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ABSTRACT 

 

 
Cluster-based Salient Object Detection Using K-means Merging and  

 

Keypoint Separation with Rectangular Centers 

 

 

by 

 

 

Robert Buck, Master of Science 

 

Utah State University, 2016 

 

 

Major Professor:  Dr. Xiaojun Qi 

Department:  Computer Science 

 

 

Advances in digital technology have brought more images into daily life through 

computers, phones, and even automobiles.  This significant increase in visual data has 

increased the necessity for better ways to sift through large amounts of image files.  It 

also has amplified the desire for methods to isolate important objects in images. 

Salient Object Detection (SOD) is a computer vision topic that explores ways to 

distinguish important (salient) object(s) from the background in images.  SOD algorithms 

attempt to mimic the Human Visual System (HVS), by using image characteristics such 

as color contrast and spatial locations, to separate salient objects.  This paper introduces a 

novel SOD approach to better isolate salient objects by incorporating innovative features 

including k-means merging preprocessing, keypoint-based postprocessing, subcluster 

segmentation, and rectangular centers. 
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Using several publicly available and accepted image databases, I confirm in this 

thesis the effectiveness of my SOD algorithm.  I also demonstrate my method is superior 

to two state-of-the-art approaches. 

 

(53 pages) 
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PUBLIC ABSTRACT 

 

 
Cluster-based Salient Object Detection Using K-means Merging 

 

 and Keypoint Separation with Rectangular Centers 

 

 

Robert K. Buck 

 

 

The explosion of internet traffic, advent of social media sites such as Facebook and 

Twitter, and increased availability of digital cameras has saturated life with images and 

videos.  Never before has it been so important to sift quickly through large amounts of 

digital information.  Salient Object Detection (SOD) is a computer vision topic that finds 

methods to locate important objects in pictures.  SOD has proven to be helpful in 

numerous applications such as image forgery detection and traffic sign recognition.  In 

this thesis, I outline a novel SOD technique to automatically isolate important objects 

from the background in images. 
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CHAPTER 1 

 

INTRODUCTION 

 

 
Salient Object Detection (SOD) has become a hot topic in computer vision research.  

A salient object is basically a visually distinct object in an image.  An image can contain 

zero or many different salient objects, and the purpose of SOD is to separate salient 

objects from the background.  “Perfect” detection, known as Ground Truth (GT), will 

show salient object(s) in white and everything else in black.  Examples are shown in 

Figure 1.  The first two rows present examples of images from the SED1 database 

(containing 100 images with one salient object per image) and their corresponding SOD 

results.  The last two rows present example images from the SED2 database (containing 

100 images with two salient regions) and their corresponding SOD results. 
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Figure 1 Example images and their corresponding SOD results.  First Row: Images 

from the SED1 database.  Second Row: Ground truth for images in the first row.  Third 

Row: Images from the SED2 database.  Fourth Row: Ground truth for images in the third 

row. 
 

 

SOD is an important topic because it is helpful in a wide range of applications.  Z. 

Ren et al. considered saliency detection as a precursor to object identification [1].  They 

use a PageRank algorithm to improve saliency; then they attempt to identify flowers, 

animals, and insects.  Anitha and Leveenbose apply saliency detection to image forgery 

detection [2], which aims to determine whether objects have been added or removed from 

an image or if the color of an image has been modified.  Fu and his team apply saliency 

detection to traffic sign recognition [3].  They use a machine-learning-based approach to 

detect and classify traffic signs.  Their work is specifically important for autonomous 

vehicles. 
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However, SOD is challenging because it attempts to accomplish the same task as the 

Human Visual System (HVS) - a complex system that is difficult to replicate.  The HVS 

uses a number of visual cues (such as color contrast and spatial locations), combined with 

prior knowledge, to easily identify salient objects.  SOD can model many similar 

features, but at costs of time and complexity.  Part of the challenge is that an object can 

be salient in one image and background in another.  For example, the tree in image 5 of 

the first row in 

Figure 1 is the salient object; however, in image 2 of the first row in Figure 1, the 

trees are part of the background.  Truly SOD is a difficult problem, but the applications 

are numerous and important. 

  



4 
 

 

 

CHAPTER 2 

 

BACKGROUND 

 

 
Many approaches have been suggested for accurate SOD.  However, they all 

generally have a few stages in common, as illustrated in 

Figure 2.  The first step, image segmentation, divides the image into various regions.  

Prior (also referred to as cue) calculation computes various scores for characteristics of 

the regions generated in step 1.  As the name implies (prior combination), the last step is 

to combine the scores generated from step 2 into a final saliency map.  Each of these 

stages is explored further in the sections that follow. 

 

 
 

Figure 2 Basic Methodology for Salient Object Detection 

 

 

2.1 Three Basic Steps for Salient Objects Detection (SOD) 

 

2.1.1 Image Segmentation 

 

Image segmentation, the first and most important step, separates the image into 

manageable pieces.  If large numbers of salient and non-salient pixels are considered 

together, it is impossible to accurately detect saliency.  Thus the choices of region type 

and methodology are critical. 
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Much work performed in the last few decades regarding saliency was based at the 

pixel level ( [4], [5] ).  However, a pixel is not a very accurate portrayal of an image or 

even a local object.  A pixel offers no context or indication to what object it belongs.  As 

such, modern SOD methods work on groups of pixels. 

State-of-the-art segmentation methods generally fall into two categories: superpixel-

based ( [1], [6], [7] ) and cluster-based ( [8], [9] ) segmentation.  Superpixels have the 

advantage of being continuous; clusters, on the other hand, are not necessarily grouped 

spatially.  However, an object that appears in multiple areas of an image can be grouped 

into one cluster.  The choice of segmentation determines what priors can be used to 

calculate saliency. 

2.1.2 Prior Calculation 

 

Following segmentation, calculations are performed on characteristics (called priors) 

of the regions.  The most common prior is color contrast ([8], [10], [11], [12]).  Some 

color contrast calculations compare regions globally to all other regions.  Other methods 

use color contrast related to neighboring regions. 

Another common prior has to do with location, sometimes called a spatial or center 

prior ( [13], [14] ).  It is based on the idea that the HVS focuses on objects closer to the 

center of an image.  Most methods use some form of center bias, even when it is not 

directly a prior calculation. 

A more recent prior is color distribution ( [13], [15] ).  It is defined as the spatial 

variation of the color in a region.  A salient region will typically have compact color 

distribution. 
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2.1.3 Prior Combination 

 

Once the priors have been calculated, they must be combined to form a final saliency 

map.  Priors can be combined using a number of methods including: average, weighted 

average, and multiplication.  The average method calculates the average of the scores 

obtained from the prior calculation.  The weighted average method assigns different 

weights to each prior, and then computes the average of the weighted scores. The 

multiplication method multiplies the scores obtained from the prior calculation.  

Multiplication is the most common approach; however, it can be linear ( [8] ) or non-

linear ( [15] ). 

 

2.2 State-of-the-art Methods 

 

The state-of-the-art method closest to my approach is that in [8].  They use spatial 

and contrast priors (i.e., cues) to determine saliency.  They use clusters for their 

segmentation and linear multiplication for combination. Further they also apply their 

method to co-saliency, which looks for saliency across multiple related images.  For my 

final thesis work, I do not extend my method to this application. 

Another interesting approach is given in [16].  Here, Qin and his team discuss 

saliency using cellular automata.  They focus on the background by creating a map based 

on color and spatial contrast.  They also emphasize differences among neighboring 

regions.  Their approach differs in using superpixel segmentation, and their combination 

method requires many steps. 

Li et al. ( [17] ) create two maps as part of their method, the Salient Object Driven 

Measure (SODM) map and the Background Driven Measure (BDM) map.  SODM uses 
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priors such as color contrast to isolate salient objects; BDM uses boundary information to 

deemphasize background pixels.  In this way, they focus on highlighting the foreground 

(salient pixels) and suppressing the background (non-salient pixels). 

Zhang and his group ( [18] ) offer a more complex approach.  They first generate sets 

of superpixels at multiple scales.  Priors are then calculated using the regions at each 

scale and later combined into a single saliency map.  In this way the team seeks to better 

detect objects of varying sizes.   
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CHAPTER 3 

 

SALIENT OBJECT DETECTION METHOD 

 

 
My method builds upon previous work with several extensions to state-of-the-art 

algorithms.  The block diagram of the method is shown in 

Figure 3.  In addition to the general three steps (image segmentation, prior calculation, 

and prior combination), my system adds many novel features. 

 

 
 

Figure 3 Block Diagram for My Method for Salient Object Detection 

 

 

Specifically, my approach adds a subclustering process to the image segmentation 

stage.  I calculate a location prior at the cluster level and a contrast prior at the subcluster 

level.  I also define a new image center in the prior calculation stage.  Instead of a 

conventional single point for the center, the new method introduces a rectangular center.   

Further, my method includes preprocessing and postprocessing stages to further extract 

the salient objects. 
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3.1 Preprocessing 
 

The goal of preprocessing is to remove features from an image that may interfere 

with prior calculations (will be explained in section 3.3) without eliminating necessary 

regions in the image.  To accomplish this goal, I introduce a k-means merging method 

that combines small regions into larger neighbors.  The algorithmic view is shown in 

Figure 4. 

 
Algorithm 1  

Input: Original image I 

 

  1: Create a set of clusters L from the input image I using k-means as 

 � = �������	
  

 

where Kc is the number of clusters and each cluster is defined by 

 �� = �������� , �ℎ��� �� ∈ � ��� �� = ����(��). 

 

  2: Find all smaller clusters ��� such that 

 ����(���) ≤ ℎ�!"#  

 

where h is the height of I, w is the width of I, and α is an empirically determined constant that controls the 

minimum cluster size. 

 

  3: For each small region ��� : 

     3.1 Determine the neighbor cluster �� which has the most pixels that border cluster���. 

     3.2: Merge ��� into �� if 

 ����(��) ≤ ℎ�'"# ��� �� ≥ 3*8  

 

where dn is the number of pixels of Cn that border ���, D is the total number of pixels that border ���, and β is an 

empirically determined constant. 

 

      3.3: Otherwise, keep ��� 

      3.4: Repeat steps 1-3 as long as at least one small cluster is merged into another. 

 

Output: Processed Image J 

 

 

Figure 4 Algorithmic View of K-means Merging Method 
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First, I use the k-means method to separate an image I into KC clusters (for my 

purposes, KC=9 is most effective).  Each pixel in I is composed of a 3-dimensional vector 

in the Lab color space, and these vectors are the input for this k-means implementation.  

Small clusters are isolated by setting α=4.  For each small cluster I find the neighbor 

cluster that borders the small cluster most.  The two clusters are then merged if the 

neighbor cluster is not too large (β=1) and the two clusters share a sufficiently large 

border.  In this way, similarly sized clusters are combined without removing potential 

salient objects from large backgrounds.  This process is then repeated until 9 suitably 

sized clusters are generated.  In other words, the k-means merging algorithm ensures that 

each of the KC clusters is not too small.  The preprocessing results for three sample 

images are shown in Figure 5.  After applying the k-means merging algorithm, the 

airplane regions in image 1 become nearly one solid object, the bird in image 3 also 

becomes more uniform, and the tree in image 2 is barely changed. 

 

 

 
 

Figure 5 Results of Applying K-means Merging. First Row: Original images. Second 

Row: Processed images. 
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3.2 Image Segmentation 
 

The goal of image segmentation is to divide the image into manageable pieces that 

prepare the image for prior calculation.  My method employs a cluster-based technique to 

preserve edge integrity and object coherence.  I also add a subclustering process to help 

separate similar colored objects. 

3.2.1 Cluster-based Segmentation 

 

Clusters, for my method, follow directly from the preprocessing stage discussed in 

section 3.1.  Here, I simply formally define the clustering process and provide sample 

results in Figure 6.  A set of clusters is defined by: 

� = �������	
  

 

where a cluster is given by  �� = �������� , such that �� ∈ 4.  K-means is used to separate 

pixels based on the Lab color space.  Each pixel is therefore represented by a 3-

dimensional vector (L, a, b).  The individual dimensions are first normalized to values 

between [0, 1] (in my method Gaussian normalization is used unless otherwise noted). 

 



12 
 

 

 
 

Figure 6 Examples of Cluster-based Segmentation. First Row: Processed images. 

Second Row: Images segmented into clusters. 

 

 

3.2.2 Subcluster-based Segmentation 

 

As evidenced clearly in the second image of Figure 6, the clustering process can 

sometimes group together pixels that are both salient and non-salient.  In order to 

alleviate this problem, I further divide each cluster into subclusters.  Formally, an image 

separates into a set of subclusters: 

 5 = �6�����	
	7  , where 6� ∪ 6; … ∪ 6	7 = �� , … 6	
	7=; ∪ 6	
	7=� ∪  6	>	? = �	
  

 

The k-means method is again applied to divide each cluster into Ks subclusters, 

where the value of Ks is empirically chosen as 3.  Here, I use location information for the 

k-means method so that each pixel is defined by its 2-dimensional location vector (x, y).  

Sample subclustering results for an example cluster of the same three sample images are 

shown in Figure 7.  It clearly shows that salient and non-salient pixels are now better 

separated. 
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Figure 7 Examples of Subcluster Process. First Column: Processed images. Second 

Column: Sample cluster. Third Column: Subclusters 

 

 

3.3 Prior Calculation 

 

Now that images have been separated into appropriate regions represented by nine 

clusters and 27 subclusters, I next calculate the corresponding cluster and subcluster 

priors. The goal of prior calculation is to assign salient scores to regions, where a higher 

score indicates more salient (e.g. important objects) and a lower score indicates less 

salient (e.g. less important objects and background).  My method uses both location and 

contrast characteristics of the clusters and subclusters to compute the salient scores. 

3.3.1 Location Prior 

 

The first prior I consider is the position of a region in an image.  Many algorithms 

use the centroid in calculating center bias.  However, for a cluster-based segmentation 
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method, the centroid is not an appropriate value because a cluster may have all its pixels 

along the border of an image, and yet have its centroid at the center of the image.  

Instead, I use the average distance from the center in calculating center bias.  

Before defining the distance from center for a region, I first offer a new view of the 

center of an image.  The standard view of the center is a point half way down the rows 

and halfway across the columns of an image.  However, this concept of center ignores the 

shape of an image.  Instead I define center starting at the border.  The maximum distance 

from the image center to any pixel in an image I is defined by: 

@ = A��B(min EF;  , G; H − 1) ,          (1) 

 

where h and w are the height and width of an image, respectively, and ceil(a) returns the 

least integer that is greater than or equal to a.  It should be noted that the maximum 

distance is actually the distance from any border pixel to the center of an image. To 

facilitate the calculation of the distance from any pixel to the image center, I also define 

the distance from any pixel p to the image border to be: 

�K(�) = min (L − 1, M − 1, � − L, ℎ − M) ,       (2) 

 

where (x,y) represents the location of pixel p with (1,1) being the location of the upper-

left corner of the image.  Using equations (1) and (2), the distance from any pixel p to the 

image center is calculated with: 

�#(�) = N@ − �K(�)   �K(�) < @0                    QRℎ������  ,        (3) 

 

For example, when the image is a square image (i.e. it has the same number of rows 

and columns) with odd dimensions, the rectangular center is a single center point.  When 

the image is a rectangular image with the smallest dimension as an odd number, the 
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rectangular center is a single line.  An example of a distance matrix which stores the 

distance from any given pixel to the image center for a 12x27 image is shown in Figure 8 

(pixels with the value of 0 are defined as the image center).  Figure 8 clearly shows that 

the image center is a rectangle.   

 

ST
TT
TT
TT
TT
TT
U 5 5 55 4 4 5 5 54 4 4 5 5 54 4 45 4 35 4 3 3 3 32 2 2 3 3 32 2 2

5 5 54 4 4 5 5 54 4 4 5 5 54 4 43 3 32 2 2 3 3 32 2 2 3 3 32 2 2
5 5 54 4 4 5 5 54 4 4 5 5 54 4 53 3 32 2 2 3 3 32 2 2 3 4 53 4 55 4 35 4 3 2 1 12 1 0 1 1 10 0 05 4 35 4 3 2 1 02 1 1 0 0 01 1 1

1 1 10 0 0 1 1 10 0 0 1 1 10 0 00 0 01 1 1 0 0 01 1 1 0 0 01 1 1
1 1 10 0 0 1 1 20 1 2 3 4 53 4 50 0 01 1 1 0 1 21 1 2 3 4 53 4 55 4 35 4 3 2 2 23 3 3 2 2 23 3 35 4 45 5 5 4 4 45 5 5 4 4 45 5 5

2 2 23 3 3 2 2 23 3 3 2 2 23 3 34 4 45 5 5 4 4 45 5 5 4 4 45 5 5
2 2 23 3 3 2 2 23 3 3 3 4 53 4 54 4 45 5 5 4 4 45 5 5 4 4 55 5 5 YZ

ZZ
ZZ
ZZ
ZZ
ZZ
[

 

 

Figure 8 Illustration of a Rectangular Center Matrix 
 

 

Lastly, the distance values in the rectangular center matrix are normalized to the 

range [0, 1] by: 

�(�) =  �#(�)/@             (4) 

 

With a new image center defined, I now define the distance from the image center 

for a cluster (region).  Specifically, the distance from the center to a cluster Ck is 

computed as the mean normalized distance from all pixels within the cluster to the center.  

This distance can be formally defined as follows: 

*�(��) = ∑ ^(_`)``ab�              (5) 
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where pn ϵ Ck and nk is the total number of pixels in Ck. 

Finally, I can define the location prior calculation.  It consists of two separate 

components: the distance from a cluster Ck. to the center and the border pixel ratio.  The 

location prior is defined as: 

cd(��) =  (1 − *�(��))(1 − Ke ) ,          (6) 

 

where B is the total number of border pixels of an image and bk is the number of pixels of 

Ck  on the border of an image.  In conclusion, a location saliency map for an image I is 

generated from the location prior where each pixel p maps as follows: 

fd(�) = cd(��), � ∈ �� ��� g ∈ h1,9j         (7) 

 

Each map value is then normalized to [0, 1].  The maps generated from the location 

prior for three sample images are shown in the top row of Figure 9. 

3.3.2 Contrast Prior 

 

Next, I define a color contrast prior by first expressing a “color distance” between 

two subclusters Si and Sj as follows: 

*#k6�, 6lm =  n(B� − Bl); + (�� − �l); + (p� − pl); ,      (8) 

 

where (li,ai,bi) is the mean color value for subcluster Si in the Lab color space (i.e., li is 

the mean value of the L color component for subcluster Si).  I then multiply the color 

distance with the region size ratio and the center bias as defined in Eq. (5).  This leads to 

the contrast prior of a subcluster Sk: 

c#(6�) = ∑ q
(r,rs) `tu
∗u7sab,sw  (�=q7(x))	
	7=�  ,          (9) 

 



17 
 

where N is the total number of pixels in an image.  As with location, a contrast saliency 

map is created for image I using each pixel p as follows: 

f#(�) = c#(6�), � ∈ 6� ��� g ∈ h1, "#"�j        (10) 

 

where values of Mc are again normalized to [0, 1].  The maps generated from the contrast 

prior for three sample images are shown in the second row of Figure 9. 

 

 

 
Figure 9 Prior Saliency Maps. First Row: Location Maps. Second Row: Contrast Maps 

 

 

3.4 Prior Combination 
 

After computing the two priors, namely location and contrast, I combine the priors 

with using point-wise multiplication.  My method employs multiplication in order to help 

suppress noise ( [8] ).  The value in the combined saliency map for pixel p in image I is 

generated by: 

fy(�) = ∏ f = fd(�)f#(�)          (11) 

 

The values in the combination map are then normalized to [0, 1].  Combination maps 

for three sample images are shown in Figure 10. 
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Figure 10 Combination Saliency Maps. 

 

 

3.5 Postprocessing 

 

The goal of postprocessing is to further separate salient objects from the background.  

Though keypoints are not necessarily good in predicting saliency, they do isolate 

important regions and thus can help separate salient regions.  Many keypoint detector 

algorithms exist including Speeded Up Robust Features (SURF), Minimum Eigenvalue 

Features (MEF), Features from Accelerated Segment Test (FAST), Harris-Stephens 

(HARRIS), and Binary Robust Invariant Scalable Keypoints (BRISK).  SURF is intended 

to find blobs in an image; the latter four algorithms are designed to detect corners.  The 

keypoints detected by each algorithm for three sample images are shown in Figure 11. 
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Figure 11 Results of Keypoint Detectors. First Row: Original images. Second Row: 

SURF results. Third Row: MEF results. Fourth Row: FAST results. Fifth Row: HARRIS 

Results. Sixth Row: BRISK Results 

 

 

In order to incorporate the keypoint detectors, I first define a keypoint significance 

matrix W(s), whose size is (2s-1) x (2s-1): 

{(�) =
STT
TTT
U1 1 11 ⋮1 ⋯ � − 1

1 1 1 1⋮ ⋮ 1� − 1 � − 1 ⋯ 11 ⋯ � − 1111
⋯
1

� − 1⋮1
� � − 1 ⋯ 1� − 1⋮1

� − 1⋮1
⋯ 111 1 YZZ

ZZZ
[
       (12) 
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where s is the significance value predetermined based on the chosen keypoint type.  In 

my system, I use the blob detector (SURF) combined with the most effective corner 

detector (empirically determined to be MEF) with s empirically determined to be 7 and 3 

for SURF and MEF, respectably. In this way, each located keypoint has its associated 

keypoint significance matrix to cover its neighboring region.  Specifically, the center of 

the keypoint significance matrix is positioned at the located keypoint.  If k number of 

keypoints are found by a keypoint detector, their corresponding k keypoint significance 

matrices are positioned at their designated locations.  The values in the overlapped 

keypoint significance matrices are accumulated to obtain the final value in the keypoint 

map, which has the same size as the original image.  This is equivalent to applying the 

keypoint significance matrix over keypoints identified in the original image I by a given 

keypoint detector (SURF or MEF) such that: 

f~�_�(�) = {(�~�_�)hg�j          (13) 

 

where type can be SURF or MEF, kp represents a keypoint, and {(�~�_�) indicates 

applying the keypoint significance matrix for type on keypoint kp. The final keypoint 

map Mk for an image I combines the two keypoint maps, namely, MSURF and MMEF, as 

follows: 

f� = fr��� + f���            (14) 

 

and again the values of Mk are normalized to [0, 1]. 

 

Keypoint maps (e.g., keypoint map obtained by using SURF detector, keypoint map 

obtained by using MEF detector, and the final combined keypoint map) for three sample 

images are illustrated in Figure 12. 
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Figure 12 Examples of Keypoint Maps. First Row: Original images. Second Row: 

SURF maps. Third Row: MEF maps. Fourth Row: Combined keypoint maps. 

 

 

As the last step, I generate the final saliency map for an image by point-wise 

multiplying the normalized Mk with the combination map Mo derived in Eq. (11): 

f =  fyf�             (15) 
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The saliency maps for three sample images are given in the last row of Figure 13 

along with intermediate step results (e.g., combination map Mo in the second row and the 

keypoint map Mk in the third row). 

 

 

 

 
 

Figure 13 Final Saliency Results. First Row: Original images. Second Row: 

Combination maps. Third Row: Keypoint maps. Fourth Row: Saliency maps. 
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CHAPTER 4 

 

 

EXPERIMENTS 

 

 
  I here perform multiple experiments to show the effectiveness of my method.  In 

section 4.1 I define several variations of my full system and show comparison results of 

all the systems.  I then compare my method with two state-of-the-art methods in section 

4.2. 

 

4.1 Variant Systems 

 

In order to show the usefulness of each stage of my method, I first define four variant 

systems, in sections 4.1.1 through 4.1.4, with selected steps removed from the full 

system.  Then full system is shown in section 4.1.5. Further the results of the variant 

systems are visually compared with the results of the full system in section 4.1.6 and 

quantitatively compared in section 4.1.7. 
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4.1.1 Variant System 1 (Baseline) 

 

 

 
 

Figure 14 Block Diagram of System 1 

 

 

The block diagram of the first variant system is demonstrated by Figure 14.  Both the 

pre and post processing steps are removed.  A single point replaces the rectangular center 

for center bias calculations and subclusters are not used.  This systems serves as a good 

baseline as it is very similar to the system in [8], yet still improved.  Sample map results 

for the initial system are shown in the first row of Figure 17-Figure 19. 

4.1.2 Variant System 2 (Baseline + Preprocessing) 

 

 

 
 

Figure 15 Block Diagram of Systems 2 and 3 
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For variant system 2, k-means merging preprocessing is added to variant system 1 as 

illustrated in Figure 15.  Map results for this system are shown in the second row of 

Figure 17-Figure 19. 

4.1.3 Variant System 3 (Variant System 2 + Rectangular Centers) 

 

For variant system 3, the block diagram is the same as in Figure 15.  However, 

rectangular centers are again employed to the system instead of the conventional center 

approach.  Sample map results for this system are shown in the third row of Figure 17-

Figure 19. 

4.1.4 Variant System 4 (Variant System 3 + Subclusters) 

 

 

 
 

Figure 16 Block Diagram of System 4 

 

 

For variant system 4, I add the subclustering process as shown in Figure 16.  Sample 

map results for this system are shown in the fourth row of Figure 17-Figure 19. 

4.1.5 Full System (Variant System 4 + Postprocessing) 

 

Finally, the full system is again generated by adding postprocessing with keypoint 

separation to variant system 4.  This system was illustrated earlier in Figure 3.  Sample 

map results for this system are shown in the last row of Figure 17-Figure 19. 
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4.1.6 Qualitative Results 

 

In this section, I show results for the systems discussed in sections 4.1.1-4.1.5 for 

three sample images.  Figure 17 presents results of the four variant systems and the full 

system for the plane image.  The most notable difference occurs between the contrast 

maps of variant systems 1 and 2.  The preprocessing stage merges the regions of the 

plane into essentially one cluster.  Thus, the entire plane is then calculated to be salient 

with both location and contrast priors. 

 

 

 

 

 

 

 

        a) Location Map       b) Contrast Map      c) Combined Map    d) Saliency Map 

 

Figure 17 Comparison of Variant System Results for the Airplane Image. First Row: 

Variant system 1 results. Second Row: Variant system 2 results. Third Row: Variant 

system 3 results. Fourth Row: Variant system 4 results. Fifth Row: Full system results. 
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In Figure 18, I show results of the five systems for the tree image.  The subclustering 

process has the most important effect on the tree saliency map.  As exhibited between the 

saliency maps of variant systems 3 and 4, the salient tree has been separated from the 

ground vegetation.  

 

 

 

 

 

 

   a) Location Map        b) Contrast Map        c) Combined Map      d) Saliency Map 

 

Figure 18 System Results for Tree Image. First Row: Baseline systems results. Second 

Row: Preprocessing results. Third Row: Rectangular center results. Fourth Row: 

Subclustering results. Fifth Row: Postprocessing results. 
 

 



28 
 

Results of the five systems for the bird image are displayed in Figure 19.  The fourth 

row shows subclustering unlinks the bird from the small rock.  However, the 

subclustering process also deemphasized some parts of the bird.  Postprocessing, though, 

helped to again highlight most of the bird (fifth row). 

 

 

 

 

 

 
       a) Location Map          b) Contrast Map      c) Combined Map       d) Saliency Map 

 

Figure 19 System Results for Bird Image. First Row: Baseline system results. Second 

Row: Preprocessing results. Third Row: Rectangular center results. Fourth Row: 

Subclustering results. Fifth Row: Postprocessing results. 
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4.1.7 Quantitative Results 

 

Lastly, I quantitatively compare the four variant systems with the full system.    Here 

I use Precision/Recall (PR) curves and F-number to evaluate all five systems.  It should 

be noted that Receiver Operating Characteristic (ROC) curves measure similar features to 

PR curves and are common in other research fields.  However, PR curves are more 

commonly employed in saliency detection.   The algorithm to generate a PR curve is 

shown in Figure 20. 
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Algorithm 2  

Input: Saliency Maps Mn and Ground Truth Gn where n is the number of images 

 

1: For each threshold t such that 

 R ∈ �0, 0.02 … 0.98, 1� 

 

     1.1: For each saliency map M create a threshold map Mt as follows: 

 f�,~(�) = �1  � ≥ R0  � < R 

 

              where p is a pixel in M and 1 represents salient. 
 

     1.2: Calculate precision ��,~�  and recall ��,~�  for the nth image at threshold t by: 

 ��,~� = ∑�R���,~∑�R���,~ + ∑�����,~ 

 ��,~� = ∑�R���,~∑�R���,~ + ∑�����,~  

  

 

              where tp (true positive), fp (false positive), and fn (false negative) are defined for a given pixel as: 
  

���k�m = 1 ��� f�,Rk�m = 1       R���k�m = 0 ��� f�,Rk�m = 1       ����k�m = 1 ��� f�,Rk�m = 0       �� 

 
     1.3 Precision �~� and recall �~� for t are then calculated by: 

 �~� = ∑ ��,~������  

 �~� = ∑ ��,~������  

 

 

2: Create a precision/recall curve by plotting a curve through all points (�~�, �~�) created in step 1. 

 

Output: Precision/Recall Curve 

 

 

Figure 20 Algorithmic View of Generating a Precision/Recall Curve 

 

 

Figure 21 shows PR curves for each of the five systems discussed in the previous 

sections.  As is presented, there is consistent improvement from each variant system to 
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another since the area covered by the respective curve is increased with each variant 

system. 

 

 
 

Figure 21 Comparison of PR Curves for the Five Systems 

 

 

I also explore another measurement commonly used in the literature, the F-number, 

to compare the various systems.  This quantity combines precision and recall into a single 



32 
 

quantity for a system. The higher the F-number, the better the performance.  The general 

equation is: 

�� = k����m∗_��#���y�∗��#�dd��∗_��#���y����#�dd            (16) 

 

A common practice in many fields is to set β2 = 1 to create an F1 number that 

weights precision and recall evenly.  However, a recent trend in computer vision research 

is setting β2 = .3 so as to weigh precision above recall.  I apply this practice here and the 

result for each system is summarized in the legend of Figure 21.  This value shows 

consistent progress from one variant system to another.  Additionally, the largest 

improvements occur between variant systems 2 and 3 and variant systems 3 and 4.  These 

larger increases indicate significant performance improvements occurred when 

rectangular centers and the subclustering process were added. 

 

4.2 State-of-the-art Comparisons 

 

I now compare my method with other state-of-the-art algorithms.  Subsequently I 

compare my approach with two other methods described previously in section 2.2 ( [16], 

[8] ).  These methods were chosen because, along with being unique, their code was 

publicly available.  The first is based on cell automata (CA) and the latter is a cluster-

based (CB) approach similar to my own. 

In order to compare the three methods I will use three publicly available image 

databases - SED1, SED2, and ASD.  The SED1 database, as described previously, is a 

collection of 100 images with 1 salient object per image, SED2 contains 100 images with 

2 salient regions per image, and the ASD database is a group of 1000 images with 
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varying number of salient regions.  The ASD database has the advantages of being larger 

and more diverse.  The SED databases have the advantage of being annotated by multiple 

people, making them more reliable.  It is important to note that the ASD database 

contains some images with frames that interfere with prior calculations.  To solve this 

problem my method uses the same automatic frame removal technique as employed by 

CB. 

4.2.1 Qualitative Results 

 

Figure 22 shows a visual comparison among the methods.  The results indicate CA 

typically does the best job of suppressing background noise, though it struggles with 

edges and often includes lots of gray (e.g., less salient portions) within salient objects.  

CB preserves distinct objects better; however, it often includes a large amount of non-

salient pixels along with the salient object.  My method shows an excellent amount of 

edge integrity, while clearly isolating salient objects in a number of different settings. 
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      Original Image  Ground Truth       CA            CB            My Method 

 

Figure 22 Comparison of Three Algorithms.  The first three rows are from the SED1 

database.  The middle rows are SED2 images.  The final three rows come from ASD. 

 

 

4.2.2 Quantitative Results 

 

I also compute quantitative measures (e.g., PR curve F-number, and Standard 

Deviation) to compare the performance of my algorithm with two other state-of-the-art 

algorithms.  Figure 23 plots precision/recall curves for each of the three methods on the 
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SED1 database, and Table 1 compares standard deviation of F-numbers among the 

algorithms at multiple segmentation thresholds.  Clearly CB falls short of the two other 

methods in all three categories.  Specifically, the area covered by the curve from the CB 

method is the smallest and the F-number of 0.756 is the lowest.  The CA method 

significantly improves over the CB method by covering a bigger area under its curve and 

achieving a higher F-number of 0.855.  My method performs best as the area covered by 

its curve is the greatest, and the F-number is the largest (0.880).  It should be mentioned 

that the baseline system also achieves better performance than CB with an F-number of 

0.845, and variant system 3 achieves better results than CA with an F-number of 0.857. 

 

 
 

Figure 23 Precision/Recall Curve Comparison for the SED1 Database 
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Table 1 Standard Deviation Comparison of F-Numbers for the SED1 Database 
 

 Threshold 

Algorithm .1 .2 .3 .4 .5 .6 .7 .8 .9 1 

Mine 0.264 0.254 0.214 0.193 0.176 0.180 0.204 0.232 0.255 0.269 

CA 0.240 0.208 0.183 0.153 0.151 0.179 0.205 0.217 0.240 0.050 

CB 0.158 0.256 0.243 0.215 0.222 0.225 0.220 0.231 0.262 0.281 

 

 

Results from using the SED2 database, shown in Figure 24 and Table 2, highlight 

other differences among the algorithms.  For this database with two salient objects, the 

CA method performs worst with the smallest area under the curve, and the lowest F-

number of 0.775; however, again it generally has the lowest standard deviation measures.  

CB achieves better results with a larger area under the curve, and higher F-number of 

0.796.  My method is again superior with the largest area under the curve and the highest 

F-number at 0.804.  Though, my method also has slightly higher standard deviation 

measures.  These results suggest CA struggles more with multiple salient objects, and my 

method works great with single and multiple salient objects. 
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Figure 24 Precision/Recall Curve Comparison for the SED2 Database 

 

 

Table 2 Standard Deviation Comparison of F-Numbers for the SED2 Database 
 

 Threshold 

Algorithm .1 .2 .3 .4 .5 .6 .7 .8 .9 1 

Mine 0.304 0.312 0.296 0.279 0.279 0.267 0.278 0.302 0.323 0.334 

CA 0.274 0.283 0.287 0.279 0.269 0.271 0.279 0.279 0.292 0.105 

CB 0.198 0.298 0.256 0.249 0.261 0.264 0.272 0.282 0.288 0.309 

 

 

The ASD database provides some peculiar results (shown in Figure 25 and Table 3).  

CB again performs worst with the smallest area under the curve and lowest F-number of 

0.849.  However the CA method has a slightly larger area under the curve than my 

method, and it also achieves a better F-number at 0.907 to my 0.883.  Further research 

would be needed to understand the variations among the three databases.  Fortunately my 
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method performs well with all three databases and in most cases is superior to the other 

two state-of-the-art algorithms. 

 

 
Figure 25 Precision/Recall Curve Comparison for the ASD Database 

 

 

Table 3 Standard Deviation Comparison of F-Numbers for the ASD Database 
 

 Threshold 

Algorithm .1 .2 .3 .4 .5 .6 .7 .8 .9 1 

Mine 0.280 0.261 0.239 0.214 0.189 0.178 0.176 0.182 0.203 0.235 

CA 0.255 0.224 0.199 0.177 0.161 0.155 0.159 0.172 0.217 0.060 

CB 0.108 0.263 0.230 0.209 0.202 0.196 0.200 0.207 0.220 0.258 
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CHAPTER 5 

 

CONCLUSION 

 

 
In this paper I introduced the topic of Salient Object Detection (SOD).  I then 

identified a few applications of the topic and also pointed out some of the challenges.  I 

further discussed the characteristics of current and past algorithms. 

I next presented a new approach to SOD that includes not only the three general 

steps of image segmentation, prior calculation, and prior combination, but also includes 

novel concepts that improve upon state-of-the-art methods.  My contributions include:  

1) preprocessing using k-means merging, 

2) performing contrast calculations on the subcluster level,  

3)  defining a rectangular image center, and  

4) postprocessing using keypoint separation.  

Lastly, I compared my proposed approach with two state-of-the-art methods, 

namely cellular automata and cluster-based.  My extensive experimental results on the 

SED1, SED2, and ASD databases demonstrated the effectiveness of my innovative 

concepts.  Further results showed the new method achieves better results for many 

images and similar results for other images compared to the two state-of-the-art methods.  

Overall, my method outperforms the other two systems in terms of PR curve and F-

number.  It also outperforms its four variant systems for the SED1 database. 
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Future work includes exploring alternate preprocessing techniques, relying less on 

center bias, and incorporating color distribution.  The major drawback to the k-means 

method is that its results are slightly random.  Thus, a method less reliant on k-means 

would help provide more consistent results.  Though humans often focus more towards 

the center of an image, there is no requirement that a salient object be in the center.  

Therefore a method less reliant on the center would be helpful for more applications.  

One way to use center bias less is to incorporate color distribution.   Consequently, the 

next step would be to add the color distribution prior to the method discussed in this 

thesis. 
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