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ABSTRACT

Stationary lidar (Light Detection and Ranging) systems are often used to collect 3-D data (point clouds) that
can be used for terrain modelling. The lidar gathers scans which are then merged together to map a terrain.
Typically this is done using a variant of the well-known Iterated Closest Point (ICP) algorithm when position
and pose of the lidar scanner is not accurately known. One difficulty with the ICP algorithms is that they can
give poor results when points that are not common to both scans (outliers) are matched together.

With the advent of MEMS (microelectromechanical systems)-based GPS/IMU systems, it is possible to
gather coarse position and pose information at a low cost. This information is not accurate enough to merge
point clouds directly, but can be used to assist the ICP algorithm during the merging process.

This paper presents a method called Sphere Outlier Removal (SOR), which accurately identifies outliers
and inliers, a necessary prerequisite to using the ICP algorithm. SOR incorporates the information from a low
cost GPS/IMU to perform this identification. Examples are presented which illustrate the improvement in the
accuracy of merged point clouds when the SOR algorithm is used.

Keywords: lidar, ladar, ICP, outlier

1. INTRODUCTION

Point-cloud data acquired from lidar (Light Detection and Ranging) systems is increasingly used to build 3-D
models of objects such as vehicles, buildings, and terrain. These models can then be used for a wide variety of
applications, including automatic target recognition (ATR), obstacle detection and avoidance for autonomous
vehicles, landscaping, civil engineering projects and mining.

The main problem that each application shares is that a lidar that collects data from a single viewpoint
can’t create a complete 3-D point cloud that completely covers the object or terrain of interest. This requires
several scans to be acquired from different viewpoints, and the scans must then be merged together. If accurate
knowledge of the position and pose of the sensor at each viewpoint is available in a common coordinate system,
the scans can be easily transformed to the common reference frame and merged to create the complete 3-D
model.

Knowledge of the position and pose can be acquired from a highly accurate GPS/IMU system. Although
available, systems with the accuracy necessary to allow direct merging of point clouds can be very expensive.
Recent developments in MEMS (microelectromechanical systems)-based GPS/IMU sensors have made it possible
to gather position and pose information at a low cost. Although these sensors are improving, current MEMS
sensors do not allow for direct merging of lidar scans accurately enough for many applications.

Often the merging of lidar scans is accomplished by the well-known Iterated Closest Point (ICP) algorithm
proposed by Besl and McKay when position and pose information is inaccurate or unavailable.1 There are several
variations of the ICP algorithm that have been proposed, all of which are derivations from the original.2–7

Originally, the ICP algorithm was designed to be used in a point-based approach. This algorithm sets the
metric based on the Euclidean distance between two points in different scans. However, since a point to point
correspondence does not take into account the surfaces of the object, it suffers from the inability to “slide”
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overlapping range images.8 One method used to mitigate these slight misalignments is to use the point-plane
Euclidean distance, which can be computed by evaluating the distance between the point and its neighboring
plane.9 The main advantage to using a point-plane distance calculation is that it is more accurate when registering
two data sets.

One of the main disadvantages of ICP algorithms is that although they are able to correctly register points
when they have a correlating match, when outliers are present the algorithm can fail. Besl and McKay mention
that outlier removal is a necessary step in the pre-registration process, but do not discuss any method for outlier
removal.

This paper presents a method of merging (registering) lidar scans when coarse position and pose information
is available to help eliminate outliers. The paper proceeds as follows: in Section 2, an example of the problems
with outliers is presented. Section 3 introduces the Sphere Outlier Removal approach to eliminating outliers, and
Section 4 presents experimental results from using this method. Finally, Section 5 presents conclusions drawn
from this research.

2. OUTLIER REMOVAL

An example of the outlier problem is given in Fig. 1. In this example, the ICP algorithm was used to register
two data sets, Xref , and Pflt. In Fig. 1a, Xref (black) has more points than Pflt (blue), but because Pflt does
not contain any outliers the ICP algorithm correctly registers the data newPflt (red). The data set shown in
Fig. 1b contains the same number of points in the reference frame (Xref ) (black) and the floating frame (Pflt)
(blue), but half the points are considered outliers, and the ICP algorithm incorrectly registers the data newPflt
(red).

(a) (b)
Figure 1. The effect of outliers on ICP merging. (a) Pflt (blue) does not contain any outliers, and the ICP algorithm
correctly registers the data newPflt (red). (b) Pflt (blue) contains outliers, and the ICP algorithm incorrectly registers
the data newPflt (red).

As can be seen, the removal of outliers is a necessary step that must be completed in order for the correct
registration of data sets.

2.1 Current Outlier Removal Techniques

Even when most of the point correspondences are correct, one still has to deal with outliers resulting from
mismatches and noise-corrupted data points.8 The underlying problem here is how to robustly reject outliers.
There are three main classes for the solution in the field of robust statistics. The first class, outlier thresholding,
is the simplest method to implement and the fastest computationally.8,10 This method is is most widely used
in vision applications because of its speed. Outlier thresholding estimates the standard deviation σ of the
registration errors in the data set during each iteration and then removes points which have errors greater than



|kσ| where k ≥ 3. One problem with outlier thresholding is that an estimate of σ may be incorrect if there are
more outliers than inliers. Another problem with outlier thresholding is that regardless of what value k is chosen,
some points which are valid will be classified as outliers and some points which are outliers will be classified as
valid.

The second class of robust estimators is the median/rank estimation method.10 This method selects the
median or kth value, for some percentile k with respect to errors for each observation and use that value as the
error estimate. The median value is almost always guaranteed not to be an outlier as long as half the data is
valid. An example of median estimator is the least-median-of-squares method (LMedS).10 LMedS requires an
exhaustive search of all the possible combinations of point correspondences with relation to the median value.
While these median-based methods can be fairly robust, the time required to do an exhaustive search over a
small data set can be very long.

The third class of outlier removal is called M-estimation.10 M-estimation is a generalization of least squares,
where “M” refers to maximum likelihood estimation. The general form of M-estimation defines a probability
distribution which is maximized by minimizing a function of the form:

E(z) =
∑
i

ρ(zi), (1)

where ρ(z) is an arbitrary function of the errors zi.

The disadvantage of these types of outlier removal techniques is they are computationally expensive and
must be run during each iteration of the ICP algorithm, therefore slowing the speed of the registration process
dramatically. Thresholding has the added disadvantage that it is not very robust. Median/Rank requires that
50% of the data be overlapping, and M-estimation requires an exhaustive search and is the most computationally
expensive.10

3. SPHERE OUTLIER REMOVAL

The problem with the previous methods of outlier removal is that none of them are able to specify which points
are outliers and which point are inliers before a registration is attempted. Instead they will compute inliers and
outliers with each iteration of the ICP algorithm, thus drastically reducing the speed of the ICP algorithm. The
Sphere Outlier Removal (SOR) algorithm identifies the inliers and outliers before the ICP algorithm is started,
enabling this procedure to be done one time at the beginning.

The SOR algorithm is developed using the observation that if we have noisy information on the pose of the
sensor, we can use that information to determine limits on the farthest two corresponding points in Xref and
Pflt can be separated. For example, if we know the measurements from a low-cost pose sensor have a 1-σ error
of ±0.5◦, we can find a sphere of appropriate radius centered at each point in Xref in which we would expect
corresponding points from Pflt to fall. Those points in Pflt that are not within the appropriate distance from
corresponding points in Xref can be rejected as outliers and discarded from the data set before the ICP algorithm
is run.

The radius of the sphere containing inliers can be found by finding the maximum distance a point will move
when errors are applied to the three pose angles, given by yaw (ψ), pitch (θ), and roll (φ). Note that this
movement, from the viewpoint of the lidar scanner, arises from a combination of both the pose of the scanner
and the angles that describe the direction the scanner is pointed for a particular measurement. This movement
is given in homogeneous coordinates by the relationship

xq
yq
zq
1

 = Rψθφ


xp
yp
zp
1

 , (2)



where

Rψθφ =


cψcθ, −sψcφ+ cψsθsφ, sψsφ+ cψsθcφ, 0
sψcθ, cψcφ+ sψsθsφ, −cψsφ+ sψsθcφ, 0
−sθ, cθsφ, cθcφ, 0

0, 0, 0, 1

 , (3)

and cψ, sψ are abbreviations for cos(ψ) and sin(ψ), respectively, and similarly for the other terms. The squared
Euclidean distance is thus given by

d2(xp, yp, zp, ψ, θ, φ) = ‖Rψθφp− p‖22, (4)

or

d2(·) = 2[x2p(1− cψcθ) + y2p(1− cψcφ− sψsθsφ) + z2p(1− cθcφ)+

xpyp(sψcφ− sψcθ − cψsθsφ) + ypzp(cψsφ− cθsφ− sψsθcφ)+

xpzp(sθ − sψsφ− cψsθcφ)].

(5)

We note that (5) is highly nonlinear, and there are several maxima in the error distance. Through numerical
analysis of (5), we find that the maxima occur under four combinations of ψ, θ, φ:

ψ, θ,−φ, (6)

ψ,−θ, φ, (7)

−ψ, θ, φ, (8)

−ψ,−θ,−φ. (9)

These combinations arise because of the fact that cos(ψ), cos(θ), cos(φ) are all even functions and sin(ψ), sin(θ),
sin(φ) are all odd functions. The maximum value of d is thus given as:

dmax = max[d(xp, yp, zp, ψ, θ,−φ), d(xp, yp, zp, ψ,−θ, φ),

d(xp, yp, zp,−ψ, θ, φ), d(xp, yp, zp,−ψ,−θ,−φ)].
(10)

3.1 SOR Algorithm Implementation

The SOR algorithm uses a variable distance for the sphere radius depending on the (xp, yp, zp) value of the points
in Pflt. Once the radius is found using (10), all the points in Xref must be searched for points within the sphere
surrounding (xp, yp, zp). This can be done by performing a radius search with a KD-Tree, where the KD-Tree
is designed to efficiently find the points within a given radius of a point.11 It is constructed from the points in
Xref before outlier removal is performed. The SOR pseudo code is shown in Algorithm 1.

Algorithm 1 uses as input the sets Xref and Pflt, the scans to be merged. The points in Xref are used to
create a KD-Tree which is optimized for radius searches. It should be noted that the KD-Tree can either be
made with the Xref points or the Pflt points. If one point set is larger than the other, then creating the KD-Tree
out of the larger point set would produce faster speeds, since it will only have to loop over all the points in the
smaller set. The algorithm calculates (10) with the ψ, θ, φ values set to the 1-σ angle errors in the pose sensor.
Figure 2 illustrates how the radius of the spheres would change based on the location of the point being checked,
for the case where σ = ±0.5◦. Points that are near the origin of the scanner will have a smaller radius to search
for neighboring points, while points that are farther away from the origin will have a larger radius to search.

4. SOR EXPERIMENTAL RESULTS

We will now demonstrate how well the SOR algorithm works verses using a fixed radius to designate inliers and
outliers. The IMU sensor selected for the experiments has an error for the three angles of σ = ±0.5◦. Two lidar
scans of the Old Main Building at Utah State University were acquired. Using the pose measurements from the
IMU, the scans can be registered by transforming points from the second scan into the reference frame of the
first scan. The result of this process is illustrated in Fig. 3. The error in the registration is obvious.



Algorithm 1 Sphere Outlier Removal (SOR)

Input:
Pflt, %floating frame points
Xref %reference frame points
ψ, θ, φ %σ for Yaw, Pitch, and Roll

Output:
Pin, %inlier points
Pout, %outlier points
percoverlap %percent overlap

Local:
Nx, %number of point in the reference frame
Np, %number of point in the floating frame
Ns, %number of point in the range search
Nin, %number of inliers points
pi, %the ith floating point
maxdist, %the maximum distance calculated by (10)
psphere %the points that are within the sphere radius search

begin
KDTree ← MakeRadiusSearchKDTree(Xref ) % create Xref KD-Tree
for(i = 0 . . . Np)
{

pi = Pflt(i)
maxdist = dmax(pi.x, pi.y, pi.z, ψ, θ, φ) (10)
%find points within radius of pi
psphere = RadiusQuery(KDTree, pi,maxdist)
Ns = length(psphere) %number of points within radius of pi
if(Ns > 0)

Pin = [Pin, pi] %add the point to the inliers
else

Pout = [Pout, pi] %add the point to the outliers
}
Nin = length(Pin)

percoverlap = 100Nin
Np

end

For points directly in front of the lidar, (ψ, θ, φ) = (0, 0, 0), and a range of 30 meters, the maximum distance
that a single point can be in error based on the ±0.5◦ changes in yaw, pitch, or roll is 0.524 meters. One method
for determining inliers and outliers is just using a worst case radius over all the points — in our case the fixed
radius would be 0.524 meters. Figs. 4a and 4b illustrate the differences between the fixed radius and variable
radius outlier removal algorithms. The images are highlighted to help observe the inliers within the two scans.
The Xref is highlighted yellow, the Pflt is highlighted red, and the inliers are highlighted cyan.

Figure 4a shows the results of using a fixed radius of 0.5 meter when removing the outliers within the point
clouds of two of the scans taken with the lidar. Notice that the area where Xref and Pflt start to overlap, the
inliers (cyan) are marked about 0.5 meters away from the Xref points marked in yellow. This is due to the fact
that we used a fixed radius when determining inliers and outliers. This leads to a large number of points that
are marked as inliers that should actually be outliers. Using a fixed radius for outlier removal fails to assign the
inliers and outliers correctly, because some outliers are found within that 0.5 meter distance.

In comparison, Fig. 4b shows the removal of outliers using SOR algorithm which uses a variable radius.
This figure shows that the excess points collected in the previous example are almost entirely removed by using
smaller spheres when the points are close to the lidar origin (located at the center of the square cut out of the
of the yellow points) and larger spheres when the points are located farther away from the lidar origin.

For further comparison, Table 1 shows the results of using the SOR algorithm before the ICP algorithm versus



Figure 2. Inliers within a variable radius. In this example, the blue point are the reference points, the floating points are
marked in black and the points that are within the sphere are considered inliers.

using a fixed radius for eight scans of Old Main taken by the lidar. These scans are adjacent and overlap the
scans ordered before and after each scan. Notice that the Root Mean Squared Error (RMSE) between the scans
after ICP registration is consistently less when the SOR algorithm is used. Although the fixed radius results in
more reported inliers, some of these inliers are actually outliers and do not help in the registration process.

Table 1. Comparing SOR vs. fixed radius.

Scans SOR Inliers Fixed Radius 0.5 m Inliers

RMSEicp RMSEicp

1 / 2 0.1445 24103 0.2248 40545

2 / 3 0.0945 33134 0.1280 68737

3 / 4 0.1106 6479 0.2759 36014

4 / 5 0.1244 11106 0.3176 57145

5 / 6 0.1228 20952 0.2223 61614

6 / 7 0.1112 2304 0.1869 3380

7 / 8 0.1826 3588 0.4390 19879

5. CONCLUSION

The removal of outliers is an important step to correctly registering 3D images with the ICP algorithm. Currently,
the outlier removal techniques do not take into account the a priori orientation of the pose sensor and the
measurement error of the sensor. Using the sensors pose error tolerances a new algorithm called the Sphere
Outlier Removal algorithm was developed.

This algorithm is performed only once, at the start of the ICP registration process. It requires finding the
points in one scan that are within a variable distance of points in the second scan. This distance is determined
by the accuracy of the pose sensor and the point position relative to the lidar scanner. A search method based
on KD-Trees is used to accelerate this search process.

The SOR algorithm was found to remove outliers better than a fixed radius approach. With outliers and
inliers better identified, the ICP algorithm can more accurately register scans taken by the lidar.



Figure 3. Scan 1 (yellow) and scan 2 (magenta) registered using coarse IMU measurements.
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