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A number of immune abnormalities have been found in epileptic 

patients treated with antiepileptic drugs (AED). The alterations seen 

range from mild suppression of immunoglobulins to severly impaired 

humoral and cellular immunities. There is evidence for both drug 

effects and genetic or acquired factors as contributors to these abner-

malities. In order to examine the basis for immune abnormalties in 

patients with epilepsy, a number of experimental designs were employed: 

clinical stud ies, in vitro studies, and use of an animal model. 

Periphera l blood mononuclear cells (PBMC) isolated from epileptic 

patients currently receiving AED were found to have a reduced 

OKT4+/0KT8+ ratio. A reduced natura l killer (NK) cell activity was 

found which may be due to a low proportion of Leu 11+ cel ls. A reduced 

NK ce l l activity was also found in healthy siblings of the patients, 

indicating a possible genetic basis for the level of this activity. 

Antibody-dependent cell-mediated cytotoxicity {ADCC), mitogenic 

responses, and total rosette-forming cells of PBMC isolated from 

patieots were found to be normal. 
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The AED phenytoin has been associated with a variety of immune 

function alterations and lymphoma. In this study, phenytoin was found 

to depress basal and augmented NK cell activity of human cells in a 

dose-dependent manner in vitro. This depression was reversible 

following short-term exposure and at levels considered therapeutic. 

Phenytoin also depressed ADCC, thus one mechanism by which phenytoin 

alters immune function is by its depression of cell -mediated 

cytotoxicity. In contrast to results obtained with phenytoin, the AED 

carbamazep ine did not significantly alter NK cell activity, but the 

diluent propylene glycol depressed activity. 

NFS mice given phenytoin produced lower spec ifi c antibody titers 

fo llowing antigen challenge. Body weights, specific organ weights for 

thymus, sp leen, and liver, and blood cell counts were normal in these 

mice. The protocol was well tolerated by the animals at phenytoin 

dosages ranging from therapeutic to neurotoxic. Susceptibility to 

murine hepatitis virus was found to be increased in mice given a high 

dose of phenytoin. Thi s animal model should allow investigations into 

toxic dose levels and mechanisms by which phenytoin and other AED alter 

immune function. 

(10~ pages) 



CHAPTER I 

INTRODUCTION 

The epilepsies are a group of chronic central nervous system 

disorders 

episodes 

having in common the occurence of sudden and transitory 

(seizures) of abnormal phenomenon of motor (convulsions), 

sensory, autonomic, or psychic origin. Seizures are usually correlated 

with abnormal and excessive electroencephalogram discharges (Rail and 

Schleifer, 1980). The occurence of epilepsy in the general population 

is between 3 and 6 per 1000 people (Hauser, 1978). There are approxi­

mately twenty two thousand patients with epilepsy in the state of Utah 

and two million in the United States. The majority of patients with 

epilepsy receive antiepileptic medication for the control of seizures 

on a long term basis. The object in the treatment of seizure disorders 

is to suppress seizure activity while keeping side effects at a 

minimum. Often this is a difficult ideal to achieve due to the nature 

of the disorder and the treatment regimen itself; that is by definition 

epilepsy is a chronic condition and treatment is long-term. Multiple 

therapy is often necessary due to the presence of more than one seizure 

type in a patient. Other factors are thought to contribute to long-term 

side effects of antiepileptic drugs: these include treatment at 

young age, periods of acute toxicity, and the presence of other 

conditions suc h as mental retardation. 

Many of the toxicities associated with the long-term use of 

antiepileptic drugs have recently been reviewed including their effects 

on the immune system (Oxley et al 1983). There appears to be a 

different individual susceptibility to the immunosuppressive effects of 
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antiepileptic drugs with the majority of patients being unaffected. 

Certain individuals may be dramatically affected however, and display 

complex immunodeficiencies as either a primary or secondary reaction to 

a drug or combination of drugs. Patients on multiple therapy have been 

found to have decreases in specific antibody titers and increases in 

frequency of respiratory infections. Long-term use of phenytoin, a 

commonly used antiepileptic drug (AED), has been most notably 

associated with decreases in IgA but both humoral and cellular immunity 

can be affected and to a significant degree. 

The intent of this study was to further the understanding of how 

the immune system is affected by AED. Three approaches were employed: 

clinical studies, in vitro studies, and use of an animal model. In the 

clinical studies, peripheral blood mononuclear ce ll s were isolated from 

patients currently receiving AED to determine any long-term effects by 

these drugs on function and relative numbers. Cells from healthy 

siblings were also studied as a means to assess a genetic role in 

immune function. 

Epilepsy itself has been found to be associated with immune system 

abnormalities in some cases. In order to investigate effects of AED on 

certain lymphocyte activities without the complication of epilepsy, 

several in vitro studies were done using cells isolated from healthy 

donors. The AED phenytoin and carbamazepine were studied for effects 

on killer cell activities. 

A murine model to study effects of AED on immune function was 

developed to bypass the complications and limitations of clinical and 

in vitro studies. Mice were given phenytoin long-term in studies of 

immune responses which represent a cooperation of different cell types 
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within the immune system. The effects of phenytoin on specific antibody 

production and susceptibility to murine hepatitis virus infection were 

ascertai ned. 
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CHAPTER II 

REVIEW OF THE LITERATURE 

Descrjptjon Qf ~ 

Epileptic attacks have been described as electrical explosions of 

the brain. In the normal brain, a balance of excitation and inhibition 

allows relevant information to be processed while preventing an 

overload of information and uncontro l led neuronal activity . Electro­

encephalogram (EEG) studies have indicated that there is usually a 

focus or general area which is the source of epileptogenic activity. 

These foci are inherentl y more excitable , and discharge more frequently 

than normal. If not hel d in check by sufficient inhibitory mechanisms, 

the excitation spreads from the focus to nearby normal tissue. A 

seizure then occurs, the manifestations of which are dependent upon the 

extent of spread of excitation and the anatomical location of the high 

activity area (motor areas, sensory areas, or reticular activating 

system, etc.) It is thought that a seizure is maintained by a positive 

feedback mechanism of neurons and that several factors come into play 

to stop an epileptic attack. These include post-synaptic inhibition by 

hyperactive neurons, active inhibition by areas of the brain outside of 

the seizure focus, and local metabolic changes in the seizure focus 

such as depletion of high energy substrates and a buildup of metabolic 

waste products (Rail and Schleifer, 1980, Guyton, 1981). 

Seizures in a patient are categorized after a careful case 

history, a neurological exam, and an EEG in an effort to localize the 

lesion, find the etiology, and initiate the correct therapy. The 

importance of correct diagnosis of seizure type lies in the therapy. 
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Various AED are useful in controlling different types of seizures. A 

proper match of drug with seizure type will likely reduce or abolish 

seizures. 

The International Classsification of Epileptic Seizures lists 2 

main classes of seizures: focal (partial) and general 

(bilateral/symmetrical) (Gastaut, 1970). Partial seizures are further 

divided into those with elementary (cortical focal) and complex 

(temporal lobe and psychomotor) symptomatology . 

Characteristics of partial seizu res include localized convulsions 

or sensory disturbances, and for the latter, confused behavior with 

impairment of consciousness and anterior temporal lobe focal 

abnormalities. Focal epilepsy is usually a result of local organic 

lesions or functional abnormalities, such as a scar or tumor, a 

destroyed area of the brain, or congenitally abnormal circuits in the 

brain. It can involve almost any part of the brain, either localized 

regions of the cortex or deeper structures of the cerebrum or brain 

stem. These brain lesions promote rap id discharges in local neurons. 

A discharge rate greater than 1000 per second results in a spread of 

synchronous waves over adjacent cortical regions. The waves are 

presumably from localized reverberating circuits that gradually recruit 

adjacent areas of the cortex into the discharge zone. When an 

excitation wave spreads over the motor cortex, a progressive march of 

contractions occurs on the opposite side of the body, usually starting 

at the mouth and progressing toward the legs. If the progression is in 

the opposite direction, the name Jacksonian is used. A focal attack 

can be either confined to a specific area of the brain, or if strong 

signals from the focus can excite the mesencephalic portion of the 
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reticular activating system, a grand mal attack can occu r. 

Manifestations of psychomotor seizures include a short period of 

amnesia, a moment of incoherent speech, an attack of rage, sudden 

anxiety or fear, or a moment of motor activity. These types of attacks 

characteristically involve a part of the limbic portion of the brain 

(Guyton, 1981 ). 

Generalized seizures are divided into several classifications. 

The absence or petit mal seizures are characterized by a brief and 

abrupt loss of consciousness associated with high-voltage, bilateral 

synch ronous, 3/second spike and wave pattern in an EEG. These seizures 

are thought to involve the thalamocortical portion of the reticular 

activating system. Attacks usually last between 3 and 30 seconds during 

which time the patient is unconscious and twitchlike contractions of 

muscles, usually in the head region (such as eye blinking) occur. 

Return to consciousness and resumption of activities follows (Guyton; 

1981). 

Tonic-clonic or grand mal se izures are major convulsions with 

extreme neuronal discharges in all areas of the brain; cortex, cerebrum 

and the reticular activating system. Discharges are transmitted from 

the reticular formation into the spinal cord resulting in generalized 

'tonic convulsions' of the entire body. Tonic-clonic convulsions 

(alternating muscular contractions) follow toward the end of the 

attack. This type of seizure lasts for a few seconds to many minutes 

and is followed by a severe fatigue lasting for several hours with 

prolonged depression of all central nervous system functions. The EEG 

taken during a grand mal seizure reveals high voltage, synchronous 

discharges over the entire cortex, with both sides of the brain giving 
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the same type of discharge with the periodicity like that of normal 

alpha waves. It is thought that a grand mal seizure is caused from 

sync hronous discharges from the reticular activating system via local 

reverberating circuits, or reverberation back and forth between the 

reticular activating system and the cortex (Rail and Schleifer, 1980; 

Guyton, 1981). 

Bilateral massive epileptic myoclonus seizures are isolated clonic 

jerks associated with brief bursts of multiple spikes in the EEG. 

Infantile spasms are a progressive disorder with convulsive spasms 

leading to mental deterioration. Clonic seizures occur in young 

chi ldren and are associated with rythmic clonic contractions of all 

muscles, loss of consciousness, and marked autonomic manifestations. 

Atonic seizures are associated with loss of postural tone. Akinetic 

se izures are characterized by impairment of consciousness and 

complete relaxation of all musculature, 

inhibitory discharge (Gastaut, 1970). 

secondary to excessive 

A certain percentage of seizure disorders appears to be genetic in 

origin . However, most seizures are a result of acquired nervous system 

lesions, either at the time of birth or afterwards. Primary or idio-

pathic epilepsy denotes cases where no cause of the seizures can be 

identified, whereas with secondary or symptomatic epilepsy various 

conditions are thought to contribute to the etiology. These factors 

include congenitally malformed circuits in the brain, neoplasm and 

other space-occupying lesions, head trauma, hydrocephalus, hematomas, 

cerebrovascular changes subsequent to childhood infection, and 

infarctions from various causes . Damage to neurons from a variety of 

sources can cause a epileptic foci to develop. Other conditions which 
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by themselves do not normally cause epileptic seizures in normal 

neuronal tissue can precipitate or potentiate an epileptic attack given 

an excitable focus. These conditions include abnormal pH, osmolarity, 

gas concentrations (0 , CO ) or glucose concentrations in blood, 
2 2 

certain drugs, blood pressure changes, certain mental states and 

metabolic diseases, or other stressor factors (Rail and Schleifer, 

1980). Fever, loud noises, or flashing lights may elicit a seizure in 

patients with a hereditary predisposition to grand mal attacks 

(Guyton, 1981). 

Description Qf Antiepileptic Drugs (AED) 

The commonly used AED are summarized by Rail and Schleifer (1980). 

Several of the barbituates, long used as sedative-hypnotic drugs, are 

currently used as AED. It is thought that while the sedative 

properties of phenobarbital are a result of generalized stimulation of 

receptors for the inhibitory neurotransmitter gamma aminobutyric acid, 

its anticonvulsant properties are more related to its potentiation of 

inhibitory pathways that are recruited during discharge of 

epileptogenic foci. 

Oral absorption of phenobarbital is slow but complete. It is 

about 50% bound to plasma proteins and is evenly distributed over the 

body. Its major metabolite, parahydroxyphenobarbital, is inactive and 

excreted in urine. Phenobarbital is used for controlling generalized 

tonic-clonic and cortical seizures. Other barbituates in use as AED 

are mephobarbital and metharbital. 

Phenytoin is a widely· used and relatively well studied AED. It is 

the 5,5-diphenyl non-sedative derivative of phenobarbital. Phenytoin 
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reduces the development of maximal seizure activity and the spread of 

the seizure process from an active focus without causing central 

nervous system depression. 

excitability toward normal, 

Phenytoin restores abnormally increased 

modifies the pattern of maximal electro-

shock seizures and reduces the duration of neuronal afterdischarge. 

Phenytoin affects the movement of ions across cell membranes; it 

decreases resting Na+ fluxes and the Na+ current, decreases the Ca+ 

influx depolarization, and delays the K+ outward current during an 

action potential. This leads to an increased refractory period and a 

decrease in repetitive f i ring. 

Phenytoin i s a weak acid (pKa 8.3) with limited aqueous so lubility 

and dose-dependent elimination. It is extens ivel y bound to plasma 

proteins and is widely distributed to all tissues. It's maj or 

metabolite, the parahydroxyphenyl derivative, is inactive and excreted 

in bile and urine. 

Phenytoin is effective in controlling most forms of epilepsy 

except absence seizures and is also used in the treatment of psyc hos i s 

and cardiac arrhythmias. Other hydantoins used to control seizures are 

mephenytoin and ethotoin. 

Primidone, a deoxybarbituate, is a cogener of phenobarbital. It 

resembles phenobarbital in its anticonvulsant properties but is more 

se lective in modifying electroshock seizure patterns. Primidone is 

metabo l ized into two active products: phenobarbital and phenylethyl­

malonamide, and is effective in all but absence seizures. 

Carbamazepine, an iminostilbene, is related to the tricyclic anti­

depressant drugs . Its .anticonvulsant effects are simi liar to phenyto in 

but its mechanism is unknown. Carbamazepine is rapidly absorbed after 
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oral administration and is approximately 80% bound to plasma proteins. 

Its 10,11-epoxide metabolite is also active. It is used for temporal 

lobe epilepsy alone or in combination with generalized tonic-clonic 

seizures. 

Ethosuximide, a succinimide, is used primarily for controlling 

absence seizures. Both ethosuximide and trimethadione (to be 

discussed) offer protection against the convulsant action of pentylene-

tetrazol. Ethosuximide elevates the threshold for electroshock sei-

zures and blocks spiking activity in primary and secondary foci and the 

associated clonic seizure activity produced experimentally in the rat. 

Ethosuximide is evenly distributed to all tissues and is 

inactivated by hepatic microsomal enzymes into several inactive 

metabolites. Other succinimides in use are methsuximide and 

phensuximide. 

Valproic acid is a simple branched-chain carboxylic acid used 

against a variety of seizures with minimum sedative and other central 

nervous system effects. The mechanism of action of valproic acid is 

thought to be an interaction with gamma-amino butryic acid (GABA) 

metabolism 

inhibition. 

and/or augmentation of GABA-mediated postsynaptic 

Valproate is rapidly and almost completely absorbed after oral 

administration, is approximately 87% bound to plasma proteins, and is 

equilibrated mainly in the extracellular space. It is metabolized to 

several products and may inhibit hepatic enzymes as indicated by its 

interaction with phenobarbital. 

The oxazolidineone drugs are also used as AED. Paramethadione and 

trimethadione are used for controlling absence seizures. Dimethadione, 
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the N-demethyl metabolite of tr imethadione, is also active. 

Diazepam, a benzodiazepine sedative-antianxiety drug, is valuable 

in the management of status epilepticus. Diazepam suppresses the 

spread of seizure activity produced by epileptogenic foci in the 

cortex, thalamus, and limbic structures and facilitates GABA-mediated 

synaptic systems. It is extensively metabolized to a variety of 

products by reduction of the ?-nitro group to an inactive amino 

derivative , and to an active N-demethyl derivative. 

Other AED less commonly in use are phenacemide (phenylacetylurea), 

a straight chain analog of phenytoin; phenacemide, and acetazolamine, a 

carbonic anhydrase inhibitor. 

Chronic Toxicities Associated 
with Antieoileotic Drugs 

A review of many of the chronic toxicities resulting from the use 

of AED is available (Oxley et a!, 1983). The disorders encountered are 

in the general categories of hepatic, hematological, connective tissue, 

copper and ceruloplasmin, calcium and bone, motor and cerebellar, and 

immunological. 

Heoatic disorders. Severe hepatic damage is rarely encountered with 

any of the AED currently in use. However, numerous cases of hepatic 

toxicity have been reported especially with phenytoin, valproic acid 

and phenobarbital. Only a few cases of· hepatic damage following 

therapy with .pa trimethiadone, methoin, and the benzodiazepines have 

been reported (Jeavons, 1983). 

Drugs may cause hepatic damage by several mechanisms. Hepatotoxic 

drugs cause direct damage to the liver; the effects are predictable and 
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In contrast, unpredictable, dose-independent effects 

result from hypersensitivity or host idiosyncratic reactions, such as 

metabolic abnormalities . Metabolic abberations may have a genetic 

basis or be the result of exposure to other agents which cause 

alteration of drug metabolizing pathways (Zimmerman, 1978). Hypersen­

sitivity and idiosyncracy can cause either necrosis or cholestasis. 

Hypersensitivity responses, frequently associated with rash, fever, and 

eosinophilia, generally appear from 1-5 weeks after initiation of 

treatment and there i s a prompt response to a challenge dose. In 

contrast, a toxic response from a metabolite may become evident from 

one week to 12 months after initiation of therapy. 

In most cases where AED are the cause of liver damage, evidence 

points to hypersensitivity or drug idiosyncracy as the etiology. Given 

the possibility of hepatic disorders due to AED, it is advisable that 

patients as well as clinicians be informed of possible side effects and 

that the patients be seen frequently, especially during the first 6 

months of therapy. Warning signs for phenytoin, phenobarbital, and 

carbamazepine toxicities include skin rashes, fever, lymphadenopathy, 

and jaundice. Those for valproic acid include malaise, anorexia, 

vomiting, recurrence of seizures after initial control and jaundice. 

It has been recommended that a monitoring scheme be set up to more 

closely guard against liver damage (Loyning et a!, 1983). It is 

thought that multiple drug therapy plays an important role in 

hepatotoxicity (Jeavons, 1983). 
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Copper and ceruloplasmin levels. Various anticonvulsant medications 

have been found to alter plasma copper and ceruloplasmin levels. 

Phenytoin monotherapy has been found to increase copper but not 

cerulop lasmin concentrations while valproic ac id and ethosuximide 

decreased both . Primidone or carbamazepine monotherapy have not been 

found to alter either copper or ceruloplasmin levels. In recent 

study, untreated epileptic children did not have significant changes in 

either copper or ceruloplasmin concent rations as compared with normal, 

age-matched control subjects (Fichsel eta!, 1983). 
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Hematological disorders. Several of the AED drugs have been associated 

with marrow suppression (Reynolds, 1983a). In a number of cases, 

carbamazepine was the probable cause of aplastic anemia (Pisciotta, 

1975). Phenytoin may cause aplastic anemia especially when given in 

combination with other drugs (Best, 1963). Phenytoin has also been 

associated with leucopenia, agranulocytosis, and thrombocytopenia. In 

one case of erythroid aplasia, phenytoin appeared to inhibited DNA 

synthesis in erythroid cells, specifically, the step of deoxyribotide 

formation (Reynolds, 1983a). 

Valproic acid has been assoc iated with platelet dysfunction, 

thrombocytopeni.a, and bleeding. Suggested mechanisms have been 

postulated (Reynolds, 1983a). 

Several cases of neonatal coagu lation defects have been reported 

in infants born to mothers treated with phenobarbital and/or phenytoin. 

The bleeding, due to a depression of vitamin K-dependent coagulation 

factors (II, VII, IX, and X) is correctable or preventable with vitamin 

K therapy. Phenytoin has also been shown to have this effect 

experimentally (Reynolds, 1983a). 

Severa l of the AED have been associated with megaloblastic anemia 

due to folate deficiency, reflected by subnorma l serum and red blood 

cell (RBC) folate level s. Serum vitamin 812 levels may also be 

abnormal. Both folate and vitamin 812 (cobalamine) are necessary for 

the maturation of the RBC (Guyton, 1981). Macrocystis has been seen in 

a large percentage of patients on combined phenytoin and primidone 

therapy (Chanarin eta!, 1976). 

In non -anemic patients, folate and vitamin 812 levels may still be 

subnormal. Low folate levels have been found in serum, most commonly 
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in patients receiving multiple AED therapy, and also in red blood 

cells, and cerebrospinal fluid (Reynolds, 1983a). There is evidence 

that phenytoin, phenobarbital, primidone, carbamazepine, and valproic 

acid exert some effect on folate metabolism but possibly by different 

mechanisms. Several hypothesis have been postulated, including enzyme 

induction by phenytoin, phenobarbital and carbamazepine; however 

valproic acid is not an enzyme inducer. The other hypotheses are: 

competitive interaction between folate coenzymes and the drugs, 

malabsorption of folic acid, and increased demand for folic acid as a 

coenzyme for AED-hydroxylation or for other enzymes induced by the 

drugs (Reynolds, 1983a). 

Children treated with valproic acid have shown several 

hematological disorders: thrombocytopenia, prolonged bleeding time and 

hypofibrinogenemia. A dose relationship to the drug and possible 

relationship to its hepatotoxic effects have been suggested (Roche! and 

Ehrenthal, 1983). 

A deoxyuridine suppression test has been developed to assess 

folate deficiency in patients on long-term AED therapy. This test 

measures the ability of bone marrow cells to convert deoxyuridine to 

thymidine for DNA synthesis, a reaction specifically disordered in 

megaloblastic anemia. Although results have been conflicting, a recent 

study has shown that the test is clinically useful in detecting 

significant folate deficiency (Burman, 1983) and concluded that megalo­

blastic anemia in patients on long-term AED therapy is due to folate 

deficiency. 
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Connective tissue disorders. A variety of connective tissue disorders 

have been seen in patients receiving AED. Gingival hyperplasia, a 

proliferation of the gums and sometimes other tissues, is thought to be 

caused from stimulation of fibroblasts due to folate deficiency. It 

occurs in about one out of three epileptic patients on phenytoin 

therapy. The severity of this condition varies proportionally with 

levels of phenytoin in the serum and saliva. Poor oral hygiene 

aggravates this condition. Other unknown factors are thought to be 

involved in the etiology of gingival hyperplasia, such as the epileptic 

condition itself, and age (Schmidt, 1983a). 

Facial changes occur in about two thirds of all institutionalized, 

severe epileptic patients. The coarsened features seen include 

thickening of the lips and subcutaneous facial tissues, and a wide, 

club-shaped nose such that the face developes an acromegalic 

appearance. Most often, this condition occurs in patients given 

multiple drug therapy; however this condition has not been well studied 

(Schmidt, 1983a). 

Dupuytren's contracture, a proliferation of elastic fibers and 

thickening of the palmer collagen fiber bundles, is found in one third 

of all male and one fourth of all female epileptic patients. Ledder­

house syndrome, fibromas of the mucous membrane of the mouth and of the 

plantar fascia of the foot, may then develop in these patients. Pheno­

barbital and primidone treatment have been linked to these syndromes 

(Schmidt, 1983a). In a recent study (Schmidt eta!, 1983c) 4 patients 

on phenobarbital therapy for either epilepsy (3) or migraine headaches 

developed Dupuytren's contracture and Ledderhouse syndrome. 

Discontinuance of phenobarbital in the non-epileptic patient resulted 



in a regression of this condition . 
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Froscher and Hoffman (1983) have 

shown that discontinuance of phenobarbita l in the majority of cases 

with Dupuytren's contracture results in an improvement of the 

condition. A number of other factors are thought to be involved in the 

etiology of the above disorders including chronic trauma, and duration 

and dose of AED treatment. 

A frozen shou lder syndrome, a non-rheumat ic stiffness in the 

shou lders and other joints may develop in patients on phenobarbital or 

primidone therapy. Other connective tissue disorders may accompany 

this condition . This syndrome may be reversed with physical therapy 

without drug discontinuance (Schmidt, 1983a, Janz and Piltz, 1983). 

In contrast to the above disorders, AED have been shown to be 

beneficial for wound repair and the healing of ulcers (Schmidt, 1983a). 

In a recent study of children on AED therapy (Trimble and Corbett, 

1983) hirsuties, gum hypertrophy and low weights were noted. High mean 

levels of serum phenytoin were associated with gum hypertropy while 

high levels of phenobarbital were associated with low relative height. 

Hirsuties and height and weight abnormalities were associated with 

increased frequency of seizures but not with gum hypertrophy. 

Lyell ' s syndrome, a toxic epidermal necrosis, has occured in a 

number of patients receiving AED. This is a severe ativerse reaction to 

a drug with a 22% mortality rate, and any re-exposure to a drug or 

related drug to a patient that has shown a hypersensitivity to a 

particular drug is dangerous. This syndrome has been found with 

carbamazepine, mephenytoin, phenytoin, phenobarbital, and primidone 

(Schmidt, 1983a). 
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Disorders Qf mineral metabolism. Osteomalacia and rickets have been 

attributed to AED therapy with vitamin D deficiency being a common 

feature. Long-term and high dosage (usually multiple) drug therapy are 

thought to contribute to these disorders. An increased frequency of 

hypocalcemia and raised alkaline phosphatase levels have been found. 

Under controlled conditions, AED have been found to induce a mild 

biochemically detectable vitamin D deficiency in spite of criticisms 

that various factors, namely outdoor activities and nutrition, affect 

serum 25-hydroxyvitamin D levels (Offerman, 1983). 

The ability of several of the AED to induce microsomal mixed­

function oxidase activity and to stimulate biliary excretion is thought 

to be responsible for the development of vitamin D deficiency: twenty 

five-hydroxylation of vitamin D and various steroids is metabolized by 

mixed function oxidase enzymes. Although twenty five-hydroxy vitamin D 

is still active, it could be further oxidized to inactive metabolites. 

It is known that vitamin D and its metabolites are biotransformed and 

excreted in bile as acid, neutral, glucuronide or sulfate forms. 

Enterohepatic recirculation has been demonstrated to be important for 

at least the 1,25-dihydroxy active metabolite (Offerman, 1983). These 

factors are thought to play a role in the development of vitamin D 

deficiency. 

Christiansen and Tjellesen (1983) have presented evidence that 

drug-induced osteomalacia is somewhat unlike that of classical 

osteomalacia. Vitamin 02 but not 03 is effective as a treatment. There 

is evidence for drug-induced liver enzyme induction as a cause of 

vitamin D deficiency, however, other mechanisms are also thought to be 

involved. 
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In a recent study of institutionalized epileptic patients on AED 

therapy (Berry et a!, 1983) serum twenty five-hydroxy vitamin D, 

calc ium and alkaline phosphatase levels were evaluated. The authors 

concluded that drug-induced hypocalcemia was exacerbated but not caused 

by vitamin D deficiency, which in turn is primarily induced by 

insufficient exposure to sunlight. Vitamin D therapy does correct 

levels toward normal but does not correct the concommitant hypocalcemia 

indicating that these two deficiencies are not para llel. In another 

group of epileptic patients (Krause eta!, 1983) there was evidence 

that disturbance in bone metabolism is a problem after initiation of 

AED treatment, particularly in children, followed by a normalization of 

metabolism. Long-term therapy (over 10 years) may again be a sensitive 

period of drug-induced bone metabolism imbalance. Several patients on 

carbama zep ine monotherapy had hypocalcemia, hypophosphataemia and 

elevated alkaline phosphatase levels, suggesting that carbamazepine 

alone may disturb bone mineral metabolism (Keranen et a!, 1983). 

A recent survey of institutiona l ized epileptic patients indicated 

t hat the type of seizure may be more related to the number of sustained 

fractures incurred rather than drug treatment; namely tonic se izures in 

which the patients fall rigidly to the ground increase fracture risk 

(Allen and Oxley, 1983). 

~ anQ cerebellar function alterations. Cerebellar dysfunction 

(reversible and permanent) has occurred with phenobarbital, primidone 

and phenytoin therapy. However, Dam (1983) has shown that in patients 

with a low density of Purkinje cel ls, there is a greater correlation of 

degeneration of Purkinje cells to severe epilepsy (frequent 



convulsions) than with high phenytoin dose. 
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Phenytoin does not induce 

neuropathological lesions in experimental animals. A comparison of 

seizure resistant versus seizure sensitive Mongolian gerbils has 

demonstrated that neuropathological lesions in the cerebellum were 

found only in the sensitive strain; the lesions were assumed to be 

caused by basic biochemical derangements associated with epileptic 

hyperactivity (Dam, 1983). 

Phenytoin and to a lesser extent other extent AED can cause 

dyskinesias, an impairement of the power of voluntary movement 

resulting in fragmentary or incomlete movements. Coexisting organic 

cerebral damage may facilitate the development of drug-induced 

dyskinesias. Increases in dose of one drug or addition of another may 

trigger this impairment. The mechanism by which phenytoin causes 

dyskinesias may be related to its ability to alter brain 

neurotransmitter systems (Dravet eta!, 1983) . 

MutaQenjc and teratogenic ~ Valproic acid and phenytoin have 

been found to be teratogenic in an in vitro culture assay in a dose­

dependent manner. The abnormalities produced in organ culture of 

embryonic mice included open neural tubes, abnormal body curvature and 

craniofacial deformities. Growth and development were also retarded in 

these embryos (Bruckner eta!, 1983). Valproic acid is teratogenic in 

rats and results in .pa resorptions and a number of skeletal and 

visceral malformations (Ong eta!, 1983). 

Valproic acid appears ·to be readily transported across the 

placenta and achieves higher serum concentrations (1.4x) in the infant 

than the mother with a bi ological half-life three times longer 
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Epidemiological studies have shown that 

valproic acid may cause neonatal transformations such as spina bifida 

aperta in humans (Robert et a I, 1983). Various studies have shown that 

mothers on AED have a 6% rate of malformed children as compared to 2.5% 

in control mothers. 

Chromosomal damage in leukocytes has been found in patients on 

long-term carbamazepine or phenytoin monotherapy. Both chromosomal and 

chromatid exchange-type aberrations were seen (Herna and Obe, 1977). 

Overview Qf the Immune System 

The immune system consists of an interconnecting network of 

lymphoid organs and tissues. In mammals, the central tissues are the 

thymus and bone marrow and peripheral tissues are the lymph nodes, 

spleen, tonsils, and Peyer's patches. Lymphocytes are produced in 

these tissues and move among these tissues in blood and lymph where 

they interact with antigens and with each other while in the system 

(Kimball, 1983). 

An immune response is defined as a "altered reactivity to a 

specific configuration that develops following contact with it" 

(Kimball, 1983, pp.3). The response must meet the criteria of 

specificity and memory. An antigen is a substance that when introduced 

into an animal with a functioning immune system, can elicit a specific 

immune response. Two main effector mechanisms mediate immune 

responses: humoral immunity (antibody mediated) and cell-mediated 

immunity. 

In the cell-mediated branch of the immune system, T-lymphocytes 

{T-cells) of different types and specificities are the main effector 
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cells. Antigenic stimulation ofT-cell s results in cell proliferation 

(division) and differentiation of T-ee!! populations which recognize 

specific antigenic determinants on the antigen. Clones (identical 

progeny) of these lymphoblast cel ls are responsible for such actions as 

delayed-type hypersensitivity (T ), 
DTH 

against graft cells or infected cells, 

cytotoxic activity (T ) directed 
c 

helper activity (T ) which aids 
H 

in T 
c 

which 

killing and antibody production, and suppressor activity (T ) 
s 

prevents overaction of the immune system such as fo und in auto-

immune disorders. 

In the humoral branch of the immune system, antigenic stimulation 

of B-lymphocytes {B-cell s) results in proliferation and differentiation 

of those ce lls which recognize antigenic determi nants on the antigen. 

These lymphoblasts differentiate into plasma cells which produce and 

release antibody of the same specificity as the stimulated B-cells; 

i.e., they are specific for the eliciting antigen. Antibodies than act 

as intermediaries in a series of reactions , including the activation of 

the complement cascade for lysis, to help rid the body of the foreign 

antigen. 

Natural killer (NK) cells are a subpopulation of lymphocytes 

responsible for the recognition and killing of tumor ce ll s which arise 

spontaneously or via chemical or physical agents in the body. These 

cells are not truly immune cells because they require no prior exposure 

(sensitization) for effective ki lling and ha ve no memory function as do 

other lymphocytes. They are thought to be important for surve illance 

and destruction of neoplastic ce lls in vivo. Lymphocytes responsible 

for antibody-dependent cell-mediated cytotoxicity (ADCC) kill cells 
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coated with antibody specific to these target cells. These lymphocytes 

are possibly identical to the NK cells. 

Blood monocytes and their tissue counterparts, the macrophages, 

are accessory cells of the immune system. They are phagocytic and 

responsible for the ingestion and breakdown of foreign particulate 

matter including live cells. Macrophages assist T- and B-lymphocytes 

in their tasks by the processing and presentation of antigen to T 
H 

cells. 

The various cells of the immune system are derived from bone 

marrow precursor cells. T-cells mature while in temporary residence 

whithin the thymus. Normal immune responses require recognition and 

cooperation of different cell types and coordination with a variety of 

factors. It is through this complex interplay that the body is 

protected from foreign agents and self · destruction. 
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Several of the widely used AED have been shown to have immuno­

modulating effects in some patients. Many patients on long-term 

phenytoin therapy have developed low secretory and serum lgA levels 

(Chiu et al, 1982; Gilhus and Aarli, 1981a; Martinez-Cairo eta!, 1980; 

Fossan and Aarli, 1979; Aarli, 1976a, 1976b). Decreases in secretory 

lgA can resu lt in an increase in frequency of respiratory infections 

(Gilhus and Aarli, 1981a; Aarli and Fontana, 1980) and there is an 

increased tendency for phenytoin-treated patients to develop recurrent 

respiratory infections (Aarli and Gilhus, 1983). Decreased IgA levels 

have also found in duodenal fluid of patients receiving phenytoin 

(Martinez-Cairo eta!, 1980). Predisposition to develop lgA deficiency 

appears to be genetically determined (Aar li and Gilhus, 1983). 

Anderson and Moseklide (1977) have shown decreases in serum lgA in some 

patients but increases in others. Serum !gA deficiencies can be 

reversed by withdrawal of phenytoin therapy (Aarli, 1976a). Serum !gA 

deficiency may be associated with increased serum lgM and !gO levels 

(Pereira et a I , 1983 ). 

The levels of other serum immunoglobul ins have also been altered 

following phenytoin therapy. Suppression of !gG (Czlonkowska et a!, 

1981; Anderson and Moseklide, 1977; Aarli, 1976a), imbalance of IgG 

subclasses (Fontana et a!, 1978c), elevation of lgM' (Anderson et a!, 

1981; Anderson and Moseklide, 1977), depression of IgM (Aarli, 1976b) 

and increases in !gE and !gO (Blanco eta!, 1977 ) have been reported. 

Many of these changes were slight such that the overall effects on the 

patients were likely to be insignificant. An alteration of the 
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compositio n or quality of the cerebrosp inal fluid IgG has also been 

found in phenytoin-treated patients (Fossan and Aarli, 1979) and 

reduction of cerebrospinal fluid lgG concentrations has been observed 

(Fossan, 1976). Deposits of immunoglobulins in the skin have been 

found (Meistrup-Larsen et al, 1979). A severe panhypogammaglobulinemia 

has been found in a few patients (Pereira et al, 1983). It has been 

suggested that B-cell differentiation is altered by phenytoin (Seager 

et al, 1975). In particular, there may be several blocks of the normal 

progression in B-cell differentiation in a manner similar to that found 

with adult-onset hypogammaglobulinemia. These blocks could lead to the 

increase in IgD found in some of the IgA-deficient patients (Pereira et 

al, 1983). 

A decrease in numbers of T-cells has been found in epileptic and 

non-epileptic patients receiving phenytoin (Martinez-Cairo et al, 

1980). The mean percentages ofT-cells and monocytes were decreased in 

patients on phenytoin therapy (Chiu et al, 1982). Evidence ofT-cell 

dysfunction has also been observed (Shakir et al, 1973) and decrease 

in total lymphocyte numbers have been noted (Gilhus et al, 1982 ba nd 

1982c). 

Supression of in vitro lymphocyte blastogenesis with phytohemag­

glutinin and pokeweed mitogen by serum factors has been found in 

patients with brain tumors treated with phenytoin (Neuwelt et al, 

1983). In epileptic patients receiving phenytoin, phytohemaggl uti ni n 

blastogenesis was slightly depressed (Gilhus et al, 1982 b; Czlonkowska 

et al, 1981; Yabuki and Nakaya, 1976). Phenytoin added directly to 

lymphocyte cultures from patients depresses lymphocyte response but a 

comparison of these patients after initiation of drug therapy versus 
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pre-drug responses showed a tren d to increased responsiveness to 

pokeweed mitogen, concanavalin A and suboptimal levels of phytohemag-

glutinin in those with low serum IgA (Gabournel et al, 1982). 

A number of patients on long-term hydantoin treatment, including 

phenytoin, have developed lymphoma (malignant or Hodgkin's). There are 

possible correlations between the immunosuppressive action of 

hydantoin derivatives and tumor induction (Jungi et al, 1975). 

The percentages of l ymphocytes forming rosettes with sheep red 

blood cells was decreased in epileptic patients receiving no drug 
J 

therapy (Czlonkowska and Korlak, 1980) and with patients on AED therapy 

(Fontana et al, 1978c); however eleva ted responses (Czl onkowska et al, 

1981) and normal responses have also been observed (Gilhus et al, 

1982c). 

Patients on phenytoin therapy have been found to have reduced 

concentrations of complement components C1-inhibitor and C4 (Aarli and 

Gil hus, 1983). 

Several changes in normal immune function have been reported 

following carbamazepine therapy. An increase in serum IgA and IgG were 

found in one study where the increase was positively correlated to 

increasing carbamazepine concentraions and inversely correlated with 

age (Strandjord et al, 1980). In another study, a trend for increased 

serum lgG and Igr~ levels was noted as well as a significant fall in 

phytohemagglutinin-induced blastogenesis (Czlonkowska et al, 1981). A 

marked decrease in serum IgA and lgM levels occured in some patients 

during the first month of carbamazepine therapy (Gilhus et al, 1982a ). 

However other studies have failed to confirm immunomodulating effects 

of carbamazepine: Gilhus et al (1980 ) found no significant difference 
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in salivary IgA although a trend of elevated salivary IgA, IgG, and Igl~ 

levels was found. Gilhus et al, (1982d} found no significant 

differences in nasal and serum IgA, IgG and IgM levels or in the number 

of days with respiratory tract disease symptoms in epileptic patients 

receiving carbamazepi ne therapy. 

One patient developed lupus erythematosus while receiving 

carbamazepine therapy. Salivary, gastric juice, and serum IgA levels 

were low or absent. No IgA-producing plasma cells were found on the 

rectal mucosa and bone marrow. Numbers of surface IgA+ B-lymphocytes 

were below normal, and there was a decreased capacity to develop both 

circulating antibodies ·and delayed hypersensitivity against test 

antigens (Takigawa et al, 1976}. 

There is little indication that other AED have effects on the 

immune system. Cells from patients with brain tumors treated with 

phenobarbital have a decreased in vitro lymphocyte blastogenesic 

response to mitogens via a suppressive factor in serum (Neuwelt al, 

1983} . Blanco et al (1977} found seru m IgA deficiency in one out of 20 

children being treated with phenobarbital. 

Patients on multiple drug therapy have shown decreases in 

production of specific antibody to such antigens as parainfluenza virus 

III (Czlonkowska and Iwinska, 1977}. 

The varying degrees of immunomodulation seen in patients on AED 

indicates that there are likely other factors besides the AED that have 

a rol e in suppression or stimulation of various components of the 

immune system. For example patients on phenytoin may have no change in 

IgA levels (Modeer et al, 1981}, mild depression or severe depression 

(Pereira et al, 1983}. In one study, IgA suppression was found to be 
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more related to the history of febrile convulsions than to the type of 

epilepsy or drug therapy (Gilhus and Aarli, 1981b). Epileptic patients 

not receiving medication have shown no antibody changes in some studies 

(Aarli, 1976b; Yabuki and Nakaya, 1976) whereas follow up studies on 

patients on phenytoin therapy show a decrease _in serum IgA only after 

start of treatment (Aarli, 1976b; Fontana et al, 1976). Relatives of 

epileptics have at times shown antibody imbalances (Fontana et al, 

1978b; Haldorsen and Aarli, 1977). While some studies have shown that 

phenytoin may depress in vitro blastogenesic response to phytohemagglu-

tinin, other studies have shown that a greater than expected number of 

patients have a low responsiveness to mitogens prior to treatment 
I 

(Gabourel et al, 1982), and in fact serum lgA-deficient epileptic 

patients receiving phenytoin have shown increased lymphocytic responses 

to mi togens. 

Various authors have stated the importance of aquired or genetic 

factors in determining whether a patient will suffer either suppression 

or stimulation of immune responses while receiving AED (Chiu et al, 

1982; Anderson et al, 1981; Blanco et al, 1977). HL-A2 antigen is 

associated with decreased IgG titers seen with phenytoin and carbama­

zepine therapy and with immunoglobulin subclass imbalance (Fontana et 

al, 1978c). HL-A7 antigen has a significantly increased frequency 

among epileptic patients while HL-A12 antigen has a low frequency. 

HLA-B7 is associated with Lennox-Gastaut epilepsy (Smeraldi et al, 

1975). Tartara et al (1981) found the common feature of immunological 

disorders more related to early onset of seizures and AED treatment 

rather than the specific therapy or the clinical type of epilepsy. 

Bo th epilepsy itself and AED have been associated with autoimmune 



29 

phenomena. It is possible that epilepsy itself may have an immuno­

logical basis in some cases. Divalent and monovalent antibodies to GM 

1 ganglioside injected into the sensori-motor cortex of the rat induces 

recurrent epileptiform activity (Karpiak et al, 1982). It has been 

proposed that epileptic discharges could be the result of an autoimmune 

response to either an antigen released during tissue destruction or an 

infective agent; antibodies may block transmitter receptor sites at 

synapses and reduce synapti c transmission (Ettlinger and Lowrie, 1976). 

The types of auto-antibodies found in some epileptic patients 

include antinuclear (Chiu et al, 1982; Anderson and Moseklide, 1977), 

anti-RNA (Ooi et al, 1977) anti-mitochondrial (Anderson and l~oseklide, 

1977), and anti-muscle and anti-brain nicotinic acetylcholine receptor 

(Fontana et al, 1978a). Po~ova et al (1975) found a 31% incidence of 

brain autoantigens and an 8% incidence of anti-brain antibodies in 

epileptic patients receiving AED. Lymphocytotoxins with activities 

against T- and B-lymphocytes were found in 30% of patients on phenytoin 

(Ooi et al, 1977). It has been postulated that AED can activate a 

latent autoimmune response and modify its natural course for the worst 

(Alarcon-Segovia et al, 1972). 

Ethosuximide (Tor et al, 1979), carbamazepine (Takigawa et al, 

1976), and other AED are considered lupus erythematosus-activating 

drugs (Alarcon-Segovia and Fishbein, 1975). In several patients an 

unquestionable correlation was found ·between the appearance of seizures 

and the action of certain allergens. However, allergy is only rarely 

considered to be the cause of epileptic seizures (Dzi alek, 1975). 

Pechadre et al (1977) have reported that out of 10 children with 

severe epilepsy that were treated wi th repeated large doses of gamma 
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globulin, 7 showed marked improvement in behavior and 8 showed a 

disappearance in seizures with EEG improvement. Epilepsy may then be 

triggered by a combination of an inadequate immune system and an 

infectious agent. 

Despite what is known concerning immune deficiencies associated 

with epilepsy and AED, a unified concept of their relationships cannot 

as yet be formulated (Cereghino, 1983). 

A number of disorders , ranging from mild to severe may affect the 

same individual receiving AED (Christe et al, 1983). A number of 

factors appear to predispose a patient to chronic toxicities: young 

children may be more susceptible to the toxic effects of these drugs. 

Long-term therapy increases the risk of chronic toxicities as does 

mu 1 tip 1 e drug therapy . There is evidence that mu 1 tip l e drug therapy 

has little advantage over single drug therapy in contro 11 i ng seizures 

and may greatly increase toxicity risk. Institutionalization, poor 

diet, pregnancy, and the presence of concurrent illnesses and 

disabilities increase toxi c ity risk. Brain damage and mental 

retardation increase toxicity risk. Repeated acute toxicity can 

increase risk by damaging peripheral nerves. Reynolds (1983b) has 

outlined the factors predisposing individuals to chronic toxicities and 

has recommended that both physicians and patients be aware of the side 

effects of AED and their signs. The importance of correct diagnosis 

and therapy is stressed. Furthermore, early and effective treatment is 

a safeguard to patients. Lastly, therapy should be withdrawn when 

possible. 
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The drugs effective in controlling seizures are variously 

associated with a number of chronic toxicities including toxicity to 

the immune system (Oxley eta!, 1983) . Included among these toxicities 

are depression of serum and secretory IgA titers seen in patients on 

long-term phenytoin treatment (Yabuki and Nakaya, 1976; Martinez-Cairo 

eta!, 1980) and decreases in specific ant ibody titer found in patients 

on multiple antiepileptic drug (AED) therapy (Sorrel et a!, 1971; 

Czlonkowska and Iwinska, 1977). 

A limited number of studies have been conducted on lymphocytic 

function of patients on long-term AED therapy. A decrease in mitogenic 

response to phytohemagglutinin (PHA) and pokeweed mitogen (PWM) has 

been found in association with phenytoi n and phenobarbital treatment of 

patients with brain tumors (Neuwelt eta !, 1983). Further, Shakir et 

a!. (1978) fo und evidence of suppressed T-ee!! function in patients 

receiving phenytoin. However , it has been suggested that immune 

alterations found in epileptic patients are not necessarily a result of 

AED since abnormalities have been fou nd in patients not receiving 

medication (Gabournel eta!, 1982). Limited data are available on the 

relative roles that AED, disease processes of epilepsy, and genetic 

f actors play in immune abnormalities seen in epileptic patients. 

The present study assessed natural killer and killer cell 
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activities of peripheral blood mononuclear cells (PBMC) isolated from 

children and adult epileptic patients. Healthy siblings were also 

studied as a means to assess a genetic role in immune function. PBMC 

responses to the lymphocyte mitogens concanavalin A (con A), PHA and 

PWM were also investigated. Enumeration of the lymphocyte 

subpopulations and subsets which expressed the markers OKT4, OKT8, 

7.2(Ia), and Leu 11 were made. Immunologic studies of epileptic 

children were of particu lar interest since few data are available from 

young patients . 

Materials Q.Q.Q. ~ 

Experimental subjects. The human subjects used in thi-s study included 

both epileptic patients and age- and sex-matc hed healthy volunteers. 

The epileptic children were affiliated with the Developmental Center 

for Handicapped Persons at Utah State University. The patients were 

receiving a variety of medications and differed in their treatment 

regimens and medical histories. The ages of the children ranged from 4-

16 years {patients ) and from 3-18 years (controls). The sib l ings 

included 5 children aged 6-14 years and 1 adult (age 25). Four adult 

patients, ranging in age from 24-35 years, and up to 46 healthy adults 

aged 20-45 were also studied. 

Seoaration of PBMC. PBMC were separated by centrifuging freshly 

drawn blood on a Ficoll-Hypaque density gradient, rinsed, and suspended 

in RPMI-1640 medium (Gibco, Grand Is land , New York) containing 

penicillin (100 .pa units/ml), streptomycin (100 mcg/ml), and 10% fetal 

bovine serum (Hyclone Laboratories, Logan, Utah). 
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The details of the Cr technique have 

been described (Warren et a!, 1976). PBMC in concentrations of 5, 2.5, 
6 51 

1.2, and 0.6 X 10 cells / ml were incubated with Cr-Jabelled K562 
5 

target cells suspended at 1 x 10 cells/mi. PBMC and target cells at 

0.1 ml each were incubated together in triplicate in round bottom 

tissue culture plates for 4 h at 37C in 5% co . An a! iquot of 
2 

supernatant was removed and counted in a Beckman gamma counter. 
51 

Results were expressed as a percent Cr-release relative to 

spontaneous (target cells in medium alone) and maximal release (target 

cells in 0.25 % saponin): 

Percent Release experimental cpm - spontaneous cpm x 100 
maximal cpm - spontaneous cpm 

Lymphocyte enumeration. PBMC were depleted of macrophages by allowing 

adherent cells to attach to plastic culture dishes for 1 hr. The non-

adherent PBMC were enumerated with the rosette assay for total T­

cells and the complement-mediated cytotoxicity assay for lymphocyte and 

lymphocyte subpopulation proportions. For the latter assay, the cells 

were incubated in Microtest II plates with various monoclonal 

antibodies: OKT4 for helper/ inducer T-Jymphocytes, OKT8 for 

suppressor/cytotoxic T-lymphocytes, (Ortho Diagnostic Systems, Raritan, 

New Jersey), 7.2 for the !a antigenic determinant on B-lymphocytes (New 

England Nuclear, Boston, Massachusets), and on a few of the subjects, 

with Leu 11 for an NK cell subpopulation (Becton Dickinson Monoclonal 

Antibody Center, Mountain View, California). Complement was then added 

followed by another incubation and the percent viable cells was 

determined by trypan blue exclusion. Percent lysis was calculated as 

lysed cells / total number of lymphocytes counted. 



Lymphocyte blastogenesi s . 

34 

The lymphocyte blastogenesis assay was 

carried out as previousl y described (Mickelson et al, 1981). Briefly, 

lymphocytic responses to the mitogens PHA, and PWM (Gibco) and con A 

(Flow Laboratories, Mclean, Virginia) were assayed by culturing 1 x 
5 

10 PBMC with various concentrations of mitogens in flat bottom 96 well 

tissue culture plates. After the cultures were incubated for 68 h in 5% 

CO , tritiated-thymidine was added for an additional 4 h incubation. 
2 

The cells were harvested and tritiated thymidine incorporation counted 

with a scinti ll at ion counter. 

Antibodv-deoendent cell-mediated cytotox icity (ADCC) ~ This 

assay was carried out in a fashion similar to that of the NK assay 

except the targets were YAC-1 murine lymphoma ce lls. PBMC (0.05 ml) in 
6 

concentrations of 10, 5, 2.5, and 1.2 x 10 cells/ml and in 40% heat-

inactivated fetal bovine serum were incubated in round 
51 

with 0.1 ml Cr-labelled target cel ls suspended at 2 x 

bottom wells 
5 

10 cells/ml 

and 0.5 ml of rabbit anti-mouse thymocyte serum (M.A. Bioproducts, 
51 

Walkersville, Mary land) with a final dilution of 1/1000. Cr -release 

was quantitated as in the NK assay. 

Stat istical analysis. Data were analyzed with t-test for different 

means, with analysis of variance, or simple linear regression and the 

95% confidence interval for a normal distribution. Blastogenesis data 

were analyzed after log transformations of the counts using geometric 

means and variances . 

PBMC from epileptic patients, healthy siblings, and 
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unrelated healthy subjects were tested for natural killer cell activity 
51 

(Figure III-1). The mean percent Cr releases effected by PBMC of the 

epileptic patients and their healthy siblings were significantly lower 

at each effector to target cell ratio than that of the healthy control 

subjects. Although the siblings of the epileptic patients had induced 

somewhat lower mean percent releases than the patients, these lower 

releases were not significant. Mean releases effected by cells from 

epileptic children were similiar to those of the patients shown in 

Figure III-1 and were significantly decreased from those of the healthy 

children (p < . 01, separate data not shown). Also, 3 of 4 adult 

patients had lower activities than healthy adults. 

Lymphocyte subset analysis. The monoclonal antibody anti-Leu 11 was 

used to estimate the proportion of NK cells bearing the Leu 11 

determinant in 13 of the patients and healthy subjects. A significant 

correlation was found between the proportion of Leu 11+ cells and 

NK cell activity (Figure III-2, r= 0.68 for the 50:1 effector to target 

cell ratio). In addition, 6 epileptic patients included in this portion 

of the study had a significantly lower proportion of Leu 11+ cells 

(mean of 9.5% ± 5.0) than 6 unrelated healthy subjects (14.4 % z 3.9) . 

The epileptic patients had a significant ly lower OKT4+/0KT8+ cell 

ratio as compared to that of healthy subjects (Table III-1). Healthy 

siblings also had a lower ratio although not significantly. In 

addition to data shown in Table III-1, epileptic chi ldren had a mean 

ratio of 1.54 ±0.5 which was significantly lower than that of healthy 

children who had a mean ratio of 2.3 z0.9. Adult patients had a lower 
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FIGURE III-1. Natural killer cell activity expressed as mean percent 
51 

Cr release and standard error of the mean at various ratios of 

effector to target cells. Peripheral blood mononuclear cells (PBMC) 

were isolated from 46 healthy unrelated subjects including 10 children 

and 36 adults IZZJ, 19 epileptic patients inc luding 15 children and 4 

adults 1111 , and 6 healthy siblings including 5 children and 

adult ~ . Mean releases effected by PBMC from patients and their 

siblings were significantly lower at each effector to target cell ratio 

(p< 0.001). 
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between percent Leu11+ peripheral blood mononuclear ce lls and natural 

killer cell activity of various subjects: 6 healthy 0 , 6 

patients e and sibling • Cytotoxicity shown is from the 

effector to target cell ratio of 50 : 1. 
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TABLE III-1. 

LYMPHOCYTE ENUMERATION OF EXPERIMENTAL SUBJECTS 

a b c d e 
Group N OKT4+/ 0KT8 7.2+ RFC% WBC 

Healthy 15 2. 14f 13.4 77.4 7235 
Subjects 0. 75 5.5 7.8 1911 

g 
Patients 17 1.54 15.9 77.9 7235 

0.42 7.5 8.3 2261 

Siblings 6 1.68 14.6 79.4 6290 
0.37 4.7 2.7 0831 

a. Numbers of subjects studied. 

b. Mean ratio of the proportion of peripheral blood mononuclear cells 

which were OKT4+ to OKT8 +. 

c. Mean percent of monocyte-depleted peripheral blood mononuclear cells 

positive for the monoclonal antibody determinant 7.2. 

d. Mean percent of rosette forming cells from peripheral blood 

mononuclear cells depleted of macrophages. 

e. Total white blood cells as determined from aliquots of whole blood. 
3 3 

Values expressed as mean x 10 per mm 

f. Standard deviation of the mean. 

g. Significantly reduced (p < 0.05). 
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ratio of 1.7 ±0.4 compared with healthy adults with a ratio of 1.9 

±0.4, however this difference was not significant. 

The monoclonal antibody anti-7.2 was used to estimate the numbers 

of 8-cells in PBMC depleted of monocytes (Table Ill-1). No differences 

were found in the percent of 7.2+ cells from epileptic patients as 

compared with that found in cells from healthy subjects. A T-ee!! 

rosetting assay with sheep red blood cells was done as an indication of 

total T-cells and the percent rosette-forming cells (RFC) are listed in 

Table III-1. Cells from neither children nor adult patients showed 

deviations from the normal range of 70-80 percent. Also presented is 

the total white blood cell (WBC) counts for the various groups of 

subjects. These counts were quite variable and there were no 

significant differences seen between the counts obtained from patients 

and healthy subjects. 

Lymphocyte blastogenesis assays. Responses to several 

concentrations of the T-ee!! mitogens PHA and Con A and the B-ee!! 

mitogen PI<M are shown in Figures III-3, !11-4, and 111-5, respectively. 

Considerable variation was observed in response to these mitogens and 

no significant differences among PBMC from the various groups were 

found. 

Mitogenic responses of PBMC from 5 epileptic children who 

displayed symptoms of autism were analyzed separately and were found to 

be significantly decreased for PHA, Con A, and PWM. Details of these 

studies will be presented and discussed elsewhere (Warren eta!, 1985). 

In contrast to findings with the NK cell assay, ADCC 

activity by cells of epileptic patients was not significantly 
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FIGURE 111-3 . Mean incorporat ion of count s per minute of tritiated 

thymidine and standard error of the mean by peripheral blood 

mononuclear cells from 17 unrelated healthy subjects including 9 

children and 8 adults t22LJ, 13 epileptic patients including 9 children 

and 4 adults 1111, and 5 healthy siblings including 4 children and 1 

adult~' following incubation with various concentrations of 

phytohemaggutinin. No significant differences were found between 

results obtained using cells from epileptic patients and healthy 

subjects. 
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FIGURE III-4. Mean incorporati on of counts per minute of tritiated 

thymidine and standard error of the mean by peripheral blood 

mononuclear celts from 17 unrelated healthy subjects including 9 

children and 8 adults~, 13 epileptic patients including 9 ch ildren 

and 4 adults 1111 , and 5 healthy siblings including 4 children and 

adult~. following incubation with various concentrations of 

concanava lin A. No significant differences were found between results 

obtained using ce lls from epileptic patients and healthy subjects. 



10 

9 

8 

7 

0 
0 
S2 
X 5 
~ 
a.. -4 u 

3 

2 

0.06 0.03 
PWM,% 

42 

0.015 

FIGURE 111-5. Mean incorporation of count s per minute of tritiated 

thymidine and standard error of the mean by peripheral blood 

mononuclear cells from 16 unrelated healthy subjects including 7 

children and 9 adultsi'2Zl, 13 epileptic patients including 9 ch il dren 

and 4 adult s - . and 5 healthy siblings incl uding 4 children and 

adult ~, follow ing incubation with various concentrations of 

pokeweed mitogen. No sig ni ficant differences were found between 

resu lts obta ined usi ng cel ls from epileptic patients and healthy 

subjects. 
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different from that induced by PBMC of the siblings of the patients or 

the other healthy subjects (Figure 111-6). 

Discussion 

The current study presents evidence for altered immune function 

and lymphocyte subsets of epileptic patients and their siblings. 

Specifically, NK cell activity was found to be significantly depressed 

in epileptic patients and their s iblings . In addition, the proportion 

of Leu 11+ NK cells was significantly lower in epileptic patients than 

in healthy subjects. A correlat ion was found between NK cel l activity 

and percent Leu 11+ cells, suggesting that the low NK cell activity 

observed in some of the patients may be due to a low proportion of 

cells in the blood bearing this determinant. However, other 

mechanisms, such as impaired lytic activity, could be operating. 

Evidence indicates that NK cells play a vital role in host defense 

against virally infected and transformed (tumor) cells (Herberman, 

1984). The reduced NK cell activity found in the patients and their 

siblings may not be of a level considered to be clinically meaningful, 

and in fact none of the experimental subjects in this study were 

considered to be immunologically compromised . However, a depressed NK 

cell activity could be responsible for the slightly increased 

susceptibility to respiratory infections seen in epileptic patients 

treated with phenytoin (Gilhus and Aarli, 1981a). Since only 6 

sibli ngs were availab le for study, the association of a reduced NK cell 

activity in these subjects must be regarded as tentative. 

NK cells produce and are activated by various lymphokines and are 

involved in immune regulation and activation (Herberman, 1984; Scala et 
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FIGURE III-6. Antibody-dependent ce l l-mediated cytotoxicity expressed 
51 

as mean percent Cr release and standard error of the mean at various 

ratios of effector to target cells. Peripheral blood mononuclear ce ll s 

were isolated from 9 unrelated he~lthy subjects including 1 child and 8 

adults ~' 13 epileptic patients including 9 children and 4 

adults • • and 5 healthy sib! ings including 4 children and 

adult rn. No significant differences were found between results 

obtained usi ng cells from epileptic patients and hea lthy subjects. 
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a! , 1984). Thus, low numbers or reduced activity of NK ce ll s could 

influence immune functions other than NK ce ll activity or may be a 

reflection of other immune abnormalit ies . 

A significantly lower ratio of OKT4+/0KT8+ cells was found in 

epileptic patients. Altered ratios sometimes are associated with immune 

deficiency if the ratio is low, such as that seen in acquired immuno-

deficiency syndrome (Fauci eta!, 1984) or autoimmune mediated disease 

such as mult iple sclerosis (Bach eta!, 1980; Reinherz eta!, 1980) if 

the ratio is high. Epileptic patients on multi-drug therapy have shown 

lower specific antibody titers for parainfluenza virus III (Czlonkowska 

and Iwinska, 1977) and some patients on phenytoin therapy lack 

delayed-type hypersensitivity to common test antigens (mumps, Candida, 

and Streptococca l antigen) and fail to produce antibody to Sa lmonella 

typhi antigen (Sorrel et al, 1971). 

In contrast to observed differences in NK cell killing, no 

deviations in ADCC activity were found from cells isolated from 

patients versus healthy subjects. Evidence is accumulating that ADCC is 

likely mediated by a different mechanism than NK cell killing (Koren 

and Williams, 1978; Suthanthiran eta!, 1984). Blastogenic response to 

T-ee!! and B-ee!! mitogens were found to be variable and no significant 

differences were seen except in epileptic patients who also expressed 

the symptoms of autism (discussed separately in Warren eta!, 1985). 

The percent of monocyte-depleted PBMC forming rosettes with SRBC (an 

indication of total T-cells in this population) from the patients were 

within the normal range. This finding contrasts with previous studies 

demonstrating decreased RFC in epileptic patients not receiving AED 

(Czlonkowska and Korlak, 1980) and patients receiving AED (Fontana et 
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a!, 1978c) but agrees with the report of Gilhus eta!. (1982b) who 

found normal proportions of RFC in epileptic patients treated with AED. 

The varying degrees of immune alteration seen in epileptic 

patients on AED therapy indicate that factors other than those 

associated with AED likely play a role in modulating various components 

of the immune system in these patients. Chief among these factors is 

probably a genetic mechanism. It has been reported that IgA deficiency 

in association with phenytoin therapy appears to be genetically 

determined and linked to the HLA-A2 antigen (Gilhus eta!, 1982c; Aarli 

and Gilhus, 1983). Also, various HLA antigens are associated with 

immune alterations in epileptic patients and with epilepsy itself: 

HLA-A2 antigen. has been linked to decreased IgG titers and altered 

immunoglobulin subclasses (Fontana eta!, 1978b) while HLA-87 antigen 

has an increased frequency among epileptic patients (Smeraldi et a!, 

1978). The current study has shown a depressed NK activity and a low 

OKT4+/ 0KT8+ ratio in both epileptic children and their siblings. Thus, 

it would appear that these immune system abnormalities also have a 

genetic basis. 

The question of which factors cause immune alterations in 

epileptic patients remains a complex one. There is evidence for drug 

effects and disease effects: that is immune alterations may result from 

disease processes or conversely, epilepsy in some cases may be a 

result of an immune abnormality such as autoimmunity. It is interesting 

that various types of autoantibod ies have been found in epileptic 

patients: anti -nuclear (Chiu eta!, 1982), anti-mitochondrial (Anderson 

and Moskilde, 1977), anti-muscle and anti-brain nicotinic acetylcholine 

receptor (Fontana eta!, 1978a), and brain autoantigens (Popova eta!, 
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1975). It has been suggested that AED may activate a latent autoimmune 

response (Alarcon-Segovia eta!, 1972) and various AED are considered 

to be lupus erythematosis-activating drugs (Alarcon-Segovia and 

Fishbein, 1975). 

This study has demonstrated immune alterations not previously 

found in epileptic patients. Further, evidence indicated that the 

depressed NK function and low OKT4+/0KT8+ ratios in epileptic patients 

is likely not caused by either AED therapy or disease processes of 

epilepsy but rather may be genetically determined. These results 

indicate the importance of appropiate control subjects in immune 

studies of epileptic patients: both family members, such as siblings, 

and unrelated age- and sex-matched control subjects are necessary in 

order to properly interpret observations . Such studies would shed 

further light on the basis of immune abnormalities seen in epileptic 

patients. 
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Natural killer (NK) cells are a subpopulation of lymphoid cells 

with the innate ability to recognize certain target cells as abnormal 

and mount a cytotoxic attack against these target cells resulting in 

their lysis. Killer (K) cells are also contained within the lymphoid 

population and are responsible for antibody-dependent, non-complement 

mediated killing. The activities of both cells reside predominantly in 

the large granular lymphocyte fraction. Their activities are thought 

to be important in host defense and immunosurveillance based on 

evidence in both human subjects and experimental animals. 

Phenytoin and carbamazepine, widely used antiepileptic drugs 

(AED), have been associated with immune function alterations in man. 

In particular, phenytoin has been found to depress IgA level s (Yabuki 

and Nakaya, 1976; Martinez-Cairo et al, 1980), specific antibody titers 

and cell mediated reactions (Sorrel et al, 1971). More severe 

reactions to this drug include complex immunodeficiencies (Masi et al, 

1976), agranulocytosis (Tsan et al, 1976) possibly autoimmune in nature 

(Taetle et al, 1979), lymphadenopathies (Bellido et al, 1977 ), lymphoma 

(Lukes and Tindle, 1975), and a multitude of hypersensitivity reactions 

(Booker, 1975; Haruda, 1979). Carbamazepine has also been linked with 

agranulocytosis (Luchins, 1984), neutropenia, and leukopenia (Cereghino 

et al, 1974; Hart and Easton, 1981). 
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There appears to be a different individual susceptibility to the 

immunosuppressive effects of AED (Massimo et a!, 1976). Evidence is 

emerging that these drugs do have many effects on the immune system, 

particularly phenytoin, as shown in clinical studies. This investiga­

tion studied the effects of two AED on killer cell activities. 

Materials and ~ 

Freshly drawn blood was obtained from healthy 

volunteers. Peripheral blood mononuclear cells (PBt~C) were obtained by 

centrifuging whole blood on a Ficoll-Hypaque density gradient. PBMC 

were then rinsed and suspended in RPMI-1640 medium (GIBCO, Grand 

Island, New York) containing penicillin (100 units/ml), streptomycin 

(100 mcg/ml), and 1~ % fetal bovine serum (Hyclone Laboratories, Logan, 

UT). 

Chemicals. Phenytoin (powder) was a gift from Parke-Davis Warner-

Lambert Co. (Ann Arbor, Ml). Phenytoin was dissolved in 0.9% NaCI at 

pH 11 with 4N NaOH and diluted with RPMI-1640 medium to the 

appropiate concentrations . Carbamazepine (powder) was obtained from 

Sigma Chemical Co. (St. Louis, MO), dissolved in propylene glycol 

(Sargent Welch Scientific Co ., Skokie IL), and diluted with RPMI-1640 

medium. 

Experimental protocol. Three concentrat ions of phenytoin and 

carbamazepine chosen for this study were representative of levels used 

clinically. Plasma concentrations of 10-20 ug/ml phenytoin and 8 ug/ml 

carbamazepine were considered therapeutic levels. Levels of phenytoin 

and carbamazepine of 40 and 10-16 ug/ml, respectively, were in the 
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range considered acutely toxic: central nervous system effects such as 

nystagmus and ataxia become apparent in patients with plasma levels 

near or above these concentrations (Rail and Schleifer, 1980). 

PBMC were pre-incubated for 20 hr in either supplemented medium 

alone or medium with drug. The cells were rinsed and resuspended in 

medium with or without drug present followed by assessment of natural 

killer cell activity. 

Natural killer cell assay. This assay \vas carried out as described 

in the methods section of Chapter III. 

Interferon ore-treatment. PBMC were pre-incubated with either 500 or 

250 units/ml human alpha-interferon (Sigma) 18 hr prior to the NK cell 

assay. The PBMC were then rinsed and resuspended in medium followed by 

assessment of NK cell activity. 

Antibody-deoendent cell-mediated cytotoxicity (ADCC) ~- This 

assay was carried out as described in the methods section of chapter 

I I I. 

Statistical analysis. Data were analyzed with ANOVA and the least 

significant difference test, with a 95% confidence interval for a 

normal distribution. 

Results 

Phenytoin and ]K ~ activity. Phenytoin in concentrations of 40, 

20, and 10 ug/ml suppressed NK cell activity in a dose-dependent manner 

in vitro (Figure IV-1, p < 0.001). Phenytoin did not appear to alter 

lymphocyte viability since cells incubated for 24 hr in concentrations 
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FIGURE IV-1. Peripl1eral blood mononuclear cells were pre-incubated 

with phenytoin and assessed for natural killer cell activity in the 

presence of 0 IZZd, 10 - , 20 l'§J, and 40 CJ ug/ml of phenytoin. 

Natural killer cell activity is expressed as mean percent 
51

cr release 

and standard error of the mean at various ratios of effector to target 

cells: 50:1, 25:1, 12:1 and 6:1. Phenytoin at each concentration 

significantly depressed 51 cr release (p < 0.05). 
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of phenytoin up to 40 ug/ml had the same viability as diluent-treated 

cells as shown by trypan blue exclusi on (98.0%, data not shown). 

PBMC pre-incubated for 20 hr with concentrations of phenytoin up 

to 40 ug/ml, rinsed several times, and suspended in drug-free medium 

effected NK cell cytotoxicity at levels not significantly different 

from that of diluent-treated PBMC (Table IV-1) . 

Carbamazepine and NK cell activity. The drug carbamazepine had a 

variable effect on NK ce ll activity (Figure IV-2 ). PBMC treated with 8 

ug /ml carbamazepine had a slightly depressed activity as compared 

with diluent-treated cells though this decrease was not significant. 

Treatment o.f cells with 10 ug/ml resulted in a significant increase in 

activity as compared to cells treated with 8 or 16 ug/ml (p < 0.05). 

Carbamazepine may have a slight but variable effect on NK cell 

cytotoxicity depending upon its concentration. 

Propylene~ and NK_ cell activity. A comparison of the NK cell 

activity from PBMC treated with the st andard medium diluent control for 

phenytoin which contains sa line and RPMI-1640 with that for 

carbamazepine, which has a 1.4% final concentration of propylene glycol 

in RPMI-1640, indicated a significant depression of activity caused by 

the propylene glycol (Figure IV-3, p< 0.001). In another series of 

experiments it was found that propylene glycol concentrations as low as 

0.1% v/v depressed NK cell activity of PBMC (data not shown). 

Phenytoin ..2.!JQ_ interferon. Because of the pronounced effect of 

phenytoin on NK cell activity, it was of interest to investigate the 

effect of th is drug on the abil ity of alpha-interferon to augment NK 
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TABLE !V-1 

PHENYTOIN AND NATURAL KILLER CELL ACTIVITYa 

Release at effector to target cell ratio 

12:1 6 : 1 

Treatment 

Diluent 28.2 20.3 
9.7 B.O 

10 ug / ml +/ +b 24.1 16.2 
5.8 6.8 

20 ug / ml +/+ 21.1 12.4 
6.7 5.0 

40 ug / ml . +/+ 9.5 2.6 
4.1 2.9 

10 ug/ml +1-c 27 . 3 19.6 
9.7 8. 7 

20 ug/ml +I- 30.0 20.6 
8 .4 10.1 

40 ug / ml +I- 29.5 21.6 
12.6 10 .8 

a. Human peripheral blood mononu c l ear cells were assess ed f or natural 

killer ce ll activity following incubation with phenytoin. Activity is 

expressed as mean percent chromium release and standard deviation at 

the effector to target cell ratios indicated: N=4 for all means. 

b. Phenytoin, included in both the pre-incubation and in assay of 

peripheral blood mononuclear cells, significantly depress ed natural 

killer cell activity (p < 0.001). 

c. Phenytoin, included in the pre-incubation of peripheral blood 

mononuclear cells but not in the assay, did not depress natural killer 

cell activity comp ared to cells treated with diluent only. 
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FIGURE IV-2 . Peripheral blood mononuclear cells were pre-incubated 

with carbamazepine and assessed for natural killer cell activity in the 

presence of 0 EZZ!, 8 - , 10 C§l, and 16 Dug / ml of 

carbamazepine. Natural ki 11 er cell activity is expressed as mean 

51 percent Cr release and standard error of the mean at various ratios 

of effector to target cells : 50:1, 25:1, 12:1, and 6:1. Carbamazepine 

had no significant effect on mea n percent 
51 

Cr release. 
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FIGURE IV-3. Peripheral blood mononuclear cells were pre-incubated with 

propylene glycol and assessed for natural killer cell activity in the 

presence of medium alone ~or 1.4% v/v concentration of propylene 

glycol - · Natural killer cell activity is expressed as mean percent 

51cr release and standard error of the mean at various ratios of 

effector to target cells: 50:1, 25:1, 12:1 and 6:1. Propylene glycol 

significantly depressed 51 cr release (p < 0.001). 
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PBMC were incubated with 250 units alpha-

interferon/ml and phenytoin, rinsed, and assessed for NK cel l activity 

in the presence of drug. Phenytoin did not block the ability of PBMC 

to respond to interferon at any of the phenytoin concentrations but 

did depress NK activity in a dose-dependent manner (Figure IV-4, p < 

0.001). The pattern of phenytoin-induced depression of interferon­

treated cel ls was simi liar t o that seen with PBMC not treated with 

interferon. Simi liar results were found when PBMC were incubated in 

500 units of interferon/mi. 

Phenytoin and ADCC. Phenytoin also inhibited ADCC in a dose-

dependent fashion (Figure IV-5, p < 0.001 ). However, the depression of 

thi s act ivity occurred only at phenytoin concentrations of 20 and 40 

ug/ml and not at 10 ug/ml as seen with NK cell killing. 

Discussion 

In the current study, phenytoin depressed basal and interferon­

augmented NK cel l cytotoxicity in a dose-dependent manner in vitro. 

This depression appeared reversible since PBMC incubated wi th phenytoin 

and resuspended in medium without drug showed normal activities. The 

pattern of inhibition of NK cell activity of PBMC treated with 

interferon and those not treated with interferon appea'red the same, 

indicating that inhibition resu lts from the ability of phenytoin to 

interfere with the basal cytotoxic mechanisms and not mechanisms of 

interferon augmentation . In fact, a comparison of the depression 

caused by phenytoin with or without interferon pre-treatment suggests 

that interferon may act in an antagonistic fashion to phenytoin . For 

example, at the effector to target cel l ratio of 6:1, interferon 
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FIGURE IV-4. Peripheral blood mononuclear cells Vlere pre-incubated 

with phenytoin and 250 Units alpha interferon/ml and assessed for 

natural killer cell activity in the presence of 0, 10, 20 , and 40 

ug/ml of phenytoin. Natural killer cell activity is expressed as mean 

percent 
51

cr release and standard error of the mean at various ratios 

of effector to target cells and pre-incubation with and without 

interferon: 12:1 + interferon • , 12:1 - interferon 0 , 6:1 + 

interferon e , and 6:1 - interferon 0 Phenytoin at each 

concentration significantly depressed 
51

cr release of interferon 

treated and untreated cells (p < 0.05). 
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12:1 6:1 3:1 

Effector to Target Cell Ratio 

FIGURE IV-5 . Pe ripher a l blood mononuclear cel ls were pre-incubated 

with phenytoin and assessed for antibody-dependent cell-mediated 

cytotoxicity in the presence of 0 rzzl , 10 - , 20 ~, and 

40CJ ug/ml of phenytoin. Antibody-dependent cell-media ted cyto­

toxicity is expressed as mean percent ·51 cr release and standard error 

of the mean at various ratios of effector to target ce lls : 25 : 1, 12:1 

and 6:1. Phenytoin at 20 and 40 ug / ml conce ntration significantly 

depressed 51c r release (p < 0.05) . 
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stimulated control and phenytoin-treated, 40 ug/ml, cells by 139% and 

248%, respectively. However, additional work would be needed to 

confirm this effect. 

The present study shows a pronounced phenytoin-induced depression 

of NK cell activity by PBMC isolated from healthy donors and so is a 

short-term assessment of phenytoin's effect on this activity. This 

depression was found at concentrations of phenytoin representing plasma 

levels considered to be therapeutic to neurotoxic in range. The long­

term effect of phenytoin on NK cel ls is unknown and is presently being 

investigated using an in vivo animal model. 

NK cells are thought to play a vital role in host defense and to 

be a first line of defense against developing neoplasms. Evidence to 

support these roles have been found in both man and animals (Herberman, 

1984). This effect of phenytoin on NK cell mediated cytotoxicity is 

interesting in light of the association of hydantoin medications, 

including phenytoin, with lymphoproliferative disorders and lymphoma. 

There are numerous reports of patients on long-term hydantoi n 

treatment who have developed these disorders (Lukes and Tindle, 1975) 

and a 10-fold increase in the expected incidence of lymphoma in 

epileptic patients on hydantoin therapy has been reported (Anthony, 

1970). 

The mechanism by which phenytoin depresses NK cell activity is 

presently unknown. · Phenytoin may alter the binding of the effector 

cell to its target and/or inhibit the ability of the effector cell to 

lyse its target once a conjugate is formed. To distinguish between 

these requires a single cell assay which is currently under 

investigation. 
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One theory on the mechanism by which phenyto in suppresses seizure 

activity is by alteration of Ca++ fluxes and Ca++ dependent processes 

(Greenberg eta!, 1984 ; Sugaya eta!, 1984 and 1985; Ca ldwell and 

Harris, 1985) and by inhibition of Ca++ release from stores (Sugaya et 

a!, 1985) . Ca++ and the calcium-binding protein calmodulin have been 

shown to be important in NK ce ll cytolysis (Rochette-Egly and Tovey, 

1984) and phenytoi n may depress NK cell act ivity by altering Ca++ 

f luxes across cell membranes orCa++ binding prot eins . The abi li ty of 

interferon to augment NK cell act ivity is al so dependent upon movements 

of Ca++ and t he presence of calmodul in. Phenytoin depressed basal and 

interferon-induced NK ce ll lysis, thus phenytoi n may depress NK ce ll 

activity via its effect on Ca++ and its effector proteins. Delorenzo 

(1982) has indi cated that phenytoin inhibits the Ca++-calmodulin kinase 

system but not ca lmodulin itself. Thu s the effects of phenyto in on 

Ca++ and Ca++-binding prote ins are unclear. It is conce ivable that 

phenytoin alters NK ce ll activity by altering Ca++ channelling and Ca++ 

mediated events either directly such as by inhibition of ca lmodulin or 

indirect ly such as through decreased phosphorylati on of spec ific 

proteins after theCa++ signal, as has been shown in synapt ic vesicles 

(Delorenzo, 1980). 

Phenytoin also depressed ADCC but only at the 2 higher concentra­

tions studied. Large granular lymphocytes contained within the PBMC 

population have been shown to be capable of both NK cel l cytotoxicity 

and ADCC (Bradley and Bonavida, 1982) al though by a different mechanism 

(Koren and Williams, 1978) . Killing by either cell type is a multi­

step though il l-defined process, involving lyt ic granu les (Podack, 

1985), react i ve oxygen intermediates (Sutha nt hiran eta!, 1984), and 
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outward K+ currents during the lethal hit stage (Chandy eta!, 1985). 

It is possible that phenytoin depresses both NK cell killing and ADCC 

by the same mechanism: that is other pharmacologic agents have been 

shown to depress both activities (Henney and Gillis, 1984). This 

indicates that some steps may be shared in the mechanism of these two 

types of killing. 

It is reasonable to assume that depression of NK cell activity by 

phenytoin can result in lymphoma and lymphoproliferative states. 

Diethylstilbestrol, a synthetic non-steroidal agent used therapeu­

tically in man, has been found to depress NK cell activity in vivo 

(Kalland and Haukaas, 1981) and the lytic phase of this killing in 

vitro (Kalland and Campbell, 1984). There is a clear association 

between in utero exposure to diethylstilbestrol and the development of 

vaginal and uterine cancer (Mclachlan and Dixon, 1976). Ultraviolet 

radiation has also been found to suppress the post-binding lethal stage 

of NK cell cytolysis and ADCC (Weitzen and Bonavida, 1984). 

Various studies suggest that phenytoin causes chromosomal 

aberrations (Herna and Obe, 1977) and sister-chromatid exchanges 

(Kulkarni et a!, 1984) in humans exposed to this drug long-term. 

Furthermore, De Oca-Luna eta! (1984) found a significant increase in 

micronucleated polychromatic erythrocytes in mice exposed to multiple 

injections of phenytoin, an indication of chromosomal aberrations as 

shown by nuclear fragments. Phenytoin may then act two ways in the 

development of neoplasms: by a direct or genotoxic mechanism and by 

immunosuppression, an epigenetic mechanism. 

Phenytoin has also been found to. depress mixed lymphocyte reaction 

in vitro (Bluming eta!, 1976) and alter lymphocyte blastogenesis to 
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mitogens (Neuwelt et a!, 1983 ). Thus, there may be a variety of 

mechanisms by which phenytoin causes immune abnormalities, possibly 

leading to immunodeficiencies on the one hand and lymphoma and !ympho­

proliferative states on the other. NK cells, as well as being 

important for immunbsurveillance, are thought to be important in 

combating viral infections (Herberman, 1982) and in immunoregulation, 

such as through the production of lymphokines (Scala eta!, 1984). As 

a result, depression of NK cell activity by phenytoin cou ld lead to a 

variety of immune system alterations. 

Carbamazepine did not sign ificantly depress NK cell activity from 

diluent -treated cells and s li ghtly increased activity at 10 ug/ml 

concentration. Thi s effect was not dramatic however, and may be 

biologically insignificant. Carbamazepine has been found to depress 

Ca++-dependent phosphorylation of synaptosoma l proteins s imilar to 

phenytoin but at much greater concentrations than found therapeutically 

(Delorenzo, 1980). It is interesting that phenytoin and carbamazepine 

are useful in contro lling s imiliar seizure types and have considerable 

over lap in their 3 dimensional structures (Rail and Sch leifer, 1980), 

yet are dissimilar in their effects on NK cell activity. 

Propylene glycol depressed NK cell activity in a dose-dependent 

manner. This effect should be kept in mind with its use as a diluent 

for drugs in immu no logical assays. Ethylene glycol has also been 

found to depress NK cell activity in vitro; presumably due to its 

ability to act as a hydroxyl radical scavenger (Suthanthiran et a!, 

1984). Due to its structura l simi larities to ethylene glyco l , 

propylene glycol probably depresses NK ce ll activity by this same 

mechanism. 
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Phenytoin, a widely used antiepileptic drug (AED), has been found 

to alter both humoral and cellular immunity in man. These alterations 

include reduced antibody response and delayed-type sensitivity in vivo 

(Sorrel eta!, 1971), and decreased blastogenic response (Neuwelt et 

a!, 1983), lymphocyte protein synthesis, and numbers ofT rosette­

forming cells (Fontana et a!, 1978c) from patients treated with 

phenytoin. 

A complex interplay of drug effects, disease processes of 

epilepsy, and genetic factors are all thought to be associated with 

immune abnormalities seen in epileptic patients treated with AED. For 

example, long-term phenytoin treatment is associated with IgA 

deficiency in up to 21% of patients (Sorrel et a!, 1971): evidence 

ind icates that susceptibility to this defic iency is genetically 

determined and linked to the HLA-A2 anti gen (Gi lhus eta!, 1982c; Aarli 

and Gilhus, 1983). Furthermore, Gilhus and Aarli (1981b) found IgA 

suppression to be more related to a history of febrile convu lsions than 

to the type of epilepsy or drug therapy for some patients. 

An animal model to study effects of AED on immune function would 

allow a clear investigation into the effects of AED on the immune 

system . Animals have been used successfu ll y in studies of epilepsy 

(Chung and Johnson, 1984 ; McNamara, 1984; Morishita eta!, 1984) and 
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AED : for examp le in investigations of valproate-induced hepatotoxicity 

(Turnbull et al, 1983; Becker and Harris, 1983; Granneman et al, 1984; 

Kesterson et al, 1984) and phenytoin-associated teratogenesis (Hicks et 

a!, 1983; Watkinson and Millicovsky , 1983). However few animal studies 

have been used to investigate effects of AED on immune function. 

The present report describes a murine model to study effects of 

phenytoin on specific antibody production. Results, and the model's 

usefulness to assess other immune function disorders observed in 

c linical studies, are discussed. 

Materj a Is Qllij_ Methods 

!2.!Jd9 and dosage levels. Phenytoin (powder), a gift from Parke-Davis 

Warner-Lambert Co. (Ann Arbor, MI), was dissolved in 0.9% NaCI at pH 

11 with 4N NaOH. Three dosage levels for the mice were chosen from a 

pilot study. A low dose of 10 mg/kg (10 mg/ml) was near the dose found 

to be effective in controlling electroshock seizures in other strains 

of mice (Swinyard and Woodhead, 1982; Loscher and Meldrum, 1984; Zeiger 

et al, 1983) and was considered to be a therapeutic dose. A high dose 

of 40 mg/kg (40 mg/ml ) approached the neurotoxic dose 50% in this 

strain at 2 hr post injection as indicated by neurological defect. An 

animal was considered to be suffering from acute toxicity if it was 

unable to maintain balance on a rotating rod (6rpm) for 1 min in each 

of 3 trials at the time of peak drug effect (2 hr) (Swinyard and 

Woodhead, 1982). This dose was taken to represent frequent periods 

of acute toxicity. An intermediate dose of 20 mg/kg was also chosen. 

Experimental animals. Mice of the NFS strain were bred at our 

facility and given food and Wftter ad libitum. Animals 5 weeks of age 
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were divided into groups using both sexes per treatment, and dosed with 

phenytoin or diluent by intraperitoneal injection daily for 28 days. 

Immunization. Mice were injected subcutaneously with 2 mg (0.1 ml) 

bovine serum albumin (BSA) on day 3 of diluent or phenytoin treatment 

and challenged with 1 mg on day 23 (Koller et a!, 1883). BSA was 

dissolved in water at 40 mg/ml and emulsified 1:1 with Freund's 

incomplete adjuvent (Sigma Chemical Company, St. Louis, MO). On day 29 

the animals were lightly anaesthetized with ether and bled to determine 

hematocrits, white blood cell (WBC) counts, and titers of antibody to 

BSA. 

Antibody measurements. Antibodies to BSA were titered using an 

indirect enzyme-linked immunosorbent assay (ELISA). BSA at a 

concentration of 1 mg/ml was aliquoted into a 96-well Falcon Flexible 

plate 3912 (Beckton and Dickinson and Co., Oxnard, CA) in a volume of 

0.1 ml/well followed by a 30 min incubation at room temperature. 

Liquid was then decanted out of the wells and 0.2 ml of 1% human serum 

albumin (Sigma) added to the wells as a blocking agent. The contents 

within the wells of the plate were incubated for 30 min followed by 

decanting of the liquid. Mouse serum was then added in a volume of 

0.05 ml at dilutions ranging from 1/10 to 1/1,000 and allowed to 

incubate for 1 hr. Liquid was then decanted out and the wells rinsed 3 

times with phosphate buffered sa line (PBS). A 0.05 ml aliquot of 

peroxidase-conjugated goat anti-mouse IgG (Tago, Inc., Burlingame, CA) 

diluted 1/1000 was added to the wells followed by 90 min of incubation. 

Liquid was then decanted out, the wells rinsed 4 t imes with PBS, and 

0.05 ml of the substate ABTS (2,2 '-azinodi - (3-ethylbenzthi azoline 
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sulfonic acid diammonium salt, Sigma) at a concentration of 0.91mM was 

added. Color changes from negative control wells were read 30 min after 

this with a MicroElisa minireader (Dynatech) using a 410 nm filter. 

Normal mouse serum was used as a negative control. 

Statistical analysis. Data were analyzed with analysis of variance 

and least significant difference test with the 95% confidence interval 

for a normal distribution. 

Results 

Immunization and antibody titer. Phenytoin induced a dose-dependent 

decrease in IgG production . against BSA in mice (Figure V-1). This 

alteration in antibody production was significant for mice receiving 

both the 20 and 40 mg/kg dose at each of 2 dilutions of serum (p 

0.05). No differences in antibody production between male and female 

mice were observed. 

In general, the animals gained or 

maintained their weights during the course of the experiment with the 

exception of the female mice given 40 mg/kg phenytoin. These female 

mice lost weight during the first 2 weeks of treatment and during the 

third week the mouse that had lost the most weight died. By day 22 

these mice had weights not significantly different from female mice 

given diluent alone (Table V-1). Specific organ weights on the basis of 

g/g body weight for thymus, spleen, and liver were variable and no 

s ignificant differences were seen between phenytoin-treated and 

diluent-treated mice (Table V-2). Grossly, no changes in the appearance 

of these or other organs were seen in phenytoin-treated mice. 
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FIGURE V-1. Mice received diluent alone IZZL3, or 10 - · 20 ~. or 

40 c::=J mg/kg phenytoin for 28 days during which time they were 

sensitized and chal lenged with bovine serum albumin (BSA). Serum 

co llected on day 29 was diluted and assayed for IgG production specif ic 

fo r BSA. JgG production is expressed as a mean absorbance and standard 

err or of t he mean for serum dilutions of 1/100 and 1/1000. A 

s ignifi cant decrease in JgG specific for BSA was found in mice given 20 

and 40.,mg /kg phenyto in (p < 0.05). 
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TABLE V-1 

ANIMAL WEIGHTS AND PHENYTOIN EXPOSURE 

Female mice Male mice 
a 

Treatment Diluent 10 20 40 Diluent 10 20 40 
b 

Day 0 18.6c 17.6 17.8 18.4 20.3 21.3 20.5 21.0 
1.2 0.7 0.8 1.7 1.4 1.6 1.5 1.1 

Day 8 19.5 19.2 18.9 17.7 21.1 23.0 21.8 21.5 
1.5 0.8 0.4 1.8 1.6 1.9 2.2 1.0 

d 
Day 15 20.6 19.7 19.5 17.5 23.1 24.4 22.2 21.5 

1.5 1.3 0.0 2.0 1.1 2.5 2.3 0.7 

Day 22 20.9 20.7 20.3 19.9 24.6 26.1 22.6 22.6 
1.1 0.8 0.4 2.0 1.1 2.7 2.8 1.1 

Day 29 22.0 21.4 20.8 20.7 25.3 26.3 22.2 23.7 
0.0 0.8 0.8 1.6 1.3 2.1 1.1 1.2 

a. Animals were injected daily with diluent or phenytoin at doses of 

10, 20, or 40 mg/kg for 28 days during whi ch time they were sensitized 

and chal lenged with bovine serum albumin. 

b. Mean weights at the beginning of each week and at the time of 

sacrifice . Weights were listed separate ly for female and male mice due 

to a difference in weight between the sexes . N=5 for days 0, 8, and 

15. N varies from 2-4 on days 22 and 29. 

c. Standard deviation of the mean. 

d. Significantly decreased (p < 0.05). 
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TABLE V-2 

SPECIFIC ORGAN WEIGHTS and BLOOD VALUES 
AFTER PHENYTOIN EXPOSURE 

a 
Treatment : Diluent 10 20 40 

Mice per Treatment 5 7 6 8 
b 

Thymus Weight 2.44 3.38 3.27 2.55 
0.45c 1.08 0.80 0.65 

d 
Spleen Weight 5.85 5.48 6.05 5.04 

1.04 0.81 0.76 0.89 
e 

Liver Weight 7.40 6.65 6.71 7.95 
0.63 0.59 0.61 1.03 

f 
Hematocrit 46.4 46.7 47.0 43.4 

2.1 2.2 1.8 4.2 
g 

WBC Count 10.2 16.5 20.0 13.8 
6.3 10.4 10.0 13.5 

a. Mice were injected daily with diluent alone or phenytoin at doses of 

10, 20, or 40 mg/kg for 28 days during which time they were sensitized 

and challenged with bovine serum albumin. Parameters studied were at 

time of sacrifice. No significant differences were found between mice 

treated with phenytoin or diluent only in any of the specific organ 

weights, hematocrits, or white blood cell counts. 
-3 

b. Mean thymus weights in units of g/g body weight x 10 . 

c. Standard deviation of the mean. 
-3 

d. Mean spleen weights in units of g/g body weight x 10 
-2 

e. Mean liver weights in units of g/g body weight x 10 

f. Mean hematocrit. 
3 

g. Mean white blood cell count in units of leukocytes/mm blood x 10 at 

time of sacrifice. 
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Female mice given 40 mg/kg had slightly lower 

hematocrits than diluent-treated mice, although this difference was not 

significant. White blood cell counts were variable and no significant 

differences were found between phenytoin- and diluent-treated animals 

(Table V-2). 

Discussion 

The experimental protocol was tolerated relatively well by the 

animals. Body weights were maintained or increased throughout the 

injection period except for the first 2 weeks for the female mi ce given 

40 mg/kg phenytoin. Specific organ weights for thymus and spleen, which 

are centra I and peri ph era I lymphoid tissues, respectively, and for 

liver, were variable and no significant differences were found between 

mice given phenytoin or diluent. The organs were normal in appearance 

at sacr ifice. White blood cell counts and hematocrits were similiar in 

mice given phenytoin or diluent. These results suggest that phenytoin 

has no overt toxicity to these particular organs and blood cel ls. 

The use of this animal model appears to be suitab le for the study 

of effects of AED on immune function even at high doses of drug. Mice 

have been used to study the effects of immunomodulators (Nacy and 

Meltzer, 1984) and immunotoxins such as polycyclic aromatic 

hydrocarbons (Wojdani eta!, 1984), 2,4-dichlorophenol (Exon et a!, 

198'4), and heavy metals such as lead (Neilan eta!, 1983). 

The depression by phenytoin of lgG product ion in mice against the 

T-ee!! dependent antigen BSA, though not dramatic, appears to be dose­

dependent with high doses having a more pronounced effect than the 

therapeutic dose. Phenytoin is considered the AED most associated with 
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immune system abnormalities in man (Aarli and Gilhus, 1983) having been 

found to alter immunoglobulin levels. In particular, serum IgA levels 

are depressed in some patients which may lower their resistance to 

infections (Gilhus and Aarli, 1981a). However, a predisposition to 

develop lgA deficiency while being treated with phenytoin on a long­

term basis appears to be genetically determined (Gilhus et a!, 1982a, 

Aarli and Gi lhu s, 1983). 

Phenytoin has also been found to moderately alter lgG and IgM 

levels (Anderson and Moseklide, 1977; Czlonkowska eta!, 1981). Fontana 

et a! (1976) found lgG4 deficiencies in 13/21 patients receiving 

phenytoin therapy. Cerebrospinal fluid lgG levels have been found to 

be decreased in epileptic patients given phenytoin (Fossan and Aarli, 

1979). Thus, the present finding of a moderate reduction in IgG 

production in mice is not surprising. Decreased lgG production may 

res ult in a depression of immune functions requiring IgG, for example 

antibody-dependent cell-mediated cytotoxicity by large granular 

lymphocytes and macrophage-mediated phagocytosis and killing. 

It is interesting that offspring of pregnant mice given phenytoin 

displayed humoral immune dysfunction as a result of prenatal exposure 

to this drug (Chapman and Roberts, 1984). Mice showed a dose-dependent 

dec rea se in antibody production to pneumococcal polysaccharide, a T­

independent antigen, but no changes in cell -mediated immunities 

measured by delayed-type hypersenstivity response to the contact 

allergen oxazo lone. These results suggest that phenytoin given 

prenatally can adversely affect the normal deve lopment and expression 

of humoral immune function. Levo (1982) noted a decrease in antigenic 

challenge to sheep red blood cells in mice exposed to phenytoin. 
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However, this finding must be viewed with caution since neither data 

nor the protocol used were presented in this report. The above 

results and those presented in this report indicate the suitability of 

mice in studies of phenytoin on immune function: mice display 

alterations in immune function to phenytoin in ways similiar to man 

without the complications and limitations associated with human 

studies. 

The use of a murine model to study effects of various AED on 

immune function would be useful in investigating situations where it is 

thought that an interplay of drug and constitutional factors results in 

abnormalities. These would include altered lymphocyte numbers (Blanco 

et a!, 1977) and populations (Chiu et a!, 1982), immunoglobulin levels 

(Fontana et a!, 1976; Tartara et a!, 1981), and antibody production 

(Anderson et a!, 1981) all of which have been seen in patients 

receiving phenytoin. Phenobarbital has also been shown to be 

potentially immunosuppressive (Park and Brody, 1971) and carbamazepine 

has been associated with hematopoietic and immunologic effects 

including neutropenia and leukopenia (Cereghino eta!, 1974; Hart and 

Eastman, 1981). Both drug dose effects and mechanisms could be 

investigated using an animal model. 
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Phenytoin is a widely used drug for the treatment of epilepsy, 

psychosis, and cardiac arrythmias. A number of immune system 

abnormalities are associated with use of this drug including 

deficiencies resulting in increased frequency of respiratory infections 

in patients receiving phenytoin on a long-term basi s . Recurrent or 

chronic respiratory infections are especially predominant in patients 

with an lgA deficiency caused by phenyto in (Aarli and Gilhus, 1983). 

Phenytoin has also been associated with liver damage, however the 

incidence is low and appears to be a result of a host idiosyncratic 

reaction. 

Few data. are available in studies of the effects of phenyto in on 

other types of infections. This investigation examined effects of 

long-term phenytoin treatment on liver function and hepatitis infection 

in mice. Si nce hepati tis virus infects hepatocytes causing jaundice 

and degeneration of the liver , liver function tests were used as 

indicators of infection . Natural killer (NK) cell activity was also 

ascertained in cells from mice given phenytoin since these cel ls are 

thought to be important in host defense against viral infection 

(Herberman, 1984). 
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Materials and Methods 

Phenytoin preparation and dosage levels. Phenytoin was obtained and 

prepared as described in the materials and methods section of Chapter 

V. Dosage levels of phenytoin chosen for this study, 10, 20, and 40 

mg/kg, were considered to range from therapeutic to neurotoxic as 

described in Chapter V. 

Murine hepatitis virus (MHV) preparations, a gift from Dr. 

Robert Sidwell (Utah State University) , were prepared from liver 

homogenates of Swiss Webster SPF mice infected with MHV (titer of 10 

-5.6 cell culture infectious dose 50 percent/ml). To determine a 

suitable dose for infection into NFS mice used for this study, serial 

dilutions of the virus were made and a single (0.1 ml) intraperitoneal 

dose given to groups of male and female NFS mice. The animals were 

observed daily and their deaths recorded. A dilution of the virus was 

chosen for the experiments which would give a low incidence of deaths 

in infected NFS mice. 

Experimental protocol. Male and female NFS mice were bred at Utah 

State University and randomly assigned to 3 experimental groups each 

with 3 mice of each sex per treatment. Groups 1 and 3 received diluent 

or phenytoin daily for 23 and 18 days, respectively, except on day 15 
-5 

when mice were injected with 0.1 ml of virus at a dilution of 10 In 

group 1, dates of the animals deaths were recorded and animals st ill 

alive on day 28 were sacrificed. Group 3 animals were sacrificed on 

day 19, and the livers excised, photographed, and scored for jaundice. 

Serum was collected, frozen, and lat er analyzed for bilirubin content 

and activities of the enzymes aspartate aminotransferase (ASAT) and 
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alanine aminotransferase (ALAT). Group 2 animals received diluent or 

phenytoin for 18 days and were sacrificed on day 19. Serum was 

collected, frozen, and later analyzed for serum bilirubin, ASAT and 

ALAT levels. Spleens were removed and a cell suspension prepared by 

forcing the spleens through a screen. Red blood cells were removed by 

hypotonic shock and the cells rinsed and resuspended in RPMI-1640 

medium (Gibco, Grand Island, New York). 

Serum bilirubin and aminotransferase~ Serum bilirubin levels 

were determined using Sigma diagnostic kit # 605-D (St. Louis, MD) . 

Briefly, bilirubin in an aliquot of serum is coupled with diazotinized 

sulfanili c acid (p-diazobenzenesulfonic acid) to form azobilirubin. 

The aliquots are then made alkal ine and read on a spectrophotometer at 

600 nm. Bilirubin standards are used to convert absorbances into mg/dl 

total bilirubin. 

Serum ASAT and ALAT enzyme levels were determined using Sigma 

diagnostic kit #505-0P. Briefly, an aliquot of serum was added to the 

substrates aspartic acid and alpha-ketoglutaric acid, or alani ne and 

alpha-ketoglutaric acid for ASAT and ALAT analysis, respectively. The 

oxalacetic or pyruvic acid formed by ASAT and ALAT respectively, are 

then reacted with 2,4-dinitrophenylhydrazine to form the highly colored 

phenylhydrazine product. The reaction mixture is then read spectropho­

tometrically at 490 nm. Aminotransferase standards are used to convert 

absorbances into Sigma/Fra·nkel enzyme units/ml. 

Natural killer~ assay. This assay was carried out as described 

in the materials and methods section of chapter III except that 

effector splenic cells (0.1 ml) in concentrations of 100, 50, 25, and 
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12.5 X 10 cells/ml were incubated with 0.1 ml 

51 
Cr-labelled 
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Yac -1 

murine lymphoma cells. 

Stat istical analysis. Data were analyzed with ANOVA and the least 

significant difference test with the 95% confidence interval for a 

normal distribution. 

-5 
Virus. A virus dilution of 10 gave a low incidence of mortality in 

diluent-treated mice and was selected for use in the phenytoin 

experiments. No difference in mortality between male and female mice 

was observed. Deaths occurred on days 4-8 post virus infection. Mice 

given 40 mg/kg phenytoin (group 1) had a significantly higher mortality 

rate as compared with diluent-treated mice (p< 0.05; Table VI-1). 

Liver appearance. All livers from Group 3 mice were normal in 

appearance with the exception of a male mouse given 10 mg/kg phenytoin 

whose liver wa s jaundiced. 

Bilirubin~ Serum collected from mice in groups 2 and 3 were 

analyzed for assessment of li ver function. In mice of group 2, no 

differences in total bilirubin levels were found in animals receiving 

any of the phenytoin doses (Table VI-2). However, in group 3 (virus 

infected mice), animals treated with 20 and 40 mg/kg phenytoin had 

significantly higher biliburin levels than diluent-treated mice. 

Significantly higher bilirubin levels were found after virus infection 

in mice receiving 20 and 40 mg/kg of phenytoin. 

Phenytoin treatment alone did not signicantly 



TABLE VI-1 

PHENYTOIN AND MURINE HEPATITIS VIRUS INFECTION: LETHALITY 

Group 1 Experimental Mice 

a 
Treatment Number deaths/number animals 

Diluent 1/9 

10 mg / kg 0/9 

w ~~~ 0~ 

40 mg/kg 4/ 10 

Death incidence 

11.1% 

0.0% 

0.0% 

40.0% 
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a. Male and female NFS mice were injected with diluent or 10, 20, or 40 

mg/kg phenytoin for 23 days. On day 15, all mice were infected with 

murine hepatitis virus. Deaths were recorded and death incidence was 

calculated. Mice treated with 40 mg/kg of phenytoin had 

s ignificantly increased mortality as compared with mice given diluent 

alone (p< 0.05). 



78 

TABLE VI-2 

PHENYTOIN AND MURINE HEPATITIS VIRUS INFECTION : 
SERUM BILIRUBIN LEVELS 

a 
Treatment Group 2 Group 3 

- MHV + MHV 
b 

Diluent 2.31c 2.12 
0.46 1.90 

10 mg /kg 1.95 2.19 
0.23 0.67 

20 mg/kg 2.03 2.35 
0.54 0.55 

40 mg/kg 2.41 4.19 
1. 95 0.30 

a. Male and female NFS mi ce were injected with diluent or 10, 20, or 40 

mg/kg phenytoin for 18 days. On day 15, al l mice in group 3 were 

infected with murine hepatitis virus (MHV). All animals were sacrificed 

on day 19. Total serum bilirubin levels were determined spectrophoto-

metrically and expressed as mg /dl . Phenytoin alone did not alter serum 

bilirubin leve ls (Group 2 mice). Virus infection significantly 

increased bilirubin levels in mice given 20 and 40 mg/kg phenytoin (p 

<0.05) . Sign ificant increases in bilirubin leve l s were also fo und in 

MHV-infected mice given 20 and 40 mg/kg phenytoin as compa red with 

infected mice injected with diluent only {p < 0.05, Group 3 mice). 

b. Mean, N=6. 

c. Sta ndard deviation. 
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alter serum ALAT levels (Table Vl-3 , group 2), however a comparison of 

animals in group 3 showed a signi f icant increase in ALAT levels in mice 

receiving the diluent, 10, and 20 mg/kg phenytoin after virus 

infection. In these virus-infected mice of group 3, mice treated with 

10 mg/kg phenytoin had significantly higher ALAT levels while those 

treated with 40 mg/kg phenytoin had signficantly lower levels than 

diluent-treated animals. 

Phenytoin treatment al one did not si gnificantly 

alter serum ASAT levels in mice treat ed with virus or not. However, a 

trend toward increased level s were found except that mice treated with 

40 mg/kg phenytoin showed lower ASAT levels than mice in other 

treatments: this difference was s ignificant in mice not treated with 

virus (Table V1-4, p < 0.05). 

Natural killer U!!0 ftll activity. NK cell activity of group 2 male 

mice was reduced in a dose-dependent manner in mice given phenytoin. 

Thi s depression was significant in male mice given 40 mg / kg (Figure VI-

1, p< 0.05). Female mice in all t reatments had significantly lower 

activity than male mice and much variation was observed (p < 0.01). No 

significant differences in NK cell activity were found in female mice 

given phenytoin (Figure VI-2). 

Discussion 

The effects of phenytoin on l iver function and virus infection 

were investigated with an animal model used to study the effects of 

immunomodulators on virus infection (Sidwell et al, 1977). Since 

phenytoin has not been associated with direct drug-induced hepato-
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TABLE VI-3 

PHENYTOIN AND MURINE HEPATITIS VIRUS INFECTION: 
SERUM ALANINE AMINOTRANSFERASE LEVELS 

a 
Treatment Group 2 Group 3 

- MHV + MHV 
b 

Diluent 43.1 c 75.2 
3.0 32.7 

10 mg/kg 45.3 114.1 
6.6 78.9 

20 mg/kg 52.0 71.8 
8.7 16.5 

40 mg/kg 48.2 47.9 
8.6 25.3 

a. Male and female NFS mice were injected with diluent or 10, 20, or 40 

mg/kg phenytoin for 18 days. On day 15, all mice in group 3 were 

infected with murine hepatitis virus (MHV). All animals were sacrificed 

on day 19. Serum alanine aminotransferase {ALAT) levels were 

determined spectrophotometrically and expressed as Sigma/Frankel 

units /m i. Phenytoin alone did not alter ALAT levels (Group 2 mice). 

Virus infection significantly increased ALAT levels in mice given 

diluent, or 10 and 20 mg/kg phenytoin {p< 0.05). Significant increases 

in ALAT levels were found in infected mice (Group 2) given 10 mg/kg 

phenytoin as compared to mice treated with diluent only {p < 0.05). 

Mice given 40 mg/kg of phenytoin showed depressed levels. 

b. Mean, N=6. 

c. Standard deviation. 
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TABLE VI-4 

PHENYTOIN AND MURINE HEPATITIS VIRUS INFECTION: 
SERUM ASPARTIC AMINOTRANSFERASE LEVELS 

a 
Treatment Group 2 Group 3 

- MHV + MHV 
b 

Diluent 130.9c 149.7 
25.3 34.0 

10 mg/kg 149.8 164.3 
30.2 72.8 

20 mg / kg 148.3 173.5 
19.2 71.2 

40 mg/kg 85.7 120.2 
18.6 25.2 

a. Male and female NFS mice were injected with diluent or 10, 20 , or 40 

mg/kg phenytoin for 18 days. On day 15, all mice in group 3 were 

infected with murine hepatiti s virus (MHV). All animals were sacri-

ficed on day 19. Serum aspartic aminotransferase (ASAT) levels were 

determined spectrophotometrically and expressed as Sigma/Frankel 

units / ml (mean of 6 mice and standard deviation). Phenytoin alone did 

not alter ASAT levels (Group 2 mice ). ASAT levels increased slightly in 

mice infected with virus. Mice given 40 mg/kg phenytoin had low ASAT 

levels which were significant in mice not treated with virus (p< 0.05). 

b. Mean, N=6. 

c. Standard deviation. 
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100:1 50:1 25:1 12:1 
Effector to Target Cell Ratio 

FIGURE Vl-1 Splenic cells were isolated from male mice treated with 

diluent t2ZJ, or 10 • • 20 C§J, or 40 D mg/kg phenytoin 

for 18 days and assessed for natural killer cell activity. Na tural 
51 

killer (NK) cell activity is expressed as a mean percent Cr release 

(N=3) and standard error of the mean at var ious ratios of effector to 

target ce ll s . A significant decrease in mean releases were effected 

by mice treated with 40 mg/kg phenytoin (p < .05 ). 
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100:1 50:1 25:1 
Effector to Target Cell Ratio 

FIGURE VI -2 Splenic cells were isolated from female mice treated with 

diluent ~. or 10 • • zocss:J. or 400mg/kg phenytoin for 

18 days and assessed for natural killer cell activity. Natural killer 
51 

(NK) cell activity is expressed as a mean percent Cr release (N=3) 

and standard error of the mean at various ratios of effector to target 

ce II s·. A significant decrease in mean releases were effected by 

female mice as compared with male mice in all 4 treatments (p < 0.001). 

Phenytoin treatment had no effect on NK cell activity in female mice. 
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toxicity, MHV was chosen as the infectious agent. Liver fu ncti on was 

ascertained by measuring bilirubin and ALAT and ASAT levels in serum. 

Jaundice and degeneration of t he liver caused by MHV infection results 

in an increase in total bilirubin levels in blood due to impairment of 

liver metabolism and excretion of conjugated products into bile. An 

increase in the liver enzymes ALAT and ASAT in blood after infection 

are due to leakage of these enzymes following hepatocyte degeneration 

and loss of membrane integrity. Animals in group 3 were sacrificed at 

an ear ly stage of infection to prevent deaths in these mice. 

A high dose of phenytoin (40 mg/kg) caused a significant increase 

in mortality from MHV infection. Phenytoin alone did not not alter 

serum bilirubin, ALAT or ASAT levels: t hes e levels generaly increased 

in virus -infected animals. Increase in bilirubin level s following 

virus infection was most notable in mice given 40 mg/kg phenytoin. 

Serum ALAT levels were higher from infected mice given 10 and 20 mg/kg 

phenytoin, but lower in mice given 40 mg/kg. Serum ASAT levels in the 

latter mice were low in comparison to mice in other treatments with or 

without virus infection. 

Since the mortality and bilirubin data indicate an increase in 

susceptibi lity to MHV infecti on caused by high doses of phenytoin, the 

low ALAT and ASAT level s in the serum of these mice is puzzling. 

However, high levels of phenytoin in the serum may be interfering with 

the aminotransferase assay, possibly by inhibiting these enzymes. If 

high phenytoin levels inhibit am inotransferase activities in vivo, 

intermediary metabolism by the li ver may be altered. Phenytoin ha s 

been associated with height and weight abnormalities in children 

(Trimble and Corbett, 1983) and interference with transaminase activity 
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could potentially alter protein m·etabolism sufficiently to depress 

growth. 

A dose-dependent depression of NK cell activity by phenytoin was 

found in male mice and was significant in mice treated with 40 mg/kg. 

Phenytoin has been found to depress, in a dose-dependent, reversible 

manner, both basal and interferon-augmented NK cell activity of human 

cells in vitro (Results, Chapter IV). The results presented here 

indicate a long-term effect of phenytoin on NK cell-mediated lysis. 

Female mice had variable and significant ly lower NK cell activity than 

male mice and phenytoin treatment did not alter this activity. The low 

NK cell activities found in female mice may not be as sensitive to 

depression as higher activities in male mice. A larger number of .pa 

animals might be necessary to examine NK cell activity in female mice 

and its modulation by phenytoin. It is possible that female hormones 

affect NK cell activity, and the phasic nature of these hormones could 

increase variation in NK cel l activity. However, there is no 

information available on this topic. 

The depression of NK ce ll activity by high doses of phenytoin in 

mice may contribute to the increased deaths found after MHV infection. 

However, both male and female mice appear to have the same increase in 

mortality even though no evidence for NK cell depression by long-term 

phenytoin was found in female mice. Thus phenytoin may depress immune 

function in other ways besides NK cell activity. One possibility is 

that interferon augmented NK cell activity may be depressed by 

phenytoin in vivo as has been found in vitro (Results, Chapter IV). 

Interferons are Jymphokines with antiv iral properties. Effects of 

phenytoin on cytotoxic T-ee!! (T ) mediated lysis are unknown: these 
c 
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cells are also important in host defense against vi ral infection. If 

phenytoin alters T activity, this may also contri bute to a decreased 
c 

resistance to MHV or other viral infections . 



Clinical Studies 

CHAPTER VII 

CONCLUSIONS 
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A number of immune abnormali t ies have been found in epileptic 

patients. Several but not all of these defects appear to be related to 

the toxic effects of antiseizure medications. In order to examine the 

basis of immune abnormalities in epilepsy, various populations and 

subsets of peripheral blood mononuclear cells (PBMC) from epileptic 

patients and their s iblings were enumerated and their functions 

investigated. Significantly reduced natural killer cell (NK) activity 

was found in cells isolated from epi leptic patients and their siblings. 

A decreased ratio of OKT4+ /OKT8+ ce lls was also found in epileptic 

patients. Enumeration of the PBMC showed a significantly lower 

proportion of Leu 11+ cells in the patients which may account for the 

low NK activity found. Antibody-dependent cell-mediated cytotoxicity 

(killer) activity was simi li ar in patients and control subjects. 

Patient blastogenic responses to the T-cell mitogens concanavalin A 

and phytohemagglutinin and to the B-cell mitogen pokeweed mitogen were 

variable and no significant differences were found. Total rosette-

forming cells of the patients were within the normal range. The 

results indicate possible genetic basis for some of the immune 

alterations seen in epileptic patients and suggest that appropriate 

contro l subjects in immune studies of epileptic patients should include 

close relatives of the patients as well as unrelated control subjects 
. . 

for correct interpretation of experimental observat ions. 
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ln.. Vitro Studies 

Several of the widely used antiepileptic drugs (AED) have been 

found to alter immune function in man. Effects range from minor 

alterations in immunoglobulin levels and antibody production to more 

severe reactions including hypogammaglobulinemia and agranulocytosis. 

In addition, phenytoin has been associated with lymphoproliferative 

states and lymphoma. In the present paper effects of phenytoin on 

natural killer (NK) and killer (antibody-dependent cell-mediated 

cytotoxic ity or ADCC) cell activity were investigated. Phenytoin 

depressed NK cell activity in a dose-dependent manner in vitro. This 

effect was observed following short -term exposure at levels of drug 

considered therapeutic and was reversible. Phenytoin also depressed 

interferon-augmented cytotoxicity in a dose-dependent manner and 

suppressed ADCC but at concentrations slightly higher than that 

required for suppression of NK cell activity. The AED carbamazepine 

had a slight and variable effect on NK cell activity, either 

stimulating or depressing activity depending upon the concentration of 

drug that was used. Propylene glycol, a commonly used diluent for 

drugs, also depressed NK cell activity at concentrations as low as 0.1% 

v/v. 

NK and killer cells are thought to be vital in host defense and a 

first line of defense against developing neoplasms. Inhibition of 

their activity by phenytoin may be a mechanism by which patients 

develop lymphoma after long-term treatment by this drug. 
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In YiYQ Antibody Production 

Phenytoin, a widely used antiepileptic drug (AED), has been found 

to cause immune alterations in man. However, a complex interplay of 

drug effects, disease processes of epilepsy, and genetic factors are 

thought to be important in immune abnormalities seen in epileptic 

patients treated with AED. An animal model can be used to study 

effects of AED on immune function without the limitations and 

complications present in c li nical investigations. In the present study, 

inbred NFS mice given phenytoin and immunized with bovine serum albumin 

(BSA) demonstrated a dose-dependent decrease in specific lgG 

production. The treatments were relatively well tolerated by the mice 

even at high doses of phenytoin as judged by body weights, specif ic 

organ weights for thymus, sp leen, and liver, white blood cell counts, 

and hematocrits. Current findings in the mice indicate that phenytoin 

causes alterations in immune function in ways similar to those observed 

in man. This animal model should allow investigations into toxic dose 

levels and mechanisms by which phenytoin and other AED alter immune 

function. 



~ .Qf Phenytoin QO Murine 

Hepatitis tLQLs Infection 
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Phenytoin, a widely used antiepileptic drug, has been found to 

alter immune functions in man. In patients receiving this drug on a 

long-term basis, an increase in frequency of respiratory infections bas 

been seen, particularly in patients with phenytoin-induced IgA 

deficiency. Few information are available on the effects of phenytoin 

on other types of infections. The present study investigated the 

effects of long-term phenytoin treatment on liver function and 

hepatitis virus infection in mice. A high dose of phenytoin {40 mg/kg) 

significantly increased mortality after virus infection, but phenytoin 

alone did not alter serum bilirubin or alanine aminotransferase {ALAT) 

or aspatate aminotransferase (ASAT) levels. In contrast, virus­

infected animals given either diluent or phenytoin generally showed 

increases in serum bilirubin, ALAT and ASAT levels. Virus-infected 

mice given 10 or 20 mg/kg of phenytoin generally showed higher 

bilirubin and ALAT and ASAT levels than di luent-treated mice, however 

mice given 40 mg/kg phenytoin showed high bilirubin levels but low ALAT 

and ASAT levels. Since both mortality and bilirubin levels increased 

in virus -treated animals given high-dose phenytoin, this decrease in 

aminotransferase activity may be due to interference by serum phenytoin 

in the assay for these enzymes, possibly 'by altering enzyme activity . 

Natural killer (NK) cell activity was significantly lower in male 

mice given 40 mg/kg of phenytoin . NK cell activity of female mice was 

variable and not significantly lower in mice treated with phenytoin. 

Since NK ce ll s are thought to be important in combating viral 
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infections, depression of NK cell activity in mice given a high dose of 

phenytoin may contribute to the decreased resistance to murine 

hepatitis virus infection observed. 
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