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Abstract

Extensions of High-order Flux Correction Methods to Flows with Source Terms at Low Speeds

by

Jonathan L. Thorne, Master of Science

Utah State University, 2015

Major Professor: Dr. Aaron Katz
Department: Mechanical and Aerospace Engineering

A novel high-order finite volume scheme using flux correction methods in conjunction with

structured finite difference schemes is extended to low Mach and incompressible flows on strand

grids. Flux correction achieves high-order by explicitly canceling low-order truncation error terms

in the finite volume cell. The flux correction method is applied in unstructured layers of the strand

grid. The layers are then coupled together using a source term containing the derivatives in the strand

direction. Proper source term discretization is verified. Strand-direction derivatives are obtained by

using summation-by-parts operators for the first and second derivatives. A preconditioner is used

to extend the method to low Mach and incompressible flows. We further extend the method to

turbulent flows with the Spalart Allmaras model. We verify high-order accuracy via the method

of manufactured solutions, method of exact solutions, and physical problems. Results obtained

compare well to analytical solutions, numerical studies, and experimental data. It is foreseen that

future application in the Naval field will be possible.

(100 pages)
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Public Abstract

Extensions of High-order Flux Correction Methods to Flows with Source Terms at Low Speeds

by

Jonathan L. Thorne, Master of Science

Utah State University, 2015

Major Professor: Dr. Aaron Katz
Department: Mechanical and Aerospace Engineering

Computational Fluid Dynamics (CFD) is an attempt to mimic the physical world of fluids around

us. In general, CFD simulations are completed by first making a mesh. Meshes are made of poly-

gons that are arranged in such a way as to create the item in question and the fluid around it. There

are many difficulties associated with mesh generation, and it can take days or weeks for a trained

professional to produce adequate meshes. The CFD algorithms affect the accuracy of the simu-

lation. Using high-order methods, more accurate results can be achieved than otherwise possible.

Flux correction (FC) is a high-order method that uses a simple correction term, upgrading low-

order methods to high-order. Some fluids, such as air, are compressible, meaning the density can

be changed following a set of relationships between pressure and temperature. Other fluids, such as

water, can be considered incompressible, where they do not change density to any large extent. Us-

ing a mathematical method called preconditioning, FC has been extended to incompressible flows.

Before this can be used generally, it must pass verification and validation tests. Verification test

show that the method is working how it should, usually these tests have little to no meaning in the

real world. Validation tests show that real world physics can be mimicked. These tests usually

are real world problems that have solutions that are either analytical, experimental, or produced by

other verified CFD programs. In this work specifics of CFD, meshing, FC, and preconditioning will

be explained, and verification and validation will be completed.
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Chapter 1

Introduction

Computational Fluid Dynamics (CFD) is a quickly expanding field. As computational tools

increase in performance and ability, so does the complexity of the problems that are evaluated with

CFD tools. Simulations including compressible and incompressible regions, viscosity, turbulence,

chemical reactions, and complex geometries are becoming more and more common in industry.

Current issues in the CFD community are high-order mesh generation, the need for high-order

solution methods, and overall method scalability for large multiprocessor simulations. Each issue

has many complexities that need to be addressed to find a solution.

First, high-order mesh generation has an increasing need for automation. High-order meshes

tend to be difficult to generate, but resolve the meshed geometry much more accurately then standard

mesh procedures do. This issue has been brought up by Wang as one of the most pressing issues

facing modern CFD [1]. Many mesh generation experts need to take days or even weeks to generate

a sufficient mesh to achieve the accuracy needed. Often solutions must be run on a mesh, then

re-evaluated to see if the mesh quality was sufficient or if further mesh refinement is needed. Better

methods of automatic mesh generation are needed to alleviate these tasks.

Second, there are limitations of currently widely used low-order methods on providing ade-

quate solutions on complex unstructured meshes. Research in the use of high-order methods has

increased due to the need of providing better results, however, many current CFD users continue

the use of second-order or lower methods. This is mainly due to their availability, ease of applica-

tion, and general stability. Use of low-order methods is sometimes sufficient for the problem being

solved. However, the simulation’s complexities are often hidden due to reduced accuracy, leading

to incorrect results. In addition, many high-order methods are still not up to the production stage,or

generally stable, reliably converge, time efficient, and capable of solving most simulations. Because

of these reasons, many practitioners still resort to the lower-order methods.
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Finally, as CFD simulations continue to increase in size and be spread across larger numbers of

processors, the need for scalability becomes clear. Scalability must not only be applied to meshes,

but also to the solution methods being used. Limiting the information that must be shared between

processing units greatly increases speed and efficiency. However, current common meshing tech-

niques require large amounts of information to be shared among processors, reducing computational

power and efficiency.

Many of these problems can be alleviated using strand grids [2, 3]. Strand grids are produced

using a surface tessellation of the body. Strands are then emanated off of the body in the normal

direction. Along each strand, nodes are placed using a structured distribution. This creates a se-

ries of unstructured meshes combined by structured strands. Along the strands a finite difference

method can be used, and along the unstructured layers a finite volume or other solution method

is used. Strands are then smoothed or clipped to ensure that the strands do not cross, generating

poor geometries. The advantage of this is many cad packages in use allow for surface tessellation

where the user can specify the quality of the mesh. Because arbitrary polygons can be used for the

surface tessellation, this is also effective in generating high-order meshes. In addition, meshes are

easily automatically generated, increasing the speed in which meshes can be created and used. The

structured distribution allows for great domain connectivity advantages in where each processor can

have access to the entire computational domain with little need for cross processor communication.

Flux correction (FC), developed by Katz and Sankaran [4], can provide high-order results with

little addition to current low-order methods. FC was developed based off of truncation error analysis

on the second-order Galerkin method. The result is a formally third-order method on arbitrary grids

in multiple dimensions [5]. Because FC is an extension of a previously widely used method, other

techniques, such as limiters and preconditioning schemes, can continue to be used, but the solution

will be upgraded to high-order. Currently FC has been developed for the compressible Euler and

Navier-Stokes equations [5]. Because of its ability to maintain high-order on arbitrary grids, FC

makes a good candidate for solving along strand grids in the unstructured directions.

Strand grids and FC require proper source term discretization or treatment to ensure solution

accuracy. Much like other numerical methods, source terms can be changed to incorporate trunca-
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tion error. However, this truncation error introduced into the equation can be removed by combining

it with the truncation error of the flux. An example of this is shown in Appendix A. Proper source

terms ensure that the order of accuracy of the method isn’t spoiled. Effects of improper source term

discretization can reduce the order of accuracy of the solution, and possibly provide inaccurate so-

lutions. Often these source terms are non-intuitive and can be as complex, or more complex, then

the derivative terms [6–8].

Any compressible method, such as FC, can be extended incompressible flow by the addition of

a preconditioner. Preconditioning works by solving the eigenvalue disparities of the finite volume

scheme at low-Mach regions. In other works, it reduces the “stiffness” of the equations, making

them simpler to solve for the specific flow. Preconditioning aids in solution convergence as well. It

can also be used to introduce the artificial compressibility coefficient developed by Chorin [9]. Pre-

conditioning is applied in the work by using an extension of the arbitrary equation of state precondi-

tioning scheme developed by Merkle [10], as well as using cutoff methods developed by Darmofal

and Siu [11] and Venkateswaran and Merkle [12].

By using a combination of these methods, many of the difficulties facing modern CFD methods

can be addressed. This leads to the main objective of this work, to extend the applicability of

high-order methods, specifically FC. Currently, FC has been limited by not being in a completely

production ready state, meaning that it has yet to be applied to many potential simulations, such

as incompressible flow. The main advantage of FC over other high-order methods is due to the

ability of FC to obtain high-order with a simple correction term to the fluxes. This is advantageous

because the basic method that FC is based off of is already in wide use in industry. Many of the same

methods used, such as preconditioning and limiters, that are used in current industry applications can

be applied to FC as well. Extension of FC to the incompressible flow equations and use of strand

grid methods will greatly increase the usability of the high-order method. To achieve this, first,

source term discretion must be understood. Next, the application of a preconditioner will extend

the method to the incompressible domain. The result will be a more efficient method developed for

high-order results in the incompressible domain.

In the following section we will survey the current literature that has been presented on topics
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that will be addressed in this work. Extra attention will be given to methods used in the preceding

two chapters. After the literature survey, the objectives of this work will be outlined followed by two

works developed by the author for publication. At the time of writing the first publication, “Source

Term Discretization Effects on the Accuracy of Finite Volume Schemes,” has been submitted to the

Journal of Scientific Computing, and the second publication, “High-order Strand Grid Methods for

Low Mach and Incompressible Flows” is targeted to be submitted to the International Journal for

Numerical Methods in Fluids.

1.1 Literature Survey

1.1.1 Strand Meshing Methods

Strand mesh methods show potential for providing a solution to some of the most difficult

problems facing modern CFD. As simulations continue to become larger and increase in complexity,

mesh generation consumes more time. Currently it takes mesh experts days or weeks to generate

an acceptable unstructured mesh quality. In addition, generation of high-order meshes has been

proven to be ever more difficult as well. This has been mentioned as one of the most difficult issues

still facing high-order methods’ widespread application [1]. Strand methods provide the ability for

automatic mesh generation that will greatly reduce the time needed to provide acceptable solutions.

To develop strand meshes, first the surface is tessellated. This tessellation can be triangles,

quadrilaterals, or any other arbitrary polygon. Because the surface tessellation can be any arbitrary

polygon, high-order meshes can be generated. High-order meshes better represent the body that is

tessellated. For example in Figure 1.1 we see two strand meshes around a circle. Both represent the

same number of unknowns at each node, however, the low-order mesh clips into the body, where

the high-order mesh closely follows the surface.

Next, strands are emanated along normal vectors of the nodes of the polygons. These are then

smoothed to ensure they do not cross in concave geometries or leave regions of sparse grids in

convex geometries. Often times complexities with concave geometries and sharp corners can be

alleviated with the combination of strand clipping and smoothing [2]. Nodes are then placed on the

emanating strands. These nodes are commonly spaced using a hyperbolic tangent method as used by
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Fig. 1.1: Example of Low and High-order Strand Meshes

Katz et al. [3]. The spacing of the nodes is usually dependent on the Reynolds number, for example

ensuring a proper mesh spacing perimeter of y+ = 1. This provides a one-dimensional structured

distribution of nodes. Each level of nodes is connected to generate a complete surface mesh rep-

resentation. Thus a three-dimensional simulation is reduced into a collection of two-dimensional

simulations connected via source terms.

Strand methods also provide an advantage in memory storage and multi-processor applications.

Because the meshes can be broken down into separate surfaces, each processor can have a copy of

the entire global mesh, ensuring self-satisfying domain connectivity [13]. This is especially useful

in moving mesh applications and large multi-processor solutions that are becoming increasingly

more common as industry continues to expand into high-performance computing [4].

1.1.2 High-order Methods

A large amount of development in current research has been to improve high-order methods.

High-order methods are defined as any solution method that reduces solution error by more than

1/4 for every time the mesh spacing is reduced by half. High-order methods are needed in many

cases, such as vortex driven flow and acoustics. In such flows, second-order methods have been

shown to be too dissipative and ineffective in capturing the complexity needed for analysis. Wang

recently provided an overview of current high-order methods used in research [14], and collaborated

with other experts in comparing efficiency of different methods [1]. Vincent and Jameson also have
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recently provided overviews of the practical use of high-order methods [15, 16]. An exhaustive

overview of high-order methods is beyond the extent of this work, however a general overview of

the field will be included as well as a brief background on FC.

General Overview

High-order methods are diverse, however, most high-order methods can be placed into one of

three groups.

First, finite volume (FV) methods. It is common to break down FV into four distinct steps.

First, the selected region is discretized into smaller regions. Next, the governing equations are

integrated over all of the finite control volumes of the domain. Then, the resulting integration

equations are discretized into a system of algebraic equations. Finally, the solution of the algebraic

equations is achieved by use of an iterative method [17]. Among the methods of FV, some of the

main high-order methods are K-Exact (k-E) [18,19] and Essentially Non-Oscillatory and Weighted

Essentially Non-Oscillatory (ENO/WENO) [20–22].

Next, finite element (FE) methods. First, the domain is discretized into smaller areas called

‘elements.’ This is much like the FV methods. The FE method uses a polynomial to approximate

the solution inside the elements. Because of this, the order of accuracy is determined by the order of

the polynomial used. Hence, the order of these polynomials must be determined prior to solving the

Partial Differential Equation (PDE). Then the solution uses an iterative approach to find a solution

to the integral form of the PDE [23]. Continuous Galerkin (CG) [24] and Discontinuous Galerkin

(DG) [22] methods are high-order FE methods commonly used in research.

The final group is created by using a mixture of FE and FV methodology and ideas. These

methods include Spectral Volume methods (SV) [25], Spectral Difference Methods (SD) [26], and

Flux Reconstruction (FR) [27].

Flux Correction

Developed by Katz and Sankaran [4], and later extended to the Navier-Stokes equations [5],

FC takes traditional FV methodology and incorporates truncation error analysis to improve the

solution. The improvements can be added to commonly used methods, such as the second-order
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Galerkin method, and upgrades them to high-order. Thus many methods developed for low-order

methods, such as limiters and preconditioners, can be applied to FC as well. Unlike other methods,

the order of accuracy is dependent on the accuracy of the gradient approximations.

1.1.3 Source Terms

Source terms are commonplace in CFD in both verification and real life solutions. Source terms

are found in such equations as quasi-one-dimensional flow, MMS, shallow water, turbulence, and

reactive flows to name a few. As an example of source terms, we can examine the one-dimensional

heat equation,

qt − kqxx = f (x, t) ,

where q is the heat and f is an arbitrary source term. This could represent a heat addition in the

center of a bar, for example. Mainly, what a source term can be defined as is an effect that makes the

partial differential equation no longer homogeneous. Discretization of source terms is dependent

on the solution method that will be used in addition to it. While in this work we focus mainly on

spatial discretization, coupled space-time schemes have been developed as well, such as those by

Toro and Titarev [28,29] and Dumbser et al. [30]. In addition, it has been shown to be advantageous

at times to include an upwinding treatment as well to the source terms, such as has been done for

shallow water equations [31–33]. These ideas are developed to create well-balanced schemes, and

often require modifications to the approximate Riemann solvers for hyperbolic systems [34–39].

The overall goal of source term discretization is to reduce error and produce adequate solutions.

One method that we employ in this work to discover how source terms do this is through truncation

error analysis. In this work we will use truncation error analysis to determine the ‘correctness’ of a

source term with a specified flux discretization method.

1.1.4 Preconditioning

Preconditioning is used to reduce the stiffness of PDEs. This is completed by modifications

to the eigenvalues of the equations. For example, for the Euler equations it can be found that the

eigenvalues are based off of the wave speeds and the particle velocity. For flows that approach
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Mach = 0 the eigenvalues create large disparities. To counteract this, a preconditioning scheme

is added to reduce this disparity. Preconditioners have been shown to also increase convergence

rates. Next we will give a general overview of basic preconditioning techniques, followed by a

more optimized version that will be implemented.

General Overview

For a general overview of preconditioning techniques, we will be following the description

used by Turkel [40]. Generally, preconditioning is used in one of two ways. The first way is in a

global sense, the second way is in a local sense. To aid in the discussion, we will first observe the

equation

ΓAv = ΓS, (1.1)

where Γ is the preconditioning matrix, A is the discretization, v is the conserved variables, and S is

the source term.

Because of the need to frequently invert the preconditioning matrix, it is advantageous to

choose a matrix that is easily invertible. From this several ideas have been presented, first, cre-

ate a preconditioning matrix that only has values on its diagonal. The advantage of this is the ease

of invertibility and the fact that it only affects a single point. This type of preconditioning is com-

monly referred to as a Jacobi preconditioner and is mainly used to increase convergence rates. Next,

the choice of the preconditioning matrix, or the inverse of the preconditioning matrix, has non-zero

elements in the same positions as the non-zero elements of the discretization matrix. Finally, ones

that don’t fit in either category. These are generally global preconditioners, or preconditioners that

affect the entire solution rather than a point by point solution.

These preconditioning matrices are developed with one of two main ideas in mind. First,

base the preconditioner on a simpler set of equations. Second, the preconditioner is based off of

the algebraic properties of the discretization matrix without account of the connection between the

discretization and the differential equation being solved. This second method often leads to a global

preconditioning scheme.

Because of the many different ideas behind preconditioning, there exist many different schemes,
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each having its advantages and disadvantages. In general, a preconditioning matrix takes the form

of

Γ =



1
β 2 0 0 δ

αu
aβ 2 1 0 0

αv
aβ 2 0 1 0

0 0 0 1


, Γ

−1 =



β 2 0 0 −β 2δ

−αu
a 1 0 αu

a δ

−αv
a 0 1 αv

a δ

0 0 0 1


, (1.2)

where β , α , and δ are parameters to be chosen, u and v are velocity in the x and y direction re-

spectively, and a is a constant. In order to achieve a bounded answer as Mach approaches zero, it is

necessary to choose β proportional to the Mach number [40].

From Equation 1.2 we can derive the preconditioning matrices defined by Choi and Merkle [41]

where α = 0 and δ = 1. This has the disadvantage that it has a discontinuity at β = 1. Weiss and

Smith suggested a preconditioner where α = 0 and δ = 0 [42]. Finally, Merkle later suggested a

preconditioner that depends on the local Reynolds number Re∆ and Prandtl number Pr [10]. This

formulation, however, does not match the general scheme presented in Equation 1.2.

One challenge of preconditioning is that all preconditioners tend to become singular near stag-

nation points or as Mach approaches zero in the boundary layer [43]. Because of this difficulty,

many preconditioners must be reduced or removed in the boundary layer and near stagnation points.

Terkel suggested that this cutoff should be global, however this presents difficulties in the defini-

tion of the reference Mach number and what constant to use to properly define the cut-off [44].

Darmofal and Siu suggested a different approach of determining the cut-off based on pressure

gradients [11]. Their approach does account for stagnation points, however, it introduces a vari-

able to ensure proper cut-off that can be problem dependent and possibly decrease convergence.

Venkateswaran and Merkle also defined a cut-off method for the Navier-Stokes equations that is

dependent on the viscosity [12].

Optimization

For use in this work we modify the preconditioning scheme of arbitrary equation of states pre-

sented by Merkle [10] that includes the artificial compressibility constant developed by Chorin [9].

We also include the pressure dependent cut-off ratio presented by Darmofal and Siu [11]. The dif-
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ference of this optimal method is that it is dependent on the optimal definition of the preconditioning

Mach number and a preconditioned velocity term. The preconditioned velocity term is defined as

Vp = min

(
max

(√
u2 + v2,

√
|∆p|

ρ
,

νt

∆x

)
,c

)
, (1.3)

where p is the pressure, ρ is the density, νt is the turbulent viscosity term, and c is the speed of sound.

This preconditioned velocity contains the cut-off ratio defined by Darmofal and Siu [11] as well as

the boundary layer cut-off for the viscous Navier-Stokes equations defined by Venkateswaran and

Merkle [12].

From Equation 1.3, β in Equation 1.2 is defined. Using a common method used by other

researchers [43] we define the preconditioning upper cut-off as Mach = .5. This ensures that pre-

conditioning does not ruin the solution around the sonic point, or when Mach approaches one.

Using this more optimal definition of preconditioning, the preconditioner should be more stable

and applicable over a larger range. This preconditioner also has the advantage that it can easily be

extended to multiple types of other equations of state. Preconditioners can also include the artificial

compressibility term, used to relax the equations being solved for high eigenvalue disparity regions,

thus extend compressible solvers to the incompressible domain.

1.1.5 Turbulence

Turbulence modelling is a large field in CFD. Because of the complexities in modelling a

turbulent boundary layer, many different ideas and methodologies have been introduced to achieve

accurate results. The best turbulence model often is determined on a problem by problem basis.

Here a general overview of different groups of turbulence models will be discussed following the

description of Versteeg and Malalasekera [17]. Spalart-Allmaras (SA) turbulence model that is used

in this work [45] will be discussed afterwards.

General Overview

One of the more common methods of turbulence models is using the Reynolds averaged

Navier-Stokes (RANS) equations. The RANS methods depend on an assumption that the turbu-



11

lent values fluctuate around a mean value. Before solving, the Navier-Stokes equations are time

averaged. Because of this, extra terms are introduced in the flow equations due to the interaction

between various turbulent fluctuations. These extra variables are then modelled separately. This

methodology includes the k-ε and the Reynolds Stress methods. Using this assumption computa-

tional cost can be greatly reduced.

Next, large eddy simulation (LES). With LES the mesh size is greatly reduced in the boundary

layer with attempt of more accurately modelling turbulent flow. The mesh size is reduced such that

large eddies are captured, meanwhile, small eddies are rejected. To achieve this, a space filtering of

the unsteady Navier-Stokes equations is used prior to the computations. The smallest eddies are then

included using a sub-grid scale model. This method requires the unsteady Navier-Stokes equations

to be solved, so computational costs are higher than the RANS methods. LES is commonly used for

determining boundary layers on complex geometries because of its ability to resolve the boundary

layer eddies to a better extent.

Direct numerical simulation (DNS) is the most accurate and most time-consuming method.

The goal of DNS is to capture the mean velocity values and all turbulent velocity fluctuations. The

unsteady Navier-Stokes equations are solved on a spatial grid small enough to capture all eddies

with a time step small enough to model the fastest fluctuations. This method is highly expensive

computationally. Because of this, this method is not commonly used in industry.

Spalart-Allmaras Model

The Spalart-Allmaras (SA) turbulence model is an improvement on the k− ε mode [17, 45].

The goal of SA is to reduce the two-equation model into a single equation. This is completed by use

of a user defined length scale. This definition has both advantages and disadvantages. The advantage

is that this provides a computationally efficient method where only one equation is included to solve

for the turbulent viscosity. The disadvantage is, for complex geometries, it is often difficult to define

a length scale. SA has been shown to be advantageous in airfoil applications and in flows with

adverse pressure gradients, such as a stalled airfoil [17].

There have been few changes in the last years since the turbulence model was introduced [45].
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Comparisons between models and the continued applicability of SA was discussed by Spalart [46]

in 2000. In addition, work has been done by Allmaras et al. in extending the flow to produce better

results for under-resolved grids [47].

1.2 Overview

The following chapters contain two publications discussing FC in connection with source

terms, strand grids and preconditioning. In each chapter an introduction is included to provide the

reader with relevant background in the subject discussed in the chapter. Each chapter also contains

results and conclusions on the research described therein. The first chapter discusses the necessity

of proper source term treatment. In Chapter two a preconditioning treatment is discussed, extending

the usability of FC and strand grids to low-Mach and incompressible flows. Finally, conclusions on

the overall research will be covered as well as future research directions.
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Chapter 2
Source Term Discretization Effects on the Accuracy of Finite Volume

Schemes1

Jonathan Thorne, Aaron Katz2

2.1 Introduction

Computational Fluid Dynamics (CFD) has found many areas of application in modern engi-

neering. Currently, CFD is used for calculating complex flow problems with such features as com-

pressibility, viscosity, turbulence, and chemical reactions. Many of these features are mathemati-

cally represented by source terms appearing in the governing partial differential equations (PDE).

These source terms are often as complex or more complex in nature than derivative terms [6–8]

and sometimes require specialized treatment to ensure accurate and stable discretizations [30, 34].

Importantly, source terms also appear in code verification via the method of manufactured solu-

tions (MMS) [48, 49]. Because source terms comprise an essential role in so many applications,

and because of the widespread use of finite volume schemes for CFD, it is crucial to understand

the compatibility of source discretization schemes with respect to the other aspects of finite volume

(FV) discretizations.

In this paper, we employ MMS to explore the compatibility of various source term discretiza-

tion schemes with various FV flux schemes. However, to verify the order of accuracy of the FV

flux schemes alone, with no source terms, we first use the method of exact solutions (MES). The

primary purpose of MES in this work is to create a baseline expectation of accuracy. In this way,

we are able to directly measure the impact on accuracy of choosing one source term discretization

over another. We should note that our past work has made extensive use of both MES and MMS

to verify the FV flux methodology discussed in this work, and we refer the reader to that work [4].

1Submitted to the Journal of Scientific Computing
2Associate Professor, Department of Mechanical and Aerospace Engineering, Utah State University, Logan, UT
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We also note that the conclusions drawn in this work stem mainly from observations using MMS

because we can ensure that all terms in the governing PDE are exercised, including flux and source

terms [49–52].

Because of our reliance on MMS, we briefly review the background of the approach. In short,

MMS is the process whereby a solution to a PDE is created a priori followed by the addition of a

source term which forces the chosen solution to satisfy the PDE (with added source term). Roache

provides examples of MMS source terms for several different equation sets [49]. Often, MMS

is used in conjunction with a grid refinement study to find the order of accuracy of a particular

discretization scheme [49, 51], but it can also be used to understand other effects, such as mesh

quality [53, 54], boundary treatments [55], and other mesh features [2]. In the context of an order

of accuracy study, if the computed order of accuracy using MMS (with source terms) matches the

order of accuracy using MES (without source terms) for a particular FV discretization, then it can

be concluded that the particular source term discretization is compatible. Therefore, MMS provides

a convenient way to identify compatible source term discretization schemes. These results hold not

only for source terms generated by the MMS procedure, but also extend to source terms representing

physical behavior, such as in turbulent or reacting flows.

The general philosophy we adopt to determine compatibility is to identify the simplest source

treatment that preserves accuracy. As we discuss in this work, some source term treatments are non-

intuitive. But if a source treatment lacks the required sophistication, then lower order results will

inevitably be observed in the grid refinement study, regardless of the sophistication of the overall FV

flux scheme. On the other hand, if the source term is unnecessarily sophisticated then the method

will require unnecessary computation time. Thus, the simplest source discretization that preserves

accuracy is desired.

While the main objective of this paper is to identify compatible source term discretizations

for FV schemes, a secondary objective is to examine a relatively new third-order FV flux scheme,

known as flux correction (FC), first developed by Katz and Sankaran [4]. This scheme has been

shown to obtain third-order accuracy for general non-linear hyperbolic systems of equations, on

arbitrary triangular grids. Remarkably, the FC scheme provides increased accuracy without the need
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for flux quadrature or second derivatives in the reconstruction procedure, such as is needed in other

high-order schemes [5, 56]. In this work, we focus on obtaining compatible source discretizations

for the FC scheme.

While focusing on compatibility in terms of spatial truncation error for FV schemes, we also

acknowledge other important contributions dealing with source term treatments in CFD. In par-

ticular, it may be advantageous to consider coupled space-time approaches, such as those of Toro

and Titarev [28, 29] and Dumbser et al. [30], which make use of high-order numerical integration

of source terms in space and time. Also, other works highlight the need for upwind treatments of

source terms for certain equations, such as the shallow water equations [31–33]. These ideas are

related to the notion of well-balanced schemes involving modifications to approximate Riemann

solvers for hyperbolic systems with source terms [34, 57–61]. While the scope of this paper does

not include these concepts directly, future work will focus on understanding our methods in these

contexts as well.

The paper is outlined as follows: first, we present three FV flux schemes with their truncation

error analysis: constant reconstruction, linear reconstruction, and a third-order FC scheme. Next,

three candidate source term discretizations are explored with their corresponding truncation error

analysis: point, Galerkin, and a new corrected scheme designed for compatibility with the third-

order FC scheme. Then we show the truncation error analysis with combinations of flux and source

schemes. Following this, several computational studies are presented using MES (Ringleb flow),

MMS, and quasi-one-dimensional flow containing source terms. Finally, conclusions are drawn

regarding the compatibility of each source term discretization with each flux scheme.

2.2 Finite Volume Flux Schemes

We first discuss three different flux schemes based on the finite volume method, wherein the

i

i+1

0

i−1

Fig. 2.1: Node-centered finite volume
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Fig. 2.2: Node-centered grid in one dimension

domain is broken into a number of small volumes or elements. Here, we focus on node-centered

volumes, while other configurations based on cell-centered or hybrid schemes are certainly possible.

An example of a node-centered FV can be seen in Figure 2.1, where the flux is calculated across

the dashed lines representing the median-dual edges of the cell. These dashed lines enclose a small

FV with center point 0, surrounded by a number of nearest neighbors, i. The complete derivation

of many of the discretization schemes used in this work are found elsewhere [4, 62], but a brief

derivation will be given in this section. In addition, truncation error will be calculated to predict the

solution error of the schemes. Truncation error will be completed in one-dimension for the constant

and linear schemes, and both one and multiple dimensions for the FC method.

We first consider a one dimensional wave equation of the following form,

Qt +Fx = S (x) , (2.1)

where Q represents the conserved solution variables, F is the one-dimensional flux term, and S(x)

is a known source term discretization on a finite set of node-centered cells in one dimension, shown

in Figure 2.2. With this discretization we can define the following mesh spacings:

∆xi =
1
2
(
∆xi−1/2 +∆xi+1/2

)
, ∆xi+1/2 = xi+1− xi. (2.2)

Examining the steady-state solution of Equation 2.1, a family of solutions can be formed,

Fh
x,i =

1
∆xi

(
Fh

1+1/2−Fh
i−1/2

)
, (2.3)

where the superscript h denotes a discretized approximation. Fh
x,i is the numerical flux defining the

scheme that is in use in one-dimension.
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Next, we consider a conservation law of the following form for multiple dimensions,

Qt +∇ ·F = S (2.4)

where F is the flux vector in multi-spatial dimensions, and S is the source term. A finite volume

discretization of the flux divergence at node 0 is,

∇
h ·Fh =

1
V0

∑F h
0iS0i, (2.5)

S0i is the area of the face separating nodes 0 and i, and F h
0i is a numerical flux between nodes 0

and i with

F = F ·n, (2.6)

where n is the normal vector of the volume face.

In this work we consider three different treatments of the numerical flux: constant reconstruc-

tion, linear reconstruction, and flux correction. These methods and their corresponding truncation

error analysis are described in the subsections that follow.

2.2.1 Constant Reconstruction

For the constant reconstruction scheme in one dimension, the flux at i+1/2, and likewise the

flux at i−1/2 can be calculated as

Fh
i+1/2 =

1
2

(
Fh

i +Fh
i+1

)
− 1

2

∣∣Ah (QR,i+1/2,QL,i+1/2
)∣∣Di+1/2 (2.7)

where A = dF/dQ is the flux Jacobian and is a function of the state variables and contains the

absolute values of the eigenvalues enforcing unwinding. Next, D is the artificial dissipation given

by

Di+1/2 = QR,i+1/2−QL,i+1/2, (2.8)
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where QR and QL are the right and left states of the conserved variables, for constant reconstruction

these are taken as

QR,i+1/2 = Qi+1, QL,i+1/2 = Qi. (2.9)

For the constant reconstruction method in multiple dimensions, the numerical flux across the

boundary is calculated as

F h
0i =

1
2
(F0 +Fi)−

1
2
|A (Q0,Qi)|(Qi−Q0) (2.10)

where A = ∂F/∂Q is the directed flux Jacobian, computed from two flow states via the method

of Roe [63]. Here,

|A |= M|Λ|M−1, (2.11)

where M contains the eigenvectors of A , and |Λ| contains the absolute value of the eigenvalues. The

flux terms involving F produce the flux integral, while the |A | term produces artificial dissipation

added for upwind stability.

Truncation error analysis in one-dimension is begun by substituting Equation 2.7 into Equation

2.3,

Fh
x,i(Q) =

1
2∆xi

(Fi+1−Fi−1)−
1

2∆xi

(
Di+1/2−Di−1/2

)
. (2.12)

It is convenient to analyze the dissipation terms and flux terms separately. Beginning with the

dissipation, by using Taylor series to expand Equation 2.12, and using the left and right states

defined in Equation 2.9, we find the truncation error to be at steady state:

1
2∆xi

(
Di+1/2−Di−1/2

)
=

1
4∆xi

(∣∣Ai+1/2
∣∣∆xi+1−

∣∣Ai−1/2
∣∣∆xi−1/2

)
Qx,i +O

(
h1) . (2.13)

The result is a leading truncation error of order zero for arbitrary meshes, however, it can be shown

that there are instances in where Ai+1/2 = Ai−1/2. Because of this the zero-order term cancels on

regular grids, producing a method of O(h1). This truncation error comes directly from the right and

left states.
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Continuing with the flux scheme, using a Taylor series expansion of the flux scheme in Equa-

tion 2.7 and substituting it into Equation 2.12 we obtain

1
2∆xi

(Fi+1−Fi−1) = Fx,i +
1
2
(
∆xi+1/2−∆xi−1/2

)
F2x,i+

1
12∆xi

(
∆x3

i+1/2 +∆x3
i−1/2

)
F3x,i +O

(
h3) . (2.14)

Which has a leading truncation error of O(h1) for arbitrary grids and O(h2) for regular grids.

Using truncation error analysis the leading term of error occurs in the dissipation from the

left and right state assumption. This creates a leading truncation error in the dissipation of zero-

order. Constant reconstruction is not commonly used due to the large amount of resulting artificial

dissipation, as shown in the truncation error analysis. However, it is included in this study for

completeness. This scheme produces first-order results, and may be useful occasionally in practice

where extra robustness is required, such as at shocks are regions of poor grid quality.

2.2.2 Linear Reconstruction

In the linear reconstruction scheme, the first-order dissipation terms are modified, producing

a formally second-order accurate scheme. This is accomplished via the use of left and right re-

constructed states in the dissipation. For one-dimension, the left and right states are changed to

QR
i+1/2 = Qi+1 +

1
2

∆xi+1/2Qh
x,i,

QL
i+1/2 = Qi−

1
2

∆xi+1/2Qh
x,i+1.

(2.15)

Where the derivative must be at least first-order accurate.

For multiple dimensions, Equation 2.10 is modified to become

F h
0i =

1
2
(F0 +Fi)−

1
2
|A (QL,QR) |(QR−QL) , (2.16)

where the left and right states are constructed as follows:

QL = Q0 +
1
2

∆rT
∇

hQ0, QR = Qi−
1
2

∆rT
∇

hQi, (2.17)
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where r is the position vector connecting node 0 to node i. The gradient is discretized with a pth-

order accurate method, such that

∇
h = ∇+O(hp), (2.18)

where O(hp) denotes the truncation error of the gradient procedure. It is most common in practice

to employ methods for which p = 1, such as linear least squares or Green-Gauss integration [64].

Truncation error analysis for the flux terms remains the same, however, the change in the

dissipation routine changes the resultant truncation error to

1
2∆xi

(
Di+1/2−Di−1/2

)
=

− 1
48∆xi

(
∆x3

i+1/2

∣∣Ai+1/2
∣∣−∆x3

i−1/2

∣∣Ai−1/2
∣∣)Q3x,i +O(h3)+O(hp) (2.19)

where O(hp) is determined from the derivative method used. One common method for one-dimensional

analysis is to use is central difference, this leads to a leading truncation error of O(h1). Setting aside

the derivative error, it appears as if the leading truncation error term is O(h2) for regular grids, how-

ever a more detailed analysis shows that the leading term is actually O(h3). The effects of this will

be shown later in the results section. The derivative method tends to be the leading cause of error

on arbitrary meshes, but the truncation error magnitude is no worse than the truncation error of the

fluxes.

The result of using the reconstructed states is a scheme with greatly reduced artificial dissipa-

tion. This is one of the most commonly used methods for practical CFD applications.

2.2.3 Flux Correction

To produce a third-order accurate scheme, Katz and Sankaran developed a novel method to

modify Equation 2.16 to further cancel leading truncation error terms [4]. The method was first

proposed for hyperbolic systems of equations, but was later extended to the Navier-Stokes equations

[65]. Termed flux correction (FC), the only change to Equation 2.7 is the direct reconstruction of
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the non-linear flux, resulting in

Fh
i+1/2 =

1
2
(
FL,i+1/2 +FR,i+1/2

)
− 1

2

∣∣∣Ah
i+1/2

(
QR,i+1/2,QL,i+1/2

)∣∣∣(QR,i+1/2−QL,i+1/2
)
. (2.20)

Where the left and right flux states are defined as

FR,i+1/2 = Fh
i +

1
2

∆xi+1/2Fh
x,i, FL,i+1/2 = Fh

i+1/2−
1
2

∆xi+1/2Fh
x,i+1 (2.21)

Note that the actual flux is reconstructed not the dependent variables. The flux and dissipation

fluxes, however, must be at least second-order to maintain proper truncation error.

In multiple dimensions, the only change is to Equation 2.16,

F h
0i =

1
2
(FL +FR)−

1
2
|A (QL,QR) |(QR−QL) , (2.22)

with the flux being directly reconstructed as follows:

FL = F0 +
1
2

∆rT
∇

hF0, FR = Fi−
1
2

∆rT
∇

hFi (2.23)

Once again, unlike the linear reconstruction scheme, the order of accuracy of the flux and solution

gradients must be at least second-order (p≥ 2) to maintain consistency.

One dimensional truncation error on the dissipation shows the same results as Equation 2.19,

only the introduction of a derivative method of second-order truncation error reduces the leading

error to O(h2) for both arbitrary and regular meshes. The leading flux truncation error is reduced to

1
∆xi

[
1
2
(
FL,i+1/2 +FR,i+1/2

)
− 1

2
(
FL,i−1/2 +FR,i−1/2

)]
=

Fx,i−
1

24∆xi

(
∆x3

i+1/2 +∆x3
i−1/2

)
F3x,i +O

(
h3)+O(hp) . (2.24)

This is also at least O(h2) as long as p≥ 2.

The advantage of the FC method over other high-order methods is that it bypasses the need for

second derivatives in the reconstruction. In addition, it also does not require high-order quadrature.
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This makes the method an efficient way to achieve third-order accuracy without excess computa-

tional expense or code modification.

2.3 Source Term Discretization

The previous section described methods of approximating the flux divergence, ∇ ·F, with three

different flux integration schemes. The major goal of this paper is to identify or develop discretely

compatible source term treatments for these flux schemes. Three different source term discretization

schemes are considered in this work, each with different levels of complexity, and each designed

for compatibility with the three flux schemes. Each source discretization scheme below represents

the spatial integral of S in Equation 2.4.

2.3.1 Point Source

For the point source scheme, the source term is assumed to be constant over the FV, such that

Sh
i = Si. (2.25)

For multiple dimensions, the source term is assumed to be a constant over each node-centered

FV cell. The integral of S over each cell then becomes simply

Sh
0 =V0S0, (2.26)

where S0 and V0 are the source term and volume evaluated at node 0, respectively.

Because the source is assumed to be known exactly, there is no error introduced due to the

source term. Because of this, no truncation error analysis is given. Having no error introduced by

the source term sounds optimal, however, without the introduction of error, further truncation errors

in the flux routine cannot be removed. This leads to the continuation of truncation error that could

otherwise be reduced. This effect will be analyzed at the end of this section.

This is the simplest source term discretization considered in this work, and is commonly used

in practical CFD codes.
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2.3.2 Galerkin

Because the FV flux scheme of Equation 2.16 can be interpreted as a Galerkin finite element

scheme on linear triangles [66], we also consider consistent Galerkin treatment of source terms.

Note that the Galerkin interpretation only extends to the central portion of the numerical flux and

not the artificial dissipation portion. A full version of Galerkin source term derivation is found

elsewhere [5], but is briefly described here. For one dimension, the source is assumed to very

linearly through the area. This leads to unique weighting of the source term,

Sh
i =

2
3

Si +
1

6∆xi

(
Si−1∆xi−1/2 +Si+1∆xi+1/2

)
. (2.27)

For multiple dimensions, following the standard Galerkin approach, it is assumed that the

source term varies linearly in each cell, followed by the multiplication by a linearly varying test

function and integration over each triangular cell volume. At point 0 surrounded by nearest neighbor

nodes i in the triangulation, the resulting contribution is,

Sh
0 = ∑

i

1
2
(S0 +Si)V0i, (2.28)

where V0i represents a volume associated with edge connecting nodes 0 and i and is computed as

V0i =
1
4

∆rT nS0i, (2.29)

where nS0i is the median-dual face area vector associated with the edge.

Truncation error analysis shows that error has been added to the source term scheme. Expand-

ing Equation 2.27,

Sh
i = Si +

1
3
(
∆xi−1/2−∆xi+1/2

)
Sx,i +

1
12∆xi

(
∆x3

i−1/2 +∆x3
i+1/2

)
S2x,i +O

(
h3) . (2.30)

The resultant truncation error is order O(h1). The goal is to use this source to reduce errors introduce

by the fluxes.
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Because of the analogy with the linear Galerkin scheme, the expectation is that this source

treatment will be compatible with the linear reconstruction scheme.

2.3.3 Corrected

The corrected source treatment is designed for compatibility with the third-order FC flux

scheme described in Section 2.2.3. An objective of this work is to demonstrate this compatibil-

ity numerically. Because the FC flux scheme involves a correction to the linear reconstruction flux

scheme, we follow the same approach with the source treatment.

Starting with one dimension, we begin by adding a modification to the Galerkin source in

Equation 2.27:

Sh
i =

1
3

S+
1

3∆xi

(
∆xi+1/2Si+1/2 +∆xi−1/2Si−1/2

)
, (2.31)

with Si+1/2 and likewise Si−1/2 defined as

Si+1/2 =
1
2
(SL +SR)i+1/2 ,

and

SL,i+1/2 = Si−
1
2

∆xi+1/2Sx,i−
1
8

∆x2
i+1/2S2x,i,

SR,i+1/2 = Si+1−
1
2

∆xi+1/2Sx,i+1−
1
8

∆x2
i+1/2S2x,i+1.

The higher order derivatives are needed to cancel out higher order truncation error terms.

For multiple dimensions we begin with the linear Galerkin source treatment in Equation 2.28

and modify it slightly to obtain

Sh
0 = ∑

i

1
2
(SL +SR)V0i. (2.32)

Here, left and right source approximations, SL and SR, are defined as

SL = S0−
1
2

∆rT
∇

hS0−
1
8

∆rT
∇

h2S0∆r, SR = Si−
1
2

∆rT
∇

hSi−
1
8

∆rT
∇

h2Si∆r, (2.33)
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where ∇h2 is the discrete Hessian operator, computed to (p−1)th-order accuracy as

∇
h2Si = ∇

2S+O
(
hp−1) . (2.34)

As in the FC flux scheme, we require p ≥ 2. Note that unlike the FC flux treatment, the source

treatment here involves second derivatives of S. However, high-order numerical integration of the

source term over each finite volume is not necessary.

Truncation error analysis provides insight to why the source term was constructed in the

method it was. Expanding Equation 2.31 using Taylor series we obtain,

Sh
i = Si−

1
24∆xi

(
∆x3

i+1/2 +∆x3
i−1/2

)
S2x,i +O

(
h3) . (2.35)

We have successfully removed all first-order truncation error, making the only the second derivative

of the source term necessary.

We note that using truncation error as the criteria by which to design aspects of FV schemes is

rather unique, and led to the original FC scheme of Katz and Sankaran in the first place [4].

2.3.4 Combined Source and Flux Truncation Error

Truncation error analysis has been completed on all the flux schemes and source methods.

Although the results of both help us make interesting conclusions, it is also necessary to observe

how each flux scheme and source method work to reduce overall truncation error. With this in

mind we will first start by using the linear reconstruction flux scheme and combine it with the

point source scheme. Next, we will use the linear reconstruction scheme in combination with the

Galerkin source term. After, we will combine the FC scheme with the Galerkin source term, then

the corrected source term. Analysis with the constant reconstruction is not completed, as the leading

error is in the dissipation routine at O(h0), thus any change to the source term will not affect the

leading truncation error. Combination of the FC scheme and point source, as well as the linear

reconstruction with the corrected source, are also not presented. This is because the source term

would not affect the leading truncation error as well.
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For understanding, we will start with the steady-state one-dimensional wave equation for trun-

cation error,

Fh
x,i (Q)−Sh

i = Fx,i−Si +Et , (2.36)

where Et denotes the truncation error terms.

First, we will combine the linear reconstruction with the point source term. Starting with

Equation 2.36 then substituting in the linear reconstruction truncation error, Equations 2.14 and

2.19, and the point source error, Equation 2.25, we obtain,

Et =
1
2
(
∆xi+1/2−∆xi+1/2

)
F2x,i +

1
12∆xi

(
∆x3

i+1/2−∆x3
i−1/2

)
F3x,i

− 1
48∆xi

(
∆x3

i+1/2

∣∣Ai−1/2
∣∣−∆x3

i−1/2

∣∣Ai+1/2
∣∣)Q3x,i +O(hp)+O

(
h3) .

On arbitrary grids, the leading truncation error is O(h1) due to the flux approximation, as well as

the gradient approximation. When regular meshes are used, the first-order truncation error and

the error in the derivative, assuming central difference was used, also reduces to O(h2), leading to

that truncation error to be the leading cause, as well as the uncanceled flux term. The difference

between both regular and arbitrary meshes will be analyzed to see how the truncation error affects

the solution error.

Next, we will use linear reconstruction with the Galerkin source term. Evaluating Equation

2.36 using Equations 2.14, 2.19 , and 2.30 we find

Et =
(
∆xi+1/2−∆xi−1/2

)(1
2

F2x,i−
1
3

Sx,i

)
−

1
48∆xi

(
∆x3

i+1/2

∣∣Ai−1/2
∣∣−∆x3

i−1/2

∣∣Ai+1/2
∣∣)Q3x,i +O(hp)+O

(
h3) .

For arbitrary meshes the leading truncation error term is still O(h1), however, all second-order

truncation error due to the flux has been removed due to the source term. Notice that we used the

relation F2x = S3x exactly. Due to this the truncation error has been reduced to O(h2) on regular

meshes due to the dissipation term.
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Continuing with the FC scheme with the Galerkin source term. Substituting Equations 2.24,

Equation 2.19, where p≥ 2 , and Equation 2.30 into Equation 2.36 we obtain

Et =
1
3
(
∆xi−1/2−∆xi+1/2

)
Sx,i−

1
∆xi

(
∆x3

i+1/2 +∆x3
i−1/2

)( 1
24

F3x,i +
1
12

S2x,i

)
−

1
48∆xi

(
∆x3

i+1/2

∣∣Ai−1/2
∣∣−∆x3

i−1/2

∣∣Ai+1/2
∣∣)Q3x,i +O

(
h3)+O(hp) .

The result is a method that is O(h1) due to the source term for arbitrary spacing, and O(h2) due to

the flux routine and the source on regular meshes. Because of the mismatch of the source term and

flux schemes, error was added to the overall routine rather then being reduced.

Finally we will use the FC scheme with the corrected source term. Using Equations 2.24, 2.19,

and 2.35 into Equation 2.36,

Et =
1

48∆xi

(
∆x3

i+1/2

∣∣Ai−1/2
∣∣−∆x3

i−1/2

∣∣Ai+1/2
∣∣)Q3x,i +O

(
h3)+O(hp) .

Using the corrected source term effectively reduced the truncation error on arbitrary grids and reg-

ular grids to O(h3), assuming that p≥ 3.

To continue, in multiple dimensions the truncation error can be found by

∇ ·F −S0 = ∇
h ·F −Sh

0 +Et

Using the truncation error of FC combined with the multi-dimensional corrected source we

find the truncation error to be,

Et =
1

V0
∑

i

1
24

(
∆x3

0iF3x +∆y3
0iF3y +3∆x2

0i∆y0iF2xy +3∆x0iy2
0iFx2y

)
n0iS0i

− 1
V0

∑
i

1
8

(
∆x2

0iS2x +∆y2
0iS2y +2∆x0i∆y0iSxy

)
n0iS0i∆r+O(hq)+O

(
h3) .

Once again, if p ≥ 2 then the method remains with the leading truncation error of O(h2) for both

arbitrary meshes and if p≥ 3, O(h3) regular meshes. The need for truncation errors of this order is
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needed to preserve accuracy in multiple dimensions. Because of this, the Hessian is needed in the

source term.

By using proper combinations of source terms and flux schemes we have shown how truncation

error can be reduced. It is interesting to note that the lowering of the truncation error is a necessary,

but not always sufficient method to determine solution error. This will be shown in the results section

later. From the truncation error analysis, we can conclude that using source term discretizations that

are not complex enough we essentially add error to the solution. This will later be verified for

several problems presented in the next section. Leading truncation error for all flux and source

combinations is given in Tables 2.1 and 2.2.

2.4 Computational Studies

In this section, three computational studies are conducted, and accuracy results using various

flux/source combinations are compared. The results in this section serve to identify the simplest

source treatment needed to provide consistency with a particular flux treatment. To accomplish this

task we employ a combination of exact and manufactured solutions to the Euler equations. The

following subsections focus on two exact solutions, and one manufactured solution.

Grid refinement studies are conducted with two different grid types: a triangular grid (both

perturbed and regular), and a one-dimensional mesh (used for a quasi-one-dimensional Euler study).

The introduction of perturbations lends insight into scheme accuracy for more general meshes, and

significant differences in accuracy are often observed when the mesh is perturbed. Though the

perturbations are random, a criterion is enforced that keeps the nodes within an acceptable zone to

avoid cell overlaps.

Table 2.1: Truncation error analysis results on arbitrary grids
Constant reconstruction Linear reconstruction Flux Correction

Point Source O(h0) O(h1) O(h2)
Galerkin Source O(h0) O(h1) O(h1)
Corrected Source O(h0) O(h1) O(h2)
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Table 2.2: Truncation error analysis results on regular grids
Constant reconstruction Linear reconstruction Flux Correction

Point Source O(h1) O(h1) O(h2)
Galerkin Source O(h1) O(h2) O(h2)
Corrected Source O(h1) O(h1) O(h3)

2.4.1 Exact Euler Solution without Source

We first verify the accuracy of the three finite volume flux schemes for regular and perturbed

triangular meshes by examining Ringleb flow, which is a smooth flow turning about an infinitely

thin plate [67]. The flow includes inviscid and ideal gas assumptions and is an exact solution to the

Euler equations, described by Equation 2.4, with

Q =



ρ

ρu

ρv

ρe


, F =





ρu

ρu2 + p

ρuv

ρuh


,



ρv

ρvu

ρv2 + p

ρvh




, S =



0

0

0

0


, (2.37)

Here ρ is the density of the fluid, a is the speed of sound, u and v are the Cartesian components of

velocity, p is the pressure, e is the internal energy per unit mass, and h is the total enthalpy per unit

mass. Note that the source term is zero, enabling us to obtain a baseline measure of accuracy for the

FV flux schemes.

For this case, we examine a purely subsonic region in the solution domain. The domain is

selected such that the solution varies approximately ten percent over the entire domain. The domain

chosen for this work extends from x ∈ (2,2.5) and y ∈ (2,2.5). The exact solution to the flow field

can be found by using the hodograph method [68]. The solution at any point (x,y) is expressed as

A =

√
1− γ−1

2
q2, ρ = a

2
γ−1 , P =

1
γ

a
2γ

γ−1 , J =
1
a
+

1
3a3 +

1
5a5 +

1
2

log
1+a
1−a

x(q,k) =
1

2ρ

(
2
k2 −

1
q2

)
− J

2
, y(q,k) =± 1

kρq

√
1−
(q

k

)2
, (2.38)

where q is the local Mach number, k is the local stream constant, γ is the ratio of specific heats,
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and A and J are intermediate variables for convenience. The solution for density in the domain of

interest is shown in Figure 2.3.

To obtain a discrete solution, the domain is initialized with the exact solution. Importantly,

the boundary nodes and any nodes with boundary effects in their stencils are held constant. Upon

convergence, the discretization error is calculated directly by measuring the difference between the

converged solution and the exact solution. Through a grid refinement study, the order of accuracy

of each flux method is determined.

Convergence rates and RMS error using the three flux schemes for the Ringleb flow grid re-

finement study are shown in Figure 2.4 and Tables 2.3-2.6. One finding we wish to highlight is that

the linear reconstruction scheme is actually third-order on a regular triangular mesh. This is a con-

sequence of eliminating all boundary effects, which generates fully second-order accurate centered

gradients in the reconstructed states, QL and QR. It is quite remarkable that the linear scheme is

capable of producing third-order accuracy under certain conditions. This was also observed in our

previous work [4]. We note that with the perturbed mesh the gradient calculations revert to first-

order, resulting in second-order discretization error overall. However, the FC flux scheme is able to

maintain the third-order accuracy even with the perturbed mesh. These effects are shown in Tables

2.4 and 2.5.

In summary, the computed order of accuracy for each flux scheme listed in Table 2.6 provides a

base line of the expected convergence rates. With the baseline established, we are now in a position

to examine the effects of the various source term discretization strategies on the order of accuracy.

If a particular source treatment results in convergence behavior other than that reported in Table

Table 2.3: Ringleb flow grid refinement study using constant reconstruction.
Regular Mesh Perturbed Mesh

Mesh Size RMS Error Order RMS Error Order
4 4.708e-5 - 3.128e-4 -
8 3.273e-5 0.556 2.042e-4 0.652

16 1.911e-5 0.799 1.027e-4 1.022
32 1.031e-5 0.905 5.336e-5 0.959
64 5.346e-6 0.954 2.716e-5 0.982
128 2.722e-6 0.977 1.369e-5 0.992
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Fig. 2.3: Exact Ringleb flow solution for density.
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Fig. 2.4: Results of Ringleb flow grid refinement study.

Table 2.4: Ringleb flow grid refinement study using linear reconstruction.
Regular Mesh Perturbed Mesh

Mesh Size RMS Error Order RMS Error Order
4 4.271e-8 - 2.956e-6 -
8 6.809e-9 2.808 9.547e-7 1.728

16 9.554e-10 2.918 2.027e-7 2.302
32 1.264e-10 2.962 5.058e-8 2.034
64 1.625e-11 2.982 1.294e-8 1.982
128 2.069e-12 2.985 3.239e-9 2.006
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Table 2.5: Ringleb flow grid refinement study using flux correction.
Regular Mesh Perturbed Mesh

Mesh Size RMS Error Order RMS Error Order
4 1.666e-8 - 8.722e-8 -
8 2.328e-9 3.009 1.509e-8 2.683

16 3.062e-10 3.014 1.893e-9 3.084
32 3.924e-11 3.009 2.703e-10 2.850
64 4.963e-12 3.006 3.705e-11 2.889
128 6.299e-13 2.989 4.995e-12 2.902

Table 2.6: Order of accuracy summary for Ringleb flow grid refinement study.
Flux Scheme Regular Mesh Perturbed Mesh
Constant Reconstruction 1 1
Linear Reconstruction 3 2
Flux Correction 3 3

2.6, we consider that treatment incompatible with the flux scheme. This study is performed in the

following subsection.

2.4.2 MMS Source Case

We now test the three flux methods for compatibility with different source term discretiza-

tion schemes using MMS. We first generate a manufactured solution for the Euler equations using

Fig. 2.5: MMS solution for density.
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smooth trigonometric functions. For example, density is chosen to be

ρ(x,y) = ρ0 (1+αx sin(βxx)+αy cos(βyy)+αxy cos(βxyxy)) , (2.39)

where ρ0 and the α and β values are constants chosen to provide physically realistic values (e.g.

positive density), and provide a solution field that varies around ten percent over the chosen domain.

Figure 2.5 shows the manufactured solution for density described in Equation 2.39. Following the

standard MMS procedure [49], a source term is generated through analytical computation of the

governing PDE (Euler equations) applied to the manufactured solution. Observations are made

regarding the effect of each source term discretization scheme on each flux discretization scheme.

Constant Reconstruction

Results for the constant reconstruction scheme are shown in Figure 2.6 and Tables 2.7-2.9.

Error measurements using MMS indicate that there is very little difference in accuracy using dif-

ferent source treatments. All methods are first-order accurate and match the results of the exact

Ringleb flow study. In this sense, all source treatments considered are compatible with constant

reconstruction. However, time differences show that increased computational effort is needed for

more complex source discretizations, as shown in Table 2.10. The Galerkin source term and the

point source term show close relation in computation time, with Galerkin taking slightly more time.

However, the corrected source term adds significantly more computation time with no improvement

in accuracy. We can therefore conclude that the point source is the best method for the constant

reconstruction scheme.

Table 2.7: Order of accuracy results for MMS using constant reconstruction with point source.
Regular Mesh Perturbed Mesh

Mesh Size RMS Error Order RMS Error Order
4 1.839e-4 - 8.057e-4 -
8 1.270e-4 0.566 3.662e-4 1.206

16 7.398e-5 0.803 1.951e-4 0.935
32 3.991e-5 0.904 9.624e-5 1.035
64 2.076e-5 0.950 4.857e-5 0.994
128 1.063e-5 0.970 2.303e-5 1.080
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Fig. 2.6: Convergence results for MMS using constant reconstruction with various source treat-
ments.

Table 2.8: Order of accuracy results for MMS using constant reconstruction with Galerkin source.
Regular Mesh Perturbed Mesh

Mesh Size RMS Error Order RMS Error Order
4 1.842e-4 - 7.989e-4 -
8 1.271e-4 0.567 3.656e-4 1.195

16 7.402e-5 0.803 1.949e-4 0.934
32 3.991e-5 0.904 9.618e-5 1.034
64 2.077e-5 0.950 4.855e-5 0.994
128 1.063e-5 0.970 2.303e-5 1.080

Table 2.9: Order of accuracy results for MMS using constant reconstruction with corrected source.
Regular Mesh Perturbed Mesh

Mesh Size RMS Error Order RMS Error Order
4 1.837e-4 - 8.052e-4 -
8 1.269e-4 0.565 3.661e-4 1.205

16 7.397e-5 0.802 1.951e-4 0.935
32 3.990e-5 0.904 9.624e-5 1.035
64 2.076e-5 0.950 4.857e-5 0.994
128 1.063e-5 0.969 2.303e-5 1.080
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Table 2.10: Time (s) per iteration on 128 by 128 grid using constant reconstruction and various
source treatments.

Regular Mesh Perturbed Mesh
Source Term Time/Iteration Relative Percent Time/Iteration Relative Percent

Point 1.856 0.00% 1.860 0.00%
Galerkin 1.906 2.69% 1.901 2.20%
Corrected 2.469 33.03% 2.489 33.82%

Linear Reconstruction

We now examine various source treatments in conjunction with the linear reconstruction flux

method in Equation 2.16. The effect on accuracy using each source treatment can be seen in Figure

2.7 and in Tables 2.11-2.13. It is clear that the only method that correctly gives the same order

of accuracy observed with no source terms in Table 2.6 is the Galerkin source discretization. The

other methods of source discretization prove to be inadequate and provide larger errors in the overall

solution, especially for regular grids. It is interesting that the corrected source treatment actually re-

duces the accuracy of the linear reconstruction scheme. Unlike constant reconstruction, the Galerkin

source treatment is the only compatible discretization with linear reconstruction. This finding has

important implications for CFD codes that using linear reconstruction with point source treatment.

The computation time using each source discretization is shown in Table 2.14. Negative rela-

tive percent indicates a decrease in iteration time, but this only occurs when the incompatible point

source discretization scheme is used. Although using the point source term reduces computation

time, the reduction is slight, and does not justify the reduction in accuracy.

Table 2.11: Order of accuracy results for MMS using linear reconstruction with point source.
Regular Mesh Perturbed Mesh

Mesh Size RMS Error Order RMS Error Order
4 9.310e-7 - 2.407e-5 -
8 3.079e-7 1.692 8.671e-6 1.561

16 8.732e-8 1.872 1.493e-6 2.614
32 2.338e-8 1.930 4.687e-7 1.697
64 6.135e-9 1.944 1.086e-7 2.125
128 1.611e-9 1.936 2.648e-8 2.044
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Fig. 2.7: Convergence results for MMS using linear reconstruction with various source treatments.

Table 2.12: Order of accuracy results for MMS using linear reconstruction with Galerkin source.
Regular Mesh Perturbed Mesh

Mesh Size RMS Error Order RMS Error Order
4 7.800e-8 - 8.073e-6 -
8 1.232e-8 2.822 3.260e-6 1.387

16 1.710e-9 2.934 5.048e-7 2.772
32 2.242e-10 2.975 1.584e-7 1.697
64 2.859e-11 2.994 3.721e-8 2.105
128 1.560e-12 4.212 9.400e-9 1.993

Table 2.13: Order of accuracy results for MMS using linear reconstruction with corrected source.
Regular Mesh Perturbed Mesh

Mesh Size RMS Error Order RMS Error Order
4 1.409e-6 - 2.399e-5 -
8 4.641e-7 1.699 8.647e-6 1.561

16 1.313e-7 1.876 1.490e-6 2.613
32 3.512e-8 1.932 4.662e-7 1.702
64 9.210e-9 1.945 1.080e-7 2.126
128 2.418e-9 1.937 2.625e-8 2.048
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Table 2.14: Time (s) per iteration on 128 by 128 grid using linear reconstruction and various source
treatments.

Regular Mesh Perturbed Mesh
Source Term Time/Iteration Relative Percent Time/Iteration Relative Percent

Point 1.927 -3.02% 1.910 -2.15%
Galerkin 1.987 0.00% 1.952 0.00%
Corrected 2.535 27.58% 2.536 29.92%

Flux Correction

Finally, for the FC flux scheme in Equation 2.22, results with various source treatments are

shown in Figure 2.8 and in Tables 2.15-2.17. The error results show that the only source treatment

that is able to provide results compatible with the exact solution with no source is the corrected

source discretization. This was the expectation since the corrected source was designed to preserve

the order of truncation error. This result is critical to maintain the accuracy of the FC scheme in the

presence of source terms. Interestingly, The Galerkin source discretization performs worse than the

point source discretization in this case.

Timing results in Table 2.18 show that the time needed per iteration is the largest when using the

corrected source term discretization scheme. However, this is the price to pay to obtain third-order

accuracy and is relatively economical for situations where high levels of accuracy are required.

2.4.3 Quasi-one-dimensional Flow

Now that we have identified compatible source discretizations for each of the three flux schemes,

we examine quasi-one-dimensional flow, which features physically meaningful source terms. The

quasi-one-dimensional flow equations are a simplified version of the two-dimensional Euler equa-

Table 2.15: Order of accuracy results for MMS using flux correction with point source.
Regular Mesh Perturbed Mesh

Mesh Size RMS Error Order RMS Error Order
4 1.011e-6 - 1.497e-6 -
8 1.817e-7 2.625 2.407e-7 2.795

16 4.257e-8 2.156 5.051e-8 2.320
32 1.129e-8 1.944 1.218e-8 2.083
64 3.029e-9 1.912 3.271e-9 1.911
128 8.138e-10 1.903 8.775e-10 1.905
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Fig. 2.8: Convergence results for MMS using Flux Correction with various source treatments.

Table 2.16: Order of accuracy results for MMS using flux correction with Galerkin source.
Regular Mesh Perturbed Mesh

Mesh Size RMS Error Order RMS Error Order
4 1.451e-6 - 1.595e-5 -
8 4.323e-7 1.852 5.195e-6 1.715

16 1.252e-7 1.842 1.078e-6 2.336
32 3.437e-8 1.893 3.280e-7 1.743
64 9.198e-9 1.916 7.509e-8 2.143
128 2.458e-9 1.911 1.739e-8 2.118

Table 2.17: Order of accuracy results for MMS using flux correction with corrected source.
Regular Mesh Perturbed Mesh

Mesh Size RMS Error Order RMS Error Order
4 1.021e-6 - 1.392e-6 -
8 1.450e-7 2.985 1.979e-7 2.983

16 1.909e-8 3.013 3.036e-8 2.786
32 2.399e-9 3.038 3.482e-9 3.171
64 2.882e-10 3.080 4.185e-10 3.079
128 3.247e-11 3.162 4.580e-11 3.204
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Table 2.18: Time (s) per iteration on 128 by 128 grid using flux correction and various source
treatments.

Regular Mesh Perturbed Mesh
Source Term Time/Iteration Relative Percent Time/Iteration Relative Percent

Point 3.307 -15.18% 3.291 -15.27%
Galerkin 3.333 -14.52% 3.318 -14.57%
Corrected 3.899 0.00% 3.884 0.00%

tions and are commonly employed for rocket nozzles and other similar applications. Due to the

dependence of the flow on the nozzle area, a(x), the Euler equations become

Q = a


ρ

ρu

ρe

 , F = a


ρu

ρu2 + p

ρuh

 , and S =


0

p da
dx

0

 . (2.40)

Here, the solution variables and flux contain the area, and the source term is dependent on the rate

of change of the area in the x direction.

We employ Equation 2.40 for a nozzle that accelerates the flow from Mach = 2 to Mach =

3. The radius of the nozzle expands linearly with distance down the nozzle. Figure 2.9 shows the

exact Mach and pressure profiles we expect for this nozzle. As in previous cases, grid refinement

studies will be performed to compute the overall order of convergence for each flux method/source

treatment combination.

Constant Reconstruction Scheme

Constant reconstruction for the nozzle problem shows an identical trend to that observed with

MMS. The differences between the perturbed and regular meshes are smaller, however, due to the

restriction to a one-dimensional mesh, as shown in Figure 2.10. Results indicate there is little

difference in the source treatment used for the constant reconstruction scheme. While all source

treatments are compatible, we advocate the point source treatment with constant reconstruction due

to its reduced computational cost.
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Fig. 2.9: Solution for quasi-one-dimensional flow.
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Fig. 2.10: Convergence results for Quasi-one-dimensional flow using the constant reconstruction
scheme.
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Linear Reconstruction Scheme

Linear reconstruction also shows the same trends as found with MMS. Results show that the

method converges at the expected rate of second-order for all schemes, as shown in Figure 2.11.

An important difference in this study is that the boundaries are not frozen like in the MMS case.

Consequently, the method does not produce a third-order solution with the Galerkin source term

on a regular mesh. Essentially, the boundary effects introduce some asymmetry in the gradient

stencils, reducing the accuracy to second-order. Results also show that accuracy is lost due to the

use of an incompatible source treatment, which is any source term other than Galerkin for linear

reconstruction.

Third-order FC Scheme

The third-order FC scheme also behaves as expected from previous studies. We conclude that

that the use of incompatible source treatment, which is any treatment other than corrected for the

FC scheme, reduces the order of convergence from third-order to second-order. Also like MMS, the

Galerkin source produces the greatest errors. These results are shown in Figure 2.12.

2.5 Conclusions

Obtaining source term discretizations that are compatible with finite volume flux schemes is

essential to obtaining correct convergence rates. While simple source treatments may reduce so-

lution time, the resulting loss is accuracy can be significant. Even if the truncation error does not

reduce the order of convergence, the addition of such increases the solution error. Verification of

compatible source discretizations, which are defined as source treatments that preserve the same

order of accuracy obtained without source terms, can be effectively accomplished by performing a

combination of exact and manufactured solution grid refinement studies in addition to truncation

error analysis. Once compatible source treatments are identified, the results extend to equations

with physically meaningful source terms.

In this work we formulated three finite volume flux schemes: constant reconstruction, linear

reconstruction, and a relatively new scheme called flux correction. With each of these flux schemes,
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Fig. 2.11: Convergence results for Quasi-one-dimensional flow using the liner reconstruction
scheme.
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Fig. 2.12: Convergence results for Quasi-one-dimensional flow using the FC scheme.
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we tested three different source treatments: point, Galerkin, and corrected. For constant reconstruc-

tion, all three source term treatments are compatible and first-order accurate, but we advocate the

use of the point source treatment due to reduced computational cost. The only compatible source

treatment for the linear reconstruction scheme is Galerkin, which produces second-order accurate

results on general meshes, and surprisingly, third-order results on regular meshes in the absence

of boundary effects. However, the scheme reverts back to second-order on regular meshes with

boundary effects included. The only compatible source treatment for the flux correction scheme is

the corrected source discretization, which produces third-order accurate results regardless of mesh

perturbations and including boundary effects. The corrected source treatment requires additional

computational effort, but the improvements in accuracy are significant. These results conclusions

can be drawn both from the truncation error analysis as well as the test results.

In conclusion, a point source discretization is sufficient for constant reconstruction, a Galerkin

source discretization is sufficient for linear reconstruction, and a corrected source discretization

is sufficient for the flux correction scheme. It is expected that these results will prove valuable

for more complex equation sets involving turbulence, multi-phase flow, reacting flow, and other

scenarios. Future work will focus on extensions to these types of flows in order to better understand

source term discretization effects in these contexts.
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Chapter 3
High-order Strand Grid Methods for Low Mach and Incompressible

Flows1

Jonathan Thorne, Aaron Katz2, Oisin Tong3 4, Yushi Yanagita5 6, Keegan Delaney7 8

3.1 Introduction

Low speed flows present challenges for compressible computational fluid dynamics (CFD)

algorithms in terms of accuracy and convergence rate. Many of these flows have widely varying

particle and acoustic speeds, degrading solution convergence [69]. Poor scaling of artificial dissipa-

tion at low Mach number, determined through asymptotic analysis [12], often reduces the accuracy

of the solution even when convergence is achieved. For practical flows with complex geometry,

mesh generation and grid quality become additional challenges. Meshing can take days or weeks

depending on the complexity of the geometry. Progress addressing these challenges will transform

many engineering applications, such as underwater vehicle design.

To address these challenges we use a combination of established and new CFD methods,

including preconditioning, high-order methods, and strand grids. First, we focus on established

preconditioning methods [10, 12]. Preconditioning can extend favorable properties observed for

transonic flows to low Mach number regimes, including improved dissipation scaling and fast con-

vergence. Under certain conditions, the preconditioning approach is analogous to the artificial com-

pressibility approach introduced by Chorin [9]. For the sake of generality, in this work we employ

1Planned Submission to the International Journal for Numerical Methods in Fluids
2Associate Professor, Department of Mechanical and Aerospace Engineering, Utah State University, Logan, UT
3PHD Candidate, Department of Mechanical and Aerospace Engineering, Utah State University, Logan, UT
4Preconditioned Spalart-Allmaras Solver
5Masters Student, Department of Mechanical and Aerospace Engineering, Utah State University, Logan, UT
6Body of Revolution Mesh Generation
7Computational Hydromechanics Division, Code 5700, Naval Surface Warfare Center Carderock Division
8Body of Revolution Experimental Data
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the method of Merkle et al. for arbitrary equations of state [10]. This approach handles truly in-

compressible flows as well as the full range of low Mach through supersonic flows. Additionally,

the approach may be extended to low speed reacting flows, in which acoustic effects are significant.

This will be a topic of future work.

Second, to reduce excess numerical dissipation, we implement preconditioning schemes within

new a relatively new high-order framework. Flux correction (FC) was recently introduced by Katz

and Sankaran [4] to provide high-order spatial accuracy while requiring only first derivatives in the

reconstruction for finite volume schemes [56,65]. High-order accuracy is achieved by explicitly can-

celling low-order truncation error terms arising from numerical flux approximations. This method

has been shown to be third-order accurate on arbitrary triangular meshes for inviscid flows [4] and

approaches fourth-order accuracy in highly viscous flows [65]. For turbulent flows, we employ the

Spalart-Allmaras “negative” model [45, 47] in a fully high-order consistent manner.

Third, to address complex geometry, we explore strand meshing, which fully automates volume

grid generation and improves scalability for overset moving-body applications [3, 13]. Strands are

automatically generated pointing vectors (determined from a surface tessellation) along which dis-

tributions of points are placed, creating layers of unstructured mesh emanating from solid bodies.

Strand meshing simplifies the meshing process, increases automation, and provides some struc-

ture useful for high-order algorithms. Importantly, compact strand meshing techniques offer self-

satisfying domain connectivity (SSDC), whereby each processor in a multi-processor computation

has access to the global mesh data, increasing the efficiency of overset domain connectivity algo-

rithms. Previous work has investigated our high-order approach for strand grids [5], but the present

work represents the first extension of such methods to a much wider class of flows via a precondi-

tioner.

To cover our multi-faceted approach, this work is outlined as follows: Section 3.2 provides a

description of the governing partial differential equations, including the Spalart-Allmaras turbulence

model. Also in this section, we describe our strand grid approach, a brief description of FC and finite

difference methods, and finally, the implementation of the preconditioner. In Section 3.3 we present

a number of verification and validation cases using the methods described in Section 3.2. We verify
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the algorithms via the method of manufactured solutions, then validate with laminar flow over a

sphere and turbulent flow over a number of submersible body-of-revolution test cases [70]. Finally,

in Section 3.4 we draw conclusions and outline directions for future work.

3.2 Numerical Methods

In this work we solve the steady Reynolds Averaged Navier-Stokes equations with Spalart-

Allmaras turbulence model (RANS-SA), expressed here as

∂Q
∂τ

+
∂Fj

∂x j
−

∂Fv
j

∂x j
= S, (3.1)

where Q represents the vector of conserved variables, τ represents the pseudo-time, Fj = (F,G,H)

represents the inviscid fluxes, Fv
j = (Fv,Gv,Hv) represents the viscous fluxes, and S represents the

source term. The various vectors are defined as follows:

Q =



ρ

ρui

ρE

ρν̃


, Fj =



ρu j

ρuiu j + pδi j

ρh0u j

ρν̃u j


, Fv

j =



0

σi j

σi jui−q j

η

σ

∂ ν̃

∂x j


, S =



0

0

0

P−D + cb2ρ
∂ ν̃

∂xk

∂ ν̃

∂xk


.

(3.2)

Here, ρ is the density, u j = (u,v,w) is the jth component of velocity, E is the total energy per unit

mass, ν̃ is the turbulence working variable, p is the pressure, h0 is the total enthalpy per unit mass,

η

σ
is the turbulent diffusion coefficient, σi j is the deviatoric stress tensor, and q j is the jth component

of the heat flux vector. In the source terms, P is the turbulent production, and D is the turbulent

destruction. Details of the turbulent source, including the well-known production and destruction

terms, can be found in the original work by Spalart [45]. Modifications are introduced following

Allmaras et al. [47] to accommodate negative values of the turbulence working variable, ν̃ , which

may arise when using high-order accurate discretizations of the model.

Additionally, the stress tensor is defined as

σi j = 2µt

(
Si j−

1
3

∂uk

∂xk
δi j

)
, (3.3)
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where µ is the dynamic viscosity, and Si j is the rate of strain tensor, defined as

Si j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
. (3.4)

The heat flux is defined as

q j =

(
µ

Pr
+

µt

Prt

)
∂T
∂x j

, (3.5)

where µt is the turbulent viscosity, Pr is the Prandtl number, Prt is the turbulent Prandtl number,

and T is the temperature. In the following subsections we discuss the numerical discretization of

Equation 3.1 in detail.

3.2.1 High-order Strand Grid Discretization

Strand grids provide a method for automatic mesh generation while providing a compact semi-

structured mesh format that is favourable to parallel scalability [3, 13]. Strands are produced from

a surface tessellation by extruding straight lines (strands) a short distance in the normal direction.

While strands are used to capture near-body effects, overset Cartesian grids are typically used to

capture off-body effects. In this work, we focus only on the strand discretization and leave off-body

coupling for future work.

Another interpretation of strand grids of relevance here is that strands connect a series of un-

structured mesh layers expanding from the surface. Figure 3.1 shows this interpretation, where each

node level forms a new layer of unstructured mesh. Interpreting the mesh in this manner leads to

our discretization strategy, which is to solve a series of unstructured discretizations in each layer

of the strand grid, while coupling the layers through a source term containing derivatives along the

strands. This approach was first explored by Katz and Work [5] for compressible flows. Here we

provide a brief explanation of this discretization scheme, and then extend the method to low speed

and incompressible flows through a preconditioner.

The method begins with a surface mesh consisting of a high-order triangulation from which

strands are projected along normal vectors. A quadratic surface element and strand projection is

shown in Figure 3.1. After the initial mesh generation, each element of the strand mesh in xyz space
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Fig. 3.1: Transformation between physical and computational domains for a strand grid.

is locally transformed to the computational domain, in rsη space, as shown in Figure 3.1. Upon

transformation to computational space, Equation 3.1 becomes

∂ Q̂
∂ t

+
∂ F̂
∂ r

+
∂ Ĝ
∂ s

+
∂ Ĥ
∂η
− ∂ F̂v

∂ r
− ∂ Ĝv

∂ s
− ∂ Ĥv

∂η
= Ŝ (3.6)

where the transformed variables, fluxes, and source term are

Q̂≡ JQ, Ŝ≡ JS,

F̂ ≡ J (rxF + ryG+ rzH) , F̂v ≡ J (rxFv + ryGv + rzHv) ,

Ĝ≡ J (sxF + syG+ szH) , Ĝv ≡ J (sxFv + syGv + szHv) ,

Ĥ ≡ J (ηxF +ηyG+ηzH) , Ĥv ≡ J (ηxFv +ηyGv +ηzHv) ,
rx sx ηx

ry sy ηy

rz sz ηz

=
1
J


yszη − zsyη zryη − yrzη yrzs− zrys

zsxη − xsyη xrzη − zrxη zrxs− xrzs

xsyη − ysxη yrxη − xryη xrys− yrxs

 ,

J = xη (yrzs− zrys)+ yη (zrxs− xrzs)+ zη (xrys− yrxs) .

Here, J is the Jacobian of the transformation, and partial differentiation is denoted with a subscript

(e.g. ∂x/∂ s = xs).
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After transformation, high-order flux balances are calculated in each unstructured layer (r-s

plane) and are then coupled together using high-order finite differences based on summation-by-

parts (SBP) along strands (η-direction). This is accomplished by moving all η-derivatives to the

right-hand side of Equation 3.6, resulting in

∂ Q̂
∂τ

+
∂ F̂
∂ r

+
∂ Ĝ
∂ s
− ∂ F̂v

∂ r
− ∂ Ĝv

∂ s
= S̃, (3.7)

where

S̃≡ Ŝ− ∂ Q̂
∂ t
− ∂ Ĥ

∂η
+

∂ Ĥv

∂η
.

The interpretation of Equation 3.7 is now essentially a two dimensional (r-s) flux balance with

source (η) terms. Additionally, this interpretation becomes convenient when the method is paral-

lelized, requiring partitioning of the surface grid only. In this manner, each processor takes respon-

sibility for a partition of strands.

For the source (η) terms, stable summation-by-parts (SBP) operators [71–75] approximate flux

derivatives along strands. We impose boundary conditions weakly through simultaneous approxi-

mation terms (SAT) [76] added as penalties at boundaries [77, 78]. Much of the SBP theory has

been established now for many years, and we refer readers to the references provided.

A recently introduced method, flux correction (FC) [4, 65], is employed in the r-s plane. The

key aspect of the FC method is the cancellation of leading truncation error terms appearing in the

finite volume flux balance. Considering the inviscid portion of Equation 3.7, the numerical flux at a

face between nodes i and j in a layer of the strand mesh is formulated as

F h
i j =

1
2
(FL +FR)−

1
2
|A (QR,QL)|(QR−QL) , (3.8)

where F = FFF · nnn is the inviscid flux in the face normal direction, A = ∂F/∂Q is the directed

flux Jacobian, and QR and QL are the conserved variables at the left and right reconstructed states.

Following the usual convention [63], the directed flux Jacobian is decomposed into the left and right
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eigenvectors and the eigenvalues,

|A |= M |Λ|M−1, (3.9)

where the eigenvalues are

Λ = diag(λi)

λ1,2 = un± c, λ3,4,5,6 = un.

(3.10)

A critical aspect of the method is the reconstruction of the fully non-linear flux as well as the

conserved variables

FL = Fi +
1
2

∆rT
∇

hFi, FR = F j−
1
2

∆rT
∇

hF j,

QL = Qi +
1
2

∆rT
∇

hQi, QR = Q j−
1
2

∆rT
∇

hQ j,

(3.11)

where r is the position vector along the edge connecting node i to node j. Importantly, the gradient

is discretized with pth-order accurate method such that,

∇
h = ∇+O(hp), (3.12)

where O(hp) denotes the truncation error of the gradient procedure. For FC, the order of accuracy of

the flux and solution gradients must be at least second-order (p≥ 2) to maintain consistency. Such

gradient approximations may be formulated in a variety of ways such as least squares procedures or

Green-Gauss integration [56]. Following our previous work [5], we use high-order finite element-

type approximations to construct the required flux and solution gradients.

The advantage of flux correction over other high-order methods is that it bypasses the need for

second derivatives in the reconstruction and does not require high-order quadrature. This makes the

method an efficient way to achieve high-order accuracy without excess computational expense.

3.2.2 Preconditioning

In order to apply the high-order strand grid methodology to a much wider class of flows,

we explore preconditioning techniques. In particular, numerous preconditioning methods based

on matrix dissipation and other approaches have been utilized successfully by other researchers
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to improve performance of compressible CFD methods in low speed and incompressible regimes

[10, 12, 69]. We first present a traditional framework for preconditioning based on the work of

Merkle et al. [10], then modify the framework to generate an optimal form that we use.

We begin with a conversion of Equation 3.1 from conserved variables to primitive variables,

Γ
∂Qp

∂τ
+

∂Fj

∂x j
−

∂Fv
j

∂x j
= S, (3.13)

where

Qp =



p

u j

T

ν̃


, (3.14)

which include pressure, velocity, temperature, and the turbulent working variable. This is done to

allow for arbitrary equations of state, including incompressible flow (ρ = constant) investigated in

this work. Conversion between the primitive variables and the conserved variables in Equation 3.13

is accomplished via a Jacobian matrix,

Γ≡ ∂Q
∂Qp

=



ρp 0 0 0 ρT 0

uρp ρ 0 0 uρT 0

vρp 0 ρ 0 vρT 0

wρp 0 0 ρ wρT 0

h0ρp +ρhp−1 ρu ρv ρw h0ρT +ρhT 0

ν̃ρp 0 0 0 ν̃ρT ρ


, (3.15)

where subscripts p and T denote partial differentiation with respect to pressure and temperature

(e.g. ρp =
∂ρ

∂ p ).

The goal of the preconditioner is to decrease the condition number of the system, and allow

for arbitrary equations of state. This is done by replacing the Jacobian matrix, Γ, in the pseudo-time
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derivative term with a preconditioning matrix, Γp, defined as

Γp =



ρ ′p 0 0 0 ρT 0

uρ ′p ρ 0 0 uρT 0

vρ ′p 0 ρ 0 vρT 0

wρ ′p 0 0 ρ wρT 0

h0ρ ′p +ρhp−1 ρu ρv ρw h0ρT +ρhT 0

ν̃ρ ′p 0 0 0 ν̃ρT ρ


. (3.16)

Here, Γp is identical to Γ except for ρp is replaced by ρ ′p.

The selection of ρ ′p is accomplished by choosing an acoustic wave speed to be the same order

of magnitude as the particle speeds. Sankaran [12] and Merkle, et al. [10] take this approach by

defining a preconditioned speed of sound,

V 2
p ≡

ρht

d′
, (3.17)

where d′ is defined as

d′ ≡ ρhT ρ
′
p +ρT (1−ρhp) . (3.18)

Once Vp is chosen, then ρ ′p can be determined via Equations 3.17 and 3.18. In this manner, the

convergence and dissipation scaling properties of the preconditioner are dependent primarily on the

preconditioned speed of sound chosen. Traditionally this is chosen with a comparison of several

different terms:

Vp = min

(
max

(√
u2 + v2 +w2,

√
|∆p|

ρ
,

ν

∆x

)
,c

)
, (3.19)

where c is the local speed of sound. In Equation 3.19, the preconditioned sound speed for subsonic

flows is chosen to be the particle velocity unless pressure perturbations (∆p) or viscous diffusion

(ν/∆x) are dominant. Such scenarios include large pressure changes at stagnations points, or inside

viscous boundary layers where the mesh spacing, ∆x, is small.
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Using the preconditioned Mach number notation, Mp ≡ Vp/c, the inviscid eigenvalues of the

new dissipation matrix, Γ−1
p A = M̂λM̂−1, are expressed as

λ1,2 =
1
2

(
un
(
1+M2

p
)
±
√

u2
n
(
M2

p−1
)2

+4V 2
p

)
, λ3,4,5,6 = un, (3.20)

where un ≡ uuu ·nnn, and nnn is the unit normal of the corresponding finite volume face or finite difference

strand. From Equation 3.20, it is clear that the pseudo-acoustic speeds, λ1,2, are of the same order

of magnitude as the particle velocity, un. The new right and left eigenvectors are expressed as

M̂ =



ρ (λ1−un) ρ (λ2−un) 0 0 0 0

nx nx l1 m1 0 0

ny ny l2 m2 0 0

nz nz l3 m3 0 0
1−ρhp

ρhT
(λ1−un)

1−ρhp
ρhT

(λ2−un) 0 0 1 0

0 0 0 0 0 1



M̂−1 =



− 1
ρ(λ2−λ1)

λ2−un
λ2−λ1

nx
λ2−un
λ2−λ1

ny
λ2−un
λ2−λ1

nz 0 0

1
ρ(λ2−λ1)

− λ1−un
λ2−λ1

nx − λ1−un
λ2−λ1

ny − λ1−un
λ2−λ1

nz 0 0

0 l1 l2 l3 0 0

ny m1 m2 m2 0 0
1−ρhp

ρhT
0 0 0 1 0

0 0 0 0 0 1



(3.21)
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where li and mi are given by

l1 = η1 (ny−nz) ,

l2 = η1 (nz−nx) ,

l3 = η1 (nx−ny) ,

m1 = η1 (η2nx−1) ,

m2 = η1 (η2ny−1) ,

m3 = η1 (η2nz−1) ,

η1 =
1√

2
√

1−nxny−nxnz−nynz
,

η2 = nx +ny +nz.

(3.22)

At this point, we adapt the framework of Merkle et al. [10] to the present high-order strand

framework with a few modifications. First, a closer examination of the Euler equations using asymp-

totic analysis [79], leads to an “optimal” preconditioned speed of sound, Vp = Mpc, where

Mp =


√

2M2

1−2M2 M < .5

1 M ≥ .5
, (3.23)

where M is the local Mach number. When M > .5 then the standard compressible eigenvalues are

returned. Otherwise, the preconditioner becomes active at low speeds.

Second, we take advantage of the strand grid structure to help determine when to turn the pre-

conditioner off in the presence of large pressure perturbations or viscous effects. Because pressure

is nearly constant normal to the wall in boundary layer regions, we expect large pressure perturba-

tions will typically appear in r− s planes only. Therefore, we measure pressure perturbations along

edges in r−s planes. At an edge connecting nodes i and j in an r−s plane, we compute the pressure

perturbation as ∣∣pi− p j
∣∣

1
2 (ρi +ρ j)

. (3.24)
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Third, along the same line of reasoning, we expect viscous diffusion to be dominant along

strands (η-direction). Therefore, we estimate the viscous diffusion velocity with

ν

∆η

√
η2

x +η2
y +η2

z

J
. (3.25)

This quantity scales such that it becomes large for the high aspect ratio cells used near wall bound-

aries.

Combining Equations 3.23-3.25, we compute the preconditioned sound speed within the strand

grid as

Vp =


max

(√
2M2

1−2M2 ,

√
|pi−p j|

1
2(ρi+ρ j)

, ν

∆η

√
η2

x +η2
y +η2

z
J

)
M < .5

c M ≥ .5

, (3.26)

where M is the local Mach number. We have experienced reasonably good convergence and accu-

racy for the test cases examined, which we discuss in the next section.

3.3 Results

We now investigate the high-order preconditioned strand grid methodology described in the

previous section with some representative cases. First, we verify the order of accuracy of the method

via the method of manufactured solutions (MMS) [49]. Next, we provide a laminar flow validation

case for steady flow over a sphere. Finally, we present a number of turbulent validation cases

involving bodies of revolution (BOR), which are representative submersible configurations.

3.3.1 MMS Verification

The method of manufactured solutions is an effective method for solution verification [49, 51]

of complex equations for which exact solutions are difficult or impossible to obtain. With MMS,

a solution is determined a priori and forced via source terms. An example manufactured solution

based on smooth trigonometric functions is shown in Figure 3.2. The degree to which the discrete

solution departs from the exact solution as the mesh is refined may then be used to verify the order

of accuracy of the scheme. Using this method, proper implementation of additional features, such
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as a preconditioner, can be verified. Verification is a necessary step prior to validation, which we

subsequently explore.

Using the solution and geometry in Figure 3.2, we solve the governing equations with and

without the turbulence model using four meshes with 36,864, 73,728, 147,456, and 294,912 nodes.

In each case, we run the study with and without the viscous fluxes. The results, shown in Figure

3.3, indicate third-order accuracy when using the FC scheme with high-order SBP operators. These

results match those presented in earlier works [4, 5, 65].

3.3.2 Laminar Flow Validation

We next examine the accuracy of laminar flow predictions compared to experimental data and

other established numerical solutions. We examine steady flow over a sphere at low speed and low

Reynolds number. For this test we use a sphere with 256 fourth-order surface elements, resulting

in 2304 surface nodes. We extend the strand length 20 diameters to the far field and use 128 nodes

along each strand. The resulting grid contains roughly 300,000 nodes total. Low speed flow at

M = 0.002 is imposed to determine the effectiveness of the preconditioner in terms of accuracy and

convergence. The incompressible equation of state (ρ = constant) is used.

Both preconditioned and non-preconditioned results are shown in Figure 3.4 for Re = 40. It

is evident that the non-preconditioned solution in Figure 3.4(b) possesses non-physical numerical

artefacts in the pressure profile. This is due to the poor scaling of the standard compressible pressure

dissipation at low Mach number. The resulting velocity profile is also overly diffuse, as indicated

by the streamlines in the figure. In Table 3.1, we observe that only the preconditioned system can

correctly predict separation angle and recirculation length at low Mach number. In fact, without

preconditioning there is no recirculation region predicted at all. Convergence in pseudo-time is also

notably faster using the preconditioned system as shown in Figure 3.5.

Table 3.1: Comparison of preconditioned and non-preconditioned solutions for flow around a
sphere, M = 0.002, Re = 40.

Preconditioned Non-preconditioned Experimental
Recirculation length 0.285 0.00 0.29

Angle of Separation (deg) 144.0 NA 144.1
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Fig. 3.2: Example manufactured solution.
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Fig. 3.3: MMS results for laminar and turbulent flow grid convergence studies.

(a) Preconditioned (b) Non-preconditioned

Fig. 3.4: Pressure and streamlines for flow around a sphere, M = 0.002, Re = 40.
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Fig. 3.5: Convergence of u-momentum with preconditioned and non-preconditioned systems for
flow around a sphere, M = 0.002, Re = 40.
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Fig. 3.6: Flow characteristics for flow over a sphere over a range of low Reynolds number.
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We extend this case to a series of low Reynolds numbers for which we have a large amount

of numerical and experimental results for comparison. Again, we focus on recirculation length and

angle of separation. We examine results at Re = 40,80,120,160,200. We then compare our results

to the computational results of Magnaudet [80] and Tomboulides [81], and to the experimental

results of Pruppacher [82] and Taneda [83]. The resulting comparison is shown in Figure 3.6, which

displays good correlation with the other experimental and numerical results.

3.3.3 Turbulent Flow Validation

To validate the preconditioned solver capabilities to model turbulence, we simulate low Mach

number flow around three bodies of revolution (BOR), which are representative submersible con-

figurations. These bodies provide good candidates for application as separation is minimal, thus the

results of FC will not be dwarfed by the errors in the turbulence model. The three geometries were

obtained from the work of Gertler [70], Van Randwijck and Feldman [84], and Huang [85]. Each

configuration highlights a particular solver capability: (1) Model 4155 for straight ahead flow, (2)

Model 4621 for flow at angles, and (3) Body 1 for after-body pressure prediction.

3.3.4 Gertler Series Model 4155

Model 4155 is a configuration from work by Gertler [70]. The submersible-shaped body has

a length of 2.7432m and a maximum radius of 0.27432m. Flow velocities were varied to achieve a

sweep of Reynolds numbers from 5 million to 20 million. The experimental results were obtained

(a) Surface mesh (b) Volume mesh

Fig. 3.7: Model 4155 mesh.
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in water at relatively low speeds, and so we impose an incompressible flow condition. The surface

mesh and volume mesh, shown in Figure 3.7, consists of 11,760 fourth-order elements with 64

nodes along each strand, resulting in around 3 million cells total. Strand extend a distance 20m

away from the body surface.

The drag coefficient at each Reynolds number was calculated with

Cd =
Fd

1
2 ρV 2S

, (3.27)

where Fd is the total drag force, V is the free stream velocity, and S is the wetted surface area of

the body. Both second-order and third-order results are shown. The third-order results are obtained

with the FC method and high-order SBP strand operators described in this work. The second-

order results are obtained with a conventional finite volume (FV) method with the high-order flux

reconstruction turned off, as well as second-order finite differences along strands.

Generally, the computational results agree with the experimental results of Gertler, who presents

drag coefficients with and without a small patch of surface sand near the BOR nose to ensure fast

transition to turbulence, as shown in Figure 3.8. The discrepancies between the FV and FC schemes

and the computational and experimental results are likely due to differences in laminar to turbulent

transition along the smooth body. The Spalart-Allmaras model used does not attempt to model tran-

sition and makes use of fully turbulent inflow conditions. The experimental results, on the other

hand, likely consist of a combination of laminar and turbulent flow regimes along the body, with the

sand case providing a more definite turbulence trip location. Modelling transition continues to be a

challenge to CFD algorithms in general. Even so, the trends obtained computationally match quite

well with the experimental measurements.

3.3.5 Gertler Series Model 4621

Model 4621 was presented in the work of Van Randwijck and Feldman [84], and is a more

slender BOR than the previous Model 4155 case. The body length is 4.572m with a maximum

diameter of 0.623m. This body was experimentally tested at a Reynolds number of 4.7 million at

angles of attack up to 18 degrees. Again, the experiment was performed in water, which we assume
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Fig. 3.8: Model 4155 drag computation for various Reynolds numbers.
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Fig. 3.9: Model 4155 turbulent viscosity.
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is incompressible in the simulations. Unlike the Model 4155 case, the large angles of attack for this

case lead to large regions of separation near the aft portion of the BOR.

The mesh for Model 4621 consists of 3,840 fourth-order elements on the surface with 64 nodes

along each strand, leading to around 1 million cells total. The surface and volume mesh is shown in

Figure 3.10.

The normal coefficient was calculated for angles of attack 2,4,10, and 18 deg. as

Z =
Fn

1
2 ρV 2S

,

where S is the body length squared, and Fn is the component of the force normal to the free stream

direction. Computational results compared to the experiment are shown in Figure 3.11. In each

case, the normal force magnitude is under predicted, with errors increasing as the angle of attack

increases. A slightly better prediction is obtained at higher angles of attack with the FC scheme

compared to the FV scheme.

While the trend in Figure 3.11 is consistent with the experimental data, the predictions at high

angles of attack are error-prone. Upon examination of the pressure and velocity fields at 18 deg.,

shown in Figure 3.12, it is evident that a large region of separation is present near the aft end of the

BOR. It is well-known that most turbulence models, and certainly the Spalart-Allmaras model, do

not perform reliably in the presence of large regions of separation [86], especially occurring along

smooth bodies. Future work will focus on testing other turbulence models including a variety of

(a) Surface mesh (b) Volume mesh

Fig. 3.10: Model 4621 mesh.
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Fig. 3.11: Normal force coefficient for Model 4621 at various angles of attack at Reynolds number
of 4.4 million.
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Fig. 3.12: Model 4621 at 18 deg. angle of attack.
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two-equation models.

3.3.6 Body 1

The geometry known as “Body 1” as detailed by Huang [85], consists of a cylindrical middle

body, with axisymmetric afterbody and forebody attachments. The total length of the entire body

is 3.066m, with a maximum diameter of 0.2794m. The surface mesh used consists of 3,840 of

fourth-order elements with 64 nodes along each strand in a hyperbolic tangent distribution, leading

to around 1 million cells total. The surface and volume meshes are shown in Figure 3.13.

The original experiments of Huang [85] were performed in a wind tunnel at M = 0.09 and

Re = 6.6e6, and the flow can be assumed to be incompressible. Pitot tube pressure measurements

were obtained along the afterbody and near wake region at distances of 2.316m, 2.594m, 2.804m,

and 3.241m measured from the body nose, as shown in Figure 3.14. The last measurement is

completely in the wake region of the body. Pressure was measured radially outward from the body a

distance R/Rmax where Rmax is the maximum radius of the body. In addition, pressure was measured

on the surface of the afterbody for the last third of the body length. Measurement errors for the

pressure on the surface of the body were reportedly less than 0.5% of the dynamic pressure, and off

the body the measurements were reportedly less than .8% of the dynamic pressure. The velocity

was reportedly measured within±.15 m/s. Location of the pitot tube was measured within 0.01mm.

With these uncertainties the pressure coefficient uncertainty is estimated to be .9%, uncertainty

(a) Surface Mesh (b) Volume Mesh

Fig. 3.13: Body 1 Meshes.
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analysis can be found in Appendix C. The pressure coefficient is determined from

Cp =
P−P∞

1
2 ρV 2

, (3.28)

where P∞ is the ambient pressure and P is the local pressure.

Figure 3.15 shows the computed surface pressure coefficient along the afterbody along with the

experimental data with uncertainty bands. Excellent agreement is observed along most of the after-

body, with some oscillation near the trailing edge, which is more pronounced with the third-order

FC scheme. Pressure coefficient extracted radially at the stations shown in Figure 3.14 is displayed

in Figure 3.16. Experimental uncertainty bands are also shown. Generally good agreement in trends

are observed with the data. We expect further improvements in accuracy near the wake region with

the addition of off-body adaptive Cartesian grids. Previous work has revealed the importance of fine

wake resolution through the use of Cartesian grids because the strands tend to spread out quite fast

near the trailing tip [2].

3.4 Conclusions

In this paper, we address certain challenges associated with the computation of low speed

and incompressible flows through the use of automated strand grid generation, unique high-order

methods, and preconditioning. Strand grids provide fully automatic volume grid generation from a

0.7553

0.8462

1.0570

0.9144

Fig. 3.14: Body 1 afterbody pressure measurement stations.
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Fig. 3.15: Body 1 afterbody surface pressure for last third of the body

surface mesh and provide a framework for massive scalability due to a compact grid representation.

We formulated a unique high-order algorithm for strand grids using flux correction finite volume

balances in combination with high-order summation-by-parts operators along strands. To extend

the method to low speed and incompressible flows, we explore preconditioning techniques which

take advantage of the strand grid structure.

Using the method of manufactured solutions, we verify the correct implementation of the pre-

conditioned high-order strand method. Grid refinement studies indicate third-order accuracy for

both inviscid and viscous terms, with and without the Spalart-Allmaras turbulence model.

Validation is first performed for steady laminar flow over a sphere. This case highlights the

improvements in accuracy and convergence using the preconditioner. Without the preconditioner,

spurious pressure oscillations and poor velocity prediction are observed. With the preconditioner,

separation angle and reattachment length are predicted very accurately.

Validation is next performed for incompressible turbulent flow over a series of bodies of rev-

olution. In all cases, trends are captured accurately. However, discrepancies sometimes appear in

cases involving transition and smooth-body separation. In these cases, the improved order of accu-

racy does not provide much benefit, indicating that dominant errors may be attributed to turbulence
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Fig. 3.16: Body 1 afterbody pressure coefficient profiles at various stations.
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modeling of these flow features. These results highlight the fact that the order of accuracy is only

one of many factors impacting overall fidelity of solutions. Future work will focus on validating

similar cases with other turbulence models to improve algorithm performance.
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Chapter 4

Conclusion

High-order methods provide many advantages. They provide better solution accuracy and

dissipate solutions less than low-order methods. However, they also can take longer to converge and

are less stable than their counterparts. In this work we looked at FC in particular, which obtains high-

order results by modifying the truncation error of the second-order Galerkin method. This provides

a simple correction term that can be implemented to currently existing codes. By analyzing the

truncation error of the method in conjunction with source terms we can conclude the proper form

of the source terms. We have observed that FC can be extended to incompressible flows by use of

preconditioning schemes.

Truncation error analysis shows that FC has second-order truncation error on arbitrary grids

and third-order truncation error on regular grids. This leads to FC being formally third-order on

arbitrary meshes. However, proper source term discretization must be utilized to retain the high-

order solution error. Solution error can be reduced and computational efficiency retained by using

proper source term discretization.

Although strand grids are useful for meshing curved surfaces, they lack the ability to produce

adequate mesh quality for the body of revolutions. Because of this, it is suggested that a Cartesian

mesh be combined with the strand mesh to produce more stable solutions for FC in particular. The

strand mesh provides great resolution close to the body, while the simplicity of a Cartesian off-body

mesh provides resolution in the off-body. We speculate that the combination of the two methods

produce better solution convergence and more accurate answers.

There are many challenges facing modern CFD methods. Among the list given by Wang [1] is

the need for better methods to produce high-order meshing. Strand-Cartesian grids show potential

in alleviating the task of producing high-order meshes. A high-order method has been shown to be

effective in low-Mach and incompressible flow. This extension was enabled by the addition of a
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preconditioning scheme. In addition, a couple SA turbulence model was coupled with the solution

variables. These methods showed viability by providing adequate results for a series of bodies of

revolution.

Because of the addition of a preconditioner, many new avenues have been opened to future re-

search for FC. Using the arbitrary equation of state preconditioning scheme has enabled the addition

of chemical reactions and combustion simulations. In addition, the extension of FC to incompress-

ible flows allows application to many more real world problems, such as shown with the bodies

of revolution. The ability to couple turbulence models into the equations also provides advantages

over the duel-step methods. Further turbulence models can also be applied in this way, increasing

accuracy for different types of simulations. By understanding source terms and their effects on FV

schemes, such as FC, and by the addition of a preconditioning scheme, FC has become a more

viable option for future research and implementation.
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Appendix A

Truncation Error Analysis

Truncation error analysis of Flux Correction and the corrected source term in multiple dimen-

sions. Some useful identities can be found using the summation in connection with the normals,
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Using Taylor series expansion to find Si,
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Breaking down SR line by line to get the truncation error leads to,
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Evaluating Equation A.1 yields,
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The proper source term is achieved, but further cancellation in the truncation error can be found,
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Resulting in a truncation error term of
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Leading to a truncation error term that is O
(
h2
)

on arbitrary meshes as long as q ≥ 2. An astute

observer would notice that the Hessian adds back terms that would of otherwise been canceled in

the source term error. This is so that consistency can be maintained when the method is combined

with the fluxes.
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A.1 Flux Correction Truncation Error

Flux Correction is formally second-order in truncation error terms. The following is a break-

down of the truncation error analysis. Starting with the general steady state solution,
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With,
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Beginning the truncation error analysis, we start with Equation A.3 and split the fluxes into

their components, leading to,
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To perform the truncation error we will first show that the necessary values are obtained. Substitu-

tion into Equation A.3 and applying the proper relationships yields,
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Where O
(
h1
)

represents the truncation error. Simplification shows

∇
h ·F +Et = ∇ ·F +O

(
h1) .

Thus the needed flux terms are still included where needed. Next we will expand the O
(
h1
)

terms

to find the truncation error is actually O
(
h2
)
. Further expansion shows,

Et =
1

2V0
∑

i

(
��

��
��

∆x2
0i

2
(F2x)+((((

(((∆x0i∆y0i (Fxy)+
��

��
��

∆y2
0i

2
(F2y)

+
∆x3

0i
6

(F3x)+
∆x2

0i∆y0i

2
(F2xy)

+
∆x0i∆y2

0i
2

(Fx2y)+
∆y3

0i
6

(F3y)

��
�
��
�

−
∆x2

0i
2

(F2x)−(((((
((

∆x0i∆y0i (Fxy)−
�
��

�
��

∆y2
0i

2
(F2y)

−
∆x3

0i
4

(F3x)−
3∆x2

0i∆y0i

4
(F2xy)

−
3∆x0i∆y2

0i
4

(Fx2y)−
∆y3

0i
4

(F3y)+O
(
hq+1)+O

(
h4))n0iS0i.

Resulting in a truncation error term of

Et =−
1

2V0
∑

i

(
1

12

(
∆x3

0i (F3x)+∆y3
0i (F3y)

+3∆x2
0i∆y0i (F2xy)+3∆x0i∆y2

0i (Fx2y)

))
noiS0i +O(hq)+O

(
h3) . (A.4)

This leads to a method that is formally O
(
h2
)

on arbitrary grids, as long as q≥ 2.

A.2 Combined Flux Correction and Corrected Source schemes

Now that truncation error analysis has been completed on both the corrected source and FC

schemes, now the methods will be used in combination. The goal is to create a method that is

consistent with that of the two dimensional version. So on an arbitrary grid the truncation error

will be O
(
h2
)

and on a regular grid the expected truncation error will be O
(
h3
)
. A few useful
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relationships will be used to determine the truncation error, on a regular grid in two dimensions

∑
i

∆x3
0iS0in0i = ∑

i
∆y3

0iS0in0i = 0,

in addition, the relationship between fluxes and source terms is given by

fx +gy = S.

This is differentiated to obtain three equations that will be useful,

f3x +g2xy = S2x

f2xy +gx2y = Sxy

fx2y +g3y = S2y.

(A.5)
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Appendix B

Body of Revolution Geometries

B.1 Model 4155

Model 4155 geometry was given by Gertler [70] in Imperial units. The basic profile was given

by the polynomial equation,

y2 = a1x+a2x2 +a3x3 +a4x4 +a5x5 +a6x6 (B.1)

where the coefficient a values are given in Table B.1.

Table B.1: Model 4155 Geometry Coefficient Values

a1 1.000000

a2 2.149653

a3 -17.773496

a4 36.716580

a5 -33.511285

a6 11.418548

Leading to the following model particulars in Table B.2,
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Table B.2: Model 4155 Geometry Particulars

Length ( f t) 9.000

Diameter ( f t) 1.800

Nose radius ( f t) 0.180

Tail radius ( f t) 0.036

Wetted surface ( f t2) 39.75

Volume ( f t3) 14.89

Longitudinal center of buoyancy ( f t) 4.180

B.2 Model 4621

Model 4621 defined by Van Randwijck and Feldman [84]. This model also uses Equation B.1

and Imperial units. The basic profile is given by the coefficient values in Table B.3.

Table B.3: Model 4155 Geometry Coefficient Values

a1 1.000000

a2 1.137153

a3 -10.774885

a4 19.784286

a5 -16.792534

a6 5.645977

Leading to the following model particulars in Table B.4,
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Table B.4: Model 4155 Geometry Particulars

Length ( f t) 15.00

Diameter ( f t) 2.044

Nose radius ( f t) 0.1392

Tail radius ( f t) 0.0

Wetted surface ( f t2) 70.55

Volume ( f t3) 29.53

Longitudinal center of buoyancy ( f t) 6.684

B.3 Body 1

Body 1 defined by Huang [85] is based off of the offset points given in Table B.5.
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Table B.5: Body 1 Offset Data

x/L y/L x/L y/L x/L y/L x/L y/L x/L y/L x/L y/L

0.000 0.000 .1193 .0441 .2684 .0456 .5070 .0456 .7363 .0427 .9612 .0095

.0050 .0100 .1243 .0444 .2783 .0456 .5169 .0456 .7477 .0421 .9642 .0087

.0099 .0142 .1292 .0447 .2883 .0456 .5268 .0456 .7553 .0416 .9662 .0081

.0149 .0175 .1342 .0450 .2982 .0456 .5368 .0456 .7666 .0408 .9682 .0076

.0199 .0202 .1392 .0452 .3082 .0456 .5467 .0456 .7780 .0399 .9692 .0074

.0298 .0248 .1441 .0453 .3280 .0456 .5567 .0456 .7970 .0382 .9702 .0072

.0348 .0268 .1491 .0454 .3380 .0456 .5666 .0456 .8045 .0375 .9722 .0068

.0398 .0287 .1541 .0455 .3479 .0456 .5765 .0456 .8159 .0363 .9732 .0066

.0447 .0303 .1590 .0448 .3579 .0456 .5865 .0456 .8273 .0350 .9751 .0063

.0497 .0319 .1640 .0456 .3678 .0456 .5964 .0456 .8349 .0326 .9771 .0062

.0547 .0333 .1690 .0456 .3777 .0456 .6064 .0456 .8462 .0326 .9791 .0059

.0596 .0347 .1740 .0456 .3877 .0456 .6188 .0456 .8576 .0310 .9811 .0056

.0646 .0359 .1789 .0456 .3976 .0456 .6264 .0455 .8652 .0299 .9831 .0053

.0696 .0370 .1839 .0456 .4076 .0456 .6378 .0455 .8765 .0281 .9851 .0050

.0746 .0381 .1889 .0456 .4175 .0456 .6454 .0455 .8841 .0268 .9871 .0048

.0795 .0390 .1938 .0456 .4274 .0456 .6567 .0453 .8955 .0248 .9881 .0046

.0845 .0399 .1988 .0456 .4374 .0456 .6681 .0452 .9069 .0226 .9901 .0043

.0895 .0407 .2087 .0456 .4473 .0456 .6757 .0450 .9144 .0211 .9920 .0040

.0944 .0414 .2187 .0456 .4573 .0456 .6871 .0448 .9245 .0189 .9940 .0036

.0994 .0421 .2286 .0456 .4672 .0456 .6984 .0444 .9344 .0166 .9960 .0028

.1044 .0427 .2366 .0456 .4771 .0456 .7060 .0441 .9443 .0140 .9980 .0019

.1093 .0432 .2485 .0456 .4871 .0456 .7174 .0437 .9513 .0122 1.000 0.000

.1143 .0437 .2584 .0456 .4970 .0456 .7250 .0433 .9563 .0108
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Appendix C

Measurement Uncertainty Analysis

The original experiments of Huang [85] were performed in a wind tunnel at M = 0.09 and Re=

6.6e6, and the flow can be assumed to be incompressible. Pitot tube pressure measurements were

obtained along the afterbody and near wake region at distances of 2.316m, 2.594m, 2.804m, and

3.241m measured from the body nose, as shown in Figure 3.14 The last measurement is completely

in the wake region of the body. Pressure was measured radially outward from the body a short

distance. In addition, pressure was measured on the surface of the afterbody. Measurement errors

for the pressure on the surface of the body were reportedly less than 0.5% of the dynamic pressure,

and off the body the measurements were reportedly less than .9% of the dynamic pressure. The

velocity was reportedly measured within ±.15 m/s. Location of the pitot tube was measured within

0.01mm. With these uncertainties the pressure coefficient uncertainty is estimated to be 1.15%. The

pressure coefficient is determined from

Cp =
P−P∞

1
2 ρV 2

, (C.1)

where P∞ is the ambient pressure and P is the local pressure.

Beginning the analysis, Equation C.1 is partially differentiated with respect to both velocity

and pressure:

δCp =
1

1
2 ρV 2

δP, (C.2)

δCp =−
P−P∞

1
4 ρV 3

δV.

Next, we determine the dynamic pressure. Dynamic pressure is assumed to be “perfect” as all the

measurement errors are dependent on it. Using the values used in the original test we obtain,

1
2

ρV 2 =
1
2

1.2754(30.15)2 = 579.7Pa. (C.3)
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Thus pressure measurements varies ± 2.9 Pa, pitot tube misalignment measurements varies ± 4.6

Pa, and using the root mean square (RMS) method the total error is in the range ± 5.4 Pa. Given in

the paper, velocity varies ±.15 m/s. Applying this to the partial differential equations in Equation

C.2, we obtain one constant error value and one slightly varying error value dependent on local

pressure difference.

uCpP
=

1
1
2 ρV 2

uP = 0.0094,

uCpV
=−P−P∞

1
4 ρV 3

uV =
0.000017

Pa
(P∞−P) .

These values are then combined using RMS. The final error bands can be seen in the figures pre-

sented in this work.
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