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ABSTRACf 

Rayleigh-Scatter Lidar Observations at USU's Atmospheric Lidar Observatory 

(Logan, UT}-Temperature Climatology, Temperature Comparisons with MSIS, 

and Noctilucent Clouds 

by 

Joshua P. Herron, Doctor of Philosophy 

Utah State University, 2007 

Major Professor: Dr. Vincent B. Wickwar 
Department: Physics 

The Earth's atmosphere is typically characterized by its temperature structure, 

Ill 

which naturally divides the atmosphere into several discrete regions. They are in order of 

increasing altitude the troposphere, stratosphere, mesosphere, and thermosphere. The 

first layer and a large portion of the second layer of the Earth's atmosphere are routinely 

measured via weather balloons that are launched twice daily around the globe. Satellites 

and their development have motivated the study of the thermosphere. It is the middle 

region of the Earth atmosphere, which is mainly composed of the mesosphere that lacks 

routine in situ measurements. Routine observations are therefore carried out via remote 

sensing. Ground-based instruments typically provide high resolution measurements of 

the atmosphere over a single point on the globe and space-based instrument capture a 

global picture at lower resolution. 



IV 

A Rayleigh-scatter lidar has been in operation at Utah State University ( 41 . 7°N 

III .8°N) starting in September 1993. Observations have continued from that point until 

the present when funding and observing conditions have permitted. Under normal 

observational conditions the backscattered photons are proportional to the atmospheric 

density. These relative density profiles can be used to derive absolute temperature 

profiles over much of the middle atmosphere. The resulting II years of temperature 

profiles have been combined into a single composite year which contains - 900 nights and 

- 5000 hours of observations. This climatology was compared to the mid-latitude 

climatology from the French lidar group at Haute Provence and relatively good 

agreement was obtained. It was also compared to the NRL MSIS empirical model to 

explore the model ' s validity at mid-latitudes. Some significant differences were found. 

The coldest atmospheric temperatures are found at the mesopause near the 

summer solstice. Small ice crystals formed in this region and can grow to form 

noctilucent clouds (NLC) which are the highest naturally occurring clouds in the 

atmosphere. Previously, NLC observations have been limited to the region poleward of 

so• but NLCs have been observed with the ALO lidar on two occasions. Their formation 

has been attributed to atmospheric dynamics, a large amplitude wave, rather than a 

general cooling of the atmosphere. 

(173 pages) 
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CHAPTER 1 

lNTRODUCTION 

The Rayleigh-scatter lidar technique has proven itself to be a powerful technique 

for measurements in the middle atmosphere. Routine observations of absolute 

temperature and relative density are possible over much of the middle atmosphere. The 

temperature measurements are especially important given the recent interest in global 

change. Typically, Rayleigh-scatter lidars are operated during the nighttime hours 

producing a nighttime temperature average. Daytime observations are possible but the 

separation of the solar background is a complex endeavor. 

The absolute temperature measurements derived from Rayleigh-scatter lidar 

observation are independent of any system calibrations. This makes long-term 

observations spanning decades possible without routine system calibrations. The 

Atmospheric Lidar Observatory has completed an 11-year temperature climatology 

comprised of observations spanning from 1993 through 2004. The nighttime temperature 

profiles during this period have been combined into a single composite year. These 

climatological values are unique in that while extensive, long-term observations are 

straightforward very few groups have endeavored to make them. 

The !!-year temperature climatology developed in this work provides a gold 

standard or reference for comparison. For instance, the dynamics of the atmosphere are 

such that the nighttime temperature structure on a particular night can be significantly 

different than the long-tenn average. An example, described in this work, is a large 

amplitude temperature wave observed in the upper mesosphere. Without the 



climatological value for comparison the true amplitude ofthis oscillation would be an 

unknown quantity. In addition comparisons can be carried out with other climatologies 

to look for geographical or temporal differences, with atmospheric models to test their 

validity, and with first-principles models to explore the combination of physical, 

chemical, and radiative processes they are based on. 

I. Statement of Problem 

2 

The structure of the Earth's atmosphere is typically described in terms of its 

temperature structure. In order of increasing altitude the layers of the atmosphere are the 

troposphere, stratosphere, mesosphere, and the thermosphere. The lowest region, the 

troposphere, is characterized by a decrease in temperature with altitude of6.5 Klkm and 

extends from the ground to an altitude of - 12 km. The majority of the Earth's 

atmosphere is located in this region along with the majority of it weather. The 

stratosphere is characterized by an increase in temperature with altitude. Between the 

troposphere and the stratosphere is the boundary region, the tropopause, which represents 

a balance between the cooling in the upper troposphere and heating in the lower 

stratosphere. The heating in the stratosphere is in part due to the absorption of solar 

radiation by ozone. The highest temperatures are reached at its upper boundary, the 

stratopause where the heating from ozone is balanced by the radiative cooling from C02. 

The mesosphere is characterized by a decreasing temperature with altitude due mainly to 

the cooling from c~ and the decreasing heating from owne. The boundary between the 

mesosphere and the thermosphere is the mesopause. The mesopause is the coldest region 

in the atmosphere where the temperature at polar latitude is routinely as low as 130 K 



during the summer. In the upper mesosphere, lower thermosphere region, atmospheric 

dynamics plays a major role causing the timing of the temperature minimum and 

maximum to be opposite what one would expect from radiative balance. The altitude of 

the mesopause is dependent upon season, but the boundary is typically between 85 and 

I 00 km at mid-latitudes. Above the meso pause is the thermosphere where the 

temperature again increases, this time because of the absorption of solar energy by 0 2 

and because of its dependence upon solar and geomagnetic activity. It can reach an 

asymptotic temperature above 300 km between 500 K and 2000 K. 

The term "lower atmosphere" typically refers to the troposphere and the lower 

half of the stratosphere. Routine measurements of this portion of the atmosphere are 

carried out twice daily via weather balloons that typically reach altitudes of20 to 30 km 

well into the stratosphere. 

The middle atmosphere is composed of the stratosphere, stratopause, mesosphere, 

and mesopause. Because the temperature structure of this region of the atmosphere is 

dependent upon the relative abundance of two greenhouse gases, C~ and 0 3• the middle 

atmosphere has become an important area of study . . ~ (__. 

Measuring the middle atmosphere has proven to be a difficult proposition. The 

rarefied atmosphere of the middle atmosphere prevents the use of weather balloons or 

high altitude aircraft to probe much more than the lower boundary of this region. 

However, the atmospheric density is sufficiently great to prevent satellites orbiting in this 

region, which is illustrated by the fact that most small meteorites or shooting stars bum­

up in the atmosphere between 80 and 110 km giving rise to metal1ayers in this altitude 

range. The earliest measurements of the middle atmosphere were carried out by rockets 

3 



that could carry instruments into the mesosphere on a ballistic trajectory. This method 

is still in use today on a limited basis due to the cost of rocket campaigns. Routine 

measurements of the middle atmosphere are therefore carried out via remote sensing. 

These measurements can be made from either ground-bas!Od oc :jj!l£ 

instruments. 

4 

Satellite-based instruments can provide a global picture, but make sacrifices in 

resolution to do so. Typically instruments for atmospheric measurements are either 

downward looking (nadir) or limb scannin_g. Each style of instrument has its own set of 

limitations. Nadir looking instruments can provide good horizontal resolution assuming 

that short integration times are used [e.g., Christensen eta/., 2003]. Several spectral 

bands are measured for each location. These measurements are combined with a 

knowledge of the absorption features in the atmosphere to produce a vertical profile. The 

vertical resolution is poor, - 10 km, due to the vertical width of the absorption features, 

Figure I . 

Limb scanning instruments are larger and mechanically more complex than nadir 

instruments, but provide for simpler data analysis. Data is collected on a tangent line 

through the atmosphere, Figure 2(a). Through careful weighting of the contributions 

from each altitude, Figure 2(b ), vertical profiles of the atmosphere can be generated with 

an altitude resolution of I to 2 km. However, the horizontal resolution is poor especially 

in the direction of the tangent point where it is typically 200 km [e.g., Remsberget a/., 

2003; Shepherd et a/. , 2004a; Huang et at., 2006]. 

The vast majority of satellite measurements of the atmosphere use passive optical 

instruments. They rely on intensity measurements of various emission and absorption 



~Satellite 

Figure I. Idealized weighting function for a radiance measurement from above 
(Taylor, 2005]. 

spectra from various sources. These spectra are attenuated to varying degrees by the 

atmosphere. It is this attenuation that produces the vertical information in a nadir 

instrument, for example. Several of these emission spectra can also be observed by 

ground-based instruments. 

Ground-based instruments do not have global coverage but produce high time-

resolution measurements over a single point on the globe. Depending on the instrument, 

5 

high resolution temporal and spatial measurements are possible. The higher resolution of 

ground-based instruments has proven useful in investigating the oscillations that occ~n 

the atmosphere such as gr;a,vitv waves, tides, and planet waves. Ground-based 

instruments can be classified as either passive or active. Passive instruments inClude 

various optical devices such as photometers, imagers, spectrometers and interferometers 

to determine parameters from airglow in the middle and upper atmosphere. For example, 
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Figure 2. (a) Diagram of Limb scanning measurement at some arbitrary tangent 
height. (b) An example of the weighting function used for limb measurements 
!Taylor, 2005). 

all-sky cameras produce height integrated images of the OH layer. The field of view of 

the camera at - 86 km is approximately 400 km [e.g., Taori eta/. , 2005]. 

Active ground-based instruments rely on transmitting electromagnetic radiation 

either in the radio or optical spectrum. For measurements of the middle atmosphere the 

active instruments are limited to various lidar and radar technjgues.. There are several 

types of radars that are used for remote sensing of the middle atmosphere. The 

Stratosphere-Troposphere or ST radar provides coverage from I to 30 km and MF radar 

provides coverage from 60 to I 00 km for daytime observations and 80 to I I 0 km for 

nighttime [e.g., Tepley el a/. , 1981 ; Lathuillere eta/. , 1983; Kofman eta/., 1984]. As a 

result, there is a coverage gap across the middle of the mesosphere, Figure 3. 

Furthermore, these radars do not measure temperature. Lidar, or as it has more 

traditionally been called "optical radar," is an acronym like radar that stands for Light 

6 

Detection And Ranging. Lidars are usually classified by their scattering mechanism: Mie 

scatter, Rayleigh scatter, Raman scatter, and resonance scattering. 
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Figure 3. The temperature profiles of the neutral atmosphere. Several of the 
observational techniques and atmospheric phenomena are illustrated. Note the 
range of the Rayleigh lidar technique and the radar gap in the middle · 
atmosphere. 

Rayleigh-scatter lidar is capable of making measurements of relative density and 

absolute temperature from 30 to I I 0 km. The electromagnetic wave of an incident 

photon induces an oscillating dipole in the scattering molecule, elastically scattering the 

photon. The number ofbackscattered photons is linearly proportional to the atmospheric 

density. These relative density measurements can then be used to determine an absolute 

temperature profile, which is not dependent upon an absolute instrument calibration and 

provides a good standard for comparisons. In the case of molecules, rotational and 

vibrational Raman lines appear offset from the laser wavelength. The Raman lines can 

be used to measure the relative densities of molecular species because the energy offset, 

hence wavelength offset, is species dependent. 

7 



Several metal layers form because of the constant influx of micrometeorites. 

These micrometeorites bum up in the atmosphere between 80 and 110 km giving rise to 

the layers. In principle, lasers can be tuned to a resonance transitions in metals. 

8 

Typically this is done with alkali metals, but has also been done with iron. The 

atmospheric density of these metals is fairly low, but the scattering cross section is quite 

large creating a strong lidar return. These layers can be used to determine temperatures 

and wind speeds between 80 and 110 km. In astronomy these lasers have been used as 

artificial guidestars for adaptive optical systems on large-aperture telescopes. For smaller 

systems Rayleigh scatter from 25 to 30 km can be used as a guide star. 

Mie-scatter uses the same scattering mechanism as Rayleigh-scatter, but the 

scattering is due to particles that are much larger than the wavelength of the transmitted 

light. The aerosol particles are typically limited to the first 20 to 30 km of the 

atmosphere depending on volcanic activity. 

The upper mesosphere and the lower thermosphere or the ML T region of the 

atmosphere hosts a variety of optical phenomena that can be measured from ground­

based instruments. Of particular interest to lidars are noctilucent clouds (NLC), which 

occur typically near 83 km in the polar regions. They are ice clouds formed in the cold 

region near the summer mesopause. The term noctilucent is Latin for "night shining." 

Given the high altitudes of the clouds, they are illuminated by sunlight well after the sun 

has set. Shortly after civil twilight (6° solar depression angle) the background sky is 

sufficiently dark that the scattered light from the NLC can be seen by the naked eye. The 

flrst recorded sightings ofNLC were during the summer of 1884 shortly after the 

eruption of Krakatoa in 1883. It is believed that the large amount of dust ejected into the 



lower atmosphere was eventually transported into the mesosphere, where it served as 

nucleating agents for the ice crystals [Thomas eta/., 1994]. 

NLCs are observed during the summer in both the northern and southern 

hemispheres. Historically NLC observations are carried out by amateurs who have 

observed and noted the location, time, and angular spread of the NLCs. With the 

growing concern over global climate change, interest in NLCs has increased as two 

greenhouse gasses play an important role in their formation. Increases in methane 

increase the water vapor concentration, typically 2-4 ppm, in the mesosphere thereby 

increasing the temperature at which the deposition and subsequent growth of the ice 

crystals occurs. The second greenhouse gas is carbon dioxide which contributes to the 

temperature structure of the atmosphere. Carbon dioxide is typically attributed to 

warming the Earth' s surface and lower atmosphere by absorbing and reemitting part of 

the infrared surface emissions that would otherwise normally pass into space, thereby 

cooling the Earth and atmosphere. While effectively insulating the lower atmosphere, 

C02 is an efficient emitter of IR, cooling the middle atmosphere. Increases in C02 and 

CH., are favorable for the formation ofNLCs at lower latitudes. Their more frequent 

appearance or occurrence at lower latitudes might be a very sensitive indicator of climate 

change. As a result it has been debated whether NLCs have become the "Miner's 

Canary" for climate change [Thomas and Olivero, 1989; Thomas el a/., 1989; Thomas, 

1996a, b; von Zahn, 2003]. 

The ice crystals that form the NLCs have large scattering cross sections and 

produce a strong Mie-scatter signal. Tbe short pulse lengths of the laser enable high 

vertical resolution observations ofNLCs. Unlike satellites or rockets, lidar observations 

9 
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measuring the same volume, over a particular location, for an extended period, in short 

intervals, give a time progression for NLC development. The earliest observation of an 

NLC by lidar was in 1989 [Hansen eta/., 1989]. f,.idar measurements ofNLCs are 

typically given as the backscatter ratio, which is the ratio of the Mie signal to the standard 
~ ~ 

Rayleigh signal. If the relative density measurements for the lidar are normalized to an 

absolute density measurement then the NLC's volume backscatter coefficient can be 

calculated. 

The results in this research are from a Rayleigh-scatter lidar systems designed to 

detect the Rayleigh backscatter from molecules in the middle atmosphere. Vertical 

soundings of relative density are available above 41 km. In addition to the temperature 

determinations, NLC backscatter ratios are also available. As most Rayleigh-scatter lidar 

facilities are at permanent locations, they provide high-time resolution but provide 

limited geographical coverage. Temperatures from the lidar are typically provided as 

hourly or nightly profiles. The high temporal and vertical resolution of the lidar system 

are important for the study of the middle atmosphere as they enable the study of a wide 

range of important atmospheric phenomena, including gravity waves, tidal variation, 

stratospheric warmings, planetary waves, noctilucent clouds, mesospheric inversion 

layers, solar rotation 28-day variation, seasonal variations, sunspot cycle effects, and 

long-term trends, all of which contribute to the general climatology and dynamics of the 
~ 

middle atmosphere. 



2. Overview 

The objectives of this dissertation are to 

I) Provide a temperature climatology from the measurements made with the 

ALO Rayleigh-scatter lidar between 1993 and 2004. This climatology is 

made from the second longest dataset of mid-latitude Rayleigh-scatter 

measurements to date. The longer one is from a very different longitudinal 

region. A comparison between these two climatologies explores possible 

longitudinal and temporal differences. 

2) The recently updated NRL MSIS global climate change is a widely used 

empirical model composed of historical observations from a variety of 

sources. How well does this model compare to mid-latitude, mesospheric 

observations? A comparison between the ALO climatology and the MSIS 

model is presented and explores this question. 

II 

3) Previous NLC observations occurred pnleward of so• latitude. Climate 

change predicted their appearance equatorward of this region later this century 

as C{h concentrations increase [111omas, 1996a]. Their appearance s• more 

equatorward was unexpected and raises a number of questions. Presented 

here are the observations and characteristics of the two lidar observations of 

NLCs at 42° N from the ALO Rayleigh-scatter lidar: 

a. NLC observation from 1995, and 

b. NLC observation from 1999, re-analyzed to compare with the 1995 

results. 

They lead to a likely explanation for the NLC occurrence. 
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This dissertation is organized with a background into the Rayleigh-

scatter temperature lidar theory and error analysis in Chapter 2 along with the 

error analysis and theory for NLC measurements via Rayleigh lidar. Chapter 3 

details the results from the ALO temperature climatology and compares them to a 

second Rayleigh-scatter climatology from France [Hauchecorne eta/., 1991]. 

Chapter 4 details the results from the comparison of the MSIS model to the ALO 

climatology. Chapter 5 details the NLC observations made by the ALO Rayleigh­

scatter lidar and includes a discussion of the large amplitude waves observed 

during this period that were essential for the production of the mid-latitude NLCs. 

The summary and future works are detailed in Chapter 6. 
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CHAPTER2 

RA YLEIGB-SCA ITER LIDAR SYSTEM 

The Atmospheric Lidar Observatory (ALO) is located on the Utah State 

University {USU) campus and has operated a Rayleigh-scatter lidar since 1993. This 

Rayleigh-scatter lidar system can produce relative density measurements that extend from 

the stratopause to the mesopause ( 45 to 95 km). These relative measurements of density 

can be used to derive absolute temperatures without the necessity of instrument 

calibration. This and its uni ~_yerage._of:the_m~P-here are the main strengths oft he 

The block diagram for a lidar system is comparable to that of 

a radar system. In the case of a lidar, the transmitted electromagnetic radiation is G~u·/'7-»~ 

typically in or near the visible spectrum of light. The radio transmitter and receiver 

.,_.. 
are characterized by their scattering method and their power-aperture product. The 

power-aperture product is a measure of the transmitted~ the collecting area of 

the system' s receiver. A more complete measurement ofth~ sensitivity of a lidar system 

would include the backscatter cross-section as another factor times the power-aperture 

product. A more detailed description of the transmitter and receiver of the USU 

Rayleigh-scatter lidar system follows. 

I. Lidar Transmitter 

The transmitter for a Rayleigh lidar is typically a yulsed Ia~ with high pulse 

energy. The acronym laser stands for Light Amplification by the Stimulated Emission of-

Ra~ Two different lasers have been used in the ALO Rayleigh-scatter lidar over 
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the course of its operation. Both lasers were solid state Nd:YAG (neodymiu~yttrium 

·-~ 

aluminum garnet) lasers. ln the case of lasers, solid state refers to the lasing medium. A 

Nd:Y AG laser suspends the lasing medium, in this case neodymium, inside of an 

artificially grown crystal. Other lasers are available where the lasing medium is 

suspended in a gas or liquid. Typically the fundamental wavelength of the Nd:Y AG 

lasers is~ nm, but can be modified to generate other fundamental wavelengths. The 

two lasers used in the ALO systems were a GCR-5 and a GCR-6 from Spectra Physics. 
~ -

They shared the same oscillator-cavity design and components with the main difference 

being that the GCR-6 has two amplifiers each with a single flash lamp. The GCR-5 has a 

single amplifier with two flash lamps. The additional gain medium in the GCR-6 

produces nearly 48 watts at 1064 nm compared to 36 watts for the GCR-5. The GCR-5 

was a replacement for the larger GCR-61aser. Both lasers have a pulse length of7-8 ns, 

which is produced by use of a Q-switch in the oscillator cavity. A Q-switch is an opto-

electrical component that relies on a crystal that lacks inversion symmetry. lt introduces 

loss into the optical cavity through cross polarization. This is accomplished by rotating 

the polarization so that it is cross polarized relative to a linear polarizer. This introduces 

a high loss into the cavity that prevents lasing. This allows for a large population 

inversion to build up inside the lasing medium, after which time a high-voltage pulse is 

applied to the Q-switch changing the polarization by 90° to allow the cavity to lase. The 

resulting laser pulse is significantly shorter and more intense than what is produced when 

the Q-switch is not employed. A second result of the Q-switch is to linearly polarize the 

output. The use of lasers with a short pulse and high energy density is vital in the middle 

atmosphere lidar applications. The short-pulse length allows for high resolution range 
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information to be collected and the high pulse energy produces a high ratio of signal to 

noise. The pulse used to trigger the Q-switch is also used as the start trigger for the data-

acquisition system. It provides an accurate measurement for the zero range, ignoring the 

insignificant delay introduced by the cables carrying the trigger and data signals. 

Typically, when the laser is operated with an open Q-switch, the laser is said to be long-

pulsing. Under this condition, the laser output is only a few watts and the pulse length 

increases dramatically to - 200 milliseconds. Long pulsing the laser allows for the optical 

setup and alignment to be done at moderately safe energy levels. 

The pulse energy and repetition rates of the laser are not the only selection criteria 

in choosing the laser for a Rayleigh lidar. The first consideration is its reliability and 

ease of use. The Nd: Y AG laser is a solid-state laser that needs very little maintenance. 

The routine maintenance involves replacement of the flash lamps used for the excitation 

source. That takes approximately I hour and does not affect the alignment of the system 

and it is done only after -40,000,000 pulses or 370 hours of operation. The ease of 

maintenance is important as routine and consistent measurements are necessary to 

produce long-term temperature observations for the climatology. 

The backscatter cross section for Rayleigh scattering varies as A.""", Eq. 2.1 I , the 

scattering favoring shorter wavelengths [Measures, 1992] 

{ }

4 

550nm 
O"Ray = 5 45 --- x 10-" cm2 sr-1 

• · A.(nm) · 
2 . 1. 1 

The fundamental wavelength ofNd:YAG lasers is typically 1064 nrn, well beyond the 

visible light range. Frequency doubling and tripling enables the generation 532-nm and -355-nm light in addition to the 1064-nm fundamental . The maximum efficiency of the 
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frequency doubling from I 064 nm to 532 nm is typically near 50"/o. The power of the 

lasers therefore drops to 18 watts or 24 watts depending on the laser. This loss in the 

transmitted power is more than made up for by a factor of sixteen increase in the 

backscatter cross section at 532 nm for an overall increase in the return signal by a factor 

of 8. To triple the fundamental frequency requires that it first be doubled, then mixed 

with the fundamental, making the overall tripling efficiency much lower than that for 

doubling. At 355 run, the tripling moves the wavelength outside of the visible spectrum 

making the system difficult to work with. ln addition to the lower pulse energy for 

doubling and tripling, the laser reduces the number of photons per watt because each 

photon now has more energy. These factors along with the atmospheric transmittance 

make the gain in return signal marginal for tripling the wavelength. a result, 532 nm 

is the dominant wavelength used in Rayleigh lidar. As laser technology develops, 

making available additional wavelengths, the driving force in laser selection may be the 

detector quantum efficiency. 

The frequency doubled output pulse from the Nd:Y AG laser is a combination of 

two beams, one at 532 nm and the other at 1064 nm. As the receiver is blind to the 1064-

nm light there is no advantage to transmitting this wavelength into the night sky. A 

dielectric beam splitter, a dichroic, is used to separate the two wavelengths. It possesses 

a high reflectance at 532 nm, R > 99.5%, and a high transmittance at 1064 run, T > 90%. 

A second dichroic is used to further reduce the I 064-nm radiation and to direct the beam 

vertical to align it with the field of view of the receiving telescope. The two I 064-nm 

beams that are separated from the transmitted beam are absorbed by beam stops and, on 

occasion, a power meter to monitor the laser performance. 



2. Lidar Receiver 

The receiver system is composed of the telescope, optics, mechanical chopper, 

interference filter, and the detector and its cooled housing. A simplified diagram of the 
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ALO Rayleigh-scatter lidar is given in Figure 4. The telescope and associated optics are 

used to increase the collecting area of the detector system and to limit the field of view. 

The optical layout for the lidar is co-axial, using the same optical axis for the transmitter 

and receiver. Various optical elements are used to direct the output of the telescope into 

the photon detection system and co-align the optical axis of the telescope and the laser. 

A Newtonian telescope with a 44-cm diameter and a 201-cm focal length is used to 

collect the backscattered light. The telescope is mounted horizontally on the same optical 

table as the transmitter, minimizing the relative motions between the transmitter and 

receiver. A large turning mirror is placed at a 45° angle to direct the return signal into the 

telescope, as illustrated in Figure 4. The transmitted signal, to be co-axial with the 

receiver, passes through a small circular aperture in the center of the turning mirror. T~ 

~~~~'"""-""'"'ect~.:o'!_!~ system sensitiv.ty all!!!Ls 

region is alr~dy 2bscur~ by the secondary mirror in the Newtonian telescope. The 

output of the Newtonian telescop_e comes to a foc~s slightly beyond the telescope' s ~be. 

Here the light collected by the telescope passes through a field stop, which limits the field 

of view to triple that illuminated by the laser. This allows for small fluctuations in the 

pointing of the laser system due to thermal effects within the laser and small 

misalignments between the two optical axes. A wider field of view would only increase 

the l;Jackground noise without increasing the number of backscattered photons collected, 

decreasing the signal-to-noise ratio. After the field stop, a small lens is used to collimate 
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Figure 4. Simplified diagram of the USU Rayleigh-scatter lidar diagram. The 
S32nm light is illustrated in green with the I 064 in red. The dotted red line is the 
residual 1064 nm light that is virtually eliminated from being transmitted by the 
second dielectric mirror. The laser output is directed vertically along with the 
field of view of the telescope but has been depicted horizontally for simplicity. 

the return signal and a folding mirror directs the collimated light into the rest of the 
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detector system. The collimated beam is focused onto the plane of a mechanical chopper 

by a second lens. The chopper operates at a multiple of the 30-Hz repetition rate of the 

laser and blocks the strong low-altitude signals from the atmosphere, which could 

damage the detector. After the chopper, the light is re-collimated by a third lens and sent 

into the detector housing. 

Before the light enters the detector, it passes through a narrow band-pass 

interference fi lter. For Rayleigh-scatter, the incident and scattered photons are of the 

same wavelength and the transmitted pulse from the laser is spectrally very narrow. An 

interference filter reduces the amount of"white" light that enters the receiver system 

from the background sky. The transmission profile of one of the interference filters is 



19 

100 

90 

80 

Q) 
u 70 c 
lll 
~ -E 60 
<f) 

c 
lll 50 L.. 

f-
c 40 Q) 
u 
L.. 
Q) 

30 Q. 

20 

10 

0 

( \ 
I \ 
I \ 
I \ 
I \ 
I \ 

I \ 
--/ "-r--

530 531 532 

Wavelength [nm] 

533 534 

Figure 5. Transmission profile ofthe 53 2om interference filter. The FWHM of 
the f"llter is approximately 1 om for normal incidence. 

given in Figure 5, showing a peak transmittance of80% and a width of I nm (FWHM). 

This is a compromise between the width of the band pass and its transmittance and cost. 

The photon detector for this system is a green sensitive bi-alkali photomultiplier 

tube (Electron Tubes 9954 B), which converts the incoming photons into pulses of 

electrons. The conversion of the photons to electrons is done by the photocathode 

through the .g!!_otoelectric effect. These photoelectrons are then amplified through a 

d ode string with a typical gain of I 06
, Figure 6. Each successive dynode in the string ---is maintained at a higher potential than the previous one. The potential difference 
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Figure 6. Diagram of a 12 stage linear focus photomultiplier tube. Here the roles 
of quantum efficiency, QE, and collection efficiency, CE, are illustrated along 
with the individual dynodes. 

between the photocathode and the first dynode is typically 300 volts. Focusing el~rnepts, 

at the cathode voltage, increase the collection efficiency by ~~in~P.hoJoelectr.ons 

towards the first dynode. The amplification of the photoelectrons in the pulse is done 

through the generation of secondary electrons at each dynode with the total gain being a 

product of the gain at each stage. A PMT with a linear dynode string was chosen because 

it provides a linear response over a large dynamic range. The effective quantum 

efficiency of the photomultiplier tube is - 13 percent at 532 nm. While other detectors 

have higher quantum efficiency, they are not well suited for photon counting in a lidar 

system. A CCD for example would have to be read at a rate of 4 MHz to provide 

adequate range resolution. However, the maximum read-out rate is at least two orders of 

magnitude slower. In addition, the readout noise generated would overwhelm the returns 

which are from single-photon events. 
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The signals generated from the PMT include a certain amount of spurious noise 

that is referred to as the dark count of the tube. This spurious noise is a product of a few 

thermal electrons from the photocathode and each of the dynodes in the amplifier chain. 

These thermal electrons are then amplified by the subsequent dynodes in the dynode 

chain and can be mistaken as photon events . Several steps are taken to reduce the 

number of thermal electrons that are measured by the system. The first is to minimize the 

generation of the thermal electrons by cooling the PMT. The PMT is placed inside a 
....-;:====-

housing that provides the necessary cooling and electro-magnetic shielding. Two 

different PMT housings were used during the period of the lidar observation in this work. 

Both housings are from Products for Research and use thermoelectric (Peltier) coolers. 

The first housing relied on an air heat exchanger and cooled the PMT to - 10 C. The 

second housing used a liquid heat exchanger using liquid at 5 C and was able to cool the 

PMT to -25 C. The second step is to discriminate between photons generated at the 

photocathode and those generated by the dynodes. A thermal electron produced by the 

cathode is indistinguishable from a photoelectron, but those produced within the dynode 

chain are not as strongly amplified. The peak voltage from a pulse of electrons measured 

at the anode can therefore be used to discriminate the pulses from the photocathode and 

those generated in the dynode chain. 

The PMT must provide a linear response to the large dynamic range of the lidar 

returns. Ln addition to the style ofPMT used, the high-voltage power supplied to the 

dynode chain is another critical component. A high-voltage power supply provides a 

cathode voltage of-1850 and a resistive voltage divider is used to aeate the potential 

differences between each stage of the chain. For high linearity, the current flow down the 



dynode chain, from the secondary electrons, must be a small fraction, < I%, of the 

current flow in the resistor chain. This ensures that the potential difference across each 

dynode remains constant giving a constant gain. However, in the last few stages of the 

dynode, the current increases dramatically and it is necessary to add several capacitors 

into the voltage divider to maintain the dynode voltage. 
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The gain of the PMT can be altered, or gated, by changing the voltage on one or 

several dynodes to equal that of the previous stage, thereby preventing the propagation of 

the photoelectrons down the dynode chain. The PMT is gated off in the USU system 

below an altitude of38 krn, below which, the intensity of the returns is sufficient to cause 

resistive heating ofthe mesh anode, leading to eventual failure. (Actually the gain is not 

turned off, but reduced by a factor between 500 and 1000.) After the PMT is gated back 

on, a short period is required for the dynode voltages to return to normal values and the 

cloud of photoelectrons to dissipate. Typically good results are measured above 41 km. 

3. Data Acquisition System 

The output of the PMT is a short negative pulse with a rise time of2 ns and a 

pulse width (FWHM) of3 ns. Once the signal leaves the PMT, it passes through a fast 

pre-amplifier that is located just outside the PMT housing. This is a non-inverting pre­

amp with a gain of200 and a I-ns rise time. The distance between the PMT and the pre­

amp is kept to a minimum to reduce possible electromagnetic interference with the small 

voltages produced by the PMT. 

The lidar records the number of photon-induced pulses in each time bin digitally. 

This is done with a Multi-Channel Scalar or MCS. An MCS unit is basically a time 
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correlated photon counter, which is used widely in time-of-flight measurements. The 

previously mentioned voltage discriminator, is part of the MCS unit and once the voltage 

drops below this threshold level (the voltage output of the PMT is negative) a single 

photon count is registered. The maximum count rate for the MCS is 150 MHz or - 7 ns 

between photons. The system will undercount the returns if the time separation between 

arriving photons is less than 7ns, effectively defining the dead time for the system, all 

other elements being faster. The largest count rate is at 45 km with an average rate not 

exceeding I MHz. To account for the system dead time, the correction between the 

actual count rate and the measured count rate would be 

R' - ( R ) 
- 1- RT" ' 

2 .3.1 

where R is the measured count rate, Td is the dead time and R' is the actual count rate. 

Given the dead time of the MCS unit and the expected count rate, this correction is less 

than 1% and is not applied. If the minimum altitude were lowered to 30 km, the 

undercounting would have a measurable effect on the temperature results requiring the 

correction Eq. 2.3.1 be applied. 

The MCS unit is able to measure the count rate as a function of time. The 

arriving photons are not recorded with a time stamp, but are binned together by small 

time increments. The minimum time bin is 5 ns or a range bin of0.75 m; the upper limit 

is 18 hours. The MCS has sufficient memory for 16,000 bins and a maximum value of 

J.6x 107 counts/bin. For the ALO lidar, the bin width is 250 ns or a range of37.5 meters. 

The returns are measured out to a distance of 540 km using 14,400 range bins. An 

atmospheric profile is obtained 30 times a second and would produce about I . 7 
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Megabytes/sec if each profile were recorded individually. In this manner, a single 

hour of data would occupy 6 gigabytes of hard drive space. To reduce the file sizes, each 

of the 14400 range bins is summed with the corresponding bin from the previous pulse 

over 3600 laser pulses (2 minutes). This produces a single 56 KB file generated every 2 

minutes. As the Brunt-Vaisiilii frequency in the middle atmosphere is approximately four 

minutes, averaging the returns over two minutes will not produce aliasing in the returns. 

A similar argument could be made for less vertical resolution because the scale height in 

the middle atmosphere is on average about 7 km. 37.5-m is overkill for the neutral 

atmosphere, but the results can be averaged in altitude afterwards and this high resolution 

is valuable for measurements of cirrus clouds, noctilucent clouds and other layers. 

4. Relative Density Measurements 

According to the lidar equation the number ofbackscattered photons N(h) 

scattered from a laser pulse of N0 photons will be proportional to the product of the 

square of the atmospheric transmission, r(ft), at the laser wavelength between the lidar 

and the scattering altitude, the molecule cross section for Rayleigh backscatter, a: , the 

efficiencies of the receiver system, Q, and the range squared correction as follows 

2.4.1 

The lidar equation may be inverted to give the relative molecular density as a function of 

altitude in terms of the measured quantities above a reference altitude h0 • 

The relative density can be found by taking the ratio of the atmospheric number 

density at two altitudes 
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2.4.2 

Unlike the basic lidar equation, the measurements of the relative density have no 

dependence upon the optical efficiency of the lidar system, or the backscatter cross 

section. These parameters can be assumed constant over the short period when the 

observations are made. The lower altitude for the ALO lidar is 45 km which is above the 

majority of the atmosphere and is above the ozone absorption from the Chappius bands. 

The amount of energy scattered out of the laser beam between 45 and 95 km is much less 

than I percent such that T{h.J-zT{h) and No, the transmitted photons, are constant over the 

observational range as the atmosphere has become optically thin. 

5. Absolute Temperatures .......-

Under the assumption that the atmosphere is composed of an ideal gas in 

hydrostatic equilibrium, it is possible to derive temperature from relative density 

[Hauchecome and Chanin, 1980; Chanin, 1984; Chanin and Hauchecome, 1984; 

Gardner et al., 1989]. Hourly averages or night averages of the relative densities are 

used in calculating the temperature profiles. Given the long integration times, the 

assumption that the atmosphere is in hydrostatic equilibrium is valid. 

The steady-state diffusion equation or hydrostatic equilibrium equation is the 

balance between the gravitational force and the pressure gradient 

dP(jt) + n(h )m(h )g(h) = 0. 
dh 

2.5.1 
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Here m(h) is the mean molecular mass of the atmosphere, n(h) is the number density, 

P(h) is pressure, and g(h) is gravitational acceleration which varies with height. The 

equation for hydrostatic equilibrium may be combined with the ideal gas law, 

to give the relationship 

P(h)= n(h)k T(h~ 

k d(n(h )r(h )) = -n(h )m(h )g(h) . 
dh 

2.5.2 

2.5.3 

Here T(h) is the temperature, and k is Boltzman's constant. This equation is easily 

integrated over the altitude region from h, the altitude of interest, to some particular 

reference altitude ho, 

2.5.4 

It is now possible to solve for the temperature T(h) at our altitude of interest. 

2.5.5 

In this form any error in the measurement of relative density will enter into the equation. 

The error in the measurement may even cause the temperatures to diverge through the 

:~~? ratio. If however, we choose ho to be some initial maximum starting altitude hmax 

and the integration is done to some lower altitude 

In this form, any of the system-dependent parameters divide out of the temperature 

calculations. The measurements of density are relative. However, as the temperature is 
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derived from the ratio of two relative measurements, the temperature becomes an 

absolute measurement (except for the J" tenn, which decreases rapidly with decreasing 

altitude). 

The temperature algorithm is based upon an initial temperature at the chosen hmax. 

Typically we choose hmax to be the altitude at which the signal is 16 times its own 

standard deviation. The initial temperature for this altitude must be provided from some 

source outside of the Rayleigh lidar. Ideally, this measurement can be taken from a co­

located instrument that can provide simultaneous measurements such as a resonance lidar 

or a hydroxyl temperature detector at 87 km. This initialization temperature can also be 

taken from a model or in the case of the ALO lidar from another mid-latitude temperature 

climatology. Currently if the altitude is above 83 km, the starting temperatures are taken 

from the sodium lidar climatology from Colorado State University (CSU) and 

interpolated for the correct date and altitude. However, if the starting altitude is below 83 

km, the starting temperature is based on a combination of both the MSISeOO model and 

the sodium climatology. The offset between the climatology and the model at 83 km at 

midnight is used to offset the model temperature at lower altitudes. 

6. 1' Measurement Uncertainty ./ 

The return profiles, as previously mentioned, are a sum of 3600 separate 

soundings of the atmosphere made by the lidar system. These profiles can be considered 

to consist of two different signals, the Rayleigh-scatter signalS and the background noise 

signal N. It is then possible to separate the Rayleigh-scatter signal averaged over a small 

altitude region from the total if the background is known and constant with altitude 
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S. = _!_:E,<{'-'l(S +N) - ~:E',••.(K-IJ N, . = (S+N) - N,. . 2.6.1 
1 I •=.. I) K :::: 0 I 1) J 

Here I and K correspond to space {the number of height intervals for signal and 

background, respectively) and J corresponds to time (the number of 30-second time 

intervals). The background at each altitude is unknown and is approximated by the total 

signal at high altitude where there is no Rayleigh-scatter signal and, again, is assumed to 

be constant in altitude. This assumption places certain requirements on the data selection 

described in Chapter 3. 

Variations in the return signal and the background can also be calculated. First is 

the background variance 

- ( )i)N I ( J d N = :E'•' K -l --1- dN =-:E'·· K _, dN 
I •~•, oN,, >; K '='• ,, - 2.6.2 

Square and add, assuming each measured N*1 is independent Then, letting 

2.6.3 

the average background variance is 

2 .6.4 

which reduces to, 

2.6.5 

when the background variance, i.e., aZ,
1

, is constant over K altitudes. The variance of 

the combined signal and noise can be calculated in the same way 

d(S + N) = :E'••{I-l) a(S+N}; d(S + N) .. = _!_ :E~~(HJ d(S + N) . 
} l = lo a(s + N). , I } I 1-=l'o rj 

2.6.6 
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Square and add, assuming each measured (S + N),, is independent, 

2.6.7 

We now have calculations for the variance of the noise and the combined signal and 

noise. The variance for the signal alone averaged over I range bins (Eq 2.6.1) is given by 

2.6.8 

Due to the fact the return signal follows Poisson statistics u; = x, we can substitute the 

return signal in place of the variance, 

2.6.9 

Or, noting that the terms on the right include the average of (S + N),, over I altitudes and 

N • 1 over K altitudes, this can be rewritten as 

2.6.10 

If there are other factors adding to the variability in the measurements, then our 

uncertainties will be underestimates. Ignoring the assumption of hydrostatic equilibrium 

for a moment, the temperature profile derived from a single two-minute period would not 

have enough precision to obtain useable temperatures at higher altitudes. A temporal 

average is also required to do so. This temporal averaging of the return signal enters into 

the averages 

((s + N)) = - '- "'J,•(J-•l"''-«'-'>(s + N) . = ..!._ L'~•(J-• l TS+N' 
/J J / L....,J=Jo L....,,=r. •J J J- Jo \'" ~ /Y h 1 2.6.11 



and the variances 

and 

a ' =-
1 ((S+N)) ((S•N)), J I IJ 

, I -­
a (,-) =-(N),u. 

" JK 
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2.6.12 

2.6.13 

2.6.14 

Recalling the Rayleigh-scatter signal is the difference between these two averaged 

measurements, it is given by 

2.6.15 

and its variance is given by 

2.6.16 

Thus the standard deviation of the signal is 

I 1 --
a (s-) = - ((S+N)),J +-(N)KJ . 

" ./1 .JK 
2.6.17 

As stated earlier, the downward integration is started at the altitude where the signal is 16 

times its standard deviation. The number of standard deviations is given by 

2.6.18 

Having calculated the variance of the measurement, it is now possible to find the 

uncertainty for the temperature measurements. The temperature variance is found in 



31 
much the same way as the backscatter signal variance. Using the temperature 

calculation Eq 2.5.6, we can propagate the uncertainties in the return signal and derive an 

uncertainty for the temperature profile [Gardner , 1989) 

2.6.19 

2.6.20 

The last term on the right in Eq 2.6.20 can be simplified. Letting 

c = mg and ~= !!_=>dn=(dn lAi. . 
k an dn dhr· 

2.6.21 

The number density 11 increases with decreasing altitude by the scale height H given by 

2.6.22 

As such, assuming H is constant, 

2.6.23 

And 

_( c )~(J""-~~~'}ih·)"n = -=f\c [~~(h""' )dhmM - ll(h)dh]= 
II h= On h r• fl\h.,.. J dn dn 

- --:!-)[11(h.,..) H( .,..) - 11(h) H( )]=--(c )[H.,.. - H). 1'\h.,.. 11 h.,.. 11 h 11 h.,.. 

2.6.24 

The final term is zero for a constant scale height. The temperature variance becomes 

2 [11(h.,..)]
2 

2 [ T(h.,..)]
2 

2 [T(h)]
2 

2 
a ,C•>= n{h) a ,(,_)+ n{h_) a.(._)+ 

11
(h) a .(•) · 2.6.25 
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Substituting Eq 2.6.22 into Eq 2.6.25 we find the final calculation of the temperature 

variance 

(
a )

2 
[ (a )

2
] -2(,_-•l a 2 = T. 2 .....:!!.. + a 2 + r 2 _:o,_ e--~~-

r. It r_ mu ' 
n 11 nrrwc. 

2.6.26 

where 71, and nh are the temperature and number density at h, 1',ax and flmax are the 

temperature and number density at the top altitude, hmax, and H is the atmospheric scale 

height, which is assumed to be a constant 7 km. The first term in the equation is derived 

from the ideal gas law. The second term is based upon the uncertainty of the initial 

temperature, and decreases with height. Typically, the uncertainty of the starting 

temperature is unknown and is assumed to be zero as it has a limited range of influence 

because the exponential term causes it to decrease rapidly with decreasing altitude. 

Likewise, the uncertainty from the third term also decreases rapidly with decreasing 

altitude. 

7. NLC Observations and Uncertainties 

The ice particles that form noctilucent clouds are of comparable size to the 

transmitted wavelength of atmospheric lidars. This produces a strong Mie scatter signal 

in addition to the Rayleigh-scatter signal in the altitude region of the NLC. When the 

profile with the combined signal cl is referenced to the Rayleigh only signal cl it 

produces the backscatter ratio, 

8 =.£. 
R c2, 2.7.1 

which is greater than unity where the Mie-scatter contribution exists. Here C1 and C2 

denote the backscattered photon counts given by 
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2.7.2 

2.7.3 

where S t-N is the measured combination of backscattered photons, S, and background 

noise, N. Here I and K are the number of points in the altitude average and J is the 

number of points in the time average. The brackets and the horizontal bar denote, 

respectively, that the values have been averaged in time and space (altitude). These 

expressions are equivalent to Equations 2.6 . 15, where the altitude average was over I bins 

for the signal and K bins for the background, and the time average was over J 30-second 

(bins). 

To refine the measurement of the backscatter ratio a normalization factor/is used 

to account for variations in the atmospheric transmittance and differences in the laser 

power in the two measurements. The normalization factor for each altitude) is, 

c,, 
! =-} c, ,. 2.7.4 

It follows that the average normalization factor is 

I J I J C,, 
(1)=-JL.J, =-JL-c , 

I I J j 

2.7.5 

The first value used in the average is from 45 km and the Jh value is from 70 km, which 

is well below the NLC altitude. The average value for/should be very close to unity and 

has been included for completeness. So many independent observations contribute to the 

value of this normalization constant, that its uncertainty is taken to be negligible. 

Therefore, the best estimate for the backscatter ratio at each altitude,}, becomes 



( ) c,, 
BH, = f - . c2, 
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2.7.6 

Like the previous derivation of uncertainty for the temperature calculation the 

measurement uncertainty for the Mie scatter is simply dependent upon the photon counts 

assuming a Poisson distribution. We can therefore define the variations in the backscatter 

ratio assuming that C, and C2 are independent measurements and that (f) is a well-

determined constant, 

2.7.7 

The variance for the backscatter ratio at each altitude then becomes 

u ' = (!)' u ' +(f)'(!;_J2u2 = (f) '(s_)'(u~, + u~,J 2.7.8 
o, c; c, c; c, c, c,' c; · 

where the subscript j has been dropped for convenience. The updated backscatter ratio 

BR, Eq 2.7.6 can be substituted back into Eq 2.7.8 to give 

2.7.9 

The standard deviation then becomes 

u 2 u 2 

-4-+~. c, c, 2.7.10 

The variance in each of the profiles used to calculate the backscatter ratio can be 

calculated assuming Poisson statistics. The counts are dependent upon the average 

values of the signal and the background values. The uncertainty in the count rates are 

similar to those derived for the density calculations, Equation 2.6.16, 



a ' - a ' - a ' +a ' --
1-((S+N) ) +-1-(!i) c, - (C.) - ((SoN),) (N,) - J I I l,J, J K I K,J, 
I I I I 

and 

Short integration times and limited vertical averaging are necessary to accurately 
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2.7. 11 

2.7.12 

represent the NLC properties. As such, the variance in the measurement profile is much 

larger than the variance from the reference profile and is the limiting factor in the 

uncertainty. 
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CHAPTER3 

MID-LATITUDE MESOSPITERIC TEMPERATURE CLIMATOLOGY IN THE 

MOUNTAIN WEST OBTAINED FROM THE RAYLEIGH-SCATTER LIDAR 

AT TITE A TMOSPHERJC LIDAR OBSERVATORY ( 41. 7• N Jtt.s• W)1 

Abstract 

Over 900 nights of observations from a Rayleigh-scatter lidar have been reduced 

and used to derive nighttime temperature profiles between 45 and 90 km spanning the !!­

year period from late 1993 through 2004. They have been combined to derive an annual 

climatology of the temperature and the temperature variability for the mesosphere above 

Logan, Utah. The variations of temperature with altitude and time are examined. The 

transition between radiative and dynamical behavior occurs near 63 km. The strong 

mesospheric inversion layers in winter appear in the results. In altitude, the variability 

has a minimum below the transition altitude. In addition to winter, the variability has 

maxima high in the mesosphere near the equinoxes and summer solstice. The 

temperature climatology is compared to the one from the French lidars at Haute Provence 

and Biscarrosse obtained between 1984 and 1989. Winter comparisons show large 

differences, which might have a longitudinal origin. During the summer months below 

the transition region, the ALO temperatures are systematically - 1.5 K colder than the 

French temperatures, which might reflect long-term mesospheric cooling. 

l. Introduction 

The temperature structure of the atmosphere is a very distinctive feature, serving 

1 Coauthored by Joshua Herron and Vicent B. Wickwar. 
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as the basis for defining the different atmospheric regions. The temperature 

climatology provides fundamental information about the energetics of the regions and 

serves as a reference for evaluating first-principle models. It is also a reference for 

detecting and exploring unusual events or phenomena. Regular measurements of much 

of the middle atmosphere were very difficult prior to the advent of Rayleigh-scatter lidar. 

Balloons, which are used in the troposphere and stratosphere, typically reach altitudes 

less than 30 km. Likewise, special high-flying aircraft have a similar altitude ceiling. 

Airglow observations only begin above 85 km. Rocket soundings are infrequent because 

of their expense. Until recently, satellites observations have had poor altitude resolution 

and, in any case, are unable to provide time evolution above individual locations. 

Rayleigh-scatter lidar [Hauchecorne and Chanin, 1980] changed this situation. Regular 

observations between 40° and 45° N latitude have been undertaken by the French 

[Hauchecorne eta/., 1991 ; Keckhut eta/., 1993] since 1978, by our group [Wickwar el 

a/., 200 I] since 1993, and by the Canadians [Sica eta/., 1995] since 1993 _ Such long­

term measurements are necessary to produce good climatologies of temperature and 

temperature variability. In this paper, we present the mesospheric temperature 

climatology above Logan, Utah, based on - 5000 hours of Rayleigh lidar observations 

spanning II years. This is the second longest climatology in the 40°-45° mid-latitude 

region and the one with the densest observations. The lidar and data analysis are 

described in Section 2; the observations and comparisons are presented in Section 3; and 

the discussion and conclusions are given in Section 4. 
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2. Instrument Description and Data Analysis 

A Rayleigh-scatter lidar has been operated on the USU campus at the 

Atmospheric Lidar Observatory, ALO, {41.74°N, 111.81°W, and 1466 m) since August 

of 1993. The lidar consists of a rrequency-doubled Nd:Y AG laser operated at 532 nm 

with a repetition rate of30 Hz. The initial laser operated with an average power of24 

watts and was replaced by a slightly smaller laser with an average power of 18 watts. 

The laser is Q-switched to provide a short pulse of - 8 ns. The backscattered light is 

collected by a 44-cm diameter Newtonian telescope, which gives the system a power­

aperture product of2.7 or 3.6 W-m2 depending on the laser. The light is focused on a 

field stop, giving a field of view approximately 3 times that of the 1-mrad laser 

divergence. It is then focused onto the plane of a mechanical chopper and then 

collimated before passing through a narrow-band interference filter to the cooled 

photomultiplier tube (Electron Tubes 9954). The basic altitude resolution is 37.5 m, 

corresponding to a range bin of250 ns. The returns from 3600 pulses are summed before 

they are recorded to disk, giving a minimum time resolution of2 minutes. A more 

detailed description of the lidar is given elsewhere [Wickwar eta/. , 2001 ; Herron, 2004]. 

The lidar returns are composed of backscattered photons, background signal , and 

dark counts. To protect the PMT rrom the large, low-altitude signals, a mechanical 

chopper blocks returns from below 20 km and electronic gating reduces the gain by about 

500 below 38 km. Good data are acquired starting at approximately 41 km. At and 

above this altitude, extinction by aerosols and absorption by 0 3 can be neglected. 

Consequently, the altitude-dependent signal is due only to Rayleigh-scattering and is 

proportional to density. The returns are measured out to an altitude of 500 k., where the 
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extended region between 120 and 500 km is used to enable an accurate determination 

of the background and to provide a diagnostic tool for the detector system. Once a 

suitable background level is determined and subtracted, the signal is corrected for the 

1/Range2 fall off The resulting profile is proportional to density and can be integrated 

downward to determine profiles of absolute temperature by assuming the atmosphere is 

in hydrostatic equilibrium and obeys the ideal gas law [Hauchecorne and Chanin, 1980; 

Gardner eta/., 1989]. The temperature profiles are independent of variations in the 

atmospheric transmittance and do not have to be calibrated. They depend on good 

observational and analysis procedures. 

To calculate the absolute temperature, an a priori knowledge of the temperature at 

the start of the downward integration is necessary. The initial values were taken from the 

8 year climatology from the sodium lidar at Colorado State University (CSU) [She et at. , 

2000), which is only 575 km away and just over I o equatorward of ALO. The CSU 

temperatures were from 1990 to 1999, covering much of the same time period as the 

ALO data. The use of this climatology to initiate the calculation for the ALO 

climatology should greatly reduce the uncertainty in the initial values. However, any 

remaining uncertainty from this initial temperature decreases rapidly with the downward 

integration. 

The starting altitude for the temperature integration is determined as the point 

where the signal is 16 times its standard deviation. The average starting altitude for the 

nighttime temperature profiles is 87 km, but even for the best data the maximum altitude 

is set to 95 km. Any difference between the starting temperature and the actual 

temperature decreases by a factor of 4 after I 0 km of integration. This decrease in 
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systematic error, coupled with the use of the CSU climatology for the starting values, 

should ensure that accurate temperatures are obtained for altitudes below 80 km and that 

reasonable temperature values are obtained even above 80 km. 

At the upper limit of the lidar's range, the background becomes a large portion of 

the total signal. Its accurate determination in the region above 120 km is most important 

for the data selection, because a bad background leads to systematic temperature errors at 

all altitudes [Herron, 2004]. Observationally, bad backgrounds can have slopes, 

oscillations, or spikes. To minimize potential background problems, the background 

region was chosen specifically for each night and each night reduced separately. 

Subsequent averaging of many nighttime temperatures further reduced any adverse 

effects from the background selection. Nights were rejected because of low signal 

strength, typically due to poor viewing conditions. Between 1993 and 2004, observations 

were obtained on approximately 950 nights; of these, approximately 903 nights were of 

sufficient quality for temperature reduction. Figure 7 (a and b) show the nighttime 

temperature measurement from January and July with their associated average and 

standard deviation. The monthly distribution of the nighttime observations is given in 

Table I . 

Table l. Monthly distribution of nightly observations included in the 
climatology 

Month 

Jan 
Feb 
Mar 
Apr 

May 
June 

Nights 

49 
62 
85 
56 
58 
103 

Month Nights 

July 118 
Aug 126 
Sep 114 
Oct 86 
Nov 38 
Dec 24 
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January Temperatures July Temperatures 
100 100 

(b) 

150 200 250 300 150 200 250 300 

Temperature IKJ Temperature IKJ 

Figure 7. Nighttime temperature averages, collected during the months of 
January and July. The horizontal error bars are the standard deviation plotted 
about. the average temperature. 

An average temperature profile is found for each night of the composite year by 

averaging the nighttime temperature profiles in a multi-year, 31-day window centered on 

the particular night of the year. Because each of the nighttime profiles included in the 

average has a different starting altitude, the mnimum altitude for the average is 

dependent upon the number of profi les available at each altitude. The average is started 

at 45 km and continues upward until only half of the maximum number of profiles in the 

31-day window, remains. Seventy-five percent of the nighttime temperature profi les 

have starting altitudes between 95 and 84 km with the average starting altitude being - 87 

km. The average maximum altitude for the 3 !-day average works out to be 88 km. 
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3. Observations and Comparisons 

The temperature climatology derived for each day of the composite year is given 

in Figure 8. The maximum temperature at 45 km is 273 K in June and the minimum is 

252 Kin January, a 21 K difference. The alt itude of the stratopause also varies over the 

Temperature [K] 
200 210 220 230 240 250 260 270 280 

90 

85 

60 

75 

~ 70 
cP 

"'0 65 :::J -~ 
60 

55 

50 

45 
50 100 150 200 250 300 350 

Day Number 

Figure 8. The AW temperature climatology. The profile for each day of the 
composite year is the result of a multi-year, nighttime, temperature average over 
a 31-day window centered on the day. The vertical black lines represent the 15"' 
of each month. 
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course of the year, at - 47 km from September to January, but at or below 45 km 

during the rest of the year. The warm summer and cool winter of the lower mesosphere 

at mid-latitudes is the opposite of what is observed in the upper mesosphere. Here the 

seasonal dependence is reversed with a warm winter and a cool summer, a behavior that 

is usually attributed to the effect of gravity waves and planetary waves on the global 

meridional circulation, leading to compressional heating in winter and adiabatic cooling 

in summer. At 84 km, the summer-winter variation is 42 K with a maximum of216 Kin 

January and a minimum of 174 K in June. The lowest temperature in the mesopause 

region appears to be at 81 km in June, but the slope of the profile suggests that the actual 

mesopause is at a higher altitude. 

Because of the 31-day averaging window, independent profiles occur every 31 

days, at approximately one-month intervals . Accordingly, 12 profiles representing 

approximately the 15th of each month were selected and are presented in Figure 9. The 

uncertainties are based on propagating the uncertainties in the photon counts assuming a 

Poisson distribution [Gardner, 1989). They do not include an estimate of the uncertainty 

in the starting temperature, nor of the geophysical variability. Because of the great 

amount of temporal averaging, the temperature standard deviation of the mean below 84 

km is <1 K, with some slight variation from month to month. This set of temperature 

profiles clearly shows the warm summer and cold winter at 45 km, near the stratopause, 

and the reverse seasonal behavior at 85 km. The transition between these two behaviors 

occurs at 63 km, where all months except January and August exhibit almost the same 

temperature. 
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The initial impression from Figures 8 and 9 is that the mesosphere is 

characterized by monotonically decreasing temperatures with increasing altitude. 

However, despite the great amount of averaging, January and February show inflections, 

almost reversals, in the lapse rate from rnesospheric inversion layers [Schmidlin, 1976; 

Meriwether el a/. , 1998]. While inversion layers are not a permanent feature of the 

wintertime mesosphere above ALO, they are observed with enough frequency that they 

have a significant impact in these two months and a barely discemable impact in 

December and March. Furthermore, the apparent impact varies, with January 

temperatures as much as I 0 K colder than the February temperatures between 60 and 75 

90 

:§ ' -- Oct 
85 ... ... t( --Nov ' . 

H" hl ' HI --Dec 80 ... , 
' ... ~ --Jan 

75 
... Feb 

- Apr 
70 

65 - -Avg 
Apr 

60 ---May 
Jun 

55 -- - Jul 

50 
---Aug 
-- - Sep 

170 180 190 200 210 220 230 240 250 260 270 280 

Figure 9. The ALO temperature climatology from Figure 8 presented at ~km 
intervals for the 15th of each month. The contour lines are every 5 k. 



km and as much as 10 K wanner above that. A large isothermal region between 65 

and 75 km in January and a small region between 63 and 66 km in February also is 

another result of the inversion layers. 

Another significant feature is that October and November in the fall have 

temperature minima near 85 km. This minimum may also occur in the spring in March. 

These minima are most likely the lower altitude relative minimum in the two-level 

mesopause [She and von Zahn, 1998]. 
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These twelve profiles shown in Figure 9 also provide a combination contour plot 

and data tabulation at one-month and 3-km intervals, shown in Figure 10. This tabulation 

is in the tradition of other climatologies [e.g ., Hauchecorne et at., 1991 ; She et at., 2000; 

States and Gardner, 2000b]. It provides values that can be used for future comparisons. 

Because the temperatures given in Figures 8 through I 0 are heavily averaged, 

they filter out much of the geophysical variability. However, an estimate of this 

variability is obtained by calculating the RMS variation or estimated standard deviation 

of the individual nights relative to their multi-year average in the 31-day window. The 

differences or variability arise from waves with periods greater than half a day that are 

not coherent within a 24-hr period, random sampling of episodic events such as inversion 

layers, year-to-year variability, and a temperature trend. The differences also include the 

measurement uncertainties. The number of data points included in the RMS calculation 

varies with altitude. As mentioned previously, the number of profiles at the highest 

altitude shown is half the maximum number. This measure of the geophysical variability 

of the mesospheric temperatures is shown in Figure II . As would be expected, it is much 
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Figure 10. Monthly temperature profiles. Each is the average of the nighttime 
temperatures in a multi-year, 31-day window. The error bars are derived from 
the measurement uncertainty assuming Poisson statistics. The annual 
temperature profile, obtained from averaging the monthly profiles, is also 
presented. 

larger at all times and altitudes than the measurement uncertainty shown as error bars in 

Figure 9. 

The minimum variability is not at 45 km, but is found 3- 12 km higher. It is as 

though there are two sources of variability, one that propagates up from below and is 
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damped out, and one that develops at higher altitudes. The geophysical variability below 
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the transition altitude is 2- 5 K between March and October. During the winter 

months, from December through February, it increases to 4-13 K, with structure in time 

and altitude. In those months it has a relative maximum at 45 km, essentially the 

stratopause. Between 45 and 54 km it is greater in December than in January and 

February. For December, the variability decreases with a localized minimum of7 Kat 

60 km. The variability in January and February decreases slightly with localized minima 

at 51 km followed by a steady increase with altitude to a local maximum at 69 km of 14 

K in January and II K in February. These months and the others have local maxima at 

even higher altitudes. The high variability in winter at these altitudes presumably reflects 

the inversion layers observed during this period. 

Above the transition altitude and between March and October, the variability is 

typically 4-7 K near the transition region, increasing to 10-14 K by 84 km. Throughout 

this period, the variability is considerably greater above the transition region than below 

it. On finer time scales, the variability is also very structured. For instance, above 70 km 

in July it is significantly greater than in either June or August. Similarly, at and above 78 

and 81 km, it is large in March and October, respectively, close to the fall and spring 

equinoxes. In December, it is significantly greater than for the other months above 70 

km, reaching 14-15 K. This large value probably arises from the great inter-annual 

variability during winter and the relatively few observations during this month. 

It is instructive to compare the ALO lidar climatology to the only other published 

Rayleigh-scatter lidar climatology from the 40°-45° mid-latitude region with tabulated 

results. It is from the French Rayleigh-scatter lidars located at the Haute Provence 

Observatory, OHP, (44"N, 6°E) and at Biscarrosse, BIS, (44°N, l 0 W). Their 
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Figure 11. The ALO climatology of observed temperature standard deviations 
presented at 3-km intervals for the 15th of each month. The contour lines are 
every 2 K. 
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temperatures have been combined into a single temperature climatology [Hauchecome e/ 

a/., I 99 I]. While the ALO and French results are from almost the same latitude, they are 

from different longitude regions separated by almost 120°. In addition, the midpoints of 

the two data sets are separated in time by just over 12 years. The difference between the 

ALO and French temperature climatologies are shown in Figure 12. These 
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Figure 12. Temperature differences between the ALO and the French 
climatologies presented at 3-km intervals for the 15th of each month. The contour 
lines are every I K. 

differences should be highly significant. An important point about the lidar technique, as 

already mentioned. is that the temperatures are absolute: no calibration is needed. The 

impact of the initial temperature value on the downward integration in the data reduction 

is minimal after 10 km or so. At these altitudes, above 45 km, the overlap function for 

the laser beam and telescope field of view is unity. (It only becomes significant at much 
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lower altitudes or for bistatic systems.) Finally, in both locations, the observations are 

at nighttime, often extending through the whole night. This minimizes potential 

geophysical differences from migrating tides. 

The most striking feature is that between March and October and below the 

transition region, the temperature differences are systematically between - I and - 4 K, 

the ALO temperatures being less than the French temperatures. ln the winter months, 

including November, the differences increase to between - 5 and - II K near 45 km, but 

become positive in December through February by up to 3 K by the transition altitude. In 

January the differences remain small at higher altitudes, presumably indicating similar 

sized inversion layers. However, in February and December, the differences reach 7- 9 K 

just above the transition altitude. They presumably reflect a larger positive phase in the 

inversion layers at ALO. 

Between March and October above the transition region, the ALO temperatures 

are on average slightly colder than the French temperatures, but with considerable 

structure in time and altitude. Above 75 km, the differences reach - 9 K in April and 

October, while they reach almost 7 K in July. 

4. Discussion and Conclusions 

We have presented mid-latitude climatologies of nighttime mesospheric 

temperatures and of their variability derived from nighttime Rayleigh-scatter lidar 

measurements at ALO. With over 5000 hours of data from over 900 nights, the most of 

any published lidar climatology, this analysis has the best opportunity for extracting the 

basic features from various sources of variability . This ALO climatology is important for 
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investigating the vertical structure of the mesosphere, temporal variations, longitudinal 

differences, and long-term trends. In addition, the climatology is important as a reference 

for identifying and investigating special or unusual events. To facilitate others using 

these climatologies, they are presented, in part, in tabulated form. 

Near the stratopause and in the lower mesosphere, the temperatures have a 

maximum in summer and minimum in winter, consistent with radiative control. At 45 

krn, this difference is 21 .0±0.4 K. High in the mesosphere the temperatures have a 

maximum in winter and a minimum in summer, consistent with dynamical control. At 84 

krn, this difference is 42.5± 1.3 K. This winter temperature maximum appears to 

propagate down from January to June. A crossover or transition altitude with minimal 

seasonal variation occurs at 63 km. The mesospheric inversion layers arc frequent, 

strong, and consistent enough in December through February that they appear in the 

temperature climatology. 

As for using the climatology to examine special events, NLCs were observed 

above Logan, Utah, on two occasions (Wickwar eta/. , 2002; Herron eta/., 2007) (see 

Chapter 5). For the 1995 event, comparison of the observed temperatures to the 

climatological temperatures for June showed that the NLC occurred at the minimum of a 

large temperature oscillation, which behaved similarly to an amplified diurnal tide. 

Great variability in altitude and time occurs for the observed standard deviations. 

In general there is a relative maximum at 45 krn, near the stratopause. It then decreases 

to a minimum and increases again at higher altitudes. Between December and February, 

this low-altitude variability is the order of I 0 K, consistent with the upward propagation 

of planetary waves. However, significant variability on the order of3 to 4 K also occurs 
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throughout the rest of the year, presumably because of upward propagating waves. 

Throughout much of the year, this variability diminishes by the order of a degree within 

the next 6--12 km, suggesting that the waves with periods greater than a day, are 

dissipating. In winter, because of the MILs, this variability then grows with altitude to IS 

K. The occurrence of inversion layers appears to be closely related to the large 

stratopause variability. They have been shown to be closely related to large amplitude 

diurnal tides and planetary waves [Nelson and Wickwar, 2007]. An interannual 

component of this variability, which is apparent in the annual temperatures, may account 

for why the ALO January 1995 temperatures exceeded those from other sources in a 

comparison with WINDll temperatures [Shepherd eta/., 2001]. During the rest of the 

year, the variability starts to increase just below the transition region and continues to do 

so to the highest altitudes, occasionally reaching as much as 14 K. While the variability 

increases with altitude, the rate of increase appears to slow down in the last 3 to 6 km. 

While this may be real, it may also reflect that some of the profiles used for the average 

had their initial values at altitudes close to these. 

In addition, there is considerable variability in time. Maxima near the two 

equinoxes high in the mesosphere, Figure II , may account for the so-called equinox 

transition periods [e.g., Taylor eta/. , 200 I; Shepherd eta/., 2004b]. The timing suggests 

that they arise because the zonal wind of the mesospheric jet, which filters out the upward 

propagation of gravity waves, goes back and forth through zero as the mesospheric jet 

transitions from eastward to westward in late March and from westward to eastward in 

late September. Without the jet, more gravity waves grow to a large amplitude before 

breaking at these higher altitudes. In July, and perhaps late June, another maximum 
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occurs. In Chapter 5, the existence oflarge amplitude temperature waves, which 

appear to come from the interaction of gravity waves and the diurnal tide, was established 

in the upper mesosphere. If these enhanced waves are a common feature of the summer 

mesosphere and only persisted for a few days, they would contribute directly to this 

variability. They could also contribute indirectly by affecting the upward propagation of 

gravity waves, which would affect the adiabatic cooling. 

The comparison with the French temperature climatology [Hauchecome e/ a/., 

1991] shows both significant similarities and differences. In general, very similar 

temperature behavior is exhibited in both climatologies (see Figure 12). However, the 

ALO temperatures are systematically cooler than the French temperatures. For the well 

behaved data below the transition altitude and excluding the winter period from 

November through February, it is useful to look for trends over the 12.3 years between 

the mid points of the two data sets. In the summer, May through August, between 45 and 

63 km, the average temperature difference is - 1.46 K, suggesting a trend of - 1.2±0.2 K 

per decade. In the equinox periods, March, April , September, and October, in the same 

altitude region, the average temperature difference is - 2.21 K, suggesting a 50% greater 

trend of - 1.8±0.2 K per decade. (In both cases, the uncertainty is the standard deviation 

of the mean.) Thus, there appear to be significant cooling trends. The summer trend is 

similar to what has been deduced in other ways [e.g., Beigel a/., 2003] and attributed to 

climate change. The equinox trend, though larger, is consistent with some results 

suggesting different trends in different seasons [e.g., Beige/ a/. , 2003]. However, other 

factors, which might argue against a trend attributable to climate change, need to be 

examined. While the ALO data span an !!-year solar cycle, the French data only span 
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about half a solar cycle. However, the average F10.7 solar index is similar forthe two 

periods, 123 for the ALO period and liS for the French period. And, there is little 

evidence for a strong temperature dependence on solar flux in this altitude region [e.g., 

Keckhut, 1995; Keckhut eta/., 1995]. This supposed trend then is probably not a 

significant factor. 

Another consideration is that both data sets were acquired starting shortly after 

major volcanic eruptions- E) Chichon in 1982 and Mt. Pinatubo in 1991. Several results 

indicate the possibility of significant heating for a few years after a major eruption [e.g., 

Keckhut eta/., 1995; She et a/., 1998; Sheet a/. , 2000) followed by cooling. Because the 

French data is a shorter dataset, the influence of the heating may appear more pronounced 

in this dataset. 

Another consideration is the large longitudinal separation, almost 120°, which 

puts the two lidars in very different topological regions- ALOin the Mountain West and 

the French lidars to the east of the Atlantic Ocean. This could significantly affect the 

orographic generation of gravity waves in the troposphere and their subsequent 

interactions with tides and planetary waves. That this might happen is suggested by the 

significant difference in size and altitude of the MlLs in December, January, and 

February, and by NLCs having been observed twice in summer at ALO [Wickwar eta/. , 

2002; Herron eta/., 2007) (see Chapter 5), but apparently not by the French lidars. It 

also might be a factor in the greater differences at the equinoxes. To distinguish between 

the effects of climate change, volcanic activity, and longitudinal differences, a 

comparison between temperatures from the two lidars using more contemporaneous data 

will be needed. 
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While much has been learned from this extended mesospheric dataset from 

ALO, many questions have been raised that require new and improved data. These 

include the possibility of significant longitudinal variations and of significant long-term 

trends. The atmospheric system is variable enough that long-term observations are 

needed to properly separate any long-term trends from other variations. Frequent 

observations are also needed to observe and then examine additional special or unusual 

events. A more powerful or more sensitive lidar system is needed to improve the 

temperatures in the upper mesosphere and to extend the observations across the 

mesopause into the lower thermosphere. Downward extensions of the lidar detector 

system are needed to relate mesospheric temperatures and variability to temperatures and 

variability in the tropospheric and stratospheric source regions. A daytime capability is 

needed to find a mesospheric climatology as opposed to a nighttime mesospheric 

climatology. 
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CHAYfER4 

A COMPARISON OF MID-LATITUDE MESOSPHERIC TEMPERATURES­

TBE ALO LIDAR CLIMARTOLOGY AND 

THE NRL EMPIRJCAL MODEL2 

Abstract 

The temperature climatology from the Rayleigh-scatter lidar at the Atmospheric 

Lidar Observatory, (ALO), operated by the Center for Atmospheric and Space Sciences 

on the campus of Utah State University (41.74° N, 111.81° W) at an altitude of(1465.8 

m) has recently been published (Chapter 3). The Rayleigh-scatter lidar technique 

provides absolute measurements of temperature and serves as an excellent reference for 

comparisons. The Naval Research Laboratory MSIS-00 empirical model calculated for 

the ALO location and time periods is compared to the ALO climatology. The 

comparison shows that the model captures the average temperature structure, with an 

average annual difference of less than 5 K over much of the mesosphere. However, the 

model fails to reproduce or fails to correctly reproduce some significant features in the 

ALO climatology: the winter mesospheric inversion layers are not shown; the apparent 

summer mesopause temperatures are II K cooler than the climatological values and the 

m~•m occurs I 7 days earlier; the summer maximum near the stratopause at 45 km is 

273 Kin agreement with the climatology, but then occurs 10 days earlier in the model. 

The spectral composition of the temperatures shows additional differences: the strong 

annual amplitudes and the phases show relatively good agreement except for the mod,el 

exhibiting the opposite phase progression with altitude through the phase reversal near 63 

2 Coauthored by Joshua Herron and Vincent B. Wickwar 
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km; the semi-annual amplitudes and phases are very different, with the model being up 

to 127 degrees out of phase with the climatology; and the model does not include the 

. higher order harmonics tbat..e.xist in the climatology. 

I. Introduction 

Measurements of the temperature structure of the middle atmosphere provide 

information about the energetics in the region, the roles of radiative heating and cooling, 

of chemical heating, and of dynamical heating and cooling. Much of the dynamics are 

~ted to the generation, filtering, and breaking of gravity waves, tides, and planetary 

waves. These waves in tum drive the ge~iving rise to an inter-

hemispheric flow that leads to adiab~ating in winter and cooling in summer in the 

__!Pper mesosphere. Several observational techniques are used to make temperature 

measurements in the middle atmosphere. 

The Rayleigh-scatter lidar technique, in particular, provides temperature 

measurements over much of the mesosphere with high temporal and vertical resolution. 

Temperature profiles derived from these observations make an ideal reference as they are 

absolute temperatures, independent of any system calibrations. The earliest climatology 

of Rayleigh-scatter temperatures was obtained by Hauchecorne eta/. [ 1991]. While 

these mid-latitude observations began in 1978, the climatology depended on the data 

from 5 years, 1984 to 1989. Recently another mid-latitude temperature climatology 

based upon Rayleigh-scatter lidar measurements has been published. The Atmospheric 

Lidar Observatory (ALO) at Utah State University (USU) was used to produce an II -
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year, mid-latitude climatology of Rayleigh-scatter lidar temperatures that span the 

period from 1993 to 2004, see Chapter 3 and Herron [2004]. 

The vast majority of ground-based measurements are done at fixed installations 

which can also be said for sounding rockets. To develop a comprehensive, global picture 

of the middle atmosphere, it is necessary to combine these sparse observations with 

satellite observations into an empirical model. Such models have been of considerable 

importance for geophysical research. In particular, the empirical models have been used 

to validate new measurements and first principle models [Roble and Ridley, 1994; Roble, 

1996; Meier eta/., 200 1]. In addition, several Rayleigh-scatter lidars along with a few 

satellites have used empirical models for the initialization temperature for their data 

reductions [Clancy and Rusch, 1989; Hauchecome el a/. , 1991; Clancy eta/., 1994; Sica 

el a!., 1995; Fiedler eta/. , 1999; Shepherd eta/. , 200 I; Collins eta/., 2003]. The most 

recent version of the MSIS series of empirical models, MSIS-00, is derived from a 

collection of historical observations [Picone eta/. , 2002] between the surface and the 

ations in the middle atmosphere, particularly between 30 and 85 km. It is therefore 

~to compare this model to existing, independent, middle atmosphere 

climatologies. Accordingly, we are comparing the MSIS-00 model to the ALO lidar 

climatology. 

In this paper we compare nighttime temperature averages from the MSIS--00 

empirical model to the ALO temperature climatology. The comparison includes an 

analysis of the temperature differences and a comparison of the 12, 6, 4, 3, and 2.4 month 

oscillations found in each. The ALO Rayleigh-scatter lidar and climatology are 



described in Section 2. The MSIS--{)0 model and the temperature-generation method 

are described in Section 3. The model temperatures are compared to the climatological 

temperatures in Section 4. Conclusions are given in Section 5. 

2. Atmospheric Lidar Observatory 

2.1 Rayleigh-Scatter Lidar 
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A Rayleigh-scatter lidar has been operated on the USU campus by the 

Atmospheric Lidar Observatory, ALO {41.74° N, 111.81° W), since August of 1993. The 

recent climatology, Chapter 3, used - 5000 hours oflidar observations that had sufficient 

quality to produce accurate temperatures at high altitudes. The Rayleigh-scatter lidar 

technique relies on elastic scatter of a transmitted laser pulse at the incident wavelength 

from molecular nitrogen and oxygen. The lidar returns are composed of these 

backscattered photons, background signal from the sky, and PMT dark counts, Figure 

13(a). To protect the PMT from the large, low-altitude signals, a mechanical chopper 

blocks the returns from below 20 km. In addition to the mechanical chopper, electronic 

gating also reduces the gain by - 1000 below 38 km with good data typically acquired 

above 41 km. At and above this altitude, extinction by aerosols and absorption by 0 3 can 

be neglected. Consequently the altitude-dependent signal is due only to Rayleigh­

scattering and is proportional to the molecular number density. The returns are measured 

out to an altitude of540 km, where the extended region between 120 and 500 km is used 

determine an accurate background level and provides a diagnostic tool for the detector 

system. Once a suitable background level is determined and subtracted, the signal is 

corrected for the 11/f fall off, where R is the range from the lidar. The resulting profile is 
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proportional to density and can be integrated downward to produce profiles of absolute 

temperature by assuming the atmosphere is in hydrostatic equilibrium and obeys the ideal 

gas law [Hauchecome and Chanin, 1980; Gardner, 1989)- This technique requires an 

initialization temperature at the start of the downward integration. For the ALO 

climatology, initial temperatures are taken from the sodium lidar climatology from 

Colorado State University (CSU) [Sheet a!., 2000)- A more extensive description of the 

lidar is given in [Wickwar eta/. , 2001 ; He"on, 2004]. 

As previously mentioned, the Rayleigh-scatter lidar technique relies on range­

resolved backscattered photons. The total photon counts are a combination of these 

backscattered photons, photons from the background sky, and any dark counts from the 

photomultiplier tube. The nighttime temperature average for July 14, 1995 is shown in 

Figure 13(b), along with the associated measurement uncertainty in Figure 13(c). 

Also as previously mentioned, the starting point for each nighttime average is the 

point where the signal is 16 times its own standard deviation. Because of that, the 

uncertainty at the starting point is similar from one night to the next, but the altitude of 

the starting point varies from night to night, because it is dependent upon the length and 

quality of the night's observations. At the initialization point the temperature uncertainty, 

based solely on the measurement uncertainty, is - II K. As the temperature profile is 

integrated downward the temperature uncertainty decreases with the associated increase 

in signal due to the increase in density and decrease in range. The uncertainty in a 

nighttime profile will decrease to -4 K after 5 km and - 2 K after 10 km. The 

uncertainties illustrated in Figure 13(c) are fairly typical for an individual night. 



Al~tud& [km] 
20 40 60 80 100 120 140 160 180 200 

1000 

~ 100-.I~...J..-f..lb\.,......,~~~-t-...J..--JV _.._+-....L..-I=d.......l--1-+--1--1-+-~1 
:I 

! 
10

~!£i!P~*iiiji~~~ 
0.1 

00 

80 

e 70 ~ ., 
~ 
=: 00 

50 

·~ (b) 
~ 

R --1-""-.. 
~ 

1'. 
~ 1-

160 180 200 220 240 200 200 

T..,_-[1(] 

80 

(c) ~ 
----v 

I 
I 

--
1--------

10 12 

Unoortmty [KJ 

Figure 13. Data collected on 95-07-14 (a) is a nighttime average of the lidar 
photocount profiles. The opening of the mechanical shutter is visible along with 
the change of the PMT gain near 38 km. The Rayleigh-scatter region along with 
the background region is also indicated. The black curve is the average 
photocount profile with the associated error bars. (b) Average temperature 
profile with associated error bars for the night's observations. (c) Uncertainty 
for the temperature profile, (b), are given separately shows the strong altitude 
dependence of the uncertainties. 

The temperature used to seed the temperature reduction also introduces an 

unknown uncertainty in the temperature profiles. As previously mentioned, the starting 

temperatures are taken from the climatology from the CSU sodium lidar [She et a/., 
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2000]. Fortunately, the uncertainty due to the starting temperature is range dependent 

and as the profiles are integrated downward the uncertainty decreases rapidly. As a 

result, the top 10 km of the ALO climatology are influenced by the CSU climatology. 
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Alternatively, the seed temperature can be taken from the MSIS--{)0 model 

directly. This would result in the temperatures at 85 km being approximately equal to 

those from MSIS--{)0. However, as previously mentioned the influence is range 

dependent and decreases significantly with altitude. The two starting temperatures result 

in a 4 K temperature difference at 80 km and diminishes to less than I K by 74 km. 

Thus, changing the initial temperatures would have little effect on the comparisons, 

especially below 75 km. 

As the CSU and ALO facilities are separated by only - 575 km we do not suspect 

the climatological temperatures above ALO to be significantly different than those above 

CSU. (On a given day, however, they might differ significantly because of wave 

activity.) Given, the large overlap in the observing periods the CSU climatology 

provides more appropriate starting values for the ALO climatology than MSIS--{)0. 

2.2 ALO Climatology 

The temperature climatology is composed of the nighttime temperature profiles 

measured by the lidar. They are initiated at the altitude where the signal drops to sixteen 

times its own standard deviation, which is on average 87 km with a maximum altitude of 

95 km. They are averaged over a moving 31-day window, without regard to year, 

generating a single composite year. The maximum altitude for each day of the composite 

year is dependent on the starting altitudes of the individual nights. The averaging is 
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Figm·e 14. The ALO temperature climatology. The profile for each day of the 
composite year is the result of a multi-year, nighttime, temperature average over 
a 31-day window centered on the day. Contour lines are every 5 K. 

started at 45 km and is continued upward until half the total number of profiles remain . 

For reference, Figure 8 has been reproduced here as Figure 14. 

ear the stratopause the ALO climatology has a maximum temperature of273 K 

at 45 km that extends from late May to early July. As this peak region is not centered 
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about the summer solstice, June 21 '1, this suggests that the temperatures are modified by a 

weak semi-annual oscillation. The temperature varies by 21 K during the year at this 

altitude with a minimum of252 K. In the upper mesosphere the temperature minimum 

for the climatology, 172 K, is found at 85 km in mid June. While the upper mesosphere 

is nearly 180° out of phase with the lower mesosphere, it also has a strong annual 

oscillation. During June when the temperatures are sufficiently cool, at 85 km, the 
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mesopause descends into the range of the lidar. The occurrence of the minimum in 

summertime and maximum in wintertime is indicative of the effects of gravity waves and 

planetary waves on the global meridional circulation, leading to adiabatic cooling in 

summer and compressional heating in winter. 

In the middle mesosphere, near 60 km, the temperature structure has very I ittle 

annual variation, but a strong semi-annual component as indicated by peak s in both May 

and November. The temperature peaks however are not symmetric about the summer 

solstices and the temperature of the ovember peak is significantly warmer than that in 

May. The difference in the peak temperatures and the smaller peaks suggest the presence 

of higher order oscillations. 

A common feature observed in the winter nighttime temperatures above ALO are 

mesospheric inversion layers or MTLs [Schmidlin, 1976; Hauchecom e el al., 1987; 

While way el al. , 1995; Meriwelher e1 al., 1998; Meriwelher and Gerrard, 2004]. While 

the inversion layers are not a permanent feature of the winter, nighttime temperature 

profiles, they are observed with enough frequency that they have left a discemable impact 

on the ALO winter climatology, namely an isothermal region between 65 and 70 km in 

February. 

The temperature variations in the upper portion of the climatology, above 75 km, 

are very chaotic with several short warming and cooling periods in addition to the general 

temperature variations. In this region the first strong cooling occurs in early February 

and extends into late April with periods of cooling rates greater than 15 Klmonth. A 

short period of warming is observed in late June, but the first significant heating is from 

August to mid-September with a heating rate greater than I 0 K/month above 80 km. A 
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second heating period occurs between mid-October and mid-November with a heating 

rate greater than 15 K!Month. These two periods are separated by a region of constant 

temperature. The lower portion of the climatology, 45 to 65 km, is less variable with a 

general warming occurring between January and May and a general cooling between July 

and December. The exceptions occur during the winter months. Ln particular there is a 

very strong cooling trend in December centered around 65 km, followed by a very strong 

warming trend in January. 

The temperature climatology is composed from a running 31-day average of the 

nighttime temperature profiles. Each of the nighttime averages has an associated 

uncertainty profile based on the above measurement uncertainty. For each of the 31-day 

temperature averages, the standard deviation of the mean was calculated. In the same 

manner as in the temperature calculation, the standard deviation of the mean calculation 

started at45 km and continued upward until half of the totaJ profiles were included. The 

average value for the 31-day standard deviation of the mean is given in Figure 15(a), and 

the associated contour plot of the 3 1-day values is shown in Figure 15(b ). At 45 km the 

temperature uncertainty is on average less than 0.2 K. On average, the temperature 

uncertainty is very small . Looking at the contour profile, Figure 15(b), the standard 

deviation of the mean for each 31-day period is less than 1 K below an altitude of80 km. 

3. MSIS-00 Empirical Model 

3.1 MSIS-00 Model Description 

The MSLS- 90 empirical model is an extension of the MSIS- 86 model of the 
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Figure 15. An average of the standard deviation of the mean for the year 
composes plot (a). The contour plot is composed of tbe standard deviation of 
the mean for each 31-day period. 

thermospheric temperature, density, and composition into the lower atmosphere [Hedin, 
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1987, 1991). The recent release of the MSIS-00 empirical model builds on the previous 

iterations [Picone el a/. , 2002). In the mesosphere, the MSIS database, to a great extent, 

remains unchanged. The database contains the same dataset as the MSIS- 90 model, 

based on the zonally averaged satellite observations (limb and nadir viewing IR) 

compiled by Barnett and Corney [Barnell and Corney, 1985] that became the basis of the 

low-altitude portion of the CIRA- I 986 model [Fleming el a/. , 1990] and on the 

MSIS- 86 thermospheric model [Hedin e/ a/., 1988] that became the high-altitude portion 
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of the CLRA- 86 modeL The database also includes results from balloon-borne 

observations (radiosondes), rocket-borne instruments (grenade detonations, falling 

spheres, pressure gages, and mass spectrometers), high-latitude Na lidar, accelerometers 

on the space shuttle, and 90-130 km data from incoherent-scatter radars. The full data set 

includes data acquired between 1947 and 1986, but the core satellite data set comes from 

1973-1981 [Barnell and Corney, 1985]. The database for the thermosphere was 

expanded for the MSIS--DO model by including measurements from satellite drag, 

accelerometers, solar occultation measurements, and additional incoherent-scatter radar 

measurements of both thermospheric and exospheric temperatures. For the mesosphere 

the dataset remained the same. The physical assumptions were modified between the two 

versions in that the region where hydrostatic equilibrium is assumed was extended 

upward to include the region between 80 and 300 km in MSIS- 00. One result of this 

change discussed by Picone [2002] is the presence of inflections in the winter 

temperature profiles that are reminiscent of a MIL. 

3.2 MSIS-00 Composite Year 

The effects of variations in the solar input have little influence on the temperature 

profiles in the mesosphere. For comparison with the ALO climatology a similar 

composite year was created with the MSIS--DO model temperatures. The model 

temperatures were calculated hourly for each hour of each day that the lidar was in 

operation between 1993 to 2004. These hourly temperature profiles were then averaged 

to create nighttime averages corresponding to the nighttime averages used to form the 

ALO climatology. This averaging was done to remove any tidal offsets that could arise 
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Figure 16. MSI~O composite nighttime year. The profile for each day orthe 
composite year is the result or a nighttime temperature average over a 31-day 
window centered on the day. Contour lines are every 5 K. 

between the ALO climatology and a nighttime average ofMSIS-00 and to weight the 

days in the MSlS-00 average in the same way as in the climatology. These nighttime 

temperature profiles were then averaged over the same 31-day window as the 

climatology. This process was applied to each day of the year thereby forming a 

composite year similar to that produced for the ALO climatology, shown in Figure 16. 

The annual average temperature profile is shown in Figure 16(a) and the contour plot in 

Figure 16(b). 
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The temperatures from the MSIS-00 model show a strong annual signature at the 

stratopause. At 45 km the minimum to maximum temperature variation is - 20 K 
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between 254 and 274 K The temperature maximum associated with the stratopause is 

above the 45-km level for the entire composite year. The model calculations were carried 

out to 88 km to match the range of the ALO climatology. While no mesopause is 

present, the minimum mesospheric temperature is 161 K at 88 km on day number 180. 

At 88 km the semi-annual signature is clearly present in addition to the large annual term. 

The two peaks in the temperature are on day numbers 65 and 306 respectively. 

Near 65 km the temperature variation in the model composite year reaches a 

minimum. Two peaks are evidence of an increasing apparent semi-annual oscillation 

with maximums in April and November. However, the peaks are asymmetric in that the 

November temperatures are greater than those in April. This asymmetry in the 

temperature peaks continues into the upper mesosphere. 

The upper mesosphere above 75 km in the MSIS-00 model shows a strong period 

of cooling, greater than - IOK/Month, occurring in ApriVMay. The warming period in 

the same region is of the same magnitude as the cooling but occurs in August/September. 

The temperature structure as a result is very symmetric about the summer solstice. The 

lower ponion of the mesosphere is not as symmetric with the warming occurring mainly 

in March/ April with a slower cooling from May/June until December/January. 

4. Comparison of Composite Years 

4.1 Temperature Difference 

To quantitatively compare the MSIS-00 model to the ALO climatology the 

climatology temperatures were subtracted from the model. The average temperature 

differences are given in Figure 17(a). This average shows that the model is 
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systematically warmer than the climatology between 45 and 51 km. The local 

minimum at 46 km is - -2 K. Between 51 and 61 km the model shows cooler 

temperatures than the climatology with a local maximum at 55 km of approximately 2 K. 

The region between 61 and 78 km shows model temperatures wanner than the 

climatology with a maximum difference of - 4 K at 72 km. Above 78 km the model 

becomes increasingly cooler than the climatology with the average difference reaching 8 

K at 85 km near day number 180. 

Between 51 and 61 km the model is on average up to 2 K cooler than the 

climatology. A closer look at Figure 17(b) shows that there are two regions that are 

significantly cooler. The frrst extends from February and late June and has a maximum 

of - 6 K. The second extends from early September to mid-December and has a 

maximum of - 4 K. The increase to the summer maxima is later in the model than in the 

ALO observations accounting for the first period. The second period of cooling can also 

be attributed to a temperature increase in the climatology that is not apparent in this 

altitude range in MSIS-00. 

The differences for the 31-day averages are given as a contour plot in Figure 

17(b), with the maximum differences between the two composite years being greater than 

15 K. There is a noticeable structure to the temperature differences with large negative 

and positive departures from the climatology. 

As previously mentioned, the model is on average warmer than the climatology, 

between 45 and 51 km by up to 3 to 5 K. The exception is a four month period from mid­

June to mid-October when the model is up to 2 K cooler than the climatology. The 

maximum temperatures in this region are 274 K for the model and 273 for the 
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Figure 17. ALO/MSIS-00 temperature differences. (a) Average annual 
temperature difference. (b) The MSIS-00 composite year temperatures have the 
ALO climatology subtracted from them. Contour lines are every 5 K. Blue 
indicates regions where MSIS is cooler than ALO and red warmer. 

climatology during the May/June period. However, the model reaches its maxima I 0 

days prior to the climatology, day numbers 137 and 147, respectively. This offset 

extends the region where the model is warmer than the climatology. The cooling in the 

stratopause temperature after the summer solstice is faster in the model than what is 

observed from the climatology. The temperatures reach 260 K, for example, in late 

September in the model but not until mid-October in the climatology. The faster onset 

and the offset of the maxima extend the region where the model is cooler than the 

climatology into mid-October. The coolest temperatures in this range differ by 7 K, and 
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are 249 K for the climatology and 256 K for the model. These minima occur in late 

January for the climatology and early January for the model. The 7 K difference, in 

addition to the temporal offset, creates the - 5 K region in January/February from 45 to 50 

km. 

From 61 to 78 km there is a single region from mid-January to late March where 

the model is significantly cooler than the climatology. For the rest of the year the model 

is typically warmer than the climatology with the largest difference, greater than I 0 K, 

occurring in early May. Above 78 km, there are two regions where the model is cooler 

than the climatology. The winter period extends from early November to mid-March and 

a summer period from May to October. The greatest differences are found in late 

December, mid-January, and July with temperatures of the climatology warmer by more 

than I 5 K than the model . During the summer solstice the mesopause descends into the 

range of the ALO lidar. The maximum temperature difference during thi s period at 84 

krn is - 17 K, significantly greater than the I I K difference in the minimum mesopause 

temperatures. The equinox periods show relatively good agreement in comparison. 

4.2 Annual, Semi-Annual, and Higher Order Cycles 

The ALO climatology and the MSIS model show structures that are not simply 

centered on 21 December and 21 June, or any other dates 6 months apart . The 

asymmetries and secondary maxima suggest that other harmonics in addition to the 

annual term are present. To look for these differences, the average, annual, and semi­

annual components from the two composite years were separated by fitting the results to 

a function of the form: 
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Eq4.4.1 

where To is the average and T. and <1>. are the amplitude and phase of the annual and the 

higher order terms (6-month, 4-month, 3-month, and 2.4-month). A Levenberg­

Marquardt least-squares fit was used to find these terms. The standard deviation of the 

mean, Figure 15(b), was used to appropriately weight the fit to the ALO climatology. 

For every day of the MSIS-{)0 composite year, temperatures and equal weightings were 

used. The averages, To, found from the fitting routine were equivalent to the annual 

averages of the composite years shown in Figures 14(a) and 16(a). The annual and semi­

annual oscillations are shown in Figure 18(a-d). In addition to the annual and semi­

annual variation, the 4-month, 3-month, and 2.4-month periods were included and are 

shown in Figure 19(a-1). 

There is relatively good agreement in the amplitude and phase of the annual terms 

for ALO and MSIS-QO, Figure 18 (a and b). At the lowest altitude, 45 km, the 

amplitudes of the annual terms are 9 K and 10 K for MSIS and ALO, respectively. There 

is a minimum in the amplitude of the annual cycle for both ALO and MSIS-{)0 at 64 and 

63 km. For MSIS--()0, the amplitude approaches zero whereas for ALO it is - 2 K. The 

amplitude from MSIS--()0 remains smaller than for the ALO climatology below 78 km. 

Between 80 and 85 krn both the model and the climatology have maximum amplitudes of 

- 17 K. The phasing of the annual terms is such that it occurs during the summer in the 

lower mesosphere and the winter in the upper mesosphere as expected. At 45 krn there is 

a difference in the phase between MSJS-{)0 and ALO with the model leading by 24 days, 

day numbers 144 and 168, respectively. By 60 krn, the reverse is true with the 
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Figure 18. The annual and semi-annual amplitudes and phases ror the ALO and 
MSIS composite years. The red curves correspond to results rrom ALO and the 
blue curves to MSIS. The annual amplitude is shown in (a) with the phase given 
in (b). Likewise ror the semi-annual oscillation the amplitude is shown in (c) and 
the phase in (d). The associated error bars are the uncertainties rrom the fitting 
routine. 

climatology leading the model by 38 days, day numbers 149 and 187, respectively. The 

phase inversion in the model is abrupt, occurring between 63 and 64 km, shifting to later 

in the year at higher altitudes, with a constant phase above 65 km at about 3 January. 

Unlike MSIS-00, ALO has a less abrupt phase transition that moves to earlier in the year 



at higher altitudes with the largest change occurring between 60 and 65 km followed 

by a gradual change from mid-February at 65 km to mid-December at 85 km. 
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The amplitude of the semi-annual oscillation is smaller than that of the annual, as 

seen in Figure 18(c). The exception is near the altitude of the phase inversion in the 

annual cycle where the ALO semi-annual amplitude has a maximum. MSIS-00 has no 

corresponding relative maximum at this altitude. However, it does have a large 

maximum at 85 km that is not in the ALO observations. The phase shows good 

agreement at 45 km in both MSIS-00 and ALO, day numbers 130 and 132, respectively. 

At higher altitudes, ALO leads MSIS-00. By 55 km, the MSIS-00 phase has 

significantly increased to day number 165 while the ALO phase has decreased to day 

number 127. The increasing amplitude of the semi-annual amplitude and the large phase 

difference, 75 degrees, accounts for much of the temperature differences seen between 

MSlS-00 and the temperature climatology between 55 and 60 krn, as shown in Figure 17 

(a and b). The phase differences decrease near 63 km where the annual term has a phase 

inversion, and then increases at higher altitudes. The largest phase differences are found 

in the upper mesosphere near 75 km where ALO leads the model by as much as 64 days 

or 128 degrees. 

The 31-day average of the ALO database does not average out the higher order 

harmonics in the ALO climatology, Figure 19. The largest of these is the 4 month 

oscillation that has a maximum of2.7 K near 67 km slightly above the minimum in the 

annual cycle. The 3-month and 2.4-month oscillation in comparison have amplitude 

maxima at - 63 km where the annual cycle has its minimum. The amplitudes are also 

similar with values of 1.4 and 1.2 K respectively. Above 80 krn, data sampling may be 
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contributing to the increased amplitudes of the shorter periods. The fits to higher order 

harmonics of the annual oscillation have amplitudes that are less than I K for MSIS-00. 

This occurs because these harmonics were never included in the model parameterization. 

The 3-month and 2.4-month oscillations in particular have amplitudes that are typically 

less than 0.2 K in the mesosphere. 

5. Discussion and Conclusions 

Temperature profile from the recently updated MS!S-DO empirical global model 

were compared to the mid-latitude, mesospheric temperature climatology from the ALO 

Rayleigh-scatter lidar. This is a significant " reality" check for the model because the 

ALO temperatures are completely independent of those used in the ':!Od_!:l. Moreover, for 

this part of the atmosphere, only limited data were available for inclusion in the model. 

The climatology is presented as a composite year made up of nighttime observations 

spanning a period of II years, as shown in Figure 14(b). Each data point in a profile 

represents a 3-km average in altitude. Each day (night) in thi s year contains an average 

of all the temperatures within a 3 1-day window centered on t!tat day. To make this 

comparison, model temperatures were generated for each hour of each night included in 

the lidar climatology and were then averaged together in the same way as in the 

climatology. In addition to these two composite years, the 31-day temperature profiles 

were averaged together to produce two annual profiles. 

The annual profiles, while similar, show systematic differences as large as 5 K. 

Statisticall y, these are significant. In the climatology, the error or standard deviation of 

the mean for the temperatures in a 31-day window is less than I K below 80 km. For a 
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year, it is less than 0.3 K. The temperature differences between the two composite 

years are more pronounced and are very structured with large regions where MSis-DO is 

warmer or colder than the ALO climatology. 

The largest temperature differences are found in the upper mesosphere, especially 

near the summer mesopause~el becomes increasingly cooler than the 

climatology above 78 km. While the mesopause is usually above the range of the ALO 
~ 
lidar, during the period near summer solstice, it becomes visible at - 84 km. In contrast, 

the minimum mesopause altitude in the model is - 87 km, an altitude more appropriate for 

polar latitudes. This model mesopause is I I K cooler than the climatological mesopause 

minimum. However, the climatological minimum occurs - 20 days prior to the summer 

solstice. As such, during the solstice, the model is - 17 K cooler than the climatology by 

84 km. 

Lfthe derivation of the lidar temperatures were initialized using MSIS--{)0 

temperatures instead of the independent CSU sodium lidar temperatures, these 

differences would be greatly reduced. Clearly, that would be the case at the highest lidar 

altitudes. 85 km is close enough to the initialization altitude on many nights in the 31 -

day averages that the difference between the lidar and model temperatures remains very 

small . However, by 75 km that situation has changed. The two sets of initial values 

produce differences in the lidar profile that are less than I K. At this point, the lidar 

temperatures are independent of the initial values used in their derivation. 

Thus, much of this large difference at 85 km can be traced back to the CSU 

climatology used to initialize the ALO temperature derivation. Nonetheless, these 

inferred warmer temperatures near the mid-latitude, summer mesopause are consistent 
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with other observations which describe the MSIS temperatures as cold [Leblanc et al., 

1998; Leblanc et al. , 1999; Liu and Meriwether, 2004]. The cold model temperatures 

appeared in the CIRA-86 ~m model and were carried forward into the MSIS- 90 and 

MSIS-00 models. The mid-latitude mesopause temperatures in the model are also highly 

dependent on early resonance lidar temperatures [Liibken and von Zahn, 1991], although 

those observations were made at polar latitudes [Hedin, 1996]. 

Below 75 km a big qualitative difference is the stratopause. The maximum 

stratopause temperatures from the climatology and the model differ by I K, 274 and 273 

K, respectively. The largest differences were found during the winter periods when the 

minimum stratopause temperatures differ by 7 K, at 249 K and 256 K, respectively. 

These differences are large enough to cause the model to be on average warmer than the 

climatology near the stratopause. In addition to the overall temperature differences there 

are also differences in the stratopause altitudes. During the composite year, the 

stratopause altitudes from the model are clearly between 45 and 48 km. However, in the 

climatology the stratopause is above 45 km for only part of the year. 

Both the ALO climatology and the MS!S-00 model show strong annual cycles. 

Below 60 km, the phase of the annual cycle follows that of the solar flux. Above 65 km, 

the annual cycle is out of phase with the sola~flux . The amplitude of the annual cycle in 

the model in both these regions, the upper mesosphere and near the stratopause, is smaller -in the model than in the ALO climatology. In going to higher altitudes, above the 63 -km 

transition region, the phase of the annual cycle shifts towards the frrst of the year in the 

ALO climatology. In contrast, in the model, it shifts towards the end of the year. 

Moreover, the model transition is much more abrupt. These differences in the phase 
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transitions appear to be related to the presence of mesospheric inversion layers {MILs) 

that are characteristic of winter observations at ALO [e.g., Meriwether et a/., I 998; 

Nelson and Wickwar, 2007] and are routinely observed at mid-latitudes [Hauchecome et 

a/., 1987; Leblanc eta/., 1995; Whiteway et al., 1995; Meriwether and Gerrard, 2004]. 

When MSIS was extended from the thermosphere into the lower atmosphere, the 

geographical and temporal distributions of the mesospheric inversion layers were not 

well known and as a result were excluded from MSIS- 90 [Hedin, 1996] and subsequently 

MSIS-00. While changes to the parameterization of the MSIS database have created a 

slight signature ofMll..s in MSIS-00 [Picone eta/., 2002], to be properly included, new 

data with better altitude resolution needs to be included in future model revision. 

The observed semi-annual cycle is almost everywhere stronger than in the model 

below 80 km. In particular the observed semi-annual oscillation has a maximum at 63 

km where the annual cycle has its minimum. This behavior is also present in the French 

mid-latitude lidar climatology [Leblanc eta/., 1998]. However, it is not seen in MSIS-

00. Above 80 km, the model' s semi-annual amplitude increases dramatically to values 

well above the observations. This difference may arise from the over influence of high­

latitude data on mid-latitude model values discussed above. It might also arise from the 

new interpolation across the region between the rocket and radar observations. 

At certain altitudes the higher frequency (shorter period) oscillations, 4 month and 

shorter, make a small but statistically significant contribution to the temperature structure 

of the ALO climatology. However, they make almost no contribution to MSIS-00 

temperatures because they were not included in the model ' s parameterization [Hedin, 

1991]. Finding these oscillations to be significant supports a similar result found at 



higher latitudes from a much smaller database [Gardner eta/., 2005]. Now the 

question becomes finding the origin of these short period oscillations. 

81 

To some extent the magnitude of these temperature differences are not terribly 

large, but they are large enough to impact inferences about the physical and chemical 

processes in this region. Discrepancies in upper mesospheric temperatures could affect, 

for instance, what could be learned about the meridional summer-to-winter flow, 

chemical heating, and radiative cooling. Differences in stratopause height could affect 

inferences about heating and cooling rates. The greater ALO height suggests larger 

stratospheric heating or smaller mesospheric cooling rates. That this difference persists 

for the whole year might suggest greater solar input. The inferred role of MILs is more 

significant in the ALO data than in the empirical model. This greater role shows up in 

the different winter temperatures, the different phase progression of the annual 

component in the high-to-low-altitude transition, and the differences in the semi-annual 

amplitudes and phases. This, in tum, puts more emphasis on trying to understand the life 

cycle of MILs. 

This type of comparison or validation of an empirical model by independent 

observations is very important. The MSIS-00 rendering of the mid-latitude mesosph~ 

could be significantly improved in the next revision by including more data from this 

region. For most of the mesosphere, data could be provided by Rayleigh-scatter lidars. 

Above 80 krn, some could be provided by resonance scatter lidars. It may take data from 

a much more sensitive Rayleigh-scatter lidar and a combination of Rayleigh and 

resonance lidars, both of which are being implemented at ALO, to provide continuous 

altitude coverage through the transition region represented by the mesopause. In 



addition, new measurements are necessary to keep the model in step with the possible 

effects of climate change_ 
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Abstract 

CHAPTERS 

OBSRVA TIONS OF A NOCTILUCENT CLOUD ABOVE 

LOGAN UTAH (41.7" N, 1 I t.s• W) 1N 199sl 
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A Rayleigh-scatter lidar has been operated at the Atmospheric Lidar Observatory 

(ALO) on the Utah State University (USU) campus ( 41 . 7• N, 111 .8" W) since August 

1993. During the morning of22 June 1995, lidar returns from a noctilucent cloud (NLC) 

were observed for approximately one hour, well away from the twilight periods when 

NLCs are visible. This detection of an NLC at this latitude shows that the first reported 

sighting, in 1999 [ Wickwar eta/. , 2002], was not a unique occurrence. This 1995 

observation differs from the 1999 one in that temperatures could be deduced. Near the 

83-km NLC altitude the temperatures were found to be up to - 23 K cooler than the II-

year June climatology for ALO. This analysis shows that these cool temperatures arose, 

not because the whole profile was cooler, but because of a major temperature oscillation 

or wave with a 22 km vertical wavelength and a ....0.9 kmlhr downward phase speed. This 

large-amplitude wave has many of the characteristics of the diurnal tide. However, the 

amplitude would have to be enhanced considerably. These lidar observations were 

.J>-r supplemented by OH rotational temperature observations from approximately 87 km. 
,,r .f' 

) '!'\ These NLC observations equatorward of 50° have been suggested t~ be significant 
~ --
\_~ However, if that were the case, the mechanism is more 

complicated than a simple overall cooling or an increase in water vapor. Accordingly, we 

propose enhanced generation of gravity waves that would interact with the diurnal tide to 

3 Coauthored by Joshua Herron, Vincent B. Wickwar, Pat Espy, and Jonathan Meriwether. 
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produce a large-amplitude wave, the cold phase of which would give rise to low 

enough temperatures to produce the NLC. The gravity wave source might be orographic 

in the Mountain West or convective far to the east or south. 

1. Introduction 

Noctilucent clouds (NLCs) typically occur during the summer months between 80 

and 86 km in the polar regions or, more specifically, at latitudes greater than 50° 

[Gadsden and Schroder, 1989; Thomas and Olivero, 1989; Chu eta/., 2003]. They most 

likely consist of ice particles [von Cossart eta/., 1999; Hervig et al., 2001). NLC 

observations are important as they may serve as tracers of global change [Thomas, 2003]. 

Lidar observations ofNLCs provide information about their altitude, thickness, and 

magnitude, and about the variability of these parameters. The first reported lidar 

observation of an NLC below 50° was by the ALO lidar group in 1999 [ Wickwar eta/., 

2002]. Because of the possibility that other NLCs might have been observed, but not 

previously identified; the entire ALO database was searched. A second event was found 

on 22 June 1995, four years earlier than the first reported event. 

The lidar and a Michelson Interferometer (Fourier transform spectrometer) are 

described in Section 2 along with their basic data reduction. The 1995 lidar observations, 

the special data analysis procedures, and their results are given in Section 3. The NLC 

results are discussed in Section 4, and the conclusions from the observations and 

discussion are presented in Section 5. 

1. Instrument Descriptions and Data Reduction 

The Rayleigh-scatter lidar at ALO is located in Logan, UT ( 41 .7° N, 111.8° W) on 
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the Utah State University (USU) campus, 1.46 km above sea level. It has been 

operated as much as possible since August I 993, giving rise to an extensive database of 

nighttime mesospheric profiles of relative densities and absolute temperatures. 

The Iidar is a coaxial system that had a power-aperture product of3.3 Wm2 in 

1995. The system is composed of a Spectra Physics Nd: Y AG laser operating at 30 Hz 

generating 20-22 watts at 532 nm and having a 44-cm diameter Newtonian telescope. 

The signals from below - I 8 km are blocked by a mechanical chopper and the gain is 

reduced by almost I 000 by an electronic gate for altitudes below 38 km, leading to good 

data above 41 km. A narrow-band interference filter (I nm) is used to remove most of 

the background light from stars, moon, and scattered city lights. The single, gated 

detector is a green-sensitive, bialkali photomultiplier tube (Electron Tubes 99548) in a 

Peltier-cooled housing. A more extensive description of this system is given in Wickwar 

eta/. (2001] and Herron (2004]. 

The observations were made in the zenith with an altitude resolution of37.5 m 

(250-ns sampling interval) and a temporal resolution of2 minutes (3600 laser pulses). In 

the usual data reduction, the data are averaged over 3 km and I hour prior to determining 

relative densities and temperatures. When the signal from the background light and 

thermionic emission, determined near 130-180 km, is subtracted from the observed 

signal and the difference is multiplied by the square of the range, the result is usually 

proportional to the molecular number density. However, the exception, discussed in the 

next section, occurs when an NLC is present and added signal is generated by Mie 

scattering from ice crystals. Temperatures are determined from the relative number 

densities by using hydrostatic equilibrium and the ideal gas law. The details, as applied 
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to this lidar, are reviewed in Herron [2004) and Chapter 3. However, this data 

reduction procedure had to be modified to find temperatures in the presence of the NLC. 

This special analysis is described in the next section. 

Temperature data were also available for June 1995 and June 1996 from a 

Michelson Interferometer that was located approximately I 00 m from the lidar and also 

observing in the zenith. Temperatures were derived at roughly 10-minute intervals from 

the rotational structure of the OH(3, 1) Meine! band [&pyand Stegman, 2002]. They 

apply to approximately 87 km, the altitude of the centroid of the OH airglow emission 

layer [von Zahn el al., 1987; Baker and Stair, 1988; She and Lowe, 1998], although 

WINDll observations frequently show the layer peak anywhere between 85 and 90 krn 

[Lill and Shepherd, 2006}. The precision of the individual temperature determinations is, 

on average, 3%, and a minimum often measurements are used to determine a nightly 

average. Unfortunately, because of uncertainties in the OH transition probabilities [e.g., 

BllrtlS eta/. , 2003], the OH rotational temperatures cannot be compared directly to the 

kinetic temperatures from the lidar. However, temporal variations in the OH 

temperatures are reliable. 

3. Observations and Data Analysis 

During the early morning hours of22 June 1995 the lidar was operated from 6 :30 

UT (00:30 Mountain Daylight Time, MDT) until 10:56 UT (04:56 MDT). An 

enhancement in the photocount profile above what was expected from Rayleigh scatter 

alone was observed in 2-minute profiles between 8:03 and 8:54 UT (from the beginning 

of the first 2-rninute observation to the end of the last 2-minute observation) and more 
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weakly between 9:39 and 9:48 UT. It is presumed that these enhancements arose from 

Mie scatter from an NLC. These time periods with the Mie scatter correspond to solar 

depression angles between 17.3° and 24.3° for which the shadow heights are between 

- 300 and -600 km, well above the observed Mie scatter enhancements. Accordingly, the 

NLC, at altitudes below 85 km, was in the Earth's shadow and could not have been 

observed visually from the ground. Nonetheless, we still take the liberty of calling it an 

"NLC." 

The lidar raw photocount profiles typically include contributions from 

background light and photomultiplier-tube dark count as well as from Rayleigh 

backscatter, which is proportional to atmospheric number density. When an NLC is 

present, there is an additional contribution from Mie scatter from the large particles that 

make up the NLC, which is seen as an enhancement in the photocount profile. When the 

background light and dark counts are subtracted from this profile and the values are 

multiplied by range squared, this becomes the relative density profile, which is shown in 

Figure 20a. The signal from the peak of the NLC layer is equivalent to the Rayleigh-

scatter density at an altitude of - 70 km. 

The backscatter ratio R(z) is commonly used as a measure of the NLC strength. It 

is the ratio of the measured signal S(z), as contributed to Figure 20(a), to the Rayleigh-

backscattered signal SR(z): 

5.3.1 

where Sm(z) is the Mie-backscattered signal. To reduce the variability, the photocount 

profiles were smoothed by making running averages in both altitude and time. To 
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Figure 20. Tbe NLC enhancement on 22 June 1995 at ALO seen in tbe profiles of 
relative density (a) and tbe backscatter ratio (b). Tbe data were averaged over 12 
minutes, centered on 8:13 UT, and over 150m. However, data points are plotted 
every 37.5 m. Tbe uncertainties are based on tbe measurements, assuming 
Poisson statistics. 

minimize distorting the NLC parameters, the averaging was carried out over only 4 points 

in altitude (150m) and 6 points in time (12 minutes). However, the profile for the 

Rayleigh-scattered signal SR used to calculate the backscatter ratio R in Equation I was 

found by averaging all the periods without evidence of the NLC during the night of 22 

June. To further minimize the possibility of contamination by Mie scatter, a 3ro order 
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polynomial was fitted to the average photocount profile, SR, at 37.5-m intervals from 

79 to 82 km and from 85 to 88 km, excluding the region of the NLC. The polynomial 

was then used to replace the observations between 82 and 85 km. A smoothing function 

over 41 points, 1.5 km, was then applied to minimize the fluctuations in this Rayleigh 

profile. 

These 12-minute profiles of the backscatter ratio were derived every 2 minutes. 

From them it was determined that the maximum backscatter ratio for the NLC was 9.6 

and it was centered on 8:13 UT. The corresponding profile is shown in Figure 20(b). 

These profiles also were used to create a contour plot of the backscatter ratios, Figure 21 . 

This shows the main body of the NLC between 7:54 and 8:58 UT (from the beginning of 

the first 12-minute observation to the end of the last 12-minute observation), and an 

additional small enhancement in the backscatter ratio between 9:3 1 and 9:54 UT at - 83. 1 

km. During the period that the main body of the NLC had a BSR of2 or more, the NLC 

descended very slowly from 84.4 to 84.3 km, fairly rapidly to 83.4 km, and then slowly 

to 83.2 km. Between 8:0 I and 8:16 UT, a least-squares fit gives a rate of -o.08 m/s, 

between 8: 18 and 8:32 UTa rate of - 3.3 m/s, and between 8:34 and 8:51 UT, a rate of 

- 0.9 mls. While several small regions with a BSR of2 exist and are shown in Figure 21 , 

the largest of them is at this lowest altitude, 83 .2 km. Because of its greater extent in 

altitude and time, this was identified as a small NLC enhancement. The other regions are 

considered to be noise fluctuations. 

At the height of the NLC, the diameter of the laser beam is -40 m, which means 

that only a very small portion of the cloud is sampled at any instant. Furthermore, the 

beam is fixed in the zenith direction preventing any knowledge of the horizontal extent or 
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Figure 21. Backscatter ratios for the 22 June 1995 NLC. The inputs for the 
contour plot were created every 2 minutes using a 2-D running average with a 
width of 12 minutes and a height of 150 rn applied to the raw data, which were 
measured every 2 minutes and every 37.5 m. A backscatter ratio of I indicates that 
there is no Mie-scatter enhancement. The time is in hours. 

structure of the cloud. Accordingly, it is not possible to distinguish between a layer 

descending in the beam, a slanted layer being transported horizontally across the beam, or 

a combination of the two. Accordingly, the deduced descent rates are really apparent 

descent rates . 

To compare these NLC observations to those made in 1999 [ Wickwar el a/. , 

2002], the results from the 1999 NLC were re-analyzed using the same temporal and 

spatial averaging as for the 1995 NLC, Figure 22. The 1995 NLC maximum backscatter 

ratio occurs at a higher altitude, 84.4 versus 82.1 km, and has a greater maximum 

backscatter ratio. It was 9.6, 90% greater than the maximum of 5.1 reached by the 1999 
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Figure 22. Backscatter ratios for the 1999 NLC I Wickwar et al, 20021 analyzed 
and presented in the same way as for the 1995 N LC in Figure 21. It is at a lower 
altitude and the maximum backscatter ratio is smaller. 
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LC. This does not mean that the 1995 NLC backscattered 90% more light. Part of this 

greater backscatter ratio occurs because the Rayleigh contribution to the backscatter ratio 

(the denominator in Equation 5.3. 1) is smaller at the higher altitude. By using the 

observed relative density profile, the backscatter ratio of9.6 at 84.4 km translates to 6. 7 

at 82. I km, only 31% greater than that of the 1999 observation, assuming the same 

neutral densities at 82. 1 km on both occasions. Thus, the biggest difference between the 

two NLCs is that the one in 1995 was 2.3 km higher. 

In addition to these results concerning the NLC altitude, another significant 

difference occurred between the 1995 and 1999 observations. In 1995, the background 

signal was well behaved, which is extremely important for deri ving temperatures, 
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especially at the highest altitudes (Chapter 3). And, the laser had more power, which is 

essential for deriving temperatures above the NLC altitude. This possibility of obtaining 

temperatures in 1995 provides an important additional dimension to the NLC 

observations. 

To determine density and temperature profiles, the individual two-minute profiles 

are averaged together during three periods. The first period (06:30--{)8:00 UT) extends 

from the start of observations for the night to just prior to the start of the NLC 

observations; the second (08:00--{)9:00 UT) encompasses the period when the NLC was 

observed and extends a little on either end; and the third (09:00-10:56 UT) spans the time 

from just after the NLC to shortly before dawn. 

The first period has no discemable NLC enhancement and was used to examine 

fitting routines for interpolating across the NLC. Several low-order polynomials were 

fitted over the same region used in calculating the backscatter ratio, but with independent 

points every 37.5 rn. A 3"1 order polynomial fitted to the density profiles, excluding the 

82- to 85-km region of the NLC, produced a reasonable fit and higher orders did not 

significantly improve the z 2 values. Similarly derived fits were used to interpolate across 

the NLC region for all three time periods to remove any effects from Mie scatter. 

These curves were then smoothed in altitude with a running average over 81 

points (3 km). The first two relative density profiles are shown in Figures 23(a) and (b). 

The wide black curves are the observed relative density. The narrow red curves are the 

combination of the observations and the fits. In Part (a) the red and black curves are 
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Figure 23. Relative density profiles before (4a) and during the NLC (4b). The 
thick black curves are the measured number density profiles; the thin red curves 
are the result of a 3nl order polynomial fitted to data in 3-km regions immediately 
above and below the NLC and then applied across the 3-km region in between. A 
3-km running average was applied to both the measured number density profile 
and the profile with the polynomial fit. See the text for details about the fitting 
procedure. 

almost indistinguishable, whereas in Part (b) the red curve smoothly bridges the region 

under the black NLC curve. (Because of the 3-km smoothing, the altitude gap bridged by 

the fit appears to be greater than the actual 3-km gap.) The fitted profiles are then used to 

calculate the corresponding temperature profiles, which are shown in Figure 24. 

To our knowledge, this is the first time Rayleigh-scatter temperatures have been 

derived in the presence of an NLC. However, steps in this direction have been taken by 
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Figure 24. Temperature profiles before, during, and after the NLC on 22 June 
1995. Period 1 is for 6:30-8:00 UT, period 2 for 8:00-9:00 UT, and period 3 for 
9:00-10:56. The fourth profile is the average June temperature from the ALO 
climatology (Chapter 3). The corresponding density profiles for periods I and 2, 
from which the temperatures were derived, are shown in Figure 22. 

others. Collins eta/. [2003] interpolated across the NLC layer to calculate the 

backscatter ratio, but only calculated temperatures below the NLC layer. Liibken el at. 

[ 1996] interpolated lidar measurements across the NLC region to find the molecular 

signal for calculating the backscatter ratio when additional density measurements were 

not avai lable from falling spheres. Stebel eta/. [2004] interpolated across a possible 

wintertime aerosol layer at lower altitudes to calculate Rayleigh temperatures. 

94 
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To derive absolute temperatures !Tom the relative density profiles, a "best 

guess" temperature is needed at the highest altitude. The highest a.ltitude, in this analysis, 

is determined to be the point where the signal has dropped to 20 times its one standard­

deviation uncertainty. The "best guess" value was taken !Tom the temperature 

climatology !Tom the Colorado State University (CSU) sodium lidar [Sheet a/. , 2000]. 

While this is a climatological value, it is still the best source available for a particular 

night. The temperature profiles for the three periods are shown in Figure 24 along with 

the I 1-year, June climatological average for ALO (Chapter 3). The temperature 

uncertainties are !Tom a full error propagation starting !Tom the observed photocounts 

[Gardner, 1989; Herron, 2004], assuming Poisson statistics. The total variability, 

measurement plus geophysical, for an individual night in the 11-year average is not 

shown, but is fount to be, for example, 12 Kat 84 km, 8.4 Kat 71.5 km, and 3.7 Kat 60 

km. It is derived using the I 03 nighttime June temperatures and their mean to calculate 

the standard deviation (Chapter 3). The total variability for the mean is 10% of those 

values. 

The minimum temperatures for the three 22 June profiles are found near 84 km 

and are considerably colder than for the June climatological average. The differences 

between these temperature profiles and the climatological averages are presented in 

Figure 25. The first and third profiles reached minimum values between 150 and 160 K 

in this region and became 17- 23 K cooler than the average. The second period was 

slightly warmer. In contrast, centered on 73 km, all three temperature profiles became 

significantly warmer by - 17 K than the climatological average. The negative and 

positive departures !Tom the June average clearly have the appearance of a large vertical 



96 
90 

85 

80 
~ ""'=;;(__ 

I ~ ~ 
"111-='--

~ 1'9_ . 

75 

'E 70 =.. 
Q) 
-o 65 :::J -., 
<{ 60 

55 

50 

45 

~ jt 
J;4 r ... 

~ ~ ~ 
ff 

..!' 

I~ __. ~ 
-.-Period 1 ~ ~ f.- ---A-- Period 2 j ~ --.- Period 3 

~ ~ 
-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 

Temperature Difference [K] 

Figure 25. Temperature differences between the observed values on 22 June 
1995 and the climatological June average for ALO. The temperature profiles are 
from Figure 5. 

temperature oscillation or wave. 

The properties of this wave were examined directly by overlaying profiles and by 

both autocorrelation and cross correlation of the profiles. The altitudes of the 

temperature minima occur between 85 and 83 km and of the maxima between 74 and 72 

km. The best value for the vertical wavelength is - 22 km. The deduced phase velocity is 

highly variable. The average value for the three profiles varies from - 0.6 to - 0.8 kmlhr 

depending on how it is derived. Overlaying small portions of one temperature profile 
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over another gives the best results. The minimum near 84 km has a relatively constant 

phase velocity of --{).6 kmlhr and the maximum near 73 km has phase velocities that vary 

from - 1.8 krn/hr between periods I and 2 to - 0.3 krn/hr between periods 2 and 3, with a 

value of--{). 9 km/hr between periods I and 3, which encompasses the NLC. The 

uncertainties are less than 0.2 krn/hr. Part of these changes in the apparent phase velocity 

probably occurs because the shape of the maximum is changing with time. It is 

becoming thicker. 

To provide context for the NLC observations, additional temperature 

measurements would be desirable. Unfortunately, very few good lidar observations ex.ist 

in June 1995 and 1996. In 1995, the observations preceding the 2200 were plagued by 

cloud cover. On the following two nights the lidar was operated for a minimum of six 

hours providing reasonable temperature profiles. The all-night temperature profile from 

the 23'd is similar to the three profiles from the 2200 with a wave and a temperature 

minimum between !50 and 160 K. On the 24th, the temperature minimum is at 81 km, 

however it has no discemable positive departure from the June average near 73 km. The 

lidar was not operated in June 1996. 

However, as discussed in the previous section, a Michelson interferometer was 

operated at USU during June 1995 and 1996. Temperatures from these observations, 

nominally from 87 km [Baker and Stair, 1988], are shown in Figure 26. It is apparent 

that the all-night temperatures from 19 to 24 June 1995 are particularly cool and that the 

temperature for 22 June 1995 is significantly cooler than for all the other nights. In 

addition, the June I 995 nights are systematically cooler than the June I 996 nights by an 

average of I6 K. While this is a large amount, it is plausible when compared to the 
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Figure 26. Nighttime OH rotational temperatures at -87 km from the Michelson 
Interferometer located at USU. The red curve denotes the values from 1995; the 
blue curve denotes those from 1996. The NLC night is identified. 

observed standard deviations for June in the ALO climatology (Chapter 3). That standard 

deviation contains the combined effects of day-to-day variability, interannual variability, 

and long-term trends. At 84 km, the highest altitude for which it was tabulated, the 

standard deviation is 12 K. That value is an underestimate because 84 km is close to the 

altitudes for which the initial values were found. A better estimate of 

the standard deviation can be found by extrapolating the values found at lower altitudes, 

far removed from the initial values. A linear extrapolation of the standard deviations 



99 

from 66 to 75 km gives a value of 14 K at 84 km and 16 K at 87 km. That the 13 

nights in 1996 are all warmer than the corresponding nights in 1995 suggests that this 

difference arises from an interannual variation. Whether considering the 1995 data alone 

or in combination with the 1996 data, it is apparent that 22 June 1995 is an unusually cold 

night at 87 km. 

Temperatures from the Michelson Interferometer are also available at sub-hour 

intervals, as shown for 22 June 1995 in Figure 27. The temperatures dropped quickly 

after 05:00 UT to a minimum at 06: II UT and then returned to a level less than the initial 

one. Compared to this later level, the minimum temperature was - 30 Kless. This 

variation suggests a wave in time with high temperatures initially, followed by low 

temperatures, which would be consistent with the descent of the type wave seen in the 

lidar profiles. The amplitude of the cold portion of the wave is greater than deduced for 

the lidar data Ignoring holes in the data, the lowest temperatures were observed 1.07 

hours before the first lidar temperature profile with its lowest temperature at 84.5 km and 

I .84 hours before the appearance of the NLC in the lidar data at 84.4 km. 

This large oscillation in time in the OH temperatures is at a slightly higher altitude 

and prior to the lidar observations of the vertical temperature wave and of the NLC 

observations. If these are two manifestations of the same wave, then the combined 

temperature observations indicate that it descends at a rate of2.3 km/hr assuming the 

centroid of the OH emission is at 87 km or 1.4 km/hr if it is at 86 km. The time to the 

appearance of the NLC would indicate a descent rate of 1.4 kmlhr for the OH originating 

from 87 km or 0.9 kmlhr for it originating from 86 km. 
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4. Discussion 

4. 1. NLC Characteristics 

100 

The magnitudes ofboth the 1995 and 1999 NLCs detected at ALO at 41 . 7°N are 

weak compared to those observed at higher lat itudes where the backscatter ratio can be 

greater than 200 [e.g., Hansen el a/., 1989; Langer el a/., 1995; Thayer e/ a/., 1995; 

Fiedler e/ a/., 2003]. When adjusted for altitude, the 1995 NLC was about 30% stronger 

than the 1999 one. 
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A strong linear trend in NLC altitude versus latitude has been found for NLC 

events [von Zahn and Berger, 2003; Clru eta/., 2004]. The 1999 NLC shows a mean 

altitude of 82.1 km, which is in very good agreement with that linear trend. However, the 

mean altitude of the 1995 NLC observation was 83 .8 km, 1.71cm higher and significantly 

above the linear trend. Whether this indicates different origins for the two NLCs is more 

than can be determined from the available data . However, what is clear from the lidar 

temperatures is that the 1995 NLC is unusual in that it occurs at the minimum of a large­

amplitude vertical temperature wave. The main portion ofNLC occurred between 7:54 

and 8:58 UT. During that time it descended from 84.4 to 83 .2km, with its average height 

at 83.8 km. The minimum in the temperature profile integrated over this period is at 84.0 

km. 

This wave is the dominant feature in Figure 25 . It shows a persistent, large, 

temperature oscillation or wave with a maximum amplitude of23 K for the cold phase at 

84 1cm and a maximum amplitude of 17 K for the hot phase at 73 lcm. The lowest 

temperature from these three profiles is - 150 K. From the minima and maxima in this 

wave, the inferred vertical wavelength is 22 km. In addition to the lidar data, a time 

series ofOH temperatures from a Michelson Interferometer from - 87 km shows a large 

oscillation in time with a temperature minimum - 30 K below the subsequent 

temperatures at - 125 K. The temperature minimum occurs a little more than an hour 

prior to the beginning of the lidar observations and a little less than two hours prior to the 

NLC detection. Combining the Michelson and lidar observations, assuming the OH 

emission is centered at 87 km, leads to descent rates of - 2.3 and - 1.4 kmlhr for these two 

intervals. However, if the OH emission were centered at 86 km, well within the range of 
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uncertainty and variability, the descent rates become - 1.4 and -o.9 k:m/hr. The lidar 

results for these three integrations show a nearly constant descent rate of -o.6 k:m/hr for 

the temperature minima near 84 km between 06:30 and 10:56 UT (start and end times for 

the lidar data). ln contrast, the temperature maxima, from - II km lower, show a rate that 

decreases with time from - I . 7 k:m/hr between periods I and 2 to - 0.3 k:m/hr between 

periods 2 and 3. Between periods I and 3, it has the average value of - 0.9 kmlhr. While 

the descent rate deduced from the minima is much slower than the two inferred values 

from the OH observations, the rate from the earliest two lidar periods for the maxima is 

consistent with the OH observations. Furthermore, while the minima appear to have a 

constant descent rate, the maxima show a descent rate that is slowing with time, which is 

consistent with what is inferred from the OH observations. lfthe minima and maxima 

are descending at the same rate, the wavelength should be constant, whereas if they are 

descending at different rates, the wavelength should vary. However, the amount is less 

than the 1-km precision of the wavelength determinations. Combining these observations 

concerning the descent rates, it appears that the altitude and magnitude of the temperature 

minima may be influenced by being close to the initial temperature. Because the initial 

temperature is based on climatological values it is probably higher than it should be for 

this particular day. The impact of this is that the temperature minimum would be either 

at a lower altitude than it should be or would not extend over as large an altitude region 

as it otherwise would, and that the minimum would have a higher temperature than it 

should have. Two other implications are that the layer would not appear to move 

downward as quickly as it should and that as it did move downward the minimum 

temperature would decrease. The point of this discussion is that the descent speed of the 
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minimum may be closer to that of the maximum than what was actually measured. In 

that case, it would be very similar to the value of - 0.9 km/hr inferred by combining the 

OH and lidar measurements. This supports the idea that these two instruments are 

detecting different manifestations of the same wave. 

As for NLCs being associated with temperature minima of large vertical waves, 

this observation appears to be a first. Previously, large waves with amplitudes of 20 K, 

similar to this wave, have been reported at high latitudes at NLC altitudes by von Zahn 

and Meyer [ 1989], but not in conjunction with an NLC. 

Temperatures at high latitudes, derived fTom falling spheres released from 

rockets, have shown that NLCs typically occur when the temperature is 150 K or lower 

[Thomas, 1991; Liibken eta/., 1996; Liibken, 1999]. While, the June temperature 

climatology for ALO gives a much higher temperature, - 173 K, on average at the NLC 

altitude of84 km, the wave observations for 22 June 1995 show the temperature at 84 km 

reaching the immediate vicinity of 150 K. The Michelson Interferometer temperatures 

even reach the vicinity of 125 K at - 87 krn. 

Combining the two sets of temperature results and the NLC results, it appears that 

the wave caused the temperatures to drop low enough to start forming ice crystals at 87 

km or so. The growing particles probably descended initially at the same rate as the 

wave. However, shortly after they become large enough to backscatter detectable 

radiation, they became massive enough for sedimentation to occur at a faster rate. For 15 

minutes in the middle of the hour when the NLC was detected, it descended at an 

apparent rate of -3.3 km/hr. When the cloud reached 83.5 krn at 8:30 UT, the backscatter 

ratio started to decrease significantly and the descent slowed to -o.9 krnlhr. The peak 
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BSR was not seen below 83 .2 km. Presumably, the ice crystals were sublimating on 

the bottom side of the NLC. And, given this scenario, it is most likely that the small, 

detached NLC observed between 9:31 and 9:54 UT at 83.2 km was transported into the 

lidar field of view. 

4.2. Relationship Between the NLC and Climate Change 

The appearance ofNLCs at latitudes <so• N suggests a manifestation of global 

climate change [Thomas, 1996b, 1997, 2003]. These predictions follow from model 

calculations based on large increases in greenhouse gases and methane leading, 

respectively, to a cooling in the upper mesosphere and an increase in water vapor 

concentration that would increase the temperature at which water vapor freezes 

spontaneously. However, NLCs were observed at 41 .7°N at ALOin June 1995 and 

1999, much sooner than predicted for the large increases in these gases to have occurred. 

And indeed, it is a period when the ALO temperature climatology shown in Figure 8 does 

not show evidence of such significant cooling. Nor is there evidence of a strong increase 

in water vapor. Among the few observations of mesospheric water vapor, Chandra el a/. 

[ 1997] and Nedo/uha et a/. [2003] show an inverse correlation with the variation of 

Lyman a during the solar cycle. This would give a small maximum in water vapor 

concentration in the summer of 1995, but not in 1999. If increased water vapor were the 

explanation in 1995, a different explanation would be needed for 1999. While possible, 

this seems unlikely. Trend information for water vapor is not particularly clear, but 

appears to be considerably less than the solar cycle effect. As for episodic events, the 

closest Shuttle launch, which might have injected water vapor into the mesosphere, was 
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almost 4 months prior to this noctilucent cloud detection, 2 March 1995. Thus it is 

unlikely that either mesospheric cooling or increased water vapor could account for this 

NLC. 

It may be noteworthy that this second NLC found equatorward of 50° latitude was 

also found at ALO and not at one of the other Rayleigh-scatter or Na lidars operating at 

mid latitudes. This raises the question as to whether there could be a longitudinal effect 

associated with the Mountain West where ALO is located. Such an effect might arise 

from orographically generated gravity waves, non-migrating tides, or stationary planetary 

waves over this extremely mountainous region. This is consistent with a suggestion 

made to account for NLC formation at higher latitudes over the Rockies [Espy el a/., 

1995] . 

Furthermore, this second NLC observation at ALO confirms that NLCs are 

occurring at lower latitudes than previously. If their occurrence is related to global 

change, as opposed to better observations, then the generation of the wave associated 

with the NLC observed in 1995 would have to be a manifestation of that change. The 

generation of the wave would, needless-to-say, have to be from a more complicated 

mechanism than uniform mesospheric cooling. As suggested above, a mechanism might 

involve the interaction of winds with the topography of the Mountain West to generate 

gravity and mountain waves or to contribute to non-migrating tides or stationary 

planetary waves. If it has to do with gravity waves, they might interact with the diurnal 

tide, as discussed next, to enhance the tidal amplitude. In either case, more or stronger 

tropospheric winds would be needed. 
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Figure 28. Amplitude and phase of the diurnal tide compared to the NLC. 
The tidal results were derived from the CSU sodium lidar measurements [She 
eta/., 20021, Urbana sodium lidar measurements [States and Gardner, 2000[, 
and GSWM-00 model calculations [Hagan eJ aL, 1999; Hagan eJ aL, 2001[. 
Local solar midnight corresponds to 7:27 UT. 

4.3 Comparison of Large Amplitude Waves and Tides 

A potential seed for the observed wave might be an atmospheric tide. What is 

known about the diurnal and semidiurnal tides in this region can be compared to the 
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observed NLC and the large-amplitude wave. Figure 28 shows contours of the June 1995 

NLC (actuall y, all regio ns with a BSR ~ 2) superimposed on the summer temperature 

structure from the diurnal tide derived from the mid-latitude sodium lidars at CSU (4 I 0 N) 

and Urbana (40.2°N) [States and Gardner, 2000a; She et a/. , 2002) and the Global Scale 

Wave Model for 2000, GSWM-00, calculations for June at 42°N latitude [Hagan eta/., 

1999; Hagan eta/. , 2001). Figure 29 is similar to Figure 28, but it shows contours of the 
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Figure 29. Amplitude and phase of the semi-diurnal tides in relation to the NLC 
occurrence. The tidal results are derived from the CSU sodium lidar 
measurements [Sheet al., 2002(, Urbana sodium lidar measurements (States and 
Gardner, 2000(, and GSWM-00 model calculations (Hagan t!l a/., 1999; Hagan et 
aL , 2001(. The model values had to be multiplied by IO to use the same scale as 
the two sets of observations. Local solar midnight corresponds to 7:27 UT. 

June 1995 NLC superimposed on the temperature structure from the semi-diurnal tide 

derived from observations at CSU and Urbana and calculated for GSWM-00. (The 

GSWM ampl itudes have been multiplied by 10.) For the diurnal tide, the main body of 

the NLC is close in altitude and time to the temperature minima. For the semi-diurnal 

tide, the main body of the NLC is close to the zero ampl itude point fo r GSWM and 

probably for CSU, but it is close to the temperature maximum for Urbana. These 

comparisons show the NLC and the ALO temperature minimum to be much more 

consistent with the phase of the diurnal tide than with the semidiurnal tide. 
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Additional comparisons can be made with other tidal parameters. 

Concentrating on the diurnal tide, vertical wavelengths can be compared. The vertical 

wavelength of the observed wave at ALO is - 22 km. For this to be related to a diurnal 

tide, the phase velocity would be - 0.9 km!hr, which agrees well with the deduced phase 

velocity, showing great internal consistency. The diurnal component of the CSU 

temperatures [Sheet a/., 2002] gives a descent rate of - 0.8 km/hr, which corresponds to 

a vertical wavelength of - 20 km. For GSWM it is - 1.3 kmlhr, giving a vertical 

wavelength of - 32 km. For Urbana it is also - 1.3 km!hr above 81!-k:m, bur-beco111ing 

indeterminate below that. Thus the ALO observations are in very close agreement to the 

CSU diurnal tidal observations. They are about 70"/o of the values found for GSWM and 

for Urbana. 

Turning to the semi-diurnal tide, if the ALO descent rate of - 0.9 krn/hr is applied 

for 12 hours, it would give rise to a 12 km vertical wavelength instead of the observed 22 

km. Thus, by themselves the ALO observations are not consistent with a semi-diurnal 

tide. Neither are the other observations and model calculation. Both CSU and GSWM 

show descent rates of - 4 km!hr near 84 km, giving rise to a vertical wavelength of -48 

km. Urbana shows a much greater descent rate, which would give rise to an even longer 

vertical wavelength. These very rapid descent rates and long vertical wavelengths are 

inconsistent with the observations. Thus if one of these two tides is the seed for the NLC 

wave, then the diurnal tide is a much better candidate. 

While the phase, phase velocity, and vertical wavelength of the diurnal tide are 

similar to the characteristics of the observed NLC wave, the amplitude of the diurnal tide 

is far smaller than the amplitude of the wave. The average amplitude of the two observed 
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and one modeled diurnal tidal results is -4 Kat the time of the wave, which has an 

observed maximum amplitude of 17 K at 73 km growing to 23 K at the minimum at 84 

km. However, if the tidal amplitude could be enhanced or amplified, this difference 

could be accounted for. Several studies have examined the interaction of breaking 

gravity waves with the mean flow or the diurnal tidal winds. Walterscheid (1981] 

suggests a cooling high in the mesosphere. More recent works [Liu and Hagan, 1998; 

Liu, 2000; Liu eta/., 2000] have specifically looked at the interaction with tides. While 

their purpose was to try to explain the temperature enhancements in mesospheric 

inversion layers, their mechanism may also be very applicable in this situation. Like 

Walterscheid (198 1], they produced a cooling at higher altitudes. However, in addition, 

they produced a warming at lower altitudes. This might account for an enhanced diurnal 

tide or, in this case, the large-amplitude wave. 

Although speculative, this second NLC observation at ALO is consistent with the 

idea of increased gravity-wave generation in the troposphere in the Mountain West, and 

leads to a large enhancement of the diurnal tide in the upper mesosphere. The negative or 

cold portion of this enhanced tide then produces low enough temperatures to enable an 

NLC to develop. This could be a unique event from unusual local circumstances. Or, if 

these mid-latitude NLCs are truly a recent recurring phenomenon, this could be a 

manifestation of climate change in the troposphere that is coupled to the mesosphere via 

gravity waves. 

5. Conclusions 

Previously, we showed (Wickwar eta/., 2002] the first NLC detected by lidar 
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below so• latitude. Here, we present the second NLC detected below so• latitude. It 

was observed at the same location at 41 .7° on 22 June 199S, 4 years earlier. This 

detection was found during a systematic re-analysis of the ALO Rayleigh-scatter data 

searching for NLCs. While no visual observations could have been made, this is 

definitely another mid-latitude NLC : there is an enhanced backscatter ratio; it occurs 

near summer solstice; it occurs in the usual NLC altitude range; the enhancement is 

confined to a thin layer; this layer is located at a very low temperature minimum; and the 

layer descends slowly with time. 

To date this is the second reported lidar observation of an NLC below so•. It 

shows that the first observation was not an anomaly and further suggests that additional 

NLCs could have occurred at mid and lower latitudes, but were not detected. It is 

somewhat surprising that this second detection was !Tom the same location in the 

Mountain West. To our knowledge, the June 199S observation at ALO is the first time 

that Rayleigh lidar data have been analyzed for the coincident neutral temperatures. In an 

unexpected result, this second NLC was found at the minimum of a large-amplitude 

vertical temperature wave. The wave was characterized by a cold phase with an 

amplitude of- 23 K near 84 km and a warm phase, maximizing II km lower, with an 

amplitude of - 17 K, a vertical wavelength of22 km, and a deduced downward phase 

velocity of - 0.9 kmlhr. The apparent wave modulation was probably essential for 

producing the low temperatures necessary for formation of the NLC ice crystals. The 

Michelson Interferometer observations suggest that the temperature minimum in the 

wave may have been further lowered by interannual variability. The phase, phase 

velocity, and vertical wavelength of this wave suggest that it is an enhanced diurnal tide. 



Modeling results in the literature, performed for other reasons, suggest that the 

diurnal tide could be significantly enhanced by interactions with gravity waves 

propagating from below. 

Ill 

While the first NLC detection Jed to speculation about global change having 

either lowered mesospheric temperatures or increased mesospheric water vapor and its 

freezing point, the temperatures and the large-amplitude wave in this detection lead to 

different speculation. Below 60 km or so, the temperatures on 22 June 1995 were close 

to the climatological mean derived from lidar observations between 1994 and 2004. 

Above that altitude, the temperatures are dominated by a large-amplitude wave that 

appears to grow with altitude in both the lidar and Michelson interferometer results. The 

climatological temperatures are not cold enough to produce NLCs. Thus, the NLC did 

not arise from overall mesospheric cooling. It was definitely helped by the large­

amplitude wave, which lowered the temperatures to - 150 K at 84 km and - 125 K at - 87 

km. These temperatures are typical of the higher temperatures observed at high latitudes 

at which NLCs are found. Possibly, its formation was also helped by increased water 

vapor, but we do not have information on that. 

The speculation about the origin of the NLC has to tum from a significant 

mtsospheric cooling to the origin of this large-amplitude wave or to the gravity waves 

that may have caused it by, perhaps, enhancing the diurnal tide. This large-amplitude 

wave might have been a unique event, although the temperatures on the next day, 23 June 

1995, suggest otherwise, or it might be a very different manifestation of global change. If 

caused by a change in the gravity waves reaching the upper mesosphere, then either the 

gravity-wave source has to be enhanced or the filtering between the source region and the 
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upper mesosphere has to be reduced. Either of these possibilities suggests changes in 

wind systems. If large-amplitude mesospheric waves are localized in longitude to the 

Mountain West, as weakly suggested by the absence of mid-latitude NLC observations 

elsewhere, then perhaps it is the orographic gravity wave source that is enhanced. 

Another possibility would be the enhancement of the convection source, which is active 

considerably to the east and south of ALO. lfthat were the case, then we would predict 

that the Purple Crow lidar, another mid-latitude lidar, should also detect NLCs and these 

large vertical mesospheric waves. 

Further investigating the origin of these mid-latitude NLCs will require more 

systematic, simultaneous, long-term observations with Rayleigh-scatter lidars at ALO 

and other locations. More sensitive lidars would improve the observations by obtaining 

data from higher altitudes, thereby minimiz ing uncertainties in the background and 

providing better time resolution. As demonstrated in this paper, significant additional 

information can be obtained by having a cluster of instrumentation providing more 

elCtensive observations. The Michelson Interferometer provided valuable, mesospheric 

temperature observations. It would be valuable if other instruments could provide 

mesospheric wind measurements, and if still others could provide temperature or density 

measurements from the upper troposphere into the mesosphere. 
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CBAPTER6 

SUMMARY AND FUTURE WORK 

I. Summary and Conclusions 

The Rayleigh-scatter lidar has proven a useful tool in making measurements of 

the middle atmosphere. The short pulse length of the transmitter and high repetition rate 

enable high temporal-resolution measurements of vertical profiles of relative density. 

These profiles are used to produce absolute temperatures. The Rayleigh-scatter lidar 

technique can provide accurate temperature measurements between 20, or a little above, 

and 110 km. The lowest altitude is dependent on the atmosphere' s aerosol content, and 
) 

the upper boundary is limited by the assumptions used in the temperature reduction. The 

Rayleigh-scatter lidar coverage of the middle atmosphere covers the gap in radar 

coverage and more importantly provides an absolute temperature measurement. 

As previously mentioned, the Rayleigh-scatter temperatures are independent of 

any system calibration. The significance of this is two-fold. Temperatures derived in this 

manner are absolute, providing a gold standard for temperature comparisons. The 

second, and more subtle effect, is that the equipment used in making the temperature 

measurements can be continually updated and improved without affecting the data or the 

validity of the results as no calibration is needed. This is particularly important for long 

term temperature observations, during which equipment is likely to change or be replaced 

or improved. For example, the pass band of interference filters can drift in wavelength 

with age. For Rayleigh-lidar this results in a signal loss, but does not affect the 
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temperature calculation. The same cannot be said for instruments that rely on precise 

transmission profiles such as mesospheric temperature mappers or resonance lidars. 

The nighttime temperature measurements from the ALO Rayleigh-scatter 

climatology spanning II years were combined into a single composite year. A 31-day 

window was used to combine the data, by day number, into approximate monthly 

averages. This average was performed with the window centered on each day of the year 

to generate a single composite year from the 11-year database of nighttime temperature 

measurements. 

A comparison of the ALO climatology to a similar temperature climatology from 

the French lidar group showed good agreement in general. However, a couple of 

significant differences stood out. First, a systematic difference appeared in the summer 

temperatures in the lower mesosphere, which is when and where the geophysical 

variability is minimal. The ALO temperature climatology was found to be - 1.5 K cooler 

than the French climatology. Because the midpoint of the French climatology is !_b5 

years prior to the midpoint of the ALO climatology, this suggests that the difference 

arises from a general mesospheric cooling at the rate of - 1.2 K/decade during this 

interval. While it is tempting to attribute this cooling to global change, especially when 

this value agrees welt with other trend values in the literature [e.g., Beigel a/., 2003), it is 

difficult to do so when the comparison is not from the same time period or from a full 

trend analysis. A full trend analysis of the ALO temperatures is under way as a Ph.D. 

research project at USU. 

Second, large temperature differences exist in the winter months, which may arise 

from averaging the temperature effects of large mesospheric inversion layers. Of 
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particular interest were regions during February and December where ALO 

temperatures were 7-9 K warmer than the French values. With inversion layers having a 

large influence on the temperature profiles between November and February, it is highly 

likely that the observed differences in the climatologies arise from averaging their effects 

above two sites. These differences might be longitudinal, reflecting differences in the 

dynamical features that lead to the inversion layers, or they might represent the effects of 

large inversion layers during a few winters distorting the averages at the two locations in 

different ways. More information on what may be happening will come from a study of 

inversion layers at ALO that is currently underway. Depending on what is found, it will 

take more observations or simultaneous observations to determine the origin of these 

differences. 

The NRL MSIS-00 empirical model, which is composed of hi storical 

observations, is commonly used as a temperature reference. Comparing the global 

MSISeOO model to the absolute temperatures in the ALO mid-latitude climatology is a 

way of evaluating how good the model is at mid-latitudes. It was found that on average 

the model differed from the climatology by less than 5 K between 45 and 80 km. The 

sign of the temperature difference for an annual average varied with the model being 

warmer between 45 to 5 I km, cooler from 5 I to 61 km, and warmer from 61 to 78 km, 

and cooler from 78 to 85 km. This oscillatory temperature difference is possibly a result 

of harmonic fitting used in generating the model. The stratopause altitudes agreed well , 

but the onset of the summer maximum occurs earlier in the model. 

On shorter time scales, the largest difference between the model and climatology 

are in the upper mesosphere during mid-summer when the mesopause temperatures reach 
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a minimum. The model was 17 K cooler than the climatology at 84 km in June and 

July. These very cold model temperatures are more appropriate for higher latitudes. This 

large difference could have a significant impact on, for instance, the conclusions deduced 

from a first principle model used to deduce energy sources and sinks in this region near 

the summer mesopause. Slightly smaller differences are also found during the winter in 

the region where mesospheric inversions are observed in the climatology. The use of the 

model would suggest that the mid-latitude mesosphere is much less variable than it is. 

Because these winter inversion layers are predominately observed at mid-latitudes their 

absence in the model again illustrates the minimal amount of detailed mid-latitude 

observations are included into the MSIS-00 model. The next revision should include 

more mid-latitude mesospheric data. 

To further expand on the qualitative comparison ofMSIS-QO to the ALO 

climatology, the annual, semi-annual and higher order oscillations were found for the two 

composite years. The annual amplitude in the model is smaller than the observed value 

over the majority of the compared region, up to about 75 km. A minimum in the annual 

amplitude is found in both the model and the climatology near 63 km. The model 

however has a near zero minimum compared to an observed minimum of2 K. Below the 

minimum, the phase maximum is in summer reflecting the importance of radiative 

heating; above the minimum, the phase maximum is in winter reflecting the importance 

of dynamical heating. Compared to the observations, the phase change in the model is 

abrupt and progresses in the opposite direction. The contribution of inversion layers to 

the climatology is responsible for the direction of the phase change in the observations. 
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The amplitude of the semi-annual oscillation is smaller than the annual term in 

general. The exception in the climatology is a maximum near 63 Ian, at the minimum in 

the annual variation. This maximum is not observed in the model. Above 75 km the 

model shows a large increase in the amplitude of the semi-annual term that is not 

observed in the climatology. The phase of the semi-annual term shows good agreement 

at 45 km. However, above this altitude the model lags the climatology and at some 

points is 125 degrees out of phase with it giving rise to some of the observed differences. 

In the climatology the higher-order terms are found to make small but statistically 

significant contributions to the temperature structure, but are not included in the model. 

The all-night averages and 31-day averages have averaged the short-period 

gravity waves out of the temperature climatology. However, the location of the ALO 

facility is in the Rocky Mountains and places it in a strong source region of 

orographically generated gravity waves. During the winter, these gravity waves can 

propagate into the mesosphere, possibly contributing to the inversion layers and affecting 

the planetary waves. 

On two separate occasions NLCs were observed by the ALO Rayleigh-scatter 

lidar. This initial observation was the first lidar detection ofNLCs equatorward of so• N 

and was taken as a significant indicator of global change. An examination of the lidar 

database revealed that a prior NLC event occurred in 1995. During the night of the 1995 

observation a large amplitude oscillation was observed in the temperature profile, 

suggesting a more complicated situation than simple cooling from global change. 

As evident in the ALO temperature climatology, the cool temperatures in the 

summer mesopause region are insufficient for the formation ofNLCs, which typically 
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occur at temperatures less than 150 K. The presence of this wave suggests that it 

played a key role in lowering the temperature, enabling the generation and growth of this 

mid-latitude NLC. A comparison of this wave to tides, from model and lidar 

observations, shows very good agreement to the phase and vertical wavelength of the ~ 
diurnal tide. However, the observed amplitude of the diurnal tide is much smaller than \ 

that of the observed oscillation, suggesting that if the diurnal tide were associated with 

this wave it was greatly amplified. The amplification mechanism is a topic of debate in 

the literature, but interaction of gravity waves with the tides is a possibility. 

While there are several mid-latitude lidar facilities, to date NLCs have only been 

observed over the ALO facility. This suggests that the presence ofNLCs is linked to the 

observing conditions above ALO. It therefore seems reasonable to suspect that the 

orographically generated gravity waves over the Mountain West are involved in 

generating the large amplitude wave. However, these waves should be strongly filtered 

by the westward directed background winds in the upper stratosphere and lower 

mesosphere. That suggests that convectively generated gravity waves may be responsible 

for producing the conditions leading to the large amplitude wave. However, if this were 

the case, then NLCs should be observed at other locations closer to where heavy 

\ 

convection occurs. GiYen.theJimite<linformation P!~nted b ~single obser:vation it _ 

is no 

observations at ALO is available and may possess additional information. 

2. Future Work 

With the development of the ALO climatology, a set of reference temperatures 
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has been created. These average temperature profiles can be used to further study the 

database of nighttime temperatures at ALO. For instance, for a given day number, the 

average temperature profile from the climatology can be subtracted from an individual 

nighttime average. ln this manner the deviations can be examined for a variety of 

phenomena. It can be examined for additional large amplitude oscillations, such as the 

one attributed to the formation of the 1995 NLC and, perhaps, the 1999 NLC. This 

approach could also be used to examine mesospheric inversion layers. Previous studies 

have examined the temperature profiles, particularly the regions with a positive 

temperature gradient, instead of the departures from the average behavior. These 

differences could also be the starting point for examining temporal and spatial 

frequencies for portions of the spectra of wave behavior. 

Examination of these temperature differences as a function of time would 

facilitate the investigation of medium term variations such as might arise from the 81-day 

solar rotation, sudden stratospheric warmings, and long-period planetary waves. The 

effects of planetary waves are already being investigated with the ALO data. In addition, 

at the lowest altitudes, near 45 km, differences between the nightly temperatures and the 

climatology are already showing significant differences on the scale of one to several 

days. These are being investigated in another ALO research project at OSO and they 

appear to be related to effects from weather systems in the troposphere. 

Temperature differences found between the ALO and French climatologies, 

particularly in the summer, were used to derive cooling trends at several altitudes. ln 

compiling the ALO climatology, a 31-day average was formed using only the day 

number. Averaging the data in this manner could influence the trend values found . If for 
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example the majority of the summertime values were collected during solar minimum 

at one site and solar maximum at the other, then the results might be biased. This initial 

comparison needs to be the starting point for more detailed analyses. A comparison of 

overlapping data needs to be made and a full trend analysis performed. The latter is 

already underway at USU on the ALO data. 

While the absolute measurements from the Rayleigh-scatter lidar are temperatures 

in the middle atmosphere, a significant dataset of relative density measurements also 

exists. It was the first step in the temperature analysis. Whereas the temperature 

calculations require long integration times, which average out the short-period gravity 

waves, the relative densities do not. Gravity wave spectra can be analyzed from the 

density data using integrations times as short as 2 minutes. In addition, density 

fluctuations would also enable the study of potential energy carried upward by the wav s. 

The accuracy of the temperature measurements is dependent on the magnitude of 

the returns and the accuracy in the initialization temperature. Increasing the collecting 

area of the lidar telescope, the laser power, or both, would significantly increase the 

maximum range, improve the altitude and time resolutions, and increase the precision. 

The greater range would lead to better accuracy at the highest altitudes reported here. 

Large aperture telescopes are possible, but the material costs and associated 

manufacturing labor increase dramatically with the diameter. However, for lidar 

measurements there is no need to image a distant object: the telescope is basically a light 

bucket. Therefore, multiple telescopes can be coupled together to create an equivalent 

large collecting area without the need to match wavefronts from each telescope. To 

increase the collecting area of the ALO facility four 50-inch parabolic mirrors have been 
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purchased and installed in a steerable telescope mount close to present lidar. The 

author has obtained the first light from one of the mirrors. When properly aligned, the 

four mirrors will increase the effective collecting area of the receiver by a factor of30 

extending the altitude range by at least 20 km. l.n addition, a second, slightly more 

powerful Nd:Y AG laser has been acquired . The 30-Hz pulses from the two lasers can be 

interleaved to more than double the emitted power. The author has already developed the 

software needed to control the timing to interleave the pulses. The combined effect of 

greater collecting area and laser power would increase the lidar sensitivity by a factor of 

60. The power-aperture product would increase from 2.6 W/m2 to 213 W/m2
, makin_l! 

this the most powerful Rayleigh lidar in the world. Alternately put, a factor of60 would 

give the same signal-to-noise ratio at 110 km as is now obtained at 85 km. This would 

open the possibility for many new scientific studies of phenomena that would extend 

across the transition from the mesosphere to the thcrrnosphere. It may then become 

necessary to examine the effect of changing neutral composition on the data 

interpretation at the highest altitudes. 

The dependence of the Rayleigh-scatter temperature on the initialization 

temperature adds uncertainty to the top I 0 km. In addition to a larger telescope and 

greater power, another way to reduce this uncertainty is to add a resonance lidar to the 

facility . An alexandrite laser, set up to operate at the potassium resonance line, has been 

added to the ALO facility. The author did much of that set up. Its simultaneous 

operation would enable temperature measurements between 80 and 110 km. These 

temperatures with their associated small uncertainties could then be used to more 

accurately initialize the Rayleigh-scatter temperatures than climatological or model 
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temperature values. Moreover, these would be simultaneous temperatures that would 

take into account variations caused by transient events. This would be much better than 

using climatological values. The upgraded system would enable accurate temperatures to 

be derived from 30 km to 110 km. 

This greater range would also enable better comparisons with temperatures 

derived from observations ofairglow emissions from OH. O('S), and 02 Atmospheric 

band. Initial comparisons with the current system suggest tbe possibility of systematic 

differences that need to be more fully examined [Herron, 2004]. In principle, these 

comparisons could enable the altitudes of the airglow emissions to be determined. 

The use of this new steerable telescope would also enable studies of horizontal 

spatial structures in addition to vertical structures. Coupled with the potassium resonance 

lidar, it would also enable wind measurements between 80 and 110 km. 
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APPENDIXB 

Temperature Reduction Algorithms 

The following algorithms are to reduce to the 2 minute relative density profiles 
measured by the ALO Rayleigh-scatter. These programs produce hourly and nightly 
temperature averages. These programs are written in IDL. 

Pro TemperatureReduction 
; Program written to calculate the temperature based upon the raw data files 
; Written by Joshua Herron, Utah State University 2002 
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Time 30 ;Number of2 minute profiles 
to average 

Threshold 1.0/16.0 ;Maximum Percent Error 
allowed 

GeoLat 41.742 ;Latitude 
GeoLong 241.19 ;Longitude 
AvgBins 81 ;Number of range bins for a 3 

km smoothing of the data 
MMM 28.9415 ;Average Mean Molecular 

Mass for the region 
RRR 8.31432 ;Ideal gas constant 
Altres 0.0375 ;Width of range bins 
Hour 7 ;Hour to run MSIS-00, (local 

midnight) 
BKLO 5000 ;start of background region 

(given as bin #) 
BKHI 9000 ;end of background region 

(given as bin #) 
Datelnput, Timestring ;Returns the date to be opened 
ReadBinary, TimeString, Date, Data, Headers, BKLO, BKHI ;routine to 

open the binary files from the data acquisition system and sparse 
out the data and the header files. Also includes user input ofbklo 
and bkhi 

Calculate Times, Headers, Time, TimeProfiles, RayleighTimes ;routine to 

Length 
Width 
Altprof 

calculate the hourly and nighttime averages. The indices are stored 
in RayleighTimes. 
=(size(data))(2) ; length of data arrays (should be 14005) 
=(size(data))(l) ; number of2 minute profiles recorded 
=Findgen(Length)* Altres+ 1.47+Altres/2.0 ;calculating an altitude 
axis for the data (1.47 is the altitude above sea level for the lidar) 

DayofYear, Timestring, DOY ;routine to calculate the day of the year, 
which is needed to run MSIS 



End 

RUNMSlSeOO, Geolat, Geolong, DOY, Hour, Altres, Atmosphere ;routine 
that runs the MSIS-00 model for a given day number, hour and 
stores the returned values in Atmosphere 

RayleighError, Data, RayleighTimes, Avgbins, CntError, PctError, Signal, 
AvgSignal, Altprof, Bklo, Bkhi ;Routine that averages the 
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returns together using the indices stored in RayleighTimes and also 
calculated the count error and the percentage uncertainty. 

CalculateDensity, AvgSignal , Altres, Density ;Routine to take the average 
signal and calculate relative density profiles. 

Gravity, GeoLat, Geolong, Length, Altres, Gnew ;Routine to calculate the 
variation of gravity with altitude and produce a profile for the 
temperature reduction. 

TopCalculation, CntError, PctError, AvgSignal, Threshold, DOY, Altprof, 
Atmosphere, Topbin, TopTemp, Rayleightimes, timeprofiles 

;Routine to take the avgsignals and determine from the 
error profiles the starting altitude for the temperature reduction . 
This value is then associated to the MSIS-00 model of the CSU 
temperature climatology depending on its altitude. 

TempCalculation, Altprof, Density, Gnew, RRR, MMM, Altres, Topbin, 
Toptemp, Temperatures ;Routine to calculate the absolute 
temperatures from the density profile given a starting altitude and 
temperature. 

TempError, Temperature, Altprof, PctError, Topbin, TempErr ;Routine to 
calculate the temperature uncertainty given the percent uncertainty 
in the photon count rate. 

PRO Datelnput, Temp 

END 

;Short program to prompt user for the date' 
Print, 'Enter the date' 
Print, 'Example enter 011228 for Dec 28, 200 I ' 
Read, Temp 
Return 

PRO ReadBinary, Timestring, Date, Data, Headers, Bklo, Bkhi 
Year STRMID(TimeString, 0,2) ;parses out the year 
Month STRMID(TimeString, 2,2) ;parses out the month 
Day STRMID(TimeString, 4,2) ;parses out the day 
Tempname FINDFILE('c:\mcs\sav\'+timestring+' .dat') ;check to 
see if raw data has already been recorded into and IDL datafile. 
IF (Tempname eq " ) THEN BEGIN 

Restore, Tempname 
Length=( size( data))( I) 
Goto, jump 
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END IF 
Filedir 
Filename 
File 
Filenames 
Length 
Headers 
Header 

='c:\mcs\'+Year+Month+'\Rayleigh\' ;file directory 
Year+Month+Day ;create filename 
STRUPCASE(Filedir+' *'+Filename+' *.*') 
F!NDFILE(File) 
(size( filenames))( I) ;number of files found 
STRARR(Length, 12) 

Time STRARR(Length,2) 
Data FL T ARR(Length, 14005) 
Line FLT ARR(7) 
FOR i=O, Length- I DO BEGTN 

CD, ' c:\mcs\temp\' ;directory for temporary files 
SPAWN, 'readmcs'+Filenames(i) +' > 
'+' c :\mcs\temp\' +Filename+' asc. '+STR TRIM(String(i), I ),/hide ;call to 
binary to text conversion for mcs files 
GET_LUN, LUN 
OPENR,LUN, ' c :\mcs\temp\'+Filename+'asc. ' +STRTRIM{String(i), I) 
FORj=O, II DO BEGTN 

READF, LUN, Header 
Headers(i,j)=Header 

END FOR 
k=O 
WHILE(- EOF (LUN)) DO BEGTN 

READF, LUN, LINE 
Data(i,k:k+5)=Line(l :6) 
k=k+5 
;text file is in five columns but is in actuality a single profile 

END WHILE 
Close, Lun 
File_ Delete, ' c:\mcs\temp\'+Filename+'asc.' 
+STRTRIM(STRTNG(i), I) 
Print, i 
Width=i 
Free _tun, lun 

END FOR 
JUMP: 
Date=STRMID(headers(0,4),31 ,8) 
FOR i=O, Length- I DO BEGIN 

Time=STRMID(headers(I,4, 18,8) 
Hours=FIX(STRMID(time,0,2)) 
Minutes=FIX(STRMID(time,3,2)) 
Seconds=FIX(STRMID(time,6,2)) 

END FOR 
Temp = FLTARR{14005) 



End 

FOR i=O, 14005-1 DO BEGIN 
Temp(i)=Mean( data(• ,i)) 

END FOR 
Plot, ' temp(*),ylog=l ,yrange=[. I, le7] 
Print, 'Please enter the starting point for the background' 
Read, bklo 
Pring, 'Please enter the ending point for the background' 
Read, bkhi 
Wdelete, 0 
Return 

PRO Calculate Time ,Headers, Time, TimeProfiles,RayleighTimes 
Length (SIZE(HEADERS))(J) 
TimeProfiles FLT ARR(Length,4) 
FOR i=O, Length- I DO BEGIN 

Temp = STRMID(Headers(i, 4), I 8,8) 
TimeProfiles(i,O) = STRMID(Temp,0,2) 
IF (Timeprofiles(i,O) GT 20) TIIEN Timeprofiles(i,O)=Timeprofiles(i,0)-24.0 
TimeProfiles(i, I) = STRMID(Temp,3,2) 
TimeProfiles(i,2) = STRMID(Temp,6,2) 
TimeProfiles(i,3) = TimeProfiles(i,0)*3600.0+TimeProfiles(i, 1)*60.0 

+TimeProfiles(i,2) 
print, timeprofiles(i, O),timeprofiles(i, I), timeprofiles(i,2) 

END FOR 
StartTime = TimeProfiles(0,3) ;Initial time of the lidar run 
StartHour = TimeProfiles(O,O) ;Initial hour of the lidar run 
lntTime = Time*2.0*60.0 ;Seconds to start integration time 
IF ((StartTime) GT (StartHour*3600.0+1800.0)) TIIEN BEGIN 

FirstHour = (StartHour+ I .0)*3600+ I 800 
ENDIF ELSE BEGIN 

FirstHour = StartHour*3600+ I 800 
ENDELSE 
RayleighTimes = INTARR{35,3) 
RayleighTimes{O,O) = 0 
Length = (SIZE(TimeProfiles))( I) 
HRS = ((TimeProfiles(Length-1 ,3)-TimeProfiles(O,J))/3600) 
IF (HRS LT 1.0) TIIEN BEGIN 

PRINT, 'There is less than an hours worth of data' 
PRINT, 'Hours =',HRS 

END IF 
i=O 
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WHILE (TimeProfiles(i,3) LE FirstHour) DO i=i+ 1 ;Find the point for the first hour 
RayleighTimes(l ,O) = 
HourRecord = 1 



k = I 
FOR i=HourRecord+ I ,Length- I DO BEGIN 

IF ((TimeProfiles(HourRecord,3)+1ntTime*k) LE (TimeProfiles(i,3))) THEN 
BEGIN 

RayleighTimes(k+ I ,O)=i 
k k+l 

END IF 
END FOR 
RayleighTimes = RayleighTimes(O:k+ I,*) 
k = (SIZE(RayleighTimes))(l)-2 
FORj=O,k-1 DO BEGIN 

Temp = RayleighTimes(j+ l ,O) 
RayleighTimes(j, I) = Temp-I 
RayleighTimes(j,2) = Temp-RayleighTimes(j,O) 

ENDFOR 
RayleighTimes(k, I) = Length- I 
RayleighTimes(k,2) = Length-RayleighTimes(k,O) 
RayleighTimes(k+ 1,0) = 0 
RayleighTimes(k+ I, I) = Length- I 
RayleighTimes(k+ I ,2) = Length- I 
RETURN 

END 

PRO DA YOFYEAR ,Date,DOY 
MD = [0,31 ,28,31 ,30,31 ,30,3 1 ,3 1,30,3 1,30] 
Month = F!X(STRMID(Date,2,2)) 
Year = HX(STRMID(Date,0,2)) 
Day = FIX(STRMID(Date,4,2)) 
DOY = TOT AL{MD(O:Month-1 ))+Day 

END 
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PRO RUNMSISE90 ,GEOLAT, GEOLONG,DA Y,HOUR,AL TRES,ATMOSPHERE 
DATA = FLTARR(4,1) 
ATMOSPHERE = FLTARR(4, 15000) 
HRSTPOINT = 5 
DayOfY ears = FIX(DA Y) 
Flux = 150.0 
Seconds = FIX(Hour*3600) 
OMEGA = 7.292e-5 
GET_LUN , LUN 
OPENW , LUN,'c:\mcs\model\msisi.in' 
PRINTF , LUN,DayOfYears 
PRINTF , LUN,O,O,Seconds 
PRINTF , LUN,O,O,O 
PRINTF , LUN,O,O,O 



PRINTF , LUN,'kman' 
PRINTF , LUN,'L46 JOO',AitRes 
PRINTF , LUN,GeoLat,GeoLong 
PRINTF , LUN,Fiux,Fiux 
PRINTF , LUN,' 4 0 0 0 0 0 0' 
PRTNTF , LUN,'OOO 000' 
PRINTF , LUN,'msisi.out' 
PRTNTF , LUN,'OOO' 
CLOSE , LUN 
FREE_LUN , LUN 
CD , 'c:\mcs\model\' 
SPAWN , 'Msisi.exe',/hide 
ON_ERROR , I 
GET_LUN , LUN 
OPENR , LUN,'c:\mcs\model\msisi.out' 
POINT_LUN , LUN,FirstPoint 
PRINT , 'Accessing the Model Information' 
j = 0 
WHILE NOT EOF(LUN) DO BEGIN 

READF , LUN,DATA 
ATMOSPHERE(* j) =OAT A 
j=j+ l 

END WHILE 
CLOSE , LUN 
FREE_LUN , LUN 
Atmosphere = Atmosphere(*,O:j-1) 

END 

Pro RayleighError ,Data,RayleighTimes,add,AvgBins,CntError,PctError 
,Signal,AvgSignal,altprof,BKLO,BKID 

Length 
Width 
Twidth 
Background 
SignaiError 
CntError 
Signal 
PctError 
AvgSignal 
AvgRayleigh 
A vgBackground 
Temp 
Temp2 

(Size(Data))(2) 
(Size(Data))( I) 
(Size(RayleighTimes) )( 1) 
FL T ARR(Width) 
FL T ARR(Width,Length) 
FLT ARR(TWidth,Length) 
FL T ARR(Width,Length) 
FLT ARR(TWidth,Length} 
FL T ARR(TWidth,Length} 
FLT ARR(TWidth,Length) 
FLT ARR(Twidth) 
FLTARR(Length) 
0.0 
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FOR i=O, Width-! DO BEGIN 
Background(i) = TOT AL(DATA(i,BKLO:BKHl))/(BKHI-BKLO+ 1.0) 
Signal(i, *) Data(i, *)-Background(i) 

END FOR 
FOR i=O,Twidth-1 DO BEGIN 

a rayleightimes(i,O) 
b rayleightimes(i, I) 
c rayleightimes(i,2) 
temp(*)= 0.0 
temp2 = 0.0 
k 0 
FOR l=a,b do begin 

IF ((signal(l, II 00) GE 60.0) AND (background(!) L T 20)) THEN BEGIN 
temp(*)= temp(*)+data(l, *) 
temp2 = temp2+background(l) 
k k+ l.O 

END IF 
END FOR 
Rayleightimes(i,2) c 
AvgSignal(i, *) Temp(*)lk 
AvgBackground(i) temp2/k 
IF (i EQ (twidth-1)) Then begin 

AvgSignal(i, *) 
A vgBackground(i) 

END IF 
AvgSignal(i, ll20:14004) 

Cnterror(i, *) 

AvgSignal(i, *)+add 
A vgBackground(i)+add 

AvgSignal(i,*) 
Pcterror(i, *) 

END FOR 
RETURN 

Smooth(AvgSignal(i, 1120: 14004) 
Avgbins,/edge _truncate) 

AvgSignal(i, *)/( Avgbins *k)+ 
AvgBackground(i)/(k*(BKHI-BKLO+l .O)) 
AvgSignal(i, *)-A vgBackground(i) 
SQRT(Cnterror(i, *))/ AvgSignal(i, *) 

END 

PRO CALCULATEDENSITY ,Rayleigh,Aitprof,Fitbin,Density,Altres 
SumLength = (SIZE(Rayleigh))(2) 

END 

Sum Width = (SIZE(Rayleigh))(l) 
DENSITY = FLTARR(SumWidth,SumLength) 
Range = findgen(sumlength)* Altres+Aitres/2.0 
FOR i=O, Sum Width-! DO BEGIN 

Density(i, *) = Rayleigh(~ *)*range(*)*range(*) 
Density(i, *) = Density(i, *)/Density(i,Fitbin) 

END FOR 
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PRO GRAVITY ,GEOLA T,GEOLONG,LENGTH,AL TRES,GNEW 

gm 3986004.418e8 
omega 7292115.0e-11 
a 6378137.0 
b 6356752.3142 
e 8. 1819190842622e-2 
EE 5.2185400842339e5 
k 0.00193185265241 
m 0.00344978650684 
f 1/298.257223563 
gge 9.7803253359 
ggp 9.8321849378 
phi GeoLat*!DTOR 
si at an((( 1-f)"2)*tan(phi)) 
lambda GeoLong*!DTOR 
alpha phi-si 
ho 1460 
N alsqrt(1-e*e*sin(phi)*sin(phi)) 
gnew tltarr(length) 
FOR i=O, length-! DO BEGIN 

h 1460+altres*IOOO.O*i 
x (N+h)*cos(phi)*cos(lambda) 
y (N+h)*cos(phi)*sin(lambda) 
z ((b*b)/(a*a)*N+h)*sin(phi) 
u sqrt(( 1.0/2.0)*(x*x+y*y+z*z-
EE*EE)*( l .O+sqrt( 1.0+4.0*EE*EE*z*z/(x*x+y*y+z*z-EE*EE)" 2))) 
beta atan(z*sqrt(u*u+EE*EE)/(u*sqrt(x*x+y*y))) 
w sqrt((u*u+EE*EE*sin(beta)*sin(beta)) 

/(u*u+EE*EE)) 
q (1.0/2.0)*((1.0+3.0*u*u/(ee*ee)) 

•atan(EE/u)-3.0*u/EE) 
qo (1 .0/2.0)*((1 .0+3.0*b*b/(ee*ee)) 

•atan(EE/b)-3.0*b/EE) 
qp 3.0*(I .O+u*u/(ee•ee)) 

*(1 .0-u/ee*atan( ee/u))-1.0 
gu (-1.0/w)*(gm/(u*u+ee•ee) 

+(omega•omega*a*a*ee*qp) 
!(( u *u+ee*ee)*qo )*(I . 0/2. O*sin(beta)*sin(beta)­
I.0/6.0))+omega*omega•u•cos(beta)*cos(beta)/w 

gb (1/w)*(omega*omega*a*a*q) 
/(sqrt(u*u+ee*ee)*qo)*sin(beta)*cos(beta)­
omega*omega•sqrt(u*u+ee*ee)*sin(beta)*cos(beta)/w 

gae [gu,gb,O] 
R2 [[ cos(phi)*cos(lambda),cos(phi) 
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END 

Rl 

gs 
gphi 
gh 
gnew(i) 

*sin(lambda),sin(phi)] [-sin(phi)*cos(lambda),­
sin{phi)*sin(lambda),cos(phi)] [­
sin(lambda),cos(lambda),O]] 
=[(u*cos{beta)*cos(lambda) 
/( w*sqrt( u"2+EE"2)), -I /w*sin(beta)*cos(lambda),­
sin(lambda)], [u*cos(beta)*sin(lambda)/ 
( w*sqrt(u"2+EE"2)), -I /w*sin(beta)* sin(lambda), 
cos(lambda)] [sin(beta)/w,u•cos(beta) 
/(w*sqrt(u"2+EE"2)),0]] 

R2#(RI#gae) 
-gs(O)*sin(alpha)+gs{l)*cos(alpha) 
-gs(O)*cos(alpha)+gs{l )*sin(alpha) 
sqrt(gh"2+gphi"2) 

END FOR 
gnew=smooth(gnew,81) ;smoothing is to match that done in the data 

PRO TopCalculation , TavgCntError,PCTERR, TavgRayleigh, Threshold,DOY, 
AltProf,Atmosphere, Topbin, TopTemp,rayleightimes,timeprofi les 

-----------------------------' Length (Size(TavgCntError))(2) 
Width (Size(TavgCntError))(I) 
TopBin FL T ARR(Width) 
TopTemp FLTARR(Width} 
Restore,'c:\mcs\programs\lidar project\sodium.sav' 
XX [ -16, 15,46, 74, I 05, 135,166, 196,227,258,288,319,349,380] 
FOR i=O, Width-! DO BEGIN 

FOR Start=I500,2350 DO BEGIN 
Error Totai(PctErr{i,Start-5:Start+5)}/ 11 .0 
Topbin(i) Start 
IF (Error GE Threshold) THEN BEGIN 

Start 2350 
END IF 

END FOR 
High = AltProf{Topbin(i)) 
IF (High L T 83) THEN BEGIN 

Below 105-FIX(High) 
IF (Below GT 22) THEN Below=22 

Above Below-! 
Y down = [SheTemp(I2,Below),SheTemp( I: 12,Below) 

NaTemp 
Tempi 
Temp2 
TopTemp(i) 

,SheTemp(I,Below)] 
SPLINE(XX, YDOWN,DOY,O. I} 
Atmosphere(2,2175) 
Atmosphere(2, TopBin(i)) 
NaTemp-(Temp 1-Temp2} 
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ENDIF ELSE BEGIN 
Below 105-FIX(High) 
IF (BELOW GT 22) THEN BELOW=22 
Above = Below- I 
Yup = [SheTemp(12,Above),SheTemp(1 :12,Above) 

,SheTemp( I,Above)] 
YDown= [She Temp( 12,Below),SheTemp( I: 12,Below) 

,She Temp( I,Below)] 
TempLow SPLINE(XX, YDown,DOY,O. I) 
TempHigh SPLINECXX, YUp,DOY,0.1) 
P [TempLow,TempHigh] 
LL [SheTemp(O,Below), 

NaTemp 
TopTemp(i) 

END ELSE 

SheTemp(O,Above)] 
Interpoi(P,LL,High) 
NaTemp 

END FOR 
RETURN 

END 

PRO TempCalculation ,Aitprof,Density,Gnew,MMM,RRR,Aitres, 
TopBin, TopTemp, Temperature 

--------------------------·------------------·--------. 
Length (Size(Density))(2) 
Width (Size(Density))(1) 
Temperature FL T ARR(Width,Length) 
FOR i=O, Width-1 DO BEGIN 

Cl Density(i,Topbin(i))/Density(i, *) 
C2 TopTemp(i) 
C3 Altres/(2.0*RRR *Density(i, Topbin(i))) 
Upper = MMM*Gnew(Topbin(i))*Density(i,Topbin(i))*C3 
Integral= Double(O.O) 
FOR j=Topbin(i)-1, 1160,-1 DO BEGIN 

Lower MMM*GNEW(j)*Density(i,j)*C3 
integral lntegrai+Upper+Lower 
Temperature(i,j) = C1(j)*(C2+lntegral) 
Upper Lower 

END FOR 
ENDFOR 
RETURN 

END 

Pro TempErrors ,Temperature,Aitprof,TavgPctErr,Topbin, TempErr 
---· -----------------

Length (Size(Temperature))(2) 
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END 

Width (Size(Temperature))(l) 
TempErr FLT ARR(Width,Length) 
FOR i=O, Width- I DO BEGIN 

FORj=Topbin(i}, I000,-1 DO BEGIN 
TempErr(i,j)= Temperature(i,j)"2.0*TavgPctErr(i,j)"2.0 
+ Temperature(i, TopBin(i))2*TavgPctErr(i, Topbin(i))"(2. 0) 
*EXP( -2. O*(AltProf{TopBin(i) )-AltProfU))/7 . 0) 
TempErr(i,j) SQRT(TempErr(i,j)) 

END FOR 
END FOR 
RETURN 

Pro Day_3I_average 

; This is a program to average the nightly data into 31 day averages 
; This program accesses a list of good/bad nights 
; It may require that some listings be reworked to accound for a lower altitude 

Month ['0 I ','02','03','04','05','06','07','08','09',' I 0',' II ',' 12'] 
Get_lun,Lunl 
OPENR,Lun I ,'c:\work\sav\goodfiles.txt' 
Line " 
Chkl 
Chk2 
Length 14005 
Altres 0.0375 
Geolat 41.742 
Geolong 241.19 
MMM 28.9415 
RRR 8.31432 
Avgbins 81 
Add 0.0 
Check STRARR(7, IOOO) 
YearAvg FLT ARR(365,5 ,3000) 
Altprof findgen(3000)*0.0375+ 1.46+0.0375/2.0 
yearavg(*, *,*) =!values. f_ nan 
j 0 
WI-ULE NOT EOF(LUNI) DO BEGIN 

READF, LUNI, Line 
CHI(! = STRMID(Line, 36) 
Check(Oj)=Line 
Check(l,j)=STRMID(Line,21,6) 
Check(2,j)=STRMID(Line,36,4) 
j=j+l 
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END WHILE 
close, lunl 
free_lun, Iunl 
Check = Check(* ,O:j- 1) 
------·----
' 
; This section of code double checks the database and what is included 
redo = " 
Print, 'Do you wish to review the data?' 
Read, redo 
IF ((redo eq 'Y') or (redo eq 'y')) THEN BEGfN 

R2 " 
Print, 'Do you wish to restart from the last point?' 
Read, r2 
IF ((r2 eq 'y') or (r2 eq 'Y')) then restore, 'c:\work\sav\newlist2.sav' 
jump=i-5 
NightNumber = j ; Number of nights in database 
Window, I , xsize=900,ysize=800 
!P.Multi=[0,3, I) 
FOR i=850, NightNumber-1 DO BEGIN 

Filename I ='c:\work\sav\'+check( I ,i}+'short.dat' 
result=file_search(filename I) 

IF (result eq filename I} THEN BEGfN 
restore, filename I 
NHours = (Size(Temperature}}( I) 
TF (check(5,i) eq '0.0') THEN Check(5,i)='45 ' 
IF (check(4,i) eq '0.0') THEN Check(4,i}='95' 
IF (check(4,i) eq ")THEN Check(4,i)='94' 
IF (check(5,i) eq ")THEN Check(5,i)='45' 
Min I =(Fix(Check(5,i))-1 .46-0.0375/2.0)/0.0375 
Maxi =(Fix( Check( 4,i})-1 .46-0.0375/2.0}/0.0375 
Savg = FL T ARR(Iength) 

FORj=O,Length-1 DO BEGIN 
SavgG)=mean(Data(* j)) 

END FOR 
Savg(l 050: 14004}=Smooth(Savg(1050: 14004},81) 
xyouts, I 00,200,check( 4,i} 
xyouts, I 00, 180,check(5,i) 
xyouts, I 00, 160,check(3 ,i} 
xyouts, I 00, 140,check(2,i) 
al =" 
aO=" 
a2=" 
Print, 'Do you think this is a good night' 
READ,al 
IF ((a I eq 'Y') or (a I eq 'y')) THEN BEGIN 

147 



check(3,i) = 'Good' 
Print, 'Do you whish to change the max alt?' 
read, aO 
Check( 4,i) ='95' 
lF ((aO eq 'y') or (aO eq 'Y')) Then begin 
Print, What is new max alt?' 
read, a I 
check(4,i) = a l 

END IF 
Check(5,i) = '45' 
Print, 'Do you wish to change the min alt?' 
Read, al 
IF ((a I eq 'y') or (a I eq 'Y')) Then begin 

Print, 'What is the new min alt?' 
read, a2 
Check(5,i)=a2 

END IF 
ENDrF ELSE BEGIN 

Check(3,i) = 'Bad' 
Check(4,i) = '95' 
Check(5,i) = '45' 

END ELSE 
Save, Check,i, Filename='c:\work\sav\newlist2.sav' 

END IF 
END FOR 

END IF ELSE BEGIN 
restore, 'c:\work\sav\newlist2.sav' 

END ELSE 

TestDOY =" 
Print, 'Do you wish to redo the DOY calculations?' 
READ, TestDOY 
testdoy='y' 
NurriDays = (size(check))(2) 
IF ((TestDOY eq 'y') or (TestDOY eq 'Y')) THEN BEGIN 

FOR i=O, NumDays-1 DO BEGIN 
NightDay = STRMID(Check(I ,i),4,2) 
NightMonth = STRMID(Check(I ,i),2,2) 
NightYear = STRMID(Check(I,i),0,2) 
IF (Night Year eq '96') THEN NightYear='l996' 
IF (Night Year eq '95') THEN NightYear='1995' 
IF (Night Year eq '94') THEN NightYear='1994' 
IF (NightYear eq '93') THEN NightYear='I993' 
IF (Night Year eq '97') THEN NightYear='1997' 
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[f (Night Year eq '98') THEN NightYear-'1998' 
[f (Night Year eq '99') THEN NightYear-'1999' 
[f (Night Year eq '00') THEN NightYear-'2000' 
[f (Night Year eq '01') THEN NightYear-'2001 ' 
IF (Night Year eq '02') THEN NightYear-'2002' 
[f (Night Year eq '03') THEN NightYear-'2003' 
rF (Night Year eq '04') THEN NightYear-'2004' 
IF (Night Year eq '05') THEN NightYear-'2005' 
NightMonth = FLX(NightMonth) 
NightYear = FIX(NightMonth) 
NightDay = FIX(NightDay) 
Check(6,i) = JULDA Y(NightMonth,NightDay,NightYear)­

JULDAY(1 ,1,NightYear)+l 
Print, Check( I , i), Check(6,i) 

END FOR 
save, check,fi1ename='c:\work\sav\newlist2.sav' 

END[f 

;This section of the code will re-do the temperatures taking 
;into account the new minimum and maximum altitudes. 

ch12=" 
Print, 'Do you with to redo the nights with changed altitudes?' 
read, chl2 
rF ((chl2 eq 'y') or (chl2 eq 'Y')) THEN BEGIN 

FOR zz=O, NumDays- 1 DO BEGIN 
print, u.,' ',Check(l ,zz),' Is good' 
Restore, 'c:\work\sav\'+check(l ,zz)+'.dat' 
New Top = (Fix(Check(4,zz))-1.46-0.0375/2.0)/0.0375 
NewBottom =(Fix(Check(5,zz))-1 .46-0.0375/2.0)/0.0375 
TempDay = STRM.ID(check(l ,zz),4,2) 
TempMonth = STRMID(check(l ,zz),2,2) 
TempYear = STRMID(check(l ,zz),0,2) 
Nighthour=(size(temperature)X I) 
I}" (NewTop LT Topbin(Nighthour-1) and (fix(check(4,zz)) 

LT 88.5)) THEN BEGIN 
Topbin( nighthour-1 )=NewTop 
NEWTOPS,Check(6,zz),Check(4,zz),NewTemp 
TopTemp(nighthour-1 )=NewTemp 
RayleighError, Data,Rayleightimes,add,avgbins,$ 
cnterror,pcterror,signal,avgsignal,altprof,bklo,bkhi 
CalculateDensity, AvgSignal,Aitres,Density 
Gravity, Geolat, Geolong,Length,Aitres,Gnew 
Tempcalculation, altprof,density,gnew,mmm,rrr,$ 
altres,topbin,toptemp,temperature 
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ENDrF 
file = 'c:\work\sav\'+check( I ,zz)+'short.dat' 
save, temperature, temperr,topbin,toptemp,filename=file 

END FOR 
print, 'end of data redo' 

ENDrF 
Print, 'Do you wish to redo thenights with MSIS as the start altitude?' 
chl4=" 
READ, chl4 
rF (( ch 14 eq 'y') or ( ch 14 eq 'Y')) THEN BEGIN 

FOR zz=O, NumDays-1 DO BEGIN 
restore, 'c:\work\sav\'+check( l ,zz)+' .dat' 
Nighthour=(size(temperature)X I) 
NewTop=(Fix( check( 4,zz))-1 . 46-0.03 75/2.0)/0. 03 75 
rF (New Top L T Topbin(Nighthour-1) and (fix( check( 4,zz)) 
L T 88.5)) THEN BEGIN 

Print, 'We have lowered the starting altitude' 
ENDIF ELSE BEGIN 

Newtop=Topbin(nighthour-1) 
END ELSE 
NewBottom =(Fix(Check(5,zz))-1 .46-0.0375/2.0)/0.0375 
TempDay = STRMID(check(l,zz),4,2) 
TempMonth = STRMID(check(1,zz),2,2) 
TempYear = STRMID(check(1 ,zz),0,2) 
12 = (size(headers))( I )- I 
hourstart = fix(strrnid(headers(0,4),18,2)) 

+(fix(strmid(headers(0,4),24,2))/60.0 
+fix( strrnid(headers(O, 4),21 ,2)))/60. 0 

hourend = fix(strrnid(headers(J2,4), 18,2)) 
+(fix(strrnid(headers(l2,4),24,2))/6.0 
+fix(strrnid(headers(l2,4),21,2)))/60.0 

hour = fix((hourend-hourstart)+hourstart) 
Nighthour = (size(temperature)X1) 
Topbin(nighthour- 1 )=NewTop 
day=check(6,zz) 
RUNMSISeOO,Geolat,Geolong,Day,Hour,AJtres,Atmosphere 
file_delete, 'b:\msisi .out' 
Newtemp=Atmosphere(2,Newtop) 
Toptemp(nighthour- 1 )=NewTemp 
RayleighError,Data,Rayleightimes,add,avgbins,cnterror, 
pcterror,signal,avgsignal,altprof,bklo,bkhi 
CalculateDensity, AvgSignal,AJtres,Density 
Gravity, Geolat,Geolong,Length,AJtres,Gnew 
Tempcalculation, altprof,density,gnew,mrnm,m,alters 
,topbin,toptemp,temperature 
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file='c:\work\sav\'+check(l ,zz)+'msis.dat' 
save,temperature, temperr,topbin,toptemp,filename=file 

END FOR 
END IF 

;this section opens each day of data and copies out the night-time average 

chl23=" 
Print, 'Do you wish to re-read the nightly averaged?' 
READ, Chl23 
numnights=O 
numdata=O 
IF ((chl23 eq 'y') or (ch123 eq 'Y')) then begin 

NightlyData=FL T ARR(Numdays,2,3000) 
NightlyTime=strARR(Numdays,2) 
Nightly Data(•, • , *)=!values. f_ nan 
For i=O, NumDays-1 DO BEGfN 

IF ((Check(2,i) eq 'Good') or (Check(2,i) eq 'good')) THEN 
BEGIN 

END IF 
END FOR 

numnights=numnights+ I 
numdata=numdata+(size(data))( I) 
restore, 'c:\work\sav\'+check( l ,i}+'.dat' 
Numhours=(size(temperature)}(l) 
LF (fix(Check(5,i}) L T 45) then Check(5,i)='45' 
[f (check(4,i) eq ")then Check(4,i)='95' 
Min I =(Fix(Check(5,i}}- 1.46-0.037512.0)/0.0375 
Max I =(Fix( Check( 4,i))-1.46-0.03 75/2.0)/0.0375 
NightlyData(i,O,Min I :(Topbin(numhours-1 }- I))= 

Temperature((Numhours-
1 },min I :(Topbin(numhours-1 }- I)) 

NightlyDAta(i, l ,Min I :(Topbin(numhours- 1 }- I))= 
Temperr((Numhours-1) 
,min I :(Topbin(numhours- 1 )- I)) 

NightlyTime(i,O)=headers(0,4) 
endtime=(size(headers))( I) 
NightlyTime(i, l)=headers(endtime-1,4) 
print, stnnid(headers(0,4),18,6), 

strrnid(headers(endtime-1 ,4}, 18,6) 

save,nightlydata,nightlytime, filename='c:\work\sav\nightlydataold.sav' 
END IF 

check3=" 
Print, 'Do you wish to recalucate the year averages?' 
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read, check) 
get_lun, lun9 
openw,lun9,'c:\work\sav\altsout.txt' 
IF ((check3 eq 'y') or (check) eq 'Y')) THEN BEGIN 

NumDatabase=( size( check))(2) 
restore, 'c:\work\sav\nightlydataold.sav' 
FOR DOY= I,365 DO BEGIN 

StartDay = DOY-15 
EndDay = DOY+ I5 
IF (StartDay L T I) THEN StartDay=StartDay+ 365 
IF (EndDay GT 365) THEN EndDay=EndDay-365 
Print, StartDay,'-',DOY,'-',EndDay 
MonA vg=FL T ARR(200,3000) 
MonA vg(*, *)=!values. f_nan 
MonAvgE=FL T ARR(200,3000) 
MonAvgE(*,*)=!values.f_nan 
Avglndex=O 
i=O 
FOR i=O,NumDatabase-1 DO BEGIN 

lnclude='n' 
DOYINT = FIX(Check(6,i)) 
IF ((DOY GE 16) AND (DOYLT 351)) THEN BEGIN 

LF ((DOYINT GE StartDay) and 
(DOYINT LE EndDay)) THEN lnclude='y' 
ENDrF 

IF (DOY GT 350) THEN BEGIN 
LF (DOYINT GE StartDay) THEN lnclude='y' 
IF (DOYINT L T EndDay) THEN Include='y' 

END IF 
IF (DOY LT 16) THEN BEGIN 

LF (DOYlNT LE EndDay) THEN Include='y' 
IF (DOYINT GE StartDay) THEN lnclude='y' 

END IF 
IF (check(J,i) eq 'Bad') then Include='n' 
IF (Include eq 'y') THEN Begin 

file I =check( I, i) 
MonAvg(Avglndex,0:2999)= 

Nightlydata(i,0,0:2999) 
MonA vgE(Avglndex,0:2999)= 

Nightlydata(i, I ,0 :2999) 
Avglndex=Avglndex+ I 
IF (Check(5,i) GT 45) THEN BEGIN 

IF (fix(check(4,i)) LT 45) 
Then check(4,i)='45' 
minbin=((fix( check(4,i))-1.46 
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END IF 

-0.03 75/2. 0)/0. 03 75) 
Monavg(avglndex,O:minbin)= 

! values. f _nan 
monavge(avgindex,O:minbin)= 

! values. f _nan 

ENDLF 
END FOR 
MonAvg=Monavg(O:Avglndex-1 , *) 
nn=tltarr(3000) 
FOR 11=0,2999 DO BEGIN 

avgnum=O 
FOR index2=0,avgindex-l Do begin 

IF (tinite(monavg(index2,11))) then avgnum= 
avgnum+ l 

END FOR 
nn(ll)=avgnum 

END FOR 
switchl=O 
switch2=0 
For 11=2999,0,-1 Do begin 

maxnum=fix(max(nn)/2 .0) 
IF (switch! eq 0) THEN BEGIN 

IF (nn(ll) GT 0) THEN BEGIN 
tal - altprofl:ll) 
switch!= ! 

END IF 
END IF 
IF (switch2 eq 0) THEN BEGIN 

IF (nn(ll) eq maxnum) THEN BEGIN 
Endbin=ll 

END IF 
ENDLF 

malt=altprofl:ll) 
switch2= 1 

LF (nn(ll) GE maxnum*2) THEN BEGIN 
balt=altprofl:ll) 

ENDrF 
ENDFOR 

break 

printf, lun9,doy, talt,malt,balt 
FOR II=O,Endbin DO BEGIN 

avgnum=O 
FOR index2=0,Avglndex-1 do begin 

if(finite(monavg(index2,11))) then avgnum= 
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ENDLF 

avgnum+ l 
END FOR 
Year A vg(DO Y -l ,O,II)=mean(MonAvg(* ,11),/nan) 
Y earAvg(DOY -l , l,ll)=mean(Monavg(* ,11),/nan) 
/sqrt(avgnum) 
YearAvg(DOY -1 ,3,11)=Avgnum 
IF (avgnum GE 2) THEN YearAvg(DOY-1 ,2,11)= 
stddev(monavg(*,ll),/nan) 

END FOR 
altprol=findgen(3000)*0.0375+ 1.46+0 037512.0 
max I =Endbi n 
min 1=(45.0-1.46-0.0375/2.0)/0.0375 

END FOR 
close, lun9 
free _Jun. lun9 
save,yearavg,filename='c:\work\sav\yearavgold.sav' 

,------ -----
check4=" 
Print, 'Do you wish to review the nightly data against the yearly average?' 
read, check4 
LF (( check4 eq 'y') or ( check4 eq 'Y')) THEN BEGIN 

numbernig hts=(size(check))(2) 
restore, 'c:\work\sav\nightlydata072202.sav' 
restore, 'c:\work\sav\yearavg072202.sav' 
altprol=findgen(3000)*0.0375+ 1.46+0.0375/2.0 

FOR i=230,numbernights-l do begin 
jump3: 
tempdoy=Fix( check(6,i)) 
max I =(fix(check(4,i))-1.46-0.0375/2.0)/0.0375 
min l=(fix(check(5,i))- I .46-0.0375/2.0)/0.0375 
LF(minl LT 1160)thenMinl= ll60 
LF (tempdoy GT 365) then tempdoy=365 
LF (maxi LT 1160) then maxl= ll61 
Print, 'Do you wish to change anything about this night?' 
check9=" 
read,check9 
LF ((check9 eq 'Y') or (check9 eq 'y')) THEN BEGIN 

checkS=" 
inone= .. 
Print, 'Do you think this is a good night?' 
read, inone 
LF ((inone eq 'y') or (inone eq 'Y')) THEN BEGIN 

Check(3,i)='Good' 
Save, Check, Filename='c:\work\sav\newlist2.sav' 
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ENDIF 
IF ((inone eq 'n') or (inone eq 'N')) THEN BEGIN 

Check{3,i)='Bad' 
Save, Check, Filename='c:\work\sav\newlist2.sav' 

ENDfF 
Print, 'Do you wish to change the maximum altitude?' 
read, checkS 
[F ((checkS eq 'Y') or (checkS eq 'y')) THEN BEGrN 

Print, 'What do you think is the appropriate max alt?' 
read,al 
check{4,i) = al 
Save, Check, Filename='c:\work\sav\newlist2.sav' 
max I =(fix( check{ 4,i))-1.46-0.0375/2.0)/0.0375 

END IF 
Print, 'Do you wish to change the minimum altitude?' 
read, checkS 
IF ((checkS eq 'Y') or (checkS eq 'y')) THEN BEGIN 

END[F 

Print, 'What do you think is the appropriate min alt?' 
read, al 
check(5,i) = a I 
Save, Check, Fi lename='c:\work\sav\newlist2.sav' 
min I =(fix(check{5,i))-1.46-0.0375/2.0)/0.0375 

print, i,' ',Check( I ,i), ' Is good' 
Restore, 'c:\work\sav\'+check( I ,i)+'.dat' 
Restore, 'c:\work\sav\'+check{ I ,i)+'msis.dat' 
New Top = (Fix(Check{4,i))-1 .46-0.0375/2.0)/0.0375 
NewBottom =(Fix(Check{5,i))-1.46-0.037512.0)/0.0375 
TempDay = STRMID(check{l ,i),4,2) 
TempMonth = STRMID{check{l,i),2,2) 
TempYear = STRMID{check(1 ,i),0,2) 
Nighthour=(size(temperature)X I) 
IF (New Top L T Topbin(Nighthour-1) and 

(fix(check(4,i)) LT 88 5)) THEN 
Topbin(nighthour-1 )=New Top 

IF (Check( 4,i) NE '95') THEN Topbin(nighthour-1 )=NewTop 
Hour=? 
Day=fix(Check(6,i)) 
RUNMS!SeOO,Geolat,Geolong,Day,Hour,Altres,Atmosphere 
NewTemp=Atmosphere{2, Topbin( nighthour-1 )) 
Top Temp( nighthour-1 )=NewTemp 
RayleighError2,data,Rayleightimes,add,avgbins,cnterror 

,pcterror,signal,avgsignal,altprof;bklo,bkhi 
CalculateDensity, AvgSignai,Altres,Density 
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End 

END FOR 

Gravity, Geolat, Geolong,Length,Aitres,Gnew 
Tempcalculation, altprof,density,gnew,mmm,m ,alters 

,topbin,toptemp,temperature 
file = 'c:\work\sav\'+check(l ,i)+'msis.dat' 
save, temperature, density, temperr,altprof,topbin,toptemp 

,headers,date,data,rayleightimes,bkhi,bklo,timestamp 
,fil ename=file 

nightlydata(i,O, *)=!values. f_nan 
nightlydata(i,O,min I :(topbin(nighthour-1 )-I))= 

Temperature(nighthour-1 ,min I :(topbin(nighthour-1 )-I)) 
nightlydata(i, I ,min I :(topbin(nighthour-1 )-I))= 

temperr(nighthour-1 ,min I :(topbin(nighthour-1 )-I)) 
goto, jump3 

END IF 

Save, Check,i, Filename='c:\work\sav\newlist2.sav' 
END IF 

Print, 'End of Line' 
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