho. Total host density T is estimated for the SNRA in (Crabb et al.,
2012). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Comparison of outbreak severity predicted by our model with peak impacts
predicted by the non-spatial forest demographic model of Duncan et al.
(2015) and with mean yearly impacts across the SNRA during the recent
outbreak. Our predictions of outbreak intensity (Imax) and duration are
in close agreement with the corresponding approximations made by Dun-
can et al. (2015). However, our approximations of peak infestation and
outbreak duration are closer to the respective observed values from the
SNRA outbreak. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



xi

LIST OF FIGURES

Figure Page

2.1 Life-cycle diagram. Natural juvenile mortality, d, opens up forest floor space
to new seedling growth. Likewise, infestation mortality translates to
seedling growth (after a once infested tree spends two years as a snag).
Juvenile age class survivorship s = 1− d is constant. Fifty year old trees
that survive the year graduate (mature) into the class of susceptibles. A
red snag is a tree that became infested in year n − 1 and whose needles
are now red. A gray snag is a tree that became infested in year n− 2 and
whose needles are now gray. . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 In spring, juvenile trees either die and leave empty spaces on the forest floor,
or survive and graduate to the next age class. Surviving NJ year old
juvenile trees transition to the class of MPB susceptible trees. In summer,
a susceptible tree either becomes infested by MPB or avoids infestation
and remains in the class of susceptible trees. Over the winter, two year
old snags lose all their needles creating a gap in the forest floor. In spring,
seedlings sprout in any open forest floor space created by natural juvenile
mortality or MPB infestation mortality. . . . . . . . . . . . . . . . . . . . 12

2.3 The outbreak-recovery cycle: Simulation output showing tree popula-
tions over one full period. The cycle can be naturally divided into four
phases with corresponding time durations. NJ and OD denote the num-
ber of juvenile age classes and outbreak duration respectively. The length
of phase 4 is denoted by RT and S∗ is the fixed point for the population
of susceptible trees. Specific times and populations are generated by the
model with parameters obtained from a recent MPB outbreak in central
Idaho (Powell and Bentz, 2009). . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Stability of each fixed point is determined by the maximum (modulus) eigen-
value of the Jacobian of the system as a function of temperature depen-
dent MPB population growth rate R . . . . . . . . . . . . . . . . . . . . . 16

2.5 The system is in outbreak phase when In > I∗. Equivalently, the outbreak
begins when Sn ≈ Smax and ends when Sn ≈ Smin. The population
of susceptible trees will be roughly at its fixed point when the outbreak
peaks, i.e. Sn ≈ S∗ when In = Imax. (Population values have been scaled
to illustrate details.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18



xii
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Chapter 1

INTRODUCTION

Outbreaks of the phytophagous mountain pine beetle (Dendroctonus ponderosae)

have significant detrimental impacts on forest ecosystems as well as potentially severe

economic effects. Mountain pine beetle (MPB) can cause millions of acres of pine tree

mortality and millions of dollars in damages over the course of a single outbreak. Cur-

rent outbreaks are responsible for elevated mortality in pine forests across the western

United States and Canada (Meddens et al., 2012), generating a high volume of fuel

and increased potential for forest fires. A mathematical formulation of the biological

mechanisms responsible for infestation epidemics is paramount in predicting the sever-

ity and frequency of outbreaks based on environmental parameters. These predictions

can provide forest managers with useful information to guide management strategies in

mitigating the negative effects of outbreaks.

Until recently, MPB has played a natural role in forest succession, removing aged

and decrepit trees which accelerated the development of a more vibrant forest. Although

outbreaks of MPB have historically been normative (Mattson, 1996) in lodgepole pine

(Pinus contorta) forests, recent outbreaks have been far more severe and expansive than

in previous decades due in part to warming climate (Bentz et al., 2010). Warmer annual

minimum temperatures have increased the destructive outbreak insects’ overwintering

survival and furthermore, allowed for survival at higher than normal elevation in MPB-

vulnerable five-needle pine tree habitats (Weed et al., 2015).

Some species of conifers have evolved significant defensive responses to bark beetle

attacks such as the secretion of resin to impede a beetle’s ability to bore into a host tree

(Amman and Cole, 1983). It is necessary for MPB to mass attack a tree to successfully

overcome these anti-predator adaptations (Berryman et al., 1985). Therefore, beetles

must emerge from host trees nearly simultaneously to achieve such a high-density rapid

attack. MPB are poikilothermic and as such, the ability to achieve synchronous emer-

gence is a direct function of temperature (Bentz et al., 1991; Safranyik et al., 1975).
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Thus, increasing temperatures due to global climate change are a significant factor in

explaining the elevated severity of recent outbreaks. Furthermore, temperature variation

throughout the life history of MPB plays a major role in determining adult emergence

numbers and timing (Bentz et al., 2014). Higher, more temporally concentrated adult

MPB emergence translates to higher population growth rates which can have disastrous

effects on pine forest ecosystems.

MPB population growth rates have a direct effect on the severity of outbreaks

in terms of total host tree mortality (Duncan et al., 2015). Growth rates depend on

the seasonal efficiency with which individuals develop and progress through the stages

of their life history. As ectotherms, MPB developmental rates in various life stages

are dictated almost exclusively by temperature. Several thermally-driven phenological

models have been constructed that predict development times for life stage emergence

(Bentz et al., 1991; Bentz and Mullens, 1999; Powell et al., 2000; Gilbert et al., 2004).

Powell and Bentz (2009) used a distributional model of MPB phenology to generate adult

emergence time distributions from hourly tree phloem temperatures. They connected

the temperature-dependent phenology model to a mathematical description of criteria

for successful infestation and colonization of a tree. Based on the number of trees

successfully infested in a certain year and in the following year, they estimated the

MPB population growth rate for that year. However, this mechanistic approach has

not yet been applied in future climate scenarios to assess potential outbreak damage in

forests at the landscape level across elevational gradients.

Population growth rates have a direct effect on the spatial spread of infestation.

There is a clear analogy between waves of disease in human and animal populations

(Anderson and May, 1979a,b, 1982) and waves of infestation in forests; an extensive lit-

erature on infectious disease models with demographic structure also exists (Hethcote,

1994, 2000; Keeling, 1999; Riley, 2007). Heavilin et al. (2007) and Heavilin and Powell

(2008) built several MPB outbreak models in the spirit of the classic SIR (Suscepti-

ble - Infected - Recovered) infectious disease model (Kermack and McKendrick, 1927).

Generally speaking, the intensity of an outbreak wave depends on factors set at the

beginning of the wave: number of susceptible individuals, infectivity of the disease, and

removal rate of infected individuals. Recovery time between outbreaks depends on how

rapidly the birth rate can repopulate the susceptible class of individuals to a level that

allows for exponential growth of infectives.
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Though class structured, these epidemiological models fall short of capturing the

long recovery period of a forest affected by a MPB outbreak. A stand of pines is

considered recovering when most trees are juvenile and not large enough to facilitate

successful MPB infestation. It takes 50 to 100 years for a lodgepole pine to reach

sufficient size to be susceptible to MPB attack. The models of Heavilin et al. (2007), for

instance, have just one juvenile latency compartment. In order to model the dynamics

of a cycle with an extended recovery period and make realistic predictions of outbreak

severity, it is necessary to incorporate several latency classes.

Along with temperature-dependent phenology and host tree stand demographic

structure, a primary driver of the irruptive nature of MPB population dynamics is the

spatial effect of beetle dispersal (Bjornstad et al., 2002; Aukema et al., 2008). While

the models of Heavilin and Powell (2008) are successful in capturing the advance of

infestation across a forest landscape by addressing MPB dispersal, their model-generated

waves of infected trees do not persist indefinitely as in realistic forests. Abramson

et al. (2003), who modeled the spread of the hantavirus infection in deer mice using

a continuous SIR type epidemiological model coupled with a diffusion term for spatial

dispersal of infectives, showed that travelling waves of infection can persist indefinitely.

However, a continuous (e.g. differential equation) model is not appropriate for insect

infestations on account of the discrete nature of insect life cycles. In particular, MPB

typically completes one generation per year which necessitates discrete-time modelling

with difference equations.

There is a substantial amount of literature proving the existence of travelling waves

generated by disease outbreak models (for example, Ruan and Xiao (2004)). On the

other hand, methods for predicting the impact of a propagating wave on hosts are few.

The speed of an invading wave of infestation plays a critical role in determining the

intensity of an outbreak. Kot et al. (1996) as well as Neubert and Caswell (1996) have

discussed methods for calculating invasion speeds for unstructured and structured inva-

sive populations respectively. Sherratt (1994, 1998) derived explicit predictions of the

amplitude and speed of periodic (invasion) wave trains generated by oscillatory reaction-

diffusion equations. However, methods for predicting the intensity of travelling periodic

invasion waves arising from structured discrete-time demographic models conjoined with

continuous-space dispersal components have not hitherto been developed.

In chapter two of this dissertation we construct a system of difference equations

that model the populations of trees susceptible to MPB colonization, infested trees, and
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age classes of juvenile trees which are not susceptible to MPB attacks: the Susceptible

- Infested - Juvenile (SIJ) model. The system has a trivial fixed point (no infestation)

and a fixed point corresponding to an incipient epidemic. Stability analysis (as a func-

tion of MPB population growth rate) reveals that the incipient epidemic fixed point is

a center for periodic orbits which is consistent with periodic irruptive population be-

havior exhibited by MPB. We divide a cycle into components of MPB outbreak and

forest recovery which can be approximated temporally to construct an estimate of cycle

duration. We then develop an analytic approximation of infestation with time and use

it to define three measures of outbreak severity - maximum infestation, total infestation,

and outbreak duration - and devise approximations for each.

Chapter three examines the potential impact of MPB populations on pine forests

under future climate scenarios by predicting yearly population growth rates from cli-

mate model projected temperature signals. We develop a thermally-driven model (the

R-model) for predicting population growth rates for decades of climate model projected

temperature signals over an area in the northern U.S. Rocky Mountains. Our mecha-

nistic R-model predicts growth rates using a distributional model of beetle phenology

(Sharpe et al., 1977) with specific life stage developmental rate functions developed in

Régnière et al. (2012) in conjunction with the criteria for successful infestation and col-

onization of trees outlined by Powell and Bentz (2009). Daily minimum and maximum

temperatures were obtained for the years 2025 to 2085 using Multivariate Adaptive

Constructed Analogs (MACA) statistical downscaling method (Abatzoglou and Brown,

2013; Abatzoglou, 2013). Projected future temperatures were generated using three

separate global climate models each with two different emissions scenario representative

concentration pathways (Vuuren et al., 2011; Thomson et al., 2011).

We calculate MPB growth rates each year for an area defined by latitude range 42◦

N to 49◦ N and longitude range 108◦ W to 117◦ W on a Cartesian grid of approximately

4km resolution. Using these growth rates, we analyze how the optimal thermal window

for MPB development is changing with respect to elevation as a result of climate change

induced warming. We also use our combined model to evaluate if thermal regimes exist

that would allow for bivoltine life cycles (two generations per year) and discuss how

yearly growth rates would change as a result.

Finally, in the fourth chapter we augment our existing SIJ model to account for

the spatial effects of MPB dispersal throughout a forest landscape. The structured

demographic SIJ model becomes a system of integrodifference equations upon coupling
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it with a Gaussian redistribution kernel to emulate MPB dispersal each summer in their

search for new susceptible host trees. Redistributing MPB across a landscape in which

previously infested trees may not be reinfested for 50 to 100 years (via mortality and

seedling regrowth to susceptible size) generates a train of sustained solitary waves of

infestation that move through a forest with constant speed. At a stationary point in the

forest, a passing wave manifests temporally as an outbreak at the stand level.

We use a WKB approximation in conjunction with the method of steepest descent

to evaluate the convolution integral in the IDE for infested trees. This enables a transi-

tion to a continuous setting by converting the resulting difference equation to a second

order nonlinear partial differential equation (PDE). A search for travelling wave solu-

tions of the PDE results in predictions of the shape of an outbreak wave profile and

of its peak (maximum infestation) as functions of the speed of the wave. Following an

approach similar to that of Neubert and Caswell (1996), we calculate an estimate of the

rate of invasion that depends solely on model parameters. We are left with an explicit

formula for predicting the severity of an outbreak based on MPB population growth

rate and host searching efficiency. This prediction compares favorably with peak impact

observations taken during a recent outbreak in the Sawtooth National Recreation Area

(SNRA) of central Idaho.
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Chapter 2

A MODEL FOR MOUNTAIN PINE BEETLE OUTBREAKS IN AN

AGE-STRUCTURED FOREST: PREDICTING SEVERITY AND

OUTBREAK-RECOVERY CYCLE PERIOD

2.1 Introduction

The mountain pine beetle (Dendroctonus ponderosae) is an aggressive, tree killing

beetle whose hosts span the genus Pinus. Some species of conifers have evolved signifi-

cant defensive responses to bark beetle attacks such as the secretion of resin to impede

a beetle’s ability to bore into a host tree (Amman and Cole, 1983). It is necessary

for mountain pine beetle (MPB) to mass attack a tree to successfully overcome these

anti-predator adaptations (Berryman et al., 1985). Therefore, beetles must emerge from

host trees nearly simultaneously to achieve such a high-density rapid attack. MPB are

poikilothermic and as such, the ability to achieve synchronous emergence is a direct

function of temperature (Safranyik et al., 1975; Bentz et al., 1991). Increasing temper-

atures due to global climate change are a significant factor in explaining why outbreaks

of MPB have been severe and expansive in recent decades (Bentz et al., 2010). While

MPB outbreaks constitute a natural disturbance regime for forests, recent outbreaks are

responsible for elevated mortality in lodgepole pine tree (Pinus contorta) forests across

the western United States and Canada (Meddens et al., 2012), generating a high volume

of fuel and increased potential for forest fires. Furthermore, it is predicted that the

current MPB outbreak in Canada will release 270 megatons of carbon dioxide into the

atmosphere (Kurz et al., 2008). This is a substantial contribution to the greenhouse ef-

fect and subsequently to warmer average temperatures, which played a role in triggering

the outbreak to begin with.

It is natural to think of MPB outbreak-recovery cycles observed in forests across

western North America as “waves of disease” (Anderson and May, 1979a,b, 1982). Heav-

ilin et al. (2007) and Heavilin and Powell (2008) constructed several “red-top” models

in the spirit of the classic SIR (Susceptible-Infected-Recovered) infectious disease model
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(Kermack and McKendrick, 1927). Generally speaking, the intensity of an outbreak wave

depends on factors set at the beginning of the wave: number of susceptible individuals,

infectivity of the disease, and removal rate of infected individuals. Recovery time be-

tween outbreaks depends on how rapidly the birth rate can repopulate the susceptible

class of individuals to a level that allows for exponential growth of infectives.

These models, however, fall short of capturing the long recovery period of a forest

affected by a MPB outbreak. A stand of pines is considered recovering when most trees

are juvenile and not large enough to facilitate successful MPB infestation. It takes 50 to

100 years for a lodgepole pine to reach sufficient size to be susceptible to MPB attack.

Heavilin’s red-top models have just one juvenile latency compartment. In order to model

the dynamics of a cycle with an extended recovery period and make realistic predictions

of outbreak severity, it is necessary to incorporate several latency classes. Our model

makes use of a Leslie matrix (Leslie, 1945) to endow a lodgepole pine stand with age

structure thereby eliminating the problem of an insufficiently long recovery time.

The ability to predict when an outbreak will occur, how long it will last, and the

expected number of trees killed is crucial for forest management and understanding

the biological impacts of warming climate. To date, methods for predicting such val-

ues/quantities do not exist. In this paper we construct a system of difference equations

that model the populations of trees infested by MPB, healthy uninfested trees, and age

classes of juvenile trees which are not susceptible to MPB attacks.

The system has a trivial fixed point (no infestation) and a fixed point corresponding

to an incipient epidemic. Stability analysis (as a function of MPB population growth

rate) reveals that this incipient epidemic fixed point is a center for periodic orbits which

is consistent with periodic irruptive population behavior exhibited by MPB. We divide

a cycle into components of MPB outbreak and forest recovery which can be approxi-

mated temporally to construct an estimate of cycle duration. We develop an analytic

approximation of infestation with time and use it to define three measures of outbreak

severity - maximum infestation, total infestation, and outbreak duration - and devise

accurate approximations for each.

Powell and Bentz (2009) showed that the infectivity of MPB depends directly on

yearly temperatures at an hourly scale. Their method for predicting MPB growth rates

(and therefore infectivity) we call the R-model. The R-model is based on a distribu-

tional (cohort) model for MPB phenology (Sharpe et al., 1977) and in particular, specific
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life stage developmental rates as functions of temperature (Régnière et al., 2012). Us-

ing historical daily temperatures together with projected future temperatures obtained

from Multivariate Adaptive Constructed Analogs (MACA) for the Sawtooth National

Recreation Area (SNRA), the R-model generates MPB growth rates for each year from

1950 to 2100. Using these growth rates, we predict potential severity of future outbreaks

reflecting the effects of changing climate.

Finally, since our model overestimates the outbreak cycle period when compared

to observations, we explore possible mechanisms for lowering predicted cycle period in-

cluding spatial variability, demographic variability, infestation forcing, and parametric

variation and forcing. A spatial component is added by allowing for disjunct, weakly

coupled lodgepole pine stands. We find that incorporating spatial variability can pro-

duce outbreak frequencies in the range of observed values. Variability in initial stand

demographic produces age cohorts that double outbreak frequency. Realistic outbreak-

recovery cycle periods can also be produced by adding constant infestation forcing.

2.2 Model Development and Dynamics

MPB lays its eggs in the phloem layer of pine trees. Adult attack of live trees and

egg-laying typically occurs in mid to late summer. Eggs hatch and the larvae feed on the

phloem while developing into mature MPB, which eventually results in the death of the

host tree (Amman and Schmitz, 1988). As the tree dies, needles turn red (these trees

are called “red tops” or “red snags”) by the following summer when MPB emerge and

begin searching for new hosts. Two to three years later, needles turn gray (“gray snags”)

and begin to fall off the tree. Lodgepole pine trees are shade intolerant and therefore

need light to regenerate. Like other early succession species, regeneration often occurs

following a disturbance, such as a MPB outbreak or fire. The death of trees opens up

the forest floor to sunlight and frees up resources previously unavailable to seedlings

(Schmidt and Alexander, 1985).

Below we present a structured model for forest infestation, including susceptibles,

snags, and nonsusceptible juveniles, with birth rates proportional to space freed up for

seedlings as snags lose their needles and juveniles succumb to natural mortality.

2.2.1 Host Tree Demographics

MPB cannot successfully infest trees smaller than 10 cm in diameter at breast height

(DBH) since the phloem layer is too small to support beetle development. Furthermore,

beetles developing in small trees have lower growth rates and brood production increases
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with DBH (Safranyik, 2003). We assume a lower DBH threshold of 20 cm for infestations

that lead to significant mass adult emergence. Thus, trees below a given age will be

considered nonsusceptible and this age, NJ , is the number of juvenile age classes. For

example, if trees have fixed (optimal) radial growth rate of 2 mm/year (Heath et al.

1990), juvenile trees age 50 or younger are not susceptible to MPB attacks, and we take

NJ = 50. As trees get older than approximately 120 years of age their phloem layer

becomes too thin for MPB reproduction (Safranyik et al., 1975). However, we assume

simply that trees older than NJ are fully susceptible. The population of juvenile trees

in the kth age class in year n is given by jk,n while the total population of juveniles from

all NJ age classes is represented by Jn.

We let Sn denote the population of healthy adult trees that are susceptible to MPB

infestation in year n and In represent the number of infested trees in year n, measured

in stems. For convenience, juveniles jk,n and Jn are measured in number of stems in

adult equivalents. E.g., if 5 juvenile trees in the 10th age class shade as much of the

forest floor as 1 adult tree, then those 5 juveniles contribute only 1 to the population of

the 10th age class. See Tables 2.1 and 2.2 for a summary of variables, parameters, units

and estimated nominal values. Figure 2.1 shows a life-cycle diagram of the model. Our

model assumes that the forest consists of five types of trees: juveniles, adult susceptible

trees, infested trees In, as well as red snags In−1, and gray snags In−2. The snag classes

must be included because they still shade the forest floor, delaying initiation of juvenile

recruitment.

In the spring, juvenile trees in an age class either survive with probability s and

graduate to the next age class, or die with probability d = 1 − s and contribute to

empty forest floor where new seedlings can grow next year (Fig. 2.2), assuming constant

survivorship across age classes. Total juvenile mortality in year n is dJn and

jk+1,n+1 = sjk,n, k = 1, .., NJ − 1. (2.1)

The total number of trees in the juvenile latency class is given by

Jn =
NJ∑
k=1

jk,n. (2.2)

Successful infestation kills the host tree and lodgepole pines lose nearly all their

needles two years after infestation. Thus, In−2, In−3, ... have no impact on the forest in
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Table 2.1: Variables and parameters. Powell and Bentz (2009) estimated R, β, and
T from data taken during a recent outbreak in central Idaho. Based on optimal radial
trunk growth rate, NJ = 50 is an approximation of when a lodgepole pine has enough
girth to support MPB colonization. We take d = 0.01 for juvenile lodgepole pine tree

mortality.

Variables Description Units
Sn Susceptible (to MPB coloniza-

tion) tree population in year n
Number of stems

In Infested (by MPB) tree popu-
lation in year n

Number of stems

jk,n Juvenile tree population of
the kth age class in year n

Number of stems (in adult
equivalents)

Jn Total Juvenile tree population
(age NJ or younger)

Number of stems (in adult
equivalents)

Parameters Description Units/Nominal Values
T Total number of trees in the

forest
T = 110, 000 stems (in adult
equivalents)

NJ Number of juvenile age classes NJ = 50 age classes
d Natural mortality rate for ju-

veniles
d = 0.01 per year

s = 1− d Natural juvenile survivorship s = 0.99 per year
R Temperature dependent MPB

pop. growth rate
R = 1.8 per year

β Failure rate for MPB host
search process

β = 10.8× 10−6 per stem

Table 2.2: Parameters we seek to estimate with the model. Measures of the intensity
of an outbreak are OD, Imax, and F .

Variables
to Ap-
proximate

Description Units

OD Outbreak duration Years
Imax Maximum impact in a single

year
Number of stems

F Total trees impacted by out-
break

Number of stems

RT Recovery time for susceptible
trees in post-outbreak recov-
ery

Years

P Outbreak-recovery cycle pe-
riod

Years
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Figure 2.1: Life-cycle diagram. Natural juvenile mortality, d, opens up forest floor
space to new seedling growth. Likewise, infestation mortality translates to seedling
growth (after a once infested tree spends two years as a snag). Juvenile age class
survivorship s = 1− d is constant. Fifty year old trees that survive the year graduate
(mature) into the class of susceptibles. A red snag is a tree that became infested in
year n− 1 and whose needles are now red. A gray snag is a tree that became infested

in year n− 2 and whose needles are now gray.

terms of shading. Since lodgepole pine trees are not shade tolerant, seeds only germinate

in gaps in the forest floor left by MPB infestation or other natural mortality. Hence,

assuming there is always an ample supply of seeds on the ground, seedlings sprout in

the unshaded areas of the forest and empty space (in terms of adult tree equivalents) is

directly converted into 1st age class juveniles (Fig. 2.2),

j1,n+1 = dJn + In−2. (2.3)

In mid to late summer, beetles emerge from infested trees, search for new hosts,

and attack. A Ricker-type model is used for newly infested trees (Powell and Bentz,

2009),

In+1 = RIne
−β(current number of nonsusceptible trees).

Here R is the number of trees that will become infested next year for each infested
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Figure 2.2: In spring, juvenile trees either die and leave empty spaces on the forest
floor, or survive and graduate to the next age class. Surviving NJ year old juvenile trees
transition to the class of MPB susceptible trees. In summer, a susceptible tree either
becomes infested by MPB or avoids infestation and remains in the class of susceptible
trees. Over the winter, two year old snags lose all their needles creating a gap in the
forest floor. In spring, seedlings sprout in any open forest floor space created by natural

juvenile mortality or MPB infestation mortality.

tree this year which we also interpret as MPB population growth rate. The exponential

factor represents the probability of infesting beetles encountering new susceptible trees

in a Poisson search process with failure rate per tree β. Since juveniles and snags are

not susceptible, we have

In+1 = RIne
−β(Jn+1+In+In−1).

We may also view β as being inversely proportional to the number of uninfested trees

in the stand. That is, when the number of nonsusceptible trees is greater than lnR
β a

MPB epidemic cannot propagate. Hence, 1
β scales the size of a noninfectious cohort of

trees, as we will see in detail below. When all trees are susceptible, the exponential

factor becomes one and the population of infested trees grows exponentially. On the

other hand, as the forest becomes more and more infested, the exponential term tends

to zero.

In spring, the population of susceptible trees will be its previous value, minus the

number of trees that became infested last summer, plus the number of NJ year old

juveniles that survived and matured into adult susceptible trees,

Sn+1 = Sn − In + sjNJ,n. (2.4)
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Total number of tree equivalents T , (inventoried in spring), is conserved from year to

year reflecting finite floor space and therefore stand carrying capacity,

T = Jn+1 + Sn+1 + In + In−1 (2.5)

which allows for a more convenient form of the infestation equation,

In+1 = RIne
−β(T−Sn+In−sjNJ,n). (2.6)

Putting everything together, equations (2.1)-(2.6) make up a system of nonlinear differ-

ence equations that can model all lodgepole pine populations in a stand:

j1,n+1 = dJn + In−2,

jk+1,n+1 = sjk,n, k = 1, .., NJ − 1,

Sn+1 = Sn − In + sjNJ,n,

In+1 = RIne
−β(T−Sn+In−sjNJ,n).

2.2.2 Phases of Outbreak and Recovery

Due to its disturbance-based nature of regeneration, lodgepole pine often grows

in even-aged stands. When initialized with uniformly susceptible trees, the combined

model reliably falls into outbreak-recovery cycles (Fig. 2.3). A cycle consists of an

outbreak followed by three stages of forest recovery, each of which we describe and

analyze separately to derive approximations of outbreak severity and recovery time.

Phase 1: Outbreak

As the cycle begins, we initially see endemic beetle populations transition to in-

cipient epidemic level. This leads to an exponential increase in infested trees while

susceptible tree numbers plummet due to infestation mortality. Meanwhile the juvenile

tree population increases to fill gaps in the forest floor left by dead susceptible trees.

As the outbreak ensues, it reaches a peak at which point infestation begins to decay

exponentially and approach zero. Our model assumes that an infested tree takes up

space and shades the forest floor (denying any would-be seedlings from sprouting) for

two years following infestation. Thus the length of this phase is OD + 2, where OD is

the (unknown) outbreak duration.

Phase 2: Footprint Progression



14

T
re

e 
po

pu
la

tio
ns

Susceptible
Infested
Juvenile

17 1220
0

6752

Phase 2 Phase 3 Phase 4Phase 1

S
*

OD + 2 NJ - OD OD RT

5.6

11.0

×105

Time in years

Figure 2.3: The outbreak-recovery cycle: Simulation output showing tree popu-
lations over one full period. The cycle can be naturally divided into four phases with
corresponding time durations. NJ and OD denote the number of juvenile age classes
and outbreak duration respectively. The length of phase 4 is denoted by RT and S∗ is
the fixed point for the population of susceptible trees. Specific times and populations
are generated by the model with parameters obtained from a recent MPB outbreak in

central Idaho (Powell and Bentz, 2009).

This phase can be described as the first stage of forest recovery. The forest ex-

periences mass juvenile tree growth released by the outbreak. This surge of juveniles,

called the outbreak footprint, progresses through the age classes until maturing into

adult susceptible trees after NJ years. Phase 2 begins at the end of the outbreak and

ends when outbreak-generated juveniles graduate to susceptibility. The time duration

of footprint progression is then NJ −OD.

Phase 3: Footprint Graduation

At this time in the cycle, juveniles in the outbreak footprint that survived natural

mortality over the course of phase 2 begin to graduate to the class of adult susceptible

trees. This second stage of forest recovery can be thought of as the inverse outbreak

and therefore takes the same amount of time as the outbreak itself, OD.

Phase 4: Full Recovery

In this final stage of forest recovery, there is still a significant number of juvenile

trees due to intrinsic mortality as the footprint juveniles progress through the age classes

in phase 2. These juveniles need to mature before the forest is completely recovered.

We denote the (unknown) time required for this recovery by RT. MPB host density in

the forest is maximal at the end of this phase, setting the stage for another outbreak.
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2.2.3 Stability Analysis

As with waves of disease (Anderson and May, 1979a,b, 1982), outbreak cycles are

organized by oscillations around unstable equilibria. We will show that observed MPB

population growth rates fall in the range of values that produce such instability and

hence tree population oscillation with periodic infestation outbreaks.

Fixed Points

The model system has two fixed points. The first, trivial, fixed point is one in

which there is no infestation and all trees in the forest are adult susceptible trees, i.e

In = Jn = 0 and Sn = T for all time n. The other, incipient epidemic, fixed point is

J∗ =
(1−D)lnR

βK
,

S∗ = T − lnR

β
, (2.7)

and

I∗ =
dDlnR

βK

where D = sNJ and K = 1 + D − 2sD. Stability analysis reveals that there is an

exchange of stability (as MPB growth rates increase) from the trivial to the incipient

epidemic state, which loses stability through a Hopf bifurcation to periodic solutions

(outbreaks). The incipient epidemic fixed point, with parameter values given in Table

4.1, is a center for periodic orbits.

At the incipient epidemic fixed point, there is relatively small (but nonzero) con-

stant infestation whereby the number of newly infested trees each year exactly equals

the number of juvenile trees that mature into adult trees, meaning that the same num-

ber of trees flow into the class of susceptible trees as flow out. Thus, if In > I∗ then

Sn > Sn+1 (susceptibles are decreasing) and if In < I∗, Sn < Sn+1 (susceptibles are

increasing). Therefore, the forest is in outbreak state when In > I∗. We will use these

facts to connect the incipient outbreak fixed point to the outbreak waves it organizes

after its Hopf bifurcation.

Spectral Radius of Jacobian

Next we analyze the stability of each fixed point by calculating the maximum

(in modulus) eigenvalue, (denoted by λmax for the trivial fixed point and λ∗max for the

incipient epidemic fixed point), of the Jacobian of the system as a function of temperature
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Figure 2.4: Stability of each fixed point is determined by the maximum (modulus)
eigenvalue of the Jacobian of the system as a function of temperature dependent MPB

population growth rate R

dependent MPB growth rate R (Fig. 2.4). The trivial fixed point is asymptotically stable

(|λmax| < 1) for all R < 1 while the incipient epidemic infestation fixed point is unstable

(|λ∗max| > 1). If infestation is not large enough (R < 1), any outbreak dies out. As

growth rates move into the range 1 < R < 1.133 (approx.), the incipient epidemic fixed

point becomes asymptotically stable while the trivial fixed point losses stability. For

growth rates in this interval, oscillations decay in amplitude and populations converge

to the incipient epidemic fixed point. For large MPB growth rates, (R > 1.133), the

incipient outbreak fixed point experiences a Hopf bifurcation and both fixed points are

unstable. The system exhibits sustained oscillation and we see periodic outbreaks much

like that of a realistic forest with a MPB presence (Fig. 2.3). Note that the value of R

estimated by Powell and Bentz (2009) is in this interval (R ≈ 1.8). It is for this range

of growth rates that we shall develop analytic approximations for outbreak intensity,

duration and return time.
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2.3 Approximating Outbreak Severity and Cycle Period

It is our goal to derive analytic approximations of outbreak severity and duration

as well as the duration of the entire outbreak-recovery cycle. We begin by deriving

a continuous function that approximates infestation levels during the outbreak phase.

Using this function we can approximate maximum infestation Imax, outbreak duration

OD, and subsequently outbreak footprint F from given parameter values. Then we

construct a linear approximation of the susceptible population in phase 4 and use it to

estimate the length of phase 4, RT . Lastly, with approximations of OD and RT we

piece together the lengths of each of the four phases to get an approximation for the

cycle period P .

2.3.1 Phase 1 (Outbreak)

Just before an outbreak, the forest consists of mostly adult susceptible trees, a small

number of pre-outbreak juveniles, and a negligible number of infested trees (Fig. 2.5).

When Sn reaches the threshold Smax, infestation approaches the incipient epidemic level

I∗ and so the outbreak begins. With nearly the entire forest susceptible, the number of

infested trees grows exponentially. However, as susceptible trees die and give way to new

juvenile trees which are not susceptible, the outbreak slows until In reaches a maximum

Imax (when Sn ≈ S∗). As the population of susceptible trees decreases to its minimum

Smin, infestation decays exponentially as there is no longer a sufficient number of host

trees available for MPB colonization. Note that when Sn ≈ Smin, In ≈ I∗; this signifies

the end of the outbreak.

The Outbreak Curve

The model equation for infested trees (2.6) can be written as

In+1 = RIne
−β(T−Sn+1). (2.8)

Taking logarithms and rearranging yields

βSn+1 = βT − lnR+ lnIn+1 − lnIn (2.9)

which we re-index as

βSn = βT − lnR+ lnIn − lnIn−1. (2.10)
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Figure 2.5: The system is in outbreak phase when In > I∗. Equivalently, the outbreak
begins when Sn ≈ Smax and ends when Sn ≈ Smin. The population of susceptible trees
will be roughly at its fixed point when the outbreak peaks, i.e. Sn ≈ S∗ when In = Imax.

(Population values have been scaled to illustrate details.)

Subtracting (2.10) from (2.9) gives

β(Sn+1 − Sn) = lnIn+1 − 2lnIn + lnIn−1. (2.11)

Since Jn is small at the onset of an outbreak and trees killed by MPB infestation are

converted to seedlings which take NJ − 1 years to mature into the NJ th age class,

sjNJ,n is small during an outbreak and can be neglected. Thus Sn+1 ≈ Sn − In and

(2.11) becomes

−βIn = lnIn+1 − 2lnIn + lnIn−1
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Figure 2.6: The outbreak curve approximation Î is nearly indistinguishable from
simulation output of infested tree populations (r2 = 0.999148). The first half of the
outbreak footprint (represented by the gray shaded area under the sech-squared ap-
proximation) is the total number of trees killed by outbreak infestation up to the time
of peak outbreak. The snags I−1 and I−2 are contained in this area as well as all
new juvenile growth, J0, sparked by infestation mortality (under the assumption of no

pre-outbreak juveniles).

whose solution is

In = Imax sech2

(√
Imaxβ

2
n

)
≡ Î(n) (2.12)

for I0 = Imax and I−n = In (we use Î to denote our approximation of infestation during

the outbreak phase). Note that we define time zero for this approximation as the time

of outbreak peak.

The approximation, Î, and actual outbreak infestation values are practically in-

distinguishable (Fig. 2.6). Next we use the sech-squared function to approximate the

outbreak footprint F , maximum infestation Imax, and length of outbreak, OD. Esti-

mates of Smax and Smin will also be derived.

Measures of Outbreak Intensity

To find expressions for Smax and Smin in terms of Imax, we apply matching con-

ditions on (2.8) and (2.12) at the tails of the outbreak curve. Just before an outbreak,
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n << 0 and from (2.12) we have

Î(n+ 1)

Î(n)
≈ eρ (2.13)

where ρ =
√

2Imaxβ. Similarly, at the end of an outbreak n >> 0 and

Î(n+ 1)

Î(n)
≈ e−ρ. (2.14)

At the onset of an outbreak, Sn+1 ≈ Smax and it follows from (2.8) that

In+1

In
≈ Re−β(T−Smax). (2.15)

Similarly, at the end of an outbreak, Sn+1 ≈ Smin and

In+1

In
≈ Re−β(T−Smin). (2.16)

Equating the right hand sides of (2.13) and (2.15) leads to an approximation for Smax,

Smax ≈ S∗ +

√
2Imax
β

. (2.17)

Similarly, after equating right hand sides of (2.14) and (2.16) we have

Smin ≈ S∗ −
√

2Imax
β

. (2.18)

From these approximations we see that the fixed point for susceptible trees is midway

between the extremes of Sn,

S∗ ≈ Smax + Smin
2

. (2.19)

Assuming that pre-outbreak juveniles are negligible, the total tree population at

outbreak peak can be approximated using equation (2.5) by

T = S0 + J0 + I−1 + I−2 ≈ S∗ +

∫ 0

−OD
2

Î(t)dt,
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since S0 is approximately S∗ and J0, I−1, and I−2 are accounted for in the integral,

which represents the first half of the outbreak footprint (Fig. 2.6). Thus we have

T ≈ S∗ +

√
2Imax
β

tanh

(√
Imaxβ

8
OD

)
. (2.20)

Given that S∗ = T − lnR
β from equation (2.7), we solve (2.20) for OD,

OD ≈ 2

√
2

Imaxβ
tanh−1

(
lnR√

2Imaxβ

)
. (2.21)

With the assumption that Î(−OD
2 ) ≈ I∗ at the onset of an outbreak, we get a closed

form approximation of maximum infestation Imax in terms of model parameters alone,

Imax ≈ I∗ +
ln2R

2β
. (2.22)

Substituting this into (2.21) gives us the expected outbreak duration OD as a function of

MPB growth rate R, search efficiency β, and lodgepole pine tree mortality d. Observe

that we can now approximate total tree mortality due to MPB outbreak (outbreak

footprint, F ) by

F ≈
∫ OD

2

−OD
2

Î(t)dt =
2lnR

β
, (2.23)

which we use as the primary measure of outbreak intensity.

2.3.2 Phase 2 (Footprint Progression)

An outbreak generates a wave of new juvenile trees which progress through the

age classes until maturing into adult susceptibles. This footprint wave diminishes in

amplitude due to natural juvenile mortality. Footprint trees that die are converted back

into seedlings the following year via equation (2.3) of the model (Fig. 2.2). Just after

outbreak the size of the footprint is approximately equal to F . After a year, the footprint

has lost dF trees and therefore has population F − dF = sF . Next year the footprint is

reduced by d · (current population) = d(sF ) and has new population sF − d(sF ) = s2F .

Thus the size of the footprint just before it graduates into the class of susceptible trees

is

sNJ−ODF, (2.24)

noting that the exponent is the duration of phase 2.
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2.3.3 Phase 3 (Footprint Graduation)

This second stage of forest recovery can be described as an inverse outbreak. That

is, NJ + 2 years after the start of an outbreak, juvenile trees that grew up in the

spaces left by outbreak tree mortality begin to mature into adult trees. A wave of trees,

sNJ−ODF , enters the class of susceptible trees and takes OD years to fully graduate.

The population of susceptible trees rebounds to a level above its fixed point and nearly

that of the healthy forest just before outbreak while the number of juvenile trees drops

by the same amount to a level below its fixed point.

Measures of Outbreak Intensity

Measures of Outbreak Intensity At this interchange of population levels when the

susceptible tree population is crossing its fixed point, infestation is at its lowest point in

the cycle. It takes NJ+2+ 1
2OD years after the start of an outbreak for Sn to surpass S∗

(Fig. 2.3). It is here where we splice together the sech-squared approximation curve for

the previous outbreak with the sech-squared approximation curve for the next outbreak

(Fig. 2.7).

Infestation at Outset of Footprint Graduation

We now approximate the level of infestation at the outset of phase 3 (NJ+2+OD

years after outbreak onset) using the sech-squared function, Î. By the approximate

symmetry of In with respect to n = NJ+2+ 1
2OD (the middle of phase 3), INJ+2+OD ≈

INJ+2. Thus we may use the previous outbreak curve approximation, the sech-squared

function (equation 2.12), evaluated at time NJ + 2 − 1
2OD, to estimate infestation at

the end of phase 3 (Fig. 2.7). Time zero for equation (2.12) is when the outbreak is

at its maximum so it is necessary to shift time inputs by −1
2OD. We approximate the

population of infested trees at the onset of phase 4 (denoted by Ĩ) by

Î(m) = Imax sech2

(√
Imaxβ

2
m

)
≡ Ĩ , (2.25)

where m = NJ + 2− 1
2OD.

2.3.4 Phase 4 (Full Recovery)

Just after the footprint enters the susceptible class, there is still a substantial num-

ber of juvenile trees due to mortality within the footprint as it progressed through the

age classes. These must recycle before the population of susceptibles returns completely

to its pre-outbreak level.
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.

Linear Approximation of the Susceptible Population

We assume that juveniles spawned by footprint mortality are evenly distributed

across age classes as indicated by simulations. Total footprint mortality during phase 2

is (1 − sNJ−OD)F (see (2.24)), so the number of juveniles that graduate to susceptible

trees each year (during phase 4) is approximately

(1− sNJ−OD)F

NJ
≡ a.

During phase 3, the susceptible population increases from approximately Smin to Smin+

sNJ−ODF as surviving footprint juveniles graduate, assuming juveniles not involved in

the outbreak are negligible. Hence at the onset of phase 4, the susceptible population is

approximately

Smin + sNJ−ODF ≡ S̃.
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We construct a linear approximation of Sn during phase 4:

Ŝ(n) = S̃ + an (2.26)

where n is years after phase 4 begins.

Estimate of Phase 4 Recovery Time

Recovery time in phase 4 can now be estimated using the linear approximation

of susceptibles to connect the end of recovery with the beginning of outbreak, when

infestation reaches its fixed point. We solve

In = RIn−1e
−β(T−Sn) = I∗ (2.27)

for n using the linear approximation Ŝ in place of Sn, and Ĩ for I0,

I1 ≈ RĨe−β(T−S1),

I2 ≈ R(RĨe−β(T−S1))e−β(T−S2)

= R2Ĩe−β(2T−(S1+S2)),

...

In ≈ RnĨe−β(nT−(S1+...+Sn)).

Now using (2.26),

S1 + . . .+ Sn ≈ nS̃ + a
n(n+ 1)

2
.

Thus (2.27) is equivalent to

RnĨe−βn[T−(S̃+a
n+1
2

)] = I∗,

which has the solution

n =
−c1 +

√
c21 − 4c2c0

2c2
≈ RT,

where c0 = 1
β ln Ĩ

I∗
, c1 = a

2 + S̃ − S∗, and c2 = a
2 .

Outbreak-Recovery Cycle Period

With our estimates of outbreak duration OD and phase 4 recovery time RT , it is

now possible to construct an approximation of the cycle period that depends only on
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model parameters:

P = (OD + 2) + (NJ −OD) + (OD) + (RT ).

= OD + 2 +NJ +RT (2.28)

It is necessary to add 2 years for the period in which infested trees linger called snag

lag.

2.4 Results

We have developed analytic approximations of all measures of outbreak severity:

outbreak duration OD, maximum infestation Imax, and footprint F . We also have

estimates of the timing parameters: phase 4 recovery time RT , and outbreak return

time P . In what follows we compare our approximations with model simulation outputs

and with outbreak observations from central Idaho.

2.4.1 Outbreak Severity: Footprint Approximation vs. Simulation

The outbreak footprint depends on both outbreak duration and peak infestation.

Therefore we need only analyze the outbreak footprint in assessing how well we can

predict outbreak severity. Figure 2.8 compares the approximation of outbreak footprint

F from equation (2.23) with footprint values obtained from simulation. Our approxima-

tion captures the general trend of increasing F with increasing R and has a 15 percent

relative error for the parameterized value R = 1.8. That the approximation is an over-

estimate is essentially due to the fact that we integrated the continuous function Î to

approximate the first half of the footprint in (2.20). The integral is an underestimate

since ∫ 0

−OD
2

Î(t)dt ≤
0∑

n=b−OD
2
c

Î(n),

(Fig. 2.6) which implies (2.20) can actually be written as

T ≥ S∗ +

∫ 0

−OD
2

Î(t)dt.

This leads to an overestimate of Imax (see (2.21) and (2.22)) and hence an overestimate

of F (see (2.12) and (2.23)). The approximation of outbreak duration (2.21) (in con-

junction with (2.22)) indicates that outbreaks get shorter as MPB growth rates increase

which would reduce footprint size. On the other hand, maximum infestation increases

considerably, which overall causes the footprint to increase considerably as well (Fig.
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Figure 2.8: Our approximation of the outbreak footprint captures the positive associ-
ation between R and F . We see a consistent 15 percent relative error due to integration
of the continuous sech-squared function instead of summation of actual infestation val-

ues in our approximation of total forest size (2.20).

2.8). We conclude that outbreaks get worse with increasing R values.

2.4.2 Outbreak-Recovery Cycle Period: Approximation vs. Simulation

The graph in Figure 2.9 shows periods from simulation and from the approximation

(2.28) for varying MPB growth rates. There is a 0.3 percent relative error for R = 1.8

which is only about half a year. With the parameter values from Powell and Bentz

(2009), our model predicts a period of about 121 years. It seems likely that outbreak

return time should decrease with higher MPB growth rates. However, contrary to our

initial intuition, we find that as R increases, the period of the outbreak-recovery cycle

does not decrease but rather stabilizes and approaches a constant value. This is due to

a mutual cancelation of two effects: as R increases, outbreak duration decreases which

1. shortens the overall cycle period;

2. decreases the minimum of In (in phase 3) causing the time required for In to reach

I∗ to increase, that is, RT increases and subsequently the overall cycle period is

lengthened.

Next we compare MPB infestation predicted by the model with actual infestation ob-

served in a forest landscape between 1990 and 2010.
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Figure 2.9: The approximation of the outbreak-recovery cycle period does a good job
of matching the general trend of how the period increases and saturates at some value

near 121 years as MPB growth rate increases.

2.4.3 Sawtooth National Recreation Area

In reality, R varies from year to year due to changing beetle phenology in response

to varying temperatures as was described by Powell and Bentz (2009). We employ the

R-model devised by Powell and Bentz (2009) to predict yearly MPB population growth

rates from temperature signals for the Sawtooth National Recreation Area (SNRA) in

central Idaho for each year from 1950 to 2099. From this string of growth rates we use

our approximation of outbreak footprint to calculate yearly potential outbreak severities.

The R-Model and Temperature Signals

The R-model is based on a distributional model for MPB phenology (Sharpe et al.,

1977) and in particular, specific life stage developmental rates as functions of tempera-

ture (Régnière et al., 2012). The model takes as input a series of 410 daily high and low

temperatures starting on JD 200 (July 24th, the historical average time when beetles

begin attacking trees) to produce completion times for each life stage and ultimately a

distribution of adult beetle emergence times (the following year). From this distribution

of emergence times, net survivorship of eggs, and beetle fecundity, the R-model calcu-

lates the number of effective beetles for year n, En, in the distribution that exceed the
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daily attack threshold to achieve successful mass attack for an individual tree:

En =

∫ 243

181
max(sEfPn(t)−A, 0)dt,

where f is the number of eggs laid for all females in a tree, sE is the fraction of those eggs

surviving to emergence, A is the number of MPB required on a daily basis to successfully

infest a tree, and Pn(t) is the density of adult emergence associated with a tree in year

n. Limits of integration, 181 and 243, correspond to reasonable limits on seasonality;

development of eggs laid earlier than June 30 or later than August 31 will not be in

the proper life stage (larvae) to survive fall and winter cold temperatures (Bentz and

Mullens, 1999; Régnière and Bentz, 2007). The MPB growth rate for the year, Rn, is the

product of the number of emerging effective beetles per infested tree and the parameter

α describing the number of potential new infestations per effective beetle,

Rn = αEn.

Details of the R-model appear in Powell and Bentz (2009).

We generate a sequence of yearly growth rates using the R-model for historical as

well as projected daily minimum/maximum temperatures for the SNRA located approx-

imately 44◦ N, 115◦ W. Temperatures from 1950 to 2100 were obtained from the Uni-

versity of Idaho using Multivariate Adaptive Constructed Analogs (MACA: Abatzoglou

and Brown (2013); Abatzoglou (2013)) statistical downscaling method. Projected tem-

peratures were generated by the National Center of Atmospheric Research global climate

model CCSM4 using the representative concentration pathway RCP4.5 which assumes a

future scenario of moderate climate action (Vuuren et al., 2011; Thomson et al., 2011).

Projected Outbreak Severities

Using this sequence of growth rates, we calculate predicted outbreak footprints

with equation (2.23) for each year based on the beetle growth rate for that year (Fig.

2.10). We also calculate outbreak footprints for each year using the average growth rate

from the previous 15 years since the approximate outbreak duration is 15 years for the

growth rate R = 1.8. Our simulations indicate that outbreaks (should they occur) will

increase dramatically in severity around the year 2001. In fact, a major outbreak did

occur in the SNRA between 1995 and 2010 and was the worst in recorded history for

that area. It should be noted that just after the spike in outbreak severity (around
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Figure 2.10: Based on MPB growth rates generated by the R-model of Powell and
Bentz (2009) using temperatures from MACA (Abatzoglou and Brown, 2013; Abat-
zoglou, 2013), our approximation of outbreak severity (footprint) for the SNRA in-
creases rapidly around the year 2001 which agrees well with the fact that an outbreak
of unprecedented size took place around that time. Note: We set footprints correspond-

ing to R < 1 equal to zero.

2015), footprint predictions begin to wane slightly over time. Warming during the last

half of the twentieth century has likely created a temperature regime that supports MPB

seasonality considerably more than in previous years for this particular elevation (2624

meters). However, as temperatures continue to increase we may see that beetles at

this elevation are completing their life stages too quickly which could hinder seasonality.

Thus, as warming continues, the optimal developmental window for MPB may be moving

to higher elevations causing projected impacts in the SNRA to diminish from their initial

peak.

2.5 Mechanisms for Creating Realistic Outbreak Frequencies

Model simulations and analytic approximations both predict an outbreak-recovery

cycle period of around 120 years. If a majority of lodgepole pine in a stand are killed,
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a 120 year outbreak return time is a reasonable approximation since re-growth to a

MPB-susceptible girth takes 50 to 100 years. MPB outbreak frequency, however, can be

variable and in some stand types was estimated to be between 20 and 50 years (Amman

and Schmitz, 1988; Axelson et al., 2009; Campbell et al., 2004). There are several

possible explanations for short cycle periods including spatial variability, demographic

variability, endemic infestation forcing, and parametric variability. Next we explore

these factors in the context of our model.

2.5.1 Spatial Variability and MPB Dispersal

As a first attempt at reducing model predicted outbreak return time, we account

for possible effects of spatial variability by modifying the model to include two weakly

coupled stands of lodgepole pine trees. In the SNRA, another MPB host (whitebark pine,

Pinus albicaulis) occurs at higher elevations than lodgepole pine. The two host species

are separated by a band of non-host conifers (Powell and Bentz, 2014). Subpopulations

of conspecific hosts may also be separated by geographic barriers such as lakes, rivers, or

mountain ranges. However, disconnected populations can still be coupled by long range

migration (dispersal) when populations are high (Bleiker et al., 2014; Aukema et al.,

2006). We model migration between stands as

I(1)n = I(1)n + e2I
(2)
n − e1I(1)n

I(2)n = I(2)n + e1I
(1)
n − e2I(2)n

where I(1) and I(2) denote the populations of infested trees in stands 1 and 2 respectively.

The rate at which infestation flows from stand 1 to stand 2 is e1 whereas e2 is the rate of

flow from stand 2 to stand 1. Each stand is modeled by its own set of equations (2.3) -

(2.8) and we consider the total infestation in both stands for analyzing periodicity. This

yields more realistic outbreak-recovery cycle periods. For example, with flow parameters

e1 = 0.05 and e2 = 0.000015, the period is reduced to about 46 years which is in the

range of observed outbreak return times (Fig. 2.11).

2.5.2 Demographic Variability

Another period-reducing mechanism is demographic variability. Since MPB prefer

larger diameter trees, significant proportions of smaller stems are spared from infestation

in an outbreak (Amman and Schmitz, 1988). This can cause age structure fragmentation

leading to multiple cohorts of juvenile trees. We set the initial distribution of juveniles
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Figure 2.11: Total infestation in two weakly coupled lodgepole pine stands. With this
coupling (e1 = 0.05, e2 = 0.000015), the outbreak-recovery cycle period gets reduced

to the more realistic value of 46 years.

so that there are two footprint waves which doubles the frequency of outbreaks. To

accomplish this it is necessary to increase the number of juvenile age classes NJ in

order to fit the two footprint waves into the juvenile class. We have used NJ = 50

based on ideal conditions for lodgepole pine tree growth. A more realistic value of NJ

is 80 years (Amman and Schmitz, 1988). With two age cohorts, one of susceptible trees

fueling an outbreak and the other cohort of juveniles being spared, the cycle period is

effectively reduced to about 55 years (Fig. 2.12).

2.5.3 Infestation Forcing

If we incorporate constant MPB infestation forcing into the model, the period de-

creases significantly. This additional beetle presence is realistic according Hrinkevich

and Lewis (2011) who suggest that “stands maintain a nearly continuous supply of en-

demic beetle populations.” It is likely that there are small MPB populations in any given

stand, sustained by down but not yet dead trees or possibly by immigration (Bleiker

et al., 2014). This endemic presence of beetles reduces the time in phase 4 required

for infestation to reach its fixed point. We implement endemic infestation forcing by

modifying model equation (2.8) as follows:

In+1 = RIne
−β(T−Sn+In−sj50,n) +G
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Figure 2.12: With enough age classes, (NJ = 80), the system can be forced into a
state with twice its natural frequency by initiating the juvenile class with two footprint
waves. The period of this oscillation is about 55 years which is close to observed

outbreak return times.

where G is a constant forcing term. For small G both fixed points perturb and the

cycle period decreases as G increases, reaching a minimum value around 68 years for

G ≈ 48 infested trees, and then begins to increase again (Fig. 2.13). When G < 48, both

fixed points are unstable for nominal parameters. However, when G > 48 the incipient

epidemic fixed point becomes stable and sustained oscillations are impossible.

2.5.4 Parametric Variation and Forcing

Stochastic MPB Growth Rates

Random variation in yearly MPB growth rates (an effect of fluctuating inter-annual

temperatures) may play a role in increasing outbreak frequency. If a stand experiences

a string of years with temperatures unfavorable to MPB seasonality during an outbreak,

growth rates could plummet and completely halt the outbreak. With the outbreak

stopped short, the stand is left with a sizable number of susceptibles which could fuel

another outbreak sooner than the expected natural return time. To investigate the

possible effects of a stochastic beetle growth rate, we let R be a random variable from
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Figure 2.13: As the constant infestation forcing term G increases, the cycle period
decreases and reaches a minimum value around 68 years for G ≈ 48 infested trees.

a lognormal distribution. The lognormal distribution is chosen so that growth rates

are nonnegative. The distribution mean and variance are left as control parameters in

searching for lower period values.

We examine a variety of parameter combinations including the values obtained

from the SNRA R-value projections (mean 2.2 and variance 1.0) only to find that the

lognormality of growth rates causes an increase in the cycle period rather than a decrease.

It appears that when outbreaks are shut down prematurely due to below average growth

rates and more importantly R < 1, phase 4 recovery time RT is shortened and hence

the return time for the next outbreak is also shortened. A series of large R values can

cause In to increase dramatically and then rebound to a very low level. This results

in an inordinately long time for infestation to build back up to an incipient outbreak
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level (i.e. In ≈ I∗). This is realized as an increase in RT and subsequently the time

between outbreaks increases substantially. Since the lognormal distribution is skewed to

the right, we expect high R values more often than low R values and thus the average

period ultimately increases.

Growth Rate Parameter Forcing

While it is certainly true that there is random variation in growth rates, it may

also be the case that high and low R values come in consecutive strings. It is suspected

that El Niño/La Niña cycles may create roughly square-wave temperature signals with

period of about 5 years (the average frequency of the El Niño/La Niña cycle). We model

this with square wave forcing of the MPB growth rate in hopes of inducing oscillation

at higher than natural frequency. A variety of R value square wave frequencies and

amplitude ranges were tested in a search for a minimized cycle period. All combinations

of forcing frequencies and amplitudes produced at most the natural outbreak recovery

cycle with a superimposed low amplitude wave with the same frequency as the square

wave function. The true outbreak return time is ultimately unaffected by growth rate

parameter forcing.

2.6 Conclusion

We propose a set of equations for the dynamics of MPB population outbreaks in

an age structured forest. Stability of two fixed points, one trivial and one corresponding

to incipient epidemics, control epidemic behavior. As MPB population growth rates

increase, the trivial fixed point loses stability to the incipient epidemic fixed point where

the system exhibits damped oscillation. As growth rates increase further, the incipient

epidemic fixed point becomes unstable through a Hopf bifurcation which creates periodic

outbreaks.

From our mechanistic model we derive an approximation for predicting outbreak

infestation. With this formula we predict the severity as well as the duration of an

outbreak based on temperature-driven MPB growth rates. Additionally, we develop a

formula for predicting the period of the outbreak-recovery cycle. These results indi-

cate that higher MPB growth rates correspond to more severe outbreaks and, although

counterintuitive, nearly constant outbreak return time. Earlier work done by Powell

and Bentz (2009) shows that warmer temperatures lead to larger MPB emergence and

subsequently higher growth rates. Thus we are able to see a connection between higher

average temperatures and more intense MPB outbreaks in recent years.
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To assess MPB impact on temperate and boreal forests, we calculate outbreak

severities as a function of temperature-dependent MPB growth rates. Using historical

temperature records and climate model projections of future daily temperatures as input

for a distributional model of MPB phenology, we generate predicted yearly growth rates

for the years 1950 to 2099 in the SNRA, ID. The MPB population used for phenology

model parameterization came from this area. Using these growth rates, we predict po-

tential severity of future outbreaks that reflects the effects of changing climate. Predicted

MPB population growth rates increase as temperatures become more favorable to popu-

lation growth. Warming during the last half of the twentieth century has likely created a

temperature regime that supports MPB seasonality considerably more than in previous

years at relatively low elevations. However, as temperatures continue to increase MPB

at this elevation complete their life stages too quickly, hindering seasonality. Thus the

optimal developmental window for MPB may be moving to higher elevations causing

projected impacts at high elevation to increase while low elevation impacts diminish.

Our model overestimates the outbreak cycle period compared to observations. We

explore possible mechanisms for lowering the model predicted cycle period and find

that incorporating spatial variability and demographic heterogeneity can produce real-

istic outbreak frequencies in the range of observed values. Adding a constant endemic

presence of MPB infestation also increases cycle frequency. Parametric heterogeneity,

contrary to expectations, does not effectively shorten predicted outbreak cycle period.

The importance of spatial effects on periodicity and severity suggests that explicit

spatial dispersal should be added into the age-structured model presented here. Re-

cent work by Powell and Bentz (2014) indicates that spatially varying motility rates

accurately describe observed patterns of MPB attack, and the earlier red-top model of

Heavilin et al. (2007) showed that periodic outbreaks in time correspond to traveling

waves of outbreak in space. Coupling an accurate dispersal model with a realistic model

for forest age structure will likely endow our outbreak model with rich dynamics capable

of producing realistic outbreak intensities and frequencies in space and time.
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Chapter 3

ASSESSING FUTURE CLIMATE CHANGE IMPACTS ON NORTHERN

U.S. ROCKY MOUNTAIN FORESTS: PHENOLOGY MODEL

PREDICTED MOUNTAIN PINE BEETLE GROWTH RATES FROM

CLIMATE MODEL TEMPERATURE PROJECTIONS

3.1 Introduction

Climate change has many effects on temperate forests including altered species com-

position, decreased water availability, increased wildfire intensity and frequency, transi-

tion of forests from carbon sink to carbon source, and larger pest outbreaks (Houghton

et al.). Warmer annual minimum temperatures can increase some destructive outbreak

insects overwintering survival and furthermore, allow for survival at higher than normal

elevation (Weed et al., 2015). Temperature variation throughout the life history of the

mountain pine beetle (Dendroctonus ponderosae) in particular, plays a major role in

determining adult emergence numbers and generation time (voltinism) (Bentz et al.,

2014). Higher adult MPB emergence translates to higher population growth rates which

can have devastating effects on pine forest habitats.

The mountain pine beetle (MPB) is an aggressive, tree killing beetle whose hosts

span the genus Pinus. Increasing ambient temperatures due to global climate change

are a significant factor in explaining why outbreaks of MPB have been more severe and

expansive in recent decades (Bentz et al., 2014). While MPB outbreak has historically

been considered a natural disturbance regime for forests, these unprecedented intense

outbreaks are responsible for elevated mortality in lodgepole pine tree (Pinus contorta)

forests across the western United States and Canada (Meddens et al., 2012), generating

a high volume of fuel and increased potential for forest fires. Furthermore, it is pre-

dicted that the current MPB outbreak in Canada will release 270 megatons of carbon

dioxide into the atmosphere (Kurz et al., 2008). This is a substantial contribution to

the greenhouse effect and subsequently warmer average temperatures, which triggered

the outbreak to begin with.
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MPB population growth rates have a direct effect on the severity of outbreaks in

terms of total host tree mortality (Duncan et al., 2015). Thus, predicted growth rates

in future climate scenarios can provide a good measure of the effects of climate change

on bark beetle disturbances. Insect growth rates depend on the seasonal efficiency with

which individuals develop and progress through the stages of their life history. Since

MPB are poikilothermic, developmental rates in various life stages are dictated almost

exclusively by temperature. Several thermally-driven phenological models have been

constructed that predict development times for life stage emergence (Bentz et al., 1991;

Logan and Bentz, 1999; Powell et al., 2000; Gilbert et al., 2004). Powell and Bentz

(2009) used a distributional model of MPB phenology to generate adult emergence time

distributions from hourly tree phloem temperatures. They connected the temperature-

dependent phenology model to a mathematical description of criteria for successful infes-

tation and colonization of a tree. Based on the number of trees successfully infested in a

certain year and in the following year, they estimated the MPB population growth rate

for that year. However, this mechanistic approach has not yet been applied in future

climate scenarios to assess potential outbreak damage in forests at the landscape level

across elevational gradients.

As ectotherms, MPB success at high elevation in colonizing valuable five-needle

pines such as bristlecone and whitebark pine may be improved as a result of global

warming. Elevations corresponding to temperature regimes favorable to MPB popu-

lation growth are increasing with warming temperatures. Physiological adaptations of

high elevation beetles to cool environments allow populations to more efficiently use

available thermal energy and provide flexibility to shift from two year generation to

one year generation life cycles in warm years (Bentz et al., 2014) thus increasing out-

break potential and severity. High elevation five-needle pines provide essential habitat

for wildlife and are critical in the distribution of snow and therefore water (Logan and

Powell, 2001); a vital resource in arid climates like the Rocky Mountain west. While low

elevation lodgepole pine has co-evolved with MPB such that outbreaks are normative

(Mattson, 1996), whitebark pine survival strategy, for example, would not be successful

in the face of massive beetle outbreaks. Further investigation into the effects of warming

on high-elevation beetle growth rates and subsequent consequences to pine species is

needed.

Another means of assessing the effects of climate change on MPB populations is to

monitor the number of generations completed per year (voltinism). At low and middle
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elevations (< 2300 m) in the northern U.S. Rocky Mountains, MPB life cycles are

generally univoltine (one generation per year) whereas at higher elevations (> 2300 m),

beetle populations may be a mix of univoltine and semivoltine (one generation every two

years) (Bentz et al., 2014). While fractional voltinism between one and two generations

per year has been observed in warmer low latitudes (two generations in three years

in southern California for example), life stage temperature thresholds in conjunction

with seasonality requirements may serve to constrain a shift to two generations per year

(bivoltinism) (Bentz et al. 2014). In historic and current climates, evolved adaptations to

local climates have limited MPB capacity for true bivoltinism. Although completion of a

generation over winter is constrained by evolved thresholds for development (Bentz et al.,

2014), if adult emergence occurs early in the summer, a generation can be completed

by fall and another completed by mid to late spring of the following year under an

appropriate temperature regime.

Temperature-related increases in poikilotherm voltinism have been observed in, for

example, fall webworm in Japan (Yamanaka et al., 2008) and predicted for other pests

such as spruce bark beetle (Jönsson et al., 2008). With more generations per year,

once benign insects can become major pest species (Tobin et al., 2008). A transition

from univoltine to bivoltine life cycles for phytophagous MPB populations may have

multiplicative effects on population growth rates and hence increase the capacity for

mass attack resulting in significant increases in tree mortality.

Methods for predicting biological impacts of climate change have mostly been lim-

ited to statistical extrapolation from historical data. As there exist no data on MPB

bivoltinism, these techniques would fail in predicting a transition from one to two gen-

erations per year under future warming assumptions. To date, there have been few

mechanistic modeling approaches to predicting ecological ramifications of climate change

using climate model temperature projections and thus no clear assessment of how MPB

voltinism could be altered in future thermal regimes.

In this paper, we augment a model developed by Powell and Bentz (2009) for

predicting yearly mountain pine beetle population growth rates for decades of climate

model projected temperature signals over an area in the northern U.S. Rocky Moun-

tains. Our temperature-dependent mechanistic R-model predicts growth rates using a

distributional model of beetle phenology (Sharpe et al., 1977) with specific life stage

developmental rate functions from Régnière et al. (2012) in conjunction with the cri-

teria for successful infestation and colonization of trees outlined by Powell and Bentz
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(2009). Daily minimum and maximum temperatures were obtained for the years 2006 to

2085 using Multivariate Adaptive Constructed Analogs (MACA) statistical downscaling

method (Abatzoglou and Brown, 2013; Abatzoglou, 2013). Projected future tempera-

tures were generated using three separate global climate models each with two different

emissions scenario representative concentration pathways. We calculate MPB growth

rates each year for an area defined by latitude range 42◦ N to 49◦ N and longitude range

108◦ W to 117◦ W on a Cartesian grid of approximately 4km mesh. Using these growth

rates, we analyze how the optimal thermal window for MPB development is changing

with respect to elevation as a result of climate change induced warming. We also use

our combined model to evaluate if thermal regimes exist that would allow for bivoltine

life cycles and discuss how yearly growth rates would change as a result. Our analysis

of yearly MPB population growth rate, voltinism, and elevational range for optimal life

stage development provides a good assessment of eruptive insect population behavior in

response to changing climatic conditions.

3.2 Methods

3.2.1 Study area

The U.S. Forest Service is conducting an assessment of MPB impact under future

climate scenarios to use for forest management planning (Bentz et al., 2016). To aid

in this assessment, we predict yearly MPB population growth rates from temperature

signals for parts of Forest Service regions 1, 2, and 4. Our study area contains the

western two-thirds of Montana, the northwest corner of Wyoming, and all of Idaho (Fig.

3.1). This region contains Idaho Panhandle NF, Glacier NP, Beaverhead-Deerlodge NF,

Gallatin NF, Bitterroot NF, Flathead NF, Bridger-Teton NF, Caribou-Targhee NF, and

the Greater Yellowstone Area. The study area forms a rectangular area in the northern

U.S. Rocky Mountains defined by latitude range 42◦ N to 49◦ N and longitude range

108◦ W to 117◦ W.

3.2.2 Temperature signals

The phenology component of our model is driven by temperature signals at various

points in the study area. Daily minimum and maximum temperatures were obtained for

the years 2006 to 2086 from the University of Idaho using Multivariate Adaptive Con-

structed Analogs (MACA) (Abatzoglou and Brown, 2013; Abatzoglou, 2013) statistical

downscaling method

(http://maca.northwestknowledge.net). The MACA method is a statistical method for
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downscaling Global Climate Model (GCM) outputs from their native coarse resolution

to a higher spatial resolution. Projected temperatures were generated using three GCMs

(CanESM2, CCSM4, and CNRM-CM5) chosen based on lowest error scores of perfor-

mance metrics (Rupp et al., 2013).

For each GCM we use two different emissions scenario Representative Concentra-

tion Pathways (RCP-4.5 and RCP-8.5) (Vuuren et al., 2011; Thomson et al., 2011).

RCP-4.5 is a future scenario of moderate climate action based on an experiment where

an additional 4.5 W/m2 is trapped in the earth-atmosphere system by 2100 compared

to preindustrial conditions. RCP-8.5 refers to an experiment where an additional 8.5

W/m2 is trapped by 2100, a future with no climate action and high emissions. Figure

3.2 shows current as well as projected temperatures for the area using the CanESM2

climate model for both emissions scenarios. Temperatures were available from MACA

on a Cartesian grid with approximately 4km point spacing. We generated MPB growth

rates for each point on the grid (a 170 by 218 matrix with 170 latitude points and 218

longitude points) for every year from 2025 to 2085.

3.2.3 MPB population growth rate model (R-model)

The mountain pine beetle is an aggressive bark beetle that attacks and lays its

eggs in the phloem layer of pine trees. During the fall, winter, and spring, eggs hatch

and the larvae feed on the phloem while developing into mature adults which eventually

results in the death of the host tree (Amman and Schmitz, 1988). We use the R-model

of Powell and Bentz (2009), that generates MPB population growth rates (R-values)

using a distributional (cohort) model for MPB phenology (Sharpe et al., 1977) with life

stage developmental rate curves parameterized by Régnière et al. (2012). The model

takes as input a series of 408 daily high and low temperatures starting on July 19, the

mean time when beetles begin attacking trees, to produce completion times for each life

stage and ultimately a distribution of adult beetle emergence times during the attack

season of the following year. From this distribution, net survivorship of eggs, and beetle

fecundity, the R-model calculates the number of effective beetles in the distribution that

exceed the daily attack threshold to achieve successful mass attack for an individual

tree. The MPB population growth rate for the year is the product of the number of

emerging effective beetles per infested tree and a parameter converting effective beetles

to number of newly infested trees.
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Figure 3.3: Developmental rate curves for the 8 mountain pine beetle life stages from
Régnière et al. (2012). In all graphs, the vertical axis is measured in development/day.

Distributional model of MPB phenology

MPB develop through 8 life stages throughout the course of their life history:

ovipositional adult, egg, 4 larval instars, pupae, and teneral adult. Each stage has a

unique developmental rate function (rate curve) that depends on the temperature of

the medium surrounding the beetle (tree phloem or ambient air). Rate curves in the R-

model are taken from Régnière et al. (2012) (Fig. 3.3). While there is no true mechanistic

basis underlying the derivation of the rate curves, they are an empirical mathematical

description of the shape of developmental responses to temperature.

Not all individuals in a population of poikilothermic organisms progress through
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particular life stages at the same rate. This is primarily due to intrinsic genetic variation

at the individual level. We assume that developmental rates are randomly distributed

across a population according to a lognormal distribution. The assumption of a distri-

bution of rates is the core premise of a distributional model. We assume lognormality

mainly for its positive skew which is a characteristic often observed in distributions of

developmental rates of insects (Curry et al., 1978). Furthermore, a lognormal random

variable cannot be negative and thus developmental rates are guaranteed to be nonneg-

ative as in reality.

The lognormal distribution parameter which controls genetic variance in develop-

mental rates as well as rate curve parameters were estimated by maximum likelihood

using measured developmental times from samples of beetles for each life stage at var-

ious constant temperatures. See Régnière et al. (2012) for details of experiments, data

collection methods, and parameterizations. Since it is believed that rate variability may

be significantly different in the field, we introduce a variance multiplier υ to account for

rate variability amplification due to natural exogenous forces such as daily variability in

temperature and inherent differences among and within trees.

Distributional models (also called cohort models) keep track of numbers of individ-

uals entering and exiting the life stages of an organism’s life cycle (Sharpe et al., 1977).

A cohort is a group of individuals that enter a certain life stage at the same time. A

cohort model calculates the proportion of a cohort that completes the life stage during

each time step given a distribution of developmental rates. In our R-model, the time

step is one day and we use lognormally distributed developmental rates. Each life stage

has an associated function that gives the sizes of all starting cohorts at every point in

time. The cohort model uses this starting function (which comes from the previous life

stage) to calculate the total number of beetles from all cohorts that complete life stage

j at time t. The result is the life stage emergence function, denoted by Nj(t), which is

used as the input starting function for the next life stage. For example, the emergence

function N8(t) gives the number of MPB completing the teneral adult life stage (emerg-

ing) on any given day between July 24 (the mean time when beetles begin attacking

trees) of year n− 1 and August 31 (the end of the attack season) of year n.

The starting function for the oviposition life stage, N0(t), is called the attack dis-

tribution and gives the probability of a beetle attacking the tree on a given day. We

assume this distribution is normal with mean July 24, based on data in Bentz (2006),
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and standard deviation 2 days. We denote the mean (potential fecundity) of a popula-

tion of attacking beetles by f0. Since a female beetle in the wild typically does not live

up to its full potential fecundity and actually lay f0 eggs, we introduce the parameter

ne to represent the true (mean) number of eggs laid by a female in the field. We note

here that our version of the cohort model keeps track of all ne individuals spawned by a

single attacking female. We then multiply by the number of attacking females to get the

total number of individuals in the tree. Details of our phenology model are in Appendix

A.

MPB infestation effectiveness and population growth rate (R-value)

Some species of conifers including the primary MPB host, lodgepole pine, have

adapted significant defense responses to bark beetle attacks such as the secretion of

resin to impede a beetle’s ability to bore into a tree (Amman and Cole, 1983). It is

necessary for MPB to mass attack a tree to successfully outpace and overcome these

defense mechanisms (Berryman et al., 1985). To model the requirement for mass attack,

we define the number of effective beetles in the attack season (June 30 to August 31,

i.e. JD 181 to JD 243) of year n, denoted En, as the number of emerging adult MPB

that exceed an attack threshold A to successfully overcome host tree defenses. From

the adult emergence function N8(t) associated with a tree in year n generated by the

phenology model, we calculate the number of effective beetles,

En =

∫ 243

181
max(βN8(t)−A, 0)dt,

where the parameter β is the product of the total number of attacking females per tree

in a season and brood survivorship, and A is the number of MPB required on a daily

basis to successfully infest a tree. (Fig. 3.4). The limits of integration correspond to

reasonable limits on seasonality; development of eggs laid earlier than June 30 or later

than August 31 will not be in the proper life stage (larvae or brood adult) to survive fall

and winter cold temperatures (Bentz and Mullens, 1999; Régnière and Bentz, 2007).

The MPB population growth rate, Rn, for year n is the product of the number of

emerging effective beetles per infested tree and the conversion factor α describing the

number of potential new infestations per effective beetle,

Rn = αEn.
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Figure 3.4: The number of effective beetles in the attack season (JD 181 to JD 243
of the year following oviposition) is the number of emerging adult MPB that exceed
the attack threshold A to successfully overcome host tree defenses. Adult emergence
function N8(t) was generated using the temperature signal from latitude 44◦N and
longitude 115◦W for the years 2030 and 2031 projected by global climate model CCSM4

with emissions scenario RCP-4.5.

Numerical implementation

We use daily high and low temperatures generated by global climate models to

drive the phenology model. Simpson’s rule is used to integrate a life stage rate curve,

which is a function of the temperature signal, over one day to get that day’s amount of

development. In order to apply Simpson’s rule, we calculate mean temperatures between

the day’s (early morning) minimum and (mid-day) maximum as well as between the

day’s maximum and the next day’s minimum. The result is a sequence of temperatures

given every 6 hours for each day. These temperatures are input into the appropriate

rate curve yielding five developmental rates for each day (overlapping at the minimum

temperature) which partition the day into four subintervals (Simpson’s rule step size

0.25 day).

Parameterization

Observed infestation data was derived from Aerial Detection Surveys (ADS) of the
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Table 3.1: Model parameters and constants. Best fit parameter values for α, β, ne,
and υ are from maximum likelihood using ADS data on MPB impact in the SNRA.
The per tree per day attack threshold of 250 is taken from Powell and Bentz (2009).

Mean potential fecundity value is estimated in Régnière et al. (2012).

Model Pa-
rameters

Description Parameterized Val-
ues

α Number of potential
new infestations per
effective beetle

5.3882 × 10−4 trees/Ef-
fective MPB

β Product of number of
attacking females and
egg survivorship

1139.2 MPB/tree

ne Mean MPB fecundity in
the field

24.255 eggs/MPB

υ Lognormal variance
multiplier

1.4057 (dimensionless)

Constants Description Estimated Values
A Attack threshold 250 MPB/tree/day
f0 Mean potential fecun-

dity
81.8 eggs/MPB

Sawtooth National Recreation Area (SNRA) in central Idaho conducted by USDA Forest

Service, Forest Health Protection. Observers in fixed-wing aircraft measured the area

impacted by MPB infestation each year. The MPB population growth rate is estimated

as the ratio of the current year’s area impacted to the previous year’s area impacted.

Predicted growth rates were generated by the R-model using hourly temperatures taken

in the SNRA from 1992 to 2004. Best fit values of the parameters α, β, ne, and υ were

found by maximum likelihood (Table 3.1). Figure 3.5 shows the fit which has coefficient

of determination r2 = 0.7.

Validation

We test the R-model’s accuracy by comparing predicted growth rates generated by

input temperatures from a National Oceanic and Atmospheric Administration (NOAA)

weather station in the Greater Yellowstone Area (GYA) with observed growth rates

calculated from nearby ADS infestation data (Fig.3.6). Daily minimum and maximum

temperatures were obtained from NOAA’s Lick Creek weather station (45.5◦ N, 111.0◦

W, 2091 m elevation) in the Gallatin National Forest of Montana. ADS impact areas

were obtained within a 16 km radius of the temperature station. The observed R-value

is estimated as the ratio of the current year’s area impacted to the previous year’s area

impacted. Years with available complete temperature signals and ADS data are 2000,
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Figure 3.5: Parameterization best-fit: comparison of predicted MPB population
growth rates with observed R-values used to parameterize the R-model. Predicted
growth rates were generated by the R-model using hourly temperatures taken in the
Sawtooth National Recreation Area (SNRA) from 1992 to 2004. Observed R-values
were calculated by taking ratios of Aerial Detection Survey (ADS) infestation areas
in the SNRA for neighboring years. Best fit values of the parameters were found by

maximum likelihood and yields a coefficient of determination of 70% (r2 = 0.7).

and 2003-2009. The R-model predictions match observations relatively well (r2 = 0.75).

3.2.4 Bivoltinism

Under an appropriate temperature regime, MPB adult emergence could occur early

enough in summer (i.e. June) for a generation to be completed by mid fall (i.e. Septem-

ber or October) (Reid, 1962; Bentz et al., 2014). With a warm enough winter, a subse-

quent generation may potentially complete by mid to late spring of the following year

(i.e. June or early July). This would result in an unprecedented bivoltine MPB life

cycle and consequently significantly higher population growth rate for that year. While

summer generations are not unprecedented given the presence of adults that overwin-

tered and were able to emerge in June, completion of an entire generation over winter

(i.e. between September and June) has hitherto been constrained by lower developmen-

tal temperature thresholds (Bentz et al., 2014). In particular, the fourth larval instar

requires temperatures above at least 15◦C to molt into pupae. We developed a test to
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Figure 3.6: Model validation: comparison of observed and predicted MPB population
growth rates. Predicted R-values were generated by the R-model using daily minimum
and maximum temperatures measured by NOAA’s Lick Creek weather station. Ob-
served R-values were calculated by taking ratios of ADS infestation areas within a 16

km radius of the temperature station. The coefficient of determination is r2 = 0.75.

check if bivoltinism is possible given a particular (projected) temperature signal based

upon appropriate timing windows and thermal limits for overwintering. If the test indi-

cates the potential for bivoltinism, we consider the combined effects of adult emergence

for both generations on yearly population growth rates.

Test for bivoltine life cycle potential

Given a temperature signal and an attack beginning sometime between May 31st

and June 30th (when parent adults typically emerge), we use the phenology model to

calculate the mean adult emergence date. For bivoltinism to be possible, emergence must

occur early enough in fall for successful oviposition and egg survival. The emergence

date is used as the starting attack date for the second generation. If the adult emergence

date of the second generation is within 10 days of the original (first generation) starting

date, we conclude that a bivoltine life cycle is possible. However, we must check that

temperatures were not too cold during specific life stages. Temperatures below −18◦C

will kill any eggs or pupae (Reid and Gates, 1970). Thus, if any day during the first

or second generation egg or pupae stage had a low temperature of −18◦C or below, we

conclude that bivoltinism is not possible for that temperature signal even if the phenology
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model predicts that the second generation would complete within a year (plus 10 day

grace period).

Bivoltine population growth rate

Where our test for bivoltinism is positive, we calculate the yearly population growth

rate based on adult emergence of both generations. The attack (normal) distribution

of the first generation is centered about the first starting day between May 31st and

June 30th that leads to a positive test result for bivoltine potential. The cohort model

generates the corresponding adult emergence function which we use to calculate the

number of effective beetles and subsequently the first generation R-value denoted by

R1. The bottom of the adult emergence function is truncated by the attack threshold A

and then normalized (by dividing by the number of effective beetles) into a probability

distribution which we use as the attack distribution for the second generation. The

cohort model generates the second generation adult emergence function from which we

calculate the R-value for the second generation denoted by R2.

The effect of bivoltinism on a yearly population growth rate is multiplicative. That

is, if the temperature signal permits the emergence (from a singe tree infested in June) of

enough first generation effective adults in the fall to infest R1 more trees, and if R2 trees

are then infested by each of those R1 trees by the end of next June, the total number of

trees newly infested by the original tree is R1 ·R2. Thus, we take the population growth

rate for the year to be the product of the first and second generation R-values,

RBV = R1R2,

where we use RBV to denote the yearly growth rate of a bivoltine population of beetles.

3.3 Results

In providing an assessment of climate change impact on bark beetle disturbances,

we predict and analyze yearly univoltine MPB population growth rates, the potential

for bivoltine life cycles, and where the potential exists, yearly bivoltine growth rates.

3.3.1 Univoltine population growth rates

Figures 3.7-3.10 show decadal geometric means of predicted univoltine R-values

across the study area between 2025 and 2085. Included in each plot is a forest cover

map (green areas) indicating the presence of MPB host trees. Positive mean R-values

inside forested areas are plotted using the colormap on the left side of the figure while
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values not in forested areas are plotted in grayscale.

Between 2025 and 2035, our model predicts non-zero growth rates in areas where

MPB is currently known to have a presence. For example, we see sizable R-values

in middle-elevation areas such as the Sawtooth National Forest, Greater Yellowstone

area, and Flathead National Forest. With the exception of CanESM2 RCP-4.5 and

CNRM-CM5 RCP-4.5, overall R-values generally decrease with time contradicting the

intuitive notion that global warming should create conditions favorable to MPB life stage

development and therefore population growth. Furthermore, elevations with significant

growth rates increase as temperatures across the entire region increase.

3.3.2 Potential for bivoltine life cycles

In figures 3.13-3.16, we have plotted the number of years in a particular decade

in which thermal signals permitted bivoltinism. Included in each plot is a forest cover

map (green areas) indicating the presence of MPB host trees. Bivoltine potential inside

forested areas are plotted using the colormap on the left side of figure while values not

in forested areas are plotted in grayscale.

In general, bivoltine potential increases with time presumably as thermal conditions

producing two generations per year set in with warming temperatures. Initially, bivol-

tinism is predicted for low elevations (for example, the snake River Plane and Montana

grasslands) where temperatures are generally warmer. These areas are mostly unforested

and therefore not relevant in our analysis as they have no MPB presence. However, with

warming temperatures, bivoltine life cycles become possible at middle elevations and in

particular, in MPB host tree areas. We first see host area potential for bivoltinism in the

Clearwater River valley of Idaho which eventually extends well into Clearwater National

Forest, Nez Perce National Forest, and Coeur D’Alene National Forest. Bivoltinism also

begins to encroach on Boise and Sawtooth National Forests of Idaho as well as on Lewis

and Clark and Helena National Forests of Montana in future thermal regimes.

3.3.3 Bivoltine population growth rates

The climate model CanESM2 RCP-8.5 yielded the largest area with MPB bivol-

tinism potential by the 2080s. As a worst case scenario, we have plotted in Fig. 3.19

geometric means of bivoltine population growth rates (RBV -values) over the decade

2075-2085 generated by CanESM2 RCP-8.5 for the study area. Note that the range of

RBV -values is much larger than that of univoltine R-values due to the multiplicative na-

ture of yearly population growth with two generations per year. Furthermore, bivoltine
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Figure 3.19: Geometric means of predicted bivoltine population growth rates (RBV -
values) over the decade 2075-2085 generated by CanESM2 RCP-8.5. Note that the
range of bivoltine RBV -values is much larger than that of univoltine R-values due to
the multiplicative nature of yearly population growth with two generations per year.

potential must exist in all years of the decade in order to have non-zero geometric mean

of RBV -values. Areas with significant RBV -values include the Coeur D’Alene region,

Clearwater River valley, Boise National Forest, and small patches in Flathead National

Forest and around Missoula, MT and Helena, MT.

3.4 Discussion and Conclusion

At low to middle elevations (< 2000m), univoltine population growth rates decrease

on average across the study area (Fig. 3.20). As temperatures increase with time due

to global warming, the R-model predicts lower adult emergence and correspondingly

smaller univoltine R-values. It is likely that significantly high temperatures actually

disrupt MPB seasonality and produce unsynchronized adult emergence (Bentz et al.

2014). This is reflected in the R-model by the seasonal window for successful attack.

If adult emergence is outside this window or spread out enough so the attack threshold

is never exceeded, effective beetles En and hence R will be zero. Furthermore, because

warmer temperatures generally translate to faster life stage development, beetles may
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end up in non-cold-hardened life stages over winter and experience high overwintering

mortality. Since RCP-8.5 assumes no climate action and hence higher mean surface

temperatures, MPB population growth rates decline more rapidly with RCP-8.5 than

with RCP-4.5.

At middle elevations (2000m to 3000m), decline in population growth rates is (rela-

tively) less dramatic. Thermal conditions for optimal MPB development and hence high

population growth are already present in this elevational range. Higher than some criti-

cal elevation in this range where growth rates are roughly constant, R-values transition

from decreasing to increasing.

At high elevations (> 3000m), beetle populations may initially be semivoltine but

temperatures are too low for univoltinism. In time, univoltine R-values increase as

warming creates developmentally favorable conditions. The higher the elevation, the

longer beetles must wait for univoltine-optimal temperature signals.

As temperatures increase across all elevational ranges, some beetles may acquire

the phenological potential to complete two generations in a single year while avoiding

overwintering mortality. This results in zero univoltine population growth (R = 0)

while the potential for bivoltinism increases (Fig. 3.20). Since RCP-8.5 projects worst

case scenario warming, area with predicted bivoltinism is greater with RCP-8.5 than

with RCP-4.5. Low elevations (< 1000m) experience the greatest bivoltine potential

regardless of emissions scenario. However, when limited to areas with pine tree coverage,

total area with bivoltine potential is significantly reduced since there are few pines at

very low elevations.

Host areas with greatest bivoltine potential are between 1000m and 2000m where

there is ample thermal energy to allow for bivoltinism. At elevations between 2000m

and 3000m, area with potential for bivoltine life cycles increases with time but overall is

substantially smaller than at lower elevations as thermal energy is less available. Finally,

at high elevations, temperatures are too cold for bivoltinism.
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Figure 3.20: Decadal mean univoltine population growth rates (R-values) across
forested regions of the study area. At low to middle elevations (< 2000m), univoltine
population growth rates decrease on average across the study area as high temperatures
disrupt MPB seasonality and produce unsynchronized adult emergence. Since RCP-8.5
assumes no climate action and hence higher mean surface temperatures, MPB growth
rates decline more rapidly with RCP-8.5 than with RCP-4.5. At high elevations (>
3000m), R-values increase as warming creates developmentally favorable conditions.
Because RCP-8.5 projects more warming than RCP-4.5, MPB growth rates increase

more rapidly with RCP-8.5 than with RCP-4.5.
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Figure 3.21: Decadal mean area with bivoltine potential across forested regions of
study area. Host areas with greatest bivoltine potential are between 1000m and 2000m
where there is ample thermal energy to allow for bivoltinism. At elevations between
2000m and 3000m, area with potential for bivoltine life cycles increases with time
but overall is substantially smaller than at lower elevations as thermal energy is less
available. At high elevations, temperatures are too cold for bivoltinism. Since RCP-8.5
projects worst case scenario warming, area with predicted bivoltinism is greater with

RCP-8.5 than with RCP-4.5.
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Figure 3.22: Elevation with optimal thermal conditions for univoltine MPB develop-
ment increases with time (using mean R-values across GCMs).
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Chapter 4

INVASION WAVE SPEED AND SEVERITY OF

MOUNTAIN PINE BEETLE OUTBREAKS

4.1 Introduction

The mountain pine beetle (Dendroctonus ponderosae) is one of the most aggressive

phytophagous predators in western North American forests. Some species of conifers

have evolved significant defensive responses to bark beetle attacks such as the secretion

of resin to impede a beetle’s ability to bore into a host tree (Amman and Cole, 1983).

It is necessary for mountain pine beetle (MPB) to mass attack a tree to successfully

overcome these anti-predator adaptations (Berryman et al., 1985). Attacking adults lay

eggs in the phloem layer, then larvae hatch and consume the phloem, killing the host

tree. The summer following an effective attack, pine needles will have turned red, while

MPB emerge en masse from “red-tops” and take flight in search of new hosts to colonize

(Reid, 1962).

Although outbreaks of MPB have historically been normative (Mattson, 1996) in

lodgepole pine (Pinus contorta) forests, recent outbreaks have been far more severe and

expansive than in previous decades due in part to warming climate (Bentz et al., 2010).

Aside from temperature-dependent phenology, two of the main drivers of the irruptive

nature of MPB population dynamics are host tree stand demographic structure and

spatial effects of beetle dispersal (Bjornstad et al., 2002; Aukema et al., 2008).

There is a clear analogy between waves of disease in human and animal populations

(Anderson and May, 1979a,b) and waves of MPB infestation in pine forests; an extensive

literature on infectious disease models with demographic structure also exists (Hethcote,

1994, 2000; Keeling, 1999; Riley, 2007). Heavilin et al. (2007); Heavilin and Powell

(2008) built several red-top models in the spirit of the classic SIR (Susceptible-Infected-

Recovered) infectious disease model (Kermack and McKendrick, 1927). These models

elucidated that the severity of an outbreak wave depends on the number of available

susceptible individuals, infectivity of the disease, and removal/recovery rate of infected
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individuals.

However, Heavilin’s red-top and other epidemiological models, though class struc-

tured, fall short of capturing the long recovery period of a forest affected by a MPB

outbreak. A stand of pines is considered recovering when most trees are juvenile and do

not have a large enough phloem layer to facilitate successful MPB colonization. It takes

50 to 100 years for a lodgepole pine to reach sufficient size to be susceptible to MPB

attack. In order to model the dynamics of an outbreak cycle with an extended recovery

period and make realistic predictions of severity, it is necessary to incorporate several

latency classes.

While the red-top models of Heavilin and Powell (2008) are successful in capturing

the advance of infestation through a forest of healthy trees by addressing MPB dispersal,

their model-generated waves of infected trees do not persist indefinitely as in realistic

forests. Abramson et al. (2003), who modeled the spread of the hantavirus infection in

deer mice using a continuous SIR type epidemiological model coupled with a diffusion

term for spatial dispersal of infectives, showed that travelling waves of infection can

persist indefinitely. However, a continuous (e.g. differential equation) model is not ap-

propriate for insect infestations on account of the discrete nature of insect life cycles. In

particular, MPB typically completes one generation per year which necessitates discrete

time modelling constructs such as difference equations. There is a substantial amount of

literature proving the existence of travelling waves generated by disease outbreak models

(for example, (Ruan and Xiao, 2004). However, methods for predicting the impact of a

propagating wave on hosts are few. Furthermore, there exist no analytic approximations

of outbreak severity to date.

The speed of an invading wave of infestation plays a critical role in determining

the intensity of an outbreak. Kot et al. (1996) as well as Neubert and Caswell (1996)

have discussed methods for calculating invasion speeds for unstructured and structured

invasive populations respectively. Outbreak wave profiles in time (at a fixed position

in space) due to travelling waves are known to be asymmetrical with different peak

values than the symmetrical waves of disease generated by standard (non-spatial) SIR

models. Duncan et al. (2015) developed analytic methods for approximating the severity

of an outbreak generated by an age-structured forest demographic model which did not

account for spatial structure created by MPB dispersal. However, methods for predicting

the intensity of travelling periodic invasion waves arising from structured demographic

models conjoined with dispersal components have not yet been developed.
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In this paper, we construct a system of integrodifference equations (IDE) that

model the densities of pine trees infested by MPB, healthy uninfested trees, and age

classes of juvenile trees which are not susceptible to mass MPB attack. The structured

demographic model is coupled with a Gaussian redistribution kernel to emulate MPB

dispersal each summer in their search for new susceptible host trees. Redistributing

MPB across a landscape in which previously infested trees may not be reinfested for 50

- 100 years (via mortality and seedling regrowth to susceptible size) generates a train of

sustained solitary waves of infestation that move through a forest with constant speed.

At a stationary point in the forest, a passing wave manifests temporally as an outbreak

at the stand level.

We use a WKB approximation in conjunction with the method of steepest descent

to evaluate the convolution integral in the IDE for infested trees. This enables a transi-

tion to a continuous setting by converting the resulting difference equation to a second

order nonlinear partial differential equation (PDE). A search for travelling wave solu-

tions of the PDE results in predictions of the shape of an outbreak wave profile and of

its peak (maximum infestation) as functions of the speed of the wave. By linearizing the

IDE, we calculate an estimate of the rate of invasion that depends solely on model pa-

rameters. We are left with an explicit formula for predicting the severity of an outbreak

based on MPB population growth rate and host searching efficiency. This prediction

compares favorably with peak impact observations taken during a recent outbreak in

the Sawtooth National Recreation Area (SNRA) of central Idaho.

4.2 Model Development

MPB spend their first 7 life stages (egg through pupae) beneath the bark of a

host pine tree (Reid, 1962). Upon molting into mature adults, they emerge from the

tree and disperse by flight in search of new hosts. Adult MPB attack live trees and

lay eggs in the phloem layer typically during mid to late summer. Eggs hatch and the

larvae feed on the phloem while developing into mature MPB, which eventually results

in the death of the host tree (Amman and Schmitz, 1988). As the tree dies, needles

turn red (these trees are called “red tops” or “red snags”) by the following summer

when MPB once again emerge and begin searching for new hosts. Two to three years

later, needles turn gray (“gray snags”) and begin to fall off the tree. Lodgepole pine

trees are shade intolerant and therefore need light to regenerate. The death of trees

opens up the forest floor to sunlight and frees up resources previously unavailable to
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seedlings (Schmidt and Alexander, 1985). Below we present a structured model for

forest infestation, including susceptibles, snags, and nonsusceptible juveniles, with birth

rates proportional to space freed up for seedlings as snags lose their needles and juveniles

succumb to natural mortality.

4.2.1 Host Tree Life Cycle and Demographics

Juvenile Age Classes

MPB cannot successfully infest trees smaller than 25 cm in diameter at breast

height (DBH) since the phloem layer is too thin to support beetle development. Fur-

thermore, beetles developing in small trees have lower population growth rates and brood

production increases with DBH (Safranyik, 2003). We assume a lower DBH threshold of

25 cm for infestations that lead to significant mass adult emergence. Thus, trees below a

given age will be considered nonsusceptible and this age, NJ , is the number of juvenile

age classes. For example, if trees have fixed radial growth rate of 1.5 mm/year (Reid and

Gates, 1990), juvenile trees age 80 or younger are not susceptible to MPB attacks, and

we take NJ = 80. The population density of juvenile trees in the kth age class in year

n at spatial location x is denoted by jk,n(x) while the total density of juveniles from all

NJ age classes is represented by Jn(x) measured in stems per hectare (ha). Figure 4.1

diagrams the evolution of host tree demographics over the course of one MPB generation

(1 year) as well as the entire life history of a host.

In the spring, juvenile trees in an age class either survive with (constant) probability

s and graduate to the next age class, or die with probability d = 1 − s. Total juvenile

mortality in year n is dJn and

jk+1,n+1 = sjk,n, k = 1, .., NJ − 1. (4.1)

The total density of trees in the juvenile latency class is given by

Jn =
NJ∑
k=1

jk,n. (4.2)

Successful infestation kills the host tree and lodgepole pines lose nearly all their

needles two years after infestation. Since lodgepole pine trees are not shade tolerant,

seeds only germinate in gaps in the forest floor left by MPB infestation or other mortality.

Hence, the snag classes, In−1 and In−2, must be included in the model because they still

shade the forest floor, delaying initiation of juvenile recruitment. Assuming there is
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Figure 4.1: (a) Host tree life-cycle diagram. Natural juvenile mortality, d, opens up
forest floor space to new seedling growth. Likewise, infestation mortality translates to
seedling growth (after a once infested tree spends two years as a snag). Juvenile age
class survivorship s = 1−d is constant. Trees that survive to age NJ+1 years graduate
(mature) into the class of susceptibles. (b) In spring, juvenile trees either die and leave
empty spaces on the forest floor, or survive and graduate to the next age class. In
summer, a susceptible tree either becomes infested or avoids infestation and remains in
the class of susceptible trees. Over the winter, two-year-old snags lose all their needles
creating a gap in the forest floor. In spring, seedlings sprout in any open forest floor

space created by natural juvenile mortality or infestation mortality.
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always an ample supply of seeds on the ground, seedlings sprout in the unshaded areas

of the forest and we have

j1,n+1 = dJn + In−2. (4.3)

Infested Class

In mid to late summer, beetles emerge from infested trees, search for new hosts,

and attack. We let In(x) denote the population density of infested trees and use a

Ricker-type model (Ricker, 1958) for newly infested trees (following Powell and Bentz

(2009)),

In+1 = RIne
−β(Jn+1+In+In−1),

where Jn+1 + In + In−1 comprises the population of nonsusceptible trees. Here R is

the number of trees that will become infested next year for each infested tree this year.

The exponential factor represents the probability of infesting beetles encountering new

susceptible trees in a Poisson search process with failure rate β, i.e., host searching

inefficiency. When the density of nonsusceptible trees is greater than lnR
β , a MPB

epidemic cannot propagate.

To estimate the value of β, Powell and Bentz (2009) used observed infestation data

derived from Aerial Detection Surveys (ADS) of the Sawtooth National Recreation Area

(SNRA) in central Idaho conducted by USDA Forest Service, Forest Health Protection.

Observers in fixed-wing aircraft measured the area impacted by MPB infestation each

year with 30 m resolution. (Powell and Bentz, 2009) estimated the failure rate β at

10.8× 10−6 per hectare of trees impacted using infestation (ADS) data taken during an

outbreak that occurred in the SNRA between 1995 and 2005. From Crabb et al. (2012),

the mean impact in the SNRA during the outbreak was estimated at 8.12 infested stems

per hectare of all trees impacted (regardless of tree species). Furthermore, Crabb et al.

(2012) estimated the total area of host trees (lodgepole pine) in the SNRA prior to the

outbreak to be around 8410 ha. Thus we take

β =

(
10.8× 10−6

1

ha impacted

)(
1 ha impacted

8.12 infested stems

)
(8410 ha of hosts)

= 0.011
ha

infested stem
.

Susceptible Class

In spring the density of susceptible trees, denoted Sn(x), will be its previous value,
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minus the number of trees that became infested last summer, plus the number of NJ

year old juveniles that survived and matured into adult susceptible trees,

Sn+1 = Sn − In + sjNJ,n. (4.4)

The total number of trees per hectare T is conserved from year to year reflecting finite

floor space and therefore stand carrying capacity,

T = Jn+1 + Sn+1 + In + In−1, (4.5)

which allows for a more convenient form of the infestation equation,

In+1 = RIne
−β(T−Sn+In−sjNJ,n). (4.6)

We estimate T based on the mean host tree density, 390 stems/ha, in the SNRA prior

to the outbreak that began there in the mid-1990s (Crabb et al., 2012). See Table 4.1

for a summary of variables, parameters, units and estimated nominal values. Detailed

analysis of this demographic model, including fixed point stability analysis and estimated

outbreak cycle period and severity, appear in Duncan et al. (2015).

4.2.2 MPB Dispersal

Beetles disperse in late summer in search of new hosts after emerging from pre-

viously infested trees. In a relatively large and homogeneous host area, the spread of

infested trees can be viewed as a one-dimensional process. Furthermore, large two-

dimensional travelling waves are approximately one-dimensional at the stand level.

Therefore, we model beetle dispersal on a continuous one-dimensional habitat using

the ecological diffusion equation (Turchin, 1998),

∂P

∂t
=

∂2

∂x2
(DP ), −∞ < x <∞, t > 0, (4.7)

P (x, 0) = αIn(x),

where P (x, t) represents the density of MPB at location x (hundred meters from the

origin) at time t days, D is the rate at which beetles disperse (motility), and α is the

mean number of MPB that emerge from an infested tree. Powell and Bentz (2014)

estimate mean MPB emergence at α = 2043 MPB/stem using infestation (ADS) data

taken from the SNRA during the recent outbreak.
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To estimate the value of D, we employ the motility function of Powell and Bentz

(2014) which adjusts MPB dispersal rates according to variable landscape type, i.e. host

density. MPB motility D as a function of host density S is given by

D = D0e
−(D1+lnD0)

S
1000 , (4.8)

where D0 gives the maximum dispersal rate when host density is zero. Motility decays

exponentially to e−D1 as host density increases to a saturated stand capacity of 1000

stems/ha. The exponential decrease in motility with susceptible host density reflects

increasing residence time in denser stands as MPB search for new susceptible hosts

or trees already under attack. Values of D0 = 3.79 km2/day and D1 = 10.9 were

estimated from ADS data taken from the SNRA outbreak over the years 1995-2003

(Powell and Bentz, 2014). Assuming susceptible host tree density in the absence of

MPB is a constant 390 stems/ha, we use the motility function (4.8) to calculate our

estimate of MPB dispersal rate D = 3.21 ha/day. Since individual beetles fly for only

one day per season (year), we obtain the per year dispersal rate D = 3.21 ha/year.

To incorporate beetle dispersal in the demographic model, we rewrite (4.6) as

In+1(x) = γCn(x)e−β(T−Sn(x)+In(x)−sjNJ,n(x)). (4.9)

where Cn(x) denotes the density of colonizing MPB at the end of the previous summer

and γ represents the number of trees that can be colonized per attacking beetle. An

estimated 250 attacking beetles per tree are required to successfully overcome a host’s

defensive mechanisms, and subsequent attacks fill up trees at a rate of 698 MPB/host

(Powell and Bentz, 2014). Since we are constructing an outbreak model wherein beetle

populations are generally well above the attack threshold (250 MPB/stem), we can

combine the beetle-to-infested tree conversion rate (1/698 stems/MPB) with the attack

threshold to get an estimate of γ = 1/948, where 948 = 250 + 698.

When susceptible host density is high, the number of new infestations is simply

proportional to the number of attacking beetles which we compute by the convolution,

Cn(x) =

∫ ∞
−∞

k(x− y)αIn(y)dy,



77

where k is the fundamental solution of (4.7) (with t = 1), called the Gaussian diffusion

kernel,

k(x) =
1√
2πσ

e
−x2
2σ2 .

Here we have the relation between MPB dispersal rate and the variance of the Gaus-

sian distribution, σ2 = 2Dt, where t = 1 year since individual MPB only disperse 1

day/year. With the estimated dispersal rate D = 3.21 ha/year, we have σ = 253.5 m.

Combining the sedentary (population growth) and dispersal stages we can write (4.9)

as the integrodifference equation

In+1(x) = Re−β(T−Sn(x)+In(x)−sjNJ,n(x))
∫ ∞
−∞

k(x− y)In(y)dy. (4.10)

where R = γα represents the number of new infestations per infested tree, which can be

viewed as the net reproductive rate of MPB. The full model is

j1,n+1(x) = dJn(x) + In−2(x),

jk+1,n+1(x) = sjk,n(x), k = 1, .., NJ − 1,

Sn+1(x) = Sn(x)− In(x) + sjNJ,n(x),

In+1(x) = Re−β(T−Sn(x)+In(x)−sjNJ,n(x))
∫ ∞
−∞

k(x− y)In(y)dy.

When initialized with a few hectares of low density infestation near the origin, the

model generates a train of solitary waves of MPB infestation that propagate through a

medium of host trees (Fig. 4.2). These traveling waves in space correspond to outbreaks

in time for a particular point on the landscape. The speed of the leading right-travelling

wave, i.e., invasion speed, is approximately 312 m/year and peak infestation is around 30

stems/ha with nominal parameters estimated from the SNRA outbreak. The subsequent

train of periodic waves have smaller peaks and less steep edges since they are moving into

a landscape with less than ideal conditions, i.e., with sizable densities of nonsusceptible

trees whereas the initial wave invades area saturated with susceptible hosts. In what

follows, we estimate the speed of the leading wave which we will use to construct an

approximation of outbreak severity as measured by peak infestation.
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Table 4.1: Model variables and parameters. Estimates for NJ and d were determined
using reference values consistent with field observation. Powell and Bentz (2009, 2014)
estimated β, R, and σ from data taken during a recent outbreak of MPB in the Sawtooth
National Recreation Area (SNRA), Idaho. Total host density T is estimated for the

SNRA in (Crabb et al., 2012).

Variables Description Units
Sn(x) Susceptible tree density in

year n at location x
stems/ha

In(x) Infested tree density in year n
at location x

stems/ha

jk,n(x) Juvenile tree density of the kth

age class in year n at location
x

stems/ha

Jn(x) Total juvenile tree density stems/ha
Cn(x) Density of beetles colonizing

trees at the end of the disper-
sal season in year n

MPB/ha

Parameters Description Estimated Values/Units
T Total number of trees per

hectare
T = 390 stems/ha

NJ Number of juvenile age classes NJ = 80 age classes
d Natural mortality rate for ju-

veniles
d = 0.01 per year

s = 1− d Natural juvenile survivorship s = 0.99 per year
β Failure rate in MPB search

process
β = 0.011 ha/stem

R = γα Net reproductive rate of MPB R = 2.16 per year
σ Standard deviation of Gaus-

sian dispersal kernel
σ = 253.5 m

Values to
approxi-
mate

Description Units

c∗ Speed of an invading infesta-
tion wavefront

m/year

τ∗ Shape parameter of an invad-
ing wavefront

1/m

Imax Maximum MPB impact in a
single year throughout an out-
break

stems/ha
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4.3 Predicting the Speed of a MPB Invasion

4.3.1 Asymptotic Travelling Wave Speed

Our model can be written in matrix form as

Yn+1(x) =

∫ ∞
−∞

BY(x, y)Yn(y)dy (4.11)

where,

Yn =
[
j1,n j2,n . . . jNJ,n Sn In In−1 In−2

]T
denotes the population densities of all classes of trees and the matrix

BY(x, y) =



dδ dδ dδ · · · dδ 0 0 0 δ

sδ 0 0 . . . 0
...

...
... 0

0 sδ 0
. . .

...
...

...
. . .

. . .
. . .

0

0 . . . 0 sδ 0 0 0 0 0

0 . . . 0 sδ δ −δ 0 0

0 . . . 0 0 Re−β(T−Sn+In−sjNJ,n)k 0 0

0 . . . 0 0 δ 0 0

0 . . . 0 0 0 δ 0



(4.12)

encapsulates density dependent tree population growth and MPB dispersal. We use

the Dirac delta function δ = δ(x − y) to model the absence of dispersal in transitions

between any two stages other than from In to In+1 (see Neubert and Caswell (1996)

for details). In transitioning from In to In+1, infested trees beget more infested trees

through beetle dispersal (via the Gaussian kernel k = k(x−y)) and colonization. Matrix

B is partitioned to show the upper-left NJ × NJ block corresponding to the juvenile

age classes. In an effort to approximate the speed of travelling waves generated by the

model, we linearize around the trivial steady state (given below) and calculate the speed

of waves generated by the linearized model.

We linearize about the state

Ỹ =
[
0 . . . 0 T 0 0 0

]T
(4.13)
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and let A = BỸ be the Fréchet derivative of B at Ỹ. Here we have assumed that

before a MPB invasion moves in, the forest consists of mostly susceptible trees and

negligible densities of juvenile and infested trees. By the linear conjecture of van den

Bosch et al. (1990), the speed of an invasion wave generated by a nonlinear model can

be approximated by its linearization at low invasive population densities. The linearized

model takes the form of a convolution which can be written as

Yn+1(x) =

∫ ∞
−∞

A(y)Yn(x− y)dy. (4.14)

In a moving frame of reference with unknown speed c > 0 near the invasion front,

Yn+1(x) = Yn(x− c)eε,

where ε is an unknown wave growth rate parameter that depends on c. That is, we

imagine that the wave is translating to the right with speed c and growing vertically by

a factor of eε each year with respect to our frame of reference (Fig. 4.3 (a)).

We assume that the edge of the wavefront is of the form

Yn(x) = e−τxv, (4.15)

where v gives the (constant) relative abundance of each tree class in the travelling wave

and τ determines the shape of the advancing edge of the wave. Then the linearized

model (4.14) becomes

eτc+εv = H(τ)v,

where H(τ) ≡
∫∞
−∞A(y)eτydy.

Since the behavior of eτc+εv is dictated by the dominant eigenvalue of H(τ), de-

noted ρ(τ), we have

eτc+εv ∼ ρ(τ)v,

and thus,

ε = −τc+ ln ρ(τ). (4.16)
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Figure 4.3: (a) In a moving frame of reference with speed c near the front of the
invasion, a point on the next generation’s front is a horizontal translation and a vertical
multiple of some point on the current front. (b) We predict the speed on the invasion
by choosing the frame of reference speed that corresponds to a vertical multiple of unity

(ε = 0).

Furthermore, since the long-term behavior of wave growth is controlled by the maximum

value of ε, setting dε
dτ = 0 using (4.16) gives

c =
ρ′(τ)

ρ(τ)
. (4.17)

Since ε = 0 in a frame of reference moving with the wave of invasion, Eq. 4.16 becomes

c =
1

τ
ln ρ(τ) (4.18)

(Fig. 4.3 (b)). From (4.17) and (4.18), we have

ρ′(τ)

ρ(τ)
=

1

τ
ln ρ(τ)

which is the condition that arises when minimizing 1
τ ln ρ(τ). It is necessary to minimize

c in order to maximize ε according to (4.16). Therefore, the predicted wave speed is
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given by

c∗ = min
0<τ

(
1

τ
lnρ(τ)

)
(4.19)

as derived in Neubert and Caswell (1996) for a simpler, related system.

4.3.2 Speed of Model-Generated Invasion Wave

To predict the speed of a wave of infestation moving across a landscape generated

by our model, we require the spectral radius of

H(τ) =



d d d · · · d 0 0 0 1

s 0 0 . . . 0
...

...
... 0

0 s 0
. . .

...
...

...
. . .

. . .
. . .

0

0 . . . 0 s 0 0 0 0 0

0 . . . 0 s 1 −1 0 0

0 . . . 0 0 Re
σ2

2
τ2 0 0

0 . . . 0 0 1 0 0

0 . . . 0 0 0 1 0



,

which is block-upper triangular and hence its spectrum is the union of the spectra

of the diagonal blocks. Let H1 and H2 denote the upper-left and lower-right blocks

respectively. By the Gershgorin circle theorem with respect to the columns of H1, the

spectral radius of H1 is no more than 1. Since the spectral radius of H2(τ) is clearly

Re
σ2

2
τ2 , the largest eigenvalue of H(τ) is

ρ(τ) = Re
σ2

2
τ2 ,

provided R > 1; which is required for the propagation of an outbreak anyway.

Applying (4.19), we have an approximation of the speed of the invading wavefront,

c∗ = σ
√

2 lnR, (4.20)

where the minimizing value of the wave shape parameter is

τ∗ =

√
2 lnR

σ
. (4.21)
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Thus, we have closed-form approximations of the speed and shape of the right tail of

the (right-traveling) invading wavefront in terms of model parameters alone. Note the

relation between wave speed and shape,

c∗ = σ2τ∗.

Equations 4.20 and 4.21 are also derived in Kot et al. (1996) for an unstructured model

of an invasive population that disperses according to a normal distribution.

4.4 Invasion Wave Amplitude Approximation

4.4.1 Converting the IDE into a PDE

Our goal here is to derive analytic predictions of the shapes of the right and left tails

of an invading wavefront and to numerically reconstruct the entire wave profile. These

predictions will enable the development of an approximation of outbreak severity based

on MPB population growth rate. To facilitate the construction of such approximations,

we derive a partial differential equation (PDE) from the integrodifference equation (IDE)

model for infested trees (4.10). The first step in this derivation is to approximate to the

convolution integral in Eq. 4.10.

We start with a WKB approximation and assume the solution of the integral equa-

tion (4.10) is of the form

In(x) = eun(x) (4.22)

for some function un(x). Then the convolution (k ∗ In)(x) becomes

k ∗ eun =

∫ ∞
−∞

1√
2πσ

eh(y)dy,

where

h(y) = un(x− y)− y2

2σ2
.

We approximate this integral using the method of steepest descent. Expanding un in its

Taylor series, we have

h(y) = un(x)− u′n(x)y +
u′′n(x)

2!
y2 − . . .− y2

2σ2
.
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Ignoring higher order terms, the critical point of h (denoted y∗) satisfies

h′(y∗) = −u′n(x) + u′′n(x)y∗ − y∗

σ2
= 0,

which implies

y∗ = −σ2u′n
1

1− σ2u′′n
.

Expanding as a power series in σ2, we have

y∗ = −σ2u′n(1 + σ2u′′n + σ4(u′′n)2 + . . .). (4.23)

Now

h(y∗) = un + (u′n)2 +O(σ4),

and at leading order,

h′′(y∗) = u′′n −
1

σ2
≈ − 1

σ2
,

provided σ2 << 1. Thus, by the method of steepest descent,

k ∗ In ≈
1√
2πσ

√
2π

|h′′(y∗)|e
h(y∗) = eun+

1
2
σ2(u′n)

2+O(σ4). (4.24)

We now move to a continuous setting by transforming (4.10) to an (approximately)

equivalent partial differential equation (PDE). Neglecting higher order terms in (4.24),

we can rewrite (4.10) as

eun+1 = Re−β(T−Sn+1)eun+
1
2
σ2(u′n)

2
, (4.25)

or equivalently,

eun = Re−β(T−Sn)eun−1+
1
2
σ2(u′n−1)

2
. (4.26)

Dividing (4.25) by (4.26) yields

eun+1−un = eun−un−1+
1
2
σ2[(u′n)

2−(u′n−1)
2]eβ(Sn+1−Sn).

Since jNJ,n is small just before the invasion wave hits,

Sn+1 − Sn = −In + sjNJ,n ≈ −eun
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and hence, after equating exponents and rearranging, we have

un+1 − 2un + un−1 =
1

2
σ2[(u′n)2 − (u′n−1)

2]− βeun . (4.27)

Suppose

un(x) = w(t = n∆t, x)

for some twice continuously differentiable function w and time step size ∆t = 1. Then

(4.27) becomes the second order nonlinear PDE,

wtt = σ2wxwxt − βew, (4.28)

upon Taylor expanding u′n−1(x) = wx
(
(n− 1)∆t, x

)
.

4.4.2 Travelling Wave Profile

We look for travelling wave solutions of (4.28) by assuming w = f(z) for some

function f(z) where z = x− ct with wave speed c > 0. Substituting into (4.28) we have

c2f ′′ = −cσ2f ′f ′′ − βef

which, after multiplying by f ′, integrates to

1

2
c2(f ′)2 +

1

3
cσ2(f ′)3 + βef = C (4.29)

for some constant C which can be viewed as the “energy” along trajectories. Let

E1(f
′) =

1

2
c2(f ′)2 +

1

3
cσ2(f ′)3

represent the “energy” of motion and

E2(f) = βef

be the “energy” of position. Solutions of (4.29) are isoclines of the potential E1 + E2.

Assuming In(x) attains a maximum value, Imax, at x = 0 when n = t = 0, we find

C = βImax. Peak infestation, Imax, is the measure of outbreak severity we seek to

estimate. At this point, E1 is at a local minimum, (E1(0) = 0) and E2(lnImax) = βImax
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(Fig. 4.4). The maximum stable value of E1 is c4

6σ4 and if

−c
σ2
≤ f ′ ≤ c

2σ2
,

then 0 ≤ E1 ≤ c4

6σ4 .

We require In(x) → 0 as x → ±∞ which forces f(z) → −∞ since z → ±∞ as

x→ ±∞ (for fixed t) and f = ln I. As f → −∞, (4.29) becomes

1

2
c2(f ′)2 +

1

3
cσ2(f ′)3 = βImax. (4.30)

We choose the maximum stable energy state of E1, when f ′ = −c
σ2 or f ′ = c

2σ2 , in order

to obtain a worst case scenario (i.e., largest possible peak) approximation of Imax. From

(4.30) we have

Imax =
c4

6βσ4
. (4.31)

Figure 4.5 shows a phase diagram of (4.29) with the trajectory corresponding to the

maximum stable energy state.

The horizontal asymptotes, −c
σ2 and c

2σ2 of the trajectory in Figure 4.5 represent the

slopes of f as z → ±∞, respectively. For fixed n, ln(In(x)) = ln(I(x)) ≈ f(x−ct) = f(z)

for some fixed t and therefore

f ′(z) =
I ′(x)

I(x)
→ −c

σ2
as z → +∞.

Hence, for x >> σ2

c , we have

I(x) ∼ Imaxe
−c
σ2
x. (4.32)

Similarly, for x << −σ2

c , we have

I(x) ∼ Imaxe
c

2σ2
x. (4.33)

The accuracy of the analytic approximations of the shape of an invading wave, Eqs. 4.31,

4.32, and 4.33, is illustrated in Figure 4.6. To construct an approximation of the entire

wave profile, we numerically integrate (4.29) using Euler’s method with wave speed c

estimated by Eq. 4.20 (Fig. 4.6). The slopes of the right tails of ln I from simulation

and approximation approach the same value as x → ∞ indicating that Eq. 4.32 is a

good approximation of the shape of the invading wave tail.
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Figure 4.4: The left-hand side of the traveling wave equation (4.29) contains the
kinetic and potential energy functions E1 and E2 respectively. The maximum possible
peak value of E1 produces our approximation of wave amplitude, Eq. 4.31, after noting
that E2(lnImax) = βImax when z = 0. We envision a particle moving in the positive f
direction (z decreasing from +∞) along E2 in (c) starting at point A. When the particle
reaches point B, the outbreak peaks and the particle reverses direction, heading back
toward point C. Corresponding points are labelled on the invasion wave profile in (a)

and on E1 in (b) .
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Figure 4.5: Phase plane of (4.29) generated using parameter values from Table 4.1
with maximum value of E1 for stable solutions of (4.29) and estimated wave speed c∗

from Eq. 4.20. Asymptotes of the trajectory correspond to exponential shape param-
eter values that describe the left and right tails of the invasion wave. We derive an
approximation of peak outbreak infestation (maximum MPB impact, Eq. 4.31) using

the value of f when f ′ = 0.

Using the approximation of invasion speed c from Eq. 4.20 in (4.31), we obtain

a prediction of outbreak severity in terms of the net reproductive rate of MPB R and

MPB host searching parameter β,

Imax =
2(lnR)2

3β
. (4.34)

The approximation of the exponential decay rate of the advancing wave’s leading edge

in (4.32) agrees exactly with the wave shape parameter prediction (4.21). This is no

surprise since (4.32) is based on the the maximum energy state of E1, and the method

employed in the derivation of (4.21) provides a maximum wave speed using dominant

eigenvalues and wave growth rates.

4.5 Results

Figure 4.7 compares predicted wave speeds for varying MPB population growth

rate R using (4.20) with speeds from simulation. With nominal parameter values (Table

4.1), we predict an invasion speed of 315 m/yr. There is a less than 1% error between this

prediction and the estimated speed from simulation (312 m/yr). Figure 4.8 compares
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Figure 4.6: Comparison of the numerical solution of (4.29) with the actual wave profile
generated by model simulation. The slopes of the right tails of ln I from simulation
and approximation approach the same value as x → ∞ meaning Eq. 4.32 is a good
approximation of the shape of the invading wave tail. There is only a small error in
comparing the slopes of the left tails of ln I from simulation and approximation Eq.

4.33.

the shape of the initial advancing wavefront generated by simulation with the predicted

wave shape from (4.15) (equivalently, Eq. 4.32) using τ = 0.490 from approximation

(4.21).

Figure 4.9 compares our prediction of outbreak severity (4.34) with peak impacts

from model simulation for varying MPB reproductive rate R. With nominal parameter

values, maximum infestation from simulation is 29.2 stems/ha. Approximation (4.34)

predicts peak infestation at 35.9 stems/ha. The 23% relative error is due to truncating

terms that may not be negligible in the series expansion (4.23) since σ2 is not necessarily

small. In fact, since σ and x are the only variables with spatial units, nondimension-

alization results in σ = 1. We also assume σ2 is small in using the method of steepest

descent, introducing some error. Even so, the approximation does a relatively good job

tracking the general trend of positive association between outbreak intensity and MPB

population growth rate. Furthermore, there is only a 14.8% mean relative error over all
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approximated from Eq. 4.21 (used in Eqs. 4.15 and 4.32) is τ = 0.490. The slope of
the right tail of ln I from simulation is approaching −τ∗ as x → ∞ meaning Eq. 4.21

is a good approximation of the shape of the invading wave tail.
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Figure 4.9: Comparison of predicted peak infestation using Eq. 4.34 with actual peak
infestation, Imax, from simulation. There is only a 14.8% mean relative error over all

R values between 1.1 and 5.0.

R values between 1.1 and 5.0.

Figure 4.10 compares our prediction of outbreak severity (4.34) with peak impacts

from model simulation for varying MPB host searching failure rate β. Approximated

peak values follow simulation peaks closely and it is clear that outbreak intensity dimin-

ishes as search inefficiency, β, increases.

4.6 Discussion

4.6.1 SNRA Impact Data

Because of host heterogeneity on a realistic 2-dimensional landscape, it is difficult

to find 1-dimensional travelling waves of infestation during MPB outbreaks. However,

ADS data from the SNRA outbreak reveals a solitary wave of infestation travelling south

down a narrow valley at the southern end of the Stanley basin over the years 2002-2003

(Fig. 4.11). The average of the two peaks is 36 stems/ha which is close to the Imax value

predicted by model simulation and even closer to the value predicted by approximation

(4.34) as seen in Figs. 4.6, 4.9, and 4.10.

While host density was otherwise a fairly constant 377 stems/ha throughout the

valley at the time, divots in each profile between approximately −18 km and −17 km

correspond to a large meadow in the valley floor sparsely populated by host trees. During
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Figure 4.10: Comparison of predicted peak infestation using Eq. 4.34 with actual
peak infestation, Imax, from simulation. Approximated peak values follow simulation

peaks closely as outbreak intensity diminishes with increasing search inefficiency β.

the two years, the wave is travelling around 644 m/year which is more than twice the

speed predicted by the model with nominal parameter estimates. However, average host

density in the valley was actually 377 stems/ha, less than the mean density across the

entire SNRA (390 stems/ha). Since beetles disperse faster through habitats with lower

host density, we should expect this invasion wave to move slightly faster overall due to

reduced mean host density. Moreover, there is a 1 km long meadow along the length

of the valley that spans its width. Beetles likely skipped over the meadow completely

causing the wave to jump ahead dramatically which subsequently caused the speed of

the entire wave profile to move considerably faster than predicted.

To test this hypothesis, we utilize the motility function of Powell and Bentz (2014)

(Eq. 4.8) to generate MPB dispersal rates for the varying host densities in the valley.

In the 1 km meadow, host density is estimated to be around 10 stems/ha. With a mean

of 377 stems/ha hosts throughout the valley (assuming constant host density outside

the meadow) we calculate the non-meadow host density to be 438 stems/ha. Using the

motility function, we calculate the dispersal rates for the meadow and non-meadow areas

which are in turn used to calculate the corresponding Gaussian dispersal kernel standard

deviations via σ =
√

2D. We then calculate the rate of invasion for each landscape type
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Figure 4.11: A solitary wave of infestation travels west down a narrow valley at the
southern end of the Stanley basin (SNRA) over the years 2002-2003 at a speed near
644 m/year. Average peak infestation of 36 stems/ha agrees well with the Imax value
from simulation as well as with the predicted value from approximation (4.34). MPB
dispersal rate is considerably higher through the large meadow with low host density
between approximately −18 km and −17 km (north) from the center of the Stanley

Basin.

using Eq. 4.20. Finally, averaging the speed through the 1 km meadow with the speeds

through each of the remaining 6 kilometers of non-meadow (constant 438 stems/ha host

density), we have a modified invasion speed prediction of 660 m/year which is reasonably

close to the actual 644 m/year invasion speed inferred from ADS data.

4.6.2 Simulation in 2-Dimensions

To illustrate the relevance of our 1-dimensional analysis, we simulate the model on

a realistic landscape using the 2-dimensional ecological diffusion equation,

∂P

∂t
=

(
∂2

∂x2
+

∂2

∂y2

)
[DP ],

with constant MPB dispersal rate D = 3.21 ha/year. When initialized with variable

density of susceptible trees (to mimic realistic demographic heterogeneity) across the
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2-dimensional habitat, the model generates periodic closed loop waves of infestation

that propagate outward from the initial infestation source at the origin (Fig. 4.12).

Infestation moves in the direction of nearby high density stands of susceptible trees.

After enough time, infestation builds up to detectable levels (incipient epidemic state)

as small local outbreaks develop and coalesce to form a full scale outbreak (center-) wave.

Near the temporal end of this first outbreak-recovery cycle, small spots of infestation

appear near the origin again and merge to form another closed loop wave emanating

outward. Long-term simulations show that these periodic waves eventually resolve into

concentric circular waves with constant speed, amplitude, and period.

Peak infestation of the initial invasion wave is approximately 18 stems/ha whereas

in the 1-dimensional model, we saw peak impacts near 29 stems/ha. This difference can

be attributed to intrinsic effects of 2-dimensional dispersal. E.g., MPB are dispersing in

infinitely many directions (360◦) with the 2-dimensional model as opposed to just two

directions (left and right) on a 1-dimensional habitat. The essentials of the spatiotem-

poral dynamics, however, are the same and we may still infer a great deal from the

1-dimensional model about the nature of realistic invasion waves and make relatively

accurate predictions of outbreak intensity. Indeed, a radial cross-section of a circular

wave generated by the 2-dimensional model yields a waveform pattern which is nearly

indistinguishable from a 1-dimensional simulation. Furthermore, 2-dimensional invasion

wave speed is exactly the same as that of the 1-dimensional analog.

4.6.3 Local Temporal vs. Spatiotemporal Outbreak Dynamics

We have seen that our model generates a train of invasion waves that move across a

forest landscape with constant speed. At a stationary point in the forest, a passing wave

appears as a local outbreak in time. Duncan et al. (2015) provide a detailed temporal

analysis of stand-level outbreaks generated by a similar tree demographic model sans

explicit MPB dispersal. In fact, were there no dispersal component in our model, i.e.

σ2 = 0, then the PDE in Eq. 4.28 would reduce to the ordinary differential equation

(ODE),

wtt = −βew,

whose solution after noting that I = ew is

I(t) = Imaxsech2

(√
βImax

2
t

)
,
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Table 4.2: Comparison of outbreak severity predicted by our model with peak impacts
predicted by the non-spatial forest demographic model of Duncan et al. (2015) and with
mean yearly impacts across the SNRA during the recent outbreak. Our predictions of
outbreak intensity (Imax) and duration are in close agreement with the corresponding
approximations made by Duncan et al. (2015). However, our approximations of peak
infestation and outbreak duration are closer to the respective observed values from the

SNRA outbreak.

SNRA Present Paper Duncan et al. (2015)
Simulation Approx. Simulation Approx.

Peak (stem-
s/ha)

39.6 29.2 35.9 19.0 27.5

Outbreak
duration
(years)

≈ 10 12.4 8.1 15.4 13.6

which is the explicit approximation of the outbreak curve in time derived in Duncan

et al. (2015) under the assumption that I attains its maximum value, Imax, when t = 0.

Using our model, tracking infestation at a single point leads to a skewed outbreak

wave profile with respect to time while the sech-squared function of Duncan et al. (2015)

is symmetric (Fig. 4.13). However, approximations of outbreak severity and duration

from our model are relatively close to those derived by Duncan et al. (2015) (using our

nominal parameter estimates) as well as to actual mean yearly impacts from the SNRA

(Table 4.2). We also point out that Eq. 4.34 is structurally similar to the approximation

of maximum MPB impact derived in Duncan et al. (2015), Imax = I∗ + (lnR)2

2β , where

I∗ is the (relatively small) fixed point for the population of infested trees.

To assess the accuracy of our Imax prediction and wave shape parameter estimates,

we compare the temporal length of an invasion wave as it passes over a particular

point with the prediction of outbreak duration made by Duncan et al. (2015) and with

SNRA impact data (Table 4.2). The system is in outbreak phase when I > I∗ (Duncan

et al., 2015); so to get a rudimentary estimate of the spatial width of a traveling wave

profile, we set the right sides of (4.32) and (4.33) equal to I∗ separately and solve for

x. Adding the resulting x values gives us the desired width. Dividing the wave width

by the wave speed (approximated by Eq. 4.20) gives a predicted outbreak duration of

8.1 years. While this outbreak duration prediction matches SNRA data fairly well, it is

ultimately an underestimate since we used the wave tail approximations without taking

into account how they are connected (i.e., the shape of the wave when the outbreak is

in full swing). In reality, the concave down nature of the outbreak curve near the center

surely adds to the outbreak duration. It is yet an open question whether or not it is
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Figure 4.13: Comparison of the temporal dynamics of the invasion wave as it passes
over a particular point with the sech-squared approximation of Duncan et al. (2015)
and with SNRA impact data. The system is in outbreak phase when I > I∗ (Duncan

et al., 2015).

possible to construct an analytic approximation of the invasion wave profile (such as the

sech-squared function of Duncan et al. (2015) for the non-spatial model).

4.7 Conclusion

In this paper we have developed a MPB outbreak model that accurately emulates

infested tree population dynamics exhibited in realistic epidemics. The model captures

the temporal dynamics of an outbreak-recovery cycle by incorporating juvenile latency

classes to account for size requirements for attack-susceptible trees. Beetle dispersal

is modeled by convolution of the Gaussian diffusion kernel with the previous year’s

population density function.

Initializing the model with a small infestation near the origin generates a train

of solitary waves of MPB infestation that propagate through a medium of host trees

in space. The rate at which beetles disperse, as well as their net reproductive rate,

determines the speed of these periodic waves which we predict using a method similar to

that of Neubert and Caswell (1996). The resulting speed and wave shape approximations

agree with formulas derived in Kot et al. (1996) for predicting invasion rates of organisms

that disperse according to a normal distribution.

In an effort to predict outbreak severity based on MPB population growth rates,

we approximate the convolution integral in the IDE model for infested trees using the
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method of steepest descent and a WKB approximation for infested tree density. Upon

substituting the difference equation for susceptible trees, we derive a PDE that models

(the log of) infestation. Travelling wave solutions of the PDE satisfy an ODE whose

trajectories correspond to invasion wave profiles. Using conservation of energy along

trajectories, we deduce exponential growth and decay rates for the left and right tails

(resp.) of a wave of MPB infestation. Viewing the ODE as a potential function, we

use the maximum stable energy state to obtain an approximation of peak infestation

in terms of wave speed. Combining this approximation with our estimation of invasion

speed yields an accurate prediction of outbreak severity in terms of net reproductive

rate of MPB and host searching efficiency.

Our invasion speed prediction is nearly 100% accurate with only minor deviations

from simulation wave speeds for (unrealistically) large MPB population growth rates.

The speed prediction also compares well to actual (ADS) infestation data taken from

an outbreak in the SNRA after accounting for variable host density through the MPB

motility function of Powell and Bentz (2014). A numerical reconstruction of the travel-

ling invasion wave profile illuminates the accuracy of our wave tail shape approximations

derived from the PDE (4.28). With a mean relative error of less than 15% across a range

of reasonable MPB population growth rates, our approximation of peak infestation en-

ables us to make relatively good predictions of outbreak severity. Simulations of the

model in 2-dimensions confirm the assertion that we can gain much insight about the

nature of realistic invasion waves and make relatively accurate predictions of outbreak

intensity from our analysis of the 1-dimensional model.

Finally, we saw that the model-generated train of infestation waves correspond to

periodic outbreaks with respect to time from the standpoint of a stationary point on

the landscape (Fig. 4.2. This outbreak-recovery cycle mirrors that which is generated

by the similar demographic model devised by Duncan et al. (2015). Our predictions of

outbreak intensity (Imax) and duration are in close agreement with the corresponding

approximations made by Duncan et al. (2015). However, our approximations of peak

infestation and outbreak duration are closer to the respective observed values from the

SNRA outbreak.
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Chapter 5

CONCLUSION

The overall intent of this work was to predict the severity, duration, frequency,

and invasion speed of outbreaks of phytophagous forest pests in terms of their seden-

tary hosts. The main results provide relatively simple analytic approximations of these

characteristics for a variety of outbreak insects, based explicitly on measurable biolog-

ical parameters - pest net reproduction rate, mean dispersal distance, and host search

efficiency. Since many insect species’ life history developmental rates depend heavily on

thermal inputs, understanding the effects of temperature signals on various life stages

is critical in predicting population growth rates and subsequently, outbreak intensity,

timing, and invasion rate.

Throughout the course of this dissertation, we constructed and analyzed a sedentary

host demographic model with outbreak insect dispersal motivated by the lodgepole pine

tree-MPB interaction. The model is appropriate for a spectrum of pests attacking

the later age classes of long lived hosts, including MPB, spruce budworm, and spruce

beetle. We also examined the explicit dependence of MPB reproductive rates on thermal

regimes. The effect of temperature on insect populations is an important variable to

analyze in understanding outbreak dynamics, especially in light of recent climate change

phenomena.

In chapter two we developed the mechanistic SIJ host demographic model which

included a parameter representing temperature-dependent MPB population growth rate.

The model captures the temporal dynamics of an outbreak-recovery cycle by incorpo-

rating age classes of nonsusceptible juveniles to account for size requirements for attack

susceptible hosts. We found that the stability of two fixed points, one trivial and one

corresponding to incipient epidemics, control general outbreak behavior. As the MPB

growth rate parameter increases, both fixed points become unstable through a Hopf bi-

furcation which creates periodic outbreaks consistent with periodic irruptive population

behavior exhibited by realistic MPB populations.
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From the SIJ model we derived an approximating function for the outbreak curve

in time (the sech-squared function). With this formula we predicted the severity as

well as the duration of an outbreak based on temperature-driven MPB growth rates.

Additionally, we developed a formula for predicting the period of the outbreak-recovery

cycle. These results indicate that higher growth rates significantly increase the severity

of outbreaks but have little effect on outbreak frequency.

Chapter three contained a detailed assessment of MPB impact on temperate and

boreal forests by examining population growth rates across northern U.S. Rocky Moun-

tain pine forests under future climate scenarios. We developed the thermally-driven

mechanistic R-model to predict growth rates using a distributional model of beetle phe-

nology in conjunction with criteria for successful host colonization. Using projected

daily minimum and maximum temperatures for the years 2025 to 2085 generated by

three separate global climate models each with two different emissions scenarios, we

calculated growth rates each year for the study area at 4km resolution.

At low to middle elevations, univoltine MPB population growth rates decrease

on average across the study area. As temperatures increase with time due to global

warming, the R-model predicts lower adult emergence and correspondingly smaller R-

values for this elevational range as optimal thermal regimes move up in elevation. At high

elevations, R-values increase as warming creates developmentally favorable conditions.

Consequently, the higher the elevation, the longer semivoltine beetles must wait for

univoltine-optimal temperature signals.

As temperatures increase across all elevational ranges, some beetles acquire the

phenological potential to complete two generations in a single year (bivoltinism) while

avoiding overwintering mortality. We predicted that low (warmer climate) elevations

would experience the greatest bivoltine potential. However, when restricted to areas

with pine tree coverage, total area with bivoltine potential is significantly reduced since

host density is limited at very low elevations. Nevertheless, our mechanistic model does

predict the potential for an unprecedented switch from univoltine to bivoltine MPB life

cycles in host (lodgepole pine) areas. This could have multiplicative effects on yearly

population growth rates and subsequently, catastrophic effects on North American pine

forest ecosystems.

Finally, in the fourth chapter we returned to our study of MPB outbreak dynamics

and equipped the SIJ model with a Gaussian kernel for MPB dispersal, thus transforming

the model into a spatially-dependent system of integrodifference equations. Simulation
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of the model showed a train of periodic invasion waves of infestation moving through

space. In deriving an approximating PDE from the IDE for infested hosts and searching

for travelling wave solutions, we obtained explicit formulas of invasion wave amplitude

and speed in terms of biological parameters (pests reproductive rate, mean dispersal

distance, and host search efficiency). These predictions compared favorably with peak

impact observations taken during the recent outbreak in the SNRA.

We saw that the model-generated train of infestation waves correspond to peri-

odic outbreaks with respect to time from the standpoint of a stationary point on the

landscape. This outbreak-recovery cycle closely mirrors that which is generated by the

(non-spatial) SIJ model of chapter 1. Our predictions of outbreak intensity and duration

of travelling waves are in relatively good agreement with the corresponding approxima-

tions derived from the original SIJ model. Indeed, the equations predicting maximum

infestation are structurally very similar. It is yet an open question whether or not it is

possible to construct an analytic approximation (analogous to the sech-squared function

for the non-spatial SIJ model) of the invasion wave profile generated by the spatial SIJ

model.

With increasing temperatures caused by global climate change, we concluded in

chapter three that univoltine MPB population growth rates can be expected to increase

across certain elevational gradients in host areas. From our analysis of the non-spatial

SIJ model in chapter two, we predict that these increasing growth rates will lead to

significantly increased outbreak severity in terms of total tree mortality over the course

of an outbreak. Similarly, the spatial SIJ model of chapter four predicts increasing peak

infestation mortality as growth rates increase. Chapter four also showed us that the

speed of a MPB invasion increases with increasing net reproductive rates. Furthermore,

at some low elevation host areas, univoltine MPB may transition to bivoltine life cycles.

This will likely lead to dramatic increases in yearly population growth rates and hence,

outbreak mortality could be elevated to disastrous levels.
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APPENDIX A

DISTRIBUTIONAL MODEL OF MPB PHENOLOGY

Not all individuals in a population of poikilothermic organisms progress through

particular life stages at the same rate. This is primarily due to intrinsic genetic variation

at the individual level. Therefore, we assume that developmental rates are randomly

distributed across a population according to some probability distribution. Before de-

scribing the effects this assumption of rate variability on development times and hence

adult MPB emergence distributions, we outline the general developmental model for

physiological age of a single (or mean individual) beetle in a given life stage.

Phenology Preliminaries

MPB go through 8 life stages (oviposition, egg, larval instars 1-4, pupae, and teneral

adult) throughout the course of their life history. Each stage has a unique developmental

rate function that depends on the temperature of the medium surrounding the beetle

(tree phloem or ambient air). We denote the developmental rate function for life stage

j by ρj(T (t)) where T (t) is the temperature as a function of time t. By rate we mean

proportion of life stage completed per time (1 day). The time required to complete a

life stage (developmental time) denoted by τj(T ) for a constant temperature is therefore

given by

τj(T ) =
1

ρj(T )
.

The physiological age of a beetle in life stage j is defined as the proportion of that

life stage completed at time t and is denoted by aj(t). It is important to realize the

distinction between insect physiological age and real time. Physiological age is a direct

function of temperature, i.e. MPB complete fractions of the stage more or less rapidly

depending on temperature. The range of aj(t) is the interval [0, 1] where aj(tj−1) = 0

and aj(tj) = 1 implies that the life stage began at time tj−1 and ended at time tj . We
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formally define the relationship between physiological age and developmental rate as

d

dt
aj(t) = ρj(T (t)),

equivalently,

aj(t) =

∫ t

tj−1

ρj(T (s))ds

where the life stage j begins at time tj−1. If tj−1 is known, the developmental time for

stage j is tj−1 − tj where tj is found by solving

aj(tj) = 1 =

∫ tj

tj−1

ρj(T (s))ds

given a known temperature signal T (t) (for example, see Fig. 5.1).
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Figure 5.1: Life stage development response to temperature. The developmental time
for the second stage of the MPB life history (egg, j = 2) using the temperature signal
shown in (a) (daily high and low temps with interpolated midpoints) from latitude 44◦N
and longitude 115◦W for the year 2030 projected by global climate model CanEsm2
with emissions scenario Rcp-4.5 is just over 7 days (t1 = 210 and t2 = 217.2). The
dashed lines in (a) represent low and high developmental temperature thresholds, 7◦C
and 30◦C respectively. Note that when the temperature is below the lower threshold at
the end of day 218, the developmental rate in (b) is zero. Cumulative development for
a day shown in (c) is calculated using Simpson’s rule on developmental rates for that

day. Rate curve and parameters are taken from Régnière et al. (2012).

Since we need to know how many adult beetles emerge from an infested tree each

day to compute the number of newly infested trees (per old infested tree), we ultimately

need to know the time of development of the adult life stage. We calculate the time of

adult development t8 (given oviposition time t0) by daisy-chaining the 8 life stages as

follows:

1 =

∫ t1

t0

ρ1(T (s))ds,
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1 =

∫ t2

t1

ρ2(T (s))ds,

... (5.1)

1 =

∫ tj

tj−1

ρj(T (s))ds,

1 =

∫ t8

t7

ρ8(T (s))ds.

Incidentally we must find all life stage development times t1, t2, ..., t8 successively. In

practice, this is done numerically since realistic temperature signals are vectors with

temperatures given at certain points in time.

Developmental Rate Curves

Specific MPB life stage developmental rate functions and corresponding parameters are

taken from Régnière et al. (2012). Figure 3.3 shows graphs of the 8 parameterized rate

curves. While there is no true mechanistic basis underlying the derivation of the rate

curves, they are an empirical mathematical description of the shape of developmental re-

sponses to temperature. In general, each curve has lower and upper temperature thresh-

olds forming a range of temperatures outside of which no development occurs. Note that

for the most part, developmental rate curves are increasing between the thresholds. Pa-

rameters were estimated by maximum likelihood using measured developmental times

from samples of beetles for each life stage at various constant temperatures. See Régnière

et al. (2012) for details of experiments, data collection methods, and parameterizations.

Population Variability

We now return to the notion of developmental rate variability. Let ε be a normal random

variable with variance σ2 and mean σ2/2. Then δ ≡ eε is a lognormal random variable,

δ ∼ lnN (σ2/2, σ2). Let r(T ) = δρ(T ) for some constant temperature T and rate curve

ρ. The lognormal random variable r(T ) represents the stochastic developmental rate of

an individual beetle. Since η ≡ δ−1 has a lognormal distribution (with the same variance

as δ, namely σ2), the stochastic developmental time td = ητ(T ) is also lognormal.

The parameters of the normal distribution for ε are chosen so that the expected

value of η is 1 which ensures that the expected value of td(T ) is τ(T ) for constant

temperature T (Fig. 5.2). We force the expected value of td(T ) to be τ(T ) since the

parameterization of rate curves used laboratory developmental times (at various constant

temperatures) transformed to developmental rates. Furthermore, we are interested in
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predicting life stage development times in order to calculate MPB population growth

rates. Thus, we want mean developmental time to be unbiased. It should be noted

that the requirement for unbiased developmental time causes developmental rates to be

biased. That is, the expected value of a developmental rate distribution r(T ) at some

fixed temperature is not ρ(T ) but rather eσ
2
ρ(T ). This does not pose any significant

problems, however, since σ is small for all life stages and ultimately we are only concerned

with finding development times.

Figure 5.2: The lognormal distribution of developmental rates r(T ) for the MPB egg
life stage (at constant temperature T = 15◦ Celsius) using rate curve and corresponding
parameters from Régnière et al. (2012). Note that the mean of this distribution is

0.09 = eσ
2

ρ(15◦)

.

The lognormal variance σ2 was estimated for each life stage in the parameterization

process using laboratory data on developmental times. Since it is believed that this

variance may be significantly different in the field, we introduce a variance multiplier υ

to account for rate variability amplification due to natural exogenous forces.

There are several reasons for assuming that developmental rates are lognormally

distributed. First, individual-level traits subject to natural selection under changing
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environmental conditions produce intrinsic variation within populations. This varia-

tion translates to random variability in the parameters of the rate curves. We assume

this variability is normal (via the random variable ε) according to quantitative genetic

theory. Régnière and Powell (2013) showed that this assumption of normality in the

parameters leads to lognormally distributed developmental rates. Second, the positive

skew of the lognormal distribution is a characteristic often observed in distributions of

developmental rates and times of insects (Curry et al. 1978). Finally, a lognormal ran-

dom variable cannot be negative and thus developmental rates and times are guaranteed

to be nonnegative as in reality.

Cohorts and Emergence Distributions

Distributional models are sometimes called cohort models because they keep track of

numbers of individuals entering and exiting the life stages of an organism’s life cycle. A

cohort is a group of individuals that enter a certain life stage at the same time. Cohort

models calculate the proportion of a cohort that completes the life stage during each

time step given a distribution of developmental rates. In our R-model, the time step

is one day and we use lognormally distributed developmental rates. We may think of

life stage development as a foot race. Just as in a race, individuals have varied natural

speeds (developmental rates). A heat (cohort) at the starting line (aj(t0) = 0 for all

individuals) is initially in a tight clump just after the race begins at time t0. Gradually,

the pack spreads out since some runners are faster than average and some are slower

than average. If the time step were one minute, a cohort model would keep track of how

many runners crossed the finish line (aj(t) = 1) during each minute after the race began

(Fig. 5.3).
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Figure 5.3: MPB egg stage development. In all graphs, the vertical axis represents
percent of 100 eggs laid on a single day. Initially, we have a cohort of individuals
starting the egg stage illustrated by the vertical bar (starting line) at age 0 (top left).
The vertical line at age 1 (finish line) represents the age of life stage completion. With
time, the cohort spreads out (in terms of development) due to the lognormal distribution
of developmental rates (mean rate of 0.09/day). The cohort model keeps track of how
many beetles from each cohort emerge from the life stage (cross the finish line) each

day.

Each life stage has an associated function that gives the sizes of all starting cohorts

at every point in time. The cohort model uses this starting function (which comes from

the previous life stage) to calculate the total number of beetles from all cohorts that

complete life stage j at time t. The result is the life stage emergence function, denoted

by Nj(t), which is used as the input starting function for the next life stage. This is the

distributional model’s version of equations (5.1), i.e. daisy-chaining.
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To facilitate the mathematical implementation of the distributional model we define

the cumulative development function

D(t) =

∫ t

0
ρ(T (s))ds (5.2)

where time t = 0 corresponds to the start of the first life stage (oviposition). A beetle’s

time of development t for a life stage starting at time t0 satisfies

1 =

∫ t

t0

r(T (s))ds.

Replacing r with δρ and then dividing by δ gives

η =

∫ t

t0

ρ(T (s))ds

which is equivalent to

η = D(t)−D(t0)

where η = 1
δ is the lognormal random variable used to distribute developmental times.

The probability density function for η is

p(η) =
1

ησ
√

2π
e
−
(
ln(η)+σ

2

2

)2

2σ2

and thus the probability of a beetle emerging from the life stage at time t, given the

starting time t0, is

p(t|t0) =
1

(D(t)−D(t0))σ
√

2π
e
−
(
ln(D(t)−D(t0))+

σ2

2

)2

2σ2 .

Using the emergence function from the previous life stage Nj−1(t) we find the

starting number of beetles in a cohort that begin life stage j at time t0 by evaluating

Nj−1(t0). The number of beetles in that cohort that complete life stage j at time t is

Nj−1(t0) · p(t|t0). The total number of beetles from all starting cohorts that complete

the stage at time t is the emergence function for life stage j,

Nj(t) =

∫ t

0
Nj−1(t0)p(t|t0)dt0 , j = 2, .., 8, (5.3)

where t ranges from 0 (July 19, the start of the first life stage) to 407 (August 31 of
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the following year). Note that the variable of integration is cohort starting time t0. The

emergence functionNj(t) gives the number of beetles completing the life stage (emerging)

on any given day between July 19 (the mean time when beetles begin attacking trees)

of year n−1 and August 31 of year n. Figures 5.4 and 5.5 show the life stage emergence

functions for all 8 MPB life stages generated by an example temperature signal with 408

daily temperatures.

The starting function for the oviposition life stage, N0(t), is called the attack dis-

tribution and gives the probability of a beetle attacking the tree on a given day. We

assume this distribution is normal with mean July 24, based on data in Bentz (2006),

and standard deviation 2 days.

Calculation of the oviposition life stage emergence function from the attack distri-

bution is slightly different than that of the other stages. We assume that oviposition

completion time for an individual beetle starting oviposition at time t0 follows an expo-

nential distribution with time varying rate parameter r(T (t)) (the temperature depen-

dent oviposition developmental rate curve lognormally distributed across the population)

and probability density function

f(t) = r(T (t))e
−

∫ t
t0
r(T (s))ds

.

The probability that a beetle completes oviposition before day t (but after day t0) is

given by the cumulative distribution function

F (t) = 1− e−(D(t)−D(t0))

where D(t) =
∫ t
0 r(T (s))ds is the cumulative developmental function. Thus, the proba-

bility that the beetle completes oviposition on day t given that it attacked the tree at

time t0 is the difference in exponential distribution cumulants for neighboring days,

pe(t|t0) = e−(D(t−1)−D(t0)) − e−(D(t)−D(t0)).

If each attacking beetle has (mean) potential fecundity f0, then the expected number of

eggs laid by a beetle on day t given it began the oviposition life stage at time t0 is

f0 pe(t|t0).
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Since the probability that a beetle starts oviposition at time t0 is given by the attack

distribution N0(t0), the number of eggs laid at time t by a cohort of beetles starting

oviposition at time t0 is N0(t0) · f0 pe(t|t0). The total number of eggs laid at time t by

all starting cohorts is the oviposition emergence function,

N1(t) = f0

∫ t

0
N0(t0)pe(t|t0)dt0.

Since a female in the wild typically does not live up to its full potential fecundity and

actually lay F0 eggs, we introduce the parameter ne to represent the true (mean) number

of eggs laid by a female in the field. We then truncate f0 pe(t|t0) when oviposition reaches

ne, that is, if f0 pe(t|t0) reaches ne at time t′, then f0 pe(t|t0) = 0 for all t > t′. We note

here that our version of the cohort model keeps track of all ne individuals spawned by

a single attacking female. Later we multiply by the number of attacking females to get

the total number of individuals in the tree.

The next step in calculating the MPB population growth rate for year n involves

integrating the adult emergence function N8(t) from June 30 of year n to August 31

of year n. The limits of this integration correspond to reasonable limits on seasonality;

development of eggs laid earlier than June 30 or later than August 31 will not be in the

proper life stage (larvae or brood adult) to survive fall and winter cold temperatures

(Régnière and Bentz, 2007). Thus, the domain of a life stage emergence function, in

particular N8(t), must be the time interval July 19 of year n− 1 to August 31 of year n.
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