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Epistemic Decision Theory Applied 
to Mu1 tiple- Targ e t Tracking 

T. K. Moon, Member, IEEE, S. E. Budge, W. C. Stirling, Member, IEEE, and J. B. Thompson 

Abstract- A decision philosophy that seeks the avoidance of 
error by trading off belief of truth and value of information 
is applied to the problem of recognizing tracks from multiple 
targets (MTT). A successful MTT methodology should be robust 
in that its performance degrades gracefully as the conditions of 
the collection become less favorable to optimal operation. By 
stressing the avoidance, rather than the explicit minimization, 
of error, we obtain a decision rule for trajectory-data association 
that does not require the resolution of all conflicting hypotheses 
when the database does not contain sufficient information to do 
so reliably. This rule, coupled with a set-valued Kalman filter 
for trajectory estimation, results in a methodology that does not 
attempt to extract more information from the database than it 
contains. 

I. INTRODUCTION 
ULTIPLE Target Tracking (MTT) is a time-varying M joint decision and estimation problem consisting of a 

rule to make decisions concerning the association of sensor 
outputs and target vehicle trajectories; and an estimator to 
incorporate the target dynamics model, the sensor model, 
and the collection geometry to calculate the target trajectory 
based upon the associated sensor outputs. As such, it provides 
a paradigm for other time-varying decision problems. The 
solution to the MTT problem requires the extraction from the 
data of as much information as possible about the number of 
targets and the trajectory of each. It is desirable to distinguish 
reliably all targets of interest from background noise, and to 
associate accurately each target with the available data. 

A reliable MTT procedure must be able to deal with a 
wide range of scenarios. Targets may be diverging, merg- 
ing, and maneuvering, background clutter may be present, 
and there may be an unknown (and changing) number of 
targets. A sufficient condition for bounded estimation error 
covariance for single-target tracking is observability [ 1, page 
2421. For the multiple target tracking problem, however, joint 
observability may not be enough to ensure that the target- 
data association problem can be solved reliably in the sense 
of achieving uniformly small decision error probabilities and 
bounded estimation errors. A theoretical analysis yielding 
sufficient conditions for acceptable performance has not been 
developed; the difficulty of such analysis being due, most 
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likely, to the coupled nature of the joint decision-estimation 
problem. 

Many MTT methods reported in the literature appear to per- 
form satisfactorily, however, under favorable circumstances. 
For example, they work well if the targets are sufficiently sep- 
arated spatially, if maneuvers can be adequately modeled, and 
if the trajectories can be initialized reliably. But the success 
of any track-association methodology whose design implicitly 
assumes robust collection circumstances is problematic. With 
many collection scenarios, there may simply not be sufficient 
reliable data to guarantee the desired performance. Thus, care 
must be taken to ensure that the analysis methodology does not 
attempt to extract more information from the database than it 
contains. 

A standard approach to the MTT problems is to optimize 
the decision rule and the estimation rule separately, then 
attempt to merge them into a global solution [21-[6]. In 
[7], an attempt is made to unify the two components of the 
problem by casting it as a systems identification problem. 
These approaches all invoke classical decision rules, however, 
such as maximum likelihood and Bayesian methods, to choose 
the track-data association that meets an optimality criterion. 
Also, they usually employ a point-valued estimator to calcu- 
late the optimal trajectory estimate for each track. They are 
designed to resolve all conflicts between possible trajectory- 
data association decisions, and to provide trajectory estimates 
that are (at least theoretically, when viewed in isolation from 
the decision problem) the very best possible. 

Trajectory-data associations must be made even at the risk of 
a possibly large probability of error. Conventional measures of 
trajectory estimation error such as covariance analysis, while 
perhaps useful for assessing precision, cannot be used reliably 
to assess the accuracy of the decision-estimation solution 
because they do not properly account for association decision 
errors. Although such methods may apparently work well 
under ideal circumstances, their performance may not degrade 
gracefully when the conditions of the collection become less 
favorable to the performance of the algorithms. 

We present an approach to the multiple target tracking 
problem that is based largely upon an epistemology developed 
by Levi [8], whose contributions have lead to the devel- 
opment of a shift in the philosophy of decision making. 
This approach stresses the avoidance of error, rather than the 
explicit minimization of error. In other words, if insufficient 
information is available to make a unique “best” decision, we 
will not attempt to do so; rather, we will eliminate as many 
hypotheses as possible, but not insist at all but one be removed 
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from consideration. To implement such a philosophy, we 
must be able to deal with unresolved conflict. Consequently, 
we must search for a new approach to the trajectory-data 
association problem, and a new technique to address the 
trajectory estimation issue. 

The result of this search is a trajectory-data association 
decision rule expressed in terms of two probabilities: one gov- 
erning the informational value of the association hypothesis, 
and one governing the subjective belief, or credal, probability 
of the association hypothesis [9]. With this methodology, a 
criterion of serious possibility is defined, and all trajectory- 
data associations that are seriously possible are retained; it 
is not necessary to resolve all conflicting hypotheses before 
processing more data. 

The trajectory estimation problem is addressed by intro- 
ducing a set-valued estimator, rather than the conventional 
point-valued estimator, to describe the evolution of the vehicle 
trajectory. The set-valued estimator is based upon the set- 
valued Kalman filter [lo], which computes a convex set 
of trajectories, all with equal claims to validity, given the 
observations. If a trajectory is completely observable, the 
radius of the convex set decreases to zero as the quantity 
of data increases, and the set-valued estimate asymptotically 
becomes point-valued. Under less favorable circumstances, 
the radius of the set remains finite and may even grow, 
thus providing a more comprehensive characterization of the 
trajectory than does a single point estimate. 

The output of the set-valued multiple target tracking 
methodology is a family of convex sets (in position-velocity 
space) of trajectories, which we shall refer to as tracks, or truck 
sets. As more data are obtained, observable track sets tend to 
decrease in radius. This provides a useful method of assessing 
the credibility of a given track-data association hypothesis. 
Additionally, the decision rule permits the furcation of track 
sets into separate tracks as well as the merging of separate 
tracks into a single track. The resulting track estimatiodtrack 
association algorithm has several useful features, including 
the incorporation of the phases of track initialization, track 
confirmation, track spawning, track merging, and track 
deletion into a single, unified methodology. In a companion 
paper [ l l l  we extend the methods of this paper to target 
classfication in the multiple-target invironment. 

11. METHODOLOGY 

A. Decision Theory 

We summarize some of the key features of convex Bayes 
decision theory [8], [9] used in this analysis. For an inquiry 
under investigation, suppose there are finitely many hypotheses 
that may be considered. Let U denote this set of possible 
answers and assume that exactly one element of U is correct 
and that all elements of U are consistent with our present 
state of knowledge. Using Levi’s terminology, U is said to be 
an ultimate partition, and a potential answer is the collection 
of hypotheses remaining after we have rejected all members 
of a subset of U .  Each element of a potential answer is said 
to be a serious possibility. A potential answer is degenerate 

if no elements of U are rejected, and we may not reject all 
members of U .  If all but one element of U is rejected, the 
surviving hypothesis is the strongest potential answer. When 
more than one element of U survives rejection, we remain in 
suspense between the rival serious possibilities. 

Epistemic utility is a probability that is composed of a 
convex combination of two probabilities, one measuring the 
importance of acquiring new information, the other measuring 
the importance of avoiding error. For any g c U ,  we define 
the utility of accepting g in the interest of avoiding error 
as 7 ( g ; f )  = 1 if e = true, and 7 ( g ; l )  = 0 if l = 
false. In addition to the cost of error, we also apportion a 
unit of informational value to each hypothesis h; E U by 
assigning to elements of U non-negative real values such that 
their sum is unity. If we enumerate U = { hl,  ha,. . . , hn}, 
and let M ( h j )  2 0 denote the value assigned to hj, then 
~ ~ = ,  M ( h j )  = 1, and for any set g c U ,  we define 

as the informational value of rejecting 9. The function 
M ( . )  thus defined is a probability, termed an information- 
determining probability, and is intended to regulate the 
evaluation of information regardless of its truth-value. The 
utility of accepting g in the interest of acquiring new 
information regardless of its truth-value is, then, C(g)  = 

We may address the conflict that exists between the goals of 
avoiding error and acquiring information by defining an epis- 
temic utility function for acquiring error-free knowledge (that 
is, making a decision) as the convex combination u ( g ; f )  = 
a l ( g ;  e) + (1 - a ) C ( g ) .  The quantity a represents the relative 
importance attached to avoiding error versus acquiring new 
information. We must restrict $ 5 Q _< 1 to ensure that 
no erroneous answer is preferred to any correct answer. 
Since all utility functions that are related by a positive linear 
transformation are equivalent, we may simplify this utility 
function by defining ua(g; e )  = $u(g ;  1)  - e. The resulting 
utility function for accepting g in the interest of both avoiding 
error and acquiring new knowledge is 

1 - M ( g ) .  

1 - bM(g)  if l =  t 
u U ( g ; f )  = 

where b = is the coefficient of boldness. This coefficient 
is constrained to lie in the interval (0,1]. The closer b is to 
unity, the less caution is exercised that error will be introduced 
(increased boldness in accepting hypotheses); the closer b is 
to zero, the lower the risk of error (decreased boldness). 

We must also establish a probabilistic measure of belief for 
the hypotheses that are available. Credal probability is prob- 
ability formed on the basis of subjective judgment, represents 
the likelihood that an option is true and is independent of any 
informational value or demand that might be associated with 
the option. Whereas the information-determining probability 
is used to determine the utility of error-free knowledge, 
credal probability may be viewed as expectation-determining 
probability. 
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For a given ultimate partition U ,  let Q ( g )  denote the credal 
probability assignment to any element g C U .  For g C U ,  the 
expected utility is 

E Q U a ( g ;  e) = [I - bM(g)lQ(g) - bM(g)[l  - e ( g ) l  
= Q ( g )  - bM(g) (3) 

where EQ( .) is mathematical expectation. This expected utility 
represents a tradeoff between the desire to acquire new knowl- 
edge and the desire to avoid error. The choice of b establishes 
a threshold at which the demand for knowledge renders the 
risk of error worthwhile. 

We may adopt any set of hypotheses in the Boolean algebra 
generated by the elements of the ultimate partition, U .  This 
expands our possibilities; we are not constrained to select only 
the elementary hypotheses, hi, but may choose any subset 
of them. This decision philosophy may be summarized as 
follows: 

Levi's Rule of Expected Utility [8, page 531: Given a finite 
ultimate partition U ,  an information-determining probability 
function M defined over the Boolean algebra of elements of 
U ,  an expectation-determining probability function Q defined 
over the same algebra, and an index of boldness b, the agent 
should reject all and only those elements of h; E U satisfying 
Q(k)  < bM(hi). 

B. Set-Valued Estimation 

The notational convention used in this paper is to use bold- 
face, lowercase symbols to denote random vectors, boldface, 
uppercase symbols to denote sets of random vectors, under- 
barred, italic symbols to denote sample values, and uppercase, 
under-barred italic symbols to denote sets of sample values. 
Matrices will be denoted by uppercase, non-under-barred italic 
symbols. We shall use the notation N(:,P) to denote the 
Gaussian density with mean g and covariance matrix P. 

Consider a linear stochastic system of the form 

X t  = Ftxt-i + Gtut 

Z t  = Htxt + Vt 

(4) 

( 5 )  

for t = 1, 2,. . ., where Ft is n x n, Gt is n x p ,  Ht is r x n, 
{ut} and {vt}  are p-  and ?--dimensional vector Gaussian (zero- 
mean) white noise processes with positive-definite covariance 
matrices Qt and Rt, respectively. 

The conventional Kalman filtering solution to this problem 
assumes that we know the prior distribution for X O ;  that is, that 
we know the mean and covariance matrix for this Gaussian 
random variable. The resulting estimate is point-valued, since 
the output of the estimator is a point vector in the state 
space. Now let us relax the assumptions regarding the prior 
distribution, and assume that we only know that the mean 
value of xo lies in a convex set of the form & = {E E 

W : (g - c ~ ) ~  [KOKT] - ' (E  - co) 5 l}, where KO is a non- 
singular matrix and co is a known vector in state space. There 
is a continuum of possible Kalman filters associated with this 
problem, one for each possible initial condition KO, and it is 
not tractable to implement a Kalman filter for each of them and 
thereby propagate the convex region as observations are made. 

The set-valued Kalman filter, however, provides a mechanism 
for propagating this set of estimates. We quote the following 
theorem [IO, Theorem 31: 

Consider the system given by (4) and ( 5 ) ,  
Let Kola be an invertible n x n matrix, and let c+,, be an n-vector. 
Let {tl, z2, . . .} be observations. Suppose the initial state vector 
xo is a member of the set of random vectors 

Theorem 1 

X O I O  = { x  N:, P o l o )  : E E & I O }  (6) 

where 

& l o  = { : u E ~ " : ( ~ - ~ ~ ~ ) T [ ~ ~ ~ ~ K ~ , ] - l ( : - ~ ~ ~ ~ )  I I} (7) 

and Po l o  is a positive-dejinite matrix. 

Prediction Step: 
The set-valued Kalman filter is as follows: 

where 

Filter Step: 

111. MULTIPLE TARGET TRACKING 

We assume that each track is characterized by a linear 

(16) 

where j = 1 , 2 , .  . . , It; there are '& active tracks at time t (It 
is unknown). The number of tracks is allowed to vary since 
tracks may be initiated or terminated at any time. We assume 
that all tracks lie in the same state space. 

In the interest of brevity, we shall restrict attention to the 
outputs of a single sensor, and assume that this output may be 
characterized by a linear stochastic model of the form 

(17) 

where st is the number of observations vectors at time t and 
zit is an r;,-dimensional random vector. Each observation 

stochastic dynamics model of the form 

X j t  = Fjt-lxjt-1 + Gjt-lujt-1 

Zit = HitXjt + Vit, i = 1, ' .  ' S t  



MOON ei al.: EPISTEMIC DECISION TRACKING 231 

vector, therefore, lies in an T i t  dimensional space, termed 
the it-th data space, which corresponds to the column space t w3 
of Hzt. Let Z,, denote the zt-th data space. We assume that 
each data space is a subset of the state space (rZt 5 n). We 
do not, however, require all observations to lie in the same 
dimensional subspace of the state space, and we permit the 
dimensionality of the data spaces to be time-varying. 

Before data are collected, we characterize the target envi- 
ronment with one set-valued track defined by an initial credal 
matrix KO, an initial centroid state co, and a prior covariance 
matrix no. The initial state-vector set is 

5 - 

CI  

X O l O  = {x -wit> po lo)  : 2 E XOIO} (18) 
Fig 1 Geometry of the JM-function for n = 3 showing the projection of 

where the state onto the observation space gz t  and the senously possible region 

T Xolo = {g E !Rn : (g - ~ 0 )  [Solo] -'(g - q0) 5 I} We shall say that track set &l is associated with observa- 
tion sample vector gZt if we fail to reject the hypothesis h,tJ. 
Each ultimate partition, Utt,  has the property that exactly one 
element is true, although each is logically possible. According 
to Levi's theory of expected utility, we may reject only 
those members of the ultimate partition that are not seriously 
possible. We do not insist that the decision that one and only 
one element of U,, be chosen as the association decision. 

B. Calculation of the M-Function 

(19) 
Po10 = is a positive-definite matrix, and Solo = XoKF. 
For sample times t = 1 ,2 ,  . . ., we observe st observations z, = {glt,. . . , gSt t } .  Let us suppose, at time t ,  that we have 
7t-1 sets of predicted (from time t - 1) random-variables of 
the form 

where 
The information-determining probability, or M -  function, 

is intended to measure the information value of rejecting an 
association, rather than the truth-value of an association. A 
measure of the information value of rejecting the association 
of a predicted track set with an observation z,, is the 
distance between sample values of the observation and and 
the track set; if the distance is small there is little value in 
rejecting the association (in other words, there is great value 
in accepting it). 

Observations are related to points in the state space via 
(17), where H,, is an r,, x n matrix (with 5 n) of rank 
rZt. Since the dimensionality of the observations is generally 
different than the dimension of the state space, care must be 
taken to obtain a meaningful definition of distance between 
points in these spaces. For 2 E ?lilt-l C !Rn and zzt E '?Rrtt, 
we define the generalized distance between them as 

d(Z%Z,t)  = \\HLtic-ZZt\l= [(HttZ - Z ) T ( H ~ t  - ZZt) ]  '. (26) 

A. The Ultimate Partition 

At each time, t ,  there exist S t  observation sample Vectors, 
{&t}f&l of the random variables {z~~}:;~, and Tt-l predicted 
track sets, { ~ ~ , t - l } ~ ; ~ .  We wish to make decisions regarding 

def 

the association of each g,, with each track set g:lt-l. We 
desire to apply Levi's decisionmaking methodology to this 
problem and will, therefore, adopt the strategy of accepting 
all tracWdata associations that cannot be rejected on the 
basis of Levi's rule of epistemic utility. We first define the 
ultimate partition, then we may specify the information-value 
determining probability, or M-function, along with the credal 
probability, or @function, and apply Levi's rule. 

We must define an ultimate partition for each sample vector, 
resulting in a set of st ultimate partitions of the form Utt = 
{hztl, ' . . , hZtT,_, . hztTt), i = 1 , ' . . , st ,  where 

there exists g E X~,,-, 

no track generated gzt otherwise 

j = 1, . . . , 7t-l 
that generated zzt (25) 

We desire to normalize this distance to permit its interpre- 
tation as a probability density function. This normalization is 
accomplished by defining a region of the data space Zit which 
we may assume contains all predicted observation values that 
may be feasibly associated with the given value for zit, and 
restricting attention only to this region, termed the seriously 
possible region for zit, which we shall denote as Zit. An 
illustration of the geometry is given in Fig. 1. 

Let zit denote a sample value of the observation random 
vector, zit .  We may view zit as a sample from a normal 
random variable with distribution N(&, Rit) for some real 
vector &. The mean, &, is unknown, but we will assume 
it is an element of zit, the seriously possible region for ,zit. 
We shall assume that zit is a convex set centered at zit of 
the form 
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- a t  E .  = { C E R T "  - : I C 1 - ~ i t l l I e p i l , . ' . r I C r , t - Z i t r , t I  

5 BPir,, } (27) 

where we assume that Rit is a diagonal matrix of the form 
Rit = diag{p,21, . . . , p!rat}  and 8 is a given constant. Note 
that the size of the seriously possible region is determined by 
the covariance of the observation zit. 

Before we can use the distance function for the calculation 
of the information-determining probability function M ,  we 
must characterize the set of all g E Rn that corresponds to the 
seriously possible region. To do this, it is convenient to employ 
a projection operator [ 12, page 1051, to project the state space 
onto the space spanned by the columns of the matrix Hit; that 
is, onto the data space Zit. Define 

Pit = H: [HitH:]-lHit (28) 

and note that Pit = P z .  For any g E xt,t-l, its projection 
onto the data space Zit is given by = Pitg. The vector 
Zit is termed the minimum-norm solution to the equation 

The operator P$ = I -Pit, where Pit is defined by (28),  is 
a projection operator onto the subspace that is orthogonal to the 
column space of Hit. We may decompose Rn into the direct 
sum of the column space of Hit and the subspace orthogonal to 
the column space of Hit. Let Pit%n and P$Rn, respectively, 
denote these two orthogonal subspaces, and define 

(29) 

If g E Eit, then I[Hi,c]r, - Z i t k l  I pik0,  k = 1, . . .  : r i t ,  
where [Hitg]k is the kth element of Hits .  But g = (Pit + 
P$)g = Pitg+ P i g ,  thus Hitx = HitPitg+ HitP$g. Since 
P$g is orthogonal to the column space of Hit, HitP$x 0 
and Hitx = HitPitg. Then 

< = Hitx. - 

= {g E Rn : H;te E Zi t } .  

I[Hitg]k - Z i th i  1 I[Hitz';t~]li - ~ i t k l ;  = 1, ' ' .  , T i t  (30) 

and there is no constraint on vectors in R" that lie in the 
subspace orthogonal to the column space of Hit. We may, 
therefore, express Eit as the direct sum of constrained vectors 
that lie in the column space and unconstrained vectors that 
lie in the space orthogonal to the column space; that is, 
3 zit = ZHZt 

-it @ P$Rn, where 

EHtt - ' i t  -{g : 

([Hitg]k-Zitlc( < p i k e :  k = 1 , ' . ' : T i t } .  (31) 

Since we wish M to be a probability, we require that the 
distance function, d(x ,  zi t ) ,  be normalized, thereby admitting 
the interpretation as an information-determining probability 
density function. We must normalize this function by the 
seriously possible region; that is, for fixed zit, let 

5 E Eat d(c,z,,) - - /IH*t2-4,tlI 

. (32) = Jzzt 112-4,tlld~ j-, IIC-4,tlldC - 
-1 t { undefined r: # zit 

(If the dimension of the data space is constant and the 
noise covariance matrix is constant, the denominator can be 
precomputed.) 

The function mat@ may be viewed as a normalized dis- 
tance between zit and g E and is a measure of the 
information gained by rejecting the association of g E &l 

and g,, . Intuitively, the greater the distance between the 
predicted observation and the actual observation, the greater 
the value in rejecting the hypothesis that the predicted state 
estimate and the observation are associated. 

The information 
value ofrejecting the association of B, with zit is 

Let B, be a ball with center at g E 

where PZtl3, is the projection of the ball B, onto the data 
space 2tt. The vector PZtg is the projection of x onto the 
same data space. We emphasize that the informational-value 
determining probability places all of the probability mass in 
the data space. This result is appropriate, since there is no 
way of assessing the informational value of rejecting trackldata 
associations by means of components of the state that lie in 
the subspace orthogonal to the column space of H,t. 

with # g', let the 
diameter of the balls B, and B,, become arbitrarily small. 
Then the condition M,t@,) < M Z t ( B , , )  indicates that the 
information value of accepting the association of g with gzt 
is greater than the value of accepting the association of g' 
and gat. 

For g E &l and g' E 

C. Calculation of the Q-Functions 

The credal probability, or &-function, is the probability that 
a given track-data association is correct. This probability is a 
function of the statistical descriptions of the target dynamics 
and of the observation errors, and is characterized by the 
density of the predicted track, projected onto the observation 
space. For each j = 1, . . . Tt - l ,  the set of predicted random 
vectors is given by 

(34) x;lt-l = {x JVk,  P&,) : zi E x;,t-l} 
where 

xij - R":  
- 4 - 1  4- 

i = l,...,st (35) 
T 

and = Kiftpl [Ki/t-l] . Here the superscript z denotes 
the observation vector and the superscript j denotes the track 
number. 

The probability distributions of {x E X&l} assume the 
form 

so that the density is 
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By projecting this density onto the space of observations, a 
measure of the truth value of the association of the track 
&-l with the observation zit may be obtained. Let 

(38) 

where P$-l = HPli-,HT projects the covariance matrix 
onto the observation space. We may view this family of 
densities as credal probability densities, and interpret them as 
characterizing the belief that the above association is correct. 

Let l3, be a ball with center at g. The credal probability 
that the h e  state lies in l3, conditioned on the observational 
value zit is 

- 

(39) 
-a - 

For : E &~,,-, and g' E X~,,-, with g # E', the condition 
eijt(B,; 7 )  > Qijt (&,;  .') indicates that the association of 
5 with zit is more credible, or believable, than the association 
of g' and zit. 

D. The Association Likelihood Ratio Test 

The association decision problem is to determine whether 
or not the track &l is associated with the observation zit. 
We shall assume a conservative attitude, and say that the entire 
track set Xilt-] is associated with zit if any : E is 
associated with zit. While it is possible to  refine the notion of 
association to determine a subset of Xilt-l that is associated 
with zit, we will not make this refinement in this development. 

The decision rule may be formulated in terms of the 
information-determining probability density, mit (;) (where 
- 5 E Xilt-l), and the family of subjective belief, or credal, 
probability density functions, {p&t (g; g), ; E We 
desire to apply Levi's rule of expected utility to this problem. 

let l3, be a ball with center at :. Using 
(33) and (39), Levi's rule of expected utility indicates we may 
not reject the association of &- and zit if 

For g E 

Qijt(B,;g) - L bMit(B,). - (40) 

Now let the radius of B, go to zero, and define the function 

(41) 

Since the densities are continuous at g, a necessary condition 
for (40) to hold for all balls B, is that 

- 

def " 

q i j tk4  =P:*,t-l(Z;2i). 

r l i j t ( l )  2 bm;t(;) .  (42) 

and the credal probability are completely determined by the 
component of : that lies in the column space of Hit (the data 
space Zit). 

Given the information-value determining probability density 
(32) and the credal probability density (38), we may form the 
Association Likelihood Ratio Test (ALRT): 

Let &l be a predicted track set, and let zit be a sample 
value of the observation vector zit. We shall say that xi,t-l 
and .zit are associated with boldness b i f q i j t ( : )  2 bmit(:) for 
some g E Eit fl X:lt-l. That is, there exists : E Eit n 
such that 

(43) 

in which case the track set is jltered according to (44) as 
described in the next section. r f  &l fl = 0, then we 
deem gzt and Xtlt-l to be dissociated . 

If Xi,t-l survives the ALRT for gat,  then the likelihood that 
Xilt-l is associated with gat is greater than the information 
value gained by rejecting the association. If the threshold 
b = 1, then the decision strategy is maximally bold in the 
sense that as many associations g2,) will be rejected 
as possible. As b approaches zero, the decision strategy is 
maximally cautious, and the likelihood diminishes that a 
correct association (indeed, any association) will be rejected. 
A brief discussion on some numerical aspects of the ALRT 
computations is provided in the appendix. 

E. Track Filtering 

When an observation zit associates with a track set &, 
then we calculate the filtered set-valued estimate according to 

-1 
-t(t xij - - {z E !Rn : (z - &T [s$] (g - c$) L 1) 

i = 1 , 2 , .  . ' , S t  (44) 

where Sltt = K$ [K;ft] and 

L$ = &1 + Wijt[zzt - Hitglt-ll 
Pi' tlt = [I - WijtHit]Pt;'t-l 

KZ' tlt = [I - WijtHit]K~lt-l 

(45) 

(46) 

(47) 

for j = 1 , 2 , .  . . , Tt-l, with Witj the Kalman gain defined by w.. a j t  - - p3 t(t-lH:[HitP;';t-lHz + ~ i t 1 - l .  

IV. TRACK MAINTENANCE 

' .  S t ,  is composed 
of all track sets that survive the association test with zit. If 

track set that associates with Zit. If z:lt consists of more than 
one &;,, then there exists a conflict of the jrs t  kind , which 
means that more than one track set is associated with zit. We 

If (42) holds for any g E xilt-l, we may not reject the 
association of g with zit; consequently, we may not reject 
the association of the track set 

of the values that g assumes in the orthogonal subspace, 
since, in both expressions, appears premultiplied by Hi,. 
Thus, both the informational-value determining probability 

The set yilt = u;z; xifty = 

with zit. 
w e  emphasize h a t  both mit(.) and qijt(.), are independent Yilt = xiytt for Some j ,  then there exists Only One predicted 
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do not need to force a resolution of this conflict by choosing 
one “best” association. Indeed, doing so may result in an 
unacceptably large probability of error, which may adversely 
affect future decisions and track estimates. Fortunately, the 
application of the set-valued estimator permits us to avoid 
imposing such arbitrary and objectionable constraints on the 
problem. We may deal with this situation by combining into 
one track set all track sets that survive the association test 
with a given data vector. 

Consider the collection {Xi;:, . . . , Xz;:’i } of filtered track 
sets associated with data vector gzt.  If ICzt  = 1, there is a 
unique association with zZt. If ICzt  > 1, the following ad 
hoc procedure may be used to combine these commonly- 
associated track sets into one track set. 

1) Centroid calculation. The centroid of the new ellipsoidal 
set, denoted &, is the average of the centroids; that is, 

1 k, t  ije 
Ct l t  = Ce=1 C t l t .  

2)  Ellipsoid calculation. The ellipsoid of the merged track 
set, denoted The credal matrix of the new ellipsoidal set, 
denoted Kiit, is obtained as follows: 
(a) Compute the eigenvalues and eigenvectors, denoted, 

for each ellipsoidal matrix K:;: [K;;:] T ,  by 
{&k}y=1 and {bk}F=l, respectively (we assume 
that the eigenvectors are of unit length). Define the 
vectors 

{al,...,an> = -GI’lt,‘.‘&pnk -GI,,>. 
(48) 

(b) Let nl = arg{maxe{laekl}}. Then aKl defines the 
semi-major axis of the new ellipsoid. Let y1 = 

and 41 = [laKl 11’. Then 41 and 7, represent Ila 1 1 ’  - 

the largest eigenvalue and associated eigenvector of 
the new credal matrix Kijt .  

(c) Compute the orthogonal complement of all other 
9 ’ s  with respect to 7,. The resulting vectors then 
lie in the n - 1-dimensional space orthogonal to gl. 
We define the vectors ah = (I-glyT)%, e #  nl .  

(d) Repeat Steps (b) and (c) above to find 6 2 ,  4 2 ,  

and g2 ,  and continue until all eigenvalues and 
vectors of Kilt have been formed, thus defining 

the new ellipsoidal matrix Kilt Kilt . The credal 
matrix Kilt can then be obtained by a Cholesky 
factorization. 

3) Covariance calculation. We assume that each credal set 
Xy: is governed by the same dynamics matrix Ft but 
the covariance matrices P:: may all be different. Thus, 
it is necessary to compute a new covariance matrix 
to associate with the new centroid and credal matrix. 
We shall define this matrix as the element of the set 
{P$}:E1 with the largest Euclidean norm. 

This track-merge method is reasonable, but no claims of 
optimality are made and it is by no means the only one that 
may be proposed. It suffers from requiring a full eigendecom- 
position for each of the track sets. Also, it can be shown that 
the merged track does not necessarily contain all parts of the 

‘il 

’ [ . I T  

track sets that merge into it. Another merging method may 
be obtained by observing that since the track sets are usually 
initialized to have their axes parallel with the coordinate axes 
(that is, S = K K T  is diagonal and the ellipses are unrotated), 
the eigendecomposition of track sets is initially trivial. If the 
system noise covariance of the track states is diagonal (a 
common assumption), then for many observation matrices the 
ellipse matrices remain diagonal; a merging algorithm which 
preserves the diagonal track ellipse matrices obviates the need 
for ever doing a complicated eigendecomposition. This may be 
accomplished by simply finding the largest extent of all of the 
ellipses in each coordinate direction. This approach, however, 
leads to generally larger merged tracks than the method above. 
Another variation suggested by an anonymous reviewer is to 
take into consideration the accountability of each track by 
weighting each track by the inverse of its covariance when 
computing the centroid. In the simulations below, however, 
we have used the track merge method described above. 

If Yilt = 8, then no predicted track sets associate with the 
observation vector zit, and zit is deemed to be an unassociated 
observation, which must correspond to either a new track or 
to a false alarm (a signal detection that does not correspond 
to a legitimate target). Since there is no warrant for deciding 
arbitrarily that zit is a false alarm, we may assume that zit 
represents the start of a new track. We then define a new 
track set associated with this observation. The new track set is 
formed by choosing its centroid to be any vector such that 
Hit.- = ,zit; the credal matrix may be any nonsingular matrix. 

The set Yilt = U:Ll X;;, is composed of all filtered track 
sets corresponding to the j th  predicted track set that survive 
the association test with at least one data vector. If xilt = Xyt  
for some i, then exactly one data vector associates with Xilt-l. 
If y:,, consists of more than one filtered track set, then more 
than one data vector is associated with Xiltpl, resulting in a 
conjict of the second kind. This situation may correspond to 
the initiation of a new track (for example, one vehicle may split 
into multiple vehicles), or it may mean that multiple tracks are 
crossing, or it may correspond to parallel tracks. In all of these 
cases, it is undesirable to force a resolution of this conflict; it 
is far better to retain all tracks. 

If xilt = 0, then the set & - l  is an unassociatedpredicted 
track set at time t;  either the track has terminated or there is 
a data drop-out due to a probability of detection less than 1. 
Since there is no warrant for deciding arbitrarily that the track 
has terminated, we must assume initially that Xiltpl represents 
a track with no data attached at time t. We may deal with this 
situation by propagating the predicted track set to form the set 

-t+llt-l X j  = {z E !Rn : 

(2 - <+llt-l) [ t+llt-l] 

with s:+llt-l = K;+llt-l [.-l;+llt-l]T and 

(49) 

-1 
T S.I (ic - d+l,t- l)  5 

d+llt-l = q - 1  (50) 
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X t  = 

24 1 

U X t  

UY t 

-1 0 A, 0 0 0 -  
0 1  0 A t 0  0 
0 0 1  0 0 0  UXt 

0 0  0 0 1 A t  Ui, 
,o 0 0 0 0 1 -  -u; - 

(54) 
0 0 0 1 0 0 x t - l +  UYt 

If, at time t + 1, no association is made with this track, 
we must decide whether to continue to propagate it or to 
terminate it. We must define a track termination decision rule 
to decide whether or not to reject this track as being valid. 
We do this by following the same philosophy as used to 
develop the ALRT. Let the ultimate partition for this track be 
Up = {retain, terminate). To invoke Levi’s rule of expected 
utility, we must define the information-determining and credal 
probabilities for rejection, or pruning of the track set. 

Let t’, be the time associated with the most recent associ- 
ation of this track with any previous observations (t’ 5 t). 
The larger the value t - t’, the lower value it has as a 
legitimate track. It is reasonable to suppose that there exists 
some integer, N,, such that t - t’ > Np entails maximum 
informational value of termination. We may, therefore, define 
the information-value of terminating a track 

t - t‘ < Np 
1 t - t ‘ > N p  

M , = { K  t - t ’  

(53) 

The only rational basis for terminating a track is the 
possibility that it is not currently associated with a real signal 
source of interest. This may occur because of the following 
reasons: (a) the signal is too weak to be detected by the 
receiver at time t ,  (b) the source physically ceases to exist 
at time t ,  or (c) the track is bogus and was created by a false 
alarm, such as clutter, at a previous time. Reliable analysis of 
the probabilities of the first two reasons is problematic, and we 
will ignore them in this analysis. The third reason, however, 
is directly related to the probability of false alarm, which can 
often be estimated from knowledge of the characteristics of 
the receiver and the signal environment. Even if not precisely 
known, it may be possible to determine a largest seriously 
possible probability of false alarm, P;A. Then Q, 5 P$*. 
For each such Q,, the credal probability of track retention is 
then 1 - Q,. 

In accordance with Levi’s rule of expected utility, we may 
determine the retention or termination status of a given track 
with the pruning likelihood ratio test (PLRT): 

An unassociated track is rejected if and only if 1 - Qp < 
b,M, for all Q, 5 P;A, where bp E [ 0 , 1 ]  is the coefJi- 
cient of boldness associated with termination. Thus, a track 
is terminated if and only if 1 - PsA < bpe; that is, if 

The structure of this rule permits the false-alarm probability 
to be a function of time, as might be the case for nonstationary 
collection environments. The coefficient of boldness b, may 
also be made time-varying if desired, depending upon the 
criticalness of the decision to terminate a track. A high value 
of b, entails boldness in terminating tracks, and a low value 
entails extreme reluctance to terminate tracks. 

Example: To illustrate the concept of the ALRT method- 
ology, consider the case of tracking targets constrained to 
planar motion [13] with intensity observations available. Let 
z = [z, y, x, ?j, i, i]’ denote the kinematic and intensity state 

N ( 1 - P ;  ) t - t ’ >  b p  A .  

where At is the sample interval, and we have set G I .  
Possible target maneuvers are assumed to be characterized by 
the process noise, ut,  whose covariance is Q t .  We assume that 
angle-of-arrival data are available; further, we assume that the 
sensor is sufficiently far from the target that the linearized 
model is adequate. For convenience we also assume that the 
coordinate system is resolved along the azimuth and elevation 
angles and that the intensity is observable, 

1 0 0 0 0 0  

0 0 0 0 1 0  
] (55)  

that is, T i t  E 3.  Due to the intrinsic decoupling of the 
kinematic and intensity state variables, it will be convenient 
to consider the track sets as ellipsoidal cylinders, rather, than 
as pure ellipsoids. Let E = [ 2 1 , 2 2 , 2 3 , 5 4 , 2 5 , 2 6 ]  T E Xi,-l,  
zit = [ziti, z i t 2 ,  z ; t 3 I T ,  and suppose R i t  = diag{pq, pz, p:} .  
Then the seriously possible region is 

and the information-value determining probability density is 

Each 2 E represents the mean value of a predicted 
conditional distribution. For each such 2 there exists a filtered 
conditional density of the form, (38); this can be applied in the 
ALRT (43) to determine if 

We wish to examine the decision boundaries and track 
sets as time evolves. Figure 2 illustrates the evolution of 
the azimuth and elevation components of the predicted and 
filtered track sets for a recursion from t to t + 1. The solid 
lines correspond to time t ,  and the dashed lines correspond 
to time t + 1 (one may think of a time axis that runs out 
of the paper, and the solid and dashed frames correspond to 
different points along this time axis). Since predicted track 
XiIt-l is associated with zit via the ALRT decision rule, the 
filtered track set Kift is computed using (44) and used as the 
set-valued estimate of this track; it is denoted in the figure. 
Once a track has been associated, there is no need to retain 
the index i to identify it. We may simply refer to this track 
as gilt; we also may drop the data index i for the filtered 
centroid, filtered covariance matrix, and filtered credal matrix 
in (45) through (47). We may obtain the predicted track set 
X,‘,,,, by propagating track Xilt via (21) through (24). 

and zit associate. 
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Fig. 2. Example of predicted and filtered track sets at times tand t + 1. 

Tracks 2&-l and x:lt-l did not associate with observation 
zit, however, so the filtered track sets and cannot 
be used to propagate those tracks. If there are no other 
observations with which these tracks associate, we must regard 
them as dissociated at time t. They may be associated with 
future observations, however, so we need to propagate them 
to the next time, t + 1. We perform this propagation according 
to (49) for j = 2,3.  

At time t + 1, the observation ,zi.;lt+l is obtained, and the 
ALRT decision region is calculated. For tracks that have been 
previously associated, this decision region is a function of the 
filtered covariance matrix, P&flt+l; for tracks that were not 
previously associated, the decision region is a function of the 
two- (or more) step prediction covariance matrix, P;+l,t-l. 
Hence, there are two decision boundaries indicated in this 
figure: the outer boundary, denoted by the coarser dashed lines, 
corresponds to the previously associated track, Xil t ,  while the 
inner boundary, denoted by the finer dashed lines, corresponds 
to the previously dissociated tracks. We observe, from Fig. 
2, that tracks X,'+,,, and Xf+llt-l associate with ,zi,t+l, 
but track X:+llt-l does not associate with this observation. 
Consequently, the filtered track sets Xf:llt+l and Xf;"ll,+l 
may be combined in accordance with the algorithm provided 
in Section IV and then predicted to time t + 2. The predicted 
track set X:+llt-l will be tested for termination and, if it 
survives that test, will be used to predict track X~+21t- l .  
These predicted tracks may then be tested for association with 
observation z ~ , , ~ + ~ ,  and the process may be continued until all 
data are processed. 

Figure 3(a) illustrates a family of three crossing trajectories. 
The tracks move generally from left to right at time increases; 
the lines correspond to the x and y position components and 
the + symbols correspond to noise-corrupted observations. 
Figure 3(b) displays the filtered track sets corresponding to 
this simulation, with the ellipses representing the projections 
of the track sets onto position space. The initial predicted 
track set Xol-l includes the entire field of view, and is not 
shown. The three large elliptical regions correspond to the 
the filtered track sets after the first set of observations have 
been processed. As time increases, the size of these track sets 

\ 3 

zm .& l b  . 
zm .& l b  . 

,m o 

I 

I 

6M 0 

Fig. 3. Three crossing tracks: (a) Simulated trajectories and observations. 
(b) Filtered track sets. 

decreases rapidly; for the first few observations corresponding 
to Tracks 1 and 3, however, there are multiple associations, 
since the tracks are fairly close and the track sets are still fairly 
large. As more confidence is obtained in the associations, these 
tracks become uniquely associated, and the elliptical regions 
decrease rapidly in size, and will asymptotically become point 
tracks. At sample ten, Tracks 1 and 2 nearly intersect, and both 
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Fig. 4. Four closely spaced tracks: (a) Simulated trajectories and 
observations. (b) Filtered track sets. 

tracks associate with the observations (conflicts of the first 
kind). These multiple associations persist for a few samples, 
but as the tracks diverge, the associations again become 
unique. Track 2 is unambiguously associated and estimated, as 
evidenced by the radius of the track set converging to zero, and 
the set-valued estimates asymptotically become point-valued. 

A more complicated scenario is illustrated in Fig. 4, con- 
sisting of four trajectories with closely spaced track segments. 
Under such circumstances, the probability of misassociation 
will be extremely high. In regions of association conflict. 

Fig. 5 .  Tracking with b = 0.0. 

Fig. 6. Tracking with b = 0.4. 

Fig. 7. Tracking with b = 1. 

however, the ALRT methodology increases the size of the 
track sets to compensate for the highly ambiguous associations. 
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While it is impossible to distinguish exactly which track is 
associated with which data, it may be argued that this is as 
it should be, since there is insufficient information available 
to make unique associations with small probability of error. 
Thus, the set-valued estimates, though less precise than would 
be point-valued estimates in the ideal case, may ultimately be 
more useful, since they do not force unique decisions in an 
arbitrary and objectionable way. 

To illustrate the effect of the boldness b on the tracking 
performance, we ran a simulation of seven diverging tracks. 
The tracks emerge from a single point and separate over about 
50 time steps. This is a scenario that might be typical for a 
multiple-warhead vehicle. Each track has a different observed 
intensity which helps to distinguish between the targets, but 
is not a definitative aid becase the intensities are similar. The 
results of the tracking algorithm are shown in Figs. 5 through 
7 for b = 0, b = 0.4 and b = 1. In these figures, the + signs 
represent observations and the track estimates are shown using 
ellipses (which collapse to points). The estimated track lines 
are shown with dashed lines. Crossover from one apparent 
track to another is due to conflict of the first kind, which occurs 
when multiple observations associate with a single track. The 
higher b is, the less likelihood there is for such conflicts to 
occur. On the other hand, if b is too large, an association that 
should occur (as we would interpret the data) does not take 
place, and a new track is initiated. There are other factors 
that affect the performance of the tracking, namely the size of 
the seriously possible region (determined by 0) and the initial 
track size. Optimal settings of the boldness and other system 
parameters is a topic of ongoing investigation. 

Simulations have also been run to test tracking in the pres- 
ence of target clutter and dropout. Due to space limitations and 
the difficulty of interpreting the display on a black-and-white 
medium, the simulation results are not graphically displayed 
here. The results, however, are described briefly. In the case 
of data dropout (missed detection), an unassociated track 
propagates forward with the track ellipse growing over time. 
When the data reappears, the track ellipse begins shrinking as 
before. When clutter is present, new tracks are initiated for 
a short number of observations, then pruned out according to 
the pruning likelihood ratio test. 

V. DISCUSSION 

Many MTT algorithms, indeed many pattem recognition 
methodologies, are designed to optimize the performance of 
various components of the joint decisiordestimation problem, 
regardless of the overall performance that results. The theme 
of this paper, however, runs somewhat counter to the dominant 
trends of estimation and decision to optimize performance. It 
is certainly important to extract all information possible from 
a given database, but in doing so, we may run the risk of 
attempting to squeeze more from the database than it contains. 
When this happens the results may lose credibility. The goal 
of the methodology presented in this paper is to develop a 
mechanism that adjusts the quality of the algorithm output to 
match the information content of the data. If the quality of the 
collection is degraded, then the preciseness of the decisions 
and the estimates must also be diminished. 

Clearly needed to complete the investigation are compar- 
isons of this method with other techniques (such as JPDA) 
and a more thorough evaluation of the effect of the boldness 
and other parameters. These investigations are being pursued. 

APPENDIX-SOME NUMERICAL ISSUES FOR ELLIPSOIDAL SETS 

Computation of the ALRT requires determination of 2 E 
Sit n such that (43) is satisfied. If zit is not in the 
projection of the track set &-, onto the observation space, 
then the closest distance from the observation zit to the track 
set &,-, must be determined. The projection of the track 
ellipse onto the space of observations can be expressed as 

IlLzll 5 1 (58)  

where 

- - ( [ Ktlt-1 j I[ Ktlt-1 j ,'..)-' (59) 

and the norm is defined as 

For an observation zit outside the track set, the nearest point 
to the track set is that z which satisfies 

m i n k  - zit11 (61) 

IlLz11 = 1. (62) 

subject to 

This is a constrained quadratic minimization problem of the 
type discussed in [14]. The normal equation can be readily 
written as 

where X is a Lagrange multiplier. It remains to determine A, 
from which z follows readily. Solving (63) for in terms of 
the unknown A, 

- .(A) = ( I  + XLTL)-lzi , .  (64) 

To simplify this equation, it is convenient to compute the SVD 
decomposition of L as 

L = U D V T  (65) 

where D = diag[dl, dz, . . . , d,] and U and V are orthogonal 
matrices. Using the orthogonality properties, it is straightfor- 
ward to show that 

.(A) = V ( I  + XD2)-'g 

Lz (X)  = U D ( I  + X D y g  

(66) 

where e = VTzi;, and 

(67) 

from which the constraint llLz112 = 1 becomes 

Equation (68) is known [14] to have a unique solution for 
X > 0, which by geometric arguments is the correct sign for X 
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in this problem. Solution of this equation can be accomplished 
using a few Newton iterations. Substitution in (64) gives the 
desired value. 

Note that if the track ellipses are aligned with the coordinate 
axes then the SVD decomposition becomes trivial. 
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