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Dynamic stability requirements for manned aircraft have been in place for many years. 

However, we cannot expect stability constraints for UAVs to match those for manned 

aircraft; and dynamic stability requirements specific to UAVs have not been developed.  The 

boundaries of controllability for both remotely-piloted and auto-piloted aircraft must be 

established before UAV technology can reach its full potential.  The development of dynamic 

stability requirements specific to UAVs could improve flying qualities and facilitate more 

efficient UAV designs to meet specific mission requirements.  As a first step to developing 

UAV stability requirements in general, test techniques must be established that will allow 

the stability characteristics of  current UAVs to be quantified.  This paper consolidates 

analytical details associated with procedures that could be used to experimentally determine 

the pitch stability boundaries for good UAV flying qualities.  The procedures require 

determining only the maneuver margin and pitch radius of gyration and are simple enough 

to be used in an educational setting where resources are limited.  The premise is that these 

procedures could be applied to UAVs now in use, in order to characterize the longitudinal 

flying qualities of current aircraft.  This is but a stepping stone to the evaluation of candidate 

metrics for establishing flying-quality constraints for unmanned aircraft. 

Nomenclature 

a  = axial distance aft from some arbitrary reference point to the center of gravity 

mpa  = axial distance aft from some arbitrary reference point to the stick-fixed maneuver point 

npa  = axial distance aft from some arbitrary reference point to the stick-fixed neutral point 

winga  = axial distance aft from some arbitrary reference point to the wing quarter chord 

0npmC = traditional neutral-point moment coefficient with 0=== eq δα&  

qmnp
C

,
= change in traditional neutral-point moment coefficient with traditional dimensionless pitch rate 

qmnp
C (

,
 = change in traditional neutral-point moment coefficient with dynamic pitch rate 

enpmC δ,  = change in traditional neutral-point moment coefficient with elevator deflection 

WC  = weight coefficient 

C1, C2, C3 = vertical components of  string tension per unit weight for a trifilar pendulum 

refc = arbitrary reference chord length 

c1, c2, c3 = horizontal chord-length projections for a trifilar pendulum 
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D = drag force

D
(

= drag to weight ratio, WD

d1, d2, d3 = restoring moment arms for a trifilar pendulum 

F1, F2, F3 = restoring forces for a trifilar pendulum 

g = acceleration of gravity 

xxI = aircraft rolling moment of inertia about the center of gravity 

xzI = aircraft product of inertia about the center of gravity 

yyI = aircraft pitching moment of inertia about the center of gravity 

zzI = aircraft yawing moment of inertia about the center of gravity 

L = lift force

α,L = change in lift force with respect to angle of attack 

L
(

= load factor, i.e., the lift to weight ratio, WL  

0L
(

= load factor with 0==== eq δαα &  

qL (

(

,
= change in load factor with respect to dynamic pitch rate 

α,L
(

= change in load factor with respect to angle of attack, acceleration sensitivity 

e
L δ,

(

= change in load factor with respect to elevator deflection 

l = rolling moment about the center of gravity, positive right wing down 

l
(

= dimensionless dynamic rolling moment about the center of gravity, Eq. (12) 

p
(l

(

,
= change in dynamic rolling moment about the center of gravity with respect to dynamic roll rate 

r
(l

(

,
= change in dynamic rolling moment about the center of gravity with respect to dynamic yaw rate 

β,l
(

= change in dynamic rolling moment about the center of gravity with respect to sideslip angle 

aδ,
l
(

= change in dynamic rolling moment about the center of gravity with respect to aileron deflection 

rδ,
l
(

= change in dynamic rolling moment about the center of gravity with respect to rudder deflection 

mpl = axial distance aft from the center of gravity to the stick-fixed maneuver point 

mpl
(

= dimensionless dynamic length scale ratio, Eq. (33) 

npl = axial distance aft from the center of gravity to the stick-fixed neutral point 

npl
(

= dimensionless dynamic length scale ratio, Eq. (24) 

M = total restoring moment for a trifilar pendulum 

m = pitching moment about the center of gravity, positive nose up 

npm = pitching moment about the neutral point, positive nose up 

0npm = pitching moment about the neutral point with 0=== eq δα&  

qnpm
(

,
= change in pitching moment about the neutral point with respect to dynamic pitch rate 

enpm δ, = change in pitching moment about the neutral point with respect to elevator deflection 

m
(

= dimensionless dynamic pitching moment about the center of gravity, Eq. (12) 

0m
(

= dynamic pitching moment about the center of gravity with 0==== eq δαα &  

qm
(

(

,
= change in dynamic pitching moment about the center of gravity with respect to dynamic pitch rate 

α,m
(

= change in dynamic pitching moment about the center of gravity with respect to angle of attack 

β,m
(

= change in dynamic pitching moment about the center of gravity with respect to sideslip angle 

e
m δ,

(

= change in dynamic pitching moment about the center of gravity with respect to elevator deflection 

npm
(

= dimensionless dynamic pitching moment about the neutral point 

0npm
(

= dynamic pitching moment about the neutral point with 0=== eq δα&  

qnpm
(

(

,
= change in dynamic pitching moment about the neutral point with respect to dynamic pitch rate 

enpm δ,

(

= change in dynamic pitching moment about the neutral point with respect to elevator deflection 

n = yawing moment about the center of gravity, positive nose right 

n
(

= dimensionless dynamic yawing moment about the center of gravity, Eq. (12) 

pn
(

(

,
= change in dynamic yawing moment about the center of gravity with respect to dynamic roll rate 
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rn
(

(

,
= change in dynamic yawing moment about the center of gravity with respect to dynamic yaw rate 

α,n
(

= change in dynamic yawing moment about the center of gravity with respect to angle of attack 

β,n
(

= change in dynamic yawing moment about the center of gravity with respect to sideslip angle 

a
n δ,

(

= change in dynamic yawing moment about the center of gravity with respect to aileron deflection 

r
n δ,

(

= change in dynamic yawing moment about the center of gravity with respect to rudder deflection 

p = roll rate, positive right wing falling 

p& = change in roll rate with respect to time 

p
(

= dimensionless dynamic roll rate, gVp  

p
(
& = dimensionless dynamic roll acceleration, 22 gVp&

q = pitch rate, positive nose rising 

q& = change in pitch rate with respect to time 

q = traditional dimensionless pitch rate, )2(ref oVqc   

q
(

= dimensionless dynamic pitch rate, gqV

q
(
& = dimensionless dynamic pitch acceleration, 22 gVq&

qR
( = turn damping ratio, Eq. (68) 

r = yaw rate, positive nose right 

r& = change in yaw rate with respect to time 

r
(

= dimensionless dynamic yaw rate, gVr  

r

(
& = dimensionless dynamic yaw acceleration, 22 gVr&

yyr = aircraft pitch radius of gyration about the center of gravity 

r1, r2, r3 = radial distances from the center of gravity for a trifilar pendulum 

wS = wing planform area 

s1, s2, s3 = cable or string lengths for a trifilar pendulum 

T = thrust force

T
(

= thrust to weight ratio, WT  

u = forward component of the aircraft velocity parallel with the fuselage reference line 

u& = change in forward component of the aircraft velocity with respect to time 

V = magnitude of aircraft velocity 

v = spanwise component of the aircraft velocity 

v& = change in spanwise component of the aircraft velocity with respect to time 

W = aircraft weight

w = downward component of the aircraft velocity normal to the fuselage reference line 

w& = change in downward component of the aircraft velocity with respect to time 

X = forward component of the aerodynamic force parallel with the fuselage reference line 

zyx ,, = axial, spanwise, and normal coordinates 

zyx ,, = axial, spanwise, and normal coordinates of the center of gravity 

Y = side force, i.e., the spanwise component of  the aerodynamic force, positive right 

Y
(

= side force to weight ratio, WY  

pY (

(

,
= change in side force to weight ratio with respect to dynamic roll rate 

rY
(

(

,
= change in side force to weight ratio with respect to dynamic yaw rate 

β,Y
(

= change in side force to weight ratio with respect to sideslip angle 

a
Y δ,

(

= change in side force to weight ratio with respect to aileron deflection 

r
Y δ,

(

= change in side force to weight ratio with respect to rudder deflection 

Z = downward component of the aerodynamic force normal to the fuselage reference line 

α = freestream angle of attack relative to the fuselage reference line, positive nose up 

α& = change in angle of attack with respect to time 



α
(
& = dimensionless dynamic angle-of-attack rate, gVα&

β = freestream sideslip angle, positive slipping right 

β& = change in sideslip angle with respect to time 

β
(
& = dimensionless dynamic sideslip-angle rate, gVβ&

aδ = aileron deflection angle  

eδ = elevator deflection angle  

rδ = rudder deflection angle  

ϕ = rotation angle for a trifilar pendulum 

ζ = damping ratio

θ = elevation angle between the horizontal and the fuselage reference line, positive nose up 

μ = dimensionless forward velocity, αcos=Vu  

μ& = change in dimensionless forward velocity with respect to time 

µ
(
& = dimensionless dynamic forward acceleration, gVµ&

ρ = freestream air density 

σ = damping rate

τ
(

= characteristic dynamic time scale, gV

φ = bank angle, positive right wing down 

ψ1, ψ2, ψ3 = string angles measured from the vertical for a trifilar pendulum 

Ω = turning rate, i.e., the angular velocity magnitude 

dω = damped frequency for a trifilar pendulum 

nω = undamped natural frequency for a trifilar pendulum 

spω = short-period undamped natural frequency 

I. Introduction

W 1,2

hereas the Federal Aviation Administration classifies unmanned aerial vehicles (UAVs) based on how they

are used, for our present purpose it makes more sense to classify them based on how they are piloted.  Here 

we will distinguish only two types of UAVs, remotely-piloted aircraft and auto-piloted aircraft. 

A remotely-piloted aircraft is an aircraft piloted by a human who is not onboard the aircraft.  Remotely-piloted 

aircraft are commonly referred to as radio control (RC) aircraft.  The pilot of an RC aircraft typically evaluates the 

state of the aircraft solely from ground observations.  However, the aircraft may have an embedded camera, which 

transmits real-time images of the aircraft’s surroundings to assist the pilot. 

An auto-piloted aircraft is an aircraft piloted by a computer.  The computer may be stationed onboard the 

aircraft or on the ground.  The computer obtains information about the state of the aircraft from sensors, transmitters, 

and receivers, which may be aircraft-based, satellite-based, and/or ground-based. 

The use of  UAVs has a significant positive impact on Aerospace Engineering Education.  For many of us, as 

children or young adults, our first exposure to the science of  human flight was through the recreational/sport use of 

model aircraft.  In the university environment, many engineering students get their first exposure to aircraft design 

through noncommercial activities associated with designing, building and flying model airplanes.  An example of 

such activities involving remotely-piloted aircraft is the Cessna/Raytheon/AIAA Student Design/Build/Fly 

competition (http://www.aiaadbf.org/).  An example involving auto-piloted aircraft is the Association for Unmanned 
Vehicle Systems International Student Unmanned Air Systems Competition (http://www.auvsi.org/competitions/). 

One problem associated with the design and safe operation of UAVs, whether remotely-piloted or auto-piloted, 

is the lack of data on dynamic stability requirements for UAVs.  For manned airplanes, the publication of stability 

requirements allows designers to approach flight testing with confidence that the aircraft has been adequately 

designed for good handling.  Although there is a large volume of legacy data that has been used to define standards 

with respect to dynamic stability requirements for manned aircraft,3,4 similar requirements are not available for 

UAVs.  For lack of an alternative, UAV designers commonly use stability requirements developed for manned 

aircraft.  This carries the risk of either over-designing or under-designing a UAV that need not be constrained by the 

limits of human physiology.  Manned aircraft stability requirements were defined through thousands of hours of 

flight testing, and considerable work is needed to determine the stability requirements for UAVs.  As a preface, 
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current UAVs, whether remotely-piloted or auto-piloted, need to be documented and characterized in order to begin 

to understand the characteristics of these aircraft.  The development of improved stability requirements specific to 

UAVs could contribute significantly to the safe and efficient operation of UAVs in all applications. 

The dynamic characteristics of an aircraft are often rated in terms of what are commonly called flying qualities 

or handling qualities.  In order to ensure that pilots can maneuver an aircraft to accomplish specific mission 

requirements, the dynamic characteristics of  the airplane should fall within specific limits.  Extensive research3,4 has 

shown that manned aircraft flying qualities are related to how well the dynamic modes of the aircraft fit within 

constraints imposed by pilot limitations and mission requirements.  A significant parameter associated with 

longitudinal flying qualities is the control anticipation parameter (CAP), which is defined to be the ratio of the 

square of the short-period undamped natural frequency to what is commonly known as the acceleration sensitivity, 
)(CAP ,

2
WLsp αω≡  (Ref. 4). 

Through thousands of hours of flight testing, correlations have been found between the CAP and pilot opinions 

of the flying qualities of conventional manned airplanes.  These data, which are reported in the United States 

military specifications MIL-F-8785C3 and MIL-STD-1797A,4 were used to define constraints on the CAP that are 

required to ensure acceptable flying qualities for conventional manned airplanes.  The CAP constraints for manned 

airplanes can be expressed as a function of defined flying-quality levels and flight-phase categories3,4 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
≤≤

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

−

−

−

−

−

−

−

CategoriesAll,
2Level,s.10

1Level,s6.3

CCategory,
2Level,s096.0

1Level,s15.0

BCategory,
2Level,s038.0

1Level,s085.0

ACategory,
2Level,s15.0

1Level,s28.0

2

2

,

2

2

2

2

2

2

2

WL

sp

α

ω

(1)

For the reader who may not be familiar with the military CAP requirements given by Eq. (1), the definitions for 

flying-quality levels and flight-phase categories that are used in the military specifications are also summarized by 

Hodgkinson.5  The Level-1, Category-A limit should be applied to demanding flight tasks such as air-to-air combat, 

aerobatics, and close-formation flying, which require rapid maneuvering and precise control.  The Level-1, 

Category-B limit is used for cruise, climb, and other flight phases that are normally accomplished with gradual 

maneuvers without precision tracking.  The Level-1, Category-C limit applies to takeoff, landing, and other flight 

phases that require accurate flight-path control with gradual maneuvering.  The Level-2 limits are usually considered 

to be acceptable only in a failure state. 

The minimum CAP constraint given in Eq. (1) is an experimentally-evaluated function of the flight-phase 

requirements.  This constraint is thought to vary with the mission task at hand partly because of the human pilot’s 

sensitivity to aircraft acceleration.  When an aircraft is remotely piloted, the pilot’s total physiological sensitivity to 

aircraft acceleration is replaced with only a visual interpretation of the aircraft acceleration.  Furthermore, when an 

autopilot is used, the reaction of the autopilot to acceleration is based solely on instrumentation and electronic 

response time.  Thus, just as the minimum CAP constraint given in Eq. (1) varies with flight phase for manned 

aircraft, one should expect this constraint to differ for UAVs whether remotely piloted or auto piloted. 

Preliminary flight-test data presented by Foster and Bowman6,7 indicate that pilot opinions of the flying qualities 

of remotely-piloted UAVs do not match the requirements given by Eq. (1).  Their preliminary findings suggest that 

minimum CAP constraints for remotely-piloted UAVs lie well above those for conventional manned aircraft.  Thus, 

it appears that manned aircraft specifications applied to remotely-piloted UAVs are not conservative with respect to 

safety.  This is not surprising when one considers the reduced sensory feedback available to the pilot of an RC 

aircraft compared with that available to the pilot of a manned aircraft.  It is possible that CAP constraints could be 

developed for remotely-piloted UAVs just as for manned aircraft.  However, sufficient flight-test data are not 

publicly available to define such constraints. 

Similar CAP constraints could possibly be determined for auto-piloted UAVs.  Because of an autopilot’s short 

response time and precise sensitivity to accelerations, it is likely that autopilot CAP constraints lie well outside the 

constraints for manned aircraft.  Indeed, autopilots seem to have little trouble accurately piloting aircraft that fit 

within the manned-aircraft CAP constraints.  Thus, it appears that applying manned aircraft specifications to auto-
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piloted UAVs is conservative and provides the desired safety, but this may come at the cost of reduced performance. 

This could be of critical importance in view of the extraordinary performance that is now being asked from some 

UAVs.  It is possible that improved dynamic stability requirements for auto-piloted UAVs could significantly 

increase performance.  However, as with remotely-piloted UAVs, sufficient flight-test data are not publicly available 

to define the flying-quality constraints for auto-piloted UAVs. 

Today, nearly all UAVs are flown, at least at times during the development phase, as remotely-piloted aircraft. 

A common procedure in UAV development is to have a person on the ground pilot the UAV during takeoff and 

landing.  At least in the early phases of development, the autopilot is given control of the UAV only at a safe 

distance from the ground.  Thus, the stability requirements of  remotely-piloted airplanes are and will continue to be 

important as the technology of UAV flight continues to evolve.  As a first step to developing stability requirements 

for UAVs in general, test techniques must be established, which allow the stability characteristics of remotely-

piloted airplanes to be quantified. 

Methods for identifying the stability and control characteristics of aircraft have been in place for years.  For 

example, Norton8,9 measured longitudinal and lateral frequencies of an aircraft using flight test data in 1923.  For a 

detailed discussion of system identification methods and their application to aircraft in the time domain and 

frequency domain, the reader is referred to Tischler and Remple,10 Jategaonkar,11 and Klein and Morelli.12  A 

concise survey of the literature on aircraft system identification methods up to 1980 is given by Iliff.13   The purpose 

here is not to provide a detailed history or extensive overview of aircraft system identification.  Rather, it is to set the 

present paper into perspective relative to prior work. 

In its general sense, system identification is a method of estimating the identifying characteristics and 

parameters of a system based on measured inputs and outputs.  Techniques for estimating the error associated with 

the measurements as well as estimating the best parameters for aircraft have been studied in detail.14– 16  These 

techniques have been applied to offline17 and online18,19 aircraft system identification and have also been used to 

determine the aeroelastic properties of aircraft.20 –22 

Parameter estimation is a subset of system identification in which the governing equations of the system are 

assumed to be known and the parameters of the equations, which best model the system, need to be determined. 

Errors resulting from noise in the input and output measurements, as well as errors associated with the model, 

require some form of estimation to obtain the best parameters for a system in the presence of noise.  The best set of 

parameters is the set that minimizes the difference between the model and measured output of the system.  Thus, the 

goal is to find those parameters that allow the model to best match the actual dynamics of the system, rather than 

trying to determine the actual parameters of the system.  Methods for estimating these parameters can be found in 

many system identification books and include the least-squares estimate,23,24 and maximum likelihood estimate.25,26 

As stated previously, a significant parameter in longitudinal stability and control is the CAP.  The CAP has 

traditionally been estimated by measuring the short-period natural frequency and acceleration sensitivity of an 

aircraft using system identification methods.  This paper presents an alternative procedure through which the CAP 

can be experimentally determined without exciting the short-period natural frequency.  The method and required 

tools are simple enough to be implemented on a remotely-piloted aircraft in an educational setting where resources 

for extensive flight testing are often limited. 

The CAP is currently defined as the square of the short-period natural frequency divided by the acceleration 

sensitivity.  It has been shown that within the assumptions of  linear aerodynamics and small disturbances, the CAP 

can be written in terms of the maneuver margin, the pitch radius of gyration, and the acceleration of gravity,27 

2
,

2

CAP

yy

mpsp

r

gl

WL
=≡

α

ω

(2)

Therefore, the CAP for an aircraft can be accurately determined by measuring only two parameters of the aircraft; 

the maneuver margin and the pitch radius of gyration. 

Developing realistic CAP constraints for remotely-piloted aircraft will require the correlation of data from 

extensive flight testing by many pilots.  These flight tests will likely involve shifting the center of gravity (CG) until 

the aircraft reaches points of degraded controllability.6,7  The shift in CG affects both the maneuver margin and the 

pitch radius of gyration.  This paper consolidates the details of one established method for experimentally 

determining each of these two parameters, and the methodology presented accounts for the effects of shifting the CG 

location.  The premise is that the methods included in this paper could be applied to remotely-piloted aircraft now in 
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7 

use, in order to characterize the longitudinal flying qualities of  current aircraft.  This is but a stepping stone to the 

evaluation of  candidate metrics for establishing flying-quality constraints for remotely-piloted aircraft. 

II. Steady Linearized Dynamics

The distribution of  longitudinal aerodynamic loads acting on an airplane can be replaced with an axial force, X, 

a normal force, Z, and a pitching moment, m, acting at the center of gravity (CG).  Similarly, the distribution of 

lateral aerodynamic loads can be resolved into a side force, Y, a rolling moment, l, and a yawing moment, n, also 

acting at the CG.  Because the orientation of the fuselage reference line is arbitrary, here it is defined to be aligned 

with the thrust vector.  Thus, neglecting the nonlinear effects of  vertical offsets, Newton’s second law and the 

angular momentum equation about the CG can be written as28 –32 
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The axial and normal force components can be expressed in terms of  lift and drag, 
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At small angles of attack, drag contributes little to the normal force.  Thus, applying the small-angle approximations 

( 1cos ≅α  and αα ≅sin ), we neglect drag in the second component of Eq. (4) to obtain 
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Assuming small changes in airspeed (i.e., ,μV≡u  ,βV≅v  ,αV≅w  ,μ&& V≅u  ,β&& V≅v  and α&& V≅w ) and using Eq. (5) 

in Eq. (3), the small-angle equations of motion for maneuvering flight at nearly constant airspeed yield 
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The characteristic time scale that appears naturally in the components of  Newton’s second law was identified 

by Phillips and Niewoehner27 and referred to as the dynamic time scale, 

gV≡τ
(

(7)

Continuing to follow Phillips and Niewoehner,27 we define the dimensionless dynamic rates and accelerations 

gVµµ &
(
& ≡ ,  gVββ &

(
&
≡ ,  gVαα &

(
& ≡ ,  gpVp ≡

(

,  gqVq ≡

(

,  and  gVrr ≡

(

(8)

22 gVpp &
(
& ≡ ,  22 gVqq &

(
& ≡ ,  and  22 gVrr &

(
& ≡ (9)



Using Eqs. (8) and (9) in Eq. (6) produces the dimensionless system of first-order differential equations 
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We see from Eq. (10) that using the characteristic dynamic time scale defined by Eq. (7) to nondimensionalize 

the rates and accelerations leads naturally to definitions for dimensionless dynamic force and moment components. 

Here we shall use the notation 

WTT ≡

(

,  WDD ≡

(

,  WLL ≡

(

,  and  WYY ≡

(

(11)

and 

)( 22
xxIgVll

(
≡ ,  )( 22

yyIgmVm ≡

(

,  and  )( 22
zzIgnVn ≡

(

(12)

The dimensionless dynamic thrust, T
(

, is simply the commonly-used thrust-to-weight ratio and L
(

 is the well-known 

load factor, which is traditionally given the symbol n.  However, here we will continue to denote the load factor as 

L
(

 to avoid confusion with the yawing moment, which is also traditionally given the symbol n. 

For steady maneuvering flight, airspeed is constant ( 1=µ ) and the time derivatives in Eq. (10) are zero, so the 

only acceleration components are the centripetal and Coriolis accelerations.  Thus, after using Eqs. (11) and (12) in 

Eq. (10) and rearranging, steady maneuvering flight requires 
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When combined with an appropriate aerodynamic model, the first component of Eq. (13) specifies the thrust 

required to maintain steady flight and the remaining five components determine the two aerodynamic angles and 

three control surface deflections that are required for a particular steady maneuver. 

A fairly general model for the lift, side force, and aerodynamic moments during steady maneuvering flight in 

the range of  linear aerodynamics can be written in terms of  the dynamic variables as 
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Note that the pitching moment is taken as a linear function of β  and the yawing moment is considered to be a linear 

function of α.  These longitudinal-lateral coupling terms are included to allow for aerodynamic coupling such as that 

generated by the propeller of a single-engine airplane.  Using Eq. (14) in the last five components of Eq. (13) yields 
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Equation (15) can be used to evaluate the two aerodynamic angles and three control surface deflections for a steady 

maneuver from specified values of  the orientation angles and angular rates. 

Equation (15) differs from the traditional dynamic formulation only with respect to the dynamic length and time 

scales that are used to nondimensionalize the formulation.  Flight-test data reported in U.S. military specifications3,4 

show that flying qualities of manned airplanes do not scale with traditional nondimensional parameters.27  The use 

of  more physically significant dynamic length and time scales will likely prove advantageous as we begin to 

develop dynamic stability requirements for UAVs, which will span a range of  vehicle size several orders of  

magnitude greater than the extent spanned by manned aircraft. 

III. Elevator Angle per g

The elevator angle per g is traditionally defined to be the change in elevator deflection with respect to load 

factor at 0=θ  for the quasi-steady pull-up maneuver, which is shown in Fig. 1.  Although the time derivatives are 

seldom precisely zero in a constant-speed pull-up maneuver, the elevator angle per g is traditionally defined in terms 

of  the steady limit.  By definition, this is a longitudinal maneuver, so φ, p, and r are also zero.  The centripetal 

acceleration for the quasi-steady pull-up maneuver can be written in terms of  the load factor, i.e., 
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Thus, the body-fixed angular velocity components for the quasi-steady pull-up maneuver can be expressed in 

terms of  the load factor, 
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Applying Eq. (17) to Eq. (15) and setting the elevation angle and bank angle to zero yields 

pull-up radius

q

W

L

V

L

W

Fig. 1   Quasi-steady pull-up maneuver. 
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We see from Eq. (18) that eliminating the bank angle and the rolling and yawing rates from Eq. (15) eliminates 

the inertial coupling.  However, the aerodynamic coupling remains.  Hence, both longitudinal and lateral control 

inputs are required for the quasi-steady pull-up maneuver in airplanes with aerodynamic coupling, such as would be 

generated by the propeller of  a single-engine airplane or other asymmetric aerodynamic loading.  In the absence of 

aerodynamic coupling ( 0
,,
== βα mn

((

), the second, third, and fifth components of  Eq. (18) become trivial and the 

first and fourth components reduce to 
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Equation (19) is readily solved for the angle of attack and elevator deflection required to support a given load factor 

at 0=θ  in the quasi-steady pull-up maneuver with no aerodynamic coupling, 
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The pitching moment about the CG can be expressed in terms of the pitching moment about the airplane’s 

neutral point (np), the lift, and the distance that the neutral point lies aft of the CG, 

Llmm npnp −= (22)

In view of  Eq. (12), this relation can be nondimensionalized to give  
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Equation (23) suggests the definition for a dynamic length scale ratio 
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where yyr  is the pitch radius of gyration.  By definition, the pitching moment about the neutral point does not vary 

with small changes in angle of attack.  Thus, in the absence of  aerodynamic coupling we have 
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Using Eq. (26) in Eqs. (20) and (21) results in 
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Because steady level flight (trim) can be viewed as a 1-g pull-up maneuver, the elevator angle required for steady 

level flight can be found as a special case of  Eq. (28) with the load factor set to 1.0, 
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Using Eq. (29) in Eq. (28), the elevator angle required to support a quasi-steady pull-up maneuver at 0=θ  is 
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The elevator angle per g is found by differentiating Eq. (30) with respect to the load factor, which gives 
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The stick-fixed maneuver point (mp) for an airplane is defined to be the center of gravity location that would 

force the elevator angle per g to zero.  By definition, l  is used here to represent an axial distance measured aft of 

the CG and a  is used to denote an axial distance measured aft of an arbitrary reference point.  Thus, we can write 

aal npnp −≡  where an overbar denotes the CG.  Equation (31) can then be written as 

enp

qnpnpe

m

mWaa

L δ

δ

,

,

up-pull

)( (

(

−−
=⎟

⎠

⎞
⎜
⎝

⎛

∂

∂

With the center of gravity located at the stick-fixed maneuver point and the elevator angle per g set to zero we have 
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−= .  Thus, after subtracting a  from both sides of this latter relation, 

the distance aft from the actual CG to the stick-fixed maneuver point is determined from 
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The dimensional dynamic derivative qnpm
(

,
 can be expressed in terms of  the traditional nondimensional 

derivative that is commonly determined from wind-tunnel testing.  The traditional nondimensional pitch rate is 

defined as 

)2(ref Vcqq ≡ (34)
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Using Eqs. (8) and (34) together with the traditional definition for the moment coefficient yields 
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Similarly, we have 
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Using Eqs. (36) and (37) in Eq. (29), the elevator angle required for steady level flight can be written as 
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If the position of  the neutral point and the aerodynamic pitching moment about the neutral point are independent of  

the position of  the CG, Eq. (38) predicts that the elevator deflection required for steady level flight is a linear 

function of  both the weight coefficient and the position of  the CG.  For a fixed CG located forward of the stick-

fixed neutral point, the required elevator deflection becomes more negative as the weight coefficient is increased. 

Figure 2 shows the elevator deflection required for steady level flight as a function of weight coefficient for a 

typical single-engine general-aviation airplane with the CG fixed at three different positions.  The data used to 

generate this figure were obtained from Phillips.33  The thick red lines show the elevator deflection as predicted from 

Eq. (38), which neglects the aerodynamic coupling.  The thin black lines show the elevator deflection as predicted 

from Eq. (18) including the aerodynamic coupling.  Notice that although some rudder deflection is needed to 

compensate for the propeller yawing moment, this aerodynamic coupling does not appreciably affect the elevator 

deflection.  The rudder deflection predicted for this airplane from Eq. (18) at a weight coefficient of  1.6 

is about −2 degrees.  However, the difference between the elevator deflection predicted from Eq. (18) and that 

predicted from Eq. (38) is less than 0.02 degrees at this weight coefficient.  The circular symbols shown in Fig. 2 

represent elevator deflections predicted from numerical lifting-line computations.34  The deviations between the 

numerical lifting-line results and the results predicted from Eqs. (18) and (38) are primarily a consequence of the 

fact that, for deflection angles greater than about 10 degrees, the pitching moment is actually a nonlinear function of 

elevator deflection.  Results similar to those shown in Fig. 2 are presented in Fig. 3 with the elevator angle plotted as 

a function of  the CG location measured aft of the wing quarter chord for three different fixed weight coefficients. 
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Fig. 2 Elevator deflection for steady level flight as Fig. 3 Elevator deflection for steady level flight as 

a function of  weight coefficient for a typical single- a function of  CG location for a typical single-engine 

engine general-aviation airplane. general-aviation airplane. 



Note from Eq. (38) and Fig. 3 that the neutral point corresponds to the CG location where the elevator angle 

required for steady level flight is independent of  weight coefficient.  From Eq. (38) we see that the change in 

elevator angle with respect to weight coefficient is a linear function of the CG location 

enpm

np

W

e

Cc

aa

C δ

δ

,reftrim

−
=⎟

⎠

⎞
⎜
⎝

⎛
∂
∂

(39)

As shown in Fig. 4, the neutral point is the CG location that would force this elevator gradient to zero. 

Thus, the axial position of the neutral point can be evaluated by plotting flight-test data in the format of  Fig. 2. 

The slope of the small-angle asymptote for each CG location is evaluated and the results are plotted in the format of 

Fig. 4.  The neutral point is the CG ordinate of  the horizontal-axis intercept for the line shown in Fig. 4.  The reader 

should also notice from Eq. (39) that the slope of  the line shown in Fig. 4 depends only on the elevator control 

derivative relative to the neutral point.  Differentiating Eq. (39) with respect to a  and solving for this elevator 

control derivative yields 
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This relation can be used to evaluate the elevator control derivative relative to the neutral point from flight-test data 

plotted in the format of  Fig. 4.  With this elevator control derivative and the location of the neutral point known, the 

basic moment coefficient about the neutral point, 0npmC , could be evaluated from the vertical ordinate of  the 

intersection of  the lines shown in Fig. 3.  From Eq. (38) we obtain 

( )
np
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−= trim,0 δδ (41)

Thus, we see that the location of the neutral point as well as the elevator control derivative and basic moment 

coefficient about the neutral point can be determined from flight-test data taken for the elevator angle required to 

maintain steady level flight. 

The flight-test data used to locate the neutral point and evaluate the elevator control derivative relative to the 

neutral point should be collected for several CG locations within the safe operating range of  the airplane.  For 

safety, it is wise to start with the CG located at or near the wing quarter chord and work carefully outward in both 

directions.  For each CG location, the elevator angle should be recorded while the aircraft maintains steady level 

flight over a range of airspeeds from just above stall to the maximum attainable airspeed.  These data are then 

plotted in the format of  Fig. 2, the resulting small-angle slopes are plotted in the format of Fig. 4, and the resulting 

line is extrapolated to the neutral point. 
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Fig. 4   Elevator gradient with respect to weight coefficient for steady level flight as a function of CG location 

measured aft of the wing quarter chord for a typical single-engine general-aviation airplane. 
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This test procedure is not restricted to UAV applications.  It is the established procedure for experimentally 

determining the neutral point of manned airplanes.35–39  However, it should be emphasized that Eq. (38) assumes 

that the pitching moment is controlled entirely by the elevator and the subscript “trim” denotes steady level flight, 

not zero control force.  Thus, when this procedure is used for a conventional piloted airplane with reversible 

mechanical controls, all of the associated test data need to be taken at a single trim setting.  This is particularly 

important for airplanes that use a variable stabilizer incidence angle to adjust the control force at trim.  Because the 

pilot needs to supply a continuous control force to maintain steady level flight as the airspeed is changed, a 

midrange trim setting is most convenient for collecting the complete dataset.  This is not a concern for UAV or other 

fly-by-wire applications, which do not require an aerodynamic trim mechanism for control force adjustment. 

Using Eqs. (35)–(38) in Eq. (30), the elevator angle required at 0=θ  for the quasi-steady pull-up maneuver can 

be written as 
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Similarly, from Eqs. (31) and (32) we obtain 
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All of  the aerodynamic coefficients in Eqs. (42)–(44), with the exception of  qmnp
C (

,
, can be determined from static 

measurements combined with flight-test data taken for steady level flight.  To evaluate qmnp
C (

,
 experimentally, we 

must rely on wind-tunnel measurements or flight-test data collected during maneuvering flight. 

Equations (42)–(44) may suggest evaluating qmnp
C (

,
 from measurements taken during pull-up maneuvers, as is 

commonly done with manned airplanes.35–38  However, this is not a convenient option for UAVs, because the 

elevator angle per g is defined for the limiting case of  a quasi-steady pull-up maneuver at 0=θ , which is not easily 

replicated with a UAV autopilot.  A more practical option for evaluating qmnp
C (

,
 from UAV flight-test data is to use 

measurements taken during a steady coordinated turn,35–38 which is easily maintained with a UAV autopilot. 

IV. Steady Coordinated Turn

The relations presented in Eq. (15) can also be used to evaluate the aerodynamic angles and control surface 

deflections required to maintain the steady coordinated turn, which is shown in Fig. 5.  The angular velocity vector 

for this steady coordinated turn is constant and parallel to the weight vector.  Thus, using the same geometric 

relations that were used for the weight vector in Eq. (3), the components of the airplane’s angular velocity vector in 

body-fixed coordinates are40 
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where Ω  is the angular velocity magnitude, commonly called the turning rate.  For a steady turn, Ω , θ, and φ  remain 

constant.  However, an additional restriction is needed to account for the fact that the turn is also coordinated. 

By definition, a coordinated maneuver is one in which the controls are coordinated so that the vector sum of the 

airplane’s acceleration and the acceleration of gravity produces an apparent body force that falls in the aircraft’s 

plane of symmetry.  In other words, the apparent body force has no component in the spanwise direction.  From the 

second component of  Eq. (3), this requires 

0sincos =−−+ φθgpr wuv& (46)
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Fig. 5   Steady coordinated turn. 

Under the restrictions of steady flight and the small-angle-of-attack approximations ( 0=v& , ,V≅u  and αV≅w ), the 

relations given by Eq. (45) applied to Eq. (46) yield  

0sincos)sincoscos( =−+ φθθαφθΩ gV (47)

If  the rate of climb is small compared with the forward velocity, the second-order term α sinθ  can be neglected, and 

after solving for the turning rate, Eq. (47) produces the well-known result 

φΩ tan)( Vg= (48)

Using Eq. (48) in Eq. (45), the body-fixed angular rates for the steady coordinated turn at small climb angles 

can be written as 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧ −

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

φθ

φφθ

φθ

sincos

tansincos

tansin

V

g

r

q

p

    or    
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧ −

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

φθ

φφθ

φθ

sincos

tansincos

tansin

r

q

p

(

(

(

(49)

With the application of  Eq. (49), the linear system given by Eq. (15) is readily solved for the aerodynamic 

angles and control surface deflections required to maintain a steady coordinated turn, including the effects of inertial 

and aerodynamic coupling.  However, the angular rates in a coordinated turn are typically small enough so that this 

longitudinal-lateral coupling has no significant effect on the required elevator deflection.  Neglecting all inertial and 

aerodynamic coupling in Eq. (15) and applying Eq. (49) yields 
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Figure 6 shows the control surface deflections required to maintain a steady coordinated turn at constant 

altitude for the same general-aviation airplane that was used to obtain Figs. 2–4.  The thin black lines in Fig. 6 were 

obtained by using Eq. (49) in Eq. (15), including all inertial and aerodynamic coupling.  The thick red lines were 

obtained from Eq. (50), which neglects all inertial and aerodynamic coupling.  Notice that for this airplane, the 

rudder deflection predicted from Eq. (15) is not symmetric with respect to right and left turns.  This is primarily a 

result of the yawing moment produced by the airplane’s propeller.  When the airplane is turned either to the right or 

to the left, additional lift is needed to produce the turning acceleration.  As seen in Fig. 6, an increment of up 

elevator (negative δ
e
) must be applied to increase the angle of attack and generate this added lift.  However, this 

increase in angle of attack also produces an increased propeller yawing moment to the left.  This must be countered 

with an increment of right rudder (negative δ
r
).  If the airplane is being turned to the right (positive φ), the right 

rudder needed to compensate for the propeller yawing moment adds to the right rudder needed for the turn.  If the 

airplane is being turned to the left, the right rudder needed to compensate for the propeller yawing moment 

decreases the left rudder needed for the turn.  However, it should be noted that the elevator and aileron deflections 

are not appreciably affected by this longitudinal-lateral coupling.  Thus, for all practical purposes, the elevator 

deflection required for a coordinated turn can be determined from Eq. (50).  Because all longitudinal-lateral 

coupling was neglected, the first and fourth components of  Eq. (50) can be separated from the other components, 

and for a steady coordinated turn at constant altitude ( 0=θ ), we obtain 
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From the second component of  Eq. (13), the load factor for any steady maneuver is 
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Using Eq. (49) in Eq. (52) and setting the elevation angle to zero, the load factor for a steady coordinated turn at 

constant altitude is given by the well-known relation 
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(53)

which also yields 
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Fig. 6   Control surface deflections for a steady coordinated turn at constant altitude in a typical single-engine 

general-aviation airplane with a weight coefficient of 0.6 and the CG at the wing quarter chord. 
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Using Eqs. (53) and (54) in Eq. (51) results in 
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Following a procedure similar to that used to obtain Eq. (30), the elevator angle required to support a steady 

coordinated turn at constant altitude can be related to the elevator angle required for steady level flight at the same 

weight coefficient and the load factor for the coordinated turn.  The solution to Eq. (55) is 
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After applying Eq. (26) to express the pitching moment about the CG in terms of the pitching moment about the 

neutral point, we have 

e

e

np

npqnpnpq

mL

LLlLLmm

L

LLLLL

δα

δ

α

α

,,

,,0

,

,0 ])1([)1(
(

(

(((((

((

(

(((((

(( −−+

+

−−−

= (58)

enp

qnpnpnp

e
m

LLmmLl

δ

δ
,

,0 )1(
(

((

((

((

(

−−−

= (59)

Using Eq. (29) in Eq. (59) and then applying Eqs. (23) and (24), the elevator angle required to support a given load 

factor in a steady coordinated turn at constant altitude can be written as 
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From a comparison of  Eqs. (30) and (60) we see that these relations are similar but not identical.  The elevator 

angle required to support a given load factor in a steady coordinated turn at constant altitude is not the same as that 

required to support the same load factor in a quasi-steady pull-up maneuver.  Figure 7 shows the elevator angle 

increment relative to steady level flight, which is required to support a given load factor in a steady coordinated turn 

at constant altitude.  The results shown in Fig. 7 are for the same airplane that was used to obtain the results plotted 

in Figs. 2–4 and 6.  The thick red lines were obtained from Eq. (60), which neglects the effects of longitudinal-

lateral coupling.  The thin black lines include the effects of  longitudinal-lateral coupling as predicted by using 

Eq. (49) in Eq. (15).  For comparison, the dashed lines in Fig. 7 show similar results for the quasi-steady pull-up 

maneuver as predicted from Eq. (30). 

The larger elevator deflection for the coordinated turn is required to support a larger pitch rate.  From Eq. (17), 

the dynamic pitch rate for the quasi-steady pull-up maneuver at 0=θ  is 

1−= Lq
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Using Eqs. (53) and (54) in Eq. (49) gives the dynamic pitch rate for the steady coordinated turn at 0=θ  as 
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((

(

1cossin
2

−== φφ (62)

This translates to a 50% increase in pitch rate for a 2-g coordinated turn, relative to that for a 2-g pull-up maneuver. 
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Fig. 7   Elevator increment from steady level flight as a function of  load factor for a typical single-engine 

general-aviation airplane with the CG located to give a static margin of  5%. 

From Eq. (60), we see that the elevator deflection required to support a steady coordinated turn at constant 

altitude can be conveniently divided into three components, 
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The first component on the right-hand side of Eq. (63) is the elevator deflection required to support the airplane’s 

weight in steady level flight, which from Eqs. (29) and (38) is 
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The second component on the right-hand side of Eq. (63) is defined to be the elevator increment required to support 

the airplane’s normal acceleration, 
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The third component on the right-hand side of Eq. (63) is defined to be the elevator increment required to support 

the airplane’s pitch rate, 
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As previously discussed, the location of the neutral point as well as the elevator control derivative and basic 

moment coefficient relative to the neutral point can be determined from flight-test data collected during steady level 

flight.  Thus, the elevator increment defined by Eq. (66) could be determined from measurements of  the elevator 

deflection and load factor taken in a steady coordinated turn at constant altitude combined with knowledge of other 

parameters, which can be determined from static measurements and flight-test data collected in steady level flight. 

Thus, an alternate and more useful definition for the elevator increment defined by Eq. (66) is 
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where all elevator deflections in Eq. (67) are for the same weight coefficient and CG location. 



For convenience, we will now use Eq. (67) to define what we shall refer to as the turn damping ratio, 
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By definition, the turn damping ratio is the pitching-moment-coefficient increment relative to the neutral point, per 

unit weight coefficient, which is required to support the dynamic pitch rate in a steady coordinated turn at constant 

altitude.  Using Eq. (66) in Eq. (68) and applying Eq. (62) yields the alternate definitions 
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Comparing Eqs. (44) and (69), we see that the location of the stick-fixed maneuver point can be expressed in terms 

of the location of the stick-fixed neutral point and the change in turn damping ratio with respect to dynamic pitch 

rate, 

q

R

c

l

C

C

c

l

c

l qnp

W

qmnpmp np

(

(
(

∂

∂
+=−=

ref

,

refref

(70)

Figure 8 shows the turn damping ratio plotted as a function of the dynamic pitch rate for the same airplane that 

was used to obtain Figs. 2–4 and 6–7.  The solid line in Fig. 8 was obtained from Eq. (69).  All of the symbols 

shown in Fig. 8 represent results obtained from numerical lifting-line computations.34  The circular, square, and 

diamond-shaped symbols represent results obtained at weight coefficients of 0.25, 0.50, and 1.00, respectively.  The 

filled symbols are for results obtained with the CG located at the wing quarter chord and the open symbols represent 

results obtained with the CG located at the 35% chord.  These CG locations correspond to static margins of about 25 

and 15 percent, respectively.  The deviations between some of the numerical lifting-line predictions and Eq. (69) are 

primarily a result of the reduction in elevator effectiveness, which occurs at deflection angles greater than about 10 

degrees.  Because the elevator deflection magnitude increases as the weight coefficient is increased and as the CG is 

moved forward, this deviation is greatest for the highest weight coefficients at the most forward CG locations. 

Once the location of the neutral point and the elevator control derivative relative to the neutral point have been 

determined from flight-test data collected during steady level flight, Eqs. (62) and (68) can be used to determine the 

dynamic pitch rate and turn damping ratio from measurements of the load factor and elevator deflection taken during 

a steady coordinated turn at constant altitude.  Such data should be collected over a range of airspeeds and bank 

angles for several different CG locations within the safe operating range of the airplane.  These data should be 
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Fig. 8   Turn damping ratio defined by Eq. (68) as a function of dynamic pitch rate for a typical single-engine 
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collected while the UAV autopilot is maintaining constant airspeed, altitude, and load factor, as well as a zero 

spanwise acceleration component.  The resulting data are plotted in the format of Fig. 8 and the change in the turn 

damping ratio with respect to dynamic pitch rate is determined from the slope of the small-angle asymptote.  The 

stick-fixed maneuver point can then be located from Eq. (70). 

V. Mass Property Relations

As seen from Eq. (2), the control anticipation parameter varies with CG location through its dependence on both 

the maneuver margin and the pitch radius of gyration.  For the purpose of  flight testing, the axial position of  the CG 

is commonly varied by carrying some type of  ballast, which can be shifted forward or aft to move the CG.  This 

redistribution of mass changes both the maneuver margin and the pitch radius of gyration. 

If we let eW  and bW  denote the empty weight of the airplane without the ballast and the weight of the ballast, 

respectively, then the axial and normal coordinates of the centers of gravity for the empty airplane and the ballast are 

defined by the integrals 
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The pitching moments of inertia for the empty airplane and the ballast about their individual centers of gravity are 
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or after expanding the quadratics and applying Eq. (71) 
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The axial and normal coordinates of the combined CG for the airplane with ballast are located from 
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and the pitching moment of inertia for the airplane with ballast about the combined CG is 
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After using Eq. (73) to eliminate the integrals from Eq. (75) and rearranging, we have 
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Equation (74) is easily rearranged to give 

eebb WxxWxx )()( −−=− ,        eebb WzzWzz )()( −−=− (77)

Using Eq. (77) in Eq. (76) and rearranging yields 
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By rearranging Eq. (74) in a different manner we can also obtain 
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Recognizing that the total gross weight of the airplane is simply the sum of the empty weight and the weight of the 

ballast, be WWW += , and using Eq. (79) in Eq. (78) yields 
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If  the loaded moment of inertia is determined for one particular CG location, the sum of  the first two terms on the 

right-hand side of Eq. (80) can be related to this known moment of inertia and CG location.  Rearranging Eq. (80) 

and evaluating the result at CG-location 1, we obtain 
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Using Eq. (81) in Eq. (80), the loaded moment of inertia at any other CG location can be determined from 
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The relation given by Eq. (82) is based on a reference loaded moment of  inertia evaluated at an arbitrary CG 

location and it accounts for an arbitrary shift in the position of the ballast.  This result is simplified if the reference 

CG location for the loaded airplane is chosen to have the same axial position as that for the empty airplane.  If we 

also restrict the flight testing to include only axial shifts in the position of the ballast, then Eq. (82) becomes 
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where 
0
)( yyI  is the loaded moment of inertia with the CG located at the same axial position as that of  the empty 

airplane. 

VI. Experimental Determination of the Radius of Gyration

Filar pendulums have been used for the measurement of aircraft mass moments of  inertia since the early days 

of aviation.41 – 47  The simplest and most commonly used by the aircraft community is the bifilar pendulum,48 which 
uses only two supporting cables or strings.  Although the usual analysis of the bifilar pendulum is comparatively 

simple, obtaining accurate results from this simplified analysis requires locating the CG midway between supporting 

cables or strings.  An off-center CG results in precessional motion in addition to the fundamental rotational motion 

about the vertical axis passing through the CG.  Such precessional motion is not induced by an off-center CG when 

the trifilar pendulum49 is used. 

Components of the mass moment of inertia tensor for any object can be determined by hanging the object 

to create a trifilar torsional pendulum as shown in Fig. 9.  The object is suspended from three long parallel cables 

or strings of  lengths s1, s2, and s3.  One end of each string is attached to the object and the other end is attached 
to a rigid supporting member. It is critical to locate the attachments points so that the strings are parallel. 
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Fig. 9   Aircraft suspended as a trifilar pendulum. Fig. 10   Trifilar pendulum geometry. 

The vertical axis passing through the CG is located between the strings a distance r1 from string 1, a distance r2 from 

string 2, and a distance r3 from string 3.  As the object rotates through a small angle ϕ  about the vertical axis passing 

through the CG, the lower attachment points for strings 1, 2, and 3 move through small arcs with horizontal chord-

length projections of  c1, c2, and c3, respectively.  At the beginning of the arcs, all three strings are vertical.  At the 

end of  the arcs, the strings make angles ψ1, ψ2, and ψ3 with the vertical. 

From the geometry shown schematically in Fig. 10, we can write the horizontal chord-length projections in 

terms of  the angles that the strings make with the vertical, ψ1, ψ2, and ψ3, and in terms of the pendulum rotation 

angle, ϕ , 
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Thus, the angles that the strings make with the vertical, ψ1, ψ2, and ψ3, can be related to the rotation angle, ϕ , 
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Denoting the vertical components of string tension divided by the weight as C1, C2, and C3, the restoring forces 

at the lower string attachment points divided by the weight are 
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The total restoring moment is the sum of  the restoring forces each multiplied by the associated perpendicular 

moment arm, 
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where from the geometry shown in Fig. 10, 
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Using Eqs. (85), (86) and (88) in Eq. (87) yields 
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or after applying the half-angle identity, )2(sin)2(cos2sin ϕϕϕ = , 
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If the strings are long and the rotation angle is small, the vertical components of acceleration can be neglected 

and the vertical components of string tension support only the weight.  If the position of  the CG is known, the 

weight supported by each string can be related to the total weight, W, and the coordinates of the string attachment 

points, (x1, z1), (x2, z2), and (x3, z3).  Summing the y-force components and the x- and z-moment components yields 
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or 
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If the weight supported by each string is experimentally determined, the position of  the CG can be related to the 

positions of  the strings.  By rearranging the last two components of  Eq. (92) and applying the relation specified by 

the first component of  Eq. (92), we obtain 
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With the weight supported by each string and the position of  the CG known, the distance from each string to the CG 

is easily determined from 
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If the strings are long and the rotation angle is small we can use the small angle approximations, ϕϕ ≅sin  and 

1coscoscos 321 ≅≅≅ ψψψ .  From Eq. (90), this yields the linear restoring moment 
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When this trifilar pendulum is given a small angular displacement and then released, it will oscillate in rotation 

about the vertical axis passing through the CG.  Neglecting all aerodynamic forces, Newton’s second law for this 

trifilar pendulum requires 
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The solution to this second-order differential equation predicts undamped oscillations with a natural frequency of 
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Of course, in any real experiment there will be damping.  From Eq. (97) we see that long strings will produce 

low-frequency oscillations, which result in light damping.  By recording the angular position, velocity, or 

acceleration as a function of time, we can determine both the damped frequency, dω , and damping rate, σ.  The 

undamped natural frequency and damping ratio can then be determined from 

ndn ωσζσωω =+= ,

22 (98)

These relations assume linear damping.  However, if the strings are long enough so that the damping ratio is much 

less than unity, the nonlinearities in the damping will have no significant effect on the frequency.  Thus, the mass 

moment of inertia can be accurately evaluated from the experimentally-determined natural frequency.  The data can 

be fit to a damped sinusoid and from Eqs. (97) and (98) we can use the relation 
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and the radius of gyration can be obtained from 
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To determine the moment of inertia and radius of gyration for pitch, an aircraft is suspended so that the pitch 

axis is vertical as shown in Fig. 9.  The moments of  inertia and radii of gyration for roll and yaw can be obtained in 

a similar manner, by suspending the aircraft in different orientations.  This method is not limited to small UAVs. 

One need only use stronger strings or cables to support larger objects.  Variations of this method have long been 

used to obtain moments of inertia for objects as large as full-scale manned aircraft.41  To account for the mass of  the 

strings or cables and any additional structure used to support the object, one can perform the experiment both with 

and without the object in place, or with an object of known moment of inertia.  From the two separate results it is 

simple to compute the mass properties of  the object without the strings or cables and supporting structure. 

Following a development similar to that presented is Sec. V, it is easily shown that, 
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VII. Conclusions

There is nothing completely original in the material that is presented in this paper.  The foundational material 

was presented by Phillips and Niewoehner.27  Variations of  the procedure proposed for locating the stick-fixed 

maneuver point of an unmanned aircraft are commonly used for locating the stick-fixed maneuver point of  manned 

aircraft.35 –38  Furthermore, variations of  the filar pendulum have been used to experimentally determine the mass 

moments of  inertia of  airplanes for nearly a century.41 –47 

What this paper does provide is a consolidation of  the analytical details associated with procedures that can be 

used to experimentally determine the traditional control anticipation parameter and the recently-proposed dynamic 

margin27 for an unmanned aircraft.  The procedures and required tools are simple enough to be implemented with an 

RC aircraft in an educational setting where resources for extensive flight testing are often limited.  With these tools, 

university students throughout the world could begin to collaborate on the collection of  flight-test data that would 

eventually lead to exposing the boundaries of good flying qualities for remotely-piloted aircraft, in much the same 

way that the U.S. military has exposed the boundaries of good flying qualities for manned aircraft.3,4 

Technical societies like the AIAA could help to facilitate such university collaboration through the society-

sponsored student competitions.  For example, in student competitions involving unmanned aircraft, the competition 

rules could require students to submit certain flight-test data as a prerequisite to qualifying an aircraft for the final 

phase of  the competition. 

In any case, we should not expect dynamic stability constraints for UAVs to be the same as those for manned 

aircraft.  The development of more realistic stability constraints for unmanned aircraft will contribute significantly 

to the safe and efficient operation of  UAVs in all applications.  The boundaries of  controllability for both remotely-

piloted and auto-piloted unmanned aircraft must be established before UAV technology can reach its full potential. 

The procedures described and analyzed in this paper could be used to collect a portion of  the data needed to expose 

the boundaries of  good flying qualities for unmanned aircraft. 
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