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Application of an Energy-Vorticity Turbulence Model  
to Fully Rough Pipe Flow 

E. B. Fowler,* D. F. Hunsaker† and W. F. Phillips,‡ 
Utah State University, Logan, Utah 84322-4130 

Based on a more direct analogy between turbulent and molecular transport, a foundation 
was recently presented for an energy-vorticity turbulence model.  The new turbulent-energy-
transport equation contains two closure coefficients; a viscous-dissipation coefficient and a 
turbulent-transport coefficient.  To help evaluate the closure coefficients and provide insight 
into the energy-vorticity turbulence variables, fully rough pipe flow is considered.  For this 
fully developed flow, excellent agreement with experimental data for velocity profiles and 
friction factors is attained over a wide range of closure coefficients, provided that a given 
relation between the coefficients is maintained. 

Nomenclature 

0λA  = empirical coefficient, Eqs. (33) and (36) 

1λA  = empirical coefficient, Eqs. (33) and (49) 

10λA  = empirical coefficient, Eqs. (37) and (49) 

11λA  = empirical coefficient, Eqs. (38) and (49) 

12λA  = empirical coefficient, Eqs. (39) and (49) 

13λA  = empirical coefficient, Eqs. (40) and (49) 

0λB  = empirical coefficient, Eqs. (33) and (50) 

00λB  = empirical coefficient, Eqs. (41) and (50) 

01λB  = empirical coefficient, Eqs. (42) and (50) 

02λB  = empirical coefficient, Eqs. (43) and (50) 

03λB  = empirical coefficient, Eqs. (44) and (50) 

1λB  = empirical coefficient, Eqs. (33) and (51) 

10λB  = empirical coefficient, Eqs. (45) and (51) 

11λB  = empirical coefficient, Eqs. (46) and (51) 

2λB  = empirical coefficient, Eqs. (33) and (52) 

20λB  = empirical coefficient, Eqs. (47) and (52) 

21λB  = empirical coefficient, Eqs. (48) and (52) 

fC  = Fanning friction factor also called the skin-friction coefficient 

70−C  = empirical coefficients, Eqs. (29) and (30) 

40−C  = empirical coefficients, Eqs. (39), (43), and (47) 

λC  = turbulence model closure coefficient, Eq. (20) 

µC  = turbulence model closure coefficient, Eq. (3) 
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νC  = turbulence model closure coefficient, Eqs. (13) and (16) 
D  = pipe diameter 

30−D  = empirical coefficients, Eq. (30)  
J




 = Jacobian tensor for a vector field 
k  = turbulent kinetic energy per unit mass, Eq. (1) 

sk  = equivalent sand-grain roughness 
+
sk  = wall-scaled dimensionless roughness, called the roughness Reynolds number, ντ ss kuk =+  
+
wallk  = dimensionless proportionality coefficient, Eq. (32) 

sk̂  = pipe-scaled dimensionless roughness, Rkk ss /ˆ =  
p  = instantaneous local pressure 
p  = mean local pressure 
p~  = fluctuating local pressure, ppp −≡~  
R  = pipe radius 

sR̂  = change of variables, )(ˆ ss kRR γ=  
r  = radial coordinate measured outward from the pipe centerline 
r̂  = pipe-scaled dimensionless coordinate, Rrr /ˆ =  
S




 = strain-rate tensor for a vector field 
t  = time 

τu  = shear velocity, 21)( ρττ wu =  
V  = instantaneous local velocity vector 

mV  = bulk velocity 
V  = mean velocity vector 

zV  = axial component of the mean velocity vector 
V~  = fluctuating velocity vector, VVV −≡~  
V~  = magnitude of the fluctuating velocity vector 

zyx VVV ~,~,~  = Cartesian components of the fluctuating velocity vector 
y  = normal coordinate measured into the fluid from a wall 

+y  = wall-scaled dimensionless coordinate, ντ yuy =+  
ŷ  = pipe-scaled dimensionless coordinate, Ryy /ˆ =  
γ  = Nikuradse constant 
δ  = deviation function, Eqs. (29) and (30) 
ε  = turbulent-energy-dissipation parameter, Eq. (2) 
ε~  = exact turbulent-energy dissipation per unit mass, Eq. (9) 
ζ  = turbulent-energy-dissipation parameter in the Robinson-Hassan k-ζ  turbulence model, νεζ ≡  
ζ  = mean fluctuating enstrophy, Eq. (15) 
κ  = von Kármán constant 
λ  = mean vortex wavelength, Eq. (18) 
µ  = dynamic molecular viscosity 

tµ  = dynamic eddy viscosity 
ν  = kinematic molecular viscosity 

tν  = kinematic eddy viscosity 
ρ  = fluid density 

kσ  = turbulence model closure coefficient, Eq. (7) 
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τ


  = turbulent Reynolds stress tensor, Eq. (4) 

wτ  = pipe wall shear stress 
ω  = turbulent-energy-dissipation frequency, )( kCµεω ≡  

+ω  = wall-scaled dimensionless dissipation frequency, 2
τωνω u=+  

ω~  = root-mean-square fluctuating vorticity, Eq. (10) 

I.  Introduction 
any of the turbulence models that are now commonly used for computational fluid dynamics (CFD) are based 
on the analogy between molecular and turbulent transport that was first proposed by Boussinesq.1  The 

majority of these turbulence models are usually classified as either k-ε , k-ω, or k-ζ  models.  Conventional k-ε , k-ω, 
and k-ζ  turbulence models are often thought of as being fundamentally different.  Yet, in a larger sense, these three 
model classifications could all be thought of as energy-dissipation models.  This is because all such models are 
based on the hypothesis that Boussinesq’s eddy viscosity is proportional to the product of the root-mean-square 
(RMS) fluctuating velocity, or ,21k  and the dissipation length scale ε23k .  The parameters k and ε  are defined in 
terms of the fluctuating velocity as 

 2
2
1

2
1 ~~~ Vk =⋅≡ VV  (1) 

 )~()~( VJVJ








⋅≡ νε  (2) 

where V~ is the fluctuating velocity vector, )~(VJ




 is its Jacobian tensor, and the overscore denotes an ensemble mean. 
 The eddy-viscosity model that is the foundation for all commonly used k-ε , k-ω, and k-ζ  turbulence models is 

 εν µ
2kCt =  (3) 

where µC  is a dimensionless closure coefficient that is nearly universally accepted as being equal to 0.09.  The k-ε  
turbulence models use Eq. (3) directly.  The k-ω turbulence models use the change of  variables )( kCµεω ≡  to 
transform Eq. (3) to the equivalent relation given by ων kt = .  Similarly, the k-ζ  turbulence models use the change 
of variables νεζ ≡  to transform Eq. (3) to its k-ζ  equivalent, )(2 ζνν µ kCt = .  The commonly used k-ε , k-ω, and  
k-ζ  turbulence models are all based on the hypothesis that the characteristic length scale for turbulent transport is 
proportional to the characteristic length scale for turbulent-energy dissipation. 
 The turbulent-energy-transport equation that is used in the traditional k-ε , k-ω, and k-ζ  turbulence models is 
commonly developed from the Navier-Stokes equations and the definition of the specific Reynolds stress tensor 
(i.e., the Reynolds stress tensor divided by the fluid density), 
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Multiplying the vector Navier-Stokes equation by the fluctuating velocity vector, taking the ensemble average, and 
adding the resulting tensor equation to its transpose yields a differential transport equation for the Reynolds stress 
tensor.  From the definitions in Eqs. (1) and (4), the turbulent kinetic energy per unit mass, k, is the negative of  one-
half the trace of the specific Reynolds stress tensor.  Hence, the turbulent-energy-transport equation is commonly 
obtained from the negative of one-half the trace of the specific Reynolds-stress-transport equation.  For the case of  
compressible flow with constant dynamic viscosity, this yields 
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The k-ε , k-ω, and k-ζ  turbulence models that utilize a version of the turbulent-kinetic-energy-transport equation given 
by Eq. (5) are based on the approximation that the turbulence parameter ε , which is defined in Eq. (2), is the 
dissipation of turbulent kinetic energy per unit mass.  In general, this is not the case. 
 The turbulent-energy-transport equation can be alternately developed from the mechanical energy equation, 
which is obtained by taking the dot product of the fluid velocity vector with the Navier-Stokes equations written in 
vector form.  Hence, the turbulent-energy-transport equation can be written as2 

 
][

][
~)~(~~~~)(

)~(~)~()~()~(2)(

3
22

2
1

2
3
1

VVVV

VVVSVSVJV

⋅∇++⋅∇−⋅∇−∇⋅∇+

⋅∇+⋅∇−⋅−⋅=




 ∇⋅+

∂
∂

µρνµ

µρ

pVk

pk
t
k

τ

τ















 (6) 

The first three terms on the right-hand side of Eq. (6) are exactly the volumetric production, viscous dissipation, 
and pressure dilatation for turbulent kinetic energy, respectively.  The next term is the molecular transport of  
turbulent kinetic energy per unit volume.  The last term on the right-hand side of Eq. (6) accounts for the volumetric 
turbulent transport of turbulent kinetic energy.  The only approximation that was made in the development of  
Eq. (6) is that of a Newtonian fluid. 
 It is important to recognize from Eq. (6) that molecular transport of  turbulent kinetic energy is not a simple 
gradient diffusion process.  The contribution from the first part of the molecular transport term, k∇µ , is gradient 
diffusion.  However, the contribution from the remaining portion of this term, τ



⋅∇ν , is not necessarily gradient 
diffusion.  Accordingly, even if we accept the Boussinesq analogy between molecular and turbulent transport, we 
should not expect turbulent transport of  kinetic energy to be a simple gradient diffusion process in general. 
 Applying Boussinesq’s analogy between molecular and turbulent transport to Eq. (6) results in an alternate 
version of the Boussinesq-based turbulent-energy-transport equation,2 
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For incompressible flow, Eq. (7) reduces to 
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Although the third term on the right-hand side of Eq. (7) is exactly the volumetric dissipation of turbulent kinetic 
energy, it remains an unknown function of the turbulent velocity fluctuations.  To close this formulation, we must 
have an additional equation to relate this dissipation to the other turbulence parameters and the mean flow. 
 As an alternative to traditional k-ε  turbulence models, the dissipation term that appears in Eqs. (6) and (7) can be 
mathematically rearranged.  The exact turbulent-energy dissipation per unit mass can be written as2 
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where ω~ is the RMS fluctuating vorticity, 

 )~()~(~2 VV ×∇⋅×∇≡ω  (10) 

Hence, the turbulent-energy-transport equation can be written as 
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Because only mathematical identities were used to obtain Eq. (11) from Eq. (6), these two transport equations are 
mathematically equivalent.  The only approximation that was made in the development of  Eq. (11) is that of a 
Newtonian fluid. 
 Applying the Boussinesq analogy between molecular and turbulent transport of turbulent kinetic energy to  
Eq. (11), Phillips2 developed the Boussinesq-transport equation 
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The three lines on the right-hand side of Eq. (12) are production, dissipation, and the combination of molecular and 
turbulent transport, respectively.  Completing this formulation requires two additional equations relating the eddy 
viscosity, tν , the specific turbulent kinetic energy, k, and the RMS fluctuating vorticity, ω~. 
 Following an analogy with the kinetic theory of gases, Phillips2 proposed an alternative to traditional k-ε , k-ω, 
and k-ζ  turbulence models by using the RMS fluctuating vorticity, ω~, as the characteristic frequency associated with 
turbulent transport.  This produces the foundation for an energy-vorticity turbulence model, which is based on the 
following two equations for incompressible flow; an algebraic equation for the kinematic eddy viscosity, 

 ων ν
~kCt =  (13) 

and the turbulent-energy-transport equation from Eq. (12), 
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where νC  and kσ  are dimensionless closure coefficients.  Completing this formulation requires one additional 
equation relating the eddy viscosity, tν , the specific turbulent kinetic energy, k, the RMS fluctuating vorticity, ω~, 
and the mean velocity vector, V.  The formulation could be completed by including a vorticity-transport equation 
for the RMS fluctuating vorticity, ω~. 
 Equations (13) and (14) are easily recast in terms of the mean fluctuating enstrophy, which is commonly denoted 
as ζ  and defined to be the mean squared magnitude of the fluctuating vorticity, 

 )~()~(~2 VV ×∇⋅×∇≡≡ ωζ  (15) 

Using Eq. (15) in Eqs. (13) and (14) produces the foundation for an energy-enstrophy turbulence model, which is 
based on the following two equations for incompressible flow;2 an algebraic equation for the kinematic eddy 
viscosity, 

 21ζν ν kCt =  (16) 

and the turbulent-energy-transport equation obtained by applying Eq. (15) to Eq. (14), 
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Completing this formulation requires one additional equation relating the eddy viscosity, tν , the specific turbulent 
kinetic energy, k, the mean fluctuating enstrophy, ζ , and the mean velocity vector, V.  This formulation could be 
completed by including the enstrophy-transport equation from the traditional Robinson-Hassan k-ζ  turbulence 
model.3,4  Perhaps a more promising enstrophy-transport equation for closing the proposed k-ζ  turbulence model can 
be obtained from the DNS-based solenoidal-dissipation model of Kreuzinger, Friedrich, and Gatski.5 
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 Equations (13) and (14) can also be reparameterized using a turbulent-transport length scale in place of the RMS 
fluctuating vorticity2 
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where the vorticity-based turbulent-transport length scale, λ , will be referred to here as the mean vortex wavelength.  
Applying this change of variables to Eqs. (13) and (14) produces the foundation for a k-λ turbulence model, which 
is based on the following two equations for incompressible flow; an algebraic equation for the kinematic eddy 
viscosity, 

 21kt λν =  (19) 

and the turbulent-energy-transport equation obtained by applying Eq. (18) to Eq. (14), 
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where λC  and kσ  are dimensionless closure coefficients, 2
νλ CC ≡ .  Completing this formulation requires one 

additional equation relating the eddy viscosity, tν , the specific turbulent kinetic energy, k, the mean vortex 
wavelength, λ , and the mean velocity vector, V. 
 To complete a two-equation energy-vorticity turbulence model, a second transport equation like that suggested 
by Kreuzinger, Friedrich, and Gatski5 is required and the closure coefficients in the turbulent-energy-transport 
equation must be evaluated.  Closure coefficients are typically evaluated from well established experimental data.  
One case that is very well documented is fully developed flow in a pipe.  Because the friction factor becomes 
independent of the Reynolds number for fully rough flow in a given pipe, estimating the closure coefficients from 
data for rough surfaces might be more straightforward than using data for smooth surfaces.  In the following 
sections, the mean-vortex-wavelength and RMS-fluctuating-vorticity profiles for fully developed, fully rough pipe 
flow are inferred from Eqs. (19) and (20) combined with experimental data and well established empirical 
correlations.  This will provide some insight into the nature of the energy-vorticity turbulence variables and 
establish certain relations between the closure coefficients. 

II.  Friction Factor in Fully Rough Pipe Flow 
 The foundation for what is known today about turbulent flow in rough pipes is the semi-empirical mixing-length 
theory developed by Ludwig Prandtl and his students.  The rough-wall version of Prandtl’s mixing-length theory is 
based on experimental data collected by Prandtl’s famous student Johann Nikuradse6 using pipes roughened 
artificially with uniform grains of sand.  Nikuradse’s data for fully rough pipe flow is also the foundation for the 
empirical relations commonly used today for predicting pressure losses in rough pipes; including the Colebrook 
equation,7 which was used to generate the well known Moody chart.8  Based on his experimental results for the 
Darcy friction factor, which is four times the Fanning friction factor often called the skin-friction coefficient, 
Nikuradse6 proposed using the following empirical correlation for fully rough pipe flow: 

 Darcy friction factor 2
102

2
1

]74.1)(log00.2[44 −+=≡≡ s
m

w
f kR

V
C

ρ
τ  (21) 

where R is the pipe radius, Vm is the bulk velocity, and ks is the roughness element size defined to be the screen mesh 
size of the sieve that Nikuradse used to sift the sand.  Equation (21) provided a key result in the development of  our 
current capability to predict pressure losses for turbulent flow through rough pipes, and it is referred to herein as the 
Nikuradse equation.  Equation (21) was the starting point for the development the Colebrook equation7 and the 
associated Moody chart.8  Thus, the Colebrook equation and the Moody chart assume the validity of  the 
Nikuradse equation. 
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 The Nikuradse equation is often presented in a form that differs slightly from Eq. (21).  In the original work by 
Nikuradse6 and its subsequent presentation by another of Prandtl’s famous students, Hermann Schlichting,9 the pipe 
roughness was characterized using the dimensionless roughness ratio, skR .  When Colebrook7 applied the 
Nikuradse equation to his work, he chose to characterize pipe roughness using the dimensionless relative roughness, 

Dks , where D is the pipe diameter.  Thus, the Nikuradse equation was rearranged by Colebrook into the form 
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Rounding the constants to two significant digits yields the most widely accepted form of  the Nikuradse equation, 
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The validity of  Eq. (23) is so widely accepted that today it has become the definition of  surface roughness.  
The roughness of any surface is typically defined in terms of the equivalent sand-grain roughness first introduced 
by Schlichting,10 which is defined to be the value of  ks that gives the correct fully rough limit for the friction factor 
when inserted into Eq. (23).  It should be noted that when Moody8 used the relation developed by Colebrook7 to 
generate the well known Moody chart, he used the symbol ε  to denote Nikuradse’s sand-grain roughness.  Here  
we will continue to use ks to signify the equivalent sand-grain roughness, following what was done by Nikuradse,6 
Schlichting,10 and Colebrook.7 
 The Nikuradse equation expressed equivalently in Eqs. (21) and (23) provides an accurate means for predicting 
the Darcy friction factor when the Reynolds number is large enough so that the friction factor becomes independent 
of the molecular viscosity.  However, the Nikuradse equation alone provides no information regarding how large the 
Reynolds number must be to make this empirical correlation valid.  From Nikuradse’s data6 on artificially 
roughened pipes, it is commonly accepted that this correlation for fully rough flow is valid whenever the Reynolds 
number based on the shear velocity τu  and the equivalent sand-grain roughness ks, usually called the roughness 
Reynolds number, is greater than about 70.  The Nikuradse equation can be used as a reference when calculating the 
Darcy friction factor for fully rough pipe flows. 
 Of the conventional k-ε, k-ω, and k-ζ  turbulence models, only k-ω models are capable of implementing rough-
wall boundary conditions without employing wall functions.  However, even the current k-ω models are not capable 
of predicting friction factors that agree with experimental data at very high roughness Reynolds numbers, where the 
molecular viscosity is negligible compared to the eddy viscosity throughout the pipe.  The effects of surface 
roughness are incorporated into conventional k-ω turbulence models by altering the surface boundary condition on 
ω.  For example, with his 1998 model, Wilcox11 suggests using the rough-wall boundary condition 
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where +
sk  is the roughness Reynolds number.  For his 2006 model, Wilcox12 recommends using 
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A comparison between experimental data6,13 and results obtained from the Wilcox 1998 k-ω model11 is shown in 
Fig. 1 for roughness Reynolds numbers greater than 70.  The Darcy friction factors obtained from the Wilcox 2006 
k-ω model12 are shown in Fig. 2.  To assure that the results shown in Figs. 1 and 2 are grid resolved, converged 
solutions were obtained on coarse, medium, and fine grids, containing 401, 801, and 1601 nodes, respectively.  The 
values of +y  at the first node from the pipe wall in these coarse, medium, and fine grids were 0.4, 0.2, and 0.1, 
respectively.  The Richardson14 extrapolation was then used with these three solutions to obtain the results shown in 
Figs. 1 and 2.  The maximum difference observed between the Richardson14 extrapolation and the solution obtained 
on the fine grid was 1.3 percent for the 1998 model and 0.04 percent for the 2006 model. 



  

8 
 

 The 1998 and 2006 software provided by Wilcox11,12 would not converge for high roughness Reynolds numbers, 
which encompasses the region to the right of the right-hand dashed curves in Figs. 1 and 2.  Along these curves the 
ratio of the eddy viscosity near the pipe wall to the molecular viscosity is nearly constant at about 1.7 for the 1998 
model and 1.3 for the 2006 model.  As a result, the Wilcox 1998 and 2006 k-ω models cannot be used to predict the 
distributions of the turbulence variables in the fully rough region, where the molecular viscosity is negligible 
compared to the eddy viscosity throughout the pipe.  One important objective for an improved rough-wall turbulence 
model should be the capability to accurately predict the Darcy friction factor at high roughness Reynolds numbers. 
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Figure 1.  Darcy friction factor, as predicted from the Wilcox 1998 k-ω model.11 
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Figure 2.  Darcy friction factor, as predicted from the Wilcox 2006 k-ω model.12 
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III.  Mean-Velocity Profiles in Fully Rough Pipe Flow 
 A sensitive indicator for the effect of surface roughness in pipe flow is given by the behavior of  the mean 
velocity profile.  Mean-velocity-profile measurements taken by Nikuradse6 in the fully rough limit were found to be 
in excellent agreement with the empirical correlation 

 5.8ln5.2 +





=

s

z
k
y

u
V

τ
 (26) 

where y is the normal coordinate measured into the fluid from the pipe wall.  Equation (26) is commonly referred to 
as the law of  the wall for fully rough pipe flow.  A comparison between Eq. (26) and experimental data collected by 
Nikuradse6 is shown in Fig. 3. 
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Figure 3.  Experimental velocity profiles in rough pipes at high Reynolds numbers.6 

 
 Obviously, Eq. (26) does not apply over the entire flow field from the pipe wall to the centerline, because it 
satisfies neither the no-slip boundary condition at the pipe wall nor the symmetry boundary condition at the pipe 
centerline.  In order to satisfy these two boundary conditions and provide better agreement with Nikuradse’s 
experimental data while leaving the integral of the velocity profile unchanged, a correction is applied to the law of  
the wall that is given by Eq. (26),15 
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A seventh-order corrective function δ  is given by15 
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where 
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The eight coefficients in Eq. (29) that are given in Eq. (30) were adjusted to optimize the fit with Nikuradse’s 
velocity profile data for fully rough flow while satisfying the physical constraints imposed on the empirical function 
δ  by the symmetry and no-slip boundary conditions.  The values used for the von Kármán constant, κ , and the 
Nikuradse constant, γ , were also adjusted to optimize the fit with Nikuradse’s velocity profile data.  Hence, we are 
using slightly different values for these constants than the values κ = 0.40 and γ = 0.033, which were used by 
Nikuradse6 and Schlichting.9  The resulting velocity profiles were found to be in good agreement with Nikuradse’s 
experimental data on fully rough pipe flow.  As an example, Fig. 4 shows the velocity obtained from Eqs. (27)–(30) 
compared to the law of the wall and Nikuradse’s experimental data for a roughness ratio, R/ks , of 15.  Because the 
velocity profiles obtained from Eqs. (27)–(30) satisfy the physical boundary conditions and show better agreement 
with experimental data, they can be used in place of  Eq. (26) as an improved reference for the mean velocity 
profiles when evaluating turbulence model closure coefficients for fully rough pipe flows. 
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Figure 4.  Velocity profiles compared to the law of the wall and Nikuradse’s experimental data.6 

 

IV. Mean-Vortex-Wavelength Profiles in Fully Rough Pipe Flow 
 In order to complete the formulation given by Eqs. (19) and (20), an equation is needed for the mean vortex 
wavelength, λ.  To provide some insight into the nature of the mean vortex wavelength and the RMS fluctuating 
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vorticity, Eqs. (19) and (20) can be used in combination with empirical correlations for the friction-factor and the 
mean-velocity profiles to infer the mean-vortex-wavelength and RMS-fluctuating-vorticity distributions for fully 
developed, fully rough pipe flow. 
 From Eq. (20), the turbulent-kinetic-energy transport equation for axisymmetric fully developed pipe flow is 
given by 
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where 21kt λν = .  This equation contains two unknown closure coefficients σk and Cλ.  These two coefficients must 
be dimensionless universal constants. 
 Equation (31) requires a wall boundary condition for the turbulent kinetic energy.  The specific turbulent kinetic 
energy at a rough wall should be proportional to the shear velocity squared, 

 2
wall τukk Rr
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=  (32) 

where +
w alk  is an unknown dimensionless proportionality coefficient.  For incompressible flow, the dimensionless 

parameter, +
w alk , should be a unique function of the roughness Reynolds number.  As the roughness Reynolds 

number approaches zero, +
w alk  should also approach zero.  When the roughness Reynolds number becomes large 

enough, the solution must be independent of molecular viscosity, i.e., independent of ντ sku  at constant Rks .  
Hence, for fully rough flow, the dimensionless parameter, +

w alk , must approach a universal constant. 
 An algebraic function for the mean vortex wavelength in fully rough pipe flow is given by15 
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where rRy −= .  This equation contains five unknown coefficients Aλ0, Aλ1, Bλ0, Bλ1, and Bλ2.  At the wall, the 
mean-vortex-wavelength equation reduces to 

 sRr kA 0λλ =
=  (34) 

For fully rough pipe flow, the value of the mean vortex wavelength at the wall should depend only on the surface 
roughness sk .  Therefore, the coefficient Aλ0 should be a constant.  The remaining four coefficients in the mean-
vortex-wavelength profile, Aλ1, Bλ0, Bλ1, and Bλ2, need not be constants, but can be functions of the flow parameters 
such as the Reynolds number and roughness ratio.  Eight coefficients are associated with Eqs. (31)–(33); the two  
closure coefficients σk and Cλ from the turbulent-kinetic-energy transport equation, the proportionality coefficient 

+
w alk  

from the wall boundary condition for k, and the five coefficients Aλ0, Aλ1, Bλ0, Bλ1, Bλ2 from the empirical 
algebraic relation for the mean vortex wavelength. 
 The eight coefficients σk, Cλ , +

w alk , Aλ0, Aλ1, Bλ0, Bλ1, Bλ2 were evaluated using computer optimization software.16  
This optimization software minimizes a fitness parameter that quantifies how close the solution is to a target 
solution.  The target solution is a weighted function based on the friction factor obtained from Eq. (23) and the 
velocity profile given by Eqs. (27)–(30).  This fitness parameter was minimized over the Reynolds-number range 
starting at a roughness Reynolds number of 1000 and continuing up to a bulk Reynolds number as large as 2×109.  
The optimization software used to find the coefficients implements the BFGS algorithm, named after the work of  
Broyden,17 Fletcher,18 Goldfarb,19 and Shanno.20 The resulting algebraic relation for the mean vortex wavelength 
was found to give good agreement with experimental data, provided that σk is in the range 2.0 to 6.0, +

w alk  is in the 
range 0.05 to 1.0, and the following relations between the coefficients are maintained; 
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The twelve constants Aλ10, Aλ11, Aλ12, Aλ13, Bλ00, Bλ01, Bλ02, Bλ03, Bλ10, Bλ11, Bλ20, and Bλ21 are related to the four 
coefficients Aλ1, Bλ0, Bλ1, Bλ2 according to 
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The mean-vortex-wavelength equation, given by Eq. (33), depends on the five coefficients Aλ0, Aλ1, Bλ0, Bλ1, and 
Bλ2, which are obtained from Eqs. (36)–(52). 
 Computational results obtained from this algebraic relation agree with Nikuradse’s experimental data on flow in 
artificially roughened pipes6 as well as more recent experimental data presented by Shockling, Allen, and Smits.13  
For example, Fig. 5 shows a comparison between experimental data for the Darcy friction factor6,13 and results 
obtained from the proposed algebraic relation.  Notice that the current algebraic relation predicts a friction factor 
that becomes independent of Reynolds number as the Reynolds number becomes large.  This is shown in Fig. 5 for 
bulk Reynolds numbers as large as 2×109. 
 Fully rough flow is defined to be the asymptotic high-Reynolds-number limit as the turbulent eddy viscosity ν t 
becomes large compared to the molecular viscosity ν  throughout the flow field.  Because ν t is smallest near the wall, 
the limit for application of the fully rough flow approximation can be evaluated by examining the near-wall behavior 
of ν /νt.  For comparison, three curves of constant (ν /νt)wall are superimposed on the friction-factor results shown in 
Fig. 5.  The dashed curve on the left is the locus of points having an eddy viscosity at the wall equal to the molecular 
viscosity.  The roughness Reynolds number for all points along this curve is approximately 77.  Along the second 
dashed curve, the eddy viscosity at the wall is 10 times the molecular viscosity and the roughness Reynolds number 
is 766.  The dashed curve on the right is the locus of points where the eddy viscosity at the wall is 100 times the 
molecular viscosity and the roughness Reynolds number is 7658.  At a roughness Reynolds number of  1000, the 
molecular viscosity is nearly 8% of the eddy viscosity at the wall.  For roughness Reynolds numbers below 1000,  
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Figure 5.  Darcy friction factor in rough pipes, predicted from the k-λ  formulation with the algebraic relation 
for λ , using σk = 4.0 and +

w alk = 0.1. 
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the molecular viscosity becomes more significant, and the fully rough flow approximation breaks down near the 
pipe wall.  For fully rough flow, the velocity profiles compare well with the log law given by Eq. (26), as shown in 
Figs. 6 and 7.  Results similar to those shown in Figs. 5–7 are obtained for any value of σk in the range 2.0 to 6.0 and 
any value of +

w alk  in the range 0.05 to 1.0, provided that the relations given by Eqs. (35)–(52) are maintained. 
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Figure 6.  Velocity profiles in fully rough pipe flow, predicted from the k-λ  formulation with the algebraic 
relation for λ , using σk = 4.0 and +

w alk = 0.1. 
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Figure 7.  Velocity profiles in rough pipes at a roughness Reynolds number of 1000, predicted from the k-λ  
formulation with the algebraic relation for λ , using σk = 4.0 and +

w alk = 0.1. 
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 Because results obtained from Eqs. (19) and (20) combined with Eqs. (32)–(52) agree well with experimental 
data obtained for the velocity profile and friction factor at high Reynolds numbers, they can be used to predict the 
distributions of the turbulence variables in fully rough pipe flow.  Example profiles for the turbulent kinetic energy, 
mean vortex wavelength, kinematic eddy viscosity, and RMS fluctuating vorticity are presented in Figs. 8–11, 
respectively. 
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Figure 8.  Turbulent-kinetic-energy profiles, predicted from the k-λ  formulation with the algebraic relation 
for λ , using σk = 4.0 and +

w alk = 0.1. 
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Figure 9.  Mean-vortex-wavelength profiles, predicted from the k-λ  formulation with the algebraic relation 
for λ , using σk = 4.0 and +

w alk = 0.1. 
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Figure 10.  Turbulent-eddy-viscosity profiles, predicted from the k-λ  formulation with the algebraic relation 
for λ , using σk = 4.0 and +

w alk = 0.1. 
 
 

0.01 0.1 1
0

200

400

600

800

k s  = 80,000
k s  = 1,000

y  R/

+

+

R / k s = 15

R / k s = 252

R / k s = 60

uτ
 ω  R~

 
Figure 11.  RMS-fluctuating-vorticity profiles, predicted from the k-λ  formulation with the algebraic relation 
for λ , using σk = 4.0 and +

w alk = 0.1. 
 
 
 Notice from Figs. 8–11 that very slight variations in the turbulence variable distributions can be seen between 
the roughness Reynolds numbers of 1,000 and 80,000.  This is because, at these high roughness Reynolds numbers, 
the molecular viscosity is negligible when compared to the turbulent eddy viscosity throughout the flow field from 
the pipe centerline to the wall. 
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VIII.  Conclusions 
 For the case of incompressible flow, Eqs. (19) and (20) provide the foundation for an energy-vorticity RANS 
turbulence model that differs significantly from traditional energy-dissipation models, which include the established 
k-ε , k-ω, and k-ζ  models commonly used for CFD.  Following an analogy with the kinetic theory of gases, the 
development of Eqs. (19) and (20) is based on a more direct analogy between turbulent and molecular transport. 
 The turbulent-energy-transport equation that is given in Eq. (20) contains two unknown closure coefficients; the 
viscous-dissipation coefficient, Cλ , and the turbulent-transport coefficient, σ k.  These coefficients should both be 
dimensionless universal constants.  It has been shown here that excellent agreement with experimental data for 
velocity profiles and friction factors in fully rough pipe flow can be attained over the range of about 2<σ k < 6 and 
0.00001< Cλ < 0.00056, provided that the relation between Cλ  and σ k  that is given in Eq. (35) is maintained. 
 In addition, the turbulent-energy transport equation requires a wall boundary condition for the specific turbulent 
kinetic energy, k.  The specific turbulent kinetic energy at a rough surface should be proportional to the square of  
the friction velocity, uτ , as shown in Eq. (32).  For incompressible flow, the dimensionless proportionality 
coefficient, +

w alk , is expected to be a unique function of the roughness Reynolds number, ksuτ /ν .  As the roughness 
Reynolds number approaches zero, +

w alk  should approach zero as well.  By definition, fully rough flow occurs when 
the roughness Reynolds number is high enough so that the solution becomes independent of molecular viscosity.  
Hence, for fully rough flow, the dimensionless parameter, +

w alk , must approach another universal constant associated 
with the turbulence model.  It has been shown here that excellent agreement with experimental data for fully rough 
pipe flow can be attained over the range of about 0.05< +

w alk < 1.0, provided that certain relations are maintained 
between the mean vortex wavelength, λ , and the dimensionless parameter, +

w alk .  Additionally, results show that the 
formulation can be used to predict the Darcy friction factor for fully rough pipe flow down to a roughness Reynolds 
number as low as about 100, which is much lower than the ratio of molecular viscosity to eddy viscosity at the wall 
would imply. 
 It is important to recognize from the discussion above that excellent agreement with experimental data for fully 
rough pipe flow can be attained over a range of the model constants, which include Cλ , σ k , and the fully rough limit 
for +

w alk .  In terms of future development, this is fortunate, because it provides a great deal of flexibility that can be 
used when tuning the model to agree with experimental data for other turbulent flows. 
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