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= -AGklf,-l + Zrn-lOpen and, 

= - A i ’ f ,  + ZlnOpen. (50) 

(49) 

The previous result concerning the existence of solutions indicates 
that if f,,t satisfies these equations, then f t n  = f, + v also satisfies 
these equations where v is any vector in the null space of A as defined 
previously. By substituting f t r ,  into (50), we obtain the following 
equation: 

(51) 

(52) 

a: = ’ ’’ 
m f, + Z I I L o p e n .  

- - -Ai’ ( f ,  + v )  + ZVnopen. 

a: = -Am1frn + Z m o p e n .  

Since Az‘v = 0, then 

(53)  
= a,. (54) 

Therefore, the reference member acceleration has not changed. To 
find the associated force at the tip of the other singular chain, 
f:n-l ,  this result is substituted into (48), which yields the following 
equalities: 

1 ncl(f* + f l r L - - l  + f,,,) = ~ ; ‘ ( f ,  + f L i  + f,,, + v )  

( 5 5 )  

which implies that 

f L l  = fm-1 - v .  (56) 

This result shows that any components of force added to the tip of 
one singular manipulator in the “direction” of the singularity, are 
compensated for by equal and opposite components of force at the 
tip of the other singular manipulator, and the acceleration of the 
reference member is still unique. 
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Classification Using Set-Valued Kalman 
Filtering and Levi’s Decision Theory 

Todd K. Moon and Scott E. Budge 

Abstract-We consider the problem of using Levi’s expected epistemic 
decision theory for classification when the hypotheses are of different 
informational values, conditioned on convex sets obtained from a set- 
valued Kalman filter. The background of epistemic utility decision theory 
with convex probabilities is outlined and a brief introduction to set- 
valued estimation is given. The decision theory is applied to a classifier 
in a multiple-target tracking (MTT) scenario. A new probability density, 
appropriate for classification using the ratio of intensities, is introduced. 

I. INTRODUCTION 

Bayes theory, for all its historical significance and mature the- 
oretical development [I] ,  [2], continues to be re-examined with 
regard to the requirement for knowledge of a priori probability 
distributions. The minimax and Neyman-Pearson techniques are well- 
known methods [3] to eliminate the need for specific priors. In this 
paper we present an application of a new method promoted by Stirling 
and Morrell [4]-[6] that incorporates an information valuation into 
the decision making process. This information valuation provides the 
decision theory with the potential for more human-like response, 
as both the importance of the decision and its truth value are 
incorporated in the judgment. 

The philosophical viewpoint is based on the work of Levi [7]-[9]. 
Under the Levi theory, two modifications are made to traditional 
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Bayesian decision theory. In the first place, a convex set of prior 
probabilities is postulated, eliminating the need for restrictive and 
often unrealistic assumptions about initial conditions. An elegant 
estimation-theoretic using convex Bayesian theory is the set-valued 
Kalman filter, whose output is the set of conditional means based on 
the observations and a convex set of priors. 

The other modification of the theory is the use of Levi’s epistemic 
utility decision theory, in which decisions are made by trading 
off informational value vs. correctness. As in traditional Bayes 
theory, hypotheses are accepted if a criterion function exceeds some 
threshold. The criterion function depends not only on the perceived 
truth of the hypotheses, but also on their (subjective) importance. 
As in human decisionmaking, hypotheses of low importance might 
be rejected regardless of their truth, simply because the decision- 
maker is apathetic about low-priority decisions in the face of other 
higher-priority options. Tradeoff between importance and truth of the 
hypotheses is govemed by a design parameter called the “boldness.” 
All hypotheses for which the ratio of truth value to importance value 
exceeds the boldness are accepted, leading to another human-like 
attribute of suspended judgment. Suspended judgment is useful in 
scenarios where sequential data is available; the set of best decisions 
at one time may be refined upon successive observation, and a choice 
made at a later time is not inhibited by a short-sighted premature 
termination of an option at an earlier time. 

Decision theory, according to Levi, has as its proximate aim the 
avoidance of error [9] .  Suspension of judgment, which might be 
termed agnosticism, allows the avoidance of error by refusing to 
answer the question. Thus, we might accept both hypotheses X 
and Y ,  knowing that surely at least one of them must be correct. 
Such a decision, however, lacks boldness in a technical sense to be 
developed in this paper. By being more bold we avail ourselves of 
more decisive capability at the potential expense of more error. It is 
this tradeoff between agnosticism and error that forms the heart of the 
decision theory described in this paper, and that is different from the 
viewpoint provided by conventional Bayes theory. An acronym has 
been coined to describe the general philosophy entailed in Levi’s 
methods: EUCLID, for Epistemic Utility for Computer Learning, 
Inference, and Decision Making. 

It has been argued that decisionmakmg based on trading off truth 
vs. importance is nothing more than weighted Bayes risk decision 
theory. There are, however, some subtle but important distinctions. In 
the first place, the choices made are not traded off against each other. 
That is, we do not make the choice based on the risk of one choice 
compared to another choice. The importance measure developed by 
Levi is in a sense an absolute measure, indicative of the relevance 
of the choice. Thus, as an explicit part of the development system 
designers are able to incorporate into their decision model effects 
that would otherwise be difficult. Operationally, decision costs in a 
Bayesian setting might be found that give performance identical to the 
EUCLID method, but the insight and explicit presentation of ideas 
makes the Levi method useful. 

While convex sets of prior probabilities make sense from a 
decision-theoretic point of view, it may be difficult to conceive of 
how actually the sets of priors may be obtained in many problems. 
Indeed, other than the set-valued Kalman filter (SVKF), the use of 
convex sets has seen little application. It is the intent of this paper to 
marry the ideas of set-valued Kalman filtering and convex decision 
theory, using the output of the set-valued Kalman filter to form a 
convex set of likelihood functions. The approach may be generally 
applicable, but to reinforce the ideas and make them more concrete, 
an example of classification in a multiple-target tracking (MTT) 
scenario is presented. Further detail on the MTT problem can be 
found in the companion paper [IO]. In the current paper, we develop 

a likelihood function formed from the ratio of two non-zero mean 
Gaussian densities is presented for target classification. 

The remainder of this paper proceeds as follows. In Section I1 the 
salient features of EUCLID (Levi’s) decision theory are outlined. The 
fundamental ideas of the set-valued Kalman filter are briefly discussed 
in Section 111. In Section IV, the set-valued Kalman filter outputs 
are used as conditioning information for the credal probabilities. In 
Section V, an example of this joint estimation scheme in multiple- 
target tracking is presented. Finally, a discussion and conclusions are 
presented in Section VI. 

11. LEV1 DECISION THEORY 

We present in this section a summary of the epistemological frame- 
work for decision making as originated by Levi [7] and propounded 
by Stirling and Morrell [4]. Under this epistemology, two measures 
are used in making decisions: the informational value of a hypothesis 
to the decisionmaker, and its truth value. For example, an agent, 
denoted by X ,  performing target classification would place much 
more informational value on a threat than on a benign target. A 
decision rule incorporating such a value would be reluctant to reject 
the hypothesis of a threat, even though the probability of a threat 
may be small. 

To formalize this process, let c’ denote the set of all hypotheses 
under consideration by X at a particular juncture. li is called the 
ultimate partition for X. Let n be the number of hypotheses to choose 
from in I‘. X may select any subset of hypotheses from I:--he is 
not restricted to taking one and only one. As X may select various 
subsets of I;, there are 2“ potential answers available for X .  Let g 
denote a set of potential answers under consideration by X ,  g C U .  

To obtain information, X must reject certain hypotheses. The 
alternative of accepting all hypotheses in U conveys no information 
to X-it is like selecting all choices in a multiple-choice exam when 
only one should be selected to impart information. On the other hand, 
accepting all hypotheses avoids error; certainly one of the choices 
must be true. There is thus a tradeoff between information and error. 

By writing U = {hl.hz,...,hrt} and g c 11, we define the 
informational utility of rejecting the subset g by M ( g ) ,  where 

and M ( h , )  is the utility of rejecting a single hypothesis. The informa- 
tional utility is constrained so that M ( h , )  > 0 and E,”=, M(h,)  = 
1; M is often termed the information-determining probability. If 
M ( h , )  < M ( h , )  then rejecting h, is informationally more valuable 
than rejecting h , ;  equivalently, accepting h, is of more information 
value than accepting h,. 

The error-determining utility is represented by Q(g), which is the 
so-called credal-probability. &( h, ) represents the agents subjective 
probability (analogous to the prior probability in classical Bayesian 
reasoning) that h,  is true. 

The tradeoff between information value and credal value can be 
written as the expected utility function. This expected utility can be 
written as [4] 

where b is a parameter used to weight the importance of error- 
avoidance versus informational value to the agent X. The parameter 
b is termed the boldness, where 0 5 b 5 1. If b = 1, then 
the informational value M is weighed heavily in comparison to 
avoidance of error (as determined by the credal probability Q). X’s 
best policy for decision making, given his credal probability Q and 
his information-determining probability M ,  is to maximize u ( g ) .  This 
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can be accomplished if the agent takes all and only those h, E g 
such that 

~ ( h , )  

Reorganizing this, agent X accepts h, i f f  

Q(h , )  - bM(h , )  > 0. 

Q ( h , ) / M ( h , )  > b. (2) 

This ratio test is similar to ratio tests common in traditional Bayes 
theory. In the context of the classification problem discussed below, 
it will be called the classification likelihood ratio test (CLRT). 

Further flexibility is introduced by the use of convex sets of credal 
probabilities. Suppose that agent X has two credal probabilities, Q 
and Q', and that X has compelling external reasons for accepting 
both of them and is thus unable to decide between them. This 
represents a state of ignorance for X .  This ignorance, the inability to 
select a definite credal probability, is in contrast to uncertainty in the 
decisionmaking processing, which is already modeled by the density 
functions. Rather than forcing X to make an arbitrary decision of 
one particular density, one approach is to relax the requirement of a 
single credal probability and consider instead convex combinations 
of Q and Q', e.g. 

nQ + (1 - a)Q' 

for a E [0, I]. This combination is called a convex credal com- 
bination. A set Bx,t denotes the credal state of S at time t. If 
Q E Bx.t and Q' E Bx.t ,  then all convex combinations &" = 
aQ + (1 - a)&' E Bs.t for all (I E [O. 11. As shown by Stirling 
[4], convex sets of credal probabilities are closed under conditioning. 
It is also possible, though not useful to us in the current context, to 
define convex sets of information-valuation functions. 

III. SET-VALUED RLTERING 
Related to the idea of convex sets of credal probabilities is the 

concept of set-valued estimation. Traditional Bayesian estimation 
propagates a density by means of conditional probability. The best- 
known instance of this is the Kalman filter, in which the mean 
and variance of a Gaussian density are propagated. One of the 
problems with traditional Bayesian estimation is the choice of the 
prior probabilities. Often priors must be chosen on the basis of 
subjective judgment. The improper selection of a prior results in 
biased or incorrect results for all stages of the estimation (although 
asymptotically the effect of the prior probability may vanish). Ig- 
norance conceming the prior probability can be explicitly displayed 
using a convex set of priors and employing a set-valued estimation 
procedure. In set-valued estimation, rather than a single density, a 
whole family of densities is propagated. Since convex sets of credal 
probabilities are closed under conditioning, an initial convex set of 
densities is propagated as a set of densities under all conditional 
updates. 

When applied to convex sets of Gaussian densities, the set-valued 
Kalman filter (SVKF) is produced. Rather than a point-valued mean, 
the set-valued Kalman filter propagates a convex set of conditional 
means. Rather elegantly, this set of means can be propagated in closed 
form, with a computational load only slightly greater than the point- 
valued Kalman filter [5] .  This is rather remarkable, since the effect 
is the same as propagating an infinite number of Kalman filters, each 
with a different initial mean. A single common covariance matrix is 
associated with each mean to determine the Gaussian densities. To 
contrast the traditional (point-valued) Kalman filter with the SVKF, 
the sets produced by the set-valued Kalman filter give a spread of 
first moments, whereas the second-moment (covariance) computed 
for each estimate in the set is a measure of the spread of the true 

value relative to the estimate. Thus, the SVKF provides two measures 
of uncertainty that may be useful, rather than just one. 

As the SVKF runs, the set of estimates converges asymptotically 
to a point estimate, provided that the system is observable. Lack of 
observability in a state variable leads to failure of convergence. The 
SVKF is thus well-suited to poorly observable systems. Those state 
variables which are observable will converge; those which are not will 
not. The "size" of the set is also an indication of the convergence 
of the filter. This may be more meaningful than examination of 
the posterior covariance matrix which is used in many cases to 
determine quality of estimate. Another viewpoint of the SVKF is 
that it provides all estimates that are consistent with the data, subject 
to the uncertainty of the initial condition. As more data are received, 
the initial uncertainty decreases and the sets decrease in size. Figure 
I illustrates the performance of the SVKF (and the association logic 
derived from the decision theory above) in a multiple-target tracking 
problem. 

In what follows, we will use the SVKF as the estimator. The 
updated set of means at time f ,  using the measurement at time t 
will be denoted by X t l r ,  and is given by 151 

where the norm may be any convenient norm. If the Lz norm is used, 
the set of means is an ellipsoid in 71 dimensions, I (  being the number 
of state variables. c t I  is the centroid of the ellipse of means and Iitt 
defines the extent of the ellipse about the centroid. 

IV. SVKF AND EPISTEMIC UTILITY CLASSIFICATION 

In this section we will combine the use of the convex epistemic 
decision theory of Section I1 and the set-valued Kalman filter of 
Section 111 in a decision-theoretic application. At time f an agent X 
has a sequence of observations from T(  targets and desires to assign 
each of the rt targets to one of T target types. Let the observations at 
time t be denoted by z r t ,  i = 1 .2 , .  . . , s t ,  where s t  is the number of 
observations of the target. For simplicity in the following discussion, 
it is assumed that the number of targets ~t is equal to the number 
of observations s t .  (This is for clarity of exposition with respect to 
the classification issue. In many circumstances, e.g. ballistic tracking, 
the number of targets actually present may be more or less than the 
number of observations due to target clustering, clutter, data dropout, 
etc.) From each observation, a convex set of means is formed using 
the set-valued Kalman filter. Let these sets of means be denoted X , t ,  
i = 1.2:.., R / .  

Let the classification hypotheses be represented by hi,,, where h,,t 
is the hypothesis that target i (from observation i), i = 1.2:.., st, 

classifies as target type j ,  j = 1.2:.., T at time t. Then for each 
target there is an ultimate partition 

rtt = { h , i t . h , z t  :.., h,c' t} .  

The ith target is classified as being of type j if we fail to reject the 
hypothesis h 1 J  l .  

Traditionally, decisions about classification hypotheses would be 
made strictly on the basis of the observed data. That is, we would 
form a likelihood function 

(4) 

and make our decision based on the likelihood function and the prior 
probability of each hypothesis. We are motivated to look beyond this 
traditional scheme for two reasons. First, the prior probabilities of 
the hypotheses may be unknown; indeed, it is not the probability of 
occurrence of a particular target type that may be of most interest to 
us but rather the importance of the target type. Second, in the presence 
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Fig. 1. Three crossing tracks: (a) Simulated trajectories and observations. 
(b) Filtered track sets. 

of system and observation noise, we should be reluctant to use the 
simple observafion zz t  as the conditioning quantity in our likelihood 
function. Since we are classifying the target based on a history of 
observations, decision should, if possible, be based on the entire 
history (including prior assumptions), not just the most recent noisy 
observation. The convex set of means X,t incorporates information 
from all observations. The uncertainty due to a single observation 
is thus averaged out. In addition, the set explicitly displays, by 
its size, all uncertainty introduced by the uncertainty in the initial 
assumptions. 

In light of this reasoning, it makes sense to consider an epistemic 
utility approach. The credal probability function is determined upon 
the set-valued estimate, and we write it as Q(h, , t (XZt ) .  By so doing, 
we have introduced a credal probability which is no longer unique. 
For each point x E X t t ,  we have a different credal probability which 
we will write as Q(hZJ t l z ) ,  each of which is consistent with all 
observations and prior assumptions. This set of credal probabilities 
is not convex, in the sense defined by Stirling. However, it is defined 
over a convex set of parameters (the set Xzt). 

By using the estimated sets X Z t  as the basis for our decision 
making, we are performing something similar to decision-directed 
estimation [l  1 J, but in reverse. In this case we are using estimates 
(which are actually decision directed themselves) to form likelihoods 
to be used in a decision process. Such involution makes claims of 
optimality difficult. The merit of the method, however, is the ability 
to explicitly indicate what is known about the data. 

To complete the epistemic utility formulation, to each hypoth- 
esis we assign a utility of rejection, and denote that utility by 
M(h,,tlX,t). The decision rule can be written conceptually as 

where b is a boldness parameter as described above. Q(h,,tlX,t) 
actually represents a whole family of credal probabilities and 
M(h,,t lXtt) actually represents a whole family of information- 
determining probabilities. Well-defined comparisons must be made at 
specific points r E Xi[. We note four possible alternative strategies 
for making this decision: 

1 )  Accept any hypothesis such that 

From a theoretical point of view, this is most defensible, as all 
points in X Z t  are equally possible according to the set-valued 
Kalman filter. However, from a computational point of view it 
may be hard to determine the existence of such a point I. 

2 )  Accept any hypothesis such that 

x E X , t  niax Q(h, , t ls)  > b Z€X,t min M(h,t , (s) .  (7) 

This strategy is reluctant to reject any hypotheses. It is the 
most cautious method, and would have the lowest probability 
of error, but gains information the slowest. Computationally, it 
involves both a constrained minimization and maximization, 
but these can often be performed using a gradient search 
method. 

3) Accept any hypothesis such that 

This is the boldest strategy, acquiring information (in the Levi 
sense) fastest. The error would, on the other hand, be the 
highest of the strategies. Computationally, it is about the same 
as strategy 2. 

4) Select any hypothesis such that 

In other words, find the point x E X Z t  that maximizes Q,  and 
evaluate Ai' at that point. This is still quite cautious, but avoids 
the computation of another constrained optimization. 
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Fig. 2. Set formed by the ratios of means. 

V. APPLICATION TO MULTIPLE-TARGET CLASSIFICATION 

In this section, the ideas presented previously are applied to a 
multiple-target classification problem. At every time t ,  st obser- 
vations in C different intensity spectral wavebands are made and 
associated with track sets representing the set of possible means 
from a set-valued Kalman filter. The observed values are position 
(azimuth and elevation) and intensity, giving a three-dimensional 
observation vector. The details of the tracking, dynamics, and asso- 
ciation are presented in [lo]. The tracks from the different intensity 
spectral wavebands are combined together. A track set consists of a 
set of means representing all possible values of the state variables 
(position, velocities, and each different intensity) consistent with the 
observations and prior assumptions. 

Classification of targets in this system is performed using ratios of 
intensities. To make the example more complete, assume that there 
are three spectral bands, denoted as color CI , color CZ, and color 
CY. The set of colors will be written C. The intensities in each of 
these bands are written as ICI, ICZ,  and Ic3. The classification ratios 
used are p l  = Icl /Ic2 and p z  = I r 3  /Ic2. These two ratios will be 
written as an ordered pair p = ( P I ,  p z )  E RC-'. In general with C 
colors, the set of ratios form a (C - 1)-tuple. 

It is assumed that there is a set of prior target ratios used for 
classification, denoted by rJ  = ( r l J ,  1 - 2 ~ ) ~  j = 1: 2. .  . . , T .  These 
ratios represent the analytically or empirically derived values for 
the targets to be classified. Classification will be made based on the 
similarity of the observed ratios p to the target ratios r .  

The "observations" of the intensities are taken from the set-valued 
Kalman filter. The intensities are thus assumed to have a Gaussian 
density (justifying the use of the Kalman filter) with mean i z c t  and 
variance &, where the mean i,t comes from the set computed by 
the set-valued Kalman filter 

for c E C and i = 1 , 2 ,  . . . , sL .  The set of ratios of means consistent 
will all observations forms an irregular hexagon, as illustrated in Fig. 
2. Any point in this region is a valid estimate for the ratio of means. 
This region of possible ratios for the ith target is denoted by the 
symbol 0 , t  C and the set of possible intensities for the ith 
target is denoted by T,t C !Rc. Any point in the set T,t has a unique 
corresponding point in 0,; the inverse mapping i from 0 , t  to ZZL is 
not well defined for most elements in Ott .  

A credal probability function is formed from the density function of 
a ratio of Gaussian random variables. The derivation of this density, 
a non-central Cauchy density, is outlined in the appendix. It can be 

Fig. 3. Illustration of the utility function for targets of two different priorities 
and equal seriously possible regions. Solid line: utility of rejecting a target of 
low importance. Dashed line: utility of rejecting a target of high importance. 

written as 

where p = [ P I , P Z ] ' ,  i,t = [ilclt,iirc2,t,izc3t]' E Z, and A = 
A(p;i,t,RZt), B = B(p;iZt,R2t), C = C(i,t,RZt) and D = 
D(p;i,t,R,r) are given in (15), (16), (17), and (18). RZt is the 
inverse covariance matrix of the intensity vector; typically the in- 
tensities are assumed independent so that 

Rzt = d i a g [ l / d I f ,  1 / d 3 J .  

The credal probability is formed by integrating this density function 
over the region of interest for classification. Let B, be a ball formed 
in ratio space around the ratio rJ . The credal probability that the ith 
track classifies to class j conditioned on the intensity iZf  E TZt and 
the inverse covariance matrix RZt is 

An information-determining probability function can be formulated 
on the basis of the importance of the target, as mentioned above. For 
more important targets, there should be greater utility in not rejecting 
them. For a target ratio ( T I ,  T Z ) ,  the utility of rejecting it should also 
be a function of the distance of the target ratio from the set of possible 
ratios e,(. A reasonable utility function may be defined in a manner 
similar to [lo]. Let d ( r , p )  denote the (Euclidean) distance from a 
target ratio r to a point p E O Z t .  Around each target ratio point 
define a seriously possible region, that is, a region outside of which 
no classification can be reasonably obtained. Denote the seriously 
possible region by C , t .  Now let the importance of a class be indicated 
by weighting the distance of the class target ratio from the set of 
possible mean ratios, 0, normalized so that utility of rejection forms 
a probability. Let m,,t (r, , p t t )  represent the information-determining 
probability of rejecting the hypothesis that target i is of class j at 
time t .  Then we can write 

where the normalizing factor S,, is such that 

The weighting function Q, is set so that there is less utility in rejecting 
important classes. Thus, more important classes have a smaller a ] .  
An illustration of this information-determining probability density is 
given in Figure 3. The assignment of the seriously possible regions 
C J t  are part of the design problem and should reflect the agent's 
priority assigned to the targets. 
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The information value of rejecting the ball BJ centered on the 
ratio r3 is 

rZIzf(B J I PZt ) - - k,nx,t m Z t J ( r J -  PZc ) d P .  (13) 

The credal probability and the information-determining probability 
can now be combined in the classification likelihood ratio test 
(CLRT). We will state this using (9) from above. Let b be a fixed 
boldness. Then the CLRT accepts class J if 

By taking the ball around rJ infinitesimally small and using the 
continuity of the integrands, this CLRT can be written as 

This formulations requires computation of 

This is a constrained optimization problem, but is not too difficult 
due to the linear constraints and the fact that all derivatives can be 
readily computed. Taking the logarithm of the density function results 
in a function that is nearly quadratic so that points near the maximum 
can be obtained in one Newton iteration. 

VI. D I S C U S S I O N  AND CONCLUSION 
The use of the set-valued Kalman filter as the observation in the 

likelihood function has several features that recommend it. In the first 
place, except in the case of high noise observations, the set-valued 
estimate will usually include the observation point. The use of the set 
is thus (usually) a generalization of the epistemic utility, which in turn 
is a generalization of Bayesian methods. In those circumstances where 
the set does not contain the observation, it is because information 
preceding the observation suggests that the observation is noisy. The 
filtered data thus avoid incorrect classification due to a single bad 
observation. 

In addition, the approach described above should provide some 
robustness with respect to the set of prior target ratios. The ratios 
rl determine how targets are classified. However, it is unlikely that 
they will be known precisely. The use of the set-valued estimate to 
compare with the ratios combined with a maximization routine should 
make it so the system is somewhat forgiving of prior target ratios that 
are slightly incorrect. Further robustness could be provided using a 
set of prior target ratios consistent with all believed values of the 
prior target ratios. 

Because the classification decision is based on the CLRT for each 
of the hypotheses in the ultimate partition C ,  it is possible to arrive 
at a set of possible classifications at each observation of the targets. 
At the beginning of the observations, the set may contain several, if 
not all, of the possible classes. This is not disturbing, however, since 
it represents the ignorance about the targets contained in the initial 
conditions used to start the SVKF. As more observations are made, 
the size of the ratio set illustrated in Fig. 2 shrinks until all of the 
hypotheses in C are rejected except one. 

The set-valued classification is very similar to the way that human 
decisions are made. As the human observer gathers more data. 
he rejects obviously bad classifications until he has made enough 
observations to settle on one classification for each target. In man-in- 
the-loop decision making, the classifier presented here allows for the 
human decisionmaker to hold off a commitment of resources until 
more information is obtained. For example, if the classification set 

includes only benign targets, no resources would be committed to 
interception. On the other hand, if the set contains both benign and 
threat targets, the human decisionmaker may elect to wait for more 
observations before allocating resources. Finally, if the set contains 
only threats, immediate action can be taken. 

The use of the noncentral Cauchy distribution for classification of 
ratio intensities also appears to be new here. Further investigation 
into properties of the noncentral Cauchy are necessary to determine 
the merit, if any, of this distribution over others such as, for example, 
the ratio of the squares of the intensities. It does, however, have a 
convenient closed form expression. 

APPENDIX: DERIVATION OF THE NONCENTRAL CAUCHY DISTRIBUTION 
In this section we derive the noncentral Cauchy distribution in 

two variables which is used as the credal probability in Section V. 
Extension to higher dimensions follows the same development. Let 
p = [ p ~ ,  p 2 .  ps]’ denote a vector of means of a Gaussian random 
vector x = [XI, XZ. x z ] ,  P be the covariance matrix of the same and 
R = P-l be the inverse covariance matrix, 

143 q 5  q61 
Let w = x1/x2,, z = X ~ / X Z  and y = 2 2 .  Then 

In the development above, the intensities may be assumed to be 
independent so that P and R are diagonal, greatly simplifying the 
computations. 
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N-Learners Problem: Fusion of Concepts 

Nageswara S. V. Rao, E. M. Oblow, 
Charles W. Glover, and Gunar E. Liepins 

Abstract-Given N learners each capable of learning concepts (subsets) 
in the sense of Valiant, we are interested in combining them using a single 
fuser. We consider two cases. In open fusion the fuser is given the sample 
and the hypotheses of the individual learners; we show that a fusion rule 
can be obtained by formulating this problem as another learning problem. 
We show sufficiency conditions that ensure the composite system to be 
better than the best of the individual. Second, in closed fusion the fuser 
does not have an access to either the training sample or the hypotheses 
of the individual learners. By using a linear threshold fusion function (of 
the outputs of individual learners) we show that the composite system can 
be made better than the best of the statistically independent learners. 

1. INTRODUCTION 

The N-Learners Problem is a special (abstracted) case of data 
fusion: we are given multiple learners of Valiant [29] kind that 
infer concepts, and the problem is to design a fuser that combines 
the outputs of the individual learners. The problems of designing 
individual learners under this framework have been extensively 
studied during the past decade [22], [29]. Potential applications of the 
N-learners problem include sensor fusion [ I  11, [16], hybrid systems 
[13], information pooling and group decision models [14], [20], and 
majority systems [8]. 

Consider a system of N learners L I ,  L z .  . . . . L N ,  where L ,  
learns concepts (subsets) of a domain X in the sense of Valiant 
[29]; Le., given a sufficiently large sample of examples of c E 
C C 2x, a hypothesis h close to c will be produced with a high 
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probability. The closeness of the hypothesis (learned concept) h to 
c is specified by a precision parameter e ,  and the probability that 
this closeness is achieved is specified by a confidence parameter 6. 
Given two learners, the one with higher or equal confidence for the 
same value of precision is considered better (this notion is more 
precisely defined in Section IV). In this paper, we only consider 
the problem of designing a fuser such that the composite system, of 
the fuser with the N learners, can be made better’ than best of the 
learners. 

We first illustrate some simple cases where the composite system 
can be easily seen to be better than each of the learners (Section 111), 
and then consider more general cases. 

We consider two paradigms: 

Open Fusion: In open fusion, the fuser is given the training 
examples and the hypotheses of the individual learners. We 
introduce a property called the isolation, and present sufficiency 
conditions that ensure the composite system to be better than 
the best of the learners. We show that the problem of designing 
the fuser can be solved by casting it as another learning 
problem that can be solved using known methods if the suitable 
isolation property is satisfied. We consider two cases: i) all 
learners are trained with the same sample, and ii) each learner 
is individually trained with a separate random sample. We 
derive sufficiency conditions for several formulations of the 
learnability problem such that the composite system is better 
than best of the learners. In both cases, the hypothesis class 
of the fuser must satisfy the isolation property of degree E ;  
additionally, the condition in the first case is that the Vapnik- 
Chervonenkis dimension [7] (VC dimension) of the fuser be 
smaller than or equal to that of every learner. And in the 
second case the fuser can have much larger VC dimension 
(the exact bound is specific to the formulation of the learning 
mechanism of L,’s). In formulations such as learnability un- 
der fixed distributions [6], learning under metric spaces [15], 
we use the corresponding parameters to express sufficiency 
conditions. 

Closed Fusion: In closed fusion, the fuser does not have access 
to either the examples or the hypotheses of the individual 
learners. We show that a linear threshold fuser can be designed 
such that the composite system is better than the best of the 
statistically independent learners. This result shows that that 
even if all individual learners are completely consistent with 
the sample (i.e., all of them have zero empirical error), we can 
still make the performance of the composite system better than 
that of any individual learner. Further work on closed fusion 
can be found in [27]. 

The organization of this paper is as follows: A precise formulation 
of the :V-learners problem is presented in Section 11. Specialized 
examples where a suitable fusion rule makes the overall system better 
than the best of the learners are given in Section 111. A selection 
of existing learning formulations, and an approach to compare the 
learners are outlined in Section IV. The general problem is solved 

’ There are other interesting criteria for designing a fuser. For example, we 
might be interested in making the composite system learn concepts that are 
not learnable by the individual learners. In [26] a system capable of learning 
Boolean combinations of halfspaces by utilizing a system of perceptrons is 
described; note that a single perceptron is incapable of learning such concepts 
~ 3 1 .  
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