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ABSTRACT 

 

 

Models and Solution Algorithms for Asymmetric 

 

Traffic and Transit Assignment Problems 

 

 

by 

 

 

Donghyung Yook, Doctor of Philosophy 

 

Utah State University, 2014 

 

 

Major Professor: Dr. Kevin P. Heaslip 

Department: Civil & Environmental Engineering 

 

 

Modeling the transportation system is important because it provides a “common 

ground” for discussing policy and examining the future transportation plan required in 

practices.  Generally, modeling is a simplified representation of the real world; however, 

this research added value to the modeling practice by investigating the asymmetric 

interactions observed in the real world in order to explore potential improvements of the 

transportation modeling.   

The Asymmetric Transportation Equilibrium Problem (ATEP) is designed to 

precisely model actual transportation systems by considering asymmetric interactions of 

flows.  The enhanced representation of the transportation system by the ATEP is 

promising because there are various asymmetric interactions in real transportation such as 

intersections, highway ramps, and toll roads and in the structure of the transit fares. 



 iv 

This dissertation characterizes the ATEP with an appropriate solution algorithm 

and its applications.  First, the research investigates the factors affecting the convergence 

of the ATEP.  The double projection method is applied to various asymmetric types and 

complexities in the different sizes of networks in order to identify the influential factors 

including demand intensities, network configuration, route composition between modes, 

and sensitivity of the cost function.  Secondly, the research develops an enhancement 

strategy for improvement in computational speed for the double projection method.  The 

structural characteristics of the ATEP are used to develop the convergence enhancement 

strategy that significantly reduces the computational burdens. 

For the application side, instances of asymmetric interactions observed in in-

vehicle crowding and the transit fare structure are modeled to provide a suggestion on 

policy approach for a transit agency.  The direct application of the crowding model into 

the real network indicates that crowd modeling with multi user classes could influence 

the public transportation system planning and the revenue achievement of transit agencies.  

Moreover, addition of the disutility factor, crowding, not always causes the increase of 

disutility from the transit uses.  The application of the non-additive fare structure in the 

Utah Transit Authority (UTA) network addresses the potential of the distance-based fare 

structure should the UTA make a transition to this fare structure from their current fare 

model.  The analysis finds that the zero base fare has the highest potential for increasing 

the transit demand.  However, collecting less than $0.50 with a certain buffer distance for 

the first boarding has potential for attracting the users to UTA's transit market upon the 

fare structure change. 

 

 (209 pages)  
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PUBLIC ABSTRACT 

 

 

Models and Solution Algorithms for Asymmetric 

 

Traffic and Transit Assignment Problems 

 

by 

 

Donghyung Yook, Doctor of Philosophy 

 

Utah State University, 2014 

 

 

Major Professor: Dr. Kevin P. Heaslip 

Department: Civil & Environmental Engineering 

 

 

Generally, modeling is a simplified representation of the real world; however, this 

research adds value to the modeling practice by investigating the asymmetric interactions 

observed in the real world in order to explore potential improvements of the 

transportation modeling.  The enhanced representation of the transportation system by the 

asymmetric transportation equilibrium problem is promising because there are various 

asymmetric interactions in real transportation such as intersections, highway ramps, toll 

roads and in the structure of the transit fares. 

The dissertation considers the asymmetric interactions of flows in the traffic and 

transit assignment problems with an efficient solution algorithm.  The study begins with 

characterizing the asymmetrically formulated equilibrium problem in terms of the 

convergence, and the computational efficiencies followed by demonstrating the enhanced 

modeling of the real-world transportation problems with asymmetric interactions in a 

public transportation system. 
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CHAPTER 1  
 

INTRODUCTION 

 

 

Analysis of urban transportation networks begin with estimating flows that 

traverse a given transportation facility in a unit time.  The first step of this analysis 

constructs a functional relationship between the behaviors of travel units (passengers, 

vehicles, and pedestrians) and the flows and congestion within the transportation network.  

The estimated flow patterns within the network provide the researchers with insight on 

the efficiency and effectiveness of the transportation network.  Generally, urban 

transportation network users travel in a way that minimizes transportation disutility.  For 

example, motorists driving between a given origin and a destination are likely to choose 

the route with the minimum travel time.  For this research, the disutility is represented by 

travel cost.  The Network Equilibrium assignment Problem (NEP) mathematically 

formulates the functional relationship in that users pursue the minimum travel cost to 

their destinations in a way that all users sharing the same origin and the destination 

cannot reduce their travel cost.  Namely, the NEP determines the flow patterns that 

ensure the users have the same minimum travel cost to their destinations (Sheffi 1985).  

In the NEP, the assumption on the functional relationship, which limits the impact 

of the travel cost on a given link to the flow on only that link, has been a long tradition 

(Dafermos 1972).   However, the assumption restricts the model development toward 

better simulation of the realistic transportation systems.  By relaxing this restriction that 

allows asymmetric relationships, a more realistic model for the NEP is expected.  This is 



 2 

the motivation behind designing the Asymmetric Transportation Equilibrium Problem 

(ATEP). 

Observing various situations of traffic and/or passenger flows interacting 

asymmetrically in both traffic and public transportation systems is the goal of ATEP.  

The sources of asymmetric interactions are classified into three groups:  links, routes, and 

modes.  The link interaction is when the unbalanced marginal effects of one or more links 

affect the performance of a given link.  When the marginal effects are too minimal and 

intertwined to be explicitly modeled within the link cost function, the interactions are 

aggregated in the route level.  The typical example of this situation includes the non-

additive route cost, where the sum of each link’s cost comprising one route is different 

from the final route cost.  This non-additivity is also found in the transit fare structure 

where the total fare is determined by the base fare and the additional mileage fare after a 

certain in-vehicle distance.  Flow interactions are also observed among modes.  In the 

field, varied types of vehicles share the road, influencing each other.  This interaction can 

be characterized by classifying the mixed vehicles by operational characteristics of these 

varied vehicles on the road, such as cars and heavy trucks. 

Adopting these flow interactions into the traffic situations where the asymmetric 

interactions are expected will significantly improve the model’s ability to represent the 

real world.  Conversely, insufficient consideration for flow interactions in the ATEP 

could result in incorrect travel cost estimation; which in the network equilibrium process 

is the basic measure of how users choose their routes.  Generally, in the urban areas about 

40% of delay is attributed to intersections, a typical location causing link interactions due 

to delay estimation (FHWA 2004).  Thus, assigning traffic flows on a link with an 
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intersection without the consideration for the intersection delay could result in distorted 

route travel cost estimation, especially the routes that pass through the urbanized areas. 

Although enhancement of the realistic model development is possible with the 

ATEP, allowing asymmetric interaction requires a more general mathematical 

formulation.  Unlike the conventional NEP formulation that considers classical, simple 

form of travel cost, in which the cost is assumed to be independent of the flows on any 

other link, readily ensures the optimality and the uniqueness of the solution by taking 

derivative on the objective function, in the case of asymmetric interactions, an equivalent 

mathematical program cannot be derived by using the same argument as used in the 

symmetric case due to absence of the objective function.  Alternatively, a gap function 

that measures the distance to the exact solution was utilized for substituting the objective 

function in the different formulation for the NEP (Gabriel and Bernstein 1997; Lo and 

Chen 2000).  However, the general approach to deal with this challenge will be 

Variational Inequalities (VI) introduced by Smith (1979) and Dafermos (1980).  Thanks 

to the special formulation that does not necessitate the objective function the VI can 

represent more relaxed conditions than the conventional function can. 

The ATEP formulated with the VI allows more realistic modeling of the real 

world with asymmetric situations. This dissertation attends two aspects of the ATEP; 

possibilities for enhanced modeling of the real transportation system and the solution 

algorithms for the ATEP.  Before investigating the reasonableness of the modeling 

through the ATEP, the study begins with research on the convergence of the ATEP with 

the efficient solution algorithm.  For the ATEP, lack of research is found that investigates 

the influential factors imposed on the network data, or on the functional structure for the 
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conditions of convergence (Patriksson 1994).  This research aims to investigate this with 

one projection method based on the extra-gradient theory (Khobotov 1987) owing to its 

favorable features for handling the ATEP.  This method is appropriate for handling the 

varied situations of the ATEP because it does not require derivative information for 

seeking solutions and operates on the relaxed cost function condition.   

The dissertation approaches the issues with the extra-gradient method for both 

traffic and transit assignment.  The construction of the dissertation that applies the same 

solution algorithm to the traffic and passenger assignment is designed to provide a 

ground for the integrity of the extra-gradient based solution algorithm for the ATEP.  The 

part that attends the asymmetric interactions in the traffic assignment focuses on 

identification of the influential factors on the convergence and on the enhancement of the 

algorithm in terms of computational efficiencies.  The other part addresses the practical 

application of the ATEP in the transit assignment.   In doing so, the objective of the 

research that address the potentials of the ATEP in terms of the solution algorithm and its 

application will be achieved.  The sub-research objectives that will be dealt in each part 

of the dissertation are as follow: 

1) Identify the influential factors that affect the convergence of the asymmetrically 

formulated traffic assignment problem 

2) Develop an acceleration strategy for improving the computational speed of the 

extra gradient based-algorithm for the ATEP 

3) Model the ATEP to provide insight on crowding effect and fare policy approaches 

for the transit system 
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The research begins with investigating the asymmetric situations in both traffic 

and public transportation systems.  These asymmetric situations include situations where 

external flows influences on the given cost function: 

 two-way streets 

 signalized intersections 

 un-signalized intersections 

 varied vehicle types 

 non-additive route fare in the transit fare structure 

Each of these interactions is categorized by the external factor's source such as 

link, mode and route.  Given the identified asymmetric interaction cases, the study 

investigates the influential factors of the ATEP’s convergence.  Specifically, the task is 

based on the Double Projection (DP) method introduced by Panicucci et al. (2007).  Also, 

the convergence acceleration strategy for the DP method will be proposed for the 

computational enhancement. 

The research attends the advanced ATEP modeling on the passenger assignment 

model, which accounts for the crowding effect and non-additive transit fare structure.  

The crowding effect influenced by the daily variation of passenger flows in a transit 

vehicle is modeled through the ATEP and expected outcomes will be investigated.  In 

addition, the dissertation aims to provide an analysis of a proposed change to the Utah 

Transit Authority (UTA) fare policy by properly implementing the non-additive fare 

structure.   

To achieve these objectives, a systematic approach has been organized that attends 

the following issues: 

1. Identify the situations incurring asymmetric interactions through the extensive 

investigation and the literature review 
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2. Determine the factors that influence the convergence for known asymmetric 

modeling approaches 

3. Develop an acceleration strategy for the DP method in such a way that 

computational efficiencies are achieved 

4. Crowd modeling is constructed for the UTA network under the ATEP in the 

passenger assignment 

5. Investigate the behavioral changes due to the crowd modeling and its 

consequences in the network level 

6. Model the non-additive asymmetric transit fare system with the effective 

representation of the transit assignment modeling 

7. Examine the potential transition to the distance-based fare structure of the UTA 

and the appropriate fare levels by modeling the non-additive fare structure. 

EQUATION CHAPTER (NEXT) SECTION 1  
EQUATION CHAPTER (NEXT) SECTION 1 
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CHAPTER 2  
 

LITERATURE REVIEW 

 

 

Through the algorithmic and the application perspectives, the dissertation 

examines the issues of the ATEP.  The literature review addresses the research related to 

these two aspects of the ATEP.  The review will first explain the basic concepts of 

asymmetric interactions with a simple example and identify a variety of situations in the 

transportation systems.  Exploring various asymmetric situations intends to provide 

readers with insights to the ATEP's useful modeling practices for representing the real 

world.   Following the descriptive explanations, the review presents the model 

formulation of the ATEP.  In the section, the appropriateness of the VI formulation for 

the NEP is explained when it is associated with the asymmetric interactions, or the ATEP.  

Addressing the ATEP in the mathematical formulation is not limited only to the VI, but 

could go with the nonlinear complementarity problem (NCP), fixed point problem.  As 

mentioned in the introduction, this study considers the VI because of it generality.  The 

VI is equivalent to NCP when the feasible solution space is constrained by the positive 

real number, and is a special case of the fixed point problem which is normally used for 

establishing the existence of solutions to the VI (Patriksson 1994).  Then, the review 

addresses how existing studies solve the ATEP.  Various studies utilized existing solution 

algorithms developed for the NEP to solve the ATEP.  The literature review also attends 

analytic approaches that dealt with the uniqueness issue associated with the ATEP.  The 

following section touches the double projection method’s properties that make the 

method suitable for the ATEP.  The final two sections of this chapter are about the 

reviews on the applications where the ATEP is modeled in the transit assignment.  The 
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former one summarizes the researches that studied the crowd modeling in a transit 

vehicle.  The literature that modeled the crowding effect in the transit assignment will be 

summarized in the section.  The latter one pays attention particularly to the fare models 

associated with the non-additive fare structure.  The research will describe how the fare 

structure is modeled differently in the literature. 

 

A Simple Case of Asymmetric Interactions – Two Way Traffic Interaction 

 

 

Consider a network represented by ( , )N A  consisting of a set of arcs A

associated with a positive cost ac ( a A ) and a set of nodes N .  A simple example of link 

interaction involves pair-wise relationship between the two (opposite direction) links 

representing two-way streets (Sheffi 1985).  As traffic builds up in one direction, the flow 

delay in the opposite direction increases due to the reduction in passing opportunities.  

This effect can become quite pronounced in moderate to heavy flow.  Thus, the travel 

cost in a given direction is considered to be a function of the flow in both directional 

flows. 

This interaction can be modeled as 

 

 '( , ) , ' , 'a a a ac c v v a a A a a     (2.1) 

 ' ' '( , ) , ' , 'a a a ac c v v a a A a a     (2.2) 

where ' ',a ac v denotes the link cost and flows on link 'a which is opposite to link a . 

The interaction between the opposite directional flows can be assumed symmetric 

or asymmetric.  Symmetric assumption implies that the effect of an additional flow unit 

along a particular link on the travel cost in the opposing direction equals the effect of an 
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additional flow unit in the opposing direction on the travel cost of the link under 

consideration.  This symmetry condition can be expressed mathematically as 

 

 ' ' '

'

( , ) ( , )
, ' , 'a a a a a a

a a

c v v c v v
a a A a a

v v

 
   

 
 (2.3) 

 

However, the interaction between the opposite directional flows is not always 

symmetric.  For example, the addition of a flow unit into the congested directional flow 

on the opposite link cost is more significant than adding the flow unit to the opposite 

direction or less congested flow on the congested link cost simply due to passing ability. 

 

 ' ' '

'

( , ) ( , )
, ' , 'a a a a a a

a a

c v v c v v
a a A a a

v v

 
   

 
 (2.4) 

 

This asymmetric interaction is a more relaxed condition than the symmetric one, 

which enables the flexible modeling of the real transportation system.  Different 

asymmetrical interaction models can be developed based on this basic asymmetrical 

example.   

The flow interactions of this simple example are based on the interactions among 

flows from different links.  The case can be extended to the interactions among different 

mode’s flows.  Implicit asymmetric interactions are assumed when the sum of each link’s 

cost comprising one route differs from the final route cost.  The sources of these 

interactions are classified as links, modes and routes.  This review explores the various 

cases of asymmetric interactions within these sources and elaborates on them by 

expanding the given example with more generalized formulations.    
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Asymmetric Situations in Transportation Systems 

 

 

Link Interactions 

Numerous traffic situations incur asymmetric link interactions.  Flow interactions 

involving more than one link can be observed in (a) two-way streets, (b) the highway 

merging ramp, (c) un-signalized intersections due to turning and through movements and 

(d) at signalized intersections due to delay (Dafermos 1980; Sheffi 1985; Grange and 

Munoz 2009; Chen et al. 2011a).  Simple sketches of these asymmetric traffic situations 

are illustrated in Figure 2.1.  On a two-way street, one lane for each direction, vehicles 

consider oncoming traffic before passing (Figure 2.1.a).  A similar situation is also 

applied to the on-ramp on a highway where the merging flows attempt to find a suitable 

gap from the adjacent highway traffic flows (Figure 2.1.b).  At an un-signalized 

intersection, the ability to safely turn left or continue forward is affected by the opposing 

direction’s flow (Figure 2.1.c).  At the signalized intersection, incorporating the delay 

into the NEP also causes asymmetric link interactions because the delay estimation at an 

intersection considers all approaching traffic flows headed to the intersection (Figure 

2.1.d).  This delay estimation is usually modeled by Webster's delay model (1958).    

Readers interested in the equilibrium traffic assignment combined with the intersection 

delay may refer Meneguzzer (1995). 
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a) two-way street b) merging ramp
 

 

 

 

 

 

c) un-signalized intersection  

(left turning, through traffic) 

d) signalized intersection  

(delay at an intersection) 

 

Figure 2.1 Situations bearing the potential of asymmetric link interactions. 
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The simple mathematical formulation for the two-way street interaction model 

can be extended to a general link interaction model as 

Consider a network consisting of links with link flow vectorV . 

 

 1 2 3( , , ,..., )NV v v v v  (2.5) 

In general, a vector of link costs C may include the whole link flow patternV . 

 

 1 2 3{ ( ), ( ), ( ),..., ( )}NC c V c V c V c V  (2.6) 

However, if the link cost functions are assumed to be independent and separable, 

then 

 1 1 2 2 3 3{ ( ), ( ), ( ),..., ( )}N NC c v c v c v c v  (2.7) 

Asymmetric link interactions occur when the link cost functions are non-separable 

and asymmetric as 

 
( ) ( )

, ,
j i

i j

c V c V
i j A i j

v v

 
   

 
 (2.8) 

Mode Interactions 

Mode interactions are the situations where several vehicle types are influencing 

each other on the same transportation network.  These interactions typically occur 

between vehicles with very different maneuver and operation characteristics such as 

between trucks, passenger cars, and buses.  This could be further detailed as heavy trucks, 

light trucks, passenger cars, and emergency vehicles (Dafermos 1972). 

When interactions among different types of vehicles are modeled, the dimension 

of the flow vectors and the cost functions are expanded to the number of vehicle types, 

 

 1 2 3( , , ,..., ), 1,2,...,m m m m m

NV v v v v m M   (2.9) 
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where M is number of vehicle types.  Also, a vector of the link cost for each 

vehicle type may include the whole flow pattern mV of all vehicle types.  Thus, each 

vehicle type l has an individual cost function while contributing to the cost function of 

other vehicles. 

 

 1 2 3{ ( ), ( ), ( ),..., ( )}, 1,2,...,l m l m l m l m

NC c V c V c V c V m M   (2.10) 

Asymmetric mode interactions refer the situation when the link cost function of a 

vehicle type is non-separable and asymmetric as 

 

 
( ) ( )

, ,
q M p M

a a

p q

a a

c V c V
p q M p q

v v

 
   

 
 (2.11) 

Route Interactions 

Route interactions are usually represented by the non-additive route cost, where 

the sum of individual link’s cost comprising one route is different from the final route 

cost.  The non-additive route cost is incurred when an individual link’s impact cannot be 

explicitly modeled or the allocation of its impact is unknown.  An example is provided to 

illustrate the interaction.  Consider one Origin-Destination (O-D) pair network with two 

links serially connected, as shown in Figure 2.2, and the route cost function used in the 

numerical test in Gabriel and Bernstein (1997). 

 

 

                              
2

1 2 1 2( ) ( )v v v v      

 

Figure 2.2 A small example for non-additive route cost. 

 

destination 

1v 2v
origin 
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With this route cost function, there is more than one way to define the individual 

link’s impact on another link due to the term 1 2v v .  Furthermore, even if the term 1 2v v  is 

evenly allocated to each link, the link cost function is asymmetric. 

 

 

2

1 1 1 1 2

2

2 2 2 1 2

c v v v v

c v v v v

  

  
 (2.12) 

 

Under the configuration, it is not possible to define a link cost symmetrically 

because there is more than one way to allocate 1 2v v to each link.  This example shows that 

when the route cost is non-additive we cannot specify the link cost function but also the 

link cost function is not symmetric.  Thus, this route-based function necessitates the 

domain of the solution space to be the route (Gabriel and Bernstein 1997).  If we can 

specify each link’s cost function, then it becomes the case of link interactions.  For this 

example, the non-additive route cost is a more generalized form of the asymmetric link 

interaction.  

The concept of non-additivity is widely used in the field of transportation studies 

such as valuation of the travel time, uncertainty, environmental issues, and the toll 

charging mechanism.  The non-additivity in the time related concepts is implied when 

time evaluation does not linearly increase as the travel time gets longer.  This non-

linearly perceived travel time is applied to the uncertainty of the travel time.  In order to 

arrive at their destinations with a predefined reliability threshold (Chen and Ji 2005; Lo et 

al. 2006; Shao et al. 2006; Siu and Lo 2006), people generally reserve a certain amount of 

buffer time (Travel Time Budget, TTB).  This TTB representing reliability of on time 

arrival also increases non-linearly.  Moreover, non-linearity of travel time evaluation 
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could be more concrete when the unreliability aspect of the travel time is considered 

(Chen and Zhou 2010) in addition to the TTB.   

Unlike the features that implicitly affect the non-additive route cost, the toll 

charging mechanism explicitly characterizes the non-additivity.  The toll fare mechanism 

is not additive, which necessitates the operation space of the NEP to be the route (Gabriel 

and Bernstein 1997; Lo and Chen 2000; Yang et al. 2004).  Gabriel and Bernstein (1997) 

provide a good example.  User1 and User2 in Figure 2.3 each pay a $2 toll per sub-

section for using entire toll road used by User3 paying $3, which is not equal to the sum 

of sub-sections’ tolls.   

The non-linear relationship is also found between automobile operations and 

emission effects.  Hydrocarbons and carbon monoxide gases from vehicle emissions are a 

non-linear function of the travel time (Gabriel and Bernstein 1997; Wallace et al. 1998). 

 

 
 

 

Figure 2.3 Non-additivity in the toll charging system. 

 

The general formulation of the non-additive route cost function can be written as 

follows (Gabriel and Bernstein 1997):   

 

 , ,( )p p a p a p

rs rs a p rs a rs

a A a A

c g c    
 

     (2.13) 
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where is the operating cost per unit travel time (e.g., fuel consumption, vehicle 

rental cost), ( )pg  is a function that translates the value of travel time, which could be non-

linear, and
p

rs is the out-of-pocket cost (such as tolls, transit fares). 
,p a

rs is an incidence 

indicator which takes one of the route p connecting the origin r and the destination s

passes through the link a ; otherwise it is zero. 

So far, the various asymmetric situations in transportation systems and its general 

mathematical formulation have been addressed.  In the next section, the mathematical 

formulation of the NEP that holds identified asymmetrically formulated cost functions is 

addressed.  Identified interactions are considered in the cost function that models the 

congestion impacts of flows in the NEP. 

 

Formulation of the Network Equilibrium Problems with Asymmetric Cost Function 

 

 

This section discusses the model formulation for the NEP that finds the User 

Equilibrium (UE) flow patterns with the asymmetric cost function.  The demand 

associated with each O-D pair is assumed to be fixed throughout the chapter.  The basic 

mathematical transformation of the NEP (Beckmann et al. 1956) that finds the flow 

pattern achieving the UE is presented first without consideration for the asymmetric 

interactions.  When the cost function is asymmetrically formulated, the limit of the basic 

formulation for covering the ATEP is simply explained.  This is followed by the VI 

formulation that accommodates the asymmetric cost functions into the NEP. 

The network equilibrium problem is to find the flows that satisfy the UE 

condition which describes the steady-state travelers’ behavioral patterns known as the 

Wardop’s  first principle (1952) as : “The journey time on all the routes actually used are 
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equal, and less than those which would be experienced by a single vehicle on any unused 

route.” 

The mathematical formulation equivalent to the definition of the UE can be 

presented as follows: 

 

 

( ) 0, , ,

0, , ,

0, ,

0, ,

p p

rs rs rs rs

p

rs rs rs

rs

p

rs

f c p P r R s S

c p P r R s S

r R s S

f r R s S







    

    

  

  

 (2.14) 

where 

p

rsf  : route flows of p connecting origin r and destination s  

rsP  : set of routes connecting origin r and destination s  

p

rsc  : route cost of p  connecting origin r and destination s  

rs  : minimum cost between origin r and destination s  

,R S  : subset of N  

 

Eq. (2.14) is the mathematical expression for the UE condition.  Beckmann et al. 

(1956) formulated the equivalent minimization problem that finds the UE flow *f

satisfying eq. (2.14).  In a network represented by graph ( , )N A  , the Beckmann’s 

transformation finds the traffic flow pattern by allocating the O-D demands to the 

network such that all used routes between a given O-D pair have equal travel cost, and no 

unused route has a lower travel cost. 

 

 

0

min ( )
av

a

a A

c w dw


  (2.15) 

subject to 
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 ,
rs

p

rs rs

p P

f q r R s S


     (2.16) 

 

,

0 , ,

p p a

a rs rs

r s p

p

rs rs

v f a A

f p P r R s S

  

    


 (2.17) 

where 

rs
q  : fixed demand generated from origin r to destination s  

,p a

rs
  : one if route p connecting r and s passes link a , zero otherwise 

 

The above transformation to the equivalent optimization problem could be 

established because the cost function c is a gradient mapping.  This gradient mapping is 

easily achieved by the assumption that the travel cost on a link is separable, which means 

the cost is independent of the flow of all other links in the network.  This can be 

mathematically rewritten as: 

 

( )
0 , ,

( )
0

a a

b

a a

a

c v
a b A a b

v

c v
a A

v


   




  



 (2.18) 

More generally, if the jacobian matrix ( )c v is symmetric by the symmetry 

condition (e.g. eq. (2.3)) that includes the separable case (eq. (2.18)), then the equivalent 

optimization problem is defined with the only change being that the property of an 

increasing function is replaced by the more general property of monotonicity (Patriksson 

1994). 

The following example of a symmetric two-way street cost function given in eq. 

(2.1) and eq. (2.2) and the symmetry condition of eq. (2.3), explains the construction of 

the equivalent mathematical programming. 
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Under the configuration, the line integral over the two link flows can be defined 

as two ways; one ( 1z ) goes through ',a av v , the other one ( 2z ) with the opposite direction. 

 

 
'

1 '
0 0 0

( ) ( ,0) ( , )
a av v v

a a az c w dw c w dw c v w dw      (2.19) 

 
'

2 ' '
0 0 0

( ) (0, ) ( , )
a av v v

a a az c w dw c w dw c w v dw      (2.20) 

 

Using the Leibniz integral rule and the symmetry condition, the derivative of 1z

with respect to av is easily identified as '( , )a a ac v v . 

'

'

'

1
'

0

'

0

0
'

'

'

( ,0) ( , )

( , )
( ,0)

( , )
( ,0)

( ,0) ( , ) ( ,0)

( , )

a

a

a

v

a a a a

a a

v
a a

a a

a

v
a a

a a

a

a a a a a a a

a a a

z
c v c v w dw

v v

c v w
c v dw

v

c v w
c v dw

v

c v c v v c v

c v v

 
 

 


 




 



  







  

In the same way, the derivative of 1z with respect to 'av is equal to ' '( , )a a ac v v .  Thus, 

the total cost results in ' ' '( , ) ( , )a a a a a ac v v c v v .  The symmetry condition yields the same 

total cost when 2z is differentiated with respect to ',a av v , respectively. 

The matched total cost with different paths of the line integral indicates that the 

construction of the objective function is possible, which expands to the equivalent 

mathematical programming for the NEP associated with the symmetry condition.  In this 

case, the objective function may be expressed as follows: 

 

 '
0 0

1
min ( ) [ ( , ) ( ,0) ]

2

a av v

a a a

a A a A

z V c w v dw c w dw
 

     (2.21) 
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Generally, the validity of the non-separable symmetry condition can be explained 

with the Green’s theorem (1828).  When ac is non-separable and symmetrically 

formulated, the optimization formulation, eq. (2.15 ~ 2.17), is still valid for the UE 

because a line integral can be converted to a standard integral due to the Green’s theorem 

(1828) where the line integral is independent on the path of integration on the symmetric 

jacobian of the cost function. 

 

 ( ) ( )
O D

M L
Ldx Mdy dxdy

x y

 
  

    (2.22) 

 

where O  is a closed curve and D is a plane region bounded byO . 

 

 Apart from the valid objective function construction, the uniqueness of the 

equilibria is also guaranteed with the non-separable symmetric cost function when the 

jacobian is constructed in such a way that the diagonal dominance is maintained.  By 

doing this, the each block of Hessian is positive definite due to the positive diagonal 

entries and the diagonally dominant condition.  Note that this diagonally dominant 

condition also applies to the ATEP for ensuring the unique solution (Dafermos 1980). 

However, when the cost function is asymmetrically formulated for better 

modeling of actual transportation systems by addressing the interactions in terms of link, 

mode and route, (2.6), (2.10), (2,13), respectively, the objective function, eq. (2.15), 

depends on the path of the integration.  Thus, the objective function is not well defined to 

formulate the UE problem under the optimization framework. 

One example of the asymmetric link cost functions that represent flow 

interactions on the two-way street (Grange and Munoz 2009) shows that the function 

cannot be properly integrated due to the asymmetric modeling, 
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4

' '( , ) [1 0.15(( 0.5 ) / (2 )) ]free

a a a a a ac v v t v v Cp     (2.23) 

 

where freet and aCp are the free-flow link cost and link capacity, respectively.  

In order to handle this situation, Smith (1979) and Dafermos (1980) showed that 

the NEP with the asymmetric cost function can be formulated with a more general form, 

the VI. 

The problem finding *F in eq. (2.14) is equivalent to finding a solution *F  of 

the following VI: 

 

 

( *), * 0

( ) ( )p a

arc a p

C F F F F

C F c F


   

 

 (2.24) 

where is the set of feasible route flow vectors and denotes the link-route 

incidence matrix 

F  : vector of route flows , , ,p

rs rsf p P r R s S     

  
{ 0; , }

rs

p p

rs rs rs

p P

f f q r R s S


       

  
1 ,

0 .

if link a p

otherwise

 
  
 

 

 

The equivalency between the optimization problem and the VI formulation is 

presented in next section. 

As mentioned earlier, the VI formulation contains the fixed point, non-linear 

complementarity problem and the optimization problem.  This section addresses the 

general equivalency between the VI and the optimization problem by Kinderlehrer and 
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Stampacchia (1980).  Readers are advised to refer Nagurney (2002) for the connection 

between the VI and the other mathematical formulations. 

Proposition 1 

 

Let 0F be a solution to the optimization problem: 

 min ( )z F  (2.25) 

subject to 

 F  (2.26) 

where z is continuously differentiable and is closed and convex.  Then 0F is a 

solution of the VI problem: 

 0 0( )( ) 0,z F F F F      (2.27) 

Proof  

let 0 0( ) ( ( ))t z F t F F    , for [0,1]t . Since ( )t achieves its minimum at 0t  ,

0 00 '(0) ( )( )z F F F   , that is 0F is a solution of the VI. 

Proposition 1-1 

If ( )z F is a convex function and 0F is a solution to VI, then 0F is a solution to the 

optimization problem. 

Proof 

Since ( )z F is convex, 

 0 0 0( ) ( ) ( )( ),z F z F z F F F F      (2.28) 

But the second part 0 0( )( ) 0z F F F   since 0F is a solution to the VI.  Therefore, 

one concludes that 

 0( ) ( )z F z F  (2.29) 
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that is, 0F  is a minimum point of the mathematical programming problem of the 

optimization problems. 

 

Solution Algorithms for Solving the ATEP 

 

After Prager (1954) first proposed necessities of modeling for the unbalanced 

interactions between opposite directional flows in a two-way street, various studies 

investigated the asymmetric modeling under the traffic assignment framework.  Before 

the VI formulation is known to be suitable for modeling the ATEP by Smith (1979) and 

Dafermos (1980), Netter and Sender (1970) identified the existence of the equilibrium 

solution in the asymmetrically formulated multi-class network equilibrium problem using 

the fixed point theorem.  However, efforts for modeling the asymmetric interactions were 

limited to assume the asymmetric interactions to symmetric one and use a simple flow 

update strategy for the equilibrium process (Dafermos 1971, 1972). 

The general formulation of the VI for the ATEP encouraged the researchers to 

examine the application of the existing solution techniques devised for the conventional 

Traffic Assignment Problems (TAP) and investigate the convergence conditions, 

behaviors due to the asymmetric modeling.    

The most general solution approach to address the ATEP is to symmetrize the 

asymmetric interactions and solve the resulting separable sub-problems with 

conventional solution algorithms used for general traffic assignment problems 

(Patriksson 1994).  Among the general solution algorithms for the TAP, the Jacobi 

method (known as the diagonalization, relaxation method) would be the most popular one, 

in which the off-diagonal parts are fixed in the construction of the sub-problem that can 
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be handled with Frank-Wolfe type solution algorithm.  Mahmassani and Mouskos (1988) 

showed some numerical results on the diagonalization method applied to the case that 

models the asymmetric interactions between cars and trucks.  The study identified the 

effective number, less than four, of internal Frank-Wolfe iterations for the best 

performance of the diagonalization method while Sheffi (1985) suggested the one 

iteration called the streamlined algorithm.  A comprehensive research on the convergence 

trend by the diagonalization method for the ATEP associated with the explicit 

intersection modeling can be found in Meneguzzer (1995). 

Many studies examined the performance of other solution algorithms against the 

diagonalization methods.  These are characterized by cost approximation, especially, the 

linear approximation methods such as the projection, Newton type algorithms.  The basic 

idea for the iterative linearization method applied to the VI formulation is to define a 

function :g R  which is continuously differentiable and monotone with respect to 

its first argument and continuous with respect to its second.  The linearized 

approximation function at iteration k  may be expressed as: 

  

 ( ) ( , ) ( ( ) ( , ))k kL F F F L F F F     (2.30) 

Thus, the sub-problem solved in iteration k for the VI is  

 

 [ ( , ) ( ( ) ( , ))] ( ) 0k k T kF F L F F F F F      (2.31) 

Dafermos (1983) defined a smooth function ( )g F in such a way that its gradient

( , )F g F Y is symmetric and positive definite and ( , ) ( )g F F L F . 

Then, the eq. (2.31) can be re-expressed as: 
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1 1( , ) ( ) 0k k T kg F F F F    (2.32) 

Here, the relaxation algorithm sequentially updates the decomposed problem

1( , )k k

ig F F
.   

 1 2 1( , ) ( , ,..., , ,..., )i i i i R Sg F Y c Y Y F Y Y   (2.33) 

When the sequential update is associated with immediate update of the previous 

decomposed problem, it is classified the Gauss-Seidel decomposition technique. 

On the other hand, the projection method takes a fixed positive definite matrix G . 

  

 
1

( , ) ( ) ( ), 0g F Y c Y G F Y 


     (2.34) 

Different choice of the matrix G , an indicator of the level of similarity to the 

original function, results in different linearized solution algorithms (Pang and Chan 1982).  

However, the level of resemblance is not consistently related to the efficient 

convergence.  Fisk and Nguyen (1982) conducted an empirical study which compared the 

computational performance of the projection, and non-linear Jacobi method for the ATEP 

with link interactions.  They identified that overall, the non-linear jacobi method is 

efficient for solving the ATEP.  Nagurney (1984, 1986) questioned the experiment by 

Fisk and Nguyen (1982), in which only one network is utilized for the numerical tests.  

She examined the two algorithms, relaxation and projection methods, on the multimodal 

equilibrium problem with varied travel cost structures, then, the same experiments were 

applied to the traffic assignment with the asymmetric link flow interaction problem.  The 

results of the experiments did not clearly declare the best one.  In the experiment with the 

quadratic cost function, the efforts to resemble the original cost function by varying G in 

the projection method showed a slightly better performance than the relaxation method.  
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The modified Newton method was applied to the ATEP by Marcotte and Guelat (1988).  

They compared the performance of the proposed algorithm to the diagonalization, and the 

cutting plane method on the ATEP associated with different asymmetric complexities.  

The proposed algorithm outperforms others especially when the asymmetric complexities 

increase while other algorithms failed to converge.   

The column generation method was also utilized for the ATEP.  Lawphongpanich 

and Hearn (1984) applied the simplicial decomposition method where the solution is 

constructed with the convex combinations of all extreme aggregate flow vectors.  Three 

numerical experiments conducted on the Nguyen-Dupuis network (Nguyen and Dupuis 

1984) with different asymmetric complexities demonstrated that the simplicial 

decomposition is efficient in terms of computer time.  The number of minimum tree paths 

produced by the simplicial decomposition is less than that of the Nguyen-Dupuis’ 

algorithm, consequently the computer time is short.  When link flow representation is not 

appropriate for modeling the route level-interactions, the NCP formulation associated 

with the column generation method is utilized.  Gabriel and Bernstein, Bernstein and 

Gabriel (1997) solved the ATEP associated with non-additive route cost with the column 

generation method by minimizing the gap function that re-cast the original NCP.  Lo and 

Chen (2000) also applied the column generation to the reformulated NCP, in which the 

route-specific toll is modeled. 

Various solution approaches for the ATEP is well annotated by Patriksson (1994) 

where the solution techniques are described with unified manner through the concept of 

the partial linearization algorithm.   
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In addition to the algorithmic development for the ATEP, analytical approaches 

for the convergence condition for the ATEP constitute the other portion of the ATEP 

related studies.  As mentioned earlier, under the asymmetric jacobian for the cost 

functions, in order for the VI to have the unique solution, a sufficient condition 

(Dafermos 1980) in which the flow is dominantly affected by the current flows must be 

satisfied.  The main dependence on the current link cost is designed to maintain the 

monotonicity of the link cost function.  However, the convergence of the problem is not 

always promised because verifying that a link cost is dominantly affected by the current 

link flows in the real network application is not easy.  From the analytical perspective, 

the asymmetric effects which violate the sufficient condition are analytically investigated 

and sometimes it is relaxed for modeling the specific asymmetric traffic situations.  

Heydecker (1983) provided a weaker necessary condition for the convergence of the NEP 

that accounted un-controlled intersections including the priority junction and roundabouts.  

Marcotte and Wynter (2004) also presented a weaker convergence condition for the 

hierarchical nature of the cost interactions observed in the asymmetric mode interactions.  

They relaxed the monotonicity condition for mode interaction into the strong nested 

monotonicity condition.  Florian and Spiess (1982) analytically derived the condition 

when the diagonalization method ensures the local convergence.  Similarly, Dupuis and 

Darveau (1986) demonstrated the different convergence conditions between projection 

and diagonalization methods using degrees of asymmetric effects of the link cost function.  

Gabriel and Bernstein (1997) who firstly introduced the non-additive route cost function 

into the TAP showed the existence, and uniqueness condition for the problem by 

assuming that the function, which translates the time into money, is separable.   
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In addition, the other approaches for modeling the ATEP include the traffic 

assignment model combined with the independent simulation on the intersection delay 

(Wong et al. 2001), modeling the asymmetric interactions with side constraints (Chen et 

al. 2011a) and a methodology to equalize the different line integral paths for the linearly 

formulated asymmetric cost function (Grange and Munos 2009).  Koutsopoulos and 

Habbal (1994) observed the improved modeling power of the TAP with different degrees 

of intersection representation.    

In summary, nearly all of solution algorithms for the TAP are applicable to the 

ATEP because the basic algorithmic approach for the ATEP is to replace the asymmetric 

interactions with the symmetric one, which results in the symmetric sub-problem.   

Even if a few studies report undesirable outcomes due to the ill-constructed the 

sub-problem (Bernstein and Gabriel 1997; Nguyen and Dupuis 1984), the potential to use 

the existing algorithms opens the wide range of solution algorithms for the ATEP.  

However, the asymmetric complexities inherent in the ATEP affect the monotonicity of 

the cost function, which determines the uniqueness condition of the ATEP.  Moreover, 

normally, the fact that the condition is not easily verifiable for the real transportation 

network necessitates the judiciously chosen solution algorithm.  The basic idea to use the 

DP method is to employ the solution algorithm that supports the asymmetric degrees until 

the monotonicity conditions hold.  In light of this, the DP method is appropriate for the 

ATEP because it completely obviates the strong monotonicity assumption to the only 

monotonicity.  The following section deals with these properties of the DP method; why 

these are advantageous for handling the ATEP.  A listing of the literatures is presented in 

Table 2.1. 
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Table 2.1 Collection of literatures addressing asymmetric flow interactions. 

Authors Year Approach Summary and problem addressed 

Prager 1954 Conceptual 
Considered modeling for interactions between flows on opposite 

directions 

Netter and 

Sender 
1970 Analytical 

Showed the existence of equilibrium solution in the asymmetric 

multiclass NEP using a fixed point theorem 

Dafermos 1971 Analytical 
Modeled the traveling cost on a link as a function of the entire 

flow pattern in the network 

Dafermos 1972 Analytical NEP for multiclass user in transportation networks 

Smith 1979 Analytical Introduced VI to formulate NEP 

Dafermos 1980 Analytical 
Applied VI and examined the solution properties for 

asymmetrically formulated NEP 

Smith 1981 Analytical 
Investigated the properties of a traffic control policy that ensure 

the solution of the ATEP 

Dafermos 1982 Numerical Applied relaxation algorithm for solving ATEP 

Fisk and Nguyen 1982 Numerical Compared solution algorithms for solving ATEP 

Florian and 

Spiess 
1982 Analytical 

Derived the convergence condition for the diagonalization for 

ATEP formulated with link interactions 

Pang and Chan 1982 Analytical 
A general global convergence with different linearization method 

is provided 

Heydecker 1983 Analytical 
Relaxed the convergence condition for ATEP with signalized 

and un-signalized intersections 

Lawphongpanich  

and Hearn 
1984 Numerical Approached the ATEP with simplicial decompositon method 

Nagurney 1986 Numerical Numerical comparison of algorithms for ATEP 

Dupuis and 

Darveau 
1986 Analytical 

Investigated the relation between asymmetric complexities and 

convergence of the diagonalization and projection method 

Mahmassani and 

Mouskos 
1988 Numerical 

Investigated the solution and convergence of mode interactions 

between cars and trucks using the diagonalization method 

Marcotte and 

Guelat 
1988 Methodological 

Applied a modified Newton method and compared the 

performance to two other solution algorithms for ATEP 

Koutsopoulos 

and Habbal 
1994 Numerical 

Investigated the different levels of detail of the intersection delay 

for improving the accuracy of the ATEP 

Meneguzzer 1995 Numerical 
Comprehensive studies on ATEP associated with intersection 

delay 

Bernstein and 

Gabriel 
1997 Numerical 

Showed the different assignment results between additive and 

non-additive route cost 

Gabriel and 

Bernstein 
1997 Analytical Introduced NEP formulated with the non-additive route cost 

Wong et al. 2001 Methodological 
Incorporated TRANSYT model into the NEP in order to more 

precisely account for the intersection delay 

Lo and Chen 2000 Analytical 

Using a new gap function, a nonlinear complementarity problem 

is converted to an equivalent unconstrained optimization for 

traffic equilibrim problem where the general route cost structure 

is modeled. 

Marcotte and 

Wynter 
2004 Analytical 

Adapted the hierarchical interactions in two subspace into the 

NEP with mode interactions 

Grange, Munos 2009 Analytical Used the line integral by assuming the linear asymmetric cost  

Chen et al. 2011a Methodological Modeled the asymmetric flow interactions using side constraint 
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ATEP and DP Method 

 

 

Monotone Cost Function by the ATEP 

When one of the asymmetric interactions described in the previous sections is 

modeled in the cost function, the monotone property of a cost function could be observed.  

In calculus, a function f defined on a subset of the real numbers with real values is called 

monotonic (also monotonically increasing, increasing or non-decreasing), if for all x and

y such that x y one has ( ) ( )f x f y .  One typical example of the monotone cost 

function can be depicted as in Figure 2.4 where function values are strictly increasing on 

the left and right while just non-decreasing in the middle. 

 

 
 

Figure 2.4 An example of a monotone cost function. 

 

Normally, the travel cost increases as the flow on that link adds up.  However, for 

instance, when a signalized intersection, especially an actuated signal system, is modeled 

in the TAP to improve the reality of the model, the cost function could have the non-

Applicability of double projection

 A cost function could be monotone
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decreasing area because the actuated signal system provides more green time to the heavy 

flows.  In this case, the cost function could be flat or close to be flat because the direction 

with the heavy flows will have more time to pass the link. 

When the cost function could have the monotonicity property due to the 

asymmetric modeling and consequently the convergence is not verified the DP method is 

an appropriate solution algorithm because the method is designed to operate on the 

monotone mapping by performing another projection (Shao et al. 2006).   

 

No Gradient Information 

The fact that the DP method does not require the gradient for step-size calculation 

could be advantageous when the gradient information is not readily available.  The 

characteristic of the DP method that obviates the gradient is useful when the gradient is 

not readily available due to the asymmetric modeling because the extra procedure is not 

necessary.  As asymmetric modeling specification becomes sophisticated to closely 

represent the real world, it is often that the gradient is not easily obtainable, thus an extra 

procedure is integrated into the original program.  The typical example is the TAP 

combined with a separate procedure for the traffic signal control that accounts queue 

spillback (Qian et al. 2012), coordination of signals (Wong et al. 2001).  A few models 

that simplified the traffic signal can be easily integrated into the TAP whilst a special step 

such as approximating the gradient (Wong et al. 2001), analytical derivation (Wong 1995) 

for the gradient specific to the integrated procedure is necessary when a sophisticated 

separate module is utilized.   
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Figure 2.5 The idea of managing the non-differential region for Webster’s curve. 

A comprehensive reviews of the combined traffic signal control and the TAP can 

be found in Lee and Machemehl (2005).  In addition, the non-differentiable region of the 

cost function is observed for the Webster’s delay model when vehicle-capacity ratio is 

greater than 1.0.  In order to estimate the gradient, the original Webster’s curve after the 

saturation point is replaced with the oversaturation curve at certain point (Van Vuren and 

Van Vliet 1992).   

 

Route-based Algorithm 

Also, as mentioned in the case of the route interactions where the route-based 

solution algorithm is necessary, the DP method can properly handle the case because the 

operating space is designed to be at the route level.  Before the column generation 

method is introduced, the solution approach based on the route flow variables were not 
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advantageous for solving the NEP because all route should be enumerated before the 

execution of the algorithm (Patriksson (1994) for summary of theses algorithms).  

Especially, it was not properly handled in terms of computer resources and efficiencies 

for large networks where the number of routes is much more than the number of links.  

However, by algorithmically generating the route flow variables (or columns), the 

marked advantages could be achieved for the route-based solution algorithm (Lo and 

Chen 2000).  Normally, the column generation methods is associated with the column 

dropping scheme that removes the previously generated columns which are no longer 

believed to be necessary to express the optimal solutions. 

 

Crowd Modeling in the Transit Assignment 

 

 

As mentioned in the introduction of the chapter, the crowding effect is modeled in 

the transit assignment as one of the applications of the ATEP.  This section reviews the 

previous studies that considered the crowding effect in the transit assignment.  The 

review begins with the efforts to value the in-vehicle crowding of a transit vehicle 

through the statistical model and surveys. 

The concerns on the crowding in transit vehicles are slowly gaining the attentions 

among researcher, consultancies and policy makers after Hensher and McLeod (1977) 

firstly reported the effect in the public transportation system.  The efforts to identify the 

qualitative measure other than the time and cost associated with the transit travel begin to 

reasonably value the in-vehicle crowding.  The basic idea for quantifying the in-vehicle 

crowding is based on the trade-off between the onerous crowding and the users’ attitude 

to avoid the crowding.  For example, as the crowding level increases in a vehicle, the 
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passengers are willing to pay more to reduce the crowding in the crowded vehicle than in 

the un-crowded vehicle.  Generally, the valuation of the in-vehicle crowding is modeled 

as the multinomial logit model and is based the Stated Preference survey (SP).  The 

excellent summary for the valuation of the in-vehicle crowding of the transit travel is 

presented by Whelan and Crockett (2009), and Li and Hensher (2011). 

In the transit assignment modeling, crowding is represented by the in-vehicle 

congestion.  This in-vehicle congestion sometimes in-directly represents the capacity 

constraint because the additional cost representing the limited capacity of a vehicle 

induces the users to take another route.   In the meantime, when the strict capacity is 

modeled especially only in the boarding situation in order to prevent the passengers from 

boarding the fully occupied vehicles, normally, the capacity constraint is not represented 

by in-vehicle congestion.   

The approach to deal with the limited capacity in a vehicle is very similar in both 

the schedule and frequency-based transit assignment model.  The conventional method to 

model the in-vehicle congestion is to use the discomfort function increasing with the 

passenger flows.  Spiess and Florian (1989) modeled the non-linear cost function in order 

to represent the dependence of the link cost on the transit passenger volume, namely, 

“discomfort” term which increases as the vehicles get crowded, in the optimal strategy 

transit assignment.  Wu et al. (1994) formulated the asymmetric transit discomfort 

function affected by the continuing passengers and the newly boarding passengers in the 

frequency-based model.  De Cea and Fernandez (1993) solved the capacity constraints in 

the frequency-based model with the “effective capacity” that eliminates the run with the 

fully loaded vehicle and counts effective frequency.  Lam et al. (1999) pointed out that 
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the discomfort function used in those studies is actually the unbounded increasing 

function that does not strictly limit the capacity especially in the congested network with 

bottlenecks.  The study explicitly considers the capacity constraints by endogenously 

determining the passenger overload delay under the stochastic user equilibrium.   

A similar approach for modeling the discomfort in the crowded vehicle is found 

in the schedule-based model.  Moller-Pedersen (1999) and Nielsen and Jovicic (1999) 

used a BPR type formula for calculating the passenger flow dependent transit link cost.  

Nguyen et al. (2001) inserted an asymmetric boarding penalty function to the link cost to 

prevent users from taking infeasible paths in terms of available capacities.  The study 

only considered the capacity constraint.  Since the available capacity of a stop is a 

function of the sum of passenger flows from different links going to the stop and the 

available capacity, the penalty function is constructed with several different flows of 

incoming links.  Poon et al. (2004) modeled the absolute capacity of a vehicle as Lam et 

al. (1999), but in the schedule-based model.  The successful convergence of the strictly 

constrained capacity was implemented by using the time-dependent network loading 

procedure (Tong and Richardson 1984).  Also, Hamdouch et al. (2004) and Hamdouch 

and Lawphongpanich (2008) considered the rigid capacity of a vehicle by calculating 

appropriate probabilities by boarding priority in the time expanded network.   

The majority of the studies do not consider the daily variation of the transit 

demand which can influence congestion at the stop or in the vehicle.  Crowding is the 

direct experience by the transit users as the traffic congestions in the roads.  When the 

level of crowding fluctuates by the daily variation of the transit demand, the variation is 

also easily recognized by the users.  In this regard, it is desirable to consider the random 
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effect in the transit assignment model.  Zhang et al. (2010) considered the both demand 

and supply uncertainty including the stochastic capacity constraint in the schedule-based 

model.  The Passengers’ Arriving, Boarding (PAB) and queuing behaviors are considered 

in order to model the vehicle’s stochastic dwelling at a stop.  They identified the different 

passengers’ route choice according to different risk taking attitudes.  However, its scope 

having only four lines focused on the route choice behaviors and the PAB process is 

modeled at a stop for the capacity constraint.  Sumalee et al. (2009) explicitly modeled 

different discomfort levels of the passenger with and without seats with a stochastic seat 

allocation model and investigates its consequence on the temporal and spatial distribution 

of the demand.  This chapter also models the random crowding effect under demand 

uncertainty in the schedule-based transit assignment model.  However, it differentiates 

from Sumalee et al. (2009) in that the study models the different attitudes to the travel 

time variability.  Szeto et al. (2011, 2013) modeled the reliability-based transit 

assignment that accounts for the variability of in-vehicle congestion and the risk-averse 

behaviors of passengers with the frequency-based transit assignment model.  Later, Fu et 

al. (2014) also considered the in-vehicle crowding affected by the daily variation of the 

demand in the reliability-based user equilibrium traffic assignment model for congested 

multi-modal transport network.   However, the frequency-based model formulation for 

the transit network has lack of capability for modeling the prioritized boarding at the 

transit stop.   

This chapter applies the formulated problem into the large scale real transit 

network.  Considering its realistic nature of the reliability-based assignment, it was not 

popularly applied to the real network due to the fact that the conventional single criterion 
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shortest path is not applicable.  This study, as far as the study aware, the first one that 

applies the reliability based shortest path algorithm (Chen et al. 2011b) to the real transit 

network.  The following Table 2.2 lists the literature that dealt with the crowding in the 

transit assignment modeling. 

 

Table 2.2 A list of literatures that model the crowding effect in transit assignment. 

Authors Year 
Modeling 

approach 
Summary and problem addressed 

Spiess and Florian 1989 
Frequency-

based 

Non-linear link cost function responding to the passenger flows 

is modeled for the optimal strategy transit assignment 

De Cea, Fernandez 1993 
Frequency-

based 

Used effective capacity by eliminating the fully occupied 

vehicles 

Wu et al. 1994 
Frequency-

based 

Formulates the asymmetric passenger flows in the link 

discomfort function in the frequency-based transit assignment 

Lam et al. 1999 
Frequency-

based 

Explicitly model the hard top capacity of the transit vehicles 

using the overload passenger delay 

Moller-Pedersen 1999 
Frequency-

based 

Flow dependent cost is applied in order to model the capacity 

restraints 

Nielsen and 

Jovicic 
1999 

Frequency-

based 

Applies the transit assignment model that accounts for the 

crowding cost to the joint route and mode choice assignment 

Nguyen et al. 2001 
Schedule- 

based 

Asymmetrically models the capacity constraint in the boarding 

link in order to constraint the capacity 

Hamdouch et al. 2004 
Schedule- 

based 

The probability of boarding a vehicle is estimated proportional to 

its residual capacity of a vehicle, which leads to the calculation 

of the expected cost 

Hamdouch and 

Lawphongpanich 
2008 

Poon et al. 2004 
Schedule- 

based 

Strictly constrained vehicle capacity modeling in the schedule-

based model with time-dependent flow loading procedure 

Sumalee et al. 2009 
Schedule- 

based 

An explicit and stand-alone seat allocation simulation that 

differentiates the seated and standing users in a vehicle is 

integrated into the stochastic transit assignment 

Zhang et al. 2010 
Schedule- 

based 

A multi-class user reliability-based transit assignment model 

considers the stochastic features of arriving, boarding and 

queuing at a stop under the vehicle capacity constraint 

Szeto et al. 2011 
Frequency-

based 

The congestion in a vehicle is treated by the additional waiting 

time 

Szeto et al. 2013 
Frequency-

based 

The capacity constraints are developed through the effective 

capacity and chance constraints in the frequency-based model 

Fu et al. 2014 
Frequency-

based 

Crowding cost function is used in order to model the in-vehicle 

congestion of a transit vehicle in the multi-modal transport 

network 
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Fare Models with the Non-Additive Fare Structure 

 

 

This section reviews the ATEP applications especially for the fare models 

associated with the non-additive fare structure.  Before the review touches the fare 

models with non-additive fare structure, the following section describes the general fare 

structures used in practice. 

 

Fare Structures in Use 

Fare structures can be classified into two basic categories: flat and differentiated.  

Under the flat fare, users are charged the same fare, regardless of the travel distance, time 

of day, or quality of services while the differentiated fare vary according to one or more 

of those parameters.  The followings are the summary of the fare structures used in 

practice from the TCRP report 10 (1996).  

• Flat fare  

Charging a flat fare is the simplest, most common fare strategy for transit 

agencies. 

• Distance or zone-based pricing  

The basic idea of the distance-based fares (zonal charges or surcharges beyond a 

certain distance) is to charge the fare for what the users use the services. 

• Time-based (e.g., peak/off-peak) differential  

Different fares are charged based on the time of day.  The logic behind the time-

based method of charging is that the peak period market is generally less sensitive to fare 

increases and the costs of providing service and accommodating high demands are 

significantly higher in peak than in off-peak hours.  
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• Service-based (e.g., bus or rail) differential  

Fare differentiation by mode is often considered when a higher quality of service 

provided, the trip distance is relatively long, and the operating cost is higher than other 

transit modes.  Typically, the fare for the rail service is the target of the differentiation 

because its service characteristics meet the conditions described above. 

• Market-based, or consumer-based pricing  

Market-based pricing is often seen as a way to price discrimination among 

different ridership markets (e.g., frequent versus infrequent users) and to reduce cash 

handling requirements by increasing prepayment.  

In practice, each fare structure is used stand alone or combined with other 

structures.  The market-based pricing is often included in the flat fare or other 

differentiated fare structures. 

 

Fare Models with Non-additive Fare Structure 

Among the fare structures used in practice, it is known that the distance-based and 

zone-based fare structure incurs the non-additivity (Gabriel and Bernstein 1997) like the 

non-additive toll charging scheme described earlier.  The typical example is the distance-

based fare structure where the fare is decomposed into the base fare and the additional 

fare per unit distance (i.e., per mile).  Under the fare structure, a fixed unit fare for a unit 

distance is not available.  For example, assume a fare policy that charges a base fare of $3 

for 2 miles, in-vehicle travel distance and an $1 additional fee per unit distance.  With the 

fare policy, a passenger traveling 3 miles pays $0.33 per mile while one traveling 4 miles 

pays $0.25 per mile.  The fare is not constantly proportional to the distance a user travels; 
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therefore, from the modeling perspective this fare structure requires the non-additive 

route cost model.   

The next section reviews the literatures that modeled distance and zone-based fare 

structures in the fare model.  Since the optimal fare levels are dependent on the fare 

model where these fare structures are integrated, a brief description for the general forms 

of the fare models will precede the review. 

 

General fare models 

 

The optimal fare levels for fare structures are determined by the fare model where 

transit agencies’ aims such as maximization of demand, welfare, revenue and profits are 

represented in the objective function.  The general formulation of the objective function 

takes the form of the maximization problem affected by the fare  and other decision 

related factors such as in-vehicle time, waiting time and number of transfers etc.  Thus, 

it is typical that the fare structure model is integrated in the demand function ( )d  . 

 

max ( , )

. .

( , ( )) 0

z

s t

G d

 

  

 (2.35) 

where ( , )z   is equal to one of the followings: 

( , )d    ; demand maximization 

( , )d     ; revenue maximization 

( , ) ( )d        ; profit maximization 

( , ) ( )d          ; welfare maximization 

 

,  denotes the operating cost function and difference between willingness to 

pay by users and actual cost for using transit, respectively. 
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The following paragraphs describe the general formulation used in the literature 

for each objective. 

 

Demand maximization 

When the fare model's objective is to maximize the number of transported 

passengers, the demand function itself becomes the objective function (Borndörfer et al. 

2012).  Also, it is possible to represent the demand maximization as the passenger miles 

(Nash 1978; Glaister and Collings 1978).  Generally, the demand maximization model is 

constrained by the budget and the vehicle capacity constraints because lowering fare 

easily maximizes the demand. 

 

Revenue maximization 

Revenue is equal to the number of passengers multiplied by the fare the users pay. 

 

 max ( )rs rs rs

r s

d    (2.36) 

Since it is known that the elasticity of the transit demand is less than one to the 

fare change the standalone objective function can have the solution that maximizes the 

revenue.  Instead of using fare  , it is possible to specify certain passenger interests or 

political goals (Borndörfer et al. 2012).   

 

Profit maximization 

Researchers commonly use profit maximizations to optimize fare levels in the 

non-additive fare structure.  The profit is equal to revenue minus operating expense. 

 

 ( ) ( )rs rs rs rs

r s

d       (2.37) 
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In order to achieve the maximized profits, the revenue should be maximized while 

the operating cost minimized.  Increasing revenue would decrease the demand and vice 

versa.  Because the elasticity of the transit demand is less than one to the fare change, it is 

probable that the higher fare levels are the favorite condition for the profit maximization 

model.  Typically, the operating cost is the transit vehicle's frequency function that 

responds to the demand intensity.  Thus, the headway for the vehicle operations is subject 

to be optimized in the model as well. 

 

Social welfare maximization 

The social welfare is the sum of the producer benefit and the user benefit.  The 

producer benefit is the same as the profit, which is revenue minus cost.  The user benefit 

is the difference between the generalized price the users are willing to pay and the actual 

generalized price the users pay.  Borndörfer et al. (2012) derived the expected user 

benefit for a given fare  as the difference between the utilities of the best public 

transport alternative and the best non-public transport alternative.  The difference 

produces the largest generalized utility that a passenger is willing to pay for any public 

transport alternative before switching to a non-public transport alternative. 
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It is assumed that the random utility of iU follows the Gumbel distribution with 

parameters ( , )i  . 
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where 

I  : a set of alternatives 

iU  : utility for choosing an alternative i I  

   
' '
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The social welfare is to add the producer benefit to the user benefit. 
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The former part of the social welfare, which is the user benefit, could be the 

objective of the fare model. 

Additional objectives other than the above mentioned four were also identified.  

Zhou and Lam (2001) took minimization of the total network travel cost by fixing the O-

D demand.  Minimization of the revenue decrease for agencies and the fare increase for 

passengers after the fare structure change into the integrated system was the objective by 

Pratelli (2004).   

 

Fare models associated with non-additive fare structure 

 

Generally, efforts for determining appropriate fare levels for the non-additive fare 

structures are conducted under the TRNDP (Transit Network Design Problem) 

framework.  The following paragraphs review the research focused on their fare model 

and fare structure model specifications.   

Daskin et al. (1988) formulated a quadratic model under the revenue 

maximization for optimizing the distance-based fare that consists of the base, mileage 
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and transfer charge.  The simplified demand function based only on the fares is used for 

formulating the demand function. 

 

0

0

(1 )rs rs rs rs
rs rs

rs

e e
d q

 



  
  

 
 (2.40) 

where 

rsd  : estimated demand for an O-D pair between origin r and destination s  

rse  : elasticity of demand with respect to fare 

0

rs  : initial fare 

 rs rs x rsb m s xf       (2.41) 

where 

b  : base fare 

m  : mileage fare 

rss  : total in-vehicle distance 

x rsxf   : transfer fare & number of transfers 

 

The sensitivity analysis suggested that the distance-based fare structure could be 

effective to raise the revenues because there are revenue potential for the long distance 

trips which are less elastic to the fare increase.  A similar model formulation that reflects 

the demand decrease to the initial potential demand is observed in Chien and Spasovic 

(2001), Chien and Tsai (2007), Tsai et al. (2008), and Tsai et al. (2013).    

The zone-based fare structure is further differentiated with time t by Chien and 

Tsai (2007) that formulated an optimization problem for locating the optimal fare and the 

headway of Newark city subway under profit maximization. 
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 , {1,2,..., }t t

rs b j i i j n      (2.42) 

where 

tb  : base fare at period t  

t  : additional cost for crossing zones at period t  

n  : number of zones 

j i  : number of zones traversed 

 

The optimal fare for zone-based fare structure and the vehicle frequencies are 

nicely formulated by linearly formulating the elastic demand function.  The study found 

that when the fare and the headway are differentiated by the time and the distance the 

maximized profit could be obtained.   

Tsai et al. (2008) examined the optimal fare levels and the headways for the 

distance-based fare structure.  In the study, the distance-based fare structure is modeled 

by the weight factor that adjusts the fares for different travel distances.   

 

 , ,, ; { }rs z rs short middle longuw s r s z     (2.43) 

where 

u  : unit fare 

zw  : weight factor which is unique for each travel range 

 

Using the same methodology used by Chien and Tsai (2007), the unit fare per 

mile with the differentiated weight factor and the headway is optimized for Taiwan’s 

high speed rail network.  Tsai et al. (2013) further developed the previous model (Tsai et 

al. 2008) by tagging the time differentiated distance-based fare structure, which is the 
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Partition of Travel Distance (PTD).  Introducing the variable enables to determine the 

optimal number of partitions for distance-based fare structure as well as the unit fare and 

the temporal headways.  The study found that in order to maximize the profit, the PTD 

should be closely segmented as the demand decrease and vice versa.  The additional 

variable necessitated the new solution algorithm for the optimization problem.  The study 

identified the metaheuristic approach, the genetic process, is capable of finding the 

optimized solution of the given type of problem.   

More about the TRNDP is well reviewed by Kepaptsoglou and Karlaftis (2009).  

Other than the TRNDP framework, Ling (1998) theoretically derived detailed conditions 

when the distance-based fare is attractive in terms of ridership, revenue, passenger-

kilometer and consumer surplus.  And Chien and Spasovic (2001) optimized fares with 

special consideration for the spatial characteristics of the demand in the urban area.  A 

compact review of the literatures are presented in Table 2.3. 

 

Table 2.3 Collection of literatures addressing non-additive fare structure. 

Authors Year 
Demand model 

(maximization of) 
Summary and problem addressed 

Daskin et al. 1988 Revenue 
Establish a quadratic model under the revenue maximization for 

optimizing the distance-based fare 

Ling 1998 
Demand, revenue 

Passenger-km 

Theoretically observed more specific conditions upon the 

differentiated fare structure reform 

Chien and 

Spasovic 
2001 Profit and welfare 

Optimized fares, route and station spacing and headway with 

special consideration for the spatial characteristics of the grid 

network. 

Pratelli 2004 Revenue 
Design an integrated zone-based transit system with optimal fare 

levels 

Chien and Tsai 2007 Profit Optimized the fare and the headway for zone-based fare structure 

Borndörfer et al. 2008 
Profit, revenue, 

demand, welfare 

All models produce higher demand than the fixed fare for the 

network of Potsdam, Germany upon the distance-based fare 

structure reform 

Tsai et al. 2008 Profit 
Examined the optimal fare levels and the headways for the 

distance-based fare structure 

Tsai et al. 2013 Profit 
Optimized headways and time differentiated distance-based fare, 

which is the partition of travel distance 
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According to the table, we can see that majority of studies are focused on finding 

the optimal fare levels under profit or revenue maximization.  One of the reasons for 

adopting the distance-based fare structure is to find the revenue potential of the long 

distance transit demand, which is less sensitive to fare increase.  Thus, many studies 

attempted to find the optimized fare levels under profit maximization.  However, profit 

oriented fare levels may not be desirable for the majority of the transit agencies operated 

by the government.   

In addition, their scopes are not sufficiently large for analyzing travelers’ route 

choice behaviors in the network.  Most studies are designed to find the optimized fare 

levels for small transit routes that do not offer alternatives for the users.  Thus, the 

demand model is about using the transit or not.  Even if the several routes are considered 

the route choice is not modeled according to the fare change (Daskin et al. 1988).  

Nevertheless, reformulation of the fare structure induces the users’ reconstruction of their 

routes according to the change.  Recent fare reformulation in Seoul South Korea is the 

real example of the route change behaviors.  When Seoul reformed its flat fare to the 

distance-based fare structure in 2004 it experienced 6% of transfer increases than before 

the reform.  When the fare is charged based on the travel distance of the users their 

decisions on the routes would be inclined to choose the one that minimizes the travel 

distance.  The practical change of the route was triggered by the free transfer policy. 

The study touches these two issues in the last chapter of the dissertation. 
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Summary 

 

 

Identification of the asymmetric interaction in the transportation system and the 

appropriate mathematical formulation for these interactions and applications is what this 

review seeks to embrace. 

Various instances of the asymmetric interactions have been reviewed with the 

basic two-way street link interactions.  The basic concepts and the general mathematical 

formulation of the cost function were also discussed for each case.  There were several 

situations that incur asymmetric interactions.  The review classified those interactions by 

flow source that asymmetrically interact as link, mode, and route.  Link interactions were 

observed when the flows from different links intersect, such as highway ramps, 

signalized, and un-signalized intersections.  Conversely, mode interactions are the flows 

of different modes having different operational characteristics influencing each other 

asymmetrically.  Route interactions are identified when the route cost cannot be fully 

represented by the sum of the link cost comprising the route.  The route interactions were 

generally represented by the non-additive route cost.   

The next section discussed the necessary changes when the asymmetric effects 

were considered in the NEP's mathematical formulation.  When the asymmetric 

interactions were modeled as the cost function in the NEP, because integration of the 

objective function is not independent on the path of the integration, the conventional 

minimization with an objective function was not appropriate for the ATEP.  Instead, the 

VI properly formulated the ATEP.   

Then, the efforts for solving the ATEP had been addressed.  The most general 

solution approach to solve the ATEP is to symmetrize the asymmetric interactions and 
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solve the resulting separable sub-problems with the conventional solution algorithms 

used for general NEP.  However, effectiveness of other solution algorithms such as the 

linearization method including the projection, Newton type algorithm and column 

generation approach also have been researched by various researchers. 

In addition to that, the next section describes the advantages of the DP method for 

handling the ATEP.  The usefulness of the DP method for the ATEP is supported by the 

fact that the operating space of the DP method is the route with relaxed condition on the 

cost function, and the method doe not requires for the derivative information. 

The final section of the literature review pertained to the applications of the 

observed asymmetric situations in the transit assignment including the crowding effect 

and the non-additive fare structure.  The review summarized the previous studies that 

consider the crowding effects in the transit assignment.  The majority of the studies 

utilizes the congestion function for representing the crowding effect, however, is limited 

to the modeling, but lacks the practical application into the real transit networks.  The last 

literature review concerns on the fare model in the transit system.  The section went over 

the general fare structure used in the field and extended its review to the investigation on 

the fare model that determined the optimized fare levels for the non-additive transit fare 

structure.   

In the next section, the DP method is briefly introduced followed by the 

characterization of the convergence of each type of the ATEP in terms of the influential 

factors by the DP method. EQUATION CHAPTER (NEXT) SECTION 1  
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CHAPTER 3  
 

ALGORITHM FOR ATEP: DOUBLE PROJECTION METHOD 

 

 

Double Projection Method 

 

One assumption of the VI formulation is that the mapping is non-expansive, 

which is a Lipschitz continuous and strongly monotone function (Ortega and Rheinboldt 

1970).  However, Korpelevich (1977) introduced the DP method that relaxed the strongly 

monotone mapping of C by performing another projection onto the set of feasible route 

flow vectors .  This study terms the first and the second projection as the predictor 

projection eq. (3.1) and the corrector projection eq. (3.2), respectively. 

 ( ( ))k k k kF proj F C F   (3.1) 

 
1 ( ( ))k k k kF proj F C F    (3.2) 

 

Later, Khobotov (1987) showed that the step-size conditioned with the following 

inequalities can be easily calculated and the step-size does not require the strongly 

monotone assumption. 

 ˆ0 min ,
( ) ( )
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 (3.3) 

satisfying 
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 (3.4) 

where ˆ,  are the next step-size and the upper limit of the step-size respectively. 



 51 

The validity of the inequality is proven by either one of the following conditions.  

First, as *

1, kk F F  .  Alternatively, as , k kk F F  .  The first condition is 

apparent as long as the appropriate sequence of step-sizes is selected, while the second 

one guarantees that the distance to the solution set F strictly decreases.  The details of the 

proof of the convergence of the double projection method are presented in Appendix A. 

In order to minimize the right-hand side of eq. (3.4), the following quantity has to 

be minimized: 
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

  
  

  

 (3.5) 

However, there is no closed form for minimizing the quantity.  Marcotte (1991) 

selected the value k as
1

( )
( ) ( )2

k k

k k

F F

C F C F




while Panicucci et al. (2007) choose

0.8( )
( ) ( )

k k

k k

f f

C f C f




in their numerical experiments.   

Later, Panicucci et al. (2007) applied the step-size rule (Khobotov 1987) to the 

ATEP associated with the two-way street link interactions with the following algorithmic 

procedure.  The procedure conducts an iterative scheme that examines the validity of the 

temporary step-size and whether it satisfies condition eq. (3.3) for the suitable scale of the 

step-size.  The sequence for estimation of the proper step-size is shown below: 
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Step 1. Initialization 

set 0, , , (0 1), (0 1)k kk F             

 

Step 2. Find the appropriate step-size k  

Perform the predictor projection ( ( ))k k k kF proj F C F   

  if / ( ) ( )k k k k kF F C F C F       then reduce k  

   min ,
( ) ( )

k k

k

k k

F F

C F C F
 
  
 

  

  

  Go to the top of step 2. 

 

Step 3. Perform the corrector projection 

 1 ( ( ))k k k kF proj F C F    

 

Step 4. Convergence test 

If convergence criterion is met, then stop.  Otherwise 1k k  ,  go to step 2. 

 

Factors Influencing the Convergence of the ATEP 

 

After Smith (1979) and Dafermos (1980) introduced the VI for the ATEP, 

attention was given to the solution algorithm’s convergence because the sufficient 

condition for the convergence is not easily verified for the real network.  In order for the 

VI to have the unique solution under asymmetric interactions, a sufficient condition in 

which the flow is dominantly affected by the current flows must be satisfied (Dafermos 
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1980).  The main dependence on the current link cost is designed to maintain the 

monotonicity of the link cost function.  However, the problem convergence is not always 

promised because verifying that a link cost is dominantly affected by the current link 

flows in the real network application is difficult.   

Previous studies show the lack of attention to this issue especially the problem 

with the large real networks and the tested networks used in those studies are small ones 

constructed for illustration purpose only (Patriksson 1993).  Moreover, especially in the 

analytical approach, research tends to tailor models to one type of asymmetric 

interactions.  This chapter intends to address these issues under the characterization on 

the convergence of the ATEP by embracing the large real networks and covering 

different types of interactions.  The objective of this chapter is to investigate the factors 

influencing the convergence of the ATEP using the DP method.  The properties of the DP 

method explained earlier justified the choice of the solution algorithm for this issue. 

The basic experiment includes investigation on the effects caused by different 

asymmetric complexities on the cost function for each type of interactions because the 

asymmetric complexities are directly reflected on the cost function.  In addition, an in-

depth analysis will be conducted in order to identify other potential factors that influence 

the convergence.  The experimental framework is designed on the small network and is 

extended to the large real networks that have different scales and demand intensities.  

These experiments naturally address the compatibility of the DP method for each type of 

asymmetric interactions.   

The small network used for the following experiment was devised by Nguyen and 

Dupuis (1984) for testing a solution method for the NEP formulated with asymmetric link 



 54 

cost.  The shape of the network and the O-D demand is presented in Figure 3.1.  The 

network consists of thirteen nodes and nineteen links.  Additional details on the network 

characteristics can be found in Nguyen and Dupuis (1984). 

 

 
 
 

Figure 3.1Nguyen-Dupuis network. 

 

The cost matrix A and the constant vector h associated with the N-D network are 

given in Appendix B.  The selected networks for real network experiments and their 

characteristics are presented on Table 3.1.  The first three are relatively small to medium 

sized networks with different levels of demand intensities.  The larger scale network 

(Chicago Regional Network) experiment has a special data structure developed for the 

efficient use of the memory.   
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Table 3.1 Network characteristics of the test networks for real network experiments. 

Network #. nodes #. links #. O-D pairs Total demand 

Anaheim 416 (38) 914 1,406 104,694 

Winnipeg 1,067 (135) 2,535 4,345 54,459 

Barcelona 930 (97) 2,522 7,922 184,679 

Chicago Regional 12,982 (1,790) 39,018 1,118,661 1,323,537 

 

 

The number in parenthesis indicates the number of zones.  The demand, which is 

greater than or equal to 0.1, is used for the Chicago Regional Network.  It explains more 

than 97% of the original demand while the objective to apply the algorithm to the large 

scale network is not disturbed. 

The numerical tests will be terminated by the Average Excess Cost (AEC) rule 

introduced by Boyce et al. (2004). 
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 
  (3.6) 

where
min ( )rsC f is the shortest route cost of an O-D pair between origin r and 

destination s .  This study used
510  .  The computer specifications running the 

program coded with the C# language are Intel Core I5 680 processor with 3.59 GHz 

speed, and 4.00GB of RAM.   

 

Link Interactions 

In order to model the link interactions with different asymmetric complexities, the 

following link cost function that decomposes cost matrix A into the diagonal and the off-

diagonal parts tagged with the asymmetric controller lk is utilized. 

 
3( ) [ ] 10diag lk offdiagC V A A V h     (3.7) 
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where
diagA and

offdiagA are the diagonal and off-diagonal parts of the asymmetric 

link cost matrix of the N-D network. 

In this experiment, the first order Taylor expansion at 0V of ( )C V is approximated 

so that the relative ratio between the asymmetric and the symmetric effects can be 

estimated.   This measure is advantageous over the asymmetric controller because the 

measure indicates the relative proportion of the asymmetric effect to the symmetric effect 

by breaking down the evaluation at 0V into the symmetric and skew-symmetric parts. 

 0 0 0( ) ( ) '( )( )C V C V C V V V    (3.8) 

Here, decompose the derivative 0'( )C V into its symmetric and skew-symmetric 

parts as: 

 0 0 0 0 0( ) ( ) '( ) ( ) ( )C V C V C V V X V V Y V V       (3.9) 

where 

0 0(1/ 2){ '( ) '( ) }tX C V C V  , symmetric part 

0 0(1/ 2){ '( ) '( ) }tY C V C V  , skew-symmetric part 

Then, the influence of the skew-symmetric part to the symmetric part is as: 

 
0 0

0 0

t

t

V Y V
R

V X V
  (3.10) 

It is worth noting that the current flows 0V enter into the definition of R and 

influence the degrees of effects caused by the skew-symmetric part.  The cost function 

arranges the asymmetric configurations while the network flows, arguments to the cost 

function, determines the actual asymmetric effects.  The irregularity of the network flows 

is not accounted in the analytical approach that assumes matrix A to have consistent 
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effects throughout the solution procedure.  However, the net effects of the matrix depend 

on the flows in the network.  Simply, if a link flow is zero, then the influence caused by 

the zero flow link is canceled and overall asymmetric effect will diminish than the 

originally intended.   

 

 
 

Figure 3.2 Actual asymmetric effects throughout the convergence. 

 

In order to demonstrate this, different demands have been applied to the same 

asymmetric complexities, 1.22lk  , and observed R .  Figure 3.2 presents the results.  

The top two lines share the same asymmetric effects but different demand levels while 

other lines are with the original demand.  We can see that the asymmetric complexities 

are orderly configured according to the scale of lk .  The figure demonstrates that when 

the demand level is low the practical asymmetric complexities reflected in the solution 

procedure is less than the one with higher demand intensity.  The fact that 1.22lk  is the 
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maximum asymmetric complexities that can be covered by the diagonalization method 

due to Florian and Spiess (1982), the actual asymmetric complexities could be higher or 

lower than the value.  In the real networks, it is possible that the theoretical 

configurations would not work as the effective upper limit because the real network is 

associated with varied demand intensities. 

In this section, a cost function that models the different asymmetric link 

interactions has been established and used for the experiment designed to analyze the 

actual asymmetric effects with the given function.  The experiment results identified that 

the asymmetric effects of the ATEP are not solely the function of the cost function but 

are the results of the combined effects between the cost function and the network flows.   

The section examined the realization of the asymmetric effects due to the 

variability of the network flows.  It may possible that the same analogy can be applied to 

the cost function in such a way that the intended asymmetric cost functions are ideally 

constructed.  This will be dealt in the following real network experiments. 

For the real network experiment, the asymmetric link interactions have been 

modeled with two way street interactions by the following link cost function. 

 {1 ([ '] / 2 ) }free

a a a lk a ac t v v Cp       (3.11) 

Assuming that the demand intensities affect the effective asymmetric 

complexities, lk will be different for different networks because the demand intensities 

are vary in the real networks.  This is demonstrated by identifying lk that breaks the 

diagonal dominance for different networks.  In order to test this, the study observes the 

solution while increasing lk until the network outputs different solutions due to the 

violation of the uniqueness condition.   
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The uniqueness of a solution is verified by the following test of similarity of link 

flow pattern proposed by Meneguzzer (1995). 

,B i

lF = initial all-or-nothing flow on link l in the base solution 

,k i

lF = initial all-or-nothing flow on link l in the thk alternative solution, 

  1,2,3,...,10k   

,B E

lF  = equilibrium flow on link l in the base solution 

,k E

lF = equilibrium flow on link l in the thk alternative solution 

 1,2,3,...,10k   

For each link l and for each alternative solution k , calculate the degree of the 

deviate from the base and equilibrium link flow solution 

 
, , ,0.1B i k i B i

l l lF F F   (3.12) 

 
, , ,0.1B E k E B E

l l lF F F   (3.13) 

Next compute the 
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where 

i

kN = total number of links that satisfy eq. (3.12) 

E

kN = total number of links that satisfy eq. (3.13) 

N  = total number of links in the network 

The ratio in eq. (3.14) and eq. (3.15) are called the Proportion of Similar Initial 

Link Flows (PSILF) and the Proportion of Similar Equilibrium Link Flows (PSELF), 
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respectively.  The idea of the method is to examine if the different initial solutions will 

have the same equilibrium solution.  The degree of difference is measured by PSELF and 

PSILF.  The successful test would yield a small PSILF and a large PSELF.  In addition, 

the study added one more measure that calculates the average amount of flows that 

obviate from eq. (3.15). 
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 (3.16) 

 

Table 3.2 shows the values of each variable for the tested networks introduced 

above.  The reason for presenting the assigned results when 0.0lk  is to provide a 

reference point for comparing the other results comes from different asymmetric 

complexities.   

At the reference point, for three small and medium sized networks, the similarity 

of the initial flow pattern to the base solution is kept low while almost the unique UE 

solution (99% of PSELF) is obtained from different initial points.  In the case of Chicago 

regional network, 83% of PSELF is achieved.  This value is not sufficiently strong to 

indicate that an identical link flow solutions are obtained but considering its enormously 

huge network size and the low value of ADLF suggest that the value is acceptable. 

At a glance on Table 3.2, the high value of PSELF, meaning that it is very close to 

the reference case, is maintained even for the high asymmetric degrees.  Theoretically, 

when lk is equal to 0.5 or higher the diagonal dominance of the current link’s flow would 

not be expected.  However, all networks yield almost the same levels of PSELF to the 

separable case even with 0.8lk  .   
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Table 3.2 PSILF and PSELF with different asymmetric complexities. 

Anaheim Barcelona 

solutions #. iterations PSILF PSELF ADLF #. iterations PSILF PSELF ADLF 

0.0lk   

1 86 0.18 0.99 83.96 262 0.05 1.00 23.15 

2 66 0.19 0.98 142.21 188 0.05 1.00 15.10 

3 85 0.17 0.99 69.58 204 0.03 1.00 18.55 

4 75 0.20 0.99 47.20 151 0.05 0.99 14.16 

5 79 0.19 1.00 26.34 217 0.04 1.00 75.70 

6 99 0.18 1.00 0.00 183 0.04 1.00 26.98 

7 71 0.17 0.99 155.37 178 0.04 1.00 15.58 

8 67 0.18 0.99 111.71 308 0.04 1.00 49.53 

9 56 0.20 0.98 114.10 208 0.06 1.00 21.96 

10 73 0.15 1.00 37.32 241 0.05 1.00 23.99 

average 76.0 0.180 0.991 78.778 214.0 0.045 0.997 28.472 

0.5lk   

1 62 0.16 0.98 117.79 493 0.05 1.00 61.80 

2 61 0.15 0.99 32.19 568 0.05 1.00 52.24 

3 59 0.17 0.99 46.79 455 0.03 1.00 72.52 

4 54 0.18 0.98 45.84 462 0.05 1.00 62.87 

5 64 0.19 0.99 54.33 555 0.04 1.00 85.61 

6 72 0.16 0.99 40.76 474 0.07 1.00 57.65 

7 64 0.17 0.99 32.79 369 0.05 1.00 49.56 

8 57 0.15 0.99 38.90 453 0.05 1.00 53.52 

9 60 0.17 0.98 90.06 513 0.05 1.00 89.98 

10 65 0.18 0.99 62.36 524 0.04 1.00 88.51 

average 61.8 0.168 0.987 56.181 486.6 0.048 0.998 67.425 

0.8lk   

1 87 0.17 1.00 24.91 514 0.06 0.99 62.34 

2 55 0.17 0.99 69.95 563 0.07 1.00 82.60 

3 93 0.19 0.99 37.39 589 0.06 0.99 72.76 

4 76 0.15 1.00 43.40 833 0.05 0.99 70.14 

5 70 0.20 0.97 102.88 864 0.06 1.00 72.09 

6 73 0.17 0.99 115.44 961 0.06 1.00 81.04 

7 79 0.19 0.99 94.11 715 0.05 1.00 78.89 

8 98 0.19 0.98 75.74 601 0.03 1.00 84.18 

9 65 0.19 0.98 122.59 620 0.05 1.00 82.79 

10 90 0.19 0.99 65.41 863 0.04 1.00 60.95 

average 78.6 0.180 0.989 75.181 712.3 0.051 0.995 74.778 

1.0lk   

1 115 0.15 0.96 140.2 583 0.05 0.99 23.4 

2 71 0.17 0.96 118.2 779 0.05 0.98 110.2 

3 100 0.16 0.97 96.1 613 0.06 0.99 26.4 

4 78 0.15 0.96 97.6 688 0.05 0.98 73.0 

5 72 0.17 0.97 100.8 690 0.04 0.98 97.4 

6 63 0.17 0.97 0.0 707 0.04 0.99 26.1 

7 110 0.18 0.98 53.0 688 0.05 0.99 28.8 

8 70 0.18 0.97 125.0 951 0.05 0.99 26.8 

9 93 0.20 0.97 107.7 771 0.06 0.99 75.2 

10 71 0.17 0.96 157.3 640 0.05 0.98 69.2 

average 84.3 0.170 0.965 99.585 711 0.050 0.986 55.660 
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 Table 3.2 continues 
Winnipeg Chicago regional 

Solutions # Iterations PSILF PSELF ADLF # Iterations PSILF PSELF ADLF 

0.0lk   

1 992 0.14 0.99 11.71 621 0.18 0.83 69.60 

2 1211 0.17 0.99 10.10 877 0.18 0.83 69.33 

3 794 0.14 0.99 9.45 648 0.19 0.83 69.89 

4 868 0.15 0.99 10.35 583 0.18 0.83 71.07 

5 1324 0.15 0.99 11.17 672 0.18 0.82 68.83 

6 794 0.16 0.99 8.47 529 0.18 0.82 68.23 

7 442 0.16 0.99 8.62 669 0.18 0.83 69.61 

8 786 0.16 0.99 8.08 543 0.18 0.83 66.10 

9 407 0.14 0.99 8.60 582 0.18 0.83 65.07 

10 582 0.15 0.99 10.83 544 0.18 0.83 72.13 

average 820 0.153 0.991 9.739 626.8 0.183 0.826 68.986 

0.5lk   

1 554 0.18 1.00 19.57 819 0.18 0.83 59.24 

2 587 0.16 1.00 8.04 909 0.18 0.83 59.93 

3 548 0.16 1.00 11.84 1054 0.18 0.82 59.01 

4 554 0.15 1.00 16.81 877 0.18 0.82 57.47 

5 565 0.17 1.00 8.07 807 0.18 0.83 57.54 

6 525 0.17 1.00 10.14 1897 0.18 0.83 56.80 

7 489 0.14 1.00 8.61 1144 0.18 0.82 56.76 

8 599 0.17 1.00 16.51 1149 0.18 0.82 57.30 

9 548 0.14 1.00 14.20 805 0.18 0.83 57.68 

10 500 0.15 1.00 19.24 3525 0.18 0.82 57.28 

average 546.9 0.159 0.997 13.303 1298.6 0.182 0.826 57.901 

0.8lk   

1 590 0.16 1.00 10.48 1196 0.18 0.81 58.44 

2 805 0.16 1.00 7.54 1706 0.18 0.82 57.13 

3 644 0.15 1.00 3.14 1210 0.18 0.82 57.80 

4 497 0.16 1.00 7.02 1350 0.18 0.81 58.45 

5 730 0.14 1.00 4.84 1218 0.18 0.81 57.62 

6 692 0.16 1.00 9.83 887 0.18 0.82 58.98 

7 931 0.14 1.00 7.14 1107 0.18 0.82 56.82 

8 872 0.14 1.00 12.03 991 0.18 0.81 56.31 

9 620 0.15 1.00 2.82 802 0.18 0.82 58.54 

10 651 0.15 1.00 9.70 3525 0.18 0.82 57.28 

average 703.2 0.151 0.998 7.454 1399.2 0.180 0.816 57.736 

1.0lk   

1 563 0.16 0.98 50.09 1493 0.18 0.78 71.09 

2 692 0.16 0.97 32.25 1408 0.19 0.79 71.05 

3 717 0.20 0.97 23.96 1029 0.18 0.79 70.57 

4 615 0.17 0.97 52.58 1986 0.18 0.78 71.44 

5 722 0.18 0.98 17.68 1026 0.18 0.78 70.83 

6 642 0.17 0.97 31.51 1600 0.18 0.78 70.81 

7 742 0.17 0.96 45.58 1279 0.18 0.78 69.42 

8 769 0.18 0.97 26.30 2248 0.18 0.79 69.56 

9 727 0.19 0.97 18.94 972 0.18 0.78 71.81 

10 789 0.18 0.98 27.58 1379 0.18 0.79 70.88 

average 697.8 0.175 0.971 32.647 1442.0 0.181 0.784 70.746 
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Seemingly, the violation of the unique solution is observed when 1.0lk   

because a significant difference on PSELF appears.  However, in the case of the 

Barcelona network, the diagonal dominance seems to be maintained until lk is very close 

to one.   

The study investigates the factors that contribute to the relatively high value of the 

asymmetric complexities incurring the unique solution.  For the two-way street cost 

function, if the both directional links share the same congestion parameters, then the 

problem becomes the symmetric case by arranging the derivative of the current 

directional flow next to the opposite one for constructing the jacobian.  When both the 

congestion functions are the same, eq. (3.7) models the symmetric effects.  Table 3.3 

presents the proportion of the symmetric two-way street pair in the test networks. 

 

Table 3.3 Percentage of symmetric two-way street pairs in the real networks. 

Networks 
number of two-way street pairs with 

the same performance function 

number of two-way 

street pairs 
% of symmetric pairs 

Anaheim 271 280 97 

Barcelona 963 1151 84 

Winnipeg 661 724 91 

Chicago regional 8776 18391 48 

 

Very high percentage of symmetric pairs is observed except for the Chicago 

regional network.  The high percentage of symmetric pairs implies that the asymmetric 

effects designed by the cost function will not be realized as originally planned due to the 

incomplete asymmetric configuration in the real networks.  Similar to the small network 

experiment that identified the dependency of the practical asymmetric effects on the 

demand intensities, the real network experiment identified incomplete asymmetric effects 

due to the network configuration.   
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Through the experiments, it has been identified that possibility exists in that the 

actual asymmetric effects are lower than originally planned because the symmetric 

configurations might be hidden in the cost function due to the network configuration and 

because of the demand intensities.  This might be the supporting evidence for the 

suggestion by Patriksson (1993) in which the theoretical convergence conditions are too 

strong and that it may be possible to weaken them significantly. 

 

Mode Interactions 

In order to model asymmetric mode interactions, the link interactions formulated 

by the off-diagonal part of A is eliminated by taking only the diagonal part of A .  

Limiting asymmetric effects to one link is typical for mode interactions, since 

interactions between modes are designed to model flow reactions between modes sharing 

the same physical infrastructure (Mahmassani and Mouskos 1988).  The link cost 

function is expressed simply as: 

 
1 2 1 2 3( , ,..., ) [ ] ( , ,..., )10m M m M

a a a a diag a a a ac v v v A s v v v h   (3.17) 

where ( )m

ss  is a function that models the interaction among modes in link a . 

Even if the cost function is symmetric with respect to the link flows, asymmetric 

effects among modes could be modeled by function ( )s  , which represents the interactions 

among modes.  In this experiment, flow interactions between two modes, cars and trucks, 

are modeled using a simple form as: 

 

car car truck

a a a

truck car truck

a md a a

s v v

s v v



 

 

  
 (3.18) 

where and md are the factors that transform the effect of trucks into passenger 

car equivalent (PCE) unit and the asymmetric measure which controls the impact of the 



 65 

auxiliary mode.  Here, md plays the same role in the link interactions for posing the 

asymmetric effects between modes. 

With the defined cost function for each mode, an experiment is prepared to 

analyze the situations where the interaction between modes gradually increases.  Both 

cost functions are influenced by flows of the cars and trucks; however, the program has a 

unique solution as long as md is equal to zero.  This is because the strong nested 

monotonicity, a weaker form of monotonicity, is maintained over two cost functions of 

cars and trucks.  Cohen and Chaplais (1988) introduced nested strong monotonicity 

providing a weaker form of the monotonicity condition and the process of interactions for 

the Multiclass Network Equilibrium Problem (MNEP).   

The consequences of violation of the monotonicity condition controlled in 

different cost functions directly touch the uniqueness issue.  When md is zero, strong 

nested monotonicity is easily confirmed since the NEP is operated with the strongly 

monotone function for
carC with fixed trucks’ flows while the cost function for the truck 

with the parametric solution obtained before is strongly monotone due to 0md  .  This is 

demonstrated in the numerical experiment that produces the same link flows on the 

individual class with several different initial solutions when 0md 
 
(Table 3.4).  On the 

other hand, the uniqueness of the MNEP is no longer valid when 1md  and higher.  

When md becomes one, it seems that the balance of power between two cost functions is 

tipped and consequently the condition for the unique solution is violated.   
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Table 3.4 Equilibrium solutions with the violated monotonicity conditions. 

md  0 1 

Link number 

Link flows from 

different initial solutions 

Link flows from  

initial solution 1 

Link flows from  

initial solution 2 

Cars Trucks sum Cars Trucks sum Cars Trucks sum 

1 470 176 646 600 132 732 382 200 582 

2 430 124 554 300 168 468 518 100 618 

3 216 82 298 0 150 150 450 7 457 

4 384 118 502 600 50 650 150 193 343 

5 216 104 320 0 168 168 526 7 534 

6 470 153 623 600 114 714 305 200 505 

7 346 128 474 0 236 236 745 7 752 

8 0 0 0 0 0 0 0 0 0 

9 216 82 298 0 150 150 450 7 457 

10 130 47 177 0 86 86 295 0 295 

11 516 182 698 300 250 550 750 107 857 

12 234 68 302 450 0 450 0 143 143 

13 620 203 823 750 164 914 455 250 705 

14 234 68 302 450 0 450 0 143 143 

15 234 68 302 450 0 450 0 143 143 

16 130 47 177 0 86 86 295 0 295 

17 130 24 154 0 68 68 218 0 218 

18 300 100 400 300 100 400 300 100 400 

19 620 203 823 750 164 914 455 250 705 

 

In Table 3.4, the link flow solutions are presented when md is equal to zero and 

one.  As explained above, different equilibrium link flows were identified when 1md 

due to the violation.  Conversely, the unique equilibrium solutions are identified when

md is lower than one by the method (Table 3.5).  The solutions between the presented 

asymmetric complexities can be found in Appendix C.   

Meanwhile, convergence behaviors represented by the AEC for each O-D pair 

have been compared when asymmetric influences grow on the truck’s cost function 

(Figure 3.3 a).   
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Table 3.5 Equilibrium solutions caused by the asymmetric mode interactions. 

 

direction Link sequence 

Route costs and route flows 

0.0md   0.9md   

Cars Trucks Cars Trucks 

Origin 1 to 

destination 2 

2 18 11 70.00 300.00 53.87 100.00 70.13 300.00 68.34 100.00 
2 17 7 9 11 86.87 0.00 64.84 0.00 87.12 0.00 84.68 0.00 
2 17 8 14 15 91.78 0.00 70.07 0.00 91.97 0.00 89.55 0.00 
1 5 7 9 11 87.40 0.00 64.84 0.00 87.18 0.00 84.68 0.00 
1 6 12 14 15 109.77 0.00 80.69 0.00 109.63 0.00 106.40 0.00 
1 5 8 14 15 92.31 0.00 70.07 0.00 92.02 0.00 89.55 0.00 
2 17 7 10 15 88.94 0.00 67.22 0.00 89.04 0.00 86.63 0.00 
1 5 7 10 15 89.47 0.00 67.22 0.00 89.10 0.00 86.63 0.00 

Origin 1 to 

destination 3 

2 17 8 14 16 95.96 0.00 72.59 0.00 96.01 0.00 93.41 0.00 
2 17 7 10 16 93.11 130.34 69.74 24.55 93.09 130.39 90.50 26.34 
1 5 7 10 16 93.64 0.00 69.74 21.91 93.15 0.00 90.50 19.27 
1 5 8 14 16 96.48 0.00 72.59 0.00 96.07 0.00 93.41 0.00 
1 6 12 14 16 113.94 0.00 83.21 0.00 113.68 0.00 110.26 0.00 
1 6 13 19 93.11 469.66 69.74 153.55 93.09 469.61 90.50 154.40 

Origin 4 to 

destination 2 

3 5 7 9 11 77.41 215.94 59.55 81.55 77.32 214.89 75.35 82.16 
3 5 7 10 15 79.48 0.00 61.93 0.00 79.24 0.00 77.30 0.00 
3 5 8 14 15 82.32 0.00 64.78 0.00 82.17 0.00 80.21 0.00 
3 6 12 14 15 99.78 0.00 75.40 0.00 99.78 0.00 97.06 0.00 
4 12 14 15 77.42 234.06 59.55 68.45 77.34 235.11 75.35 67.84 

Origin 4 to 

destination 3 

3 5 7 10 16 83.65 0.00 64.45 0.00 83.29 0.00 81.16 0.00 
3 5 8 14 16 86.50 0.00 67.30 0.00 86.21 0.00 84.08 0.00 
3 6 12 14 16 103.96 0.00 77.92 0.00 103.83 0.00 100.93 0.00 
3 6 13 19 83.13 0.00 64.45 0.00 83.24 0.00 81.16 0.00 
4 12 14 16 81.60 0.00 62.07 0.00 81.39 0.00 79.21 0.00 
4 13 19 60.77 150.00 48.60 50.00 60.80 150.00 59.44 50.00 

 

In Figure 3.3, the AEC have been computed for each O-D pair level and the 

routes used for each mode are presented in order for the in-depth analysis for the 

convergence of the MNET (Figure 3.3 b)).  The figure shows that as the influences of 

interactions between modes increase the more efforts are required for the convergence 

and the prolonged convergence is caused by the O-D pairs that overlap the routes with 

another mode’s routes.  This implies that the convergence of the MNET is dependent on 

controlled asymmetric interactions and the route composition between modes.   
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Figure 3.3 Convergences of mode interactions with different asymmetric complexities. 
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The figure also shows that the O-D pair that fully shares the route composition 

determines the convergence of the problem because the sheer asymmetric impacts 

intended by md are realized in the O-D pair. 

In the case of the mode interactions, the N-D network experiment identified that 

the convergence of the mode interactions is affected by the asymmetric complexities 

among modes and the route composition.  Especially its impact is significant when each 

mode fully shares their routes.  The following paragraphs address the problem on the real 

networks. 

We have observed that the convergence of the MNEP is determined by the route 

composition of each vehicle type in the small network experiment.  The flows assigned 

on the overlapped routes need more efforts to be stabilized for the UE condition because 

they are influencing each other on the same route.  Also the convergence was affected by 

the asymmetric complexities.  This relation is sought in the real networks too.  In the real 

network implementation, the convergence behaviors and the route composition are 

analyzed with different asymmetric complexities.   

Precisely as the small example does, asymmetric mode interactions are modeled 

with two modes.   

 , {1 ([ ] / 2 ) }car car free car truck

a a a a ac t v v Cp      (3.19) 

 
, {1 ([ ] / 2 ) }truck truck free car truck

a a md a a ac t v v Cp        (3.20) 

 

Figure 3.4 shows the proportion of the overlapping routes to the total enumerated 

routes throughout the convergence on Winnipeg and Chicago regional networks.   
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a) Winnipeg network 

 

b) Chicago regional network 

 

Figure 3.4 Proportion of the overlapping routes throughout the convergence. 
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It also simultaneously presents the convergence pattern due to the different 

asymmetric complexities.  The experiments use an aggregate measure for analyzing the 

route composition by counting the overlapping routes rather than pointing out the route 

that determines the convergence.  

The hypothesis of the real network experiment is that O-D pairs with overlapping 

routes influences the convergence as we identified in the small network experiment 

which have shown that the O-D pair determines the convergence, thus the large number 

of overlapping routes is associated with the possibility of the longer convergence.  The 

results demonstrate this in that the proportion of the overlapping routes and the amount of 

efforts to converge increase as the asymmetric complexities grow. 

Increasing pattern of the route composition can be attributed to the fact that the 

truck’s cost function is getting similar to the function of the car as the asymmetric 

complexities increase.  The large proportion of the route share between modes creates the 

environment where the sheer effects configured by the asymmetric complexities in the 

cost function can be realized. 

The same experiments are conducted on the other networks where the correlation 

is not strictly observed.  As presented in Table 3.6, it seems that a significant difference 

on the number of iterations is not found in Anaheim network and an increasing pattern is 

not observed in Barcelona network.  However, overall, it is not hard to conclude that the 

general trend for the lengthy convergence is in the direct proportion to the asymmetric 

complexities. 
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Table 3.6 Asymmetric complexities and convergence in terms of #.iterations. 

Networks 
Asymmetric complexities 

0.4 0.6 0.8 

Anaheim 23 25 29 

Barcelona 96 125 110 

Winnipeg 449 670 946 

Chicago regional 519 589 701 

 

 

Route Interactions 

In order to model route interactions, the following non-additive route cost 

function is applied to the N-D network. 

 

 
3 310 [ 10 ] rtp p p

rs diag rs diag rsA V A V
         (3.21) 

where denotes a column vector representing link-route incidence relationship.   

The asymmetric complexity is controlled by rt that translates the non-additive 

interactions resulting from the route to an appropriate unit for this example.  By adopting 

a function ac , which is differentiable and monotone, the problem can have a unique 

solution (Gabriel and Bernstein 1997).   Associating ac with the diagonal part of matrix A

easily satisfies the conditions.   

In order to handle the non-additive cost function in the route-based assignment 

technique such as the DP method, it is necessary that all routes should be enumerated 

before implementing the algorithm because the conventional shortest path algorithm 

based on the Bellman’s principle of optimality is not applicable.  However, when the 

non-additive cost function has the monotone increasing property the problem can be 

solved with the conventional shortest path algorithm with the appropriate additive term.  

The proof of the equivalency between two problems can be found in Gabriel and 
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Bernstein (1997) that showed the feasible regions for two problems are identical.  In this 

experiment, the solutions from enumerated routes and ones obtained by using the additive 

term taking only the first term of eq. (3.21) with the Dijkstra’s algorithm (1959) are 

compared.  The DP method produces the same equilibrium solutions.   

In Table 3.7, solutions from three cases of asymmetric complexities are presented 

when rt is 0.5,1.0 and 1.5.  The route flow solutions in Table 3.7 are identical with 

different asymmetric complexities while only the route costs increased.  This is because 

the route costs’ relative scale is preserved for different asymmetric complexities.   

 

Table 3.7 Equilibrium solutions with different degrees of asymmetric route interactions.  

direction Link sequence 
Route costs and route flows 

0.5rt   1.0rt   1.5rt   

Origin 1 to 

destination 2 

2 18 11 62.49 400.00 110.15 400.00 463.78 400.00 
2 17 7 9 11 74.65 0.00 132.99 0.00 608.74 0.00 
2 17 8 14 15 80.16 0.00 143.39 0.00 678.74 0.00 
1 5 7 9 11 74.65 0.00 132.99 0.00 608.74 0.00 
1 6 12 14 15 91.94 0.00 165.68 0.00 836.78 0.00 
1 5 8 14 15 80.16 0.00 143.39 0.00 678.74 0.00 
2 17 7 10 15 77.13 0.00 137.67 0.00 639.97 0.00 
1 5 7 10 15 77.13 0.00 137.68 0.00 639.97 0.00 

Origin 1 to 

destination 3 

2 17 8 14 16 82.95 0.00 148.65 0.00 715.12 0.00 
2 17 7 10 16 79.92 108.15 142.94 108.12 675.68 108.16 

1 5 7 10 16 79.92 75.92 142.94 75.94 675.68 75.92 
1 5 8 14 16 82.95 0.00 148.66 0.00 715.12 0.00 
1 6 12 14 16 94.72 0.00 170.94 0.00 875.64 0.00 
1 6 13 19 79.92 615.93 142.94 615.93 675.69 615.93 

Origin 4 to 

destination 2 

3 5 7 9 11 68.67 321.46 121.73 321.47 535.71 321.48 

3 5 7 10 15 71.16 0.00 126.41 0.00 565.71 0.00 
3 5 8 14 15 74.19 0.00 132.13 0.00 603.01 0.00 
3 6 12 14 15 85.99 0.00 154.41 0.00 755.59 0.00 
4 12 14 15 68.67 278.54 121.74 278.53 535.76 278.52 

Origin 4 to 

destination 3 

3 5 7 10 16 73.95 0.00 131.68 0.00 600.07 0.00 
3 5 8 14 16 76.98 0.00 137.39 0.00 638.07 0.00 
3 6 12 14 16 88.78 0.00 159.68 0.00 793.23 0.00 
3 6 13 19 73.95 0.00 131.68 0.00 600.08 0.00 
4 12 14 16 71.47 0.00 127.00 0.00 569.54 0.00 
4 13 19 56.54 200.00 99.01 200.00 397.79 200.00 
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Also it numerically demonstrates that both problems with additive and non-

additive cost functions used in the experiment have the same feasible region.  For 

different asymmetric complexities, the convergence rate represented by the required 

number of iterations does not show significant difference.  This also might be attributed 

to the same solutions with just different scales of route costs.   

Instead, the study focused on the polynomial type of the route cost function for 

identifying the influential factors on the convergence.  Since the equilibrium process is to 

settle down the costs of routes carrying the positive flows for each O-D pair into one, it is 

highly possible that the positive exponent on the route cost could be the influential factor 

because it determines sensitivity of the route costs that consequently affect the amount of 

efforts to adjust route costs.  Assuming that the influential factors for the convergence of 

the route interactions are rt and the route flows because it determines the route costs, a 

measure is devised taking these arguments in its functional form. 

 

 
1( ) ( )

rs

rs k k

p p

p P

vblt C f C f



   (3.22) 

The study terms this measure as the route cost variability because it quantifies the 

fluctuation of the route cost.   

The assumption behind the measure is that the unstable solution will highly 

fluctuate at the beginning but it will finally be stabilized at the vicinity of the UE solution.  

Thus, the O-D pair that maintains the high variability still has a room to be stabilized and 

it is highly likely that it determines the final convergence. 
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AEC Variability 

 
 

 
 

 
 

 

Figure 3.5 AEC and variability for each O-D pair with different rt . 

 

Comparison between the variability for each O-D pair to disaggregated AEC 

demonstrates that the one with the largest variability exactly coincides with the lastly 

converged pair (Figure 3.5).  The O-D pair associated with the higher variability affected 

by rt determines the actual convergence.  In the figure, the other two O-D pairs are 

omitted because the demands of the pairs are assigned into one route only for each.  
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When rt =0.5 and 1.5, the O-D pair connecting zone 4 and zone 2 determines the 

convergence while when 1.0rt  , the one connecting zone 1 and zone 3 determines it.   

The same pattern is represented in the right column where the same colored O-D 

pair keeps the highest variability among all O-D pairs.  Based on the experiments, the 

study makes a conclusion that the convergence of the route interactions is dependent on 

the route flows and rt ’s impact on the route cost. 

Real network experiments for the route interactions are conducted with the non-

additive route cost function.  As in the small network experiment, the following scale-

downed non-additive route cost function is utilized on Winnipeg network where the total 

174,491 routes are identified by Bekhor et al. (2006). 

 , ,( /10) rtp p a p a

rs a rs a rs

a A a A

c c
  

 

    (3.23) 

As discussed in the small network experiment, the relation between the 

convergence and the variability is examined in the real network experiments where the 

link cost function is non-linear.  First of all, the variability is plotted with different rt s on 

the Winnipeg network (Figure 3.6).   

We can observe that the bigger exponent incurs the higher variability and 

consequently the convergence is slow down.  As the small network experiment that 

indirectly associated the variability with the contributing factor on the convergence, the 

relation between the asymmetric complexities and the convergence is identified in the 

real network experiment where the higher asymmetric complexities incur the lengthy 

convergence.   
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Figure 3.6 Different variability by the different asymmetric complexities. 

 

The experiments extend the variability test to the other types of interactions 

addressed in the chapter in order to see if there exists a consistent pattern between them.  

Those applications of the DP method on real networks result in the following 

computational performance (Table 3.8).  The implementation of the route interactions is 

conducted with the Dijkstra’s type shortest path finding method (1959) without 

enumerating paths by tagging 1.0rt  because it does not violate the Bellman’s 

optimality.     

According to Table 3.8, a pattern is found that the problem associated with the 

mode interactions requires relatively higher computations than others while the cases of 

link interactions are less burdensome than the problem associated with the route 
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Table 3.8 Implementation of the DP method on three types of asymmetric interactions. 

Network 

Link interactions Mode interactions Route interactions 

#. iteration 
CPU time 

(sec.) 
#. iteration 

CPU time 

(sec.) 
#. iteration 

CPU time 

(sec.) 

Anaheim 38 0.21 131 1.38 36 0.20 

Winnipeg 159 4.22 875 34.26 598 21.56 

Barcelona 160 5.89 223 16.53 179 6.91 

Chicago 975 56mins 2024 4hr 32mins 1424 1hr 48mins 

 

 

Even if the relative difference is not strictly consistent because of the Anaheim 

network experiment, overall, the higher computational works are associated with the 

route interactions than the link interactions. 

Leaving the mode interactions aside that can be attributed to the simultaneous 

equilibrium process for more than a single mode, the pattern that the solution finding 

process for the route interactions requires more computations than the link interactions 

would be attributed to the structural difference on the cost function. 

 The route cost function in the route interactions has a complicated form that 

includes the additive term of the link cost and the exponent term on the sum of link cost.  

This complexity might be attributed to the lower computational efficiency.  When more 

terms are added into the cost function its sensitivity responding to levels of flows would 

be higher than the case of the single term as the convergence is affected by the demand 

intensity. 

This section analyzes the issue with the variability that measures the levels of 

fluctuations of the route costs.  The basic idea is that if the route cost function is sensitive 

then route flows would not be easily settled down to the stable condition. 
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a) Barcelona 

 
b) Winnipeg 

 
c) Chicago regional 

 

 

Figure 3.7 Comparison of variability between the route and link interactions. 
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 Figure 3.7 shows that the comparison of variability between the route and link 

interactions for tested networks.  The variability of the route cost fluctuates widely and is 

relatively higher in the route interactions than the one from the link interactions.  Because 

the UE is defined on the route costs, the frequent and wide fluctuations due to the 

additional term associated with the asymmetric complexities incur the different 

variability and convergence patterns. 

 

Summary 

 

This chapter investigated the contributing factors that exist behind the established 

cost function on the convergence of the ATEP through the direct application of the DP 

method to each case of identified asymmetric interactions.  The experimental design is 

featured with different asymmetric complexities on the N-D network and its extension to 

the real networks where the experiments are designed to examine and to confirm the new 

findings. 

As the results of the experiments, contributing factors on constructing practical 

asymmetric effects and convergences for different types of interactions have been 

identified.  In the case of the link interactions, the actual asymmetric complexities were 

affected by both the supply and demand sides of the problem.  The originally established 

asymmetric effects on the two-way cost function have the symmetric feature due to the 

network configuration while the demand also affects the realization of the asymmetric 

effects. The convergence of the mode interactions was dependent on the route 

composition for each vehicle type.  It has been identified that the resemblance of the 

route composition among modes creates the favorable conditions for the realization of the 

mode interactions, consequently the convergence is also affected by the situation.  Unlike 
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the other types of interactions, in the case of the route interactions, the factor is indirectly 

identified using the variability measure in which the fluctuation of the route cost due to 

the asymmetric complexities associated with the route flows is quantified.  In the section, 

it has been identified that the route costs’ sensitivity due to the complexities of the route 

cost function in the route interactions incurred a patterned computational efficiencies 

between link and route interactions.   

In addition to identifying the contributing factors on the convergence, the 

acceleration strategy for the DP method to solve the ATEP’s computational burdens is 

developed in the next chapter.  The simple theory of the strategy is to properly fit the 

solution algorithm to the ATEP structure.EQUATION CHAPTER (NEXT) SECTION 1  
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CHAPTER 4  
 

ACCELERATION STRATEGY FOR THE CONVERGENCE  

 

OF THE DOUBLE PROJECTION METHOD 

 

 

Basic Concept of the Acceleration Strategy 

 

This chapter is dedicated to developing a strategy for the speedy convergence by 

fitting of the original DP method and the ATEP.  The strategy utilizes the structural 

characteristics of the ATEP where the problem is broken into each O-D pair.  

Decomposing the problem and estimating the suitable step-size for each decomposed 

problem will achieve the efficiencies.  The strategy employs another scheme that 

collectively selects the appropriate step-size for the large leap to the solution between two 

projections of the DP method.  Prior to the introduction of the proposed strategy, previous 

studies that concerned on the efficient step-size estimation for the projection method are 

briefly described in the following section. 

 

Efforts for Improving the Projection Method Focused on the Appropriate Step-Size 

 

Despite its simple structure and implementation scheme of the projection operator, 

some practical challenges are identified because of the absence of an objective function 

in the VI formulation.  This unique characteristic of the VI forces analysts to observe the 

convergence of the iterative process to a solution.  The update equation of the projection 

method shows that the efficiency depends on two parameters, the step-size k and the 

profitable direction ( )kC F .   
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An adequately estimated step-size is one of the important factors in determining 

the efficiency of the projection method.  However, determining a suitable step-size is 

challenging because the non-negative step-size is bounded by the unknown Lipschitz 

constant L and a uniform modulus .  In order to guarantee the convergence, the step-size 

needs to satisfy the following condition. 

  (4.1) 

where l and u are the lower and upper bounds of the step-size, L is the Lipschitz 

constant of the mapping C such that 

 

 1 2 1 2( ) ( )C F C F L F F    (4.2) 

and is the uniform modulus in the strongly monotone mapping of C such that 

  
2

1 2 1 2 1 2( ) ( ) ( )TF F C F C F F F     (4.3) 

To overcome the difficulty of finding a suitable step-size, various studies have 

developed step-size rules.  In this section, research that developed step-size rules are 

categorized according to their source of information they referred to estimate the step-

sizes.  

First, the monotonically decreasing property of the step-size is utilized in 

developing a sequence of the step-size, which decreases monotonically to the initial step-

size 0 .  A generalized form of the method of successive average is used by selecting the 

step-size as follows (Nagurney and Zhang 1996):   

 0 0

1 1 1 1 1
{ } { } {1, , , , , ,...}

2 2 3 3 3
i is     (4.4) 

A similar predetermined step-size sequence conditioned with: 

2

2
0 l u

i
L


     


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1

0, lim 0,i i i
i

i

  





     (4.5) 

is used in Dupuis and Nagurney’s work (Dupuis and Nagurney 1993).  

These simple methods are easy to implement, but they suffer slow convergence 

due to the strictly decreasing step-sizes.  He et al. (2002) identified that Nagurney and 

Zhang’s (1996) method failed to achieve the convergence with 50,000 iterations on the 

artificially devised test problems. 

Second, gradient information is utilized for estimating the step-size (Bertsekas 

1976).  In the Goldstein-Levitin-Polyak’s projection method, Armijo’s step-size rule 

(Amijo 1966) utilizes the gradient information to estimate the step-size.  Later, a 

modified Armijo’s rule (Han and He 2001) is proposed in such a way that it does not 

require gradient information.  The sequence above describing step-size rules is strictly 

decreasing.  Typically, those step-size rules monotonically reduce the step-size as the 

algorithm approaches the optimal solution.  The convergence rate of the projection 

method can be very slow once the step-size becomes small at certain iterations. This is 

because it remains small at all successive iterations.  In order to tackle the diminishing 

feature of the step-size, a self-adaptive step-size rule that directly controls the step-size is 

introduced (He et al. 2002; Han and Sun 2004).  Under this rule, a self-adaptive scaling 

parameter iteratively adjusts itself to satisfy the Lipschitz condition and strongly 

monotone assumption without the prior knowledge of the constants.  The step-size 

calculated with the rule does not always decreases but increases when necessary.   

Similar efforts are underway for the extra gradient method (Korpelevich 1977).  

Khobotov (1987) proposed a step-size rule for the extra gradient method.  In the extra 

gradient method, the strongly monotone assumption on the mapping is relaxed by 
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performing another projection.  This is called the double projection.  Marcotte (1991) 

proposed the primal-dual implementation of the DP method into the NEP.  Panicucci et al. 

(2007) indirectly dealt with the step-size issue in their DP method using a re-initialization 

scheme.  This prevents the step-size from getting smaller by re-initializing it. 

The enhancement strategy for the DP method will be introduced in the next 

section and aims for the convergence improvement through the appropriate step-size rule 

for the ATEP. 

 

Acceleration Strategy 

 

When the TAP is formulated in the space of route flows, a Cartesian product of all 

possible route flows represents the feasible set of route flows.  However, because each O-

D pair is entangled with the corresponding O-D demand, the Cartesian product is 

constrained by the O-D demand for each O-D pair.  Using the update equation, this 

allows the flow update to decompose into the small sized projections for each O-D pair.  

This study focuses on the fact that when the TAP is decomposed into each O-D pair a 

customized step-size for each O-D can be estimated in addition to the single step-size 

which is based on the whole route flow vectors from all O-D pairs.  As long as those 

step-sizes from different route flow space sizes are properly estimated in order to achieve 

the convergence, it is advantageous for devising a strategy to utilize available step-sizes 

to maximize convergence enhancement. 

In short, enhancement of the DP method is achieved by two strategies: 

customizing step-sizes and selecting a better step-size.  The former intends to find the 

appropriate step-size, while the latter finds the step-size for a large leap toward the 
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solution.  The following paragraphs explain what each strategy intends to and provide 

proof how the new step-size strategy produces a valid result. 

 

Customized Step-Size for Decomposed Transport Network 

The proposed methodology utilizes the decomposable structure of the ATEP.  The 

demand constraint associated with each O-D pair naturally decomposes the problem into 

the projection for each O-D pair route flows.  This scheme is very intuitive since the 

concept of the UE is defined and achieved within each O-D pair.   

 

Step-Size Selection Strategy 

The step-size for the space of whole route flow vectors is also available.  In other 

words, the problem can be solved with either of the step-size accounting for the whole 

route flow vectors k , or the step-sizes for smaller sets of route flow vectors comes from 

each O-D pair rs

k .  The availability of step-sizes from different route flow spaces enables 

a devised strategy to enhance the convergence.  This study exchanges the step-sizes 

between the predictor projection and the corrector projection in order to improve the 

efficiency of the algorithm.  The basic idea of the methodology is to use the bigger step-

size between two step-sizes; , rs

k k    Even if an appropriate step-size is estimated for the 

projection for the route flow vectors of a smaller space, it can be replaced with another 

step-size if it enhances the convergence as long as the new one is valid.  Also, the DP 

method provides a chance for the replacement between the predictor and the corrector 

projections.  
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Valid Step-Size for Entire Route Flow Space 

In order to satisfy the inequality condition eq. (3.3) for two different sets of route 

flow vectors, this study estimates , rs

k k  sequentially.  This sequential method guarantees 

suitable k that satisfies eq. (3.3) with a few number of iterative procedures due to the 

non-expansive mapping ( )C F .  Namely, for certain number of iterative implementations 

for reducing O-D specific step-size
( ) ( )

rs rs

k krs

k rs rs

k k

F F

C F C F
 





for each O-D pair,

( ) ( )

k k

k

k k

F F

C F C F
 





 is guaranteed because rs

k kF F and mapping ( )C F is non-

expansive. 

 ( ) ( ) , ,k k k k k kC F C F F F F F     (4.6) 

 

Benefits of Using the Bigger Step-Size 

Figure 4.1 depicts the benefits of using the bigger step-size for the corrector 

projection.  At iteration k , the predictor projection finds the suitable step-size rs

k that 

satisfies the inequality condition eq. (3.3) for its O-D pair.  When computation for all 

step-sizes for all O-D pairs is completed additional estimation k based on the whole 

route flows can be accomplished.  Now, we have two available step-sizes for each 

corrector projection for each O-D pair;
 

rs

k and k .  The larger one is chosen for the 

corrector projection since it leads the projection closer to rs

kF than does the smaller one.  

Figure 4.1 where the larger one is depicted by '

k illustrates that choosing a larger step-

size in the corrector projection facilitates the second condition for the convergence.   
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Figure 4.1Graphical representation of benefits using the bigger step-size. 

 

Algorithmic Implementation 

The sequential step-size estimation method described above is implemented in a 

straightforward manner.  Satisfying the conditions for smaller spaces rs

k first, then 

checking the condition for the whole route flow space k  
is the process for completion.  

When the condition is not fulfilled for k , an additional reducing procedure for k is 

implemented until it satisfies eq. (3.3) for k .   However, this procedure does not slow 

down the overall convergence since the condition for k is easily achieved by 

implementing a few reducing procedures for rs

k .  This convergence issue will be 

discussed in the numerical test section.  The following are details of the new algorithm. 

To assist in understanding the proposed algorithm, a flow chart has been provided in 

Figure 4.2.  The flow chart shows the process for determining the step-size and the 

escaping route from the predictor projection to the corrector projection for each O-D pair. 



kF

kF1kF 

( )k k kF C F

( )k k kF C F

( )k kC F
' ( )k k kF C F

1'kF 

corrector 

projection
predictor 

projection

shorter



 89 

 

 
 

 

Figure 4.2 Flow chart for the proposed algorithm. 
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       end if 
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 Step 5. Convergence test.  

 If convergence criterion such as eq. (3.6) is met then stop.  Otherwise,

1k k   go to step 2.  

 

Numerical Examples 

 

Even if the step-size selection strategy is utilizing the valid step-size, choosing the 

bigger step-size is not a mathematically proven technique but close to the heuristic 

variations, thus, several numerical tests for demonstrating adaptability and performance 

of the proposed methodology have been set up on different network sizes.  The computer 

specifications are the same as the one used in the previous chapter.  Before presenting the 

numerical tests’ results, experimental conditions such as the route enumeration strategy, 

initial parameter setting, and stopping criterion need to be addressed. 

When the TAP is formulated with the route flows, the main concern is to manage 

the number of routes, which grow exponentially as the network size increases.  This study 

utilizes the column generation approach that creates a new route only when a new route is 

necessary to achieve the UE status (Bertsekas and Gafni 1982).  However, it is not 

always necessary to implement the column generation for every iteration since the 

efficiency of the DP method can be achieved by the alternating process between the 

corrector and approximated predictor projection which is not necessarily precise for each 

iteration.  According to the numerical test that examined the appropriate interval of 

iterations for the column generation (Panicucci et al. 2007), in terms of CPU time, it is 

most effective for the DP method when implemented every ten iterations. The stopping 

criterion used for the numerical example is the same as the previously used for examining 
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applicability of the DP method on the real transportation network.  The network used in 

this example is the same in Chapter 3.   

 

Performance Overview 

The performance of the proposed algorithm is applied to the identified three cases 

of asymmetric interactions and the computational results from both proposed algorithm 

and the original algorithm (Panicucci et al. 2007) are presented in Table 4.1.   

 

Table 4.1 Computational results of the proposed algorithm. 

Network 

Proposed algorithm Basic algorithm 

#. iterations 
CPU time 

(sec.) 
#. iterations 

CPU time 

(sec.) 

Link 

interactions 

N-D 30 0.00 29 0.00 

Anaheim 38 0.21 59 0.17 

Winnipeg 159 4.22 678 14.17 

Barcelona 160 5.89 4916 127.23 

Chicago 

Regional 
975 56mins 5000+ 6hrs+ 

Mode 

interactions 

N-D 58 0.02 95 0.10 

Anaheim 131 1.38 376 1.32 

Winnipeg 875 34.26 10465 324.12 

Barcelona 223 16.53 6004 215.47 

Chicago 

Regional 
2024 4hr 32min 5000+ 13hrs+ 

Route 

interactions 

N-D 43 0.00 50 0.01 

Anaheim 36 0.200 278 0.99 

Winnipeg 598 21.56 3007 108.59 

Barcelona 179 6.91 5630 173.28 

Chicago 

Regional 
1424 1hr 48mins 5000+ 6hrs+ 

 

 

There are noticeable benefits from the specified step-sizes for each O-D pair and 

step-size selection strategy for all aspects of the computational performances with the 

exception being for small-sized networks.  For the N-D network, the basic algorithm 

needs less effort than the proposed one.  In the Chicago network example, a few special 

engineering techniques (such as discarding column carrying zero flows, applying the 
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proposed step-size selection strategy only for the un-converged O-D pairs) are utilized in 

order for the efficient implementation of the algorithm.  The column generation is also 

implemented with a longer interval (50 iterations). 

 

Mechanism of the Proposed Algorithm 

The Winnipeg Network is utilized for analyzing two strategies how the proposed 

algorithm preformed better than the basic algorithm. This section provides the relevant 

information on how that was accomplished.   Since the proposed algorithm is designed to 

facilitate the convergence, a convergence profile for O-D pairs having more than one 

route is constructed in order to easily capture the convergence trend.  The following 

analysis is based on the constructed route information on those routes.   

 

Utilization of step-size selection strategy 

 

 An analysis is conducted on whether during the corrector projection, the step-size 

selection strategy is actively engaged in replacing the smaller units with larger units.  

This is examined by counting the number of replacements only for the not-converged O-

D pairs.  Figure 4.3 shows the step-size selection usage during the corrector projection as 

the algorithm continues.  It illustrates only two cases of O-D pairs producing two (upper 

graph) paths and three (lower graph) path routes.  The solid line of each graph indicates 

the step-size replacement rate while the dotted line is the number of un-converged O-D 

pairs.  It is easily identified that a larger step-size from the whole O-D pairs is highly 

utilized for the corrector projection during the whole iterative process.   

 

Illustration of benefits for using the bigger step-size in the real network 
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Figure 4.4 shows how the larger step-size effectively improves the solutions in the 

real network implementation. 

 
a. A case of O-D pairs producing two routes             

 
b. A case of O-D pairs producing three routes 

 

Figure 4.3 Usage of bigger step-sizes for the corrector projection. 
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Figure 4.4 Illustration of benefits from the step-size selection strategy.  
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In the experiment that compares the route flow adjustment using the proposed 

strategy, dumping route flows from the unattractive route (Route 2) to the shortest route 

(Route 1) is rapidly conducted due to the larger step-size (See the lower left corner of 

Figure 4.4).  In Figure 4.4, an iterative process of equilibrium between two routes has 

been illustrated on a selected O-D pair that created two routes in the algorithm's 

beginning.  The former utilizes proposed step-size strategy while the latter implements 

the O-D pair without the strategy. 

 

Implementation of the sequential method 

 

In addition, this section analyzes how many implementations for the reducing 

procedure are required for satisfying the inequality condition for eq. (3.3).  Table 4.2 

represents the reducing procedure average when counted every ten iterations.   

 

Table 4.2 Number of required reducing procedure implementation for each O-D Pair. 

Iteration/network Anaheim Winnipeg 

10 1.8 1 

20 1.2 1.2 

30 1.4 1 

40 1 1.1 

50 1 1.2 

60 - 1.1 

70 - 1.1 

80 - 1.3 

90 - 1.2 

100 - 1.0 

110 - 1.2 

120 - 1.1 

130 - 1.1 

140 - 1.0 

150 - 1.1 

160 - 1.3 

170 - 1.2 

180 - 1.2 
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Quick analysis indicates that the procedure does not hinder the overall process.  

Generalization of the required number of reducing procedures' pattern cannot be done at 

this stage. However, more projection needs to be implemented at a relatively earlier stage. 

 

Performance with different flow update-strategies  

 

This section compares the performance comparison from different flow-update 

strategies in the ATEP.  As described earlier, the high-utilization of the step-size 

selection strategy contributed to the significant performance enhancement of the DP 

method.  This section attempts to explore the factor that influences the high-replacement 

rate in the flow update strategy.   

As presented in the previous section, the proposed algorithm is based on the all-

at-once flow update.  In other words, the flow update is conducted for all O-D pair at 

once.  This flow update method gains its computational efficiency for each iteration 

because previous fixed cost information is utilized without update while more iterations 

are required for the convergence.  However, if the cost update is conducted immediately 

after each O-D pair’s flow update, then, the computational burden will increase because 

extra calculation is needed for the next O-D flow update.  This flow update strategy is 

useful because it accelerates the convergence with relatively new information on the link 

cost despite of the price for cost update at each iteration. 

This section compares the performance of these two flow update strategies and 

identifies the factor that causes different performance.  The convergence behaviors 

represented by the AEC is plotted in Figure 4.5.  The x-axis is the computation time in 

seconds while the y-axis is the relative gap in the logarithmic scale.  The figure clearly 

shows that the advantages of using the proposed algorithm for implementing the ATEP 
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problem.  Even if the convergence has been successfully achieved by the two methods, its 

rate to the given relative gap ( 810  ) is significantly different.  The proposed algorithm 

takes less than 12 seconds for the given stopping criterion while the one-at-a-time flow 

update takes more than 4 minutes.  The fluctuation of the relative gap is attributed to the 

intermittent column generation of the DP method. 

Table 4.3 summarizes the computational results in terms of the number of 

iterations, projections for O-D pair, link cost update, and CPU time as the convergence 

criterion gets strict.  It is important to note that the total number of iterations for proposed 

algorithm is significantly lower than those of other flow update strategies.  In addition, 

the table shows that step-size selection strategy also accelerates the one-at-a-time flow 

update strategy. 

 

 

Figure 4.5 Diminishing relative gaps by proposed and one-at-a-time flow update. 
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Table 4.3 Comparisons of computational results from different flow update strategies. 

update strategies/ ( )f  10
-5

 10
-6

 10
-7

 

proposed 

algorithm 

# Iterations 159 239 260 

# projections 323160 429841 456385 

# link cost update 1.69E+06 2.05E+06 2.18E+06 

CPU time (sec.) 4.22 7.12 7.60 

one-at-a-

time with 

step-size 

selection 

# Iterations 368 428 477 

# projections 680280 836029 919781 

# link cost update 9.16E+07 1.10E+08 1.23E+08 

CPU time 1min 37secs 1min 54secs 2min 10secs 

one-at-a-

time w/o 

step-size 

selection 

# Iterations 598 883 1053 

# projections 1169091 1737417 2083998 

# link cost update 1.55E+08 2.31E+08 2.74E+08 

CPU time 2min 46secs 3min 58secs 4min 47secs 

 

Even if the one-at-a-time flow update strategy is known to be better than all-at-

once flow update strategy (Chen 2001) in terms of the required number of iterations, the 

table shows different results.  The following section addresses this issue focused on the 

utilization of the step-size selection strategy.  The previous section illustrated that the 

step-size selection strategy is highly utilized by the proposed algorithm.  Figure 4.6 

shows how the step-size selection strategy is frequently utilized in the one-at-a-time flow 

update strategy.  It is noticeable that the level of utilization of the whole O-D pair’s step-

size between the two flow update strategies is significantly different.  The bigger step-

size from the whole O-D pair is actively adopted by the proposed algorithm while its 

utilization is minimal by the one-at-a-time flow update strategy.  This implies that the 

step-size from the whole O-D pair is not bigger than the one from the one-at-a-time flow 

update.  Generally, at the beginning of the solution process of the TAP, the step-size is 

relatively big because many O-D pairs are not converged yet while the step-size becomes 

small for the fine tuning of the route flows for the UE condition under stopping criterion.  

Thus, at certain iteration, if there are many un-converged O-D pairs, then the step-size for 

the whole O-D pair would be big.  In the all-at-once flow update, this big step-size is 
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directly represented in the whole O-D pair’s step-size while in the one-at-a-time flow 

update, the whole O-D pair’s step-size gets smaller whenever each O-D pair’s route cost 

is updated because the update enhances the UE condition of the O-D pair.  The 

diminishing step-size lowered the effective use of the step-size selection strategy and 

consequently the convergence also has slowed.  Moreover, the computation for the whole 

O-D pair’s step-size after each O-D pair’s cost update would deteriorate the 

computational efficiency. 

 

 

 

Figure 4.6 Utilization of the step-size selection strategy by the different flow update.  
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Summary 

 

This chapter introduced a heuristic solution algorithm acceleration strategy for the 

DP method designed for the ATEP.  The efficiency of the new algorithm was achieved by 

effectively treating the step-size.  Formulating the ATEP in the space of route flows, both 

customized step-sizes for each O-D pair and for the entire route flow space were 

produced.  The production of these step-sizes devised a selection strategy for allowing the 

corrector projection to choose the larger step-size.  The strategy was successfully 

implemented because the DP method provides an opportunity to select an alternative 

step-size between the two projections.   

The numerical tests demonstrated that the new algorithm significantly relieved the 

computational burdens of the basic algorithm.  In addition, the details of the mechanisms 

of the proposed algorithm have been identified.  The O-D specific step-size associated 

with the step-size selection strategy sufficiently evolved the current solution.  This 

achievement allowed for the immediate utilization in the corrector projection for the step-

size selection strategy. The problem was quickly converged due to the close connection 

of the effects.  Lastly, the analysis on the flow update strategy identified that the all-at-

once flow update contributed to the larger step-size from the whole O-D pair that 

consequently increased the utilization of the step-size selection strategy. 

The next chapter of the dissertation addresses the practical application of the 

ATEP in the transit assignment using the DP method.  Especially, the chapter seeks to 

answer the question; Can the ATEP be modeled to provide insight on crowding effect for 

the transit system? 

EQUATION CHAPTER (NEXT) SECTION 1  
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CHAPTER 5  
 

INVESTIGATIONS ON MODELING RANDOMNESS OF CROWDING  

 

IN THE LARGE SCALE PUBLIC TRANSPORTATION SYSTEM 

 

 

In this chapter, the crowding effect in a transit vehicle is modeled in the time 

expanded network considering the daily variation of the passenger flows.  Traditionally, 

the two major attributes, time and cost, have been extensively utilized for explaining the 

disutility associated with travelling (Small and Verhoef 2007).  However, as the 

analytical tools and the survey method develop, various qualitative attributes that 

influence the experience of travelling are identified.  One of the attributes linked to 

disutility of travelling from using the public transportation would be crowding in a transit 

vehicle.  People traveling on public transportation have been held to have a diminished or 

reduced expectation of privacy due to crowding.  It is expected that more emphasis will 

be placed on the crowding by users as the economies are matured enough to be called the 

developing and developed countries (Tirachini et al. 2013).  The expectation is based on 

the socio-economic trend that people would concern on the comfort and quality of the 

transit service as their income increase.  The actual use of the crowding cost function in 

practice in Australian Transport Council guidelines (2006) supports the trend that 

attaches the qualitative aspect to the traditional time and cost based disutility. 

The objective of this chapter is to model crowding effect considering the day-do-

day variation of the transit users in the time expanded network and to examine its 

modeling effect.  Crowding is the direct experience by the transit users as the traffic 

congestions in the roads.  When the level of crowding fluctuates by the daily variation of 
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the transit demand, the variation is also easily recognized by the users.  In light of this, it 

is desirable to consider the random effect in the transit assignment model.  A few studies 

approach the issue from the modeling perspective, however, the explicit consideration for 

the effect in the schedule-based model has not been done in the real large scale network.  

Especially, lack of studies is found that utilized the real network because the non-

additivity property of the route cost due to the uncertainty modeling. 

The rest of the chapter is organized as follow.  The next section describes the 

UTA system which will be used as the case study network for following two application 

studies of the dissertation followed by the concept of the time expanded network and its 

construction for the UTA system.  Then, the study formulates the problem with the 

crowding cost function and introduces the solution algorithm focused on the reliable 

shortest path algorithm.  In the numerical example, the section investigates the expected 

outcomes by applying the crowd modeling into the transit assignment in the time 

expanded network.  The section attends the behavioral change due to the crowd modeling 

and extends the investigation into the details of the cost and the variability caused by the 

users’ attitudes and the daily fluctuation of passenger flows.  The last section concludes 

the chapter. 

 

Case Study Network – UTA System 

 

 

The study area for this research is based on the UTA transit network covering 

Weber, Davis, Salt Lake, Tooele, and Utah counties in the state of Utah.  The major 

transit corridor covers the Wasatch Front where roughly 80% (2.1 million) of Utah’s 

population resides.  Several downtown and commercial areas in the region are connected 



 104 

by UTA's system that operates buses, light rail (TRAX) and FrontRunner commuter rail.  

The UTA transit system can be characterized by their services connecting the Salt Lake 

City area to all other major suburban areas.  The majority of bus lines and TRAX pass 

through the Salt Lake City area.  There are only five express bus lines and FrontRunner 

service provided to passengers residing in other major population centers along the 

Wasatch Front, specifically the Ogden-Clearfield and Provo regions.  The following 

paragraphs briefly overview the UTA system in terms of its transit vehicles, fare structure 

and ridership pattern. 

 

Transit Vehicles 

Major vehicle types of the UTA consist of buses, a light rail and a commuter rail.  

UTA's local bus is the same as the traditional bus system.  However, the unique offering 

in UTA’s bus system is MAX, UTA’s Bus Rapid Transit (BRT) service.  As of 2012, 

there is only one BRT line in operation.  In addition, there are five express bus lines 

making long-distance trips from the Ogden and Toole areas, with limited number of stops 

during morning and afternoon peak hours.  The bus system map for the core of the 

Wasatch Front where the Salt Lake County is located is presented in Figure 5.1. 

In addition, three TRAX lines support downtown Salt Lake City and several of its 

suburbs.  TRAX is the light rail system powered by overhead electrical wires and runs on 

a steel-tracked fixed guideway installed on the shared and exclusive right of way. 
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Figure 5.1 Transit system map of Salt Lake County (RideUTA, 2013). 
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Figure 5.2 Rail system map of the UTA (RideUTA, 2013). 

 

Despite the maximum speed of 60 mph, the train's operation speed in the 

downtown area is only 10 mph and as fast at 40 mph in the suburban areas.  The un-

scaled rail system map is presented in Figure 5.2.  The planned extensions of the green 

and blue line are drawn faintly. 

Unlike TRAX, FrontRunner is a push/pull diesel locomotive system.  

FrontRunner runs from Pleasant View in the north to Provo in the south.  This is to meet 
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UTA's goal of increasing mobility to those living along the Wasatch Front.  Additionally, 

UTA seeks to decrease traffic congestion on Interstate-15 of which a large proportion of 

the corridor is overlapped. 

 

Fare Structure 

The fare structure of the UTA network consists of both the local fare and the 

premium fare systems.  As of 2012, the local fare is a one-time payment of $2.35 for the 

one-way local buses and TRAX.  The premium fare is good on all buses, including the 

express buses and TRAX with $5.25 for one-way (transfer permitted) service.  Also, the 

premium fare includes the FrontRunner payment which provides a free transfer to any 

bus or TRAX.  This fare is distance based with a base fare of $2.35 for travel to one 

station plus $0.55 for each additional station.  The maximum fare from Provo to Pleasant 

View is $9.50 one way. 

 

Ridership 

The average weekday’s daily ridership of the UTA is about 145.3 thousand trips 

(APTA, 2013) including trips for FrontRunner, TRAX and express, MAX, and local 

buses.  The ridership pattern over past 12 years has been plotted in Figure 5.3.  Even if 

there are some up-and-downs, overall, the UTA’s transit demand grows with 3.7 percent 

annual growth rate during the period.  After the commuter rail is introduced in 2008, the 

ridership is a bit shifted up and stabilized around 140 thousand trips.  The dotted line 

indicates the moving average with 2 year periods. 
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Figure 5.3 Ridership trend of the UTA. 

 

 

Time Expanded Network and Construction 

 

Time Expanded Network 

To be able to describe the transit network associated with the timetable, a time 

expanded network ( , )G TN TA  is constructed with a set of transit nodes i TN  tagged 

with a particular time ( )t i  and a set of transit links.  Thus a transit link ( , )i j TA  

represents both the spatial movement starting at ( )t i  and ending at ( )t j  , and time 

spending ( ) ( )t j t i  .  These transit links are divided into two classes; one associated with 

spatial movement and time spending, and the other one associated with time spending 

only. 
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In-vehicle links represent the movement of trips by transit vehicles, where the 

node ,i j of a link ( , )i j does not include the set of origin and destination nodes. 

Boarding links bridges the travel demand in the origin into the adjacent transit 

vehicle run, where i is the origin and j is the head node of the transit link. 

Egress links connect the in-vehicle link into the final destination node, where i is 

the end node of a transit node and j is the final destination. 

While the first class describes the typical physical movement of trips, the second 

class is used for describing the time spending at a stop or transfer. 

Transfer links describe the transfer behavior at a stop, where ,i j are the transit 

nodes representing different runs of transit vehicles. 

Stationary links are used for modeling the on-board passengers continuing to the 

next stop, where ,i j are the transit nodes representing the same run of a transit vehicle. 

A trip is described on the time expanded network by an alternating sequence of 

these links.  A passenger’s route from an origin to a destination is starting at the origin 

with a boarding link and the combination of in-vehicle, stationary, and transfer links and 

reaching the destination via the egress link.  The following Figure 5.4 depicts a 

conceptual route to the destination using the links and nodes described above. 

When a passenger wants to transfer into another run of a transit vehicle, or 

continue the journey as on-board passengers, a FIFO (First In First Out) rule is modeled.  

Thus, an ordered set of links ( )S j that incident to every transit node j is prepared as: 

0 1 2 3( ) {( , ),( , ), ( , ), ( , ),..., ( , )}nS j i j i j i j i j i j   

where 0( , )i j is the stationary link that carries the on-board passenger continuing to 

the next stop. 
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Figure 5.4 Route construction in the time expanded network.  

 

Under the FIFO rule, the on-board passengers have the priority for occupying the 

transit vehicle while the other passengers who want to board the vehicle need to share the 

residual capacity according to their respective arrival time at the stop.  The passenger 

flows in ( )S j yields the asymmetric feature in the cost function. 

 

Construction of the Time Expanded Network 

In the planning stage, the operational details of future transit lines are not 

provided.  That is one of the reasons that the frequency-based transit assignment model is 

preferred to the technique based on the time-expanded network.  However, with the same 

level of information given to the frequency-based assignment technique, the time-

expanded network also can be easily constructed. 

Figure 5.5 presents typical transit route information for the frequency-based 

assignment technique for a future line in the planning stage.  It contains the name of the 
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bus line (“route 456”), mode (“6” means the express bus), one-way operation (“T” means 

true), frequency of the vehicle (30 minute interval), operation speed (25 miles per hour), 

and the route represented by the node sequence.   

 

 
 

Figure 5.5 A sample route information used for frequency-based assignment. 

 

With the information shown in Figure 5.5, the timetable for the time-expanded 

network can be easily approximated.  By estimating the travel time between nodes, the 

timetable at each stop of the future line can be approximated.  

The point of the time approximation to the frequency-based assignment technique 

is simply dividing the distance referred from the highway network by the given operation 

speed.  Tagging the start time of the bus operation finalizes timetable estimation at each 

stop.  A sample construction of a timetable has been approximated with a current bus 

route in the UTA.  The comparison between the approximated timetable and the 

published one is presented in Figure 5.6 with bus-line number 472. 

 

LINE NAME="ROUTE456", MODE=6, ONEWAY=T, FREQ[1]=30,N=2108, 

-1761, -2104, -2102, -2101, -2136,  -2098,  12642,  -2098,  -2020,  -2018,  

-2017,  -2016,  -2014,  -1990, -2011,  -1957,  -2458,  1956, -1882,  -1881,  

-1879,  -1849,  -1853,  -1839,  -1952, -1837,  -1835,  -1986,   1744,  -2554,  

-1809,  -1797,  -1807,  -9251,  -9389, -9409,  -9417,  -9252,  -9434,  -9432,  

-9253,  -9254,  -9255,  -9256, -9258,  -9257,  -1598,  -1600,   2522,  -1600,  

-1598,  -9259,  -9260,  -9436, -9438,  -9261,  -1526,  -1528,   1530,  -1528,  

-1526,  -9262,  -9446,  -9447, -9448,  -9451,  -9453,  -9201,  -10003, -2607,  

-2623,  -9329,  -2625,  -10377, -10341, -2373, -7746, -10351,  -13483,  -13485, 

-10353, -10354, -7272, -7523, -7525, -10358, -10360, -10362, -10357, -7535, 

-10365, -7526, -10506,-10507, -10374, -10512, -10369, -10246, -3611,  -3503, 

-3663, 3531, -3625, -3680, -3688, -3717, 3629, -2496, -4861,3631, -3710, 

-5445, -3638, -5470, -3646, -3651, -3759, -3653, -3654, 3655
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Figure 5.6 Comparison of estimated schedule to the published one for Route #472. 

 

 

Some deviations are observed from the published timetable at each stop; however, 

overall, the estimated schedule is well fitted to the published one as well as the total 
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journey time.  The same degree of representation of a future transit line to the frequency-

based transit assignment technique in the time expanded network can be constructed. 

 

Notation and Problem Formulation 

 

Crowding Cost Function 

The asymmetric crowding effect in boarding, and in-vehicle links is modeled with 

the BPR function with different parameter values.  The additional cost due to the 

crowded vehicle on link a  is 

 0{ (1 ( ) }a
a

a

v
Cw t

vc

      (5.1) 

where 0, , t   are positive scalars.  avc denotes the capacity of the vehicle running 

link a and is the conversion parameter of the travel time (minutes) equivalent to one 

dollar value.  The crowding cost function is calibrated as 00.13, 15, 6.0t    by the 

following travel time saving curve (Figure 5.7) developed by Tirachini et al. (2013).  

Because the study examines the crowding effects, it is not necessary to apply the 

strict model in order to avoid the overcrowding.  However, we can still expect the 

capacity constrain effect with the cost function (Schmocker 2006). 

With the crowding cost function, the travel cost p

rsc of a transit route rsp P is the 

sum of the line segment travel time al that follows the published time table with the fare 

and the time cost due to the crowding.   

 
,( )p p a

rs a a rs

a TA

c l Cw  


     (5.2) 
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Figure 5.7 Value of travel time savings vs. passenger load in a vehicle. 

 

l includes the waiting and boarding arcs, e.g. the waiting time at a stop as

( , ) ( ) ( )m ml i j t j t i  . 

Formulation of the Day-to-Day Demand, Flow, Travel Cost Variation 

In order to model the uncertainty of the demand, and corresponding link and route 

flows, the study, assumes that the transit demand between each O-D pair is a random 

variable reflecting the day-to-day variation as modeled by Shao et al. (2006), the random 

variable may be expressed as: 

 ,rs rs rsQ q r R s S      (5.3) 

where rsq is the mean demand such that [ ]rs rsE Q q , and rs is the random term

[ ] 0.0rsE   .  The capital letter represents the random variable while the lower case letter 

is the deterministic variable.  The standard deviation (SD) q

rs of the transit O-D demand 
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 ( ) ,q

rs rsVar Q r R s S      (5.4) 

Thus, the coefficient of variance (CV) of the transit O-D demand can be derived 

as: 

 ,
q

rs
rs

rs

cv r R s S
q


     (5.5) 

The flow conservation equations using the random variables p

rsF for route flows 

along a route p are as follows: 

 ,p

rs rs

p

Q F r R s S     (5.6) 

 ,p

rs rs

p

q f r R s S     (5.7) 

 
, ( ) , ,f p p p

rs rs rs rs rsVar F f cv p P r R s S        (5.8) 

where , ,f p p

rs rsf are the SD and the mean of the route flow of route p . 

These equations are based on the assumption that that 1) the CV of the route flow 

is the same as that of the transit O-D demand and 2) the distribution of the route flows is 

the same class as the O-D demand distribution, and 3) the route flows are mutually 

independent. 

Consequently, the route-based flow conservation equations yield the link flow aV . 

 
,p p a

a rs rs

rs p

V F a TA     (5.9) 

 
,p p a

a rs rs

rs p

v f a TA     (5.10) 

, 2 2 ,( ) ( ) ( ) ( )a p p a p p a

v a rs rs rs rs rs

rs p rs p

Var V Var F f cv a TA          (5.11) 

where , a

a vv  are the mean and the SD of aV , respectively. 
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If we assume that the transit O-D demand is described with the normal 

distribution, then the distribution of the route and link flows can be characterized by the 

normal distribution.  Using this property, the time cost distribution and the route also can 

be derived. 

When the time cost due to crowding and traveling the line segment is expressed 

by eq. (5.1) the mean and variance of the time cost are expressed as: 

 0 0

0,

( ) ( ) ( 1)!!
( )

a i i

a a v a

i i evena

l t t v i
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




   

 
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 (5.13) 

Because the time cost associated with each link follows the normal distribution, 

the addition of each link component comprising a route yields the following mean p

rsc  and 

the SD ,p

rs   of route cost due to crowding. 

 
,p p a

rs a rs

a TA

c  


     (5.14) 

 
2, ,( )p a p a

rs rs

a TA

  





   (5.15) 

The derived mean and the SD of the time cost due to crowding on the route level 

enables us to model the transit users’ route choice behavior under uncertainty of the route 

cost incurred by crowding effect.  Using the confidence level that determines the 

probability of arriving at the destination within the route travel cost p

rs , the effective 

route cost defined on route p is the sum of expected travel time and the additional cost 

due to the uncertain crowding effect. 
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,p p p

rs rs rsc z      (5.16) 

where z is the inverse of standard normal cumulative distribution function at  

confidence level.  With the defined effective route cost function, the Reliability User 

Equilibrium (RUE) conditions for the proposed model are 

 
( ) 0

0

p p

rs rs rs

p

rs rs

f  

 

 

 
 (5.17) 

where rs denotes the reliable shortest route with the minimum additional cost for 

the O-D pair connecting r and s . 

 

Solution Algorithm 

One of the most important tasks in the solution algorithm for the RUE problem 

would be finding the reliable shortest route because the reliable shortest route cannot be 

calculated by the sum of the link cost comprising a route.  This implies that the typical 

shortest path algorithm based on the Bellman’s principle of optimality is not appropriate 

for the proposed model.  For that reason, the early studies that formulated the RUE 

problem utilized the simple network with already enumerated route sets.  However, Chen 

et al. (2011b) paves the way to find the Pareto-optimal (non-dominated) paths with the 

bi-criterion shortest path algorithm using the Mean-Variance (M-V) dominant condition.  

This study adopts the algorithm for finding the reliable shortest route.  The detail of the 

M-V dominant condition can be found in Chen et al. (2011b).  The flow update is 

conducted by the double projection algorithm due to the asymmetric feature in the 

crowding cost function.   

The details of the solution algorithm are as follows: 

Step 1. Initialization 
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0, , (0 1), (0 1)m

kk             

  Call the bi-criterion shortest path algorithm for each origin r  

Add the reliable shortest route into the route set for each O-D 

pair by the user class m , m

rsP   

  Assign all trips m

rsq into . 

  Update link flows aV and travel cost a . 

Step 2. Column generation 

 Call the bi-criterion shortest path algorithm for each origin r   

  Remove the unused route in m

rsP  

If the newly found shortest route’s cost ,m

rsC is less than any in m

rsP , 

then add in to m

rsP  

Step 3. Convergence test 

If all route sets in each class m satisfies the convergence condition, then 

stop; otherwise go to Step 4. 

Step 4. Flow update for a user class m  

 Find the appropriate step-size m

k   

  Perform the predictor projection ( ( ))m m m m

k k k kF proj F C F   

   If / ( ) ( )m m m m m

k k k k kF F C F C F     
 

then reduce m

k   

     min ,
( ) ( )

m m

k km

k m m

k k

F F

C F C F
 
  
 

  

 

   Go to the top of the Step 4. 
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Step 5 Perform the correct projection 

 
1 ( ( ))m m m m

k k k kF proj F C F    

  Go to Step 2. 

 

Bi-criterion shortest path algorithm 

Step 1. Initialization 

Generate a route p from an origin to itself, set , 20, ( ) 0p p

rr rr    and

0p

rsc  .  Add p into label-vector rrP and the list of candidate label SE. 

Step 2. Label selection 

Take label rup P at node u from SE in FIFO order.  If SE is empty, then 

go to Step 4; otherwise go to Step 3. 

Step 3. Route extension 

 For every outgoing link a of chose node u ( v denotes a successor node of u ) 

Step 3.1 Generate a new label rvp P . Set

, 2 , 2 2, ( ) ( ) ( )p p p p

rv ru a rv ru a          and ,p p p

rv rv rvc z
    

Step 3.2 if rvp P is acyclic, then go to Step 3.3; otherwise scan the next 

link 

Step 3.3 if p is a non-dominated route under (M-V) dominant, then add p

into rvP , and Remove all paths M-V dominated by p from rvP and SE. 

 Go to Step 2. 

Step 4. Output the reliable shortest route for each O-D pair. Stop. 
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Numerical Example 

 

Through the numerical examples, the study investigates the changes incurred by 

incorporating the crowding variations into the transit assignment. The former part of the 

numerical example attends the details of the users’ behavioral changes due to the 

crowding effect and its consequences while the latter part aggregates the external effect 

and examines the details of the cost.   

As introduced, the study network for the numerical example is the UTA network 

covering Weber, Davis, Salt Lake, Tooele, and Utah counties in the state of Utah.  Since 

the network is located in one of the developed countries, it is an appropriate network in 

terms that people using the UTA service would concern more on the comfort and the 

quality of the service.  The UTA network is not seriously congested, but the study 

examines the various levels of congestions caused by three hours morning peak (6:00 – 

9:00 AM) demand.  In the time expanded network, the route choice is strongly associated 

with the starting time of the demand.   In order to consider variations of the time 

dependent route choice behaviors, the study divides the morning peak demand by five 

and some aggregate measures are based on the averages of divided time periods.  The 

transit demand obtained from the Wasatch Front Regional Council (WFRC) demand 

model is divided into two classes: one with 96% confidence level and the others who are 

indifferent to the in-vehicle crowding, and CV = 0.2 is used.  The details of the WFRC 

model will be discussed in the following chapter that directly dealt the model for the 

demand maximization by the fare structure reform. 
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Behavioral Response to the Crowding Effect 

In order to avoid crowding, transit users change their travel patterns temporally 

and spatially, by either travelling slightly earlier or later or by travelling with different 

route selection (Whelan and Crockett 2009; Sumalee et al. 2009; Ceapa et al. 2012).  This 

section explicitly traces the users’ behavioral changes responding to the crowding effect 

in the time expanded network and sees if the consideration causes issues relevant to the 

system planning. 

The behavioral changes that consider the crowding effect could be classified as 

the temporal and spatial changes.  In the model, the temporal change was observed at the 

transfer point and at the beginning of the trip.  The upper two graphs in Figure 5.8 shows 

one example of changing the transfer point by the transit users originated from Clear filed 

to the Lakeview hospital on the time expanded network.  After incorporating the 

crowding effect, the transit users choose to transfer to the Route 455 at State & Main 

because the users behave in a way that the total travel cost is minimized.  Even if the 

passenger load factor (indicated above the time expanded transit route) is lower than 1.0 

for both Route 470 and Route 455, the same crowding cost is faced by the user until the 

State & Main stop because both vehicles are un-crowded.  However, transferring to the 

already occupied transit vehicle at 1000 N & Main incurs the higher cost than transferring 

in advance at State & Main.   

The other behavioral pattern is the spatial change, taking an alternative route.  

Incorporating the crowding effect incurs users to take alternative routes to the destination.  

However, due to the limited supply of the transit services, the available options are varied 

by the locations. 
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A.before-Temporal change (transfer point) A.after-Temporal change (transfer point) 

  
 

B1. Spatial change - no other options are available B2. Taking an alternative route 

 

Figure 5.8 Temporal and spatial change on route choice behaviors due to crowding. 

 

These available options are two cases; no other options are available but only one 

while the other one has several optional routes.  As presented in the lower two graphs in 

Figure 5.8, the users with only one option to the destination have to wait for the next 

vehicle while the users with the several options have the various route choices to the 

destination.  For the case of pattern B1, the users have to pay the crowding cost unless the 

cost is higher than waiting for the next vehicle while the users of pattern B2 can take 

immediately another vehicle. 
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These changes on the route choice behaviors are aggregated into the each transfer 

nodes in the time expanded network and are presented as the passenger load factor.  The 

study summarizes the identified behavioral changes through the passenger load factor at 

the transfer point because two patterns are associated with transfer behaviors, and even if 

users choose a new route it is likely that the users behave as pattern A in the new route.  

Figure 5.9 illustrates the top 50 highly congested transfer points according to the 

passenger load factor before and after the crowd modeling.  We can identify that both 

figures commonly indicate the congestion areas but with different intensities.  The 

congestion points modeled without the crowding effect are densely populated around the 

core of the Salt Lake City while crowding considered model distributes the congestion 

along the transit lines.     

 

 

Figure 5.9 Comparison of highly congested area before and after the crowd modeling. 
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A closer look at the Northern Salt Lake City area where the downtown and the 

major business districts are located is shown in the figure.  Overall, the size of the circles 

is smaller than that of the model without the crowding effect, and the circles are rather 

scattered.  In the case of the corridor connecting the Salt Lake Central station and the 

University of Utah, the circles are crowded around the central station and the University 

area when the crowding effect are not considered, while users considering the crowding 

effect avoid those areas and incur the lower congestions than before.  Spreading the 

crowding effect along the transit line is explicitly observed in the Bountiful area too. 

The model does not exactly represent each individual’s behavior; rather the study 

focuses on its aggregated effect in the network level.  The network level analysis 

identified that the individual behavioral change tends to spread the concentrated 

crowding congestions over the wider range of the transit network.  The implication of the 

results has the same way of Tirachini et al. (2013)’s warning on the overestimation of 

demand without the explicit consideration for crowding effect.  While their study limited 

on identifying the overestimation of demand, this study’s investigation on the explicit 

behavioral change goes one step further for identifying the overestimated transfer 

activities.  Be noted that the overestimation is not based on the overestimated demand.  

The finding regarding the aggregated behavioral changes reflecting the effect of 

crowding potentially has significant implication for activity estimation of proposed public 

transport enhancements especially the facility designs (e.g. transfer passageway, bus 

stops).  Figure 5.9 suggests that if demand for the proposed facility is estimated without 

explicit consideration of crowding, it is likely that the congestion level is overestimated, 

consequently planning for the facility design will be bigger than the actual system uses.   
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In the next section, the study attends the details of the cost and the variability 

caused by the users’ attitudes in the network level. 

 

Analysis on Crowding Cost 

Before investigating the variation of the uncertainty model due to the randomness 

of the crowding effect, the study calculates the crowding cost without the uncertainty 

modeling in order to get the general overview due to the crowding effect for the UTA 

network. 

The following Table 5.1 indicates the crowding cost for each major group of O-D 

pairs headed to the central business districts of Salt Lake City.   

 

Table 5.1 Additional cost without uncertainty modeling for each major group of origins. 

Group of origins 

additional cost without uncertainty 

modeling 
equivalent 

passenger load 
dollar/hr cents/min 

Ogden 5.36 8.93 1.10 

Layton 5.57 9.28 1.15 

Bountiful 6.96 11.60 1.31 

West Valley city 6.24 10.40 1.29 

South Jordan 5.53 9.22 1.18 

Murray 6.91 11.52 1.30 

Provo 5.38 8.97 1.09 

 

Overall, the crowding cost in the table is higher than the un-crowded situation, but 

it rarely touches the value equivalent to 1.5 passenger load.  According to Figure 5.7 that 

graphed valuation for the reduced crowd, the un-crowded situation is valued as 

7.9cents/min, which is equivalent to 4.74 dollar/hr.  This means that when a vehicle runs 

the entire route without any standees the valuation of crowding for the trip is 

4.74dollar/hr.  Considering that the crushing passenger load is around 1.7 ~ 1.8 (Critical 

Transit 2014), the additional cost due to the crowd modeling indirectly indicates the 
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crowding condition experienced by the transit demand from the each group of origins.  

We can identify that each end of South (Provo) and North (Ogden) of the UTA network 

has the relatively low additional cost because users will have enough seats.  In the 

meantime, as the vehicles come to close to Salt Lake City, the passenger load gradually 

increases, consequently, the trips that begin their journey in the middle of the corridor 

(red dotted line) will have the limited space from the very beginning of their trips.  This 

pattern is represented in the growing additional cost attached to Ogden, Layton, Bountiful 

in order.   

 
 

Figure 5.10 Illustration of the congestion level for each major group of origins. 
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The couple of operations of bus lines (Route 461, 471, 463) that begin from 

Bountiful and Centerville during peak hours are designed to support the demands.  

Similarly, the increasing cost pattern is observed in the north bound from Provo, Murray, 

West Valley City in order.  Namely, the cities adjacent to the downtown of Salt Lake City 

such as West Valley City, Murray, and Sandy have the relatively high congestion level 

than the sub-urban areas.   

The previous paragraphs provide the general idea of the congestions for each 

major group of origins.  When the uncertainty is considered in the RUE the level of the 

expected crowding cost is determined according to the users’ confidence levels.  The 

following section examines the variation of the cost with different attitudes.   

First, the total travel cost has been broken down for the detailed investigation on 

the cost composition by the different confidence level.  Table 5.2 indicates each 

component of the total travel cost for the demand originated from Ogden and Layton.  

For both cases, the users indifferent to crowding choose the route that cost more than the 

highly concerned users.  However, the difference of the total cost is not significant than 

that of the demand from Layton.  The investigation on the route choice identifies that the 

most demands from Ogden split to FrontRunner and Expressbuses.  Crowding 

experienced by the users is very low in both of the transit vehicles, but the Expressbus 

users experience slightly more congestions as the buses get to its final destination.  On 

the other hand, the demand from Layton has the significantly different total travel cost.  

In this case, one Expressbus is excluded (Route 473).  Thus, the passenger load of 

FrontRunner is lower than that of Expressbuses.  This incurs the different route choice 

between user classes.  The route selected by the indifferent users has the higher crowding 
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cost, the in-vehicle time and the SD while the highly concerned users choose the route 

that minimizes the total cost despite of the high fare level. 

 

Table 5.2 Details of the total travel cost in the crowding considered model. 

Component of travel cost 
Ogden Layton 

indifferent high confidence indifferent high confidence 

total travel cost 159.07 156.73 120.96 95.85 

Expected crowding cost 43.56 42.80 41.52 25.19 

fare 5.25 5.25 2.25 3.33 

in-vehicle time 80.12 78.25 64.28 47.30 

SD 1.25 0.18 1.92 0.56 

 

 

As the users’ concerns on crowding increase, it is expected that these changes 

would be more distinguished.  The study examines this in terms of the revenue increase.  

The following Table 5.3 presents the percent revenue increase to the revenue from one 

class model where the whole demand does not consider crowding.  As one might expect, 

the demand with the high confidence and the revenue are in direct proportion because the 

users with high confidence are willing to pay more as identified above.  However, the 

scales of the ratio are dependent on the service availability for those users.  For the users 

who originated from Ogden and Provo, which are located at each end of FrontRunner, the 

revenue increase is more distinguished than other areas.  Because the users in those areas 

can easily switch to FrontRunner, the demand increase is transferred to the revenue 

increase.  On the other hand, the users in West Valley City, Bountiful, Murray/Sandy do 

not seem to have the strong incentive to switch to FrontRunner.  Geographically, the 

FrontRunner’s route is not attractive to the users from West Valley City headed to the 

downtown of Salt Lake City and closeness of the users in Bountiful, Murray/Sandy to the 

downtown contributes to the low increase of the revenue.   
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Table 5.3 Revenue increase ratio due to different demand composition. 

Group of origins 
demand compositions (high confidence: indifferent) 

3:7 5:5 7:3 

Ogden 1.8% 3.5% 4.9% 

Bountiful 0.2% 0.3% 1.7% 

West Valley City 0.1% 0.2% 0.2% 

Murray/Sandy 0.6% 0.7% 1.4% 

Provo 1.5% 3.5% 3.5% 

 

 

This section intended to show that the revenue could be affected by the different 

classes of users.  In case of UTA, the fare increase is not significant.  However, this 

depends on the geographic distribution of demand, service availability, and the fare level 

of the premium service.   

In addition, the study examines the impact of the extension project of 

FrontRunner South, which expanded the former southern terminus from Salt Lake 

Central to Provo Station at the end of year 2012.  Because FrontRunner is the reliable 

commuter rail service, the service would be preferred by the users with the high 

confidence level.  The study investigates how users are benefited from the new project in 

terms of the expected crowding cost.   

Table 5.4 presents the comparison of the expected crowding cost before and after 

the extension project.  Overall, the expected crowding cost is reduced after the extension.  

Because the new service line is relatively reliable and has the sufficient capacity, the 

extension provided the attractive options for the highly confidence users in the Southern 

part of the UTA network.   

It is noteworthy that switching to FrontRunner not only provides a more comfort 

riding experience for highly confidence users but also reduces discomfort of indifferent 

users.  When a new public transportation enhancement project is evaluated by the travel 
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time and cost only, this reduced crowding would not be assessed.  The results show that 

considering crowding with multi-class transit users enables to identify the benefit from 

the service supply increase for different user classes.  Reduced crowding for both classes 

also implies that additional consideration of crowding to the two dominant travel 

disutility factors (time and cost) not always cause the increase of disutility that end up 

with underestimation of the demand. 

 

Table 5.4 Comparison of the expected crowding cost before and after the extension. 

group of origins 
before after % decrease 

high confidence indifferent high confidence indifferent high confidence indifferent 

South Jordan 41.07 50.28 37.34 48.98 9.1% 2.6% 

Murray/Sandy 71.99 76.37 65.45 73.84 10.0% 3.4% 

Provo 49.83 56.50 43.94 52.41 13.4% 7.8% 

 

Summary 

 

As mentioned in the introduction, the crowding effect is easily noticeable by the 

users and it gains attention by academics, consultancies and transit agencies.  Following 

the trend, the study modeled the daily variation of the in-vehicle crowding in the time 

expanded network representing the real large scale transit system.  Crowding considered 

transit assignment for the real network could be modeled and implemented by 

constructing the crowding cost function that follows the valuation of crowding (Tirachini 

et al. 2013) and by using the reliable shortest path finding method introduced by Chen et 

al. 2011b.   

In the numerical experiment, the impact caused by crowd modeling is analyzed in 

terms of each individual’s behavioral response and the expected crowding cost for 
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different user classes.  From the results, the insight on the consequences from the crowd 

modeling could be identified.   

The analysis on the aggregated behavioral changes showed that each individual 

behavior tends to spread the concentrated crowding congestions over the wider range of 

the network.  The results identified the possibility of the overestimated congestions 

without the crowding effects, which is strongly related to appropriate public transport 

facility designs. 

The cost component analysis identified that different attitudes to crowding could 

result in the revenue increase for transit agencies.  Because the users with the high 

confidence level want to use the route with the less expected crowding cost despite of the 

higher fare levels, the increase of revenue was observed.  However, this depends on the 

spatial distribution of demand and the availability and the fare levels of the transit 

services.  In addition, consideration of the multi user classes enables to identify the 

discomfort reduction by the transit service supply project for multiple user classes 

simultaneously.  This showed that addition of the disutility factor, crowding, not always 

causes the increase of disutility from the transit uses.   

In this section, the non-additivity of the reliable shortest route is created by the 

uncertainty modeling of the crowding effect, but in the next section, the non-additivity is 

directly modeled in the distance-based fare structure.EQUATION CHAPTE R (NEXT) SE CTION 1  
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CHAPTER 6  
 

EXAMINING THE POTENTIAL OF THE TRANSITION INTO DISTANCE-BASED  

 

FARE STRUCTURE CONSIDERING USERS’ BEHAVIORS  

 

IN A TIME-EXPANDED NETWORK 

 

In this chapter, one instance of the asymmetric interactions observed in the fare 

structure, especially in the distance-based fare structure, is modeled to provide insight on 

the fare policy approach for transit agencies. The objective is to analyze potential of the 

transition from a flat fare system to a distance-based fare structure.  As mentioned in the 

literature review, the existing approaches for modeling the distance-based fare structure 

are mostly under profit maximization, and the route choice behaviors were not considered.   

Unlike the previous studies, this study aims for examining potentials of the fare 

structure transition through modeling users’ route choices in the large scale transportation 

network under demand maximization.  Profit maximization is appropriate for agencies 

that opt for profit making and for private companies but are not desirable for most transit 

agencies inclined to social objectives.  This study views the potential of the distance-

based fare structure through demand maximization.  In terms of the modeling perspective, 

the investigation for the fare structure reform is based on the effective modeling for the 

cost and the users’ behaviors responding to the fare structure change with the time 

expanded network.  Consideration for the users’ behaviors was conducted by Zhou and 

Lam (2001), but the optimal fare is estimated based on the transit line not the distance-

based fare structure.   
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The application of this chapter can be characterized by following features: 1) The 

potential of the distance-based fare structure is examined from demand maximization; 2) 

The distance-based fare  structure is modeled on the time expanded network; 3) The 

interactions between the fare policy  maker and the users’ behaviors in the time expanded 

network is effectively modeled through the bi-level programming. 

The first step in examining the potential of a fare structure change is to find the 

optimal fare levels when the fare policy is changed to the distance-based fare structure.  

Finding the optimized fare levels is based on the effective representation scheme for the 

fare structure and the riders’ behaviors by using the time expanded network and the bi-

level programming.  The details of the methodology and the fare model are addressed in 

the following sections of the chapter. 

The next section addresses the motivation for modeling the distance-based fare 

structure.  In addition to the modeling perspective, the research addresses the practical 

perspective of incorporating the distance-based fare structure.  The research continues to 

describe the effectiveness of the time-expanded network for modeling the distance-based 

fare structure.  Explanation is given of how the timetable for each stop along the transit 

line effectively measures the distance-based fare for the time-expanded network.  Then, 

before addressing the methodology for the optimization process, it is necessary to set up 

the fare model, which works as the objective function in the optimization program.  This 

research uses the demand maximization model, namely ridership maximization.  The 

methodology section describes the interaction between the fare policy maker and the 

users in the network via bi-level programming.  The final section is about the proposed 

methodology application into the UTA system and its results. 
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Toward the Distance-Based Fare Structure 

 

Public transportation is a part of the everyday lives for people living all over the 

world.  Currently, a number of transit systems are in operation in order to provide people 

with basic mobility, alleviate congestion, protect the environment, and to save energy. 

Efforts for maximizing those benefits through designing the system to be 

competitive in the transportation market have long been an interesting topic for 

researchers.  The financial performance is a major issue for transit agencies.  Raising the 

fare for increasing the financial independency would result in sacrificing ridership, which 

is another important indicator evaluating the system’s performance.  Currently, 98% 

(NTD 2013) of transit agencies in U.S. are suffering from the financial deficits for the 

operating expenses.   

The transit agency desires to simplify fare collection makes generating revenue 

difficult.  According to the Transit Cooperative Research Program (TCRP 2003), the 

percentage of agencies using the differentiated fare structure has declined since 1994.  

This implies that “transit agencies by and large simply do not seem willing to address the 

complexities associated with designing, implementing, administrating, and marketing.”   

This long-term tendency to abandon differentiated pricing in favor of flat fares causes 

insufficient revenue via the fare-box.  The differentiated fare structure can alleviate 

financial difficulties, unfortunately, the flat fare trend seems to be an industry norm 

(Hickey 2005; Chien and Tsai 2007; Tsai et al. 2008). 

In the recent past (in 1960’s), the differentiated fare system was used in most 

cities (Cervero and Wasch 1982).  The method was gradually replaced by the flat fare in 

order to provide low-cost transportation to lower income people and the simplicity of the 
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flat fare collection.  Almost all transit agencies in U.S changed to the flat fare system 

(Cervero and Wasch 1982).  Later, this change became the primary cause for the 1980's 

transit fiscal crisis.   

Cervero (1981) and Cervero and Wasch (1982) attributed the transit agencies 

financial difficulties to the insensitivity of the flat fare and the suburbanization in 1960’s 

and 1970’s.  They observed that the suburbanization of U.S. at this time exacerbated an 

unhealthy fiscal condition due to many transit operators expanding their service coverage 

to outlying areas while keeping the insensitive fare structure.  They supported this 

observation with the comparison of the average mileage between the individual bus route 

and the total number of buses in the fleet.  From 1960 to 1974, the average mileage 

covered by individual bus routes more than doubled while the total bus mileage actually 

declined (Sale and Green 1979). 

However, the difficult-to-implement differentiated fare structure of the past has 

become more attractive with recent development of fare collection technologies.  In 

particular, the increasingly widespread usage of smart cards (TCRP 2003) has made the 

distance-based fare structure more practical.  The smart card’s ability to be used on 

multiple operators easily enables the distance-based fare structure by consolidating all 

transit systems into one and collecting fare based on actual passenger distance traveled.  

Generally, the fare structure is used by rail systems because the total in-vehicle distance 

determined by the strictly controlled boarding and the exiting points that travelers 

purchase before they ride.  Advancements in global positioning technologies and fare 

media make possible the implementation of total in-vehicle distance at the fare level for 
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other transit modes.  These days, the structure is being expanded to other transit vehicle 

types, such as rail and bus modes. 

The fare structure underwent changes for years and there was a time when the 

differentiated fare structure was widely implemented.  Seemingly, once the agency 

adopts the flat fare due to its simplicity, regardless of the financial deficit, they become 

unwilling to change to any alternatives.  The general perception of the transit system as a 

public good attributed to the propagation of the flat fare.  However, recent fare collection 

technological developments offer the opportunity to reconsider these practices.  

Successful examples of distance-based fare structure implementation have been seen and 

provide agencies motivation to reconsider the practicality of this system.   

This research investigates the positive ridership impacts for the UTA if they 

undergo a fare structure change by considering the distance-based fare structure (Lee 

2013).  The investigation is based on the effective cost modeling and user response 

modeling to the fare structure change with the time-expanded network. 

 

Effectiveness of Time Expanded Network for the Distance-Based Fare Structure 

 

 

In order to model the distance-based fare structure, selection of the appropriate 

modeling technique that effectively traces passengers’ route choices is important.  Since 

the fare is based on the total passenger in-vehicle distance the model that closely 

describes the passengers’ flows is needed for representing the fare structures.  Due to 

easy access to route information, this research uses the time-expanded network for transit 

operation.  In the time-expanded network, transit users' routes are traceable in the same 

manner as the conventional highway network. 
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In the time-expanded network, all possible ways of the passenger flows are 

created with virtual links and nodes.  In Figure 6.1, the transit lines (upper graph) 

connecting the origin and the destination pair is broken into the run-based representation 

scheme (lower graph).   

 

 
 

 

Figure 6.1  Virtual links and nodes in the time expanded network. 

 

Each run of the transit line drawn by the dotted lines and the temporal arrivals of 

the runs (end of each arrow) build up all possible ways to the destinations.  Under the 

structure, the network-handling scheme becomes very similar to the conventional 

highway network structure.  A route comprising the sequence of links is replaced by the 

sequence of runs in the time-expanded network.  Tracing passengers’ route choices is 

intuitive by following the sequence of virtual links.  For example, in Figure 6.1, users 
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departed from the origin at 9:00 AM encounter many choices of runs of vehicles as the 

number of virtual nodes after the temporal arrivals of the thick dotted lines.  However, 

they would choose the first or the second leaving vehicle (indicated with the circles) in 

order to finish their journey with the time minimization manner.  In this case, if the 

passenger takes the first arriving vehicles, which is the second run of line 6, then he/she 

misses the line 7 that departs at 9:20 AM.  Taking the second run of bus 5 that connects 

directly to the destination B is the shortest route to the destination according to the space-

time graph. 

The time-expanded network is also advantageous for modeling the intermittent 

transit operations, which only run for specific time periods.  For example, The UTA 

system has a few buses running a couple of times during the morning peak hours in order 

to support the demand heading to the downtown Salt Lake City.  In the time expanded 

network scheme, simply adding virtual links and nodes effectively account for those 

operations.  

 

Methodology 

 

 

Bi-Level Programming 

This study utilizes the bi-level programming for representing the relation between 

the fare policy maker and the passengers.  The programming method effectively models 

the leader-follower relationship in which the policy maker is the leader and the 

passengers are the followers.  It is assumed that the policy maker influences the 

passengers with the fare levels and cannot control the passengers’ route choice in the 

network.  Once the fare level has been set, passengers will choose the lowest-cost route to 
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their destination.  The interactions between the policy maker and the passengers can be 

represented as follows: 

 

max ( , ( ))

. .

( , ( )) 0

Z d

s t

G d

 

  

 (6.1) 

where the objective function of the upper level Z is the function of  and the 

decision vector from the lower level ( )d  , and is constrained byG while in the lower 

level, the individuals want to minimize their generalized cost to the destination. 

 
 min ( )c   (6.2) 

 

Under the distance-based fare structure, the fare  consists of more than one 

variable that includes the base fare b , mileage fare m and additional variables 

representing the surcharge for the premier services.  is defined by 

 

 {max }lp

rs rs l rs
l L

b m s  


      (6.3) 

where l is the additional fare for using premier service l . 

 

With the given fare level  , the lower level finds the route with the minimum 

generalized user costs with various time components.  The generalized user cost includes 

various time components from the time expanded network and the fare.   

 

 
rs iv rs iw rs xf rs rs xfw rsc iv iw xf xfw          (6.4) 

 

where 

rsc  : generalized user cost 
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rsiv  : in-vehicle transit time 

rsiw  : initial waiting time 

rsxf  : number of transfers 

rsxfw  : transfer waiting time 

, , ,iv iw xf xfw     : weights on the time component, which are dimensionless 

  : measure of travel time equivalent to one dollar of fare paid 

 

Genetic Algorithm (GA) with Alpha Constrained Method  

The decision variables to be optimized in the distance-based structure are 

constrained by budgets.  In order to efficiently solve the constrained multi-variable 

optimization problem in the bi-level programming, the study adopted the genetic process 

for the upper level program.  Since the Genetic Algorithm (GA) is directly applicable to 

only unconstrained optimization, it is necessary to use additional schemes that will keep 

solutions in the feasible region.  Among the various approaches for the constrained 

genetic algorithm, this study adopts alpha constrained method (Takahama and Sakai 2004) 

in order to dynamically penalize the infeasible solutions, which are ordered by the alpha 

level comparison. 

In the alpha constrained method, the satisfaction level of a constraint is introduced 

to indicate how much a candidate solution satisfies the constraints.  A solution is 

prioritized by the satisfaction level of a constraint over the objective function value 

because ensuring the feasible solution is more important than the achievement of the 

objective.  Moreover, as the algorithm iterates, the satisfaction level of a constraint 

gradually increases by the dynamically adjusted alpha.  The subsequent description of the 
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constrained method for the GA process begins with the general formulation of the 

constrained optimization problem. 

 

Alpha constrained method 

 

The general formulation of the constrained optimization problem may be 

expressed as follows: 

 

min ( )

. .

( ) 0, 1,2,...,

( ) 0, 1,2,...,

, 1, 2,...,

i

j

i i i

z X

s t

g X i p

h X j q

l x u i n

 

 

  

 (6.5) 

where 

1 2( , ,..., )nX x x x  : n dimensional vector 

( )z X  : objective function 

( )ig X  : p in-equality constraints 

( )jh X  : q equality constraints 

,i il u  : lower and upper bounds of ix  

 

A satisfaction level of constraints ( )X is defined in order to measure how much 

a candidate solution X satisfies the constraints. 

 
( ) 1, ( ) 0, ( ) 0 ,

0 ( ) 1,

i jX if g X h X i j

X otherwise





    
 

  
 (6.6) 

More specifically, the satisfaction level may be formulated as: 


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where 

,i jb b are proper positive fixed values.  Each satisfaction level is combined into 

one representative level such as the minimization operator: 

 

 
,

( ) min{ ( ), ( )}
i jg h

i j
X X X    (6.9) 

 

Once the satisfaction function has been set, an order relation is defined where the 

feasibility precedes the objective function value as follows: 

Let 1 1 2 2( ), ( )f X f X and 1 2,  be the function values and the satisfaction levels at 

solutions 1 2,X X , respectively. 

 

1 2 1 2

1 1 2 2 1 2 1 2

1 2

( ) ( ), ,

( ( ), ) ( ( ), ) ( ) ( ),

f X f X if

f X f X f X f X if

otherwise



  

   

 

 


   
 

 (6.10) 

In the example case of 0  ,alpha level comparison(  ) is equal to the ordinal 

comparison for the objective function values.  This order relation that ranks the infeasible 

solutions low penalizes the infeasible solutions. 

In addition, the value of alpha also gradually increases as the algorithm iterates in 

order to narrow down the feasible solutions with higher satisfaction levels.  However, in 
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the case when the feasible region is extremely narrow, such as equality constraints, it is 

difficult to determine the feasible region and it is highly likely that most candidate 

solutions gather in the neighborhood of the point with high satisfaction levels.  To avoid 

this situation, it is necessary to properly control the alpha level so that a wide range of a 

feasible region is covered.  The basic idea is that increasing the level as slowly as 

possible in order to ensure enough individual satisfying levels.  However, the time 

when the alpha level time control is limited. 
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 (6.11) 

 

where 

T  : maximum number of iterations 

t  : iteration number 

N  : number of population 

 

Genetic process 

 

With the constrained method, the genetic process for the constrained 

maximization problem begins with decoding the decision variables into several binary 

codes in order to get a suitable “string” structure akin to biological chromosomes.  This 

genetic representation is processed through reproduction, crossover, and mutation 

operators iteratively until a set of optimal solutions is found.  Readers are advised to refer 
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to Goldberg (1989), Deb (2001), and Coello et al. (2002) for more details on each step of 

the GA.  Below provides the general description for each step of the GA method with the 

special features for penalizing the infeasible solution. 

The first step is to randomly produce the initial population set according to the 

lower and the upper levels of each decision variables. Then, reproduction selects good 

parent solutions to form a mating pool.  A simplified concept of reproduction is to select 

parent solutions from the existing pool with above-average fitness values and copy them 

into a mating pool. These above-average copied solutions act as parents for the next 

generation.  In this study, this comparison level provides priority to the feasible solution.  

The selection probability ranked with level comparison uses the linear selection strategy 

(Baker 1984; Bäck and Hoffmeister 1991). 
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 (6.12) 

 

where 2    and [1.0, 2.0]   is the maximum expected value, which 

specifies how many times the best individual is selected more than the median individual. 

 In the crossover, two randomly selected parent solutions (chromosomes) 

exchange their gene information expecting the offspring's improved fitness created by the 

crossover.  Not all mating pool solutions found in the search process are involved in the 

crossover due to the effects being either positive or negative.  The following Figure 6.2 

illustrates the crossover operation. 
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Figure 6.2 Crossover operation. 

 

In the crossover step, it is possible that some solutions could become infeasible 

after going through the crossover process.  However, the satisfaction level maximization 

is given top priority and is naturally optimized in the direction where the constraints are 

satisfied. Therefore it is not necessary to prevent infeasibility in the crossover step 

(Takahama and Sakai 2004). 

Finally, the mutation is intended to create a new solution adjacent to a current 

solution by introducing a small change in the gene information.  Despite the significant 

changes to the gene's information making broader solution searches possible, the 

mutation is intended to localize the search around the current solution.  The most 

minuscule gene string may be altered with small probability.   

Under the described methodologies, the solutions procedure can be outlined as 

follows (Figure 6.3).  After determining the fare structure for the distance-based fare, 

arbitrarily created initial set of decision variables is inserted into the lower level program 

that finds the optimal transit route in the time expanded network.  Tracing the identified 

route for each O-D pair enables the estimation of the initial wait time, in-vehicle time, 

transfer wait time and the number of transfers.  The time components and fare levels are 

used to calculate the demand in the upper level program.  The fitness of each fare level is 
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used for qualifying into the next step.  This includes mutation and crossover unless the 

algorithm stops due to the predefined stopping criterion.  The GA usually stops when the 

pre-determined number of iterations is over or the enhancement of the solution fall into 

the specified range. 

 

 
Figure 6.3 Outline of the proposed bi-level programming.  
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Input 

This analysis is based on the peak demand and the 2012 transit network.  The 

network and the coefficients for the utilities for transit and passenger cars are based on 

the planning model for the Wasatch Front Regional Council (WFRC).  In the time-

expanded network, the route choice is strongly associated with the starting time of the 

demand.  In order to consider variations of the time dependent route choice behaviors, the 

study divides the morning peak demand by five and averages each time component for 

the analysis. 

 

Demand function 

 

The demand function is a key feature of the fare planning process.  It estimates 

the transit demand that responds to the fare changes.  The demand function employed in 

the WFRC model is the nested logit function that counts for the choice probability that 

partially avoids the IIA (Independence of Irrelevant Alternatives) properties of the 

traditional logit model.   The model is sophisticated enough to divide the transit demand 

into drive-to-transit D
M  and walk-to-transit W

M .  The nesting structure with nesting 

coefficient of the WFRC model is illustrated in Figure 6.4.   

The associated utilities for each O-D pair for choosing a transit mode accounts for 

various time components such as the in-vehicle time, initial wait time, number of 

transfers, transfer wait time, and fares.   

 

 m m m

rs rs rsU V e   (6.13) 

where 

           
m m m m m m m m m

rs iv rs iw rs xf rs rs xfw rs prk rs opr rs toll rsV iv iw Xf Xfw prk opr toll                 
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m

rsV  
: utilities for choosing a mode in the nesting structure between O-D pair r
and s  

iv  : coefficient of in-vehicle time 

iw  : coefficient of initial waiting time 

xf  : coefficient of number of transfers 

  : coefficient of fare 

xfw  : coefficient of transfer waiting time 

prk  : coefficient of parking cost 

opr  : coefficient of operating cost 

toll  : coefficient of toll fare 

m

rse  : unobservable error term 

 

 
 

Figure 6.4 Nesting structure of the WFRC demand model. 
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 (6.14) 

 

The values of coefficients used in the model are listed in Table 6.1.   

 

Table 6.1 Input coefficients. 

coefficient value coefficient value 

iv  1.000 iv  -0.0221 

iw  1.932 iw  -0.0427 

xf  2.262 xf  -0.2210 

xfw  10.00 xfw  -0.0500 

  6.740 , ,prk opr    -0.0099 

  toll  -0.0050 

ASC value ASC value 

walk to local/express bus -0.3757 drive to local/express bus -1.5892 

walk to BRT -0.0500 drive to BRT -1.0209 

walk to rail 0.2757 drive to rail -0.4525 

 

 

The WFRC model uses the same coefficients for money related components 

including transit fare, parking, and vehicle operating cost with the exception of the toll.  

The Alternative Specific Constant (ASC) for modeling mode-bias from unobserved 

factors among transit vehicles by access modes is also represented. 

 

Operating cost 

 

There are three vehicle types for the UTA.  The NTD (2013) gathers the annual 

transit performance from most agencies in U.S. and provides the relevant statistical data.  

For the UTA, the operating cost per passenger-mile is simply calculated by dividing the 
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total operating expenses by passenger-miles.  The cost per passenger-mile for the bus is 

relatively higher due to the price of gas and driver wages. The two rail systems incur 

almost the same cost; however, FrontRunner carries passengers a much greater distance. 

 

Table 6.2 Operating cost per passenger trip by each vehicle type in UTA. 

Mode 
Total operating 

cost ($) 

Total passenger-

miles 

Cost per passenger-

mile ($) 

Average mile per 

passenger 

(miles) 

Bus 107,815,451 124,309,210 0.867 5.8 

TRAX 34,821,026 71,081,431 0.490 4.6 

FrontRunner 20,517,540 41,565,944 0.494 25.8 

 

 

Fare model specification 

 

The primary objective of this research is to determine the appropriate fare levels 

of the distance-based fare structure after a fare structure reform. By doing so, the 

financial performance of the new fare structure is kept the same as the current fare 

structure.  Thus, the constraints that limit the revenue achievement to the operating cost 

are designed to have the same fare box recovery ratio, which is 20% of the operating 

costs (OULAG 2012).  However, for the FrontRunner, the higher fare box recovery ratio 

has been applied due to its relatively high total cost.  The specified expression for the 

demand maximized fare model can be presented as: 

 max rs

r s

q  (6.15) 
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l

rsr   
rs

pl F pF

l rs rs rs

l TA p P

b s m r 
 

        

F

rsr  : revenue allocated to FrontRunner 

l

rsr  : revenue allocated to the other modes 

,p F

rs  : one if route p passes through FrontRunner, zero otherwise 

F  : premium for using FrontRunner 

F

rss  : FrontRunner in-vehicle distance 

 

GA settings 

 

Table 6.3 summarizes the initial settings used in the alpha constrained genetic 

algorithm. 

 

Table 6.3 Initial settings for alpha constrained genetic algorithm. 

Variables Setting 
N  number of populations 20 

T   maximum iterations 30 

 binary substrings of length 6 

 cross over probability 0.8 

 mutation probability 0.01 

 interval for the base fare ($) [0,5.0] 

 interval for the mileage fare (cents) [0.00, 30.00] 

 interval for the premium fare ($) [0,5.0] 

1b  constant in eq. (6.7) 0.02 

2
b  constant in eq. (6.7) 0.4 




  1.8 




  0.2 

 

Convergence Characteristics by the Alpha Constrained Method 

Before discussing the optimal fare levels from the proposed methodology, the 

solution evolutions, especially the satisfaction of the constraints, are described in this 

section.  Because the alpha constrained GA method places the priority on the feasibility 
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of the solution which is measured by the satisfaction levels of the solutions, the solution’s 

fare recovery ratio for each constraint has been graphed on Figure 6.5.  

Each point of the graph is the average of the solutions of each iteration.  The 

constraints for the fare recovery ratio for FrontRunner and the other transit vehicles are 

40% and 20%, respectively.   As we can see, the satisfaction level for the fare recovery 

constraint improves as the algorithm continues because the alpha constrained GA method 

strictly prioritize only the feasible solutions.  Generally, the solutions have been 

identified before the allowed maximum iterations. 

 

 
 

Figure 6.5 Improvement of the fare recovery ratio of solutions as the algorithm iterates. 
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Analysis on Various Fare Levels of Distance-Based Fare  

Using the proposed methodology, this section finds the distance-based fare 

structure's optimal fare levels and describes the expected changes resulting from the 

transition.   

The evolution of the optimal fare levels is demonstrated on Figure 6.6.  Increasing 

order of demand does not necessarily coincide with the sequence of the solution 

improvement in the algorithm.  Considering that the estimated demand from the model 

with the current fare structure is about 69,061 trips, the presented fare levels show the 

higher performance in terms of demand maximization.  The following pattern is easily 

identified:  when the base fare decreases, the demand increases.  The demand touches its 

peak when the base fare becomes zero.  The implication is that potential transit demands 

can be found where the users’ travel distance is short enough to be less than the base fare.  

It has been regarded that the distance-based fare is an alternative for achieving fairness of 

fare charging.  However, the increasing demand pattern coupled with the low base fare 

implies the possibility of overpayment by some based on their actual distance traveled 

despite the more fair distance-based fare structure.  Furthermore, this is opposite to the 

case of the previous studies that sought the revenue potential from long distance trips. 

 

Table 6.4 Optimal fare evolution.  

Base fare ($) Mileage fare (cents/mile) FrontRunner Demand 

0.00 15.71 0.83 88,130 

0.25 14.33 0.90 85,364 

0.50 13.10 1.27 82,543 

1.02 10.60 2.29 76,920 

1.52 8.00 3.55 72,351 
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Figure 6.6 Evolutions of optimal solution for distance-based fare structure. 
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flows come and the number of transfers and the vehicle information from which the 

transfer flows come. 

 

 
 

Figure 6.7 Transfer from adjacent local transit vehicles. 
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According to the optimal fare levels estimated from the proposed methodology, 

the mileage-only fare has the highest potential for maximizing the transit demand.  

However, most agencies implementing the distance-based fare structure collect the base 

fare in addition to the mileage fare.  They do this because the base fare ensures minimum 

revenue for the agencies.  This section of the study identifies the appropriate base fare 

level for the UTA that maintains the potential ridership increase. 

 Assume a virtual flat fare that divides the transit market with distance-based fare 

structure into two: one that pays more than the flat fare (higher priced market) and one 

that pays less than the flat fare (lower priced market).  With this specification, the 

conditions for maximizing ridership are dependent on the market segmentation. 

Specifically, in that positive maximum ridership change can be expected when the lower 

priced market is greater than the higher priced market (Ling 1998). 
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f  : flat fare 

d  : distance-based fare 

iq  : initial demand in market i  

'iq  : ridership under distance-based fare in market i  

ie  : market i ’s fare elasticity of demand 

T  : change of total ridership 

k  : constant 

{1,2}i   : 1= lower priced market, 2 = higher priced market 

 

The next section applies this market segmentation analysis to the UTA system 

with the fixed fare that divides the UTA market into two in order to examine the potential 

of the ridership increase. 

 

UTA Actual Fare Payment  

According to the analysis, the eligibility of the distance-based fare structure 

bearing the increased ridership potential depends on the level of fixed fare in the market.  

In this section, the appropriate base fare levels are determined through the consideration 

of the actual payment of the UTA users. 

The current UTA’s fare structure is divided into two fare categories: users paying 

$2.35, riding any local and BRT buses and TRAX, and users paying additional fare to use 

the premium services.  The scope for the fixed fare estimation is confined to the first user 

group.  This group represents the demand majority (>85%) of rides.  The second user 

group is regarded as insensitive to the fare changes due to long distance trips (Daskin et 

al. 1988).   
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The $2.35 fixed fare for the majority user group does not indicate the actual 

amount of payment.  There are various fare types that provide discounted rates including 

Eco pass, Education Pass, normal pass, and tokens.  These discount fare arrangements, 

primarily accepted on buses and TRAX, diminish the actual fixed fare level for these user 

group.  According to the Office of the Utah Legislative Auditor General (OULAG 2012), 

the average fare was $0.30 for the Education Pass, $0.64 for the Eco Pass and $1.28 for 

cash/tokens and normal passes per boarding using the 2008 database.  Taking this into 

consideration, the average total fare per boarding was $0.81.  The study roughly 

estimated the total fare per trip by multiplying the total fare per boarding ($0.81) to the 

average number of transfers.  American Public Transportation Association (2007) 

estimated the average number of transfers as 1.53 through the large-scale survey that 

analyzed 496,000 public transit riders from 2000 through 2005.  Thus, the converted 

fixed fare per trip in the UTA system is approximately $1.32 considering the adjustment 

of the price using the consumer price index between 2008 and 2012.   

A graph has been plotted that shows the proportional change of the lower priced 

market as the fixed fare increases. Take a look at the point that crosses 50% of the lower 

priced market in Figure 6.8.  Drawing a vertical line on $1.32 easily let us make a 

conclusion that the feasible base fare that bears the potential of demand increase is less 

than or equal to $0.5.  Assuming that the ridership change is proportional to the size of 

the lower priced market the best fare structure that has the highest potential for 

maximizing ridership is the same as the previous analysis.  However, the figure shows 

more options for the base fare up to $0.5 with the corresponding mileage charge while 

keeping the potential of increasing ridership with the distance-based fare structure. 



 159 

 

 
 

 

Figure 6.8 Cumulative lower priced market share when the fixed fare is $1.32. 

 

Effects of Buffer Distance 

When the base fare is $0.5 demand maximization is not significant because the 

portion of each market segment is almost even.  The research investigates the effect of 

introducing a buffer distance for increasing the market share of the lower priced market.  
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The mathematical expression of eq. (6.3) is slightly modified as: 
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Using the same methodology, the optimized fare levels for different buffer 

distances have been identified for the base fares less than or equal to $0.50. 

 

Table 6.5 Optimized fare levels of the distance-based fare with the buffer distances.  

Base fare Mileage fare (cents) FrontRunner ($) Buffer distance 

0.00 

16.30 1.06 1 

16.92 0.75 2 

17.55 0.45 3 

0.25 

15.09 1.68 1 

15.90 1.48 2 

16.75 1.29 3 

0.50 

13.75 2.50 1 

14.43 2.25 2 

15.25 2.00 3 

 

 

 

 

Figure 6.9 Changing the lower market shares with different buffer distances. 
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By providing fare free services for a certain miles, the mileage fare has been 

increased slightly from the zero buffer distance examples.  However, the fare free effect 

is greater than the increased mileage fare because the lower priced market shares step up 

as the buffer distance increases (Figure 6.9).  For all three cases of different base fares, 

introducing the buffer distance causes the increase of the market share of the lower priced 

market.  The dotted line indicating no-buffer-distance case is located at the bottom for 

three cases.  This implies that increasing the base fare can be offset by the buffer distance 

for keeping and increasing the potential of the demand maximization. 

In addition to the investigation on the market share, the expected ridership 

increase is estimated assuming a constant elasticity proposed by APTA (1991), which is  

-0.403.  Ling’s (1998) condition for the ridership increase is based on the assumption that 

the fixed fare is the average of the distance-based fare, which links the positive ridership 

change with the higher proportions of the lower priced market.  However, this study 

examines the ridership increase based on the actual fare that does not correspond to the 

average of estimated distance-based fare paid by the UTA customers.  Thus, the total 

ridership change could be negative even if the lower priced market is higher than 50%.  

The estimated total ridership change is based on the aggregated level, but it reflects the 

effects due to the ratio between distance-based fare and the fixed fare.  Be noted that this 

approach is somewhat conservative since it applies the same elasticity value for both 

higher and lower priced markets. 

The market shares of the lower priced market when the fixed fare is $1.32 is 

presented in Table 6.6.  In the previous section, the zero base fare has the highest 

potential for demand maximization.  However, introducing the buffer distance makes 
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other fare levels are more attractive because the market share and the expected ridership 

increase as the free ride distance increases.  The market shares of the fare levels of $0.25 

with 2, 3 mile buffer distance and $0.5 with 3 mile buffer distance have the similar or 

higher potential than the zero base fare case.  In general, providing the free service for a 

certain miles could be unfair because absolutely free service is provided for the trips less 

than the buffer distance, these fare levels would be considered as attractive fare structure 

for the UTA.   

 

Table 6.6 Market shares of the lower priced market with different fare levels. 

base fare and buffer distance 
market shares of the lower priced 

market 
expected ridership increase (trips) 

0.00, 0 mile 58.7% 4,263 

0.00, 1 mile 63.6% 7,239 

0.00, 2 mile 65.6% 8,131 

0.00, 3 mile 67.6% 9,140 

0.25, 0 mile 55.5% -863 

0.25, 1 mile 60.6% 3,496 

0.25, 2 mile 62.2% 6,043 

0.25, 3 mile 64.8% 8,296 

0.50, 0 mile 52.3% -4,632 

0.50, 1 mile 52.8% -2,971 

0.50, 2 mile 57.1% 86 

0.50, 3 mile 60.6% 4,003 

 

Because the fixed fare is approximated with the estimated fare per boarding and 

the number of transfers this section conducts a sensitivity analysis with the different fixed 

fare levels.  Table 6.7 shows the lower priced market shares with two different fixed fare 

levels; one is lower than the estimated UTA fare and the other one is higher than the 

UTA fare.  As one might expect, as the fixed fare increases the lower priced market 

easily achieves the 50% market shares associated with the positive ridership changes 

because the higher fixed fare incurs the greater portion of the lower priced market.  When 

the fixed fare is $1.51 the ridership increase is expected for all buffer distances with 
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$0.25 base fare.  For more accurate estimation on the lower priced market share, it is 

desirable to estimate the fixed fare per trip in the UTA as closely as possible.  

 

Table 6.7 Market shares of the lower priced market when fixed fare changes. 

base fare and 

buffer distance 

fixed fare $1.13 fixed fare $1.51 

market share of lower 

priced market 

expected ridership 

increase (trips) 

market share of lower 

priced market 

expected ridership 

increase (trips) 

0.00, 0 mile 54.8% 1,262 62.3% 7,380 

0.00, 1 mile 59.1% 3,433 67.8% 10,034 

0.00, 2 mile 61.3% 5,016 69.8% 10,926 

0.00, 3 mile 63.5% 6,737 71.7% 11,827 

0.25, 0 mile 50.2% -4,874 60.3% 2,705 

0.25, 1 mile 55.2% -446 65.1% 6,839 

0.25, 2 mile 57.5% 2,198 66.7% 9,007 

0.25, 3 mile 60.5% 4,614 68.8% 11,043 

0.50, 0 mile 45.6% -9,001 58.2% -908 

0.50, 1 mile 46.6% -7,549 58.4% 598 

0.50, 2 mile 51.4% -4,020 61.9% 3,716 

0.50, 3 mile 55.7% 190 64.8% 7,229 

 

 

Readiness of the UTA for Distance-Based Fare Structure 

 

The successful implementation of the fare structure reform should be 

accompanied by properly designed infrastructure and a detailed fare policy.  When 

implementing the distance-based fare structure, the policy regarding technology should 

incorporate users' ability to indicate the beginning and conclusion of their trip.  

Technology that measures passenger travel distance by boarding/exiting monitoring (for 

example via card swipe) is the most critical factor when trying to create a fare 

enforcement policy.  By requiring passengers to tap their electronic payment media to 

readers in a vehicle or on a platform, the agencies are able to charge the fare based on 

passenger usage.  With said policy, the travel distance of a trip will be tracked when the 

passenger boards and exits using a device that identifies the location.   
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The global positioning system (GPS) would be used to do this tracking.  Typically, 

readers are installed at a controlled entrance such as a rail line platform or in buses. Thus, 

it is necessary that the transit system is ready for the infrastructure deployment such as 

the GPS devices and the electronic payment system. 

The current UTA fare collection system is ready for a fare structure change to the 

distance-based because every UTA bus and train stop has been equipped with tap on-and-

off fare boxes allowing customers to pay their fare electronically.   

UTA's The Electronic Fare Collection (EFC) system launched on January 1
st
, 

2009 enabling passengers to use electronic media for paying the fare.  The EFC facilitates 

payment processing and the transfers for users.  Fare payment as tapping the card to the 

reader.  Furthermore, with the EFC, there is no need to ask for a transfer from the driver.  

Once passengers tap off, the system automatically applies transfer credits for all transfers 

the passengers make within a 2-hour period.  With the EFC system, the total distance of a 

passenger’s trip can be estimated because all UTA buses are equipped with the GPS 

devices and readers are installed at the entrance of TRAX and FrontRunner. 

The currently implemented tap on-and-off policy, originally designed to discount 

the transfer credits, can be smoothly adopted for the distance-based fare structure with 

minor public resistance.  Also, the tapping on-and-off data can be used by the UTA to 

better evaluate and improve service. 

Summary 

 

 

This chapter examined the potential fare structure change for the UTA with an 

effective representation proposal to their fare structure.  The time expanded network and 

the bi-level programming that modeled interaction between the fare policy maker and the 
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passengers was constructive in describing the distance-based fare structure.  Using the 

alpha constrained GA method, the appropriate fare levels for the distance-based fare 

structure have been identified under demand maximization.  Unlike the previous studies 

that investigated the revenue increase from the distance-based fare structure, this chapter 

examined the potential of the maximization of the transit demand from the fare structure 

reform.  The analysis identified potential transit demand where users’ travel distance is 

short enough to be less than the base fare based on the analysis that showed the highest 

demand increase when the distance-based fare is associated with zero base fare.  

However, the chapter provided a few more options for the base fare levels other than zero 

using the market segmentation analysis.  Also, the study identified that providing the 

buffer distance for certain miles with base fare equal to or less than $0.50 is acceptable 

for attracting the users to the UTA's transit market. 

In addition to the system analysis, the last section addressed the readiness of the 

UTA for this distance-based fare structure reform.  The current enforcement policy and 

technology requires users to tap-on-and-off.  The infrastructure deployment of the UTA 

is appropriate for the change. The methodology and the results serve as guidance for the 

agency while considering the fare structure reform. 
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CHAPTER 7  
 

CONCLUSIONS AND EXPECTED CONTRIBUTIONS 

 

Transportation is related to most aspects of our daily lives.  It affects how we 

commute to work, to school or to the public places.  People make the decision on the 

route and mode of transportation for traveling to their destinations through the 

complicated process that simultaneously accounts for the supply and demand sides of the 

transportation system, 

Modeling the transportation system is important because it provides a “common 

ground” for discussing policy and examining the future transportation plan required in 

practices (Ortuzar and Willumsen 1994).  Generally, modeling is a simplified 

representation of the real world, however, this research added value to the modeling 

practice by investigating the asymmetric interactions observed in the real world in order 

to explore potential improvements of the transportation modeling.  Thus, the objective of 

this research was to address the potentials of the ATEP in terms of the solution algorithm 

and its application.  In order to achieve the objective, the dissertation systematically 

organized the procedure that addressed the literature review, solution algorithm, and 

model applications. 

The research began with investigating the asymmetric situations in both traffic 

and public transportation systems.  Beginning with the simple example of the two-way 

street link interactions, various instances of the asymmetric interactions have been 

reviewed.  The review classified those interactions according to the source of flows that 

asymmetrically interact: link, mode, and route.  The basic concepts and the general cost 
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function’s mathematical formulation that accounts for interactions were also presented 

for each example.   

Chapter 3 investigated the contributing factors that exist behind the established 

cost function on the convergence of the ATEP through the direct application of the DP 

method to each case of identified asymmetric interactions.  The experimental design is 

featured with different asymmetric complexities on the small network and its extension to 

the real networks where the experiments are designed to examine and to confirm the new 

findings.  As the results of the experiments, contributing factors on the convergence for 

different types of interactions have been identified.  In the case of the link interactions, 

the study found the possibility of the reduced asymmetric complexities due to both of the 

supply and demand sides of the problem.  The convergence of the mode interactions was 

dependent on the route composition for each vehicle type.  It has been identified that the 

resemblance of the route composition among modes creates the favorable conditions for 

the realization of the mode interactions, consequently the convergence is also affected by 

the situation.  In the case of the route interactions, it has been identified that the route 

costs’ sensitivity due to the complexities of the route cost function in the route 

interactions incurred a patterned computational efficiencies between link and route 

interactions.   

In Chapter 4, an enhancement strategy for the DP method has been introduced.  

The efficiency of the new algorithm was achieved by fitting the solution algorithm to the 

ATEP structure.  Formulating the ATEP in the space of route flows, both customized 

step-sizes for each O-D pair and for the entire route flow space were produced.  The 

availability of these step-sizes enables to devise a selection strategy for allowing the 
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corrector projection to choose the larger step-size.  The strategy was successfully 

implemented because the DP method provides an opportunity to select an alternative 

step-size between the two projections.  The numerical tests demonstrated that the new 

algorithm significantly relieved the computational burdens of the basic algorithm. 

The application of the modeling practice for the asymmetric interactions is 

conducted on the public transportation system.   In Chapter 5, the asymmetric interaction 

is modeled through the crowding cost function.  Especially, the chapter modeled the daily 

variation of the in-vehicle crowding in the time expanded network representing the real 

large scale transit system.  The crowding considered transit assignment for the real 

network could be implemented by using the reliable shortest path finding method (Chen 

et al. 2011b) and the DP method.  Through, the direct application of the model into the 

real network, several issues related to crowd modeling could be identified.  First, the 

aggregated behavioral response to crowding revealed the possibility of overestimation of 

concentrated crowding congestion of the no-crowding model.  Because the estimation on 

the transit users’ activities directly affects the public transport facility design, the finding 

is suggestive for the system planning.   Second, the different attitudes to crowding could 

result in the revenue increase for transit agencies.  The user’s behavior analysis showed 

that the users with the high confidence level want to use the route with the less expected 

crowding cost despite of the higher fares, which incurs the increase of revenue.  Lastly, 

the comparison of the expected crowding cost before and after the extension project of 

FrontRunner South showed that consideration of the multi user classes enables to identify 

the discomfort reduction by the transit service supply project for multiple user classes 

simultaneously. 
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Chapter 6 examined the advantages of the properly structured transit fare system 

by simulating the passenger behaviors in the public transportation system.  Through the 

effective modeling of the fare structure, the study investigated potential transition to the 

distance-based fare structure of the UTA network. The time expanded network and the 

bi-level programming that modeled interaction between the fare policy maker and the 

passengers was constructive in describing the distance-based fare structure.  The major 

findings of the chapter was identification of potential transit demand where users’ travel 

distance is short enough to be less than the base fare.  However, the study provided a few 

more options for the UTA on the base fare levels other than zero using the market 

segmentation analysis.  The study identified that providing the buffer distance for certain 

miles with base fare less than $0.50 is acceptable for attracting the users to the UTA's 

transit market.   

In summary, the dissertation makes following conclusions based on the 

experiments that attended the DP based algorithm for the ATEP and its applications.  

First, there are various contributing factors that affect the convergence of different 

types of the ATEP.  This could be resulted from the reduced asymmetric complexities 

affected by demand intensities and the network configuration, and route composition 

between different modes, and the sensitivity of the cost function.  In addition, the 

proposed acceleration strategy for enhancing the DP method was successful for achieving 

the computational efficiencies for the different types of the ATEP.   

In the application perspective, the research identified that modeling ATEP is 

useful to provide insight on crowd modeling and fare policy approaches.  Based on the 

results of the crowd modeling application, a conclusion has been made that crowd 
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modeling with multi user classes could influence the public transportation system 

planning and the revenue achievement of transit agencies.  Moreover, addition of the 

disutility factor, crowding, not always causes the increase of disutility from the transit 

uses.  Investigation on the ATEP application modeling the distance-based fare structure 

for the UTA found that the zero base fare has the highest potential for increasing the 

transit demand.  However, the model provides more options on the base fare levels for 

attracting the users to UTA's transit market upon the fare structure change. 

The contributions of the research can be summarized as follows: 

1. The contributing factors influencing the convergence of the different types of 

the ATEP have been identified 

2. A strategy for enhancing the computational efficiencies for the DP method has 

been developed 

3. The in-vehicle crowd modeling is conducted in the real large scale transit 

network under the reliability based transit assignment 

4. Identified the users’ behavioral change and its consequences on the system 

planning and the revenue change due to crowd modeling with multi user 

classes. 

5. An advanced transit assignment model using the time expanded network that 

considers the non-additive transit fare structure has been developed 

6. Using the proposed asymmetric modeling for the fare structure, it has been 

identified that reform to the distance-based fare structure will have the 

potential to increase the demand in the Utah Transit Authority.  
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A. Proof of the convergence of the double projection method 

 

Khobotov (1987) presented the convergence theorem for the extra gradient method 

(double projection method) which follows the same line as the proof of 

Korperlevich (1977).   

 

Theorem : Let the setof solutions of the VI, eq. (2.19), let Q be a closed convex set, 

and ( )C x a continuous monotonic operator in Q .  Then, the extra gradient method eq. 

(3.1, 3.2) is convergent to a solution of eq. (2.19) from any initial point
0u Q . 

 

*

* *lim min ( , ) 0,k

k u
u u u


   

 

where
*( , )ku u is the Euclidian distance between points *u and ku . 

 

Proof: we estimate the difference
2

1 *ku u  for any point *u  .  By the properties 

of the projection onto the convex setQ , we see that, for all v Q  and anyu , 

 

 ( ( ), ( )) 0Q Qu proj u v proj u    (7.1) 

Hence it follows that  

2 22

2 2 2

( ) ( ) ( )
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Q Q Q

Q Q Q Q Q
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       
 

with
* *( , ), ( ),k k

kv u u Q u u C u     we obtain from this inequality, using 

eq. (6.1) 

2 2 2
* 1 * 1( ) ( )k k k k k k

k ku C u u u C u u u u           

which leads to the inequality  
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Since the operator ( )C u is monotonic 

* * * * * *0 ( ( ) ( ), ) ( ( ), ) ( ( ), ) ( ( ), ),C u C u u u C u u u C u u u C u u u u Q           

Hence 

* 1 * 1 1( ( ), ) ( ( ), ) ( ( ), ) ( ( ), )k k k k k k k k k kC u u u C u u u C u u u C u u u          

We have from eq. (6.2) 

2 2 2
1 * * 1 1

2 2 2
* 1 1

1

2 2 2
* 1 1

2 2 2
* 1 1

2 ( ( ), )

2( , )

2 ( ( ), )

2( ( ) , )

2( ( ) , )

2

k k k k k k k

k

k k k k k k k k k

k k k

k

k k k k k k k k k k

k

k k k k k k k k k k

k

u u u u u u C u u u

u u u u u u u u u u

C u u u

u u u u u C u u u u u u

u u u u u u u C u u u u









  

 



 

 

      

        

 

         

         

 1

2 2 2
* 1 1

( ( ) ( ), )

2 ( ) ( )

k k k k

k k

k k k k k k k k k

k

C u C u u u

u u u u u u C u C u u u

 





 

 

        

 (7.3) 

 

The last inequality holds since
1( ( ) , ) 0k k k k k

ku C u u u u     .  This follows from 

eq. (6.1) with
1, ( )k k k

kv u u u C u    

For any
1, , ,k k k

ku u u 
we have 

2 2
1 2 1( ) ( ) 2 ( ) ( )k k k k k k k k

k ku u C u C u C u C u u u         

In view of this, we obtain from eq. (6.3) 

 

2 2 2 2 2
1 * * 1 1

2
2 ( ) ( )

k k k k k k k k

k k

k

u u u u u u u u u u

C u C u

          

 
 (7.4) 

Consider the set
*( )kR u given by 

* *( ) { | ( )}k kR u u u Q R u    
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where
2 2

* * *( ) { | }k

kR u u u u u u     

with 0k  for any point
0u Q and the point *u  for which the difference

2
1 *ku u  is estimated in eq. (6.2), the set

*

0 ( )R u is bounded.  This follows from the 

fact that
*

0 ( )R u is bounded. 

We now define the set *

0
ˆ ( )R u : 

* *

0 0 0 0 0
ˆ ( ) { | ( ), ( ), }QR u u u proj u b u R u b M      

where 00    , while 

*

0 0{ | , max ( ) , ( )}n

u
M z z E z C u u R u     

Then, for all 0 0b M ,
*

0 ( )u R u , the set *

0
ˆ ( )R u is bounded, and

* *

0 0
ˆ( ) ( )R u R u .  

The continuous operator ( )C u is also bounded set *

0
ˆ ( )R u .  Hence there is a constant

0L   such that  

 0 0 0 0

0( ) ( )C u C u L u u   (7.5) 

for all
0 * 0 *

0 0
ˆ ˆ( ), ( )u R u u R u  .  Then, with 0k  , we obtain from eq. (6.4): 

2 2 2
1 * 0 * 0 0 2 2

0 0(1 )u u u u u u L       

It is clear from this that 0 can always be chosen in such a way that
2 2

0 0(1 ) 0L  .  

In our case the point
1 *

0 ( )u R u , so that
* * 0 0

1 0( ) ( ),R u R u u u  .  For this, 0 can 

be chosen (e.g., from the condition 0 00 min{ , / }, 0 1L       ).  Moreover, 

from eq. (6.4) with
0 00,k u u  , we have 



 185 

2
0 0

2 2 2
1 * 0 * 0 0 2

0 2
0 0

( ) ( )
(1 )

C u C u
u u u u u u

u u



     


 

whence it is clear that
1 *

0 ( )u R u also if 

0 0

0 0 0
0 min{ , }, , 0 1

( ) ( )

u u
const

C u C u
    


    


 

Here, by eq. (6.5), 

0 0 0 0

01/ / ( ) ( )L u u C u C u    

If k ku u at some iteration of the method with 0k  , then ku  .  For, by the 

property of the projection onto a convex closed setQ , given any v Q and

( )k ku u C u  , we have 

( ( ) , ) 0k k k k

ku C u u v u     

Hence it follows that, with k ku u , we have ( ( ), ) 0k kC u v u  for any v Q .  This 

means that ku  . 

We now take the set 

* *

1 1 1 1 1
ˆ ( ) { | ( ), ( ), }QR u u u proj u b u R u b M      

where 

*

1 1{ | , max ( ) , ( )}, 0n

u
M z z E z C u u R u         

The set
* *

1 0
ˆ ˆ( ) ( )R u R u , since

* *

1 0( ) ( )R u R u , while 

* *

1 0max ( ) max ( ) ( ) ( )
u u

C u C u for u R u and u R u    

On repeating the above procedure for 2,3,...,k  we find that, at each iteration, k

can be chosen in accordance with condition  
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 0 min{ , }
( ) ( )

k k

k k k

u u

C u C u
  


 


 (7.6) 

in such a way that 

* * * *

0 0
ˆ ˆ( ) ... ( ) ( ) ... ( )k kR u R u and R u R u k      

where 

* *ˆ ( ) { | ( ), ( ), }k Q k k k kR u u u proj u b u R u b M      

while 

*{ | , max ( ) , ( )}n

k kM z z E z C u u R u     

Since the
*ˆ ( ), 0,1,...,kR u k  are bounded, there exist kL   such that

( ) ( )k k k k

kC u C u L u u   for all ku and *ˆ ( )k

ku R u and since

* *

0
ˆ ˆ( ) ... ( )kR u R u  , then 0 ... ...kL L    

There is thus a constant 0
ˆ min{ , / }, 0 1L      , such that, at each iteration, we 

can choose k in accordance with eq. (6.6) in such a way that 

 ˆ0 min{ , }
( ) ( )

k k

k k k

u u

C u C u
   


  


 (7.7) 

Then from eq. (6.4) with k ku u , we have 

 

2

2 2 2
1 * * 2

2

( ) ( )
(1 )

k k

k k k k

k
k k

C u C u
u u u u u u

u u



     


 (7.8) 

which along with eq. (6.7) and the inclusions
* *

0( ) ... ( )kR u R u  , shows that, as

k  , either 1 *ku u  or else 0k ku u  .  If the first alternative is true, then theorem 

is proved.  If the second is true and k  , we find, in accordance with the property of 
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the projection eq. (6.1), that ( ( ) , ) 0k k k k

ku C u u v u    for any v Q .  Hence, as

k  , for any v Q , we have ( ( ), ) 0k kC u v u  .  This means that û , where 

ˆ lim k

k
u u


  

The theorem is proved.
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B. Asymmetric matrix A for Nguyen-Dupuis Network 

18 10 5 0 1 1.2 0 0 0 0 0 0 0 0 0 0 0 0 0

1 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.1 0

2 0 15 9 2 1.1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 5 11 0 2 0 0 0 0 0 0.3 0.1 0 0 0 0 0 0

3 0 2 0 13.5 6 0.4 1 0 0 0 0 0 0 0 0 1 0 0

2 0 1 0.9 2 17.5 0 0 0 0 0 0.4 0.2 0 0 0 0 0 0

0 0 0 0 0.6 0 12.5 0.1 4 4.4 0 0 0 0 0 0 0.3 0 0

0 0 0 0 0.5 0 2 5.5 0 0 0 1.1 0 0.1 0

A 

0 0.4 0 0

0 0 0 0 0 0 0.5 0 13.5 1 0.6 0 0 0 0 0 0 5 0

0 0 0 0 0 0 0.2 0 5 33.3 0 0 0 2 13 12 0 0 0

0 0 0 0 0 0 0 0 0.2 0 12.5 0 0 0 3 0 0 2 0

0 0 0 0.5 0 4 0 2 0 0 0 9.8 2 0.3 0 0 0 0 0

0 0 0 0.1 0 2 0 0 0 0 0 1 5 0 0 0 0 0 1

0 0 0 0 0 0 0 0.3 0 10 0 3 0 37 0.1 14 0 0 0

0 0 0 0 0 0 0 0 0 0.1 11 0 0 0.2 20 0.5 0 0 0

0 0 0 0 0 0 0 0 0 0.2 0 0 0 0.1 2

 

50 0 0 6

0 4 0 0 3 0 0.3 2 0 0 0 0 0 0 0 0 20 1 0

0 4 0 0 0 0 0 0 4 0 0.3 0 0 0 0 0 2 11 0

0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 5 0 0 10

7 9 9 12 3 9 5 13 5 9 9 10 9 6 9 8 7 14 11h

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


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C. Equilibrium solutions with different degrees of asymmetric mode interactions 

direction Link sequence 

Path costs and path flows 

0.2md   0.3md   

Cars Trucks Cars Trucks 

Origin 1 to 

destination 2 

2 18 11 70.02 300.00 55.68 100.00 70.03 300.00 57.49 100.00 

2 17 7 9 11 86.90 0.00 67.32 0.00 86.94 0.00 69.80 0.00 

2 17 8 14 15 91.80 0.00 72.50 0.00 91.83 0.00 74.94 0.00 

1 5 7 9 11 87.37 0.00 67.32 0.00 87.35 0.00 69.80 0.00 

1 6 12 14 15 109.75 0.00 83.91 0.00 109.74 0.00 87.12 0.00 

1 5 8 14 15 92.27 0.00 72.50 0.00 92.24 0.00 74.94 0.00 

2 17 7 10 15 88.95 0.00 69.65 0.00 88.97 0.00 72.07 0.00 

1 5 7 10 15 89.42 0.00 69.65 0.00 89.38 0.00 72.07 0.00 

Origin 1 to 

destination 3 

2 17 8 14 16 95.96 0.00 75.19 0.00 95.97 0.00 77.80 0.00 

2 17 7 10 16 93.11 130.34 72.34 24.77 93.11 130.34 74.93 25.00 

1 5 7 10 16 93.58 0.00 72.34 21.58 93.52 0.00 74.93 21.25 

1 5 8 14 16 96.43 0.00 75.19 0.00 96.38 0.00 77.80 0.00 

1 6 12 14 16 113.91 0.00 86.60 0.00 113.88 0.00 89.98 0.00 

1 6 13 19 93.11 469.66 72.34 153.65 93.11 469.66 74.93 153.76 

Origin 4 to 

destination 2 

3 5 7 9 11 77.40 215.92 61.53 81.59 77.39 215.89 63.50 81.64 

3 5 7 10 15 79.45 0.00 63.85 0.00 79.42 0.00 65.77 0.00 

3 5 8 14 15 82.30 0.00 66.70 0.00 82.28 0.00 68.63 0.00 

3 6 12 14 15 99.78 0.00 78.11 0.00 99.78 0.00 80.82 0.00 

4 12 14 15 77.41 234.08 61.52 68.41 77.40 234.11 63.50 68.36 

Origin 4 to 

destination 3 

3 5 7 10 16 83.61 0.00 66.54 0.00 83.56 0.00 68.63 0.00 

3 5 8 14 16 86.46 0.00 69.39 0.00 86.42 0.00 71.49 0.00 

3 6 12 14 16 103.94 0.00 80.80 0.00 103.92 0.00 83.67 0.00 

3 6 13 19 83.14 0.00 66.54 0.00 83.15 0.00 68.63 0.00 

4 12 14 16 81.57 0.00 64.21 0.00 81.55 0.00 66.36 0.00 

4 13 19 60.77 150.00 49.95 50.00 60.77 150.00 51.31 50.00 
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Appendix C continued 

 

direction Link sequence 

Path costs and path flows 

0.4md   0.5md   

Cars Trucks Cars Trucks 

Origin 1 to 

destination 2 

2 18 11 70.05 300.00 59.30 100.00 70.07 300.00 61.11 100.00 

2 17 7 9 11 86.97 0.00 72.28 0.00 87.00 0.00 74.76 0.00 

2 17 8 14 15 91.85 0.00 77.37 0.00 91.87 0.00 79.81 0.00 

1 5 7 9 11 87.32 0.00 72.28 0.00 87.29 0.00 74.76 0.00 

1 6 12 14 15 109.72 0.00 90.33 0.00 109.70 0.00 93.55 0.00 

1 5 8 14 15 92.20 0.00 77.37 0.00 92.17 0.00 79.81 0.00 

2 17 7 10 15 88.98 0.00 74.50 0.00 88.99 0.00 76.92 0.00 

1 5 7 10 15 89.33 0.00 74.50 0.00 89.28 0.00 76.92 0.00 

Origin 1 to 

destination 3 

2 17 8 14 16 95.98 0.00 80.40 0.00 95.99 0.00 83.00 0.00 

2 17 7 10 16 93.11 130.34 77.52 25.22 93.10 130.35 80.12 25.45 

1 5 7 10 16 93.46 0.00 77.52 20.92 93.40 0.00 80.12 20.59 

1 5 8 14 16 96.33 0.00 80.40 0.00 96.28 0.00 83.00 0.00 

1 6 12 14 16 113.85 0.00 93.36 0.00 113.81 0.00 96.74 0.00 

1 6 13 19 93.11 469.66 77.52 153.86 93.10 469.65 80.12 153.97 

Origin 4 to 

destination 2 

3 5 7 9 11 77.38 215.87 65.47 81.69 77.37 215.82 67.45 81.74 

3 5 7 10 15 79.39 0.00 67.69 0.00 79.36 0.00 69.61 0.00 

3 5 8 14 15 82.26 0.00 70.56 0.00 82.24 0.00 72.49 0.00 

3 6 12 14 15 99.78 0.00 83.52 0.00 99.78 0.00 86.23 0.00 

4 12 14 15 77.39 234.13 65.47 68.31 77.38 234.18 67.45 68.26 

Origin 4 to 

destination 3 

3 5 7 10 16 83.52 0.00 70.72 0.00 83.47 0.00 72.81 0.00 

3 5 8 14 16 86.39 0.00 73.59 0.00 86.35 0.00 75.69 0.00 

3 6 12 14 16 103.91 0.00 86.55 0.00 103.89 0.00 89.43 0.00 

3 6 13 19 83.17 0.00 70.72 0.00 83.18 0.00 72.81 0.00 

4 12 14 16 81.52 0.00 68.50 0.00 81.49 0.00 70.64 0.00 

4 13 19 60.78 150.00 52.67 50.00 60.78 150.00 54.02 50.00 
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Appendix C continued 

 

direction Link sequence 

Path costs and path flows 

0.6md   0.7md   

Cars Trucks Cars Trucks 

Origin 1 to 

destination 2 

2 18 11 70.08 300.00 62.91 100.00 70.10 300.00 64.72 100.00 

2 17 7 9 11 87.03 0.00 77.24 0.00 87.06 0.00 79.72 0.00 

2 17 8 14 15 91.90 0.00 82.24 0.00 91.92 0.00 84.68 0.00 

1 5 7 9 11 87.26 0.00 77.24 0.00 87.24 0.00 79.72 0.00 

1 6 12 14 15 109.69 0.00 96.76 0.00 109.67 0.00 99.97 0.00 

1 5 8 14 15 92.13 0.00 82.24 0.00 92.09 0.00 84.68 0.00 

2 17 7 10 15 89.01 0.00 79.35 0.00 89.02 0.00 81.78 0.00 

1 5 7 10 15 89.24 0.00 79.35 0.00 89.19 0.00 81.78 0.00 

Origin 1 to 

destination 3 

2 17 8 14 16 95.99 0.00 85.61 0.00 96.00 0.00 88.21 0.00 

2 17 7 10 16 93.10 130.35 82.71 25.67 93.10 130.35 85.31 25.90 

1 5 7 10 16 93.33 0.00 82.71 20.26 93.27 0.00 85.31 19.93 

1 5 8 14 16 96.23 0.00 85.61 0.00 96.17 0.00 88.21 0.00 

1 6 12 14 16 113.78 0.00 100.12 0.00 113.75 0.00 103.50 0.00 

1 6 13 19 93.10 469.65 82.71 154.07 93.10 469.65 85.31 154.18 

Origin 4 to 

destination 2 

3 5 7 9 11 77.36 215.76 69.42 81.79 77.35 215.67 71.40 81.86 

3 5 7 10 15 79.33 0.00 71.53 0.00 79.30 0.00 73.45 0.00 

3 5 8 14 15 82.22 0.00 74.42 0.00 82.20 0.00 76.35 0.00 

3 6 12 14 15 99.78 0.00 88.94 0.00 99.78 0.00 91.65 0.00 

4 12 14 15 77.37 234.24 69.42 68.21 77.36 234.33 71.40 68.14 

Origin 4 to 

destination 3 

3 5 7 10 16 83.43 0.00 74.89 0.00 83.38 0.00 76.98 0.00 

3 5 8 14 16 86.32 0.00 77.79 0.00 86.28 0.00 79.88 0.00 

3 6 12 14 16 103.88 0.00 92.30 0.00 103.86 0.00 95.18 0.00 

3 6 13 19 83.19 0.00 74.89 0.00 83.21 0.00 76.98 0.00 

4 12 14 16 81.47 0.00 72.78 0.00 81.44 0.00 74.93 0.00 

4 13 19 60.79 150.00 55.38 50.00 60.79 150.00 56.73 50.00 
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Appendix C continued 

 

direction Link sequence 

Path costs and path flows 

0.8md    

Cars Trucks Cars Trucks 

Origin 1 to 

destination 2 

2 18 11 70.12 300.00 66.53 100.00     

2 17 7 9 11 87.09 0.00 82.20 0.00     

2 17 8 14 15 91.94 0.00 87.11 0.00     

1 5 7 9 11 87.21 0.00 82.20 0.00     

1 6 12 14 15 109.65 0.00 103.18 0.00     

1 5 8 14 15 92.06 0.00 87.11 0.00     

2 17 7 10 15 89.03 0.00 84.20 0.00     

1 5 7 10 15 89.15 0.00 84.20 0.00     

Origin 1 to 

destination 3 

2 17 8 14 16 96.01 0.00 90.81 0.00     

2 17 7 10 16 93.10 130.36 87.90 26.12     

1 5 7 10 16 93.21 0.00 87.90 19.60     

1 5 8 14 16 96.12 0.00 90.81 0.00     

1 6 12 14 16 113.72 0.00 106.88 0.00     

1 6 13 19 93.10 469.64 87.90 154.28     

Origin 4 to 

destination 2 

3 5 7 9 11 77.34 215.48 73.37 81.95     

3 5 7 10 15 79.27 0.00 75.37 0.00     

3 5 8 14 15 82.18 0.00 78.28 0.00     

3 6 12 14 15 99.78 0.00 94.36 0.00     

4 12 14 15 77.35 234.52 73.37 68.05     

Origin 4 to 

destination 3 

3 5 7 10 16 83.34 0.00 79.07 0.00     

3 5 8 14 16 86.25 0.00 81.98 0.00     

3 6 12 14 16 103.84 0.00 98.05 0.00     

3 6 13 19 83.22 0.00 79.07 0.00     

4 12 14 16 81.41 0.00 77.07 0.00     

4 13 19 60.79 150.00 58.09 50.00     
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