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ABSTRACT

The Baker Cave Bison Remains: Bison Diminution and Late

Holocene Subsistence on the Snake River Plain, Southern Idaho

by

Ryan P. Breslawski, Master of Science

Utah State University, 2014

Major Professor: Dr. David Byers
Department: Sociology, Social Work, and Anthropology

The role of bison in the prehistoric subsistence in southern Idaho is not fully 

understood. Bison remains from Baker Cave, a late Holocene archaeological site dating 

to cal A.D. 1042-1265, however, provide evidence of pre-contact subsistence strategies in 

the region. This thesis focuses on the paleoecology of bison and their role in prehistoric 

subsistence on the Snake River Plain (SRP). The ecological study of bison focuses on the 

hypothesized trans-Holocene diminution in bison body size in southern Idaho, while a 

second study focuses on how these animals figured into prehistoric responses to seasonal 

fat scarcity.

Although bison diminution and its ecological determinants are well understood on 

the Great Plains, the history of diminution west of the Rocky Mountains is less clear.

Bison morphometrics from Baker Cave present the opportunity to assess bison 

diminution on the Snake River Plain. Bison morphometrics from Baker Cave are 

indistinguishable not only from other late Holocene bison on the Snake River Plain but 
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also from late Holocene bison from the Great Plains. Further, the Baker Cave bison are 

smaller than early Holocene bison from the Great Plains and Snake River Plain. These 

results suggest morphological similarity between Snake River Plain bison and Great 

Plains bison through the Holocene, pointing to similar bottom up ecological constraints 

on body size. 

Although bison are common components of SRP archaeofaunas, their role in 

prehistoric subsistence is poorly understood. To shed light on this problem, I hypothesize 

that the Baker Cave bison assemblage resulted from hunters seeking skeletal fat. I test 

predictions drawn from this hypothesis with assemblage-level patterns in element 

representation, impact scar distribution, and fragmentation. These assemblage-level 

patterns track the skeletal fat utility of elements. These patterns, combined with winter 

procurement evidenced by fetal remains, support the hypothesis that fat-seeking behavior 

was a response to winter fat scarcity. A comparison with smaller bison assemblages from 

southern Idaho suggests that this fat-seeking behavior might have persisted as far back as 

the middle Holocene, although this requires confirmation from future studies.

(115 pages)
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PUBLIC ABSTRACT

The Baker Cave Bison Remains: Bison Diminution and Late

Holocene Subsistence on the Snake River Plain, Southern Idaho

Ryan P. Breslawski

This thesis investigates that paleoecology of southern Idaho bison and their role in 

prehistoric subsistence with two articles. The first article investigates the trajectory of 

bison diminution in southern Idaho with bison morphometrics from Baker Cave, a late 

Holocene archaeological site. Results indicate that local bison followed a diminution 

trend mirroring the diminution trend documented on the Great Plains. This suggests that 

similar bottom up ecosystem controls acted on bison in both the Great Plains and in 

southern Idaho through the Holocene. 

The second article examines the role of bison in seasonal subsistence strategies. I 

hypothesize that winter fat scarcity in southern Idaho made prehistoric foragers 

susceptible to protein poisoning, and therefore, these people employed fat-seeking 

strategies.  I test predictions drawn from this hypothesis with bison remains from Baker 

Cave. Assemblage level patterns at Baker Cave meet the predictions. Further, fetal bison 

remains at Baker Cave suggest multiple winter procurement events. These fetal remains, 

in combination with the assemblage-level patterns, support the hypothesis that this 

archaeofauna resulted from winter fat seeking behavior. Further, comparisons with other 

southern Idaho sites containing smaller bison assemblages suggest that this pattern was 

widespread and may have persisted through the middle and late Holocene. However, 

further studies are needed to confirm this pattern.
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CHAPTER 1

INTRODUCTION

In this thesis, I analyze the Baker Cave archaeofauna to shed light on Holocene 

bison diminution and prehistoric subsistence on the Snake River Plain (SRP). Baker Cave

was originally excavated by the Idaho Bureau of Land Management and Boise State 

University in 1985 to mitigate looting (Plew et al. 1987). However, the Baker Cave 

archaeofauna was not extensively analyzed in any published study, making it an 

unrealized source of information on late Holocene bison ecology and human subsistence 

in the region. I resolve this issue with the first in depth analysis of a bison archaeofauna 

in Idaho. I present results from this analysis in two articles, each of which fill substantial 

gaps in our understanding of prehistoric bison ecology and human subsistence in the 

region. Further, I include the raw data behind these studies in supplementary electronic 

files included with this manuscript.

Bison are common components of SRP archaeofaunas, although they typically 

occur in low numbers within these archaeofaunas (Plew 2009). The ecological 

determinants behind the subsistence behaviors that formed these archaeofaunas are still 

poorly understood. However, these ecological determinants probably varied on both an 

intra- and inter-annual basis. Archaeologists have debated the presence of intra-annual 

subsistence variability (Gould and Plew 1996; Henrikson 1996, 2003; Plew 1990, 2003, 

2005), although little of the debate has centered on how these strategies may have tracked 

seasonal variability in resource quality and abundance.

This lack of knowledge on prehistoric subsistence is partly attributable to the 

incomplete picture of SRP paleoecology, especially regarding bison. Archaeologists 
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working in the region have noted bison were probably never as numerous on the SRP as 

on the Great Plains (Butler 1978; Henrikson 2003, 2004, 2005; Plew and Sundell 2000). 

However, beyond this reasonable observation, SRP bison remain somewhat of a mystery. 

These animals may have fluctuated in morphology and abundance in accordance with 

climate mediated changes in forage quality. Such changes had well documented effects 

on the morphology of Great Plains bison (Hill et al. 2008), although paleoecologists have 

struggled to document such effects west of the Rocky Mountains (Lyman 2004). A

general paucity of bison remains west of the Rocky Mountains is responsible for this 

problem. Despite this difficulty, archaeologists have explored morphological change in 

SRP bison through the Holocene (Butler 1971; Butler et al. 1971). However, these brief 

investigations stagnated over four decades ago.

I revisit the problem of morphological change in SRP bison in Chapter 1. The first 

article uses recent studies on bison diminution (Hill et al. 2008; Lyman 2004) to construct 

a hypothesis on morphological change in SRP bison. The first recent study, conducted by 

Hill et al. (2008), documents a punctuated trend in bison diminution on the Great Plains. 

They find that declines in bison body mass track climate mediated changes in bison 

forage quality. Lyman (2004) hypothesizes that a similar trend occurred west of the 

Rocky Mountains, and he tests this hypothesis with bison remains from eastern 

Washington. His results also demonstrate diminution, although he cautions that this may 

be from recurrent Great Plains migrations rather than in situ diminution in eastern 

Washington. A 2000 year gap in the Middle Holocene makes evaluating these alternative 

explanations difficult.
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I hypothesize that the Baker Cave bison also fit into this diminution trend, and 

that they were smaller in body size than preceding SRP bison populations. Osteometric 

differences should reflect size change between these bison populations. I test this 

prediction by measuring bison metatarsals, humeri, calcanei, tibiae, and radii from Baker 

Cave. Results demonstrate that these specimens are indistinguishable in size from other 

late Holocene bison bones, both from the Great Plains and SRP. Further, the Baker Cave 

specimens are smaller than specimens from the early Holocene Wasden site (Butler et al. 

1971). This demonstrates that SRP bison reduced in body size through the Holocene. The 

Baker Cave specimens are also smaller than early Holocene bison from the Great Plains. 

The similarity in size between the Baker Cave bison and late Holocene Great Plains bison 

suggests that these animals were part of one breeding population or that they had similar 

physical responses to environmental constraints. Therefore, the poor forage quality on the 

SRP reduced bison population numbers relative to the Great Plains, rather than reducing 

in body mass relative to the Great Plains bison.

The second article (Chapter 2) also explores bison ecology, but this time through 

the lens of human subsistence. There was probably intra-annual variability in bison 

exploitation on the SRP (Henrikson 1996, 2003). However, the ecological determinants 

driving this variability are unknown (Henrikson 2003; Plew 2005). Studies on hunter-

gatherer subsistence and bison ecology elsewhere to provide some clues. For example, 

Speth and Spielmann (1983) point out that winters frequently impose dietary restrictions 

on hunter-gatherers in temperate regions. Fat scarcity is an especially severe dietary 

restriction. Many animals experience fat depletion as forage availability declines (McNab 

2002:358-366). This makes meat acquired from these animals especially lean, increasing 
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the risk of protein poisoning. Speth (1983) argues that this may have shaped hunting and 

processing strategies for large game, especially bison.

In the second article, I apply Speth’s (1983) and Speth and Spielmann’s (1983) 

findings to the SRP. Fetal remains from Baker Cave point to a winter occupation, 

suggesting that hunters procured these animals during a period of winter fat scarcity. I 

test three predictions drawn from this hypothesis. First, I predict that element frequencies 

will reflect selective transport of fat rich bones. Second, I predict that impact scars will be 

distributed across elements according to their fat context. Third, I predict that fat rich 

bones will be more fragmentary than fat poor bones. Results meet all three predictions,

supporting the hypothesis that these bison remains are a product of fat seeking behavior 

in response to winter fat scarcity.

Is Baker Cave representative of broader subsistence trends in the region? The 

second article concludes with a discussion of fat and foraging through time on the SRP. 

This discussion reviews similar bison assemblages on the Great Plains, demonstrating 

that fat seeking behavior is often indicated by a similar series of assemblage level 

patterns in bison dominated archaeofaunas. These patterns include skeletal element 

frequencies, impact scar distributions, and fragmentation patterns that track skeletal fat 

utility. Data on one of these patterns, the distribution of skeletal elements, are available 

from several other SRP archaeofaunas containing bison remains. Since SRP 

archaeofaunas typically contain few bison remains, I aggregate the skeletal element 

profiles from several archaeological sites across the eastern SRP reported by Henrikson 

(2003). Despite spanning the middle and late Holocene (going as far back as 6050 cal 

B.C.), this aggregated profile correlates strongly with not only the Baker Cave skeletal 
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element profile, but also with skeletal fat utility. These results tentatively support a 

hypothesis for fat seeking behavior that persisted over 8000 years.
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CHAPTER 2

HOLOCENE BISON DIMINUTION ON THE SNAKE RIVER PLAIN1

Introduction

North American bison (Bison spp.) declined in body size through the Holocene, a 

trend well documented by archaeologists and paleontologists working in the Great Plains. 

Possible factors responsible for diminution include constraints on thermoregulation 

(Butler et al., 1971), selection for faster maturation rates brought on by anthropogenic 

exploitation (McDonald, 1981: 258), or the transition from top down (predator limited) to 

bottom up (forage limited) ecosystem controls (Hill et al., 2008). A strong relationship 

between climate change and bison diminution, along with a lack of evidence for 

overhunting, has led some paleoecologists to conclude that human predation was not the 

prime mover behind shifts in bison morphology (Hill et al., 2008). Instead, climate 

dependent trends in forage availability and quality appear more likely to have been 

responsible.

Paleoecologists have documented morphological change in Great Plains bison 

through a number of biometric studies (Bedord, 1974; Hill, 1996; Hill et al., 2008; 

Hillerud, 1970; Hughes, 1978). These studies consistently show a pattern of diminution, 

although the timing of size reduction varies by region and skeletal element (Hill et al., 

2008; McDonald, 1981: 259). The trend is also nonlinear. One recent study suggests a 

slight size increase following the middle Holocene (8000-5000 cal. BP), although late 

Holocene (5000 cal. BP to present) bison remain far smaller than terminal Pleistocene 

1 This article is in press in the journal The Holocene as “Holocene bison diminution on the Snake River 
Plain, Idaho, USA”, by Ryan P. Breslawski and David A. Byers. This reprinted version is authorized under
the Sage Publications publishing agreement (Appendix).
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and early Holocene (12,000-8000 cal. BP) bison (Hill et al., 2008). The general pattern of 

decreasing body size is not unique to bison, as researchers have documented Holocene 

diminution across a range of artiodactyl taxa in North America (e.g., Guthrie, 1984; 

Lyman, 2006, 2009, 2010; Purdue, 1989; Purdue and Reitz, 1993). However, the sheer 

number of individuals and sites sampled by Hill et al. (2008) make the bison trend by far 

the best-documented case of artiodactyl diminution on the continent.

The trajectory of bison diminution is far less clear west of the Rocky Mountains, 

and researchers have yet to demonstrate the same patterns seen in Great Plains 

populations to the east. Much of this lack of clarity stems from the relative paucity of 

bison remains found west of the Rocky Mountains. Although bison were present in the 

western United States through the Holocene, they existed in relatively low numbers 

compared to the large populations living on the Great Plains. Recent studies collating the 

Great Basin and eastern Washington bison records demonstrate that regional 

archaeofaunas rarely contain more than two or three individuals (Grayson, 2006, 2011: 

268-278; Lyman, 2004). In contrast, minimum numbers of individuals documented at 

Great Plains sites can reach the hundreds. Consequently, the small numbers of bison 

encountered in western archaeological and paleontological contexts complicate statistical 

evaluations of morphological change. 

One region of the American West, the Snake River Plain (SRP), has produced a 

continuous bison record spanning the Holocene (Butler, 1978; Plew and Sundell, 2000). 

Although the majority of dated archaeological and paleontological sites contain no more 

than one individual, a few sites have produced sufficiently large numbers of remains to 

document bison diminution west of the Rocky Mountains. Investigations at Baker Cave 
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(made up of two chambers designated as 10BN154 and 10BN153; Plew et al. 1987), 

located on the eastern SRP, produced one such assemblage. 

To begin filling the substantial gaps in our understanding of SRP bison, we report 

on the morphology of those animals found in the Baker Cave archaeofauna. We begin by 

briefly reviewing research on Holocene bison morphology and fossil bison from the SRP. 

We then discuss the SRP environment as well as Baker Cave and its associated 

archaeofauna. We next outline procedures for measuring select bison elements from 

Baker Cave. Finally, we compare the Baker Cave bison measurements to those of bison 

from other contexts, both on the SRP and the Great Plains to the east. We do so to assess 

the trajectory of bison diminution not only on the SRP, but also more broadly within a 

trans-North American context. 

Holocene Bison Diminution

Research on the Great Plains has produced a large and well-documented 

Holocene bison record. This information has allowed researchers to propose and evaluate 

ideas about the roles of people and climate in shaping animal populations. In one recent 

look at Great Plains faunas through the late Quaternary, Hill et al. (2008) assess whether 

human hunting could account for bison size diminution. They use the timing of human

arrival in North American as well as bison mortality profiles to evaluate the human 

hunting argument. Their results fail to support human predation as a prime mover behind 

trends in bison morphology. Instead, they find that bison diminution was a punctuated 

trend apparently unrelated to coincident trends in human demographics. Moreover, shifts 

in morphology occurred during periods of significant climate change, specifically during 

the Late Glacial Maximum (18,000-21,000 cal. BP), the Younger Dryas (11,000-13,000
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cal. BP), and the middle Holocene (7000-9000 cal. BP). Bison partially rebound in size 

during the transition from the Middle to the late Holocene (6000-3000 cal. BP), although 

a sparse record from this period makes the timing of this size increase difficult to 

establish (see Hill et al., 2008: 1759-1760). 

Common explanations for artiodactyl diminution through the Holocene have 

included thermoregulation (Butler et al., 1971), predator release (Geist, 1989; Matheus, 

2001), and forage availability (Geist, 1971, 1989; Guthrie, 1984). Butler et al. (1971) 

proposed Bergmann’s Rule as an explanation for size change in bison after comparing 

Holocene bison assemblages across North America. However, issues relating to sex 

determination as well as conflation of latitudinal and temporal variation make their

conclusions problematic (Wilson, 1974: 142-145). Hill et al. (2008: 1764) detail further 

problems with applying Bergmann’s Rule to the bison chronocline. These include 

difficulty in controlling for covariance between temperature and forage availability as 

well as the lack of a simple linear correlation between body size and temperature through 

the Quaternary Period. On a more general level, researchers have also demonstrated that 

models of net primary productivity better explain a number of taxon specific cases 

(Huston and Wolverton, 2011; Wolverton et al., 2009). In sum, Bergmann’s rule is an 

extremely problematic explanation for changes in bison morphology through the 

Holocene. For an alternative explanation, Geist (1989) and Matheus (2001) argue that the 

large body masses of Pleistocene megafauna were a response to predation and 

interspecific competition. After the extinction of Pleistocene carnivores and other 

megaherbivores, selection for large body size was relaxed. Unfortunately, the uncertain 

timing of Pleistocene predator extinctions (Grayson, 1991, 2007; Mead and Meltzer, 
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1984) complicates this hypothesis. The numerous problems with these hypotheses have 

left changes in forage quality and availability as the best supported explanation for 

diminution in Holocene mammals.  

Hill et al. (2008) see forage quality as playing an important role in bison 

diminution, although they caution that forage quality alone is probably not the answer. 

Bison are obligate grazers dependent on grassland forage. Modern studies have shown 

that more easily digestible, and consequently more nutritious, C3 grasses tend to 

dominate in areas characterized by cooler climates, while less nutritious C4 grasses tend 

to dominate in warmer environments (Ehleringer, 1978; Epstein et al., 1997; Teeri and 

Stowe, 1976). Hill et al. (2008) found that the timing of body size reductions tended to 

occur during warmer periods characterized by expanding dominance of less nutritious, 

warm weather C4 grasses. The consumption of more C4 grasses would have resulted in a 

lower quality bison diet that would have constrained somatic growth and created a 

selective pressure emphasizing smaller, less energetically expensive bodies (Hill et al., 

2008). If the relationship between forage quality and bison morphology explains the trend 

in diminution on the Great Plains, then we expect a similar chronocline on the SRP as 

well.

Geography and Paleoecology of the Snake River Plain

The SRP sits at the southeastern most extent of the Columbia Plateau, where a 

unique igneous landscape and drainage system characterize the region (Kuntz et al., 

1986, 1992; Malde and Powers, 1962; Smith, 2004; Wood and Clemens, 2002). Much 

like surrounding areas west of the Rocky Mountains, the SRP contains habitat less 

suitable than that found on the Great Plains (Mack and Thompson, 1982). This is 
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probably due to climate dependent effects on forage availability, including severe inter-

annual summer drought and winter snow volume (Williams, 2005). 

Although the SRP shares these climatic patterns with much of the northwestern 

USA, the region’s uniquely flat topography provides few obstructions for migrating 

bison, a factor that likely made the SRP better bison habitat than other areas west of the 

Rocky Mountains (Van Vuren, 1987). Moreover, the near uniform sagebrush steppe 

biome across the region provides few ecological obstacles for bison populations, such as 

habitats fragmented by variability in elevation. While the SRP today lacks the forage 

communities likely to support large bison populations, these conditions have by no means 

remained consistent over the Holocene. Instead, climate dependent trends in forage 

quality and availability mediated the ability of the SRP to support bison populations. 

These trends likely conditioned local bison diminution in ways similar to those seen on 

the Great Plains.

Climatic factors such as seasonality, aridity, and temperature condition forage 

quality and availability. Paleoenvironmental studies suggest that during the Terminal 

Pleistocene, the SRP was generally wet and cool (Bright, 1966). However, a warming 

trend began between 10,800 and 10,300 cal. BP, as indicated by pollen cores from Swan 

Lake, southeastern Idaho (Bright, 1966). This early Holocene warming triggered an 

expansion of sagebrush and the movement of biotic communities to higher elevations. 

Warming continued into the Middle Holocene, although records indicate conflicting dates 

for the timing of maximum aridity. The Swan Lake record suggests a period of maximum 

aridity between 8400 and 3100 cal. BP (Bright, 1966), although packrat middens from the 

Idaho National Engineering Laboratory indicate this thermal maximum was reached at 
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about 7000 cal. BP (Bright and Davis, 1982). Pollen from Gray’s Lake mirrors the Swan 

Lake record, suggesting that the swing towards Middle Holocene aridity began around 

8200 cal. BP (Beiswenger, 1991). Grass pollen from Scaredy Cat Cave, located in Craters 

of the Moon National Park, demonstrates that a highly variable climate better 

characterizes the Middle Holocene, as opposed to a general state of aridity (Wigand, 

1997). Finally, most records indicate that an essentially modern climate was established 

between 3100 and 2000 cal. BP (Beiswenger, 1991; Bright, 1966; Cummings, 2002). 

Temporal patterns in SRP climates mirror patterns found in nearby areas of the 

Great Basin and southwestern Wyoming that document broad climate dependent trends in 

forage quality and, consequently, artiodactyl reproductive success (Broughton et al., 

2008; Byers and Broughton, 2004; Byers and Smith, 2007; Byers et al., 2005). In these 

instances, trends in artiodactyl abundances mirror trends in effective precipitation, with 

moister periods characterized by greater abundances of these animals on the landscape. 

This well documented relationship, in combination with trends in bison morphology 

identified by Hill et al. (2008), allow us to make several broad predictions about 

morphological trends in Holocene SRP bison populations. Simply put, we expect early 

Holocene SRP faunas to contain larger bison, with subsequent size reductions occurring 

in tandem with increasing Holocene aridity. If the model presented here correctly 

anticipates the trajectory of SRP bison diminution, then the aridity of the Middle 

Holocene west of the Rocky Mountains should have selected for smaller individuals and 

resulted in late Holocene bison possessing smaller mean body sizes.  
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Bison on the Snake River Plain

Bison remains have been recovered from numerous contexts throughout the SRP. 

In fact, one recent review of archaeofaunas from southern Idaho documented bison at 

56% of the sites in the area (Plew, 2009). Most of these remains are reported as Number 

of Identified Specimens (NISP), Minimum Number of Individuals (MNI), or simply as 

presence or absence data. While bison are common components of SRP archaeofaunas, 

NISP is typically low and MNIs usually indicate no more than one individual (Gruhn, 

1961; Henrikson, 1996; Henrikson et al., 2006; Holmer and Ringe, 1986; McDonald, 

2006; Murphey and Crutchfield, 1985; Pavesic and Meatte, 1980; Plew, 1981; Rudolph, 

1995). Consequently, archaeologists have argued that the SRP did not support bison 

populations large enough to allow for prehistoric mass kill events like those documented 

on the Great Plains (Henrikson, 2003, 2004, 2005; see also Daubenmire, 1985; Mack and 

Thompson, 1982). Unfortunately, these low numbers also make understanding trends in 

bison morphology difficult.

Regions bordering the northern and eastern SRP have produced a more substantial 

bison record. For example, the late Holocene (107-757 cal. BP) Rock Springs Site 

(Arkush, 2002), located in southeastern Idaho, contains an assemblage of 945 specimens 

representing at least 19 individuals (Walker, 2002). Upland areas north of the SRP also 

contain evidence for Holocene bison. Swanson (1972) reports at least 128 bison 

(NISP=1241) at the Birch Creek Rockshelters. Butler (1971) estimates 20-30 bison at the 

Challis Bison Jump (poor preservation prevented explicit quantification) and at least 11 

bison (NISP=364) at Quill Cave. Historic accounts describing large numbers of bison in 

the uplands support to this archaeofaunal evidence for larger populations in these areas 
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(Henrikson 2004). Although these sites produced fewer bison than were often 

documented in Great Plains assemblages, they nonetheless contain far more bison than 

seen in most SRP archaeological and paleontological faunas.

Exceptions to the pattern of low bison MNI counts include the Wasden Site 

(Butler, 1968; Butler et al., 1971; Miller and Dort, 1978) and Baker Cave (Miller, 1987; 

Results section). The Wasden site consists of a cave on the eastern SRP containing a 

large bison assemblage dating to the early Holocene (8015-8593 cal. BP). Although a 

complete quantification of bison remains from the Wasden Site remains unpublished, 

several investigators have provided MNI estimates. Initial investigations of the locality 

yielded an MNI of 50 based on lower mandibles (Butler, 1968). Butler et al. (1971) raised 

this minimum estimate to 60 individuals, and Butler (1978) reports at least 66 

individuals. Following continued excavations, Miller and Dort (1978) estimate that 150 

bison were present at Wasden (however, it is unclear if this is a minimum estimate). Even 

the smallest minimum bison estimates for Wasden are far larger than MNI estimates from 

elsewhere on the SRP. 

The large number of bison at the Wasden Site is likely why Butler et al. (1971) 

selected Wasden to examine the change from B. antiquus to B. bison. They concluded 

their study by suggesting the next steps for investigating Holocene bison diminution 

should include establishing age and sex dependent variability in modern bison skeletal 

elements, comparing archaeological and paleontological metrics for aging and sexing 

bison with established data and developing standardized criteria for determining age and 

sex. Great Plains research has mostly fulfilled these goals, although these improved 

methods have gone unused on the SRP. Baker Cave provides an opportunity to apply 
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these methods to a SRP bison assemblage. For the first time since Butler et al.’s (1971) 

investigation, enough data are available to evaluate the broad trends in SRP bison 

diminution. 

The Baker Cave Bison

Excavations at Baker Cave

Baker Cave is an eastern SRP site located about 19 km east of Minidoka, Idaho, 

and roughly 8 km northeast of Lake Walcott (Figure 2-1). The site occupies a lava blister 

that formed during the extrusion of the Wapi Lava Flow. The setting typifies lava fields 

found throughout the region today, characterized by a sagebrush-steppe biome dispersed 

across an uneven basalt terrain. Although at a distance from permanent water today, the 

geological setting provides opportunities for spring rains to pool in seasonal ponds 

(Henrikson et al., 2006: 45).

In an effort to mitigate looting, Boise State University, in conjunction with the 

Idaho Bureau of Land Management, excavated Baker Cave in 1985 (Plew et al., 1987). 

Investigations took place in two chambers designated Baker I and Baker III. Plew et al. 

(1987) report a third chamber (Baker II) that lacked cultural materials and sediment 

depth, which they did not investigate further. Baker I is a low hanging chamber roughly 3 

m deep by 7 m wide. A wall constructed of basalt and juniper branches partially blocked 

the entrance at the time of investigation (Plew et al., 1987: 13). Baker III consists of two 

interconnected chambers. The first chamber is roughly 60 m by 9 m and contained the 

majority of cultural deposits. The second chamber is a long tube roughly 6 m wide and 

100 m deep. Plew et al. (1987: 13) report little deposition or evidence for human use in 
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Figure 2-1. Locations of southern Idaho sites that have produced measurable bison 
specimens.

this chamber. Due to time restrictions, Boise State University focused recovery efforts on 

Baker I and the first chamber of Baker III.

Plew et al. (1987) designed the excavation to recover the maximum amount of 

cultural materials. Due to the shallow deposition (~15 cm maximum), they treated all 

sediments as a single component. Most of the excavation was accomplished with brushes 

and all sediment was passed through 0.3 cm mesh. They excavated 100% of the 

undisturbed sediments from Baker I and roughly 70% of Baker III. These efforts resulted 

in the collection of a large cultural assemblage that included substantial numbers of bison 

bone.

The Boise State University excavations exposed several archaeological features 

containing charcoal suitable for radiocarbon dating. The features include an S shaped 
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rock alignment in Baker III as well as three hearths in Baker I and III (Plew et al., 1987: 

21). Boise State University collected five radiocarbon dates from the hearths that place 

occupation of the cave at 685-908 cal. BP (Plew et al., 1987: 22). These dates disagree 

with two obsidian hydration dates from the cave, which indicate occupation around 1341-

1541 BP and 1264-1394 BP (Plew et al., 1987: 17). Plew et al. (1987: 22) suggest that the 

hearths and obsidian artifacts indicate two different human occupations, although Plew et 

al.’s course-grained excavation methods failed to document any stratigraphic separation 

between materials in the cave. Rather, the excavated sediments most likely contain a 

palimpsest of several hundred years of cultural and natural deposition. Moreover, recent 

critiques of obsidian hydration dating suggest that a number of environmental factors can 

bias dates generated by this method (Anovitz et al., 1999). Regardless, while we 

acknowledge some imprecision in the dating of Baker Cave, the relatively coarse-grained 

temporal scales researchers have used to examine bison diminution through the Holocene 

(e.g., the 1000-year bins used by Hill et al. [2008: 1760]) obviate the issue of time 

averaging over a 350-850 year period.

Bison Remains from Baker Cave

Baker Cave produced a large archaeofauna containing artiodactyls, lagomorphs, 

rodents, canids, snakes, and birds. Of these specimens, we identified 591 as adult Bison 

bison (MNI=37, based on the distal right tibia). The assemblage also contains 431 fetal 

bison specimens (MNI=7, based on the right radial diaphysis). Specimens lacking 

features that distinguish Bos taurus from Bison bison were classified as large bovid 

(NISP=179). An additional 3814 specimens fell into the size range of elk (Cervus 

canadensis), moose (Alces alces), bison (Bison bison), and domestic cattle (Bos taurus), 
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but lacked taxonomically diagnostic features. These specimens are mostly comprised of 

diaphysis fragments. We classify them as large artiodactyl here. The lack of large 

artiodactyls other than bison suggests that these fragments also represent this taxon. 

Taphonomic processes can bias archaeofaunas against certain age and sex classes. 

A number of factors may affect the representation of less dense bone. This is important to 

consider for the Baker Cave assemblage since volume mineral density of bison bone 

significantly, but weakly, predicts the frequencies of element portions in this fauna 

(rs=0.282, p=0.005; volume mineral density values from Kreutzer, 1992). A lack of low-

density proximal element portions including those of humeri, tibiae, and femora appear to 

drive this trend. The absence of these skeletal portions is probably due to factors such as

carnivore ravaging and weathering. Carnivore damage is present on 7.24% of Bison 

bison, large bovid, and large artiodactyl specimens (NISP=332). In-situ chemical 

weathering probably accounts for some attrition as well. While 72.89% of specimens 

(NISP=3342) have at least one unweathered surface (no cracking or flaking), 54.86% of 

specimens (NISP=2515) display at least one surface with evidence for exposure to 

weathering agents. Of the large artiodactyl specimens, 2.09% (NISP=97) are completely 

weathered down to fibrous bone or are actively disintegrating. 

Despite evidence suggesting that several taphonomic processes have conditioned 

the collection, a sufficiently large and representative sample of elements has survived for 

metric analysis. Given this robust, relatively well-preserved bison assemblage, Baker 

Cave provides a unique opportunity to assess a late Holocene bison population west of 

the Rocky Mountains. This favorable taphonomic context, in combination with the large 
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adult bison MNI, allows a confident size distribution to be determined from a robust 

osteometric dataset.

Material and Methods

Adult Bison bison specimens were measured to the nearest 0.5 mm using 

Pittsburgh® Model 47257 6” digital calipers and an osteometric board designed and built 

in-house. To control for maturational variation, we only included specimens displaying 

complete fusion. We also only recorded complete dimensions that could be precisely 

measured. This excluded specimens with carnivore ravaging, rodent gnawing, severe 

cortical weathering, or other damage along measured points. 

We follow Todd’s (1987) protocol for humerus, radius, and tibia measurements; 

Lewis et al.’s (2005) protocol for metatarsal measurements; and Hill’s (1996) protocol 

for calcaneus measurements. We measure the greatest length (CL1) and greatest width 

(CL4) of calcanei. For humeri, we measure the width of the distal articular surface (HM7) 

and the greatest medial depth of the distal end (HM11). We take measurements on the 

greatest proximal width (ProxW) and greatest proximal depth (ProxD) of metatarsals. We 

also measure the greatest proximal articular surface width (RD4) and greatest proximal 

depth (RD9) of radii. We measure the greatest distal width (TA7) and depth (TA10) of 

tibiae. 

Results

The results presented here derive from 245 measurements taken from 111 

specimens of bison bone. These measurements indicate that the Baker Cave bison fauna 

contains between 70% (based on the calcaneus) and 87.5% (based on the distal tibia) 

females (Table 2-1). Metrics from the most commonly measured skeletal part, the distal 
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humerus, indicate that 77% of the mature individuals are female. This high frequency of 

females is not surprising given the presence of numerous fetal remains in context with 

adult specimens. Although sex ratios varied between metrics, they all suggest a female 

dominated assemblage.

Calcaneus, humerus, and tibia dimensions all break down into discrete sex 

distributions (Figures 2-2a, 2-2b, and 2-2c). Radius dimensions plot as one cluster and 

one outlier, which we interpret as a single male specimen (Figure 2-2d). In contrast, 

metatarsals group into more ambiguous clusters than the other elements discussed here. 

Figure 2-2e appears to show two different clusters with one large outlier. This

distribution presents the possibility that the outlier is male and the two clusters are 

female. An alternative interpretation is that each cluster originates from a different sex 

and the outlier is an exceptionally large male. 

To evaluate these alternative interpretations, we consider data on modern bison 

metatarsals originating from individuals of known sex. Lewis et al. (2005) show that 

proximal metatarsal width is 57.8 ± 4.4 mm (s) in modern males and 50.8 ± 2.8 mm (s) in 

modern females. They also show that proximal metatarsal depth is 54.9 ± 2.8 mm (s) in 

modern males and 48.5 ± 2.3 mm (s) in modern females. These data overlap neatly with 

the Baker Cave metrics. When considering Lewis et al.’s measurements, the two clusters 

fall within the female group and the outlier falls within the male group. Therefore, we 

interpret the two clusters as female and the outlier as male. The gap in the female cluster 

is likely a sampling problem.

We note a potential problem with using modern bison from a different spatial 

context as a standard for sexing the Baker Cave bison: geographic variability in 



23 
 

Figure 2-2. Bivariate plots of Baker Cave bison metrics: (a) calcaneus, (b) humerus, (c) 
tibia, (d) radius, and (e) metatarsal.
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Table 2-1. Descriptive statistics for Baker Cave bison specimens.

Female Male
Measurement n Range s n Range s
CL1 17 138.0-151.0 144.3 4.4 5 151.5-161.0 156.7 3.9
CL4 17 44.0-50.5 47.6 1.7 5 54.0-58.5 55.4 2.0
HM7 28 73.0-84.0 79.2 2.7 4 91.5-99.5 93.6 3.9
HM11 20 86.0-98.5 91.1 3.2 3 104.0-114.5 108.2 5.6
ProxW 12 47.0-53.5 51.0 2.2 1 55.0-55.0 55.0 0.0
ProxD 12 46.5-50.5 48.9 1.8 1 52.0-52.0 52.0 0.0
RD4 14 75.5-87.5 80.9 3.3 1 99.5-99.5 99.5 0.0
RD9 14 42.0-52.0 45.4 3.0 1 58.0-58.0 58.0 0.0
TA7 26 63.0-71.0 67.1 1.9 3 75.0-77.5 76.5 1.3
TA10 26 47.0-52.5 49.5 1.5 3 53.0-60.5 56.7 3.8

morphology. Others have identified known latitude controlled differences in bison body 

size through the Holocene, although these become less pronounced in the late Holocene 

(Hill et al., 2008: 1760). The modern bison used by Lewis et al. (2005) are primarily 

northern Great Plains and zoo specimens. Using the latitudinal distinctions defined by 

Hill et al. (2008: 1760), the northern Great Plains fall within the same range as southern 

Idaho (although Lewis et al. [2005] do not specify the geographic origin of the zoo 

specimens). Although this modern sexed sample may not overlap perfectly with the 

Baker Cave sample, we expect minimal temporal and spatial variation in the size of 

males and females between the samples. Therefore, it is likely a good standard for 

identifying male and female metatarsals at Baker Cave.

Discussion

To put the Baker Cave bison in a broader context, we compare the Baker Cave 

size data to bison metrics from previously reported faunas from the SRP and Great Plains 

(Table 2-2). Specifically, we compare this dataset to other SRP assemblages, with the 
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Table 2-2. Descriptive statistics for female bison from archaeological and paleontological 
contexts.

Metric Site Range s n Reference

CL1 Baker Cave
138.0-
151.0 144.3 4.4 17 Results section

Glenrock
128.0-
155.0 142.3 6.4 108 Hill et al., 2008

Big Goose Creek
134.0-
146.0 142.0 4.1 8 Hill et al., 2008

Big Bone Lick
129.0-
146.0 140.0 4.3 21 Hill et al., 2008

Mavrakis-Bentzen-
Roberts

132.0-
154.0 146.1 5.2 37 Hill et al., 2008

Hawken
140.0-
155.0 149.6 5.1 19 Hill et al., 2008

Mill Iron
156.0-
163.0 159.5 3.5 4 Hill, 1996

CL4 Baker Cave
44.0-
50.5 47.6 1.7 17 Results section

Glenrock
42.0-
55.0 47.4 2.7 109 Hill et al., 2008

Big Goose Creek
42.0-
49.0 45.8 2.7 8 Hill et al., 2008

Big Bone Lick
36.0-
47.0 41.5 3.1 21 Hill et al., 2008

Mavrakis-Bentzen-
Roberts

44.0-
54.0 48.8 2.5 40 Hill et al., 2008

Hawken
47.0-
63.0 51.6 4.7 20 Hill et al., 2008

Mill Iron
46.0-
55.0 51.7 4.9 3 Hill, 1996

HM7 Baker Cave
73.0-
84.0 79.2 2.7 28 Results section

Rock Springs
78.0-
79.0 78.7 0.6 3 Walker, 2002

Logan Creek
76.3-
96.4 83.9 6.5 11 Hill et al., 2008

Spring Creek
75.7-

91 82.2 4.6 10 Hill et al., 2008

Horner
80.0-
87.0 83.4 2.3 19 Todd, 1987

HM11 Baker Cave
86.0-
98.5 91.1 3.2 20 Results section

Rock Springs
87.0-
91.0 89.3 2.1 3 Walker, 2002

Logan Creek
91.1-
97.5 93.5 3.1 4 Hill et al., 2008

Spring Creek 86.6- 91.5 3.4 4 Hill et al., 2008
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94.4

Horner
85.0-
100.0 95.5 3.5 19 Todd, 1987

ProxD Baker Cave
46.5-

52 48.9 1.8 12 Results section

Wasdena
48.0-
53.0 50.3 1.6 23 Butler et al., 1971

Wasdenb
48.0-
61.0 53.2 3.9 36 Butler et al., 1971

RD4 Baker Cave
75.5-
87.5 80.9 3.3 14 Results section

Horner
82.0-
89.0 84.9 2.4 18 Todd, 1987

RD9 Baker Cave
42.0-
52.0 45.4 3.0 14 Results section

Horner
45.0-
52.0 48.8 2.4 18 Todd, 1987

TA7 Baker Cave
63.0-
71.0 67.1 1.9 26 Results section

Rock Springs
65.0-
69.0 67.3 2.1 3 Walker, 2002

Horner
65.0-
75.0 71.1 2.6 21 Todd, 1987

TA10 Baker Cave
47.0-
52.5 49.5 1.5 26 Results section

Rock Springs
47.0-
52.0 48.7 2.9 3 Walker, 2002

Horner
48.0-
56.0 52.9 2.2 21 Todd, 1987

Notes: a Female specimens identified through a bivariate plot of proximal dimensions.
b Female specimens identified through bivariate method specified in Butler et al. (1971).

expectation that on-average the Baker Cave bison will be smaller than early Holocene 

SRP bison and similar in size to those found in other late Holocene bison assemblages. 

We also compare the SRP bison data with datasets derived from Great Plains bison to 

provide insight into continental-scale spatial variability in bison morphology. The data on 

SRP bison morphology presented here supports a diminution trend similar to the one 

documented on the Great Plains. Further, comparisons between SRP bison and those 

from Great Plains assemblages suggest that similar times in both regions contained 
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similarly sized bison, suggesting parallel chronoclines in diminution (see map in Hill et

al. [2008: 1756] for Great Plains site locations). 

While the lack of bison metrics from SRP assemblages complicates within-region 

comparisons, data published from two other southern Idaho localities allows for some 

insights into morphological trends. Butler et al.’s (1971) investigation of SRP bison 

morphology using the early Holocene Wasden Site generated a large dataset of metatarsal 

measurements. Unfortunately, Butler et al. did not take the same suite of measurements 

as those recorded from Baker Cave. Nonetheless, both studies share one metric in 

common, proximal depth.

We differ from Butler et al. (1971) in our interpretation of the sex distribution 

within this dataset. Butler et al. (1971: 136) identify 36 females by plotting the width and 

length of metatarsals. We instead use Lewis et al.’s (2005) protocol for metatarsal 

measurements to interpret the Wasden sex distribution through clustering in proximal 

metatarsal width and depth. Doing so results in all three specimens that Butler et al. 

(1971) identify as male falling within the larger group of specimens that they identify as 

female (Figure 2-3a). Recognizing this issue, we reclassify the Wasden bison and find 23 

females and 16 males (Figure 2-3b).

Figure 2-3 demonstrates the large differences between Butler et al.’s method and 

the one we use here. We suggest that identifying simple clusters gives a more accurate 

picture of the Wasden Site sex ratio. One might also interpret these points as three 

clusters, with the middle cluster that we identify as female here reclassified as male. We 

do not consider this interpretation since our method provides a more conservative 



28 
 

Figure 2-3. Bivariate plots of proximal width and depth of the Wasden Site metatarsals:
(a) sex interpreted through Butler et al.’s (1971) method and (b) sex interpreted through 
simple observation of point clustering (this paper).
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measure that already treats only the smallest cluster as female. If this small female cluster 

contains specimens larger than those at Baker Cave, then reclassifying the middle cluster 

as female would only increase the mean size difference between the Wasden and Baker 

Cave metatarsals.

When considering specimens sexed through our simple clustering approach, 

s=1.50 mm, n=23) appear significantly larger 

than female Baker Cave specimens (t=-2.354, p=0.029; Figure 2-4). This difference is 

especially striking when considering that the mean for females derived Butler et al.’s 

(1971) method results in a proximal depth that is almost 3 mm larger than the mean value 

s=3.85 mm, n=36). Not surprisingly, using Butler et al.’s 

(1971) numbers also results in a significant size difference with Baker Cave (t=-3.696,

p=0.001). Although additional bison metrics from Wasden would make comparisons 

between the sites more robust, these data support the hypothesis that SRP bison 

underwent a dramatic diminution between the early and late Holocene.

Despite a small sample from the Rock Springs site, t-tests suggest that bison from 

this site were similar in size to those from Baker Cave. For example, no inter-site 

differences are seen in measurements of either humeri (HM7: t=0.895, p=0.384; HM11: 

t=1.246, p=0.287) or tibiae (TA7: t=-0.188, p=0.865; TA10: t=0.492, p=0.669). These 

data, in combination with the Wasden site metrics, suggest two conclusions regarding the 

Baker Cave bison anticipated by bison studies focused on Great Plains populations. First, 

early Holocene SRP bison were on-average larger than those dating to the late Holocene. 

Second, late Holocene bison from different areas of southern Idaho were morphologically 

similar. 
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Figure 2-4. Ratio plot comparing female metatarsals from Wasden with those from Baker 
Cave. Prehistoric values standardized relative to modern female calculated from data in 
Speth (1983: Appendix). Positive values indicate individuals larger than the modern 
average and vice versa. Lyman (2004) outlines the specifics of constructing a ratio plot.

The similarity in temporal trends between SRP and Great Plains bison suggests 

that the two populations experienced similar morphological trajectories. If so, 

morphological similarity should exist between SRP and Great Plains bison through time 

as well. To evaluate similarities and differences in bison between the two regions, we 

next compare the metric data from the three SRP bison records presented here with early, 

middle, and late Holocene bison data from the Great Plains (Figure 2-5 and Table 2-3). 

We focus on comparisons of two skeletal elements, calcanei and humeri from female 

animals, since measurements of these bones were most often reported and females are 
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most common. The early Holocene records we use include the Mill Iron (10,838-11,722

cal. BP) and Horner sites (9255-9511 cal. BP). Great Plains middle Holocene bison are 

represented by data from the Hawken (7131-7374 cal. BP), Logan Creek-Zone B (6980-

7480 cal. BP), and Spring Creek sites (6940-7160 cal. BP). Finally, the Glenrock (221-

298 cal. BP), Big Goose Creek (404-600 cal. BP), and Mavrakis-Bentzen-Roberts sites 

(2536-2684 cal. BP) provide measurements documenting the size of late Holocene bison 

on the Great Plains. 

Comparisons of later late Holocene calcanei (<2000 cal. BP) from both regions

suggests that Great Plains and SRP bison were indistinguishable in size during this period 

(Table 2-3 and Figure 2-5a). Size differences become apparent as recently as 2536-2684

cal. BP at the Mavrakis-Bentzen-Roberts site, where calcaneus breadth is significantly 

larger than calcanei from more recent assemblages (<2000 cal. BP), including the Baker 

Cave materials. Middle Holocene bison also appear larger than late Holocene examples, 

although the strength of the statistical difference depends on the element considered. The 

Spring Creek and Logan Creek humeri are larger than those at Baker Cave and Rock 

Springs, although this difference is only statistically significant for HM7 (with the 

exception of the HM7 comparison between Spring Creek and Baker Cave). The lack of 

statistical differences between HM11 measurements likely results from the small sample 

sizes under test, as Spring Creek and Logan Creek only have four cases each for this 

measurement. Moving earlier into the middle Holocene, the calcanei measurements from 

Hawken provide an especially strong contrast with those from Baker Cave, suggesting 

the Hawken bison were larger.
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Figure 2-5. Ratio plots comparing Baker Cave females with those from selected SRP and 
Great Plains sites: (a) calcaneus and (b) humerus metrics. Prehistoric values standardized 
relative to modern female average presented in Hill et al. (2008). Positive values indicate 
individuals larger than the modern average and vice versa. Lyman (2004) outlines the 
specifics of constructing a ratio plot.
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Table 2-3. Intersite comparison of calcanei, humeri, and tibiae. Equal variances not 
assumed. Bold font marks correlations that are significant at the .05 level.

Baker Cave Rock Springs Glenrock
Site Metric t p t p t p
Baker Cave CL1 0.000 1.000 - - 1.627 0.115

CL4 0.000 1.000 - - 0.518 0.619
HM7 0.000 1.000 0.895 0.384 - -

HM11 0.000 1.000 1.246 0.287 - -
TA7 0.000 1.000 -0.188 0.865 - -
TA10 0.000 1.000 0.492 0.669 - -

Rock Springs HM7 0.895 0.384 0.000 1.000 - -
HM11 1.246 0.287 0.000 1.000 - -
TA7 -0.188 0.865 0.000 1.000 - -
TA10 0.492 0.669 0.000 1.000 - -

Glenrock CL1 1.627 0.115 - - 0.000 1.000
CL4 0.518 0.619 - - 0.000 1.000

Big Goose Creek CL1 1.292 0.216 - - 0.195 0.849
CL4 1.846 0.095 - - 1.688 0.130

Mavrakis-Bentzen- CL1 -1.312 0.198 - - -3.615 0.001
Roberts CL4 -2.030 0.049 - - -3.024 0.003
Spring Creek HM7 -1.970 0.074 -2.407 0.037 - -

HM11 -0.243 0.820 -1.049 0.343 - -
Logan Creek HM7 -2.323 0.040 -2.641 0.024 - -

HM11 -1.446 0.215 -2.149 0.084 - -
Hawken CL1 -3.352 0.002 - - -5.58 <0.000

CL4 -4.435 0.002 - - -3.819 0.001
Horner HM7 -5.758 <0.000 -7.693 <0.000 - -

HM11 -4.174 <0.000 -4.302 0.012 - -
TA7 -5.934 <0.000 -2.868 0.065 - -
TA10 -6.029 <0.000 -2.444 0.116 - -

Mill Iron CL1 -7.366 <0.000 - - -9.243 0.001
CL4 -1.397 0.293 - - -1.494 0.272
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Table 2-3. (Continued)

Big Goose Creek
Mavrakis-Bentzen-

Roberts Spring Creek Logan Creek
t p t p t p t p

1.292 0.216 -1.312 0.2 - - - -
1.846 0.095 -2.030 0.05 - - - -

- - - - -1.970 0.074 -2.323 0.040
- - - - -0.243 0.820 -1.446 0.215
- - - - - - - -
- - - - - - - -
- - - - -2.407 0.037 -2.641 0.024
- - - - -1.049 0.343 -2.149 0.084
- - - - - - - -
- - - - - - - -

0.195 0.849 -3.615 0 - - - -
1.688 0.130 -3.024 0 - - - -
0.000 1.000 -2.464 0.029 - - - -
0.000 1.000 -2.999 0.014 - - - -
-2.464 0.029 0.000 1.000 - - - -
-2.999 0.014 0.000 1.000 - - - -

- - - - 0.000 1.000 0.702 0.491
- - - - 0.000 1.000 0.870 0.418
- - - - 0.702 0.491 0.000 1.000
- - - - 0.870 0.418 0.000 1.000

-4.128 0.001 -2.418 0.021 - - - -
-4.099 <0.000 -2.442 0.022 - - - -

- - - - -0.777 0.453 0.257 0.802
- - - - -2.125 0.095 -1.158 0.302
- - - - - - - -
- - - - - - - -

-7.708 <0.000 -6.831 0.001 - - - -
-1.973 0.163 -0.997 0.420 - - - -
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Table 2-3. (Continued)

Hawken Horner Mill Iron
t p t p t p

-3.352 0.002 - - -7.366 <0.000
-4.435 0.002 - - -1.397 0.293

- - -5.758 <0.000 - -
- - -4.174 <0.000 - -
- - -5.934 <0.000 - -
- - -6.029 <0.000 - -
- - -7.693 <0.000 - -
- - -4.302 0.012 - -
- - -2.868 0.065 - -
- - -2.444 0.116 - -

-5.58 <0.000 - - -9.243 0.001
-3.819 0.001 - - -1.494 0.272
-4.128 0.001 - - -7.708 <0.000
-4.099 <0.000 - - -1.973 0.163
-2.418 0.021 - - -6.831 0.001
-2.442 0.022 - - -0.997 0.420

- - -0.777 0.453 - -
- - -2.125 0.095 - -
- - 0.257 0.802 - -
- - -1.158 0.302 - -

0.000 1.000 - - -4.689 0.003
0.000 1.000 - - -0.038 0.972

- - 0.000 1.000 - -
- - 0.000 1.000 - -
- - 0.000 1.000 - -
- - 0.000 1.000 - -

-4.689 0.003 - - 0.000 1.000
-0.038 0.972 - - 0.000 1.000
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These data suggest that southern Idaho bison followed a diminution trend similar 

to the one identified on the Great Plains. This agreement between regions suggests that 

the bottom up ecosystem controls acting on Great Plains bison morphology likely also 

conditioned diminution in southern Idaho. Further, late Holocene bison in both regions 

are morphologically indistinguishable, pointing to a lack of geographic variability on 

each side of the Rocky Mountains. This is interesting since the low quality of SRP forage 

might potentially limit somatic growth relative to the Great Plains. Instead, it appears that 

the two regions’ environments differentially conditioned population numbers, rather than 

morphology, across the Holocene.  The morphological similarity between the bison from 

the two regions may be due to gene flow or parallel trends in growing season length (or 

both). If both southern Idaho and the northern Great Plains had similar forage growth 

seasons, then bison may have experienced similar somatic responses to the intra-annual 

length of forage availability (Guthrie, 1984).

Conclusions

Punctuated changes in bison morphology occur along-side climatic events on the 

Great Plains, suggesting that diminution results from climate dependent trends in forage 

quality and availability (Hill et al., 2008). Similar climatic trends characterize western 

North America (Broughton et al., 2008; Byers and Broughton, 2004; Byers and Smith, 

2007; Byers et al., 2005), including the SRP. Therefore, we expected to see a similar 

pattern of bison diminution on the SRP. To test this hypothesis, we measured specimens 

from Baker Cave, a late Holocene SRP site, and compared those specimens to bison from 

other geographic and temporal contexts. Bison from the Wasden Site, located on the 

eastern SRP, suggest that early Holocene individuals were larger than those from the late 
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Holocene. In contrast, our study demonstrates that late Holocene bison from multiple 

SRP contexts shared similar morphologies. These comparisons also hold when the Baker 

Cave bison are compared with late Holocene assemblages from the Great Plains 

(Glenrock and Big Goose Creek). However, Great Plains bison from as recently as 2500 

cal. BP were larger than the Baker Cave animals. Moreover, measurements taken on 

specimens from the Hawken, Spring Creek, and Logan Creek sites all demonstrate that 

middle Holocene Great Plains bison were larger than the late Holocene individuals from 

Baker Cave. These differences become even greater when the Baker Cave materials are 

compared to early Holocene Great Plains bison recovered from the Horner and Mill Iron 

sites.

Our study confirms that SRP and Great Plains bison experienced similar trends in 

morphological change across the Holocene. However, some questions remain open. It is 

still unknown if morphological similarity with Great Plains populations extends back 

through the middle and early Holocene. Additionally, it is unknown if the pattern of SRP 

diminution follows the punctuated pattern documented on the Great Plains. Resolving 

these problems will require further metric studies of SRP bison. Several large bison 

assemblages remain unanalyzed and temporal gaps in the record could be further filled 

with smaller assemblages from across the region. Finally, paleoecologists should collect 

more data from as of yet uninvestigated localities across the SRP. Completing these steps 

would create a dataset that allows for a detailed look at Holocene bison diminution west 

of the Rocky Mountains. Currently, such a dataset does not exist in western North 

America. We hope to address these gaps in knowledge in the near future. 
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CHAPTER 3

SKELETAL FAT, CARCASS USE, AND THE LATE HOLOCENE 

BISON REMAINS FROM BAKER CAVE2

Introduction

Despite an archaeofaunal record spanning the Holocene (Plew 2009), few 

published studies have attempted to place the zooarchaeology of Snake River Plain (SRP) 

bison (Bison bison) within a behavioral context and the motivations behind the 

subsistence decisions made by people hunting these animals remain largely unexplored 

(but see Henrikson 2004). In this paper, we begin to fill this gap in knowledge with a 

study of the bison remains from Baker Cave (comprised of two chambers designated as 

10BN154 and 10BN153; Plew et al. 1987), a Late Holocene bison processing site. Baker 

Cave sits in large, unvegetated and difficult to traverse lava field almost a half km from 

the edge of the flow and the nearest bison forage. This location suggests that carcass 

portions were transported a considerable distance across rugged terrain for processing 

and consumption. Baker Cave also represents a rare occurrence on the SRP, a site 

producing an extensive and well-preserved collection of bison remains. Importantly, this 

large sample of prey animals allows us to explore the motivations behind the use of bison 

by prehistoric SRP foragers. 

Within this context, we ask the simple question, why transport a bone? One can 

easily strip meat from an element such as a humerus or femur to increase transport utility 

(Metcalfe and Barlow 1992; Metcalfe and Jones 1988). For example, ethnoarchaeological 

2 This article is in review for the journal American Antiquity. It is titled “Skeletal Fat, Carcass Use, and the 
Late Holocene Bison Remains from Baker Cave, Southern Idaho,” by Ryan P. Breslawski and David A. 
Byers.
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accounts of Hadza field butchery demonstrate that hunters often strip meat from bones 

with ease (Bunn et al. 1988; O’Connell et al. 1988, 1992). This is especially true for 

larger animals, where bones impose even greater transport costs (O’Connell et al. 1990; 

O’Connell and Marshall 1989). If butchers can easily field dress a carcass, removing low 

utility portions, why would they choose to move large, heavy bison bones across a rugged 

lava flow to Baker Cave? 

We suggest that this transport decision stems from the relationship between bison 

nutritional status and season of acquisition. Archaeologists working on the SRP tend to 

agree that the seasonal scheduling of resources played some role in subsistence decisions,

especially as it relates to the presence or absence of storage (Gould and Plew 1996; 

Henrikson 1996, 2003; Plew 1990, 2003, 2005). However, the relationship between 

season and subsistence patterns still begs clarification, having moved little beyond the 

reasonable observation that the storage of animal products may represent a seasonal 

subsistence adaptation on the SRP. Lacking is an understanding of the relationship 

between seasonally-mediated trends in prey nutritional status and the butchery decisions 

made by prehistoric foragers living in southern Idaho. 

The season of procurement can have profound implications for prey nutritional 

quality. Warren A. Ferris, a nineteenth century fur trapper traveling through northern 

Utah’s Bear River Valley, observed that local bison had “reduced to mere skeletons” 

during the winter (Phillips 1940:43). His account reflects a pattern of winter fat depletion 

experienced by bison across North America (Speth 1983; Speth and Spielmann 1983). 

Prehistoric bison in southern Idaho likely experienced this seasonal fat depletion along 

with other southern Idaho artiodactyls (e.g., see Trout and Thiessen’s [1968:188-200] 
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study of mule deer [Odocoileus hemionus] in Owyhee County). This is part of a well-

documented trend in seasonal fat depletion observed in many animals occupying 

temperate environments (McNab 2002:358-366). 

The relationship between season and known trends in prey nutritional quality 

suggests that prehistoric hunter-gatherers faced winter fat scarcity on the SRP. Lean meat 

often dominates winter diets, leading to elevated metabolisms and fatty acid deficiencies 

(Speth and Spielmann 1983). In these situations, fat and carbohydrates become essential 

nutrients. Without them, people dependent on lean meat from rabbits, rodents, and 

artiodactyls risk exposure to protein poisoning. Despite theoretical expectations that 

hunter-gatherers living in southern Idaho faced winter fat scarcity through the Holocene, 

archaeologists have yet to demonstrate that people organized subsistence around this 

problem. Did winter fat scarcity condition bison transport and processing decisions on the 

SRP?

To answer this question, we use several datasets derived from the Baker Cave 

bison remains. Since abundant fetal bison remains provide evidence for winter 

procurement, a time when bison suffer from fat depletion, we suggest that winter fat 

scarcity motivated the transport and processing decisions that produced the skeletal 

element frequencies and bone modifications at Baker Cave. Within this context, we test 

the hypothesis that the within-bone fat utility (marrow and grease) of skeletal elements 

conditioned carcass transport and processing decisions. Consequently, hunters should 

have transported fat-rich bones to Baker Cave in higher frequencies than fat-poor bones. 

The intra-carcass distribution of processing signatures, including impact scars and 

fragmentation, should also reflect a focus on fat extraction. Our results show that this is 
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indeed the case, carcass parts were transported and processed in accordance with their 

skeletal fat utility. 

Prehistoric Bison on the Snake River Plain

The SRP sits west of the Rocky Mountains and adjacent to the northern Great 

Plains. It forms the southeastern most extent of the Columbia Plateau, directly north of 

the Great Basin. Southern Idaho contains most of the SRP, although the western-most 

portion crosses into eastern Oregon. The Snake River drainage system and a unique 

igneous landscape distinguish the SRP from surrounding regions (Kuntz et al. 1992; 

Malde and Powers 1962; Smith 2004; Wood and Clemens 2002). Like much of the 

northwestern United States, climatic patterns limit the region’s carrying capacity for 

bison (Daubenmire 1985; Mack and Thompson 1982; Williams 2005). While bison may 

not have been numerous, they were probably an important part of the local diet 

(Henrikson 2004).  

Bison are common components of SRP archaeofaunas (Butler 1978; Plew and 

Sundell 2000). Figure 3-1 plots the locations of archaeological sites in the region that 

have produced bison remains. Well-known localities containing records of bison 

exploitation include the Wasden Site (Butler 1968; Butler et al. 1971; Miller 1983; Miller 

and Dort 1978:137) and Wilson Butte Cave (Gruhn 1961:172-182). Archaeologists have 

also recovered bison remains from Wahmuza (Holmer and Ringe 1986:161-171), 10GG1 

(Plew 1981:154), the Medbury Site (Plew and Willson 2002), Alpha Cave (Henrikson et 

al. 2006:79-94), the Roasting Rock Site (Henrikson et al. 2006:97-110), Crutchfield 

(Murphey and Crutchfield 1985), Bobcat Cave (Henrikson 1996), Scaredy Cat Cave 

(Henrikson 2003), Tomcat Cave (Henrikson 2004), Poison Creek (Neudorfer 1976:90-
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Figure 3-1. Locations of sites discussed in the text: (1) The Medbury Site, (2) 
Crutchfield, (3) 10GG1, (4) The Challis Bison Jump and Quill Cave, (5) Wilson Butte 
Cave, (6) Tomcat Cave, (7) The Roasting Rock Site, (8) Bobcat Cave, (9) Baker Cave, 
(10) Scaredy Cat Cave, (11) Alpha Cave, (12) The Rock Springs Site, (13) The Birch 
Creek Rockshelters, (14) The Wasden Site, (15) Wahmuza, (16) 10BV93, (17) Poison 
Creek, and (18) Weston Canyon Rockshelter.

91), 10BV93 (Gough 1990), and Baker Cave (Miller 1987). Although bison are frequent 

components of SRP sites, they usually occur in low numbers. SRP sites containing bison 

remains typically have fewer than 100 specimens, and these rarely represent more than 

one or two individuals. There are exceptions to this pattern (e.g., Butler [1968] reports at 

least 50 individual bison at the Wasden Site), but they are extremely rare in the

archaeological record thus far.
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Henrikson (2004) suggests that these animals were a preferred resource, but 

hunters encountered them too infrequently to produce abundant bison dominated 

archaeofaunas. SRP assemblages likely resulted from infrequent small-scale hunting 

encounters with these animals. Consequently, the large mass kills common on the Great 

Plains are rare or absent on the SRP (Butler 1978; Henrikson 2003, 2004, 2005; Plew and 

Sundell 2000). Sites located in more mesic, higher quality forage environments bordering 

the SRP have produced larger bison assemblages. These sites occur in the upland areas of 

southeastern Idaho, and they include the Rock Springs Site (Walker 2002), Weston 

Canyon Rockshelter (Miller 1972, 1999), the Challis Bison Jump and Quill Cave (Butler 

1971), as well as the Birch Creek Rockshelters (Swanson 1972). However, these faunas 

represent a departure from taxonomic patterns on the lowland SRP.

Baker Cave

Baker Cave is located in the southwestern portion of the Wapi Lava Flow, a 

landform dated to 382-242 cal B.C. (Kuntz et al. 1986). The site sits about 19 km east of 

Minidoka, Idaho, and roughly 8 km northeast of Lake Walcott, a dammed portion of the 

Snake River (Figure 3-1). Although at a distance from permanent water today, basalt 

landscape features provide opportunities for spring rains to pool in seasonal ponds 

(Henrikson et al. 2006:45). The sagebrush-steppe communities that typify most of the 

SRP also characterize land surrounding the Wapi Lava Flow, while the immediate site 

vicinity is generally barren of vegetation (Plew et al. 1987:10). 

Boise State University, in conjunction with the Idaho Bureau of Land 

Management (BLM), excavated Baker Cave in 1985 to mitigate looting. Excavations 

took place in two chambers designated Baker I and Baker III. Plew et al. (1987) report a 
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third chamber (Baker II) that lacked cultural materials and sediment. Baker I is a low 

hanging chamber roughly 3 m deep and 7 m wide. A basalt boulder and juniper branch 

wall partially blocked the Baker I entrance during the initial investigation (Plew et al. 

1987:13). Baker III consists of two connected chambers. The first chamber is 60 m by 9

m and contained the majority of cultural deposits, while the second chamber is roughly 6 

m by 100 m and contained little evidence for human activity (Plew et al. 1987:13). Boise 

State University and the BLM focused recovery efforts on Baker I and the first chamber 

of Baker III. They treated all sediments as a single component due to the minimal 

deposition (15 cm maximum). Most of these sediments were removed with brushes and 

passed through .3 cm mesh. They excavated all undisturbed sediments from Baker I and 

about 70 percent of Baker III.

Boise State University exposed several cultural features and sampled charcoal for 

radiocarbon dating. The features include three hearths in Baker I and III and an S shaped 

rock alignment in Baker III (Plew et al. 1987:21). The hearths contained floral and faunal 

materials. The hearths also produced five radiocarbon dates that suggest human activity

at cal A.D. 1042-1265 (Plew et al. 1987:22). Two obsidian hydration dates suggest a 

slightly different period of human activity spanning A.D. 459-659 and A.D. 606-736

(Plew et al. 1987:17). Plew et al. (1987) argue that the differences between results from 

each dating method indicate two separate occupations. However, they do not explore 

other explanations for these results. Regardless of the differences in dates, the age of the 

Wapi Lava Flow restricts the depositional history of Baker Cave to the most recent 2400 

years.
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The Baker Cave Archaeofauna: Natural and Cultural Formation Processes

We identified 18,860 specimens to 25 taxa (Table 3-1). Identifications were aided 

by a faunal reference collection housed at Utah State University and published guides 

(Broughton and Miller 2010; Brown and Gustafson 1979; Olsen 1964). Of these 

specimens, 15.24 percent were identified to genus (NISP = 2875), 1.73 percent to family 

(NISP = 327), 20.58 percent to order (NISP = 3882), 24.84 percent to class (NISP = 

4685), and 37.60 percent to unidentified vertebrate (NISP = 7091). 

We identified 591 specimens as Bison and an additional 179 specimens as “large 

bovid”. The “large bovid” taxon includes specimens that we could not positively identify 

as Bos or Bison with the criteria outlined by Balkwill and Cumbaa (1992). Distal right 

tibia represent a minimum of 37 individual bison. We identified another 3814 specimens 

as “large artiodactyl.” These specimens fall within the size range of elk (Cervus 

canadensis), moose (Alces alces), domestic cow (Bos taurus), and bison (Bison bison). 

Given a complete lack of any specimens identified to a large genera besides B. bison, we

treat all specimens identified to “large bovid” or “large artiodactyl” as bison for the 

remainder of the paper. 

In this section, we evaluate the processes that shaped this bison assemblage. We 

begin by describing the depositional history and demographics of the Baker Cave bison. 

We follow this with a discussion of the non-human taphonomic processes that acted on 

the Baker Cave archaeofauna. Finally, we investigate the role of fat seeking human 

behavior in shaping element frequencies, impact scar distributions, and fragmentation at 

the site.
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Table 3-1. Specimen Counts for Taxa Identified at Baker Cave.

Taxon NISP
Bison bison

adult 591
fetal 481

Large bovid 179
Large artiodactyl 3814
Odocoileus sp. 2
Antilocapra americana 1
Medium artiodactyl 12
Medium size mammal 176
Lepus sp. 945
Sylvilagus sp. 840
cf. Brachylagus idahoensis 13
Leporidae 125
Canis cf. latrans 5
Canis sp. 9
Small carnivore 6
Sciuridae 6
Rodentia 47
Small mammal 456
Unspecified mammal 4045
Aves 8
Colubridae 4
Unspecified small vertebrate 54
Unidentified vertebrate 7037
Margaritifera sp. 1
Unionoida 3
Total 18860

Bison Sex Ratios, Fetal Remains, and the Baker Cave Depositional History

Based on skeletal morphometrics (refer to Chapter 2), adult females dominate the 

Baker Cave bison assemblage. Distal humeri comprise the largest sample of completely 

fused elements with sufficient preservation for morphometric analysis (MNE = 11 left 
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and 12 right). These specimens represent at least 10 adult females and three adult males 

(Chapter 2). Analyses of several other skeletal elements likewise document a female 

dominated assemblage. Moreover, Baker Cave also contains a large assemblage of fetal 

bison remains (NISP = 431, MNI = 7) that is consistent with a female skewed sex 

distribution. 

Fetal bison size varies predictably with gestation length (Gogan et al. 2005), 

allowing for archaeological insight into the timing of prey acquisition and depositional 

history (e.g., McKee 1985; Wilson 1974). We investigated the depositional history of 

Baker Cave with a metric analysis of fetal bison humeri. We measured the minimum 

depth and minimum width of fetal humerus diaphyses at the mid-shaft. These metrics 

form two clusters and one outlier (Table 3-2; Figure 3-2), suggesting at least two 

depositional events. We refer to the cluster of larger specimens as Cluster 1 and the 

cluster of smaller specimens as Cluster 2.

To understand Baker Cave’s depositional history, we compare Clusters 1 and 2 to 

fetal bison humeri from other contexts. Frison et al. (1978:44) report a seven-month old 

fetal bison humerus diaphysis that measured a minimum of 13.5 mm deep and 13.0 mm 

wide. Frison et al. (1978:44) also report a neonatal bison humerus with a minimum 

diaphysis depth of 19.3 mm and a minimum diaphysis width of 17.10 mm. If these 

measurements represent a reasonable proxy for the broader trend in bison fetal 

development, an assumption made with all due caution given the comparative sample, 

then Baker Cave Cluster 1 humeri fall between these two sizes, suggesting that these 

fetuses are more than seven months old, but not full term. Assuming that conception 

occurred between mid-July and late August (Kirkpatrick et al. 1993), Cluster 1 is 
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Table 3-2. Fetal Humerus Metrics from Baker Cave.

Least depth of 
diaphysis (mm)

Least width of 
diaphysis 
(mm)ID Side

6122 R 8.9 7.9
631 R 11.0 11.0
5515 R 11.7 11.5
5944 L 11.9 10.8
3723 R 12.7 12.4
5494 R 15.8 14.9
492 R 16.8 15.3
3724 L 17.1 15.1

Figure 3-2. Bivariate plot of the least depth and least width of fetal humerus diaphyses. 
Open points represent left elements and closed points represent right elements.
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probably the result of a kill between mid-March and late April. Frison et al. (1978:44) 

also detail humerus metrics from three to six month old fetuses at Big Goose Creek, a

Great Plains site (minimum diaphysis depth = 5.2-12.7 mm; minimum diaphysis width = 

4.9-12.7 mm). Cluster 2 humeri overlap with the largest Big Goose Creek specimens, 

suggesting that they are about six months old. Assuming the same onset dates for 

pregnancy as we did for Cluster 1, Cluster 2 is probably the result of a mid-January to 

late February kill. The outlying humerus is likely an out of season fetus or the result of a 

mid-November to late January kill.

While it would be ideal to support this fetal evidence for season of death with 

molar eruption and wear pattern data, the dental sample at Baker Cave is frustratingly 

small. There are four left and two right mandibles with few articulated teeth, none of 

which contain complete dental rows. Fortunately, these fetal remains do provide some 

evidence for repeated subsistence activities in the mid- to late winter (and potentially the 

early spring), which falls within the seasonal period of fat depletion in bison. These 

animals may have been procured in as few as two organized events, or in several more 

small scale hunting events as archaeologists have argued was typical for the region 

(Butler 1978; Henrikson 2003, 2004, 2005; Plew and Sundell 2000). 

Non-Human Taphonomic Processes at Baker Cave

We observed several different non-human modifications to the Baker Cave bison 

remains. Canid ravaging was the most common. In addition to the presence of canid 

remains (NISP = 14), tooth furrows, tooth punctures, pitting, and crenulated margins 

characterize 7.24 percent (NISP = 332) of the bison specimens. Along with carnivores, 

rodents, weathering, and fire also played a small role in shaping the assemblage. One 
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percent (NISP = 46) of the bison remains display rodent gnawing, mostly on flat bones 

such as innominates and scapulae. A slight majority of the bison specimens display some 

physical deterioration in the form of cracking or flaking (NISP = 2515, 54.86 percent). A 

small portion of these specimens is weathered completely down to fibrous bone or is 

actively disintegrating (NISP = 97, .02 percent). This may be a result of freeze/thaw 

cycles or dessication (Miller 1987). Finally, 22.4 percent of the bison remains display 

burning (NISP = 1020, 22.40 percent) and only .65 percent (NISP = 30) are calcined. 

We used bone density data presented by Kreutzer (1992) to understand the effects 

of density mediated attrition on assemblage level patterns at Baker Cave. First, we 

converted observed scan site frequencies to %Survivorship values based on their 

anatomical distribution in a bison (sensu Lyman 1994:251). These values correlate 

weakly, but significantly, with volume mineral density (rs = .282, p = .005). We also 

evaluated the influence of density-mediated attrition on %MAU. To do so, we first 

averaged volume mineral densities across each element (e.g., for the femur, we average 

density values for scan sites FE1 through FE7). We then compared these averaged 

density values to %MAU, which produced a weakly positive yet insignificant correlation 

(Figure 3-3a; rs = .352, p = .092). The absence of some spongy grease rich portions, such 

as proximal humeri and both femoral ends, appears to drive this relationship. This 

observation is not surprising since canids frequently target these skeletal portions 

(Binford 1981:71-72, 74-75; Blumenschine and Marean 1993; Haynes 1980, 1983).

Transport Decisions and Skeletal Element Utility

We evaluate the transport decisions that conditioned the Baker Cave bison 

remains by comparing skeletal element frequencies (in this case, %MAU, as defined by 
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Binford 1978:69-72) with Emerson’s (1990:837-845) utility models for bison. Since 

carnivores likely deleted the ends of some long bones at Baker Cave, we evaluate human 

behavior at the scale of whole elements rather than element portions (sensu Metcalfe and 

Jones 1988). Consequently, we do not rely on epiphyses alone for long bone frequencies, 

reducing the effects of density-mediated attrition on interpretations of the Baker Cave 

skeletal profile (Marean and Frey 1997). Doing so requires some modification of 

Emerson’s (1990) utility values. In this case, we average the values for long bone 

proximal and distal halves and use these new values as estimates for the utility of 

complete long bones.

The Baker Cave %MAU values demonstrate that elements are not represented in 

proportion to their numbers in a complete bison (Table 3-3). To investigate how transport 

decisions might have conditioned element representation, we compare %MAU against 

models of intra-carcass nutritional variability1. We begin by comparing %MAU with the 

general caloric utility of elements to see if carcass portions were transported based on 

combined protein and fat utility. In this case, %MAU and generalized utility do not 

correlate (Figure 3-3b; rs = .132, p = .538), suggesting that generalized caloric utility did 

not condition %MAU. To further unpack this problem, we next compare %MAU with 

protein utility (Figure 3-3c). Protein utility also fails to predict %MAU (rs = -.062, p =

.785), suggesting that some other aspect of intra-carcass utility conditioned transport 

decisions. Skeletal fat content, however, strongly predicts %MAU (Figure 3-3d; rs =

.775, p < .001), suggesting that within-bone nutrients conditioned the transport of skeletal 

parts to Baker Cave. Comparisons of %MAU with bone grease (Figure 3-3e; rs = .740, p
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Figure 3-3. The relationship between Baker Cave %MAU and (a) bone density (Kreutzer 
1992),  as well as Emerson’s (1990) (b) Total Products Model, (c) Protein Model, (d) 
Skeletal Fat Model, (e) Bone Grease Model, and (f) Marrow Fat Model.
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Table 3-3. Baker Cave Bison Skeletal Profile with Skeletal Fat Utility, Bone Density, and
%IPE Values.

Note: Utility model data is from Emerson (1990) and bone density data is from Kreutzer (1992).

NISP MNE Skel. Impact scars
Element Axial L R U Axial L R U %MAU Density Fat n n/MNE %IPE
Cranium 83 4 11.59 1 0.25 12.50
Mandible 21 25 12 6 10 1 23.19 0.62 11 0.65 32.35
Hyoid 4 5 4 3 3.50 0 0.00 0.00
Atlas vert 1 1 2.90 0.59 1.60 0 0.00 0.00
Axis vert 6 4 11.59 0.47 1.10 0 0.00 0.00
Cerv vert 29 5 2.90 0.50 3.30 1 0.20 10.00
Thoracic 
vert

34 8 1.66 0.40 16.80 1 0.13 6.25

Lumbar vert 72 16 9.28 0.27 18.30 3 0.19 9.38
Rib 84 90 358 26 26 25 7.14 0.41 38.70 36 0.47 23.38
Sacrum 2 1 2.90 0.27 0 0.00 0.00
Caudal vert 3 3 1.74 0 0.00 0.00
Scapula 63 73 67 18 27 3 65.22 0.37 53.70 24 0.50 25.00
Humerus 60 75 23 22 26 2 69.57 0.36 86.40 78 1.56 92.86
Radius 85 62 8 30 27 82.61 0.49 63.25 34 0.60 35.51
Ulna 34 39 1 22 21 1 62.32 0.52 63.25 9 0.20 12.18
Ulnar carpal 12 8 10 8 26.1 0 0.00 0.00
Intermediate 
carpal

12 11 11 11 31.88 0.35 39.20 0 0.00 0.00

Radial 
carpal

10 7 9 7 23.2 0 0.00 0.00

2nd & 3rd 
carpal

8 2 7 2 13.0 0 0.00 0.00

Fourth 
carpal

7 2 7 2 13.0 0 0.00 0.00

Accessory 
carpal

6 1 6 1 10.1 0 0.00 0.00

Metacarpal 7 11 5 5 7 3 21.74 0.58 26.70 7 0.47 27.78
Innominate 18 25 4 9 11 1 28.99 0.41 70.60 7 0.33 16.67
Femur 38 33 43 12 6 7 36.23 0.33 100.00 42 1.68 100.00
Patella 6 7 6 7 18.8 0 0.00 0.00
Tibia 87 93 21 31 37 1 98.55 0.52 87.55 76 1.10 65.56
Astragalus 38 37 33 36 100.00 0.65 51.60 0 0.00 0.00
Calcaneus 39 41 31 34 94.20 0.60 4 0.06 3.08
Lateral 
malleolus

11 15 11 15 37.7 0 0.00 0.00

Central & 
4th tarsal

14 28 14 26 57.97 0.63 0 0.00 0.00

2nd & 3rd 
tarsal

12 19 12 19 44.93 0 0.00 0.00

Metatarsal 22 27 12 11 18 2 42.03 0.53 34.00 24 0.77 46.08
Proximal 
sesamoid

62 62 11.23 0 0.00 0.00

Distal 
sesamoid

41 41 14.86 0 0.00 0.00

1st Phalanx 23 20 7.25 0.47 23.50 0 0.00 0.00
2nd Phalanx 28 25 9.07 0.44 23.50 0 0.00 0.00
3rd Phalanx 25 24 9.07 0.32 23.50 0 0.00 0.00
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= .004) and marrow fat utility (Figure 3-3f; rs = .855, p < .001) result in similarly positive 

and significant relationships.

Bone grease and marrow fat utility, as components of skeletal fat utility, are 

strongly correlated (rs = .967, p < .001). This makes bone grease and marrow fat difficult 

to distinguish as independent variables driving transport decisions. Regardless, it is clear 

that skeletal fat likely conditioned the differential transport of elements to Baker Cave. 

Consequently, we consider skeletal fat utility in the following analyses of processing 

intensity. 

Processing Decisions and Skeletal Fat Utility

If skeletal fat differentially motivated transport decisions, then the Baker Cave 

bison bones should display modifications consistent with the extraction of this nutrient. 

We test this expectation by generating three datasets designed to measure processing 

intensity relative to skeletal fat value: Impacts per Element (%IPE), %Complete, and 

NISP/MNE. To calculate %IPE, we first recorded impact scars on bison specimens. 

These were identified as (1) conchoidal flake scars on the medullary walls of long bones 

and/or (2) depressions associated with radiating cracks. We normalized impact scar 

frequencies for each element by dividing the total number of impact scars recorded for 

each element by that bone’s MNE (Impacts/MNE). We then scaled each Impacts/MNE 

value to the highest Impacts/MNE value in the assemblage, and then multiplied these 

values by 100. This calculation results in a variable normalized to the same scale as 

%MAU (0-100 percent). 

Our study recorded 358 impact scars distributed over 2397 specimens (Table 3-3), 

and we use these data to calculate %IPE for the Baker Cave bison remains. If skeletal fat 
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conditioned the decision to transport a specific element, then we expect to see differential 

investment in processing effort as well. Fat-rich bones should display higher levels of 

processing intensity and, therefore, elements with higher skeletal fat values should 

display higher %IPE values. Our analysis suggests that this is indeed the case. A 

comparison of %IPE with skeletal fat utility produces a positive and significant 

relationship (Figure 3-4a; rs = .701, p = .001). We repeat the comparison with a smaller 

dataset consisting of only the marrow rich long bones to further test the strength of the 

relationship. This comparison also produces a positive and significant correlation 

between %IPE and skeletal fat utility (Figure 3-4b; rs = .916, p < .001), further 

underscoring the relationship between skeletal fat utility and processing intensity.

We complement %IPE with %Complete, a second measure designed to capture 

processing intensity. To calculate %Complete, we first measured the maximum length of 

all the long bone specimens identified to element. These include humeri, radii, 

metacarpals, femora, tibiae, metatarsals, and phalanges 1-3. We then calculated the mean 

maximum length for each element in the Baker Cave assemblage, including complete and 

fragmentary specimens (Table 3-4). Next, we calculated the mean length of complete 

long bones as measured from modern bison (Lewis et al. 2005; Todd 1983). Since we 

could not locate data on the mean length of complete modern bison phalanges, we used 

complete phalanges from Baker Cave to calculate these values. Finally, we divided the 

mean lengths of the Baker Cave long bone specimens by the mean lengths of the 

complete long bones. Multiplying these values by 100 generates %Complete values for 

each element. This calculation results in a value that captures the on-average level of 
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completeness relative to a whole element and provides a rough measure of fragmentation 

between elements, with higher values indicating less fragmentation.

If skeletal fat value mediated processing decisions, then fat-rich bones should 

display relatively high levels of fragmentation as measured by low %Complete values. 

To test this expectation, we compare %Complete with skeletal fat utility. As expected, 

the two measures correlate negatively and significantly, indicating that elements with 

higher skeletal fat utility also display more fragmentation (rs = -.892, p = .001). Visual 

inspection of the relationship between %Complete and skeletal fat value suggests that 

high levels of phalanx completeness may drive this negative correlation (Figure 3-4c). 

However, as shown in Figure 3-4d, even when we exclude phalanges from analysis, a 

linear relationship remains (rs = -.721, p = .068; the small sample size of seven elements 

is likely driving the lower significance value for this correlation).

We support the %Complete analysis with another measure of long bone 

fragmentation, NISP/MNE. NISP/MNE values increase with the amount of 

fragmentation, since more specimens should represent individual elements as they are 

subjected to increasing processing intensity (Lyman 1994:336-338). Skeletal fat utility 

does not predict NISP/MNE values across the entire bison carcass, probably because the 

axial skeleton is not generally processed for within bone nutrients (Figure 3-4e; rs = -

.238, p = .313). However, much like %Complete, skeletal fat utility strongly predicts the 

distribution of NISP/MNE across long bones (Figure 3-4f; rs = .954, p < .001). 
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Figure 3-4. The relationship between Emerson’s (1990) Skeletal Fat Model and (a) %IPE, 
(b) %IPE for long bones only, (c) %Complete for long bones, (d) %Complete for long 
bones minus phalanges, (e) NISP/MNE, and (f.) NISP/MNE for long bones only.
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Table 3-4. Bison Long Bone Fragmentation at Baker Cave.

Average Maximum 
Dimension (mm)

Skeletal 
Fat 

UtilityElement Baker Cave Complete %Complete NISP/MNE %IPE
Humerus 100.44 301.35 33.33 3.16 92.86 86.40
Radius 115.54 380.19 30.39 2.72 35.51 63.25
Metacarpal 90.39 208.70 43.31 1.53 27.78 26.70
Femur 88.71 391.80 22.64 4.56 100.00 100.00
Tibia 111.31 380.19 29.28 2.91 65.56 87.55
Metatarsal 80.63 254.93 31.63 1.97 46.08 34.00
Phalanx 1 60.86 73.34 82.98 1.15 0.00 23.50
Phalanx 2 46.32 49.83 92.96 1.12 0.00 23.50
Phalanx 3 57.24 64.80 88.34 1.04 0.00 23.50

Note: We calculated average values for complete humeri, radii, femora, and tibiae with 
data from Todd (1983). We calculated average values for complete metapodials with data 
from Lewis et al. (2005). We calculated average values for complete phalanges from 
complete Baker Cave specimens.

In sum, our results suggest that skeletal fat was a prime motivator behind both the 

transport of skeletal parts to Baker Cave and the way those elements were processed once 

there. Assemblage-level patterns in element representation, impact scar distribution, and 

fragmentation support this conclusion. Further, taphonomic processes do not appear to 

bias our results in a meaningful way. Combining this evidence for transport, processing, 

and seasonality, our analysis of the Baker Cave archaeofauna supports the hypothesis that 

fat seeking behavior was a response to winter fat scarcity.

Regional Trends in Transport and Processing Decisions

To provide a broader context for the transport and processing decisions at Baker 

Cave, we compare this bison assemblage to other archaeofaunas from the Great Plains 

and southern Idaho. The Great Plains’ well-documented record of bison exploitation 

makes this region ideal for putting assemblage level patterns at Baker Cave into a broader 
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behavioral context. We do not intend to exhaustively review Great Plains bison 

assemblages (see Kornfeld et al. 2010), but rather, with a four site sample, to demonstrate 

some regularity in assemblage level patterns resulting from similar subsistence behaviors.

Fat Utility and Great Plains Bison Assemblages

We compare Baker Cave to two other bison processing sites and two bison kill 

sites from the Great Plains. The processing sites include the Locality II Agate Basin 

component at Hell Gap (southeastern Wyoming; Byers 2001, 2002, 2009) and Spring 

Creek (southwestern Nebraska; Widga 2004). We selected these processing sites because 

the authors report data on fragmentation and impact scar distributions, allowing for the 

quantification of similarities with Baker Cave. The kill sites include Garnsey (southern 

New Mexico; Speth 1983) and the Waugh Site (northwestern Oklahoma; Hill and 

Hofman 1997). Garnsey is a late Holocene spring kill (Speth 1983). If skeletal fat utility 

in part conditioned the transport of elements away from Garnsey, then the resulting 

skeletal element profile should represent bison parts discarded in the field and, 

consequently, fail to correlate with the one from Baker Cave. Waugh represents an early 

Holocene kill that may have occurred during the fall rut (Hill and Hofman 1997). Hill and 

Hofman (1997) argue that element transport was unselective at Waugh. If so then the 

Waugh skeletal element profile should contrast with the one from Baker Cave as well. 

%MAU values from the Great Plains processing sites compare favorably to %MAU at 

Baker Cave. In this instance, Baker Cave correlates significantly and positively with 

%MAU at both Hell Gap (rs = .605, p < .001) and Spring Creek (rs = .714, p < .001). In 

contrast to the processing sites, we found no relationship between Baker Cave %MAU 

and %MAUs from either of the two kill sites (Garnsey: rs = .206, p = .214; the Waugh 
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Site: rs = -.011, p = .948), suggesting that similarities between Baker Cave and the 

processing sites are due to similarities in transport decisions. Do these similarities carry 

over into processing behavior as well?

Data from Hell Gap provide one opportunity to compare processing intensity at 

Baker Cave with that from another site. Byers (2001:81) provides %IPE (impacts/element 

in his paper) values for humeri, radii, metacarpals, femora, tibiae and metatarsals, 

allowing for comparisons with the patterns seen at Baker Cave. At Hell Gap, %IPE 

correlates with skeletal fat utility (Figure 3-5a; rs = .771, p = .072), although, statistical 

significance is weak in this case. Moreover, %IPE distributions for the Baker Cave and 

Hell Gap assemblages display a strong and significant relationship (rs = .943, p = .005). 

We also consider fragmentation at Hell Gap by calculating NISP/MNE values for that 

assemblage’s long bones. Much like Baker Cave, skeletal fat utility predicts 

fragmentation at Hell Gap (Figure 3-5b; rs = .917, p < .001). These impact scar and 

fragmentation patterns demonstrate that the patterns observed at Baker Cave are not 

unique. Unsurprisingly, Byers (2002) also argues that human modifications to the Hell 

Gap bison bones represent fat-seeking behaviors.

Spring Creek provides an additional example of how fat seeking behaviors can 

condition a faunal assemblage. We arrayed %MAU as reported by Widga (2004) against 

skeletal fat utility, and this comparison produced a positive and significant correlation (rs

= .662, p = .007). Widga (2004) also details impact scar distributions across elements. 

Like Baker Cave and Hell Gap, we use these impact scar distributions to construct %IPE 

values for Spring Creek long bones (Widga [2004] does not mention impact scars on 

phalanges, but he does detail cutmarks. We interpret this as a complete lack of impact 
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Figure 3-5. The relationship between Emerson’s (1990) Skeletal Fat Model and (a) %IPE 
at Hell Gap (Byers 2001), (b) NISP/MNE at Hell Gap (Byers 2001), (c) %IPE at Spring 
Creek (Widga 2004), and (d) NISP/MNE at Spring Creek (Widga 2004).

scars on phalanges). Once again, skeletal fat utility predicts the distribution of %IPE 

(Figure 3-5c; rs = .838, p = .002). NISP/MNE values also demonstrate that skeletal fat 

utility predicts fragmentation levels across long bones at Spring Creek (Figure 3-5d; rs =

.855, p = .002). Widga (2004) interprets Spring Creek as a secondary processing area 

where butchers extracted marrow and removed meat for transport elsewhere. This 

resembles “snack sites” reported in ethnoarchaeological studies of Hadza butchery (Bunn 

et al. 1988; O’Connell et al. 1988, 1992), where hunters consumed meat and marrow at or 

near kill sites before transporting meat back to a central consumption area.

Baker Cave, along with the Hell Gap and Spring Creek sites, demonstrates that 

impact scar distributions and fragmentation patterns that track fat utility often accompany 
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evidence for fat-seeking transport behavior. The processing decisions responsible for 

these patterns relate directly to within-bone nutrients and suggest that skeletal element 

profiles at consumption sites should primarily be understood in these terms (Brink 1997; 

Madrigal and Holt 2002; Marshall and Pilgrim 1991). Processing and transport behaviors 

centered on meat acquisition frequently treat bone as a low utility item to be discarded in 

the field. Therefore, understanding the contexts that make skeletal nutrients valuable is 

important for predicting when hunters transport bone back to consumption sites.

Fat Utility and Snake River Plain Bison Assemblages

Does Baker Cave reflect a general pattern of fat seeking behavior on the SRP? 

This question is difficult to answer since the region has produced few large bison 

assemblages and, to date, Baker Cave is the only large SRP bison assemblage to be 

analyzed in depth. Smaller collections of bison remains from lava caves across the 

eastern SRP allow us to explore the issue, albeit within a different archaeological context. 

Henrikson (2003) describes bison remains from three SRP lava caves: Bobcat Cave, 

Scaredy Cat Cave, and Tomcat Cave. Henrikson (2003) notes that these bison remains 

were cached in chambers that retain ice year round and they may have functioned as cold 

storage facilities. She suggests that these contexts represent a solution to fluctuating 

resource abundances that was employed by SRP foragers across much of the Holocene

(Henrikson 2003:283), although it is unknown what type of resource insecurity drove this 

storage strategy. 

These sites provide an opportunity to investigate the importance of skeletal fat to 

SRP foragers more broadly. Much like the patterns documented at Baker Cave, aspects of 

the cold storage assemblages point to a fat seeking strategy. For example, long bones 
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from these storage features often display green breaks suggestive of marrow and grease 

extraction (Henrikson 2003). Additionally, the relationship between skeletal element 

frequencies and skeletal fat utility at these caves hints at an emphasis on this nutrient. 

While several of these cold storage contexts are known, none has produced a large 

number of remains. However, if these sites represent a subsistence strategy spanning the 

middle and late Holocene, as Henrikson (2003) suggests, then aggregating their skeletal 

element profiles should reveal the general behavioral patterns behind them. Doing so 

produces a skeletal element profile that correlates positively and significantly with 

%MAU at Baker Cave (rs = .567, p = .027). Moreover, like Baker Cave, the aggregated 

cold storage cave %MAU also displays a positive and significant correlation with skeletal 

fat utility (rs = .726, p = .017)2.

Several cautionary notes are in order for this exploration of fat insecurity and 

bison storage. These three sites span the middle Holocene and originate from different 

spatial contexts. If they represent a general pattern of fat seeking behavior, it would have 

had to persist through the middle and late Holocene (beginning at least as early as 6000 

cal B.C.). Additionally, these faunas appear to result from small-scale hunting events 

rather than large time-averaged accumulations. Small synchronic assemblages such as 

these often reflect situational constraints on transport and processing (Lupo 2001), 

making them generally poor examples of broad trends in subsistence behavior. Therefore, 

we cannot be sure that this aggregated skeletal profile represents a region-wide trend. 

However, the strong similarity between the aggregated skeletal profile and Baker Cave, 

and the strong relationship between the aggregated skeletal profile and skeletal fat utility, 

suggests that these assemblages reflect a similar generalized response to similar 
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constraints. Although these caves lack data on procurement season, considering the 

strong similarities in skeletal part representation with Baker Cave and accompanying 

evidence for marrow extraction, we suspect that winter fat insecurity conditioned this 

storage strategy. 

Confirming a pattern of fat seeking behavior that persisted through the middle and 

late Holocene, and understanding how it might have varied, will require SRP 

archaeologists to study bison dominated archaeofaunas from other contexts. This is 

especially true in light of theoretical expectations that processing intensity should vary 

with resource abundance (Burger et al. 2005), which has been demonstrated in the 

neighboring Wyoming Basin (Smith et al. 2008). Considering well-documented 

fluctuations in artiodactyl abundances through the Holocene in western North America 

(Broughton et al. 2008; Byers and Broughton 2004; Byers and Smith 2007; Byers et al. 

2005), processing intensity likely varied with bison encounter rates on the SRP. 

Processed bison phalanges from the eastern SRP site 10BV93 (Miller 1990), dated to 

2934-2752 cal B.C. (Gough 1990), hint at more intensive processing earlier in the late 

Holocene. Documenting this variability will require similar studies with large 

archaeofaunas from sites such as Wasden (Butler 1968, 1978) and the Birch Creek 

Rockshelters (Swanson 1972). Additional work on smaller bison assemblages will also 

shed light on these patterns, as is suggested by Henrikson’s (1996, 2003) work on faunal 

storage features. 

Conclusions

When does transporting bone from a large carcass become a benefit rather than a 

burden? We approached this question with bison remains from Baker Cave, a late 
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Holocene processing site on the SRP. We hypothesized that winter fat scarcity raised the 

value of marrow and grease rich bone. Since fetal bison morphometrics suggest 

winter/early spring kills, we predicted that bison bones were transported to Baker Cave, 

and processed there in proportion to their fat utility. We tested this hypothesis with 

element frequencies, impact scar distributions, and fragmentation patterns. Our results 

suggest that hunters transported and processed these bones in accordance with their fat 

utility. Taken as a whole, this assemblage supports the hypothesis that hunters transported 

and processed the Baker Cave bison remains in response to winter fat scarcity. This not 

only underscores previous arguments for the importance of considering skeletal nutrients 

in zooarchaeology (Brink 1997; Madrigal and Holt 2002; Marshall and Pilgrim 1991), 

but also provides new insights into the seasonal determinants of subsistence behavior on 

the SRP.

At this point, we do not know how long this fat seeking adaptation existed on the 

SRP or if it varied through time. Cold storage caves located throughout the region 

suggest that as a generalized strategy, fat seeking behavior may have persisted for at least 

8000 years. However, the current sample is too small to confirm a long-term subsistence 

strategy. Theoretical expectations (Burger et al. 2005) and records from neighboring 

regions (Smith et al. 2008) further suggest that this behavior may have varied with the 

abundance of bison on the landscape. We aim to describe and explain this variability in 

future studies.
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Notes

1. We use Emerson’s (1990) bison nutritional models to understand transport and 

processing behaviors. For general utility, we compare our results with the Total Products 

Model. For protein utility, we compare our results with the Protein Model. We use the 
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Skeletal Fat Model to understand skeletal fat utility. Finally, we use the Bone Grease 

Model and the Marrow Fat Model to understand bone grease and marrow fat utility.

2. Henrikson (2003) reports MNE and MAU values for metapodials generally, but 

not metacarpals or metatarsals. To make this element class comparable to the Skeletal Fat 

Model, we averaged the utility values of metacarpals and metatarsals.
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CHAPTER 4

DISCUSSION AND CONCLUSIONS

These morphometric and zooarchaeological analyses shed light on late 

Holocene bison ecology and human subsistence on the Snake River Plain (SRP). 

Additionally, they point to new gaps that future research must fill. In this chapter, I 

discuss how these studies answer previous questions concerning paleoecology and 

archaeology on the SRP, as well as how each study raises new questions in these areas. I

begin with a discussion of bison diminution, and I follow this with a discussion of 

prehistoric subsistence in southern Idaho. 

The first article (Chapter 2) comprises one of very few studies examining bison 

diminution west of the Rocky Mountains. Therefore, it is a critical contribution to the 

documentation of this process. Prior investigations include Butler’s (1971; Butler et al. 

1971) examination of the Wasden bison and Lyman’s (2004) review of bison remains in 

eastern Washington. Only the latter study evaluates bison diminution with modern 

methods, while the morphometric profile of the Wasden bison is less clear in the context 

of recent studies on bison diminution. Lyman’s study documents a pattern of diminution 

similar to that recorded on the Great Plains by Hill et al. (2008), although there are large 

temporal gaps in the eastern Washington Record. Lyman (2004) points out that the 

eastern Washington pattern could have resulted from either in situ diminution west of the 

Rocky Mountains or from repeated migrations from a changing Great Plains bison 

population. He notes that if the second scenario is responsible for the eastern Washington 

pattern, southern Idaho might have served as a migration route between each region.
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This study corroborates the diminution trend documented on the Great Plains and

eastern Washington. Since these animals were present in both southern Idaho and eastern 

Washington during the same periods, it is plausible that the eastern Washington bison 

were migrants traveling across southern Idaho. However, unlike eastern Washington, 

bison do appear to have occupied southern Idaho through the entire Holocene (Plew 

2009). Therefore, in situ diminution is testable in southern Idaho, unlike in eastern 

Washington. However, confirming continuous diminution will require additional 

morphometric analyses of existing bison assemblages from the region. If paleoecologists 

document a continuous record of bison diminution in southern Idaho, then morphological 

trends in bison west of the Rocky Mountains may have occurred independently of 

diminution in Great Plains bison. Alternatively, diminution west of the Rocky Mountains 

may have resulted from a mixture of both Great Plains migrations and in situ diminution. 

Future research on bison diminution west of the Rocky Mountains must evaluate these 

alternative hypotheses.

This thesis also contributes significantly to knowledge of the prehistoric use of 

bison in southern Idaho. Prior to the second study (Chapter 3), little was known of bison 

exploitation in the region. Archaeologists typically agree that these animals were too 

infrequently encountered for regular large scale communal hunts (Butler 1978; Plew and 

Sundell 2000), although they were probably a preferred resource (Henrikson 2003, 2004, 

2005). Recent studies also demonstrate that people periodically stored these animals over 

the last 7000 years (Henrikson 1996, 2003). Henrikson (2003) notes that this storage 

strategy was probably a response to resource insecurity, although the type of resource 

insecurity driving this subsistence behavior is unknown. This phenomenon was probably 
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conditioned by the seasonal availability of resources, although evidence for the season of 

procurement and storage is lacking thus far (Henrikson 2003; Plew 2005).

To better understand prehistoric bison procurement in southern Idaho, I conducted 

a comprehensive analysis of the Baker Cave bison remains. This analysis tested 

predictions drawn from the hypothesis that hunters processed these animals in response to 

winter fat scarcity (which is a problem for many foragers living in temperate climates 

[Speth and Spielmann 1983]). The analysis demonstrated that bison body parts were 

transported back to Baker Cave, and processed at Baker Cave, in proportion to their 

skeletal fat utility. Although Baker Cave does not appear to have been a cold storage 

feature like those documented by Henrikson (1996, 2003), it does contain evidence for a 

response to resource insecurity. Importantly, it contains evidence for a specific type of 

resource insecurity tied to seasonal fluctuations in resource quality.

The comparison between Baker Cave and the cold storage features suggests that 

all of these sites represent a generalized subsistence strategy for resolving winter fat 

scarcity. However, it should be cautioned that these cold storage features currently lack 

evidence for winter procurement. This generalized strategy is currently supported by one 

line of evidence, element frequencies. This hypothesized fat seeking strategy requires 

further lines of supporting evidence. This evidence could take the form of impact scar 

distributions and fragmentation patterns that indicate fat seeking processing decisions. It 

could also take the form of data that indicate winter procurement, such as fetal bison 

remains or patterns in bison molar eruption and wear. Until these data are available, this 

hypothesis will remain tentative.
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Finally, the second article (Chapter 3) further supports an argument made by 

zooarchaeologists interested in big game hunting: bones at secondary processing and 

consumption sites should be understood primarily in terms of their skeletal nutritional 

value, rather than the the nutritional value of meat attached to them (Brink 1997; 

Madrigal and Holt 2002; Marshall and Pilgram 1991). The Baker Cave bison remains 

were clearly utilized independently of the meat attached to them. Since experienced 

butchers can easily strip the meat from many bones (Bunn et al. 1988; O’Connell et al. 

1988, 1992), it is unclear if bones at consumption areas can reveal anything about protein 

considerations. More often than not, these bones probably indicate situations where 

marrow and grease were highly valued resources. When within bone nutrients were not in 

demand, zooarchaeologists should not necessarily expect large game exploitation to be 

represented by bone material at consumption areas. This study provides an example of 

when archaeologists should expect to encounter these situations.  
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