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ABSTRACT 
 
 

An Exploratory Study of Attributes, Affordances, Abilities, and Distance in Children’s  
 

Use of Mathematics Virtual Manipulative iPad Apps 
 
 

by 
 
 

Stephen I. Tucker, Doctor of Philosophy 
 

Utah State University, 2015 
 
 

Major Professor: Patricia Moyer-Packenham, Ph.D. 
Department: School of Teacher Education and Leadership  
 
 
 This exploratory qualitative study investigated the presence of and relationships 

among constructs that contribute to children’s interactions with educational technology, 

leading to the development of the Modification of Attributes, Affordances, Abilities, and 

Distance (MAAAD) for Learning framework. For this study, each of 10 fifth-grade 

children participated in one individual video-recorded semistructured interview session, 

during which they interacted with two mathematics virtual manipulative iPad apps and 

responded to follow-up questions. Video recordings and observation field notes were 

analyzed for evidence of attributes, affordance-ability relationships, distance, and 

relationships among these constructs. 

 Constant comparative data analysis using memoing and eclectic coding provided 

evidence of the presence of each focus construct. Further analysis and interpretation, 

including quantization of qualitative data for visualization using novel rhombus plots, 



iv 
 
also led to the identification of emergent themes related to each construct and revealed 

relationships among the constructs. Emergent themes included categorization, alignment, 

and modification of attributes, variations and interrelationships among affordance-ability 

relationships, and the identification of and interactions among mathematical and 

technological distance. Furthermore, each construct related to each other construct. The 

evidence and interpretations led to the development of the MAAAD for Learning 

framework. 

 The results of the study suggest that the MAAAD for Learning framework models 

relationships among attributes, affordance-ability relationships, and distance in the 

context of user-app interactions. The framework could serve as a tool for app developers 

designing apps, educators using apps to support children’s learning, and researchers 

characterizing user-app interactions and the outcomes of those interactions. The 

constructs, relationships, and framework identified in this study advance the literature on 

children’s interactions with educational technology tools, in particular literature 

concerning children’s interactions with mathematics virtual manipulative iPad apps. 

(220 pages) 

  



v 
 

PUBLIC ABSTRACT 
 
 

 An Exploratory Study of Attributes, Affordances, Abilities, and Distance in Children’s  
 

Use of Mathematics Virtual Manipulative iPad Apps 
 
 

Stephen I. Tucker 
 
 

 This exploratory qualitative study investigated the presence of and relationships 

among constructs that contribute to children’s interactions with educational technology, 

leading to the development of the Modification of Attributes, Affordances, Abilities, and 

Distance (MAAAD) for Learning framework. For this study, each of 10 fifth-grade 

children participated in one individual video-recorded semistructured interview session, 

during which they interacted with two mathematics virtual manipulative iPad apps and 

responded to follow-up questions. Video recordings and observation field notes were 

analyzed for evidence of attributes, affordance-ability relationships, distance, and 

relationships among these constructs. 

 Constant comparative data analysis using memoing and eclectic coding provided 

evidence of the presence of each focus construct. Further analysis and interpretation, 

including quantization of qualitative data for visualization using novel rhombus plots, 

also led to the identification of emergent themes related to each construct and revealed 

relationships among the constructs. Emergent themes included categorization, alignment, 

and modification of attributes, variations and interrelationships among affordance-ability 

relationships, and the identification of and interactions among mathematical and 

technological distance. Furthermore, each construct related to each other construct. The 
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evidence and interpretations led to the development of the MAAAD for Learning 

framework. 

 The results of the study suggest that the MAAAD for Learning framework models 

relationships among attributes, affordance-ability relationships, and distance in the 

context of user-app interactions. The framework could serve as a tool for app developers 

designing apps, educators using apps to support children’s learning, and researchers 

characterizing user-app interactions and the outcomes of those interactions. The 

constructs, relationships, and framework identified in this study advance the literature on 

children’s interactions with educational technology tools, in particular literature 

concerning children’s interactions with mathematics virtual manipulative iPad apps. 
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CHAPTER I 

INTRODUCTION 
 

 Interactions between children and mathematics technology tools have important 

implications for learning. These technology tools, including touchscreen devices such as 

tablets (e.g., Apple iPad, Microsoft Surface), are important for exploring, visualizing, and 

representing mathematics concepts (National Council of Teachers of Mathematics, 2000; 

National Governors Association Center for Best Practices & Council of Chief State 

School Officers, 2010). As touchscreen devices become increasingly popular in the 

facilitation of mathematics instruction, the importance of informed design and 

implementation of technology tools for learning mathematics increases accordingly. To 

understand appropriate design and implementation of technology tools, one must 

understand how mathematics learning takes place when using these tools. One particular 

type of technology, virtual manipulatives (Moyer, Bolyard, & Spikell, 2002), as set 

within mathematics iPad apps, served as the context for this study. 

 
Background and Problem Statement 

 
 

The purpose of this exploratory qualitative study was to conceptualize the 

relationships among attributes, affordances, abilities, and distance in a framework that 

describes the nature of children’s interactions with technology to learn mathematics, here 

set in the context of children’s interactions with mathematics virtual manipulative iPad 

apps. The results and interpretations from this study inform researchers, educators, and 

software designers about constructs that relate to children’s mathematics learning while 
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using technology. 

 Representation and embodied cognition serve as the theoretical foundations for 

much of the research on learning mathematics. The internalization and externalization of 

mathematical representations (Goldin & Kaput, 1996) via representational fluency 

(Zbiek, Heid, Blume, & Dick, 2007) plays a key role in the learning process. From an 

embodied cognition perspective, perception of and interaction with mathematics in the 

physical environment influence human cognition. These actions can be considered 

evidence of mathematical thinking, and changes in these interactions are evidence of 

mathematical learning (Nemirovsky, Kelton, & Rhodehamel, 2013). Studies show that 

fifth-grade students can independently interact with technology (Blumberg & Sokol, 

2004), through which they can construct mathematical concepts (Arzarello, Robutti, & 

Bazzini, 2005). One can use various tools to facilitate the internalization and 

externalization of representations through physical interactions with the environment, 

including virtual manipulatives. 

In the past quarter of a century, virtual manipulatives have become important 

tools for learning mathematics. Virtual manipulatives are “an interactive…visual 

representation of a dynamic object that presents opportunities for constructing 

mathematical knowledge” (Moyer et al., 2002, p. 373). Research and implementation of 

these tools led Namukasa, Stanley, and Tuchtie (2009) to claim that “virtual 

manipulatives may be an invention that not only changes what it means to learn 

mathematics, but also may change what mathematics can be learned” (p. 283). The 

effectiveness of virtual manipulatives is well established. Moyer-Packenham and 
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Westenskow (2013) conducted a meta-analysis of studies comparing virtual 

manipulatives with other instructional treatments, in which 32 studies, some with 

multiple comparisons, generated 82 effect sizes that yielded a moderate (0.35) effect in 

favor of virtual manipulatives. The authors identified five categories of affordances of 

virtual manipulatives that contributed to student learning: simultaneous linking, efficient 

precision, focused constraint, motivation, and creative variation. Instruction using virtual 

manipulatives may also produce equalizing effects on achievement, as one study 

indicated that fewer demographic predictors of student performance existed in the virtual 

manipulative groups compared to the student groups that used textbooks and physical 

manipulatives (Moyer-Packenham, Baker, et al., 2014).  

 One can use virtual manipulatives on many platforms, including those with multi-

touch capability, such as tablets. iPads and other tablets are becoming popular tools for 

teaching and learning mathematics, but little research has investigated how children’s 

mathematics learning is influenced by use of touch-screen interfaces (Moyer-Packenham 

et al., 2015). Research suggests that many constructs may influence mathematics learning 

while using iPads, including interaction modalities (McKenna, 2012; Paek, 2012) and 

various types of feedback (e.g., Bartoschek, Schwering, Li, & Münzer, 2013; Blair, 2013; 

Paek, 2012). However, iPad use does not necessarily improve student achievement (e.g., 

Carr, 2012; L. Wilson, Nash, Wissinger, & Leidman, 2013). Research-based app 

evaluations have concluded that “many applications were little more than digital flash 

cards encouraging rote learning” (Larkin, 2014, p. 30), and that while few offered 

opportunities to manipulate multiple mathematical representations, none allowed students 
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to construct mathematical content (Goodwin & Highfield, 2013; Highfield & Goodwin, 

2013). However, some mathematics iPad apps contain virtual manipulatives; whereas, 

“other mathematics apps, such as flash cards and drill games…lack the interactive visual 

representations of dynamic objects” (Tucker, Moyer-Packenham, Shumway, & Jordan, 

2014, p. 1). 

Emergent research has examined how using mathematics virtual manipulative 

iPad apps can influence mathematics learning. Research suggests that instructional 

experiences using apps featuring virtual manipulatives had positive effects on 

achievement (e.g., Haydon et al., 2012; Riconscente, 2013; Zhang, Trussell, Gallegos, & 

Asam, 2015). In a large-scale mixed-methods study, Moyer-Packenham and colleagues 

(e.g., Boyer-Thurgood et al., 2014; Moyer-Packenham, Anderson, et al., 2014; Moyer-

Packenham et al., 2015; Tucker, Moyer-Packenham, Boyer-Thurgood, et al., 2014) 

developed and implemented research tools to investigate learning performance, learning 

efficiency, and behavior patterns of 100 children aged 3 to 8 interacting with mathematics 

virtual manipulative iPad apps during 30- to 40-minute interviews. Results indicated that 

the preschool group increased efficiency but their performance was unchanged, the 

kindergarten group increased performance but their efficiency was unchanged, and the 

Grade 2 group improved performance and efficiency in skip counting without showing 

similar growth in place value (Moyer-Packenham et al., 2015). The researchers 

concluded that children in different age groups interacted differently with the apps, and 

that apps selected for the study influenced learning in various ways. Related research 

(e.g., Moyer-Packenham et al., in press; Tucker, Moyer-Packenham, Westenskow, & 
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Jordan, 2015) suggests that children access affordances of mathematics virtual 

manipulative iPad apps in a variety of ways, contributing to many outcomes related to 

performance, efficiency, and affordance-ability relationships. Given the variance in 

effectiveness for different students when using mathematics virtual manipulative iPad 

apps, questions arise about what constructs contribute to the learning process. 

By examining children’s mathematics learning while they use technology, 

theoretically grounded in representation and embodied cognition, and applied in the 

context of interactions with mathematics virtual manipulative iPad apps, this study 

supports the development theory on the interaction among constructs that contribute to 

that learning. 

 
Significance of the Study 

 
 

 This study used a theoretical lens of representation and embodied cognition to 

focus on mathematics learning while using technology, set within the context of 

interactions with mathematics virtual manipulative iPad apps. This study conceptualized 

the relationships among attributes, affordances, abilities, and distance, which are 

constructs that contribute to children’s mathematics learning while they interact with 

technology. This aids the interpretation children’s learning in these situations, and can 

also influence design and analysis of mathematics education technology. Emergent 

research exists on the different experiences of students who use mathematics virtual 

manipulative iPad apps to learn mathematics, as well as constructs that contribute to the 

process of learning while interacting with technology.  
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Embodied cognition focuses on interactions with the mathematical representations 

in the physical world as methods for learning and changes in these interactions as 

evidence of learning. In-depth examinations of student interactions with mathematics 

virtual manipulative iPad apps suggest that student experiences may vary based on 

characteristics of the students and the apps (e.g., Tucker, Moyer-Packenham, Shumway, 

et al., 2014). Other studies of mathematics virtual manipulative iPad apps suggested they 

may positively influence performance and attitudes related to fractions (Riconscente, 

2013), numeracy (Spencer, 2013), and multiplication (Paek, 2012). These results indicate 

that mathematics virtual manipulative iPads apps are promising tools for mathematics 

learning, but that their effects may vary. Thus, this study supports the development of 

theory through the investigation of constructs and the connections among those 

constructs that contribute to children’s mathematics learning while they use technology 

such as mathematics virtual manipulative iPad apps. 

An array of research exists concerning constructs relating to tools and users that 

may influence the learning process. These include attributes (e.g., Greeno, 1994), 

affordances (e.g., Gibson, 1986; Norman, 1988), and abilities (e.g., Gibson, 1986), which 

are all thought to contribute to the distance between the user and the technology tool 

(e.g., Sedig & Liang, 2006). Although some of these constructs have been discussed in 

relation to embodied cognition (e.g., Anderson, 2003; Hostetter & Alibali, 2008) and 

discussed in the context of learning using technology (e.g., Belland & Drake, 2013; 

McGrenere & Ho, 2000; Sedig & Sumner, 2006), no prior research could be found that 

coherently synthesized these constructs in relation to mathematics learning while using 
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technology. This exploratory empirical study sought to conceptualize relationships 

among attributes, affordances, abilities, and distance in a framework that describes the 

nature of children’s interactions with technology to learn mathematics. The results inform 

the interpretation of children’s learning while they interact with technology, as well as the 

design and analysis of mathematics education technology. The study is important because 

it supports the development of theory by integrating multiple lines of mathematics 

education and technology research. This is necessary because mathematics education 

increasingly incorporates technology tools, but one must understand how children learn 

using technology in order to effectively design, choose, and implement these tools.  

 
Research Questions 

 
 

The purpose of this study was to conceptualize the relationships among attributes, 

affordances, abilities, and distance in a framework that describes the nature of children’s 

interactions with technology to learn mathematics, here set within fifth-grade children’s 

interactions with mathematics virtual manipulative iPad apps. The over-arching research 

question and subquestions were as follows. 

 What evidence of attributes, affordances, abilities, and distance is present in the 

context of fifth graders’ interactions with mathematics virtual manipulative iPad apps? 

1. Attributes: 

a. What evidence of app attributes is present in mathematics virtual 

manipulative iPad apps?  

b. What evidence of user attributes is present in user interactions with 
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mathematics virtual manipulative iPad apps?  

2. Affordance-ability relationships: What evidence of affordance-ability 

relationships is present in user interactions with mathematics virtual manipulative iPad 

apps?  

3. Distance: What evidence of distance is present in user interactions with 

mathematics virtual manipulative iPad apps? 

4. Relationships: What evidence of relationships among attributes, affordances, 

abilities, and distance is present in user interactions with mathematics virtual 

manipulative iPad apps?  

 
Summary of Research Study Design 

 
 

 In order to find evidence of attributes, affordances, abilities, and distance and 

relationships among these elements in the context of children’s interactions with 

mathematics virtual manipulative iPad apps, this study employed an exploratory 

qualitative design (Marshall & Rossman, 2010). “Exploratory research seeks to provide 

new and previously overlooked explanations…by looking at reality from a new angle” 

(Reiter, 2013, p. 7). This design used qualitative methods to analyze children’s 

interactions with mathematics virtual manipulative iPad apps, consistent with the 

embodied cognition focus on physical interaction. Each of 10 fifth-grade participants 

individually interacted with two mathematics virtual manipulative iPad apps during 

semistructured task-based interviews in an observation room at a university research 

center. Data collection included observations and video recordings of the semistructured 
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task-based interviews. Constant comparative data analysis included qualitative and 

quantitized qualitative focusing on identifying evidence of attributes, affordances, 

abilities, distance, and relationships among these elements through development and 

interpretation of codes and categories, which supported theory development. 

 
Assumptions and Scope of the Study 

 
 

 The researcher made several assumptions about the study based on theories of 

representation and embodied cognition. First, the researcher assumed that the participants 

would interact with the virtual manipulative iPad apps and that the video recordings 

would capture these interactions. Consistent with embodied cognition, the researcher 

assumed that participant interaction with this form of mathematical representations in the 

physical environment would provide data on interactions with touchscreen devices that 

could be coded for evidence of constructs related to learning mathematics. 

 The study was exploratory in nature because previous empirical research had not 

cohesively examined the constructs investigated herein in relation to mathematics 

learning while interacting with technology. The exploratory approach required the 

acknowledgement of several delimitations of this study. The sample was limited to fifth-

grade participants, and potential differences by demographic characteristics were beyond 

the scope of this study. The inclusion of the focus constructs presented the possibility of 

fine-grained, complex relationships within and among the elements, such as extensive 

attribute lists, varying attribute changes in different contexts, minute changes in 

individual affordance-ability relationships, and situation-specific relationships among 
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distance types, but these analyses were beyond the scope of this exploratory study.  

The focus on evidence of the constructs meant that this phase of exploratory 

research did not seek to generate detailed characterizations of the quality or quantity of 

learning taking place. Other influences that contribute to learning mathematics, such as 

social context (e.g., Ladel & Kortenkamp, 2013), were also beyond the scope of this 

study. Furthermore, this study focused on a specific content area (mathematics) and tool 

(mathematics virtual manipulative iPad apps), and was not intended to delineate the 

nuances of how these specific content areas (e.g., algebra) and elements of the tools (e.g., 

game environment vs. virtual manipulative) influenced the individual constructs. 

Additionally, many of the constructs have multiple definitions, but this study focuses on 

the usages cited throughout this document. For example, motivation has been described 

from various perspectives, such as expectancy-value theory, which takes into account 

one’s beliefs about potential outcomes of an activity and the degree to which one values 

the activity (Wigfield & Eccles, 2000). In this study, the term motivation is applied in a 

narrower sense to describe the affordance of motivation (i.e., offering features that 

influence affect, engagement, and interest), consistent with the description and 

application in the specific sense of affordances of virtual manipulatives by Moyer-

Packenham and Westenskow (2013). More studies will be required to investigate these 

dimensions, as is standard for exploratory research (Stebbins, 2001).  

 
Definition of Terms 

 
 

 The following definitions are pertinent to the study.  
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 Virtual manipulative: “Interactive… visual representation of a dynamic object 

that presents opportunities for constructing mathematical knowledge” (Moyer et al., 

2002, p. 373). 

Attribute: A quality or character considered to belong to or be inherent in a person 

or thing (online Oxford English Dictionary). 

Affordance: Something that “relates attributes of something in the environment to 

an interactive activity by an agent who has some ability” based on its own attributes, 

which are characteristics of the environment or agent (Greeno, 1994, p. 383). Also, “cues 

of the potential uses of an artefact by an agent in a given environment” (Burlamaqui & 

Dong, 2014, p. 13). 

Ability: Something that “relates attributes of an agent to an interactive activity 

with something in the environment that has some affordance” (Greeno, 1994, p. 383). 

Distance: The “degree of difficulty in understanding how to act upon [something] 

and interpret its responses” (Sedig & Liang, 2006, p. 184). 
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CHAPTER II 

LITERATURE REVIEW 
 

 This chapter reviews the research literature related to the proposed study. The first 

section presents a theoretical framework for the study, based mainly in representation and 

embodied cognition. The second section examines constructs that may contribute to 

users’ experiences when interacting with mathematics education technology. The 

concluding section identifies areas for further research and the potential contributions of 

this study to the field of educational research, including app design and implementation. 

 
Theoretical Framework 

 
 

Literature concerning representations, as accessed through embodied cognition set 

in the context of interaction with multi-touch technology tools, served as the basis of the 

theoretical framework for this study. 

 
Representation in Mathematics 

Learning mathematics involves interactions between and the development of 

internal and external representations. Internal representations are individuals’ mental 

configurations of mathematics that cannot be directly observed, while external 

representations are physically embodied configurations of mathematics that can be 

accessed by those with appropriate understandings of the representations (Goldin & 

Kaput, 1996). Interplay among representations can include internalizing external 

representations (e.g., interpreting graphs, symbols, and pictures) and externalizing 
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internal representations (e.g., writing, speaking, manipulating concrete objects). Research 

has also shown that interactions with appropriate combinations of multiple external 

representations can enhance learning (Ainsworth, 2006). The processes of interacting 

with multiple representations and internalizing and externalizing representations involves 

representational fluency, which includes translation across representations, drawing 

meaning from different representations of a mathematical entity, and generalizing across 

representations (Zbiek et al., 2007). In other words, representational fluency involves the 

understanding of representations and the connections among multiple representations, 

which contributes to interactions between and development of internal and external 

representations.  

Representational fluency is key to connecting and modifying representations, and 

thus to mathematical learning. Students with greater representational fluency show 

greater success in mathematical problem-solving and justification (Niemi, 1996), while 

representational fluency can be developed through interactions with technology such as 

virtual manipulatives that include multiple connected representations (Suh & Moyer, 

2007). Representational fluency can both facilitate and result from mathematical learning 

(Heinze, Star, & Verschaffel, 2009; Nathan & Kim, 2007). This means that 

representational fluency is both an element of and an outcome of mathematical learning. 

This process can take place in many ways, including through physical interactions with 

representations, such as the physical interactions that students have with mathematics 

virtual manipulative iPad apps.  
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Embodied Cognition: Physically Interacting  
with Representations 

Physical interaction with external representations involves embodied cognition, as 

cognitive processes relate to bodily interactions with the environment. In particular, it has 

been theorized that human cognition is rooted in sensorimotor processing (M. Wilson, 

2002), which is the integration of perception of the environment using multiple senses 

with actions taken upon the environment. Human cognition is thus based in action and 

perception, and is grounded in the physical environment (Alibali & Nathan, 2012). 

Interactions with the physical environment influence human cognition, and the physical 

environment contains representations of mathematics. Interactions with mathematical 

representations in the physical environment influence the interplay between internal and 

external representations, and therefore influence learning. Accordingly, one can analyze 

physical interactions with representations of mathematics in the environment for evidence 

of mathematical learning. 

Daghestani (2013), expanding on cognitive frameworks for learning with media 

(e.g., Mayer, 2002; Moreno, 2006), posited that visual, auditory, and tactile components 

are integral to the learning process, and asserted that the user plays an active role in 

selecting and manipulating tasks when interacting with multimedia technology. 

Nemirovsky et al. (2013) took this further, suggesting that “the intertwining of perceptual 

and motor aspects of tool use [is] perceptuomotor integration” (p. 373, emphasis in 

original), which allows a person to perceive and interact with representations in such a 

way that integrates action and thought. For these authors, mathematical thinking is 

equivalent to expressions of bodily activity, and mathematical learning consists of 
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changes in learners’ physical engagement in mathematical practices. Thus, 

perceptuomotor integration is the mechanism by which a person uses bodily activity to 

develop representational fluency and facilitate the interplay between internal and external 

representations. Changes in bodily engagement (external) in mathematical practices can 

provide evidence of changing (internal) representations of mathematics. Therefore, 

examining physical activity of children engaged in mathematics tasks can shed light on 

how children learn mathematics. 

 
Using Multi-Touch Technology to Interact  
with Representations 

Different technology tools offer varying levels of embodiment. Bodily 

engagement involves gestures, which include a variety of hand and body movements that 

stem from perceptual and motor underpinnings of embodied language and mental 

imagery (Hostetter & Alibali, 2008). The term “gestures” is used here to refer specifically 

to representational gestures, which are bodily actions that are used in the interplay 

between internal and external representations (Hostetter & Alibali, 2008; Segal, 2011). 

Gestures have been shown to help children retain and apply newly acquired knowledge 

within similar contexts (Cook, Mitchell, & Goldin-Meadows, 2008) when 

developmentally appropriate (Ginsburg, Jamalian, & Creighan, 2013; Shuler, 2009) and 

mapped to the specific content (Segal, 2011; Segal, Tversky, & Black, 2014). Multi-

touch interfaces, such as those found on iPads and other tablet devices, offer the potential 

to support rich contexts in which to learn mathematics (Hegedus, 2013) and can be 

programmed to recognize a wide variety of input that many consider to be gestures (e.g., 
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Hamon, Palanque, Silva, Deleris, & Barboni, 2013). However, while few apps take 

advantage of multi-touch capabilities (Byers & Hadley, 2013), apps that do use multi-

touch capabilities may influence children’s mathematical understandings and strategy 

development in unique ways (Baccaglini-Frank & Maracci, 2015). The potential for a 

range of gesture use means that multi-touch technology allows for greater embodiment 

than mouse-based interaction, as it can afford users more direct control over the 

manipulation of representations. Greater embodiment allows for a greater range of 

possible bodily engagement in mathematically meaningful gestures and practices, and 

thus more room for changes in this engagement that provide evidence of changing 

internal representations of mathematics, and therefore mathematical learning. However, 

one must appropriately design these tasks and the tools. 

 
Faithful Technology Tools for Interacting  
with Representations 

Researchers have theorized ways to design educational tools, including software 

such as apps, that facilitate mathematics learning (e.g., Ginsburg et al., 2013; Pelton & 

Francis Pelton, 2011). Many of these guidelines can be traced to Dick (2008), who 

recommended that designers of technology tools insure high levels of cognitive, 

pedagogical, and mathematical fidelity. Cognitive fidelity is the degree to which the 

mathematical representations of the tool align with the cognitive processes of the student. 

Pedagogical fidelity is the degree to which the tool aligns with design principles. 

Mathematical fidelity is the degree to which the tool appropriately represents 

mathematical content. Tools and tasks with high fidelity in all three areas are more likely 
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to (a) accurately reflect the user’s internal representations and methods of modifying 

these representations (cognitive fidelity), (b) allow users to perceive the tool as useful for 

learning mathematics (pedagogical fidelity), and (c) represent mathematical content in a 

way it is understood by the mathematical community (mathematical fidelity), supporting 

the development of representational fluency (Zbiek et al., 2007).  

Tools and tasks, including those involving virtual manipulatives, vary in fidelity 

(Moyer-Packenham, Salkind, & Bolyard, 2008). Olive (2013) argued that the greatest 

challenge in designing digital tools for learning mathematics is to insure they are 

cognitively faithful to externalize students’ mathematical thinking. Digital tools have the 

potential to offer “idealized” representations of some mathematical concepts that are 

more mathematically faithful than non-digital representations (Kirby, 2013), allowing 

users to interact with visualizations of concepts that were once only available in mental 

models (Carpenter, 2013). Pedagogical approaches of digital tools (e.g., instructive, 

manipulable, and constructive—Highfield & Goodwin, 2013; self-leveling, collaborative, 

and sandbox—Zanchi, Presser, & Vahey, 2013) frame discussions of pedagogical 

fidelity. Each type of fidelity influences the design of the tool and how the user perceives 

and interacts with the tool, thus influencing the internalization and externalization of 

representations via perceptuomotor integration. 

 
Summary of the Theoretical Framework 

Theories of representation and embodied cognition imply that learning 

mathematics involves the modification of internal representations, often through physical 

interaction with external representations. Perceptuomotor integration and representational 
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fluency contribute to the transformation of internal representations, with gestures 

assisting the externalization and internalization of representations. Multi-touch 

technology allows for increased embodiment in human-computer interaction, and 

cognitive, pedagogical, and mathematical fidelity influence how users interact with 

technology. Thus, using an embodied cognition approach, one can investigate constructs 

involved in mathematics learning by examining how children physically interact with 

representations of mathematics using multi-touch technology.  

 
Attributes, Affordances, Abilities, and Distance 

This section explains the constructs examined in the study, set within the context 

of learning mathematics through physically embodied interactions with technology-based 

mathematical representations: attributes, affordances, abilities, and distance. 

 
Attributes, Affordances, and Abilities 

An attribute is a characteristic of a person or thing online Oxford English 

Dictionary). In the context of this study, the user (i.e., the participant) has attributes and 

the app has attributes. Based on Gibson’s work (e.g., 1986), Greeno (1994) defined an 

affordance as something that “relates attributes of something in the environment to an 

interactive activity by an agent who has some ability” based on its own attributes, which 

are characteristics of the environment or agent (p. 383). An ability, therefore, is 

something that “relates attributes of an agent to an interactive activity with something in 

the environment that has some affordance” (Greeno, 1994, p. 383). Greeno further 

asserted that affordances are graded properties, rather than being present or not present, 
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and that an affordance exists only in relation to an ability, and vice versa. Chemero 

(2003) extended this, positing that affordances are coupled with abilities as part of a 

continuous system. However, Dotov, Nie, and de Wit (2012) noted that different fields 

(e.g., ecological psychology, cognitive psychology, and neuroscience) conceive of 

affordances differently. The variances are also evident within any given field, leading 

researchers to recognize that there are many controversial claims about affordances, aside 

from the idea that affordances are possible actions related to an agent (Burlamaqui & 

Dong, 2014). Some authors discuss the idea of constraints, but if an attribute has a feature 

that provides a constraint, that is part of what the app affords. In the context of this study, 

(a) apps have attributes that combine to provide affordances, (b) users have attributes that 

combine to create abilities, and (c) there is an affordance-ability relationship between 

user and app (see Figure 1).  

Gaver (1991) brought Gibson’s conception of affordances into the field of human-

computer interaction, including how design suggests affordances. In contrast, McGrenere 

and Ho (2000) interpreted Norman’s (e.g., 1988, 1999) application of affordances as one 

of perceived possibilities, wherein a user should be able to determine what to do without 

difficulty. This identified another difference between Gibson, who focused on perception 

 

 
Figure 1. Affordance-ability relationship set within user-app interactions.  
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of the environment, and Norman, who focused on manipulability of the environment. 

Affordance typologies and applications vary, and include distinctions such as 

technological, social, and educational categories of what a given tool allows to be 

possible (Kirschner, Strijbos, Kreijns, & Beers, 2004). Sedig and Liang (2006) applied 

Norman’s affordances to visual mathematical representations, stating that they should 

“clearly communicate their affordances to learners, making it easy for them to perceive 

and attend to the interactions that are possible” (p. 185). Perceiving and attending to these 

affordances depends on the abilities of the user. One can conceive of the ease or difficulty 

of taking advantage of an affordance as the distance between the user and the tool. 

 
Distance  

Sedig and Liang (2006) conceived distance as the “degree of difficulty in 

understanding how to act upon [something] and interpret its responses” (p. 184). This 

builds on the idea that there are two gulfs to be bridged between computer and user: the 

Gulf of Execution and the Gulf of Evaluation (Hutchins, Hollan, & Norman, 1985; 

Norman, 1986, 1991). The Gulf of Execution is the difficulty of interacting with the 

environment, which one can bridge by matching the mechanisms of the computer system 

with the thoughts and goals of the user. The Gulf of Evaluation is the difficulty of 

determining the state of the environment, which one can bridge by making the 

information displayed easily understandable. Distance determines the amount of 

cognitive load a user encounters, and ways to reduce this cognitive load include 

designing the tool to fit the learner’s conceptions or by the learner bridging the difference 

by learning to use the tool (Sedig & Liang, 2006). Levels of cognitive, pedagogical, and 
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mathematical fidelity (Dick, 2008) may also contribute to distance, as they influence both 

the tool design and how the user perceives the tool.  

Types of distance. Sedig and Liang (2006) defined four types of distance: 

semantic, articulatory, conceptual, and presentation. Semantic distance described the 

level of matching between a user’s intent and the types of interaction an object allows, 

such as whether one is able to move an object or if it must remain stationary. Articulatory 

distance referred to the difference in expression of input and output, such as direct or 

indirect manipulation. Conceptual distance referred to the gap between a user’s 

understanding of how to act upon the mathematical model and how the technology allows 

for manipulation, such as permitting only reflection when a user only knows how to use 

rotation to manipulate shapes. Presentation distance referred to how learners are able to 

adjust a representation relative to the types of adjustments users can make to the 

representations, such as rotating a figure to allow for a different perspective that may 

prove easier for a user to interpret.  

Maintaining distance. Sedig, Klawe, and Westrom (2001) argued that 

maintaining an appropriate amount of distance encourages reflective thinking and deeper 

reasoning. The authors explained that user efforts to bridge the gulfs of execution and 

evaluation affect reasoning and amount of mental effort, and thus the depth of learning. 

They concluded that purposeful, stepwise modification of distance by the tool is key to 

facilitating learning. The authors framed this in terms of the removal of scaffolding, in 

their example surrounding a visual mathematical representation. Scaffolding is the 

external control of task elements initially too difficult for the learner (Wood, Bruner, & 
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Ross, 1976). Sedig et al. (2001) explained that initial interactions with a technology-

based visual representation to explore mathematics content are reflective, but become 

habitual as the learner progresses. The interface then removes scaffolding to disrupt the 

habituation, which leads to reflective interaction and cyclical repetition. In this model, the 

authors focused on the removal of scaffolding moving from a concrete experiential 

interaction toward abstract reflective interaction. However, the principle of stepwise 

adjustment need not be unidirectional.  

Many aspects of interactive visual representations can be dynamically modified to 

maintain interactivity (Parsons & Sedig, 2014). The multidirectional adjustment of 

scaffolding is akin to the zone of proximal development (ZPD) developed by Vygotsky 

(1978) and applied to technology by Murray and Arroyo (2002) as progressive mastery of 

instructional objectives that takes place when material is neither too easy nor too difficult. 

Progressive mastery suggests that users also change to maintain appropriate amounts of 

distance. Thus, both users and technology change during interactions to maintain distance 

and facilitate the learning process.  

 
Summary of Research on Attributes,  
Affordances, Abilities, and Distance 

 Literature suggests the existence of attributes, affordances, abilities, and distance 

in interactions between users and technology. Attributes of a user form abilities that 

provide varying access to affordances of technology, which are products of attributes of 

the technology. In this context, distance involves interpreting and responding to 

technology. Maintaining an appropriate amount of distance involves dynamic change of 
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both user and technology. Each of the constructs influences how users interact with 

technology. These physically embodied interactions with technology-based 

representations of mathematics are mathematical thinking and can provide evidence of 

mathematical learning, thus setting the constructs within the theoretical framework of 

embodied cognition and representation. 

 
Unique Contributions of the Current Study 

 
 

Research exists on affordances, the effectiveness of virtual manipulatives, and 

children’s learning of mathematics in connection with iPad app use. However, little 

research has combined all of these areas, and no research could be located that coherently 

investigated relationships among affordances, abilities, attributes, and distance. One can 

study this using the lens of embodied cognition for interaction with representations, 

applied to investigations of how children interact with technology. Thus, this exploratory 

study contributes to the field by supporting the development of theory based on an 

investigation of relationships among affordances, abilities, attributes, and distance, in the 

context of children’s interactions with mathematics virtual manipulative iPad apps.  

This study informs future research on user-app interactions through a closer 

examination of relationships among attributes, affordances, abilities, and distance in the 

context of children’s interactions with technology-based representations of mathematics. 

The study also informs future research on the use of educational technology, such as 

mathematics virtual manipulative iPad apps, to learn mathematics. The study is 

significant because iPads and other tablets are becoming popular tools for learning 
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mathematics. When app designers understand user-app interactions, this has the potential 

to inform future app creation. When app implementers, including teachers, understand 

user-app interactions, this has the potential to determine how best to employ apps for 

mathematics learning. 
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CHAPTER III 

METHODS 
 

This exploratory study used multiple qualitative methods to conceptualize the 

relationships among attributes, affordances, abilities, and distance in a framework that 

describes the nature of children’s interactions with technology to learn mathematics, set 

within the context of fifth-grade children’s interactions with mathematics virtual 

manipulative iPad apps. Researchers use exploratory qualitative research to develop 

conceptual frameworks and support theory development based on the description of 

phenomena evident in emergent patterns in the data (Marshall & Rossman, 2010). This 

design allows a focus on describing children’s interactions with technology-based 

mathematical representations during semistructured task-based interviews, consistent 

with theories embodied cognition and representation. 

During each semistructured task-based interview, a fifth-grade child interacted 

with virtual manipulative iPad apps and answered follow-up questions. The researcher 

collected data from video recordings of the sessions and observation field notes taken 

during the sessions. Qualitative data analysis included constant comparative techniques 

using eclectic coding that incorporated multiple iterative coding techniques to focus on 

attributes, affordances, abilities, distance, and relationships among these constructs, and 

quantitization of qualitative data to facilitate data visualization. Analysis led to 

identification of emergent patterns and supports theory development. The over-arching 

research question and subquestions were as follows. 

 What evidence of attributes, affordances, abilities, and distance is present in the 
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context of fifth graders’ interactions with mathematics virtual manipulative iPad apps? 

1. Attributes: 

a. What evidence of app attributes is present in mathematics virtual 

manipulative iPad apps?  

b. What evidence of user attributes is present in user interactions with 

mathematics virtual manipulative iPad apps?  

2. Affordance-ability relationships: What evidence of affordance-ability 

relationships is present in user interactions with mathematics virtual manipulative iPad 

apps?  

3. Distance: What evidence of distance is present in user interactions with 

mathematics virtual manipulative iPad apps? 

4. Relationships: What evidence of relationships among attributes, affordances, 

abilities, and distance is present in user interactions with mathematics virtual 

manipulative iPad apps?  

  
Design 

 
 

 This study used an exploratory qualitative research design with qualitative data 

collection, data coding, and data analysis techniques after receiving appropriate 

Institutional Review Board (IRB) approval (see Appendix H). Exploratory research 

“emphasizes developing theory from data” (Stebbins, 2001, p. 5). Exploratory qualitative 

research is appropriate for theory development because it involves investigating and 

describing phenomena to generate hypotheses for future research, focusing on themes and 
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patterns in data, and links between the patterns (Marshall & Rossman, 2010). 

Importantly, exploratory research is “an act of gradual, structured, and theory-led 

heuristic expansion from an original set of models, explanations, and questions” (Reiter, 

2013, p. 11). This study expanded upon original models and explanations, supporting the 

development of theory by describing evidence of attributes, affordances, abilities, 

distance, and links among these constructs present in the context of fifth graders’ 

interactions with mathematics virtual manipulative iPad apps. The application of this 

design aligned with the theoretical framework of embodied cognition and representation, 

as the primary focus for data collection and analysis was on the children’s interactions 

with external, physical representations of mathematics. 

The study used qualitative data collection, coding, and analysis techniques. Data 

collection included video recording of user-app interactions and responses to questions 

during semistructured task-based interviews (Goldin, 2000). This generated audiovisual 

records that could provide evidence of the target constructs and relationships among these 

constructs. The researcher employed a constant comparative technique to analyze the 

data, which involved integrated, iterative data collection and analysis (Glaser & Strauss, 

1967; Merriam, 2009), as recommended for generating categories and building theories 

(Anfara, Brown, & Mangione, 2002). Data analysis included memoing and eclectic 

coding to incorporate the constructs and emergent themes (Saldaña, 2013), and 

quantitized qualitative analysis (Teddlie & Tashakkori, 2011) to create data visualizations 

for pattern identification. The data analysis methods were appropriate for addressing the 

research questions because they facilitated identification and description of relevant 
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emergent themes and categories. Thus, the exploratory qualitative research design and the 

chosen design elements were appropriate to address the research questions in this study 

because the purpose of this study was to conceptualize the relationships among attributes, 

affordances, abilities, and distance in a framework that describes the nature of children’s 

interactions with technology to learn mathematics.  

 
Pilot Study 

 
 

 Before the proposed study, the researcher conducted a pilot study with ten 

students from fourth through sixth grade to test the methods, instruments, app choices, 

data collection and data analysis techniques. During the pilot study, the researcher created 

and refined a facilitation protocol to make the data collection flow smoothly. The 

researcher also developed and honed the observation protocol to focus on user-app 

interactions to address the research questions, as consistent with embodied cognition. The 

researcher tested data coding techniques to identify evidence of attributes, affordances, 

abilities, and distance, and relationships among these constructs. The Data Analysis 

section describes how preliminary analysis of pilot data influenced analysis in the 

proposed study. 

Unexpected issues arose during the pilot study. A prompted think aloud was 

tested for the purposes of determining if participant narration would yield relevant data 

but produced few informative utterances without distracting the users from successfully 

completing their tasks, decreasing the focus on interactions that are emphasized in 

embodied cognition. To address this issue, the researcher changed to a semistructured 
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task-based interview format to allow uninterrupted, independent user-app interactions 

while still providing supplementary verbal user responses. Computer-based recording 

provided a clearer audio and video record of the interactions and interviews than the wall-

mounted camera, but the wall-mounted camera proved more reliable. To address this 

issue, the researcher used both recording systems for each semistructured task-based 

interview in this study. Additionally, participants requested a stand for the iPad to 

increase their comfort level, so the researcher used an iPad stand to prop up the iPad at a 

more accessible angle. The app selection process also occurred during the pilot study. 

 
Selection of Materials 

 

As part of the pilot study, the researcher determined inclusion criteria for 

choosing mathematics virtual manipulative iPad apps. Apps included in the pilot study: 

(a) were designed for the iPad and available through the Apple Appstore, (b) explored 

mathematics content using at least one virtual manipulative (as defined by Moyer et al., 

2002), (c) included ages 10-12 (i.e., approximate age of a fifth grader) in the target age 

range stated by the developers, (d) featured mathematics content connected to at least one 

fifth-grade Common Core State Standards Content Standard (National Governors 

Association Center for Best Practices & Council of Chief State School Officers, 2010), 

(e) were primarily manipulable, rather than primarily instructive (Goodwin & Highfield, 

2013), (f) were organized in progressive levels of difficulty (i.e., they progressed through 

related mathematics content with distinct breaks between segments), and (g) required 

touching the screen as the primary mode of input. Seven apps were tested during the pilot 
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study for the purpose of selecting two apps to be used in the study: Motion Math: Zoom, 

DragonBox Algebra 5+, DragonBox Algebra 12+, DragonBox Elements, Tiny Fractions, 

Symmetry School, Chicken Coop Fractions (Estimating Fractions). 

 The researcher eliminated piloted apps for consideration for the dissertation study 

for various reasons. The researcher excluded two apps with minimal piloting. It was not 

possible to reset Tiny Fractions for additional users, thus allowing some users to begin at 

more advanced levels, while DragonBox Algebra 5+ had a version available targeted 

more specifically at the focus age group (DragonBox Algebra 12+). The researcher 

excluded other apps if multiple pilot participants were unwilling to play for at least ten 

minutes. Participants described Symmetry School as “boring” and claimed that Chicken 

Coop Fractions (Estimating Fractions) was “too hard” because “we haven’t done 

[connecting fractions and decimals on a number line] yet.” The researcher eliminated 

DragonBox Elements because participants struggled to independently interact with the 

app. The participants repeatedly asked for help interacting with the app and interpreting 

or completing the tasks. Thus, the dissertation study included the two apps the pilot 

participants played independently for the longest average duration and responded to the 

most positively: DragonBox Algebra 12+ and Motion Math: Zoom.  

 
Setting and Participants 

 
 

The study took place in interview rooms in a public university in the 

Intermountain West region of the U.S. Participants were 10 fifth-grade children: 6 male 

and 4 female, 8 White and 2 Asian, 5 ten years old and 5 eleven years old. Researchers 
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recommend that “sample sizes in qualitative research should not be so small as to make it 

difficult to achieve data saturation” but not so large as to hinder deep analysis 

(Onwuegbuzie & Collins, 2007, p. 290). Theory-based sampling techniques 

(Onwuegbuzie & Collins, 2007; Saumure & Given, 2008) were used to identify and 

recruit potential participants. Saumure and Given (2008) noted that theory-based 

sampling is “key to achieving saturation quickly. Here research participants are selected 

so that the resulting data help to build and validate the emerging theory” (p. 197). Guest, 

Bunce, and Johnson (2006) found that of 36 common codes formed from 60 interviews, 

94% of the codes were identified within the first six interviews and 97% of the codes 

were identified within the first 12 interviews. Other methodologists recommend limiting 

sample sizes to between 5 and 10 participants to allow for deeper analysis (Miles, 

Huberman, & Saldaña, 2013). Thus, a sample size of 10 participants was sufficient for in-

depth analysis in this exploratory study.  

The study focused on participants in fifth grade for theoretical and mathematical 

reasons. In accordance with the theoretical framework of embodied cognition and 

representation set within the context of interactions with technology, research indicates 

that fifth-grade students benefit from directly manipulating animations while interacting 

with technology-based representations of content (Black, 2010), and these benefits 

include construction of mathematical concepts (Arzarello et al., 2005). Additionally, 

research indicated that fifth-grade students were aware of the relevance and importance 

of mathematics (Vanayan, White, Yuen, & Teper, 1997), and are capable of both 

independently completing technology-based tasks and of answering questions related to 
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these tasks (Blumberg & Sokol, 2004). Recruitment involved distributing fliers to fifth-

grade students through local elementary schools. During the scheduling of data 

collection, the researcher asked each parent if the potential participant had interacted with 

any version of either or both of the apps in this study to control for prior experience by 

only including participants who had not previously interacted with the apps. 

 
Materials 

 
 

 The materials for the study include iPads and the two mathematics virtual 

manipulative iPad apps chosen during piloting: Motion Math: Zoom and DragonBox 

Algebra 12+.  

 
Motion Math: Zoom 

According to the developers, Motion Math: Zoom is an app recommended for 

children ages 5-12 (Motion Math, Inc., 2014). Motion Math: Zoom features content 

related to number comparisons, estimation, place value, and magnitude on the number 

line, including positive and negative numbers, integers to 10,000, and decimals to the 

thousandths place (see Figure 2). This interactive representation is a type of “idealized 

number line” (Kirby, 2013) that was not possible before digital tools (Carpenter, 2013), 

in this case featuring changeable scales and fluid movement to navigate the number line 

(Zhang et al., 2015). To interact with the app, users employ single-touch and multi-touch 

gestures to navigate the number line and pop bubbles to place target numbers in the 

correct empty spaces. Animals of varying sizes separate intervals proportionately 

between numbers. One or two interval ranges may be visible at a given time. For positive  



33 
 

  
Figure 2. Screenshot of Motion Math: Zoom. 

 
numbers, the animals face rightward; for negative numbers, the animals face leftward. 

Users swipe or drag the number line left or right to view numbers along the line. 

To zoom in or out, a user must bring two fingers apart or together (“pinching”) 

horizontally. This decreases or increases the intervals between visible numbers 

accordingly (e.g., ones, tens, hundreds, etc.). Users can pinch with one finger on each 

hand or two fingers on the same hand. There are 24 levels, with all but the introduction 

consisting of 8-15 tasks. Users can complete levels non-sequentially, including by 

skipping some levels depending on how they perform on previous levels. Users can also 

elect to use the “needle,” which acts as a timer, popping the bubble to end the level if the 

user is too slow to place a given number. The default needle setting is off, but when users 

first quickly and accurately complete level 6, the app offers them the opportunity to try 

level 15 with the needle on.  

During the pilot study, only one participant asked to stop playing Motion Math: 

Zoom before 15 minutes had elapsed. No participants appealed for researcher assistance. 

No participant completed a level beyond 16, with most reaching no higher than level 15, 
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each of which involved decimals to the hundredths place. No participant completed all 

levels leading up to 16, and most participants chose to change levels when prompted by 

the app, with few choosing to do so their own volition. 

 
DragonBox Algebra 12+  

According to the developers, DragonBox Algebra 12+ is an app recommended for 

ages 9 and up (WeWantToKnow AS, 2014). DragonBox Algebra 12+ includes content 

related to operations, additive and multiplicative thinking, negative and positive values, 

solving expressions and equations, and fractions. The app consists of 10 20-level chapters 

in the context of growing a dragon in each chapter by completing levels. Each level 

requires the user to solve one equation or expression (see Figure 3). The app 

demonstrates new content via “new powers” before integrating the “powers” into 

subsequent levels. Users employ single-touch gestures to tap or drag tiles to complete 

each level. The app presents levels sequentially, but users may return to a previous level 

by accessing the menu. Users can choose to undo a move, restart a level, or watch a video 

of the solution to the level by selecting menu options within the level.  

During the pilot study, no participant asked to stop playing DragonBox Algebra 

12+ before fifteen minutes had elapsed. Participants rarely appealed for researcher 

assistance, then usually asking for help navigating the game (e.g., how to reset a level), 

rather than the mathematics content. All participants but one completed 30-40 levels. The 

participant who completed 49 levels had completed the previous version of the game 

(Dragon Box Algebra 5+), leading to the requirement that the full study exclude potential 

participants who have played a version of the app. Most participants reached a stage in  
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Figure 3. Screenshot of DragonBox Algebra 12+.  

 
 
which pictures and letters were present as variables within pictorial representations of 

equations, but no operation symbols were present, as in more advanced levels.  

 
Procedures 

 
 

 This study used a version of the task-based interview procedure, akin to other 

iPad and virtual manipulative studies (e.g., Moyer-Packenham et al., 2015). This process 

generated relevant data in the form of user-app interactions that consisted of users’ 

embodied interactions with the physical representations of mathematics as part of the 

apps, as well as user verbal responses to follow-up questions, providing multiple avenues 

for data analysis. Task-based interviews involve a subject and an interviewer who interact 

in relation to tasks and questions which the interviewer introduces in a planned way 

(Goldin, 2000). Major differences between structured and unstructured task-based 

interviews are the explicit provision for contingencies (i.e., how to guide participants 

depending on their actions) and the deliberate design of the sequence and structure of the 
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tasks in the former as opposed to the free problem solving and lack of assistance provided 

in the latter. Questions in task-based interviews can vary in the structure and amount of 

questioning, ranging from non-directive follow-up questions to metacognitive questions, 

both during and after the task completion. However educational research should not be 

limited by a particular research methodology and should instead use a diverse range of 

methods to investigate research questions (Kelly & Lesh, 2000). Thus, this study 

combined elements of structured and unstructured task-based interviews to form a 

semistructured task-based interview. 

In the semistructured task-based interview, the researcher provided an 

environment in which to problem-solve (an app) that presented tasks in an organized 

manner (i.e., levels), but the researcher did not offer assistance during task completion. 

This semistructured task-based interview aligned with Goldin’s (2000) recommendations 

for quality interviews: (a) the tasks were accessible to the participants because the tasks 

were targeted at their developmental level, (b) the tasks embodied rich representational 

structures because they included a variety of app-generated tasks using virtual 

manipulatives, (c) the tasks encouraged free problem solving without researcher 

guidance, and (d) the interview maximized interaction with the learning environment by 

emphasizing app interaction time. The interview thus focused on embodied interactions 

with representations of mathematics (i.e., physical manipulations of external 

mathematical representations), which are equivalent to mathematical cognition 

(Nemirovsky et al., 2013). 

The semistructured task-based interview process (see Figure 4) began with the 
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Figure 4. Outline of semistructured task-based interview procedures. 

 

introduction, outlining the procedures to the participant and answering any questions the 

participant may have. The participant then interacted with the first app for up to 30 

minutes. The participant could elect to stop interacting with the app before the 30 minutes 

had elapsed. The researcher allowed participants who were attempting a level when the 

30 minutes had elapsed to finish the attempt. Following the app interaction time, the 

researcher asked follow-up questions about interactions with the first app. The process 

for the second app followed the same steps, with the follow-up questions focused on 

interactions with the second app. The follow-up questions were also semistructured to 

allow the researcher to bring up purposeful themes while remaining flexible enough to 

respond to participants’ preferred directions (Rossman & Rallis, 2003). The purpose of 

the study (i.e., seeking evidence of the constructs and their relationships) and the 

participant’s app interactions (e.g., “you played Level 10 many times; how did you figure 

out what to do?”) informed the questions the researcher asked. The researcher asked 

questions only after the participant completed the app interaction portion of the interview 

to avoid distracting the participant during problem solving. Although some researchers 

suggest that prompting during tasks does not significantly distract the participant from 

completing the task (e.g., Cotton & Gresty, 2006, 2007), many app-generated tasks in this 



38 
 
study had time requirements for successful completion. After completing both 

interaction-question sections, the session concluded with brief, semistructured summative 

questions. 

Each session generated a maximum of 90 minutes of video-recorded data. In the 

dissertation study, the researcher excluded all data from the participant who played one of 

the apps for less than 10 minutes and recruited a replacement participant. The researcher 

chose 10 minutes as the minimum time to provide sufficient data for analysis that would 

lead to saturation. Half of the participants started with Motion Math: Zoom and the other 

half of the participants started with Dragon Box Algebra 12+ to control for possible 

effects of app order or participant fatigue. However, there were no noticeable effects of 

app order. 

 
Facilitation Protocol 

 The researcher used a facilitation protocol to guide the video recording data 

collection process (see Appendix A). The facilitation protocol outlined the steps that the 

researcher followed to conduct the semistructured task-based interview. The facilitation 

protocol began with preparing the materials for the session. Upon participant arrival, the 

researcher distributed and explained the consent and assent forms, which the parent and 

participant completed. Next, the researcher showed the parent into the observation room 

and returned with the participant to the interview room. The semistructured task-based 

interview then proceeded as described in the Procedures section above. After the 

semistructured task-based interview, the researcher debriefed the parent and participant. 
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Data Sources and Instruments 
 
 

 The data sources for this study were video recordings and observation field notes, 

as in other research concerning mathematics virtual manipulative iPad app use (e.g., 

Moyer-Packenham, Anderson, et al., 2014; Moyer-Packenham et al., 2015). The video 

recordings captured user-app interactions and user responses to questions. The 

observation field notes verified data collected from video recordings. Thus, multiple data 

sources contributed to the description of evidence of the constructs and their relationships 

(Creswell & Plano-Clark, 2011). 

 
Video Recordings 

Video recordings were made of the entire semistructured task-based interview. 

Video recordings can provide a visual record of change over time (Lesh & Lehrer, 2000) 

and can be used to facilitate the development of theory (Hall, 2000). Researchers using an 

embodied cognition perspective often employ video recordings to produce a continuous 

visual record of physical interactions, such as during user-app interactions (e.g., 

Baccaglini-Frank & Maracci, 2015; Barendregt, Lindström, Rietz-Leppänen, Holgersson, 

& Ottosson, 2012; Segal, 2011). Two devices recorded each session. The primary 

recording device, the built-in FaceTime HD Camera and microphone on a Macbook Pro, 

was placed immediately adjacent to the iPad, raised from the table, and opposite the user 

to record a close-up view of the user-app interactions (see Figures 5 and 6). The 

secondary recording device was a wall-mounted video camera with room microphone. 

The camera focused on the area of the table where the researcher placed the iPad (see 
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Figure 5. Arrangement of computer and iPad.  

  

 
Figure 6. Screenshot of computer camera view (after reorientation). 

 

Figure 7), recording video of the interactions between the user and the iPad app as the 

microphone recorded the audio. This is akin to other app-interaction studies (e.g., 

Holgersson, Barendregt, Rietz-Lepännen, Ottosson, & Lindström, 2013; Moyer- 

Packenham, Anderson, et al., 2014). The narrow focus of each recording device provided 

a clear picture of the two-way interaction between user and iPad app. The researcher used 
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Figure 7. Wall-mounted camera view of app interaction. 

 
QuickTime software to reorient and organize the computer-based recordings. Milestone 

X Protect software automatically integrated wall-mounted video and room microphone 

audio recordings. The researcher labeled each recording file with the participant ID and 

camera type (e.g., PD01C for participant 1, computer recording; PD01R for participant 1, 

room recording) and backed up all recordings on external hard drives. 

 
Observation Field Notes 

The observation field notes were a secondary data source used to verify video 

data and explain occurrences that the video camera may have missed. Although video-

recorded interviews should capture as much data as possible (Goldin, 2000), one must 

acknowledge that because the focus of the camera is limited (Lesh & Lehrer, 2000), one 

should include other data sources. Other factors might influence user-app interactions 
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(e.g., interview environment) and some occurrences might be outside the frame of the 

video recordings. The observation field notes thus provided a source of context for the 

occurrences during the semistructured task-based interviews that might not be included in 

the video recordings. 

During each semistructured task-based interview session, the researcher used a 

researcher-designed observation protocol (see Appendix B) to record written observation 

field notes. The observation field notes focused on user interactions with apps and user 

responses to questions as in other studies based in embodied cognition (e.g., Moyer-

Packenham et al., 2015), as well as external influences beyond the frame of the video 

recording (Lesh & Lehrer, 2000). These observations also guided follow-up questions 

during the semistructured task-based interview session. 

 
Validity and Reliability 

Stebbins (2001) posited that exploratory research is initial research into a new 

field, and that “early weaknesses in sampling, validity, and generalizability tend to get 

corrected” through multiple related studies (p. 5). Methodologists recommend a variety 

of strategies to insure quality in qualitative research, including generating an audit trail, 

collecting rich data, and insuring researcher reflection (Gall, Gall, & Borg, 2007). This 

study addressed these areas by creating detailed records of decisions and analyses, using 

video recordings that allowed for revisiting data and revising interpretations, and analytic 

memoing to track reflections. Other methodologists suggest building qualitative validity 

through triangulation of data from several sources, such as the recordings and field notes 

in this study (Creswell & Plano-Clark, 2011).  
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However, many qualitative research methodologists disagree with the use of these 

terms and criteria, and definitions of validity and reliability in qualitative research vary 

greatly by context (Altheide & Johnson, 2011). Although one can consider both 

methodological and interpretive rigor of research, many researchers wonder if “there is 

no such thing as invalidity of data or method if someone can find it to be an accurate 

reflection of their interpretation of reality” (Lincoln, Lynham, & Guba, 2011, p. 115). 

Furthermore, reliability, such as intercoder agreement, “has limited meaning in 

qualitative research” and requires a predetermined coding scheme (Creswell & Plano-

Clark, 2011, p. 212), which is inappropriate for exploratory theory development. 

Therefore, this study focused on trustworthiness, for which a researcher must “make 

practices visible, and therefore, auditable” (Rolfe, 2006, p. 305). This study used 

thorough description of the methods, consistent application of methods during data 

collection and data analysis, and thorough description of results and conclusions that are 

consistent with the theoretical framework to achieve trustworthiness and provide 

justifications for the resulting interpretations.  

 
Data Analysis 

 
 

 The theoretical framework, pilot results, and research literature informed the 

processes used for the qualitative data analysis. Constant comparative data analyses 

included memoing and eclectic coding for evidence of attributes, affordances, abilities, 

distance, and relationships among these constructs. These processes were supported by 

analysis of quantitized qualitative data. 
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Influences of the Theoretical Framework,  
Pilot Results, and Research Literature on  
Data Analysis Process 
 
 In exploratory research, it is important for the researcher to acknowledge beliefs 

based on prior knowledge, such as theory and experience, as these influence the research 

process (Reiter, 2013). Initial synthesis of the researcher’s prior knowledge suggested the 

need for further investigation of attributes, affordances, abilities, distance, and 

relationships among these constructs. Theories of embodied cognition and representation 

posit that interactions with physical representations of mathematics are mathematical 

thinking and changes in these interactions are mathematical learning (Nemirovsky et al., 

2013). Piloting produced data that included these physical interactions with mathematical 

representations, and thus mathematical thinking and potentially mathematical learning. 

Presence of the focus constructs and relationships among the constructs as part of these 

embodied interactions with mathematical representations could provide evidence of their 

roles in mathematical thinking and learning. 

Research literature and preliminary analysis of pilot data suggested the possibility 

of categories of attributes, affordance-ability relationships, and distance, as well as 

possible relationships among these constructs. Research literature established that 

attributes of an agent (or person, user) contribute to abilities used to access affordances 

offered by combinations of attributes of an environment (or technology tool, app) 

(Greeno, 1994), and that each affordance is coupled in a relationship with an ability 

(Chemero, 2003). Researchers also established categories of affordances of virtual 

manipulatives (Moyer-Packenham & Westenskow, 2013). Affordance access also varies 



45 
 
by user, with patterns of affordance access emerging (e.g., Moyer-Packenham & Suh, 

2012; Tucker, Moyer-Packenham, Shumway, & Jordan, 2014; Tucker et al., 2015).  

Evidence from analysis of pilot data suggested that in addition to affordance 

categories, attribute categories for users and apps might also exist, including 

mathematical and technological attributes. For example, technological input requirements 

(e.g., tapping, dragging, pinching, single-touch vs. multi-touch) and mathematical 

representations (e.g., number line) varied by app. Interpretation of research literature 

implies the presence of both technological (e.g., Lao, Heng, Zhang, Ling, & Wang, 2009) 

and mathematical (e.g., Rick, 2012) attributes. User motor skills related to technological 

inputs (e.g., Ginsburg et al., 2013) and manifestations of conceptions of mathematical 

representations (e.g., Moyer-Packenham, Bolyard, & Tucker, 2014) also varied.  

Distance stems from the difference in a person’s interpretation of the environment 

and what the environment requires for interaction (Sedig & Liang, 2006). Modification of 

distance involves matching learner conceptions with tool design or cues (Sedig et al., 

2001; Sedig & Liang, 2006). These conceptions and designs are based on attributes, 

which are characteristics of an environment or person. Therefore, literature implies that 

distance may relate to attributes. Literature also suggests the existence of multiple 

distance types (Sedig & Liang, 2006). Preliminary analysis of pilot study data provided 

evidence of possible novel distance types, including mathematical distance and 

technological distance, based on user and app attributes. When the app changed 

mathematical or technological attributes, tasks often became more difficult for users. 

With additional practice, users often became more adept at completing the tasks. This 
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aligns with the concept of distance modification to support learning (Sedig et al., 2001). 

However, pilot results suggested that distance modification might vary across contexts. 

DragonBox Algebra 12+ involves simple single-touch gestures such as tapping and 

dragging, which is consistent with most tablet apps (Byers & Hadley, 2013), while 

Motion Math: Zoom includes relatively complex multi-touch gestures (e.g., pinching) 

that require the coordination of multiple fingers (Kammer, Henkens, Henzen, & Groh, 

2013). Preliminary analysis of pilot study data suggested that distance and distance 

modification varied differently across the two apps, with users struggling more to use 

complex input gestures relative to simple input gestures. 

Exploratory research can lead to evolution of ideas, models, and theories (Reiter, 

2013), and iterative constant comparative analysis facilitates this process (Anfara et al., 

2002; Merriam, 2009). Together, evidence from the literature and pilot study suggested 

the possibility of mathematical distance and technological distance, linked to 

mathematical attributes and technological attributes of users and apps. Furthermore, as 

attributes also relate to affordances and abilities (e.g., Greeno, 1994), relationships might 

also exist among affordances, abilities, and distance. However, further exploration of the 

constructs and relationships in the context of physically embodied interactions with 

representations of mathematics required collection and analysis of additional data. Thus, 

while acknowledging influences of the aforementioned conceptions from theory, research 

literature, and pilot data, the researcher expected that new categories, themes, and 

relationships would emerge throughout the data analysis process. 
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Data Analysis Process 

 This study used qualitative data coding, analysis and interpretation methods. This 

process focused on the constructs (i.e., attributes, affordances, abilities, and distance) set 

within the context of physically embodied interactions with mathematical representations. 

Miles et al. (2013) asserted that “coding is analysis…. Coding is a deep reflection about 

and, thus, deep analysis and interpretation of the data’s meanings” (p. 72). Therefore, this 

study integrated iterative coding, analysis, and interpretation, including eclectic coding 

techniques integrating analytic memoing as part of constant comparative analysis. 

Constant comparative analysis involves integrated, iterative data collection and analysis 

(Glaser & Strauss, 1967), during which “data are compared and categories and their 

properties emerge or are integrated together” (Anfara et al., 2002, p. 32). Eclectic coding 

involves beginning with “an array of coding methods for a ‘first draft’ of coding” 

followed by “recoding decisions based on the learnings of the experience” (Saldaña, 

2013, p. 188). Eclectic coding is appropriate for constant comparative analysis because it 

involves iterative applications of codes and coding techniques. In this study, coding 

methods included descriptive coding, provisional coding, magnitude coding, process 

coding, and theoretical coding, as appropriate for each step of data analysis. Quantitized 

qualitative analysis (Teddlie & Tashakkori, 2011) involved assigning values to 

magnitude codes to facilitate data visualization and analysis. Data analysis also included 

code mapping and networking to organize codes, assemble the framework, and support 

theory development.  

Integral to coding was the writing of analytic memos, which record information 
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and interpretations regarding the data and the analysis process (Miles et al., 2013; 

Saldaña, 2013). Continuous visual data are key to studies involving embodied cognition, 

which inherently require a focus on actions. Saldaña noted the complexity of coding 

visual data, but recommended that a researcher “generate language-based data that 

accompany the visual data” in the form of codeable analytic memos (p. 52). Therefore, 

the researcher first generated memos and then coded the memos. The content of the 

memos both informed the coding scheme and was informed by the coding scheme, as 

content of later memos reflect the shifting foci of the analysis process. For example, 

many of the initial memos for the first participant focused on attributes, with later stages 

of analyses of the same data yielding memos and codes focusing on relationships among 

constructs. However, some of the initial memos of the tenth participant included 

relationships among constructs, as these were emerging during the time that data for this 

participant were first analyzed. These methods are appropriate for exploratory qualitative 

research and theory development, as they facilitate flexible, iterative analysis of multiple 

types of data to address research questions concerning a variety of constructs (Saldaña, 

2013). The researcher used QSR International’s NVivo for Mac software (QSR 

International, 2014) to organize the data coding process. 

 Analyzing video data and observation field notes for each participant. Each 

participant’s data consisted of the video data and observation field notes from the 

interview session in which the participant interacted with two different apps and 

answered follow-up questions pertaining to the interactions. The researcher began each 

analysis with the video data. First, the researcher wrote a brief analytic memo for each 
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attempt that the participant made to complete a level within the first app, labeled with the 

attempt and level number for reference purposes (e.g., A1 L1 for attempt 1, level 1). 

Individual attempts to complete a level served as a manageable grain size for meaningful 

memos and aggregation across attempts, levels, and participants. This round of memoing 

provided written documentation of the researcher’s examination of the videos to 

accompany the visual data, generating a written component for coding (Saldaña, 2013). 

The researcher then transcribed the follow-up questions and responses. Next, the 

researcher wrote an analytic memo about the participant’s interactions with and questions 

related to the first app. The researcher then repeated these steps to analyze the data on the 

participant’s interactions with the second app and the related questions. Next, the 

researcher transcribed the summative questions and responses. The researcher then wrote 

an analytic memo concerning the summative follow-up questions and responses. Next, 

the researcher wrote an analytic memo concerning all of the video data for the 

participant. Following this, the researcher wrote an analytic memo for the observation 

field notes. The researcher then coded the resulting memos, transcripts, and observation 

field notes, generating additional analytic memos as additional ideas emerged.  

Stages of coding and analysis. The constant comparative data analysis process 

involved eight iterative, interrelated stages of eclectic coding and analysis during and 

after data collection (see Table 1). Stages were not exclusively linear and overlapped 

during ongoing data collection, analysis, and interpretation as codes led to categories and 

emergent themes that informed the development of codes, categories, and themes. The 

theoretical framework of embodied cognition and representation influenced data coding 
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Table 1  

Data Analysis Stages Used to Address Each Research Question  

Data analysis 
stage 

1a: App 
attributes 

1b: User 
attributes 

2: Affordance-
ability 

relationships 3: Distance 4: Relationships 
1: Attribute 
determination 

X X    

2: Attribute 
organization 

X X    

3: Attribute 
clustering 

X X    

4: Distance 
coding 

   X  

5: Affordance-
ability 
relationship 
coding 

  X   

6: Variation 
coding 

X X X X  

7: Construct 
relationship 
coding 

    X

8: Framework 
development 

    X

 

 
and analysis, as the process involved identifying evidence of the focus constructs set 

within children’s physical interactions with mathematical representations and changes in 

these interactions. Some stages primarily focused on identifying the constructs within the 

interactions (e.g., Stage 5: affordance-ability relationship coding), while other stages built 

on this by examining changes in the constructs as part of changing interactions (e.g., 

Stage 6: variation coding).  

The first stage of the coding process used descriptive coding to analyze the apps 

and the pilot data to determine an initial list of relevant app attributes and user attributes 

involved in interactions with each app. Descriptive coding involves coding for topics of 
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the data, facilitating the production of a categorized inventory of the data’s contents 

(Saldaña, 2013). The second stage consisted of organizing the relevant attributes into 

categories using code mapping. Code mapping involves iterations of organizing codes 

into comprehensible categories for further coding (Saldaña, 2013). This stage also 

involved the creation of bins, which were groups of consecutive levels within each app 

that contained similar content and tasks, based on the attributes present. The third stage 

involved clustering attributes to form codes that could apply across multiple levels of 

interactions with the app. This stage began with an analysis of the apps and the pilot 

participants’ app interaction data. The codes were revised as they were applied to the 

memos from the video data and observation field notes for the first three participants’ 

interactions with the apps.  

 The fourth stage of the coding process involved development of distance codes 

from app analysis, pilot data analysis, and analysis of the data from the user-app 

interactions and follow-up questions and responses for the first three participants. 

Distance codes emerged based on analysis of the attribute clusters from stage three, and 

were thus developed before affordance-ability relationship codes. Distance coding also 

involved magnitude codes, which are used to indicate the degree or intensity of a coded 

construct (Saldaña, 2013). Distance magnitude codes were applied to data from all 

participants. The researcher used a four-step process to quantitize distance magnitude 

codes (see Appendix C), which facilitated data visualization and further analysis 

(Sandelowski, 2001; Teddlie & Tashakkori, 2011). First, the researcher assigned values 

to each distance magnitude code, ranging from 1 to 4, where 1 represented low attribute 
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cluster alignment and 4 represented high attribute cluster alignment. Next, these values 

were used to determine overall attempt values for mathematical and technological 

attribute categories. The resulting overall attempt values were scaled to a four-point 

distance scale, with 1 representing the greatest amount of distance and 4 representing the 

least amount of distance. Finally, the distance scale values were paired to form the 

(mathematics, technology) distance score. 

The fifth stage of the coding process involved development of affordance-ability 

relationship codes from app analysis, pilot data analysis, and analysis of the data from 

user-app interactions and follow-up questions and responses for the first three 

participants. Moyer-Packenham and Westenskow’s (2013) categories of affordances of 

virtual manipulatives served as the basis for provisional affordance-ability relationship 

codes. Provisional coding involves using predetermined categories as a starting point for 

coding while allowing for emergent constructs (Saldaña, 2013). The resulting affordance-

ability relationship codes were applied to data from the first six participants, with specific 

examples applied to data from the other four participants as focus examples emerged. 

The sixth stage of the coding process involved developing variation codes for 

each construct based on analysis of the pilot data and emergent themes identified during 

analysis of the data from the first six participants. Revision of variation codes continued 

during application to data from the remaining four participants. This stage involved 

process coding using gerunds to indicate action and change over time (Charmaz, 2011; 

Saldaña, 2013), descriptive coding to characterize variants of constructs, and visual 

analysis of quantitized data. R software (R Core Team, 2014) was used to generate novel 
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rhombus plots to visualize quantitized distance data (see Figure 8 for annotated example). 

These rhombus plots arrange the data by (mathematical, technological) distance 

score. The degree of mathematical distance decreases from left to right (i.e., the 

mathematical distance value increases from 1 to 4), while the degree of technological 

distance decreases from bottom to top (i.e., the technological distance value increases 

from 1 to 4). Placement at the top of the rhombus plot indicates a low degree of both 

types of distance, while placement at the bottom of the rhombus plot indicates a high 

degree of both types of distance. Placement at the right of the rhombus plot indicates a 

 

Figure 8. Annotated rhombus plot for Participant 3’s interactions with Motion Math: 
Zoom. (M,T) indicates (mathematical, technological) distance value. Bin indicates level 
group.  
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high degree of mathematical distance and a low degree of technological distance, while 

placement at the left of the plot indicates a low degree of mathematical distance and a 

high degree of technological distance. Within each possible (mathematical, 

technological) distance score, placement on the axis indicates the bin (i.e., group of 

consecutive levels with similar content) from the app and numbers indicate each attempt 

to complete a level (e.g., 1, 2, … 49). Additionally, rhombus plots for Motion Math: 

Zoom interactions use different number colors to indicate attempts in which the needle 

function (i.e., timer) was active or inactive. In Figure 8, Attempt 1 was on a level in Bin 1 

with the needle inactive, with a (mathematical, technological) distance value of (3, 4). 

Attempt 2 was on a level in Bin 2 with the needle inactive, with a (mathematical, 

technological) distance value of (4, 4). Later in the sequence, Attempt 7 was on a level in 

Bin 6 with the needle active, with a (mathematical, technological) distance value of (1,4). 

The final point in the sequence was Attempt 49, which was on a level in Bin 6 with the 

needle active, with a (mathematical, technological) distance value of (2,4). 

The seventh stage of the coding process involved developing codes concerning 

relationships among constructs based on analysis of data from all participants. This stage 

integrated process coding, descriptive coding, and visual analysis of quantitized distance 

data to identify potential connections among constructs. The eighth stage of the analysis 

process involved analyzing the coding structure and the data using theoretical coding and 

networking, which supports the development of theory. Theoretical coding involves 

synthesizing and integrating the prior coding and analysis to develop theory (Saldaña, 

2013). Networking facilitates this process, as it is used to indicate how the categories or 
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constructs “interact and interplay in complex pathways to suggest interrelationship” 

(Saldaña, 2013, p. 252). In this context, theoretical coding and networking supported 

theory development in the form of a conceptual framework that integrates the constructs 

and their relationships.   
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CHAPTER IV 

RESULTS 
 

 The purpose of this study was to conceptualize the relationships among attributes, 

affordances, abilities, and distance in a framework that describes the nature of children’s 

interactions with technology to learn mathematics, here set within fifth-grade children’s 

interactions with mathematics virtual manipulative iPad apps. The overarching research 

question guiding this study was: What evidence of attributes, affordances, abilities, and 

distance is present in the context of fifth graders’ interactions with mathematics virtual 

manipulative iPad apps? Subquestions focused on: (1a) evidence of app attributes, (1b) 

evidence of user attributes, (2) evidence of affordance-ability relationships, (3) evidence 

of distance, and (4) evidence of relationships among attributes, affordances, abilities, and 

distance. The results presented in this chapter are organized by research questions and 

based on analysis of videos of user-app interactions and follow-up questions from 10 

participants. These user-app interactions involved physically embodied interactions with 

representations of mathematics. The following sections integrate results and 

interpretation because the interrelated data coding, analysis, and interpretation generated 

codes and categories that led to the emergence of themes that informed development of 

further codes, categories, and themes.  

The first section presents results related to attributes, including: (a) presence and 

categorization, (b) alignment, and (c) modification. The second section presents results 

related to affordance-ability relationships, including: (a) presence and categorization, (b) 

variations, and (c) interrelationships. The third section presents results related to distance, 
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including: (a) presence and categorization, (b) change, and (c) interactions among types. 

The fourth section presents results related to relationships among constructs, including 

relationships between: (a) attributes and affordance-ability relationships, (b) attributes 

and distance, and (c) distance and affordance-ability relationships. These relationships led 

to the development of the modification of attributes, affordances, abilities, and distance 

for learning conceptual framework.  

 
Research Question 1: Presence and Modification of Attributes 

 

 The first research question focused on the evidence of attributes in fifth graders’ 

interactions with mathematics virtual manipulative iPad apps, with subquestions 

pertaining to app attributes and user attributes. As discussed in the Chapter III (Methods), 

the researcher addressed this research question by analyzing the two apps, video data of 

user-app interactions and follow-up questions, and observation field notes during the data 

analysis stages that included determining attributes, organizing attributes, clustering 

attributes, and analyzing emergent variations of attributes. The first analysis examined 

what attributes were present, as indicated by their relevance to user-app interactions. Data 

coding characterized and categorized attributes relevant for user-app interactions. 

Interpretation of categories and subcategories related to app attributes and user attributes 

led to the identification of emergent themes. Emergent themes included attribute 

categorization, attribute alignment, and attribute modification. 

 
App Attributes 

Analysis provided evidence of the presence of app attributes. Interpretation of this 
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evidence revealed categories of app attributes: mathematical, technological, and 

structural. Table 2 shows examples of codes applied during app attribute analysis, 

organized by resulting categories and subcategories. 

As seen in Table 2, development and interpretation of app attribute codes (e.g., 

symbolic notation) used to label app attribute descriptions (e.g., Arabic notation) 

informed categories (e.g., mathematical), which were refined to include subcategories 

(e.g., mathematical: representation). Mathematical attributes were characteristics 

pertaining to representations of mathematical content, including subcategories of content 

and representation. Mathematical content related to the conceptual underpinnings of the 

subject-matter information (e.g., decimals), as externalized via mathematical 

representations (e.g., number line). Technological attributes were characteristics 

pertaining to physically embodied interactions with the app, including subcategories of 

input range and input complexity. Input range related to the scope of gestures accepted by 

the app for a given function (e.g., tap to indicate selection), while input complexity 

related to intricacy of required gestures (e.g., coordination of multiple fingers for pinch 

input). Structural attributes were characteristics pertaining to nonmathematical 

presentation features of apps, including subcategories of feedback, context, and 

scaffolding. Feedback was responses of the app to the user input (e.g., symbol denoting a 

response as correct or incorrect). Context included aspects such as the pedagogical setting 

for the content (e.g., game involving advancing levels upon meeting certain criteria vs. 

free play) and the purpose of completing tasks in the app (e.g., earning points). Scaffolds 

were supports for completing tasks (e.g., a button that presents a worked example).  
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Table 2  

App Attribute Categories with Examples from Motion Math: Zoom and DragonBox 
Algebra 12+1 

 
Motion Math: Zoom DragonBox Algebra 12+ 

Mathematical: Content 

Decimals: Introduction of tenths (L12) Additive identity: X + 0 + Y, clear swirl/vortex 
that represents 0 to make X + Y (L1:01) 

Negative numbers: Introduction of negative 
integers (L9) 

Additive inverse 

 Internal2: 1 + -1 = 0 (L1:03) 
 External3: Where 1 + X = Y; possible to add 

1 from outside equation space, change 1 to -
1, add to equation space to make 1 + -1 + X 
= Y + -1 (L1:16)

Range: Choose where to zoom to ones to find 45 
when number line shows 0-100, intervals of 10 
(i.e., in which range is 45 located?) (L7) 

Additive equality: Where X + -1 = Y; add 1 from 
outside equation space to make X + -1 + 1 = Y + 
1) (L1:09) 

Estimation: Choose where to zoom to tenths to 
find 2.8 when number line shows 1 to 4, 
intervals of 1 (i.e., approximately where is 2.8 
located on the number line?) (L14) 

Multiplicative inverse:  

 Internal: Divide X/X to make 1 (L2:01) 
 External: Where XY = 3, divide each term 

by Y from outside equation space to make 
XY/Y = 3/Y (L2:11) 

Comparison: Find 12 when number line shows 
5-8, intervals of 1 (L3)  
 

Multiplicative identity: Where 1X is present (as 
one-dot connected to X), tap coefficient 1 to 
make X (L2:05) 

Intervals: Choose which interval to travel by to 
reach 1,035 when number line shows 46 to 57, 
intervals of 1 (L18) 

Equality: Two-sided equation space with 
instructions to “Get me [box] alone on ONE 
side” (L1:05) 

Magnitude: Find 0.006 when number line shows 
0.1-0.4, intervals of 0.1 (L19) 

Reverse order of operations: Requirement of 
adding before dividing to completely simplify the 
equation (L2:13) 

Mathematical: Representation 

Number line: Find 5 when number line shows 0-
3, intervals of 1 (L1) 

Pictorial variables: Picture tiles as variables 
(L1:01) 

Symbolic notation: Arabic numerals (L1) Operation symbols: Operation symbols (e.g., +, 
=) (L2:19) 

Technological: Input range 

Multi-touch: Use multiple fingers to perform 
pinch gesture to zoom, changing intervals from 
tens to ones to find 15 within the range 10-20 
(L1) 

Single-touch: Tap only one swirl/vortex at a time 
to apply additive identity property (L1:02) 

Input recognition: Horizontal pinch gesture 
recognized as zooming, but vertical or nearly 
vertical pinching is not recognized (L15) 

Input recognition: Tap coefficient 1 to apply 
multiplicative identity property (L2:05) 

(table continues)
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Motion Math: Zoom DragonBox Algebra 12+ 

Technological: Input Complexity 

Swipe: Swipe finger from right to left to increase 
along the number line or swipe finger from left 
to right to decrease along the number line (L5) 

Tap: Tap swirl/vortex to apply additive identity 
property (L1:02) 

Pinch (zoom): Using two fingers to pinch, a) 
bring together to increase intervals (zoom out), 
or b) move apart to decrease intervals (zoom in) 
(L14) 

Drag: Drag and drop a tile onto the 
corresponding inverse tile to perform additive 
inverse property (L1:03) 

Structural: Feedback 

Points: Earn ten points for correctly completing 
a task within a level (L9) 

Allow/Disallow move: Disallow drag and drop a 
tile onto the incorrect tile when attempting to 
combine (e.g., X + Y disallowed) (L1:04) 

Animations: Flea breakdances to acknowledge 
completion of level (L15) 

Stars: Earn stars for successful level completion, 
simplification, and using an efficient number of 
moves to complete the level (L2:03) 

Structural: Context 

Advance levels: Upon completion of level with 
required speed and accuracy, app unlocks 
additional levels (L6) 

Advance level: Successful completion of this 
level unlocks the next level (L2:02) 

Needle: From menu or app challenge prompt, 
needle is explicit timer that pops bubble to end 
level attempt if task completion is too slow 

Dragon growth: Dragon “grows” through stages 
(new dragon for each chapter) (L1:01) 

Structural: Scaffolding 

Hints: App prompts “want a hint?” if task 
completion is slow (L7) 

Solution video: After restarting the level, a light 
bulb appears. Tapping the light bulb offers a 
solution video that demonstrates the solution 
level. (L1:15) 

Fingers: App displays fingers to indicate motion 
and direction (e.g., drag left, zoom out) if task 
completion is slow (L12) 

Highlights: White highlight appears in a variable 
tile to indicate that it can be combined with a tile 
the user is currently touching to perform the 
additive inverse property. (L2:04) 

1 Attributes for all levels of Motion Math: Zoom, where L indicates Level, and levels in first three chapters 
(1:01-3:20) of DragonBox Algebra 12+, where L indicates Chapter and Level (e.g., L1:03 is Chapter 1, 
Level 3). Chapters are groups of levels in DragonBox Algebra 12+. 

2 Internal refers to steps involving only tiles already present in the equation without moving the variable 
from one side of the equation to the other side of the equation 

3 External refers to steps involving bringing in variables from outside the equation 
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Most app attributes remained consistent within a level for each app, but often 

differed across levels. For example, in DragonBox Algebra 12+, attributes of Level 1:01 

included: (a) the additive identity property, (b) recognition of tapping and dragging, and 

(c) sounds, animations, and earning a star. Attributes of Level 3:01 were different and 

included: (a) the additive inverse property, (b) recognition of dragging, and (c) sounds, 

animations, and earning multiple stars. It was also possible to control some structural 

attributes independently of the app level (e.g., needle timer in Motion Math: Zoom; 

solution video in DragonBox Algebra 12+). It was only possible to control the 

mathematical attributes and technological attributes of these apps by choosing a level 

involving those attributes. The analysis of the app attributes shows that one can organize 

app attributes using consistent categories across different apps. Attribute categories (e.g., 

mathematical, technological, structural) and subcategories (e.g., content, representation, 

flexibility) remained constant as specific attributes varied (e.g., mathematical content: 

decimals in Motion Math: Zoom vs. additive identity in DragonBox Algebra 12+). 

 
User Attributes  

Analysis provided evidence of the presence of user attributes. Interpretation of 

this evidence revealed three categories of user attributes that manifested in relation to 

requirements for interacting with the apps: mathematical, technological, and personal. 

Table 3 shows examples of codes applied during user attribute analysis, organized by 

resulting categories and subcategories.  

As seen in Table 3, development and interpretation of user attribute codes (e.g., 

symbolic notation) used to label memo excerpts (e.g., “point 93”) informed categories 
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Table 3  

User Attribute Categories with Examples from Interactions with Motion Math: Zoom and 
DragonBox Algebra 12+1 

 
Motion Math: Zoom DragonBox Algebra 12+ 

Mathematical: Content 

Decimals: Tries 1.00 for 0.10. At 0.10, zooms in 
to hundredths (P10 A33 L16N) 

Additive identity: “You had to match it up with 
the same ones. Identity property is the same.” 
(P03 DBFT) 

Negative numbers: Smooth navigation for 
negative numbers. (P04 A13 L9) 

Additive inverse: Tries to combine many 
incorrect “positive + positive” and “negative + 
negative” variables (P01 A12 L1:12) 

Range: Zooms at 1.40 for 1.39 (precise zoom 
interval placement), but other times zooms 
anywhere within the range (P04 A7 L16) 

Additive equality: Missing additive equality--
repeatedly tries to interrupt. (P10 A13 L1:12) 

Estimation: “I would go past one and estimate 
about how far past the bee would I zoom in to 
get onto the little ants.” (P10 ZFT) 

Multiplicative inverse: Multiplicative inverse 
[focus] leads to forgetting need for additive 
inverse and correct order (reverse order of 
operations)? (P08 A43 L1:21) 

Comparison: Struggles with decimal magnitude 
and comparison. (P10 A44 L16N) 

Multiplicative identity: Taps one-dot [coefficient] 
to apply multiplicative identity. (P09 A32 L2:05 

Intervals: To 4.3, travels by tenths as inefficient 
travel interval (P06 A26 L14N) 

Equality: As if seeing two separate equations 
(P07 A19 L1:14) 

Magnitude: To find 1.47 [from 1.82], too slow 
by hundredths and needle pops. Not confident 
with comparison and magnitude for tenths and 
hundredths greater than 1 (P07 A21 L15N) 

Reverse order of operations: Again starts with 
division instead of addition. (P09 A45 L2:13) 

Mathematical: Representation 

Number line: “It was really not that hard… to 
find the numbers along the number line.” (P04 
ZFT) 

Pictorial variables: “It was really fun to match 
up [pictures] but it was a little confusing” (P03 
DBFT) 

Symbolic notation: “It was easy when it was a 
whole number but when it’s like ‘point 93’ and 
it’s in between it’s hard.” (P10 ZFT) 

Operation symbols: Addition symbols appear 
(P04 A49 L2:19) 

Mathematical: Flexibility 

Transfer: Travels by 10s (starting interval) 
when hundreds or tens/hundreds combo might 
be more efficient. (Not transferring zoom [as 
applied to intervals and ranges] to new situation 
yet) (P09 A5 L5) 

Transfer: Repeating same mistake—does not 
apply division as shown in prior level. (P06 A37 
L2:12) 

Perception: “I had to focus on how many 
hundredths were in a tenth and how many tenths 
in one, and how many ones in ten and how 
many tens are in a hundred.” (P07 ZFT) 

Perception: “There was absolutely no math in 
there…. I don’t know why you gave this game to 
me; it’s not a math game. I thought this was a 
study on math games.” (P08 DBFT) 

(Table continues)
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Motion Math: Zoom DragonBox Algebra 12+ 

Technological: Motor Skills 

Coordination: At times, zoom out fingers 
overlap. (P07 A19 L15N) 

Coordination: Direct combo for box side but 
scaffold for non-box (attempted for second direct 
combo on box side but missed) (P09 A22 L1:15) 

Technological: Input familiarity 

Input awareness: Needed repeat scaffold (with 
voice) for zoom to find 15 after repeated L-R 
movement w/ taps. (P06 A1 L1) 

Input awareness: During demo, tries to drag 
instead of tap first. (P06 A16 L1:16) 

Personal 

Affect: “It was hard but fun at the same time.” 
(P05 ZFT) 

Affect: “Pretty fun…. I like brain games and 
figuring things out.” (P07 DBFT) 

Goals: “I was trying to get to challenging things 
to see what it would be like.” (P05 ZFT) 

Goals: “I play it so I can get one or two stars.” 
(P01 DBFT) 

Persistence: “Finally!” [upon completing L15 on 
the 44th attempt] (P03 A50 L15N) 

Persistence: “The second time I got stuck I 
watched part of the [solution] and then exited out 
so I could figure out the rest.” (P07 DBFT) 

Note. Alphanumeric sequences in parentheses indicate references to specific memos. P indicates 
participant, A indicates the attempt number, L indicates level or chapter and level, N indicates presence of 
needle. ZFT is Motion Math: Zoom Follow-Up Questions Transcript. DBFT indicates DragonBox Algebra 
12+ Follow-Up Questions Transcript. Quotation marks indicate direct quotes from participants. Brackets 
indicate clarifications. 
 
 
 
(e.g., mathematical), which were refined to include subcategories (e.g., mathematical: 

representation). User mathematical attributes pertained to representation of mathematical 

content, with subcategories of content, representation, and flexibility. Content and 

representation were similar to the corresponding categories of app attributes (e.g., 

content: decimals; representation: number line). User flexibility referred to how the user 

transferred across representations and situations (e.g., applying understanding of the 

quantities contained within the range of 0.1-0.2 to the range of 1.1-1.2). User 

technological attributes also pertained to physically embodied aspects of interactions with 

the app, but with different subcategories than app technological attributes. Motor skills 

referred to the facility with which a user performed the relevant physical actions (e.g., 



64 
 
coordination used to control the pinching zoom input gesture), whereas input familiarity 

referred to how conversant a user was in a given input (e.g., awareness of tapping as 

indicator of intended answer). User personal attributes were characteristics of the user’s 

personality that related to how the user interacted with the app. Personal attributes 

included affect (e.g., enjoyment), persistence (e.g., repeated attempts), and goals (e.g., 

seeking a challenge).  

User attributes are representative of those that participants displayed in response 

to requirements for interacting with the apps and have some similar categories to app 

attributes. For example, interacting with Level 15 (needle active) in Motion Math: Zoom 

involved: (a) awareness of and understanding of magnitude using tenths and hundredths 

on the number line (mathematical attributes), (b) perception of and performance of input 

gestures of swiping to move the number line and zooming to change intervals 

(technological attributes), and (c) goals and persistence (personal attributes). Many 

attributes were evident in multiple forms (e.g., coordination to control pinch and drag 

inputs). The analysis of user attributes shows that one can organize user attributes using 

consistent categories. Attribute categories (e.g., mathematical, technological, personal) 

and subcategories (e.g., content, representation, flexibility) remained constant as specific 

attributes varied (e.g., mathematical content: decimals in Motion Math: Zoom vs. 

additive identity in DragonBox Algebra 12+). The analysis also shows that one can use 

similar categories to organize app attributes and user attributes. 

 
Attribute Alignment 

Analysis revealed an emergent theme of attribute alignment, supported by 
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evidence indicating that alignment of clusters of mathematical attributes or technological 

attributes varied. As discussed in the Methods chapter, the researcher grouped related 

attributes into clusters that could apply across multiple levels of interactions with an app 

(e.g., “swipe input” included iterations of coordination and input awareness). Table 4 

shows examples of codes applied during analysis concerning aligned and unaligned 

attribute clusters from participants’ interactions with Motion Math: Zoom.  

Every participant’s interactions showed evidence of varying alignment for each 

attribute cluster related to Motion Math: Zoom. Participants often showed greater 

alignment of mathematical attribute clusters when tasks featured whole numbers (e.g., 1, 

not 1.00) than when tasks featured hundredths (e.g., 0.83). Unaligned attribute clusters 

 
Table 4  

Aligned and Unaligned Attribute Clusters from Interactions with Motion Math: Zoom 

Cluster Aligned Unaligned 

Mathematical attributes 

Comparison: 
Navigation 

Pops [bubble] while [number line] still 
moving when [target number] should 
be nearby (P01 A2 L2) 

For 0.13, again seemed confused as to where 
it would be placed and used tenths until 
limited around 1.0 (P03 A17 L15N) 

Comparison: Target 
placement 

Aligning bubble to target (P04 A2 L2) Tries to place at 0.4 for 0.04 (P06 A8 L15N) 

Magnitude: Within-
interval travel choice 

Uses most appropriate travel interval 
(only one mixed and self-corrected 
partway through) (P02 A7 L6) 

From 500 to 784, seems to hesitate among 
ones, tens, hundreds, and settles on ones 
around 700 (P06 A5 L5) 

Magnitude: Between-
interval travel choice 

Immediately to ideal zoom [range of 
0-0.1] for 0.05 (P09 A11 L15N) 

For 1.81 from 1.00, zoomed in to hundredths 
at 1.00. (P05 A5 L15) 

Technological attributes 

Swipe input Smooth navigation via swiping (P01 
A2 L2) 

One brief misread swipe. (P06 A2 L2) 

Zoom input Controlled zooming when close to 
interval level (P04 A8 L18) 

Struggled to zoom using one hand diagonal 
(P02 A23 L15N) 

Note. Alphanumeric sequences in parentheses indicate references to specific memos. P indicates participant, A 
indicates the attempt number, L indicates level, N indicates presence of needle. Brackets indicate clarifications. 



66 
 
were often evident when the task required finding numbers between 1.00 and 2.00. Eight 

participants showed evidence of unaligned technological attribute clusters, struggling to 

efficiently apply the zoom input gesture during multiple consecutive attempts. However, 

other participants aligned these attributes, such as Participant 4, who honed the pinch 

gesture to precisely control the place and degree of zooming. Table 5 shows examples of 

codes applied during analysis concerning aligned and unaligned attributes from 

interactions with DragonBox Algebra 12+. 

Every participant’s interactions also showed evidence of varying alignment for 

each attribute cluster related to DragonBox Algebra 12+. All participants showed 

evidence of unaligned mathematical attribute clusters, such as when attempting 

mathematically incorrect moves. Unaligned technological attribute clusters were also 

evident. For example each of the nine participants who reached Level 2:05, which 

 
Table 5 

Aligned and Unaligned Attribute Clusters from Interactions with DragonBox Algebra 
12+ 
 

Cluster Aligned Unaligned 

Mathematical attributes 

Efficiency: moves 
accepted by app 

Every step correct (P03 A22 L1:18) 63 recognized moves! (P01 A38 L2:03) 

Elegance: simplification 
or leftovers 

Completes both [sides] before sweep 
begins (P06 A11 L1:11) 

Immediately clears swirl on box (right) 
side, resulting in leftovers. (P05 A7 L1:07) 

Accuracy: (dis)allowed 
mathematics  

Immediately divides correctly (P06 
A26 L2:03) 

Twice attempted to add instead of divide 
(P05 A54 L2:20) 

Technological attributes 

Performance of input 
gestures 

Reproduces demo with no difficulty of 
input (P01 A1 L1:01) 

Misses drag/drop again (P03 A6 L1:06) 

Choice of correct input 
gesture 

Watches power demo, then duplicates. 
No longer dragging box. (P10 A3 
L1:03) 

Drag/tap mix (P10 A39 L2:13) 

Note. Alphanumeric sequences in parentheses indicate references to specific memos. P indicates participant, A 
indicates the attempt number, L indicates chapter and level. Brackets indicate clarifications. 



67 
 
introduced tapping a coefficient of one to apply the multiplicative identity property, at 

times attempted to drag instead of tap when trying to apply the property on subsequent 

levels. Attribute cluster alignment and misalignment provided evidence of connections 

between user attributes and app attributes throughout participants’ interactions with each 

app. Attribute cluster alignment was not static, nor was it the same for every participant. 

 
Proactive Versus Reactive Attribute  
Modification 

Evidence of changing attributes and changing attribute alignment led to the 

emergent theme that users and apps frequently modified attributes. Specifically, this 

attribute modification was either reactive or proactive. Table 6 shows examples of codes 

applied during analysis of attribute modification.  

As seen in Table 6, interpretation of evidence of changing attributes (e.g., chose 

to turn off needle) and attribute alignment change (e.g., repeat level until complete) 

during participants’ physically embodied interactions with the apps informed the 

development of the theme of attribute modification, which was refined to differentiate 

between reactive and proactive attribute modification. In reactive attribute modification, 

apps modified app attributes and in response, users applied and modified user attributes. 

When user and app attributes aligned and the user successfully completed tasks, the app 

responded by modifying app attributes. The user then attempted to align the relevant 

attributes by applying and modifying user attributes, continuing the cycle. In proactive 

attribute modification, apps modified app attributes and users applied and modified user 

attributes, but users also modified app attributes. 
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Table 6  

Examples of Proactive and Reactive Attribute Modification 

Modification Examples 

Motion Math: Zoom 

Proactive Chose level (4 participants) 

 Returns to menu instead of accepting jump to 15 challenge w/needle (did not wait 
to interpret prompt). (P05 A13 L7) 

Chose to turn needle on or off (1) 

 At menu, pauses, turns on needle… (P08 A4 L15N) 
 Turns off needle at menu, returns to 15 (P08 A6 L15N) 

Reactive Skip from L6 to L15, turn on needle (7)  

 Accepts app-prompted 15N [from L6] (P09 A8 L15N) 
Repeat level (10)  

 App suggested repeat (P02 A3 L2) 
Move to next level (9) 

 Accepts 16 (P10 A32 L16N) 

DragonBox Algebra 12+ 

Proactive Choose level (3) 

 Purposefully chose different level (P02 A37 L2:10) 
Watch solution (6)  

 Solution (part--did not watch full solution) (P01 A38 L2:03) 

Reactive Move to next level (10)  

 P05: A25 L2:01… A26 L2:02… A27 L2:03… 
Repeat level until complete (10)  

 P04: A42 L2:16 Restart… A43 L2:16 Restart… A44 L2:16 Restart… A45 L2:16 
Restart… A46 L2:16 [completes]

Note. Alphanumeric sequences in parentheses indicate references to specific memos. P indicates 
participant, A indicates attempt number, L indicates level or chapter and level. Brackets indicate 
clarifications. 
 

Reactive attribute modification was more common than proactive attribute 

modification. For example, during Level 15, the user had to apply understandings of 

comparison and magnitude involving decimals to the hundredths place. Every participant 

repeated Level 15 multiple times, but only Participants 3, 4, 6, and 10 modified user 

attributes enough for the app to permit advancement to Level 16. Interactions involving 

DragonBox Algebra 12+ also provided evidence of reactive attribute modification, as 
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every participant usually followed the app prompt to the next level and its content rather 

than choosing a different level.  

Proactive attribute modification was relatively rare. While interacting with 

Motion Math: Zoom, four participants (4, 5, 6, 8) proactively chose levels (i.e., modified 

app mathematical content attribute), while only Participant 8 proactively controlled the 

needle timer (i.e., modified structural context attribute). While interacting with 

DragonBox Algebra 12+, six participants proactively used the Solution feature to 

demonstrate how to complete a level (i.e., activated structural scaffolding attribute). Of 

the three participants (1, 2, 10) who proactively chose levels, two (2, 10) built back 

through prior levels after encountering difficulty. Participant 2 explained this, saying “my 

parents tell me if something gets too hard stop on that and then go back and you’ll get 

better ideas.” However, many participants appeared unaware of the potential to 

proactively modify app attributes. Participant 2 wanted to “choose what [math] it would 

have you do” in Motion Math: Zoom, which was possible via the menu screen. 

Participant 3 suggested the addition of “hints or clues to help” in DragonBox Algebra 

12+, which Participant 1 recognized as accessible via the Solution light bulb “because all 

light bulbs do that. A light bulb above your head gives you an idea.” 

In summary, there was evidence that both users and apps have attributes. 

Categories of app attributes were the same across apps, and categories of user attributes 

were the same across users, though attributes within the categories and specific 

manifestations of the attributes varied. Alignment of attributes or clusters of attributes 

during user-app interactions provided evidence of relationships among categories of app 
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attributes and user attributes. Attribute alignment was not static, nor was it identical for 

all participants. Attribute modification was a frequent occurrence, and reactive attribute 

modification was more common than proactive attribute modification. 

 
Research Question 2: Presence and Variance of  

Affordance-Ability Relationships  

 
The second research question concerned evidence of affordance-ability 

relationships in fifth graders’ interactions with mathematics virtual manipulative iPad 

apps. As discussed in the Methods chapter, the researcher addressed this research 

question by analyzing the two apps, video data of user-app interactions and follow-up 

questions, and observation field notes during data analysis stages that included 

identifying examples of affordance-ability relationships and analyzing emergent 

variations related to affordance-ability relationships. Initial data analysis examined 

whether affordance-ability relationships were present, as indicated by accession of the 

affordances during participants’ physically embodied interactions with the app and their 

comments related to affordance access. Data coding and analysis provided evidence that 

affordance-ability relationships were present in the user-app interactions and aligned with 

the categories of affordances of virtual manipulatives as defined by Moyer-Packenham 

and Westenskow’s (2013). Further coding and analysis focused on specific types of 

affordance-ability relationships, and interpretation revealed emergent themes of: (a) 

variations in affordance-ability relationships and (b) interrelationships among affordance-

ability relationships. 
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Presence of Affordance-Ability Relationships 

Analysis of the data indicated that affordance-ability relationships were present 

during participants’ interactions with mathematics virtual manipulative iPad apps. The 

main categories of these relationships aligned with the five categories of affordances of 

virtual manipulatives as defined by Moyer-Packenham and Westenskow (2013): 

simultaneous linking, efficient precision, focused constraint, motivation, and creative 

variation. Table 7 shows examples of codes applied during analysis concerning 

affordance-ability relationships.  

Some affordance-ability relationships were always evident as participants 

completed tasks with a particular app. For example, attempting tasks in Motion Math: 

Zoom always required accessing the simultaneous linking of actions and mathematical 

representations on the number line. Efficient precision was widespread, including every 

participant accessing iterations of guided tile placement during interactions with 

DragonBox Algebra 12+. Focused constraint was also common, as both apps limited the 

mathematical interactions to specific content in any given level. Evidence of accessing 

the affordance of motivation often appeared in participants’ comments (e.g., Participant 

1: “wanna punch something”). Creative variation was relatively rare, and although some 

participants attempted to find innovative solution strategies (e.g., combining planning and 

multiple visible intervals to navigate the number line in Motion Math: Zoom), 

participants rarely iterated these strategies. 

 
Variation in Affordance-Ability Relationships  

Analysis indicated that affordance-ability relationships were not identical across 
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Table 7 

Examples of Affordance-Ability Relationships 

Motion Math: Zoom DragonBox Algebra 12+ 

Simultaneous linking 

Actions + changes in number line 
 “I pick an area between like 1 and 2 or 3 and 4 then 
zoom in to the area close enough [to find the number].” 
(P08 ZFT) 

Actions + changes in equation 
 “The one I was just playing on, it would let you switch 
the others to the other side.” (P09 DBFT) 

Efficient precision 

Timed, needle 
Tries 0.4 for 0.04, then zooms in immediately (non-
ideal). Popped by needle. (P07 A15 L15N) 

Unlock next level if conditions met 
App suggested repeat (P02 A3 L2) 

Planning 
Now planning [by zooming] out before next bubble 
arises (P09 A18 L15N) 

Multiple visible intervals 
To find 450 from 357, zooms to multiple visible 
intervals (1/10); stays at this to 402, 448, 500 (P10 A5 
L5) 

Guided placement: highlights 
Tries to drag variable across but stopped by app (focused 
constraint) then sees scaffold of lit/highlighted target 
combo (uses correctly) (P04 A5 L1:05) 

Guided placement: squares 
Used direct combo on box side, then scaffolded [square] 
placement on non-box (even though passed through 
yellow highlight on the way) (P10 A10 L1:10) 

Focused constraint 

Navigation restrictions: swipe left-right 
Repeatedly tries to swipe past 1.0 (P01 A11 L15N) 

Navigation restrictions: zoom in-out 
Briefly stuck on a task when attempting to zoom further 
when not allowed (P04 A14 L18) 

Mathematics restrictions: correct 
Tries to combine two terms with same denominators but 
different numerators (allowed later, but not here) (P02 
A31 L2:11) 

Mathematics restrictions: incorrect 
Repeated X + 0 = 0 attempts (P07 A18 L1:14) 

Motivation 

Positive 
“I was really motivated to get to the challenge room and 
that got me really excited about playing it.” (P05 SFT) 

Negative 
“The whole thing is frustrating. Makes you wanna punch 
something or throw something at someone.” (P01 ZFT) 

Positive 
“I thought that it was pretty fun and hooking. You get 
hooked to it…. Trying to get the dragon as big as you 
can.” (P05 DBFT) 

Negative 
“Could make you wanna punch your screen or throw it at 
the wall because I can’t… figure out which is which.” 
(P01 DBFT) 

Creative variation 

Multiple visible intervals 
To find 450 from 357, zooms to multiple visible 
intervals (1/10) [for the first time]; stays at this to 402, 
448, 500…. Using multiple visible intervals was not the 
most efficient way to travel here, but worked 
nonetheless. (P10 A5 L5) 

Planning 
Some planning evident already as moving while number 
falls into place. (No need to plan yet without zooming or 
time here) (P07 A2 L2) 

Guess-and-check  
Eventually complete correction after guess-and-checks. 
Many extra moves. (P09 A65 L3:06) 

Systematic trials 
Extended, systematic attempts to try nearly everything 
(with many math mistakes, extra moves, etc.) (P02 A36 
L2:13) 

Note. Alphanumeric sequences in parentheses indicate references to specific memos. P indicates participant, A indicates the attempt 
number, L indicates level or chapter and level. DBFT indicates DragonBox Algebra 12+ Follow-Up Questions Transcript. ZFT 
indicates Motion Math: Zoom Follow-Up Questions Transcript. SFT indicates Summative Follow-Up Questions Transcription. 
Quotation marks indicate direct quotes from participants. Brackets indicate clarifications. 
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all participants and situations, leading to the theme of variation in affordance-ability 

relationships. Affordance access varied within and between participants by approach or 

degree. Examining accession of versions of affordances of efficient precision and 

motivation provided evidence of these variations. Within each of these examples, further 

variations were evident, including consistency, change, and outcome. 

Variations in accession of efficient precision. Analysis indicated that accession 

of efficient precision related to guided placement to combine tiles using the additive 

equality property and the additive inverse property in DragonBox Algebra 12+ varied by 

approach. Consistency of approach to accessing this affordance varied and had favorable 

or unfavorable outcomes even when participants adopted the same approach. Table 8 

shows codes applied during analysis concerning variations of efficient precision 

affordance-ability relationships. 

As seen in Table 8, accession of efficient precision related to guided placement 

when applying the additive equality property and the additive inverse property could vary 

by approach, consistency, and outcome. For example, Participant 9 accessed all three 

ways DragonBox Algebra 12+ allowed one to perform the additive equality property and 

the additive inverse property in a given situation (see Appendix D, Figures D1-D5). This 

included: (a) using direct combinations whenever possible (i.e., simultaneous use of the 

additive inverse property and the additive equality property on both sides of the 

equation), (b) always using separate steps (i.e., complete the additive equality property 

before beginning the additive inverse property), or (c) using direct combination on the 

first side and separate steps on the other side. While completing the additive equality  
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Table 8  

Variations of Guided Placement Efficient Precision Affordance-Ability Relationships in 
DragonBox Algebra 12+ 
 

Variation Example 

Variant: 
Approach 

P09 
Combined additive inverse and additive equality when possible 

 Purposeful direct combos. (A20 L1:14) 
Combined on first side, separate steps on second side 

 Direct combo first (non-box) then scaffolded (box) (A10 L1:10) 
Separate steps on both sides 

 Does not use direct combo… was [possible] on each side, each time (A27 L1:20) 

Consistency: 
Consistent 

Regular approach to affordance access: P10 

 Direct combos for box side… and uses scaffolded placements for non-box side. 
(A19 L1:17) 

 Direct combo on non-box, scaffolded on box (direct possible). (A21 L1:19) 
 Direct combo on box side… scaffolded on non-box. (A22 L1:19) 
 Direct combo for box side… scaffolded for non-box side. (A31 L2:08) 

Consistency: 
Inconsistent 

Irregular approach to affordance access: P09 

 Consistent in non-use of direct combos [so far] (A12 L1:11) 
 Accidental direct combo (does not repeat) (A18 L1:14) 
 Purposeful direct combos (A20 L1:14) 
 Direct combo for box side but scaffold for non-box (attempted for second direct 

combo on box side but missed) (A22 L1:15) 
 No direct combo for box side. (A23 L1:16) 
 First as direct combo, second barely, third not… from gesture precision (A24 

L1:17) 
 Does not use direct combo… was [possible] on each side, each time (A27 L1:20) 

Outcome: 
Favorable 

Direct combination followed by separate steps, then completes additive inverse: 

 Direct combo first (non-box) then scaffolded (box) and combines correctly. Clears 
non-box then box. (P07 A10 L1:10) 

Outcome: 
Unfavorable 

Direct combination followed by separate steps, then does not complete additive inverse:  

 Almost direct combo on non-box first--saw yellow highlight--but used direct combo 
on box side, then scaffolded placement on non-box (even though passed through 
yellow highlight on the way). Did not address non-box side. (P10 A10 L1:10) 

Note. Alphanumeric sequences in parentheses indicate references to specific memos. P indicates 
participant, A indicates the attempt number, L indicates chapter and level. Brackets indicate clarifications.  
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property by adding a duplicate variable to the opposite side of the equation space, a 

square target space appeared and the app disallowed other moves until the participant 

finished applying the additive equality property.  

Even when participants applied the same approach to accessing the affordance, 

outcomes varied. Participants 7 and 10 frequently used the separate steps approach. 

However, while Participant 7 often completed the additive inverse property on the second 

side before finishing the level, Participant 10 rarely did so. Furthermore, after identifying 

the potential for combinations, some participants repeatedly attempted combinations that 

were mathematically incorrect (e.g., variable plus vortex/swirl, X + 0 = 0, see Figure 9) 

or in ways that the app did not permit until later levels (e.g., add variables with common 

denominators, see Figure 10). Some participants may have overgeneralized the potential 

for combinations and failed to recognize the connection to the additive inverse property. 

 

 
Figure 9. Attempting X + 0 = 0. 
 
 

 
Figure 10. Attempting to add variables with common denominators. 
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 Variations in accession of motivation. Analysis indicated that accession of the 

affordance of motivation varied by degree, could change by situation or by time, was 

consistent for some participants yet inconsistent for others, and could have had favorable 

or unfavorable outcomes even when the participants accessed similar degrees of the 

affordance of motivation, depending on the participant’s relevant ability. Table 9 shows 

examples of codes applied during analysis concerning variations of motivation 

affordance-ability relationships.  

 As seen in Table 9, participants’ interactions demonstrated a range of access to 

the affordance of motivation, from a high degree of access to positive motivation (e.g., 

Participant 7: “excited”) through a low degree of access to motivation (e.g., Participant 4: 

“kinda boring”), to a high degree of access to negative motivation (e.g., Participant 1: 

“wanna punch something”). The degree of access to motivation did not remain static, 

varying by situation (e.g., across different levels) or over time (e.g., across consecutive 

repetitions of the same level). Accession of motivation could also be consistent (e.g., 

Participant 2: building challenge) or inconsistent (e.g., Participant 1: earning stars). Even 

when access to motivation was similar, outcomes were not. Whether showing high access 

to positive motivation (e.g., Participant 5 vs. Participant 7), low access to motivation 

(Participant 4 vs. Participant 3), or high access to negative motivation (Participant 2 vs. 

Participant 1), outcomes could be favorable or unfavorable in terms of continuing to 

interact with the app for the full amount of time permitted.  
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Table 9  

Variations of Motivation Affordance-Ability Relationships 

Variation Example 

Variant: 
Degree 

High access to positive motivation 

 “I was really motivated to get to the challenge room and got me really excited about 
playing it.” (P05 SFT) 

Low access to motivation 

 “[It] was kinda boring” (P04 ZFT) 
High access to negative motivation 

 “The whole thing is frustrating. Makes you wanna punch something.” (P01 ZFT) 
Change: 
Situation  

Initially low access to motivation becomes high access to positive motivation once 
reaching 15N 

 “[Once it was timed] it was exciting. You were timed so you were freaked out so it 
was fun.” (P07 ZFT) 

Initially low access to motivation becomes high access to negative motivation after 
turning on the needle timer 

 “Being timed is putting a lot of pressure on you and you don’t really like that, no 
one really does.” (P08 ZFT) 

Change: 
Time 

Initially high access to positive motivation decreases to low motivation, then becomes 
high access to negative motivation through repetition of L15N: P03 

 [First 15N attempt.] Completed no tasks, but excitable. (A7 L15N) 
 Verbal frustration evident here and before (A27 L15N) 
 “Frustrating…. When you’re about to press it but the needle pops it.” (P03 ZFT) 

Consistency: 
Consistent 

Regular approach to affordance access 
High access to positive motivation across situations 

  “It was fun…. ‘Cause the levels got harder.” (P02 ZFT) 
Consistency: 
Inconsistent 

Irregular approach to affordance access  
Motivation to earn stars; positive, neutral, negative: P01 

 Repeated level (to earn missed star) (A20 L1:15) 
 Tapped dots and completely ignored division on non-box side [does not repeat level 

to earn stars] (A42 L2:06) 
 “[I decided to restart if] I want to beat the level…. I play it so I can get one or two 

stars. Because one star… makes you feel like you suck. So that’s why it makes you 
wanna play again.” (DBFT) 

Outcome: 
Favorable 

Full 30-minute interaction time with: 
High access to positive motivation 

 “I was really motivated to get to the challenge room and got me really excited about 
playing it.” (P05 SFT) 

Low access to motivation 

  “[It] was kinda boring” (P04 ZFT) 
High access to negative motivation 

 “That was hard! [It was very] frustrating.” “ (P02 ZFT) 

(table continues)
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Variation Example 

Outcome: 
Unfavorable 

Ended interaction time early (interaction duration):  
High access to positive motivation 

 “You were timed so you were freaked out so it was fun.” (P07 ZFT) (24 minutes) 
Access to both positive motivation and negative motivation 

 “It was really fun to match up but it was a little confusing because I don’t think it 
told you to do that but it was a little tricky.” (P03 DBFT) (24 minutes) 

High access to negative motivation 

 “The whole thing is frustrating. Makes you wanna punch something.” (P01 ZFT) 
(28 minutes) 

Note. Alphanumeric sequences in parentheses indicate references to specific memos. P indicates 
participant, A indicates the attempt number, L indicates level or chapter and level. DBFT indicates 
DragonBox Algebra 12+ Follow-Up Questions Transcript. ZFT indicates Motion Math: Zoom Follow-Up 
Questions Transcript. SFT indicates Summative Follow-Up Questions Transcription. Quotation marks 
indicate direct quotes from participants. Brackets indicate clarifications. 
 

 
Interactions among Affordance-Ability  
Relationships 

Evidence indicated that multiple affordance-ability relationships could be 

simultaneously present in the same user-app interaction sequence, leading to the theme of 

interrelationships among affordance-ability relationships. User-app interactions could 

involve multiple affordance-ability relationships, such as simultaneous linking of actions 

and representations (e.g., values changing when swiping to move along the number line), 

and a degree of access to motivation (e.g., enjoyment). However, notable interactions 

among affordance-ability relationships required balancing accession of efficient 

precision, focused constraint, and creative variation. Table 10 shows examples of memo 

excerpts identified during analysis concerning interactions among these affordances. 

As seen in Table 10, interactions with each app provided evidence of interactions 

among efficient precision, focused constraint, and creative variation. Motion Math: Zoom 

afforded creative variation to apply novel strategies to complete tasks, such as having  
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Table 10  

Interactions Among Efficient Precision, Focused Constraint, and Creative Variation 

Motion Math: Zoom 

Popped at 1.00 to 1.XX…. planning involved zooming in to hundredths at 0.01 to find 1.51--paused 
around 0.5 and immediately tried to zoom out but too late (P02 A28 L15N) 
 
P09 

 Using [navigation restriction] to stop swipe at 0. (A16 L15N) 
 Fine adjustments to use multiple intervals, which took [too much] time (A17 L15N) 
 Planning out before next bubble arises, for 1.64 from 1.00 (at tenths) (A18 L15N) 
 Uses tenths for 1.00 (A21 L15N) 
 Tenths to 1.00 (A22 L15N) 
 
P06 

 Planning zooms help but anticipatory taps are often inaccurate and actually slow overall [process] 
(A12 L15N) 

 Far off for 0.13--tries to swipe beyond 1.0 at tenths. ([App] restricts further rightward navigation) 
(A15 L15N) 

 Planning sometimes efficient but sometimes slows overall process (A17 L15N) 
 Planning zoom out not always effective in this level [because] of new prompt and does not 

continue [planning] (A20 L12N) 

DragonBox Algebra 12+ 

Begins with incorrect [addition instead of multiplication]…. rearranging and failed combining 
attempts…. many disallowed combinations (some of which were mathematically possible). Some 
gestures… placed/executed poorly. Five minutes of guess and check.... Ends with 34 moves 
(excluding from undo) before Restart. (P10 A39 L2:13) 
 
P01 
 Attempted to clear combo before adding to both sides [resulting in completed level with missing 

stars] (A19 L1:15) 
 Repeated level (to earn missed star) (A20 L1:15) 

 P04 
 Tries to drag variable across but stopped by app (A5 L1:05) 
 Tries to drag one-dot across instead of combining (A24 L2:01) 
 New power--drag across (A54 L3:01) 
 Uses drag across for direct combos (app counts as two moves) as example of efficient precision 

([vs.] not allowed much earlier--focused constraint) (A55 L3:02) 
Note. Alphanumeric sequences in parentheses indicate references to specific memos. P indicates 
participant, A indicates the attempt number, L indicates level or chapter and level. Brackets indicate 
clarifications. 
 

 



80 
 
multiple intervals visible at the same time (e.g., 1s and 10s, see Figure 11), and planning 

ahead by navigating in anticipation of the next task (see Figure 12). These strategies 

could also contribute to efficient precision, leading to quick and accurate task completion. 

Conversely, these creative strategies could hinder progress if a participant’s relevant 

abilities did not permit efficient, precise use. As a participant modified relevant abilities, 

this could modify the balance of affordance accession. For example, when first 

attempting Level 15 with the needle timer on, Participant 9 struggled to efficiently plan 

using multiple visible intervals to navigate from 1.00 to 1.XX (e.g., 1.00 to 1.53),  

 
 

 
Figure 11. Multiple visible intervals. 
 
 
 

 
Figure 12. Planning by navigating before the next prompt appears. 
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resulting in the needle popping the bubble. Later, Participant 9 efficiently planned 

without using multiple visible intervals, placing 1.0 when the screen showed intervals of 

0.1 beginning at 1.0, in preparation for finding 1.XX and contributing to successful task 

completion. Throughout these interactions, accession of focused constraint influenced 

accession of both efficient precision and creative variation. For example, navigation 

restrictions on Level 15 prohibited zooming in beyond hundredths or swiping into 

negative numbers, which limited potential exploration. To locate 0.05 when presented 

with intervals of 0.1, Participant 9 moved the number line leftward and allowed the app 

to stop the motion at 0, then zoomed in and allowed the app to stop motion at hundredths. 

Thus, the app constrained creativity while affording efficiency. 

Interactions with DragonBox Algebra 12+ also provided evidence of interactions 

among efficient precision, focused constraint, and creative variation. The app afforded 

creative variation because participants could use guess-and-check or systematic trials to 

complete a level, such as the array of attempted moves made by Participant 10 during 

Level 2:13. However, the app emphasized efficient precision over creative variation, 

awarding stars for simplified solutions made in a minimal number of moves. The app 

emphasized focused constraint over efficient precision and creative variation in some 

situations, disallowing moves that were otherwise mathematically correct. Some of these 

moves were permitted during more advanced levels, such as when Participant 4 was not 

permitted to drag a variable to the other side of the equation until after the app officially 

demonstrated this “new power” during Level 3:01.  

In summary, affordance-ability relationships were present throughout user-app 
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interactions. However, affordance-ability relationships were not identical across all 

participants and situations, and affordance access often varied by approach or degree. 

Furthermore, user-app interactions involved multiple affordance-ability relationships and 

these affordance-ability relationships interacted with one another.  

 
Research Question 3: Presence and Modification of Distance 

 

 The third research question concerned evidence of distance in fifth graders’ 

interactions with mathematics virtual manipulative iPad apps. As discussed in the 

Methods chapter, the researcher addressed this research question by analyzing the video 

data of user-app interactions and follow-up questions, and the observation field notes 

during data analysis stages that included identifying examples of distance and analyzing 

emergent variations related to distance. Data were coded to identify the presence of 

distance, as indicated by interactions and comments concerning differences between what 

participants did to interact with the app and what was required to successfully interact 

with the app. Qualitative analysis revealed two emergent types of distance: mathematical 

and technological. Qualitative and quantitized qualitative analyses indicated that: a) 

distance can change over time, and b) mathematical distance and technological distance 

can influence each other.  

 
Presence of Two Types of Distance  

Analysis provided evidence of the presence of distance. Interpretation of this 

evidence revealed two types of distance: mathematical distance and technological 

distance. Mathematical distance was the degree of difficulty of the mathematical aspects 
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of interactions between the user and the tool (e.g., a mathematics virtual manipulative 

iPad app), whereas technological distance was the degree of difficulty of the 

technological aspects of interactions between the user and the tool. The degree of 

distance present varied. Table 11 shows examples of memo excerpts identified during 

analysis concerning mathematical and technological distance. 

Mathematical distance and technological distance were always present in these 

interactions, but the degree of each distance depended on the relationship between user 

and app in the specific context. For example, during interactions with Level 15 with the 

needle active in Motion Math: Zoom, Participant 2 showed a high degree of mathematical 

 
Table 11 

Examples of Mathematical and Technological Distance 

Motion Math: Zoom DragonBox Algebra 12+ 

Mathematical distance: High degree 

[Needle] popped first task (0.05); tried 0.5 
placement even after app filled the empty space 
(P02 A8 L15N) 

Ends up adding all [variables] from outside and 
trying to combine across or within for unlike 
[variables]. (P03 A13 L1:12) 

Mathematical distance: Low degree 

 [Chooses] ideal intervals and ranges (P10 A4 
L4) 

Replicates solution. Audible deep sigh. (P07 A31 
L1:14) 

Technological distance: High degree 

Mixed up zoom in/out gestures (P03 A8 L15N) Misses drag/drop again (P03 A6 L1:06) 

Technological distance: Low degree 

Controlled zooming when close to interval level 
(P04 A8 L18) 

Watches new power once, correctly replicates 
tap. (P06 A28 L2:05) 

Note. Alphanumeric sequences in parentheses indicate references to specific memos. P indicates 
participant, A indicates the attempt number, L indicates level or chapter and level. Brackets indicate 
clarifications. 
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distance while struggling to find the appropriate place on the number line for 0.05, 

whereas Participant 3 showed a high degree of technological distance, switching the 

zoom in and zoom out input gestures. In other situations, participants showed evidence of 

a low degree of distance, such as when they did not struggle to find correct placements on 

the number line (i.e., low degree of mathematical distance), and some participants 

managed to precisely control zoom input gestures (i.e., low degree of technological 

distance). While attempting Level 15, all 10 participants at times confused tenths and 

hundredths (e.g., 0.04 vs. 0.4) and became lost on the number line when attempting to 

find numbers greater than one whole that included hundredths (e.g., 1.82).  

Interactions with DragonBox Algebra 12+ also provided evidence of distance. In 

terms of mathematical distance, some participants repeatedly struggled to apply the 

correct properties to complete a level, other participants managed to complete the level 

with less difficulty. For example, to complete Level 1:14, six participants required one 

attempt, three participants required 3-5 attempts, and Participant 7 required 17 attempts. 

A common example of technological distance in DragonBox Algebra 12+ occurred 

beginning at Level 2:05, which involved tapping a coefficient of 1 to apply the 

multiplicative inverse property. All nine participants who progressed beyond Level 2:05 

at times struggled to appropriately apply the tapping gesture. However, relatively high 

degrees of technological distance were more common during interactions with Motion 

Math: Zoom than during interactions with DragonBox Algebra 12+. This may have been 

because interactions with DragonBox Algebra 12+ involved only single-touch input (e.g., 

tapping and dragging), whereas interactions with Motion Math: Zoom also involved 
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multi-touch input (e.g., pinching to zoom).  

 
Changes in Distance 

Qualitative analyses and visual analysis of the quantitized qualitative data 

provided evidence of changes in mathematical distance and technological distance. Table 

12 shows examples of memo excerpts coded as changes in distance. 

Distance did not remain static throughout these interactions. Few participants 

struggled to swipe when beginning to interact with Motion Math: Zoom, showing a low 

degree of technological distance. However, technological distance increased for six 

participants as they initially struggled to zoom when first required to regularly do so. All 

participants improved their facility with the zoom input gesture and decreased 

technological distance to some degree. Mathematical distance also changed, such as 

during interactions with DragonBox Algebra 12+. Many participants effectively applied 

some attributes but struggled to apply others, so mathematical distance varied, in part, 

depending on attributes required to interact with the level of the app. For example, no 

participants consistently simplified both sides of the equation. Level 1:14 required 

participants simplify only one side of the equation, and every participant completed Level 

1:14 with a low degree of mathematical distance, although four participants required 

repeated attempts to do so. However, Level 1:15 involved simplifying both sides of the 

equation, yet few participants did more than the minimum required to finish the level, 

simplifying only the X side of the equation, leading to a higher degree of mathematical 

distance. Only Participant 8 simplified both sides of the equation, completing Level 1:15 

with a low degree of mathematical distance.  
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Table 12 

Examples of Changing Distance 

Motion Math: Zoom DragonBox Algebra 12+ 

Mathematical distance: Decreasing 

P05 

 Much L[eft]-R[ight] confusion…. Imprecise, 
non-ideal choices… often travels for 
extended time with inefficient interval, but 
usually in correct direction (A11 L5) 

 Chooses some inefficient intervals… to 
travel within… [but] accurate completion 
(A12 L6) 

P09 
 Begins with incorrect unneeded addition 

variable…. Eventually places all variables 
and attempts some impossible combos. (A11 
L1:11) 

 Quickly correct and complete. (A12 L1:11) 

Mathematical distance: Increasing 

P06  
 Correct/ideal for 0.05…. For 1.00 to 1.53, 

chooses appropriate place to zoom in…. 
Balance of sufficient accuracy with lots of 
speed--and memory of type of upcoming task 
for planning. (A17 L15N) 

 0.10 from tenths (0.7)--right first, then 
zoomed in at 0.5 to travel by hundredths. 
(A18 L16N) 

P04 
 Combo inside, direct combo from outside 

[completes simplified solution] (A15 L1:14) 

 Direct combo from outside…. [does not 
simplify] opposite side (A16 L1:15) 

Technological distance: Decreasing 

P03  
 Struggled to zoom out [because] of mixing 

up zoom in/out gestures. (A13 L15N) 

 Zoomed out for 0.3 with multiple intervals 
showing. Zoomed in for 0.04 at 0.1-0.2…. 
[No] in/out mixups. (A14 L15N) 

P02 
 Swipe swirls [instead of tap], app did not read 

every time (A5 L1:05) 

 Now using correct tech input (A12 L1:12) 

Technological distance: Increasing 

P08 
 Thumb swipe at corner of screen for 5, 21, 

12. Scaffolded zoom for 15. (A1 L1) 

 Nearly vertical zoom… slows progress…. 
Scaffolded zoom in replication difficulties…. 
For 0.01 from 1.XX, travels by hundredths. 
Tries to zoom out but fails. (A2 L15) 

P10 
 While holding [variable], sees white highlight 

on [inverse], drags closer, sees yellow 
highlight, combines (A38 L2:13) 

 Some gestures misread or placed/executed 
poorly (A39 L2:13) 

Note: Alphanumeric sequences in parentheses indicate references to specific memos. P indicates 
participant, A indicates the attempt number, L indicates level or chapter and level. Brackets indicate 
clarifications. 
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 Analysis of quantitized qualitative data using rhombus plots. To aid 

comparison of distance across situations and participants, the researcher quantitized 

qualitative distance data in the form of (mathematical, technological) distance values for 

each attempted level, organized by bins, and visualized using rhombus plots (see 

Methods section). The researcher determined bins by analyzing app attributes and 

grouping consecutive levels by similarity of attributes (see Appendix E). For example, in 

Motion Math: Zoom, Bin 2 included levels 2-5, which focused on integers to 1,000 with 

little changing of intervals from one task to the next, and mainly required swipe input. In 

the same app, Bin 3 included levels 6-8, which focused on integers to 10,000 with 

frequent changing intervals of intervals from one task to the next, and required both more 

zoom input. Within each bin, mathematical content usually slightly increased in difficulty 

from one level to the next level (e.g., range of 0-20 followed by range of 0-40).  

Visual analysis of the rhombus plots and tables provided numerical and graphical 

evidence of change in distance. The researcher examined the rhombus plots (a) 

individually, (b) arranged in small multiples by user, and (c) arranged in small multiples 

by app. Small multiples involves presenting smaller versions of graphs together to allow 

for visual comparison, which is effective when everything is in a fixed location in the 

graph and only the data change (Heer, Bostock, & Ogievetsky, 2010; Tufte, 2001). 

Figures 13-19 (each discussed and shown separately) illustrate connections between the 

rhombus plots and tabular data used to identify changes in distance. Appendix F includes 

rhombus plots arranged in small multiples by app. Appendix G includes the data used to 

generate the rhombus plots. 
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Figure 13. First annotated rhombus plot and data table of Participant 10’s interactions 
with Motion Math: Zoom. 

 
 
 
Figure 13 depicts the rhombus plot and data table excerpt for Participant 10’s 

interactions with Motion Math: Zoom, annotated to emphasize Attempt 1, Bin 1, Level 1, 

needle timer off, (mathematical, technological) distance value (4,4). This is the starting 

point of the interactions, indicated by the attempt label of 1. Figure 14 illustrates the 

second excerpt in the sequence. 
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Figure 14. Second annotated rhombus plot and data table of Participant 10’s interactions 
with Motion Math: Zoom.  
 
 

Figure 14 depicts the rhombus plot and data table excerpt for Participant 10’s 

interactions with Motion Math: Zoom, annotated to emphasize Attempts 1-4. In 

particular, as Participant 10 moved from a level in Bin 1 to a level in Bin 2, the 

(mathematical, technological) distance values did not change. In the table, Attempts 1 

and 2 changed bins and levels but the mathematical and technological distance values 

remained the same. In the rhombus plot, Attempt 1 was in Bin 1 whereas Attempt 2 was 

in Bin 2 on the same axis. Figure 15 illustrates the third excerpt in the sequence. 



90 
 

 

Figure 15. Third annotated rhombus plot and data table of Participant 10’s interactions 
with Motion Math: Zoom. 
 
 

Figure 15 depicts the rhombus plot and data table excerpt for Participant 10’s 

interactions with Motion Math: Zoom, annotated to emphasize Attempts 1-6. In 

particular, as Participant 10 moved from Attempt 4 to Attempt 5 on levels within Bin 2, 

mathematical distance increased. In the table, Attempt 4 had mathematical distance value 

of 4, whereas Attempt 5 had a mathematical distance value of 3. In the rhombus plot, 

Attempt 4 was in Bin 2 on the (4,4) axis, whereas Attempt 5 was in Bin 2 on the (3,4) 

axis. The annotation shows a downward trajectory as mathematical distance increased. 

Figure 16 illustrates the fourth excerpt in the sequence. 
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Figure 16. Fourth annotated rhombus plot and data table of Participant 10’s interactions 
with Motion Math: Zoom. 

 
Figure 16 depicts the rhombus plot and data table excerpt for Participant 10’s 

interactions with Motion Math: Zoom, annotated to emphasize Attempts 6 and 7. In 

particular, there was an increase in mathematical distance and technological distance. In 

the table, Attempt 6 was in Bin 3, Level 6, needle function inactive, and (mathematical, 

technological) distance value of (3,4), while Attempt 7 was in Bin 6, Level 15, needle 

function active, and (mathematical, technological) distance value of (1,3). In the rhombus 

plot, Attempt 6 was in Bin 3 on the (4,3) axis with the Needle Off color, whereas Attempt 

7 was in Bin 6 on the (1,3) axis with the Needle On color. The annotation shows a 

downward trajectory as mathematical and technological distance increase. Figure 17 

illustrates the fifth excerpt in the sequence. 
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Figure 17. Fifth annotated rhombus plot and data table of Participant 10’s interactions 
with Motion Math: Zoom. 
 
 

Figure 17 depicts the rhombus plot and data table excerpt for Participant 10’s 

interactions with Motion Math: Zoom, annotated to emphasize Attempts 7-11. Each 

attempt was on Bin 6, Level 15, needle function active, and had high degrees of 

mathematical distance and lower degrees of technological distance. The annotated path 

on the rhombus plot shows a small range of changes to mathematical and technological 

distance at the lower right side of the plot. Figure 18 illustrates the sixth excerpt in the 

sequence. 
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Figure 18. Sixth annotated rhombus plot and data table of Participant 10’s interactions 
with Motion Math: Zoom. 
 
 

Figure 18 depicts the rhombus plot excerpt for Participant 10’s interactions with 

Motion Math: Zoom, annotated to emphasize the completion of Bin 6, Level 15. The 

table annotations show that Participant 10 was still attempting Bin 6, Level 15 by 

Attempt 29. The upward trajectory of the rhombus plot path from Attempts 29-31 align 

with the table data showing that Participant 10 decreased mathematical distance and 

completed Level 15. The downward trajectory of the rhombus plot path between circled 

attempts aligns with the table data showing that mathematical distance then increased as 

Participant 10 followed Attempt 31, Bin 6, Level 15, needle active, (mathematical, 

technological) distance value (4,4) with Attempt 32, Bin 6, Level 16, (mathematical, 

technological) distance value (1,4). Figure 19 illustrates the final excerpt in the sequence. 
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Figure 19. Seventh annotated rhombus plot and data table of Participant 10’s interactions 
with Motion Math: Zoom. 
 
 

Figure 19 depicts the rhombus plot and data table excerpt for Participant 10’s 

interactions with Motion Math: Zoom, annotated to emphasize the final excerpt from the 

interaction session. The table shows that by Attempt 40, Participant 10 was still 

attempting Bin 6, Level 16, with a high degree of mathematical distance and a low degree 

of technological distance. Participant 10 continued to attempt Bin 6, Level 16 and slightly 

decreased mathematical distance by the end of the interaction session. The annotations on 

the rhombus plot show this decrease in mathematical distance as Attempt 43 was in Bin 6 
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on the (1,4) axis, whereas Attempt 44 was in Bin 6 on the (2,4) axis. Attempt 44 was the 

last attempt in the interaction session, as indicated by the greatest attempt label in the 

plot: 44.  

Patterns emerged in analysis of data from individual participants and comparison 

between participants. Table 13 shows excerpts from the data tables used to generate one 

of the plots, and Figures 20 and 21 are the rhombus plots showing the (mathematical, 

technological) distance values for Participant 10’s interactions with each app.  

 
Table 13 
 
Excerpts from Distance Data Used to Generate Rhombus Plot for Participant 10’s 
Interactions with Motion Math: Zoom 
 

Table key. A indicates attempt, B indicates bin, L indicates level or chapter and level. N indicates presence 
of needle (0 is inactive, 1 is active). M indicates mathematical distance value; T indicates technological 
distance value.  
 

A B L N M T 

7 6 15 1 1 3 

8 6 15 1 1 4 

9 6 15 1 1 3 

10 6 15 1 2 3 

11 6 15 1 2 3 

29 6 15 1 2 4 

30 6 15 1 3 4 

31 6 15 1 4 4 

32 6 16 1 1 4 

33 6 16 1 1 4 

40 6 16 1 1 4 

41 6 16 1 1 4 

42 6 16 1 1 4 

43 6 16 1 1 4 

44 6 16 1 2 4 
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Figure 20. Rhombus plot of Participant 10’s interactions with Motion Math: Zoom. 
(M,T) indicates (mathematical, technological) distance value. Bin indicates level group.  
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Figure 21. Rhombus plot of Participant 10’s interactions with DragonBox Algebra 12+. 
(M,T) indicates (mathematical, technological) distance value. Bin indicates level group.  
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The distance values for Participant 10’s interactions with each app show that 

distance could change during user-app interaction. For example, during Participant 10’s 

interactions with Motion Math: Zoom, there was initially a low degree of both 

mathematical distance and technological distance (indicated by Attempts 1-6 appearing at 

or near the top of the plot in Figure 20). Upon reaching Bin 6, beginning with Level 15 

with the needle activated, both types of distance increased (indicated by most attempts in 

Bin 6 appearing further from the top of the plot in Figure 20). Participant 10 eventually 

decreased both mathematical distance and technological distance until advancing to Level 

16, whereupon there was a high degree of mathematical distance but technological 

distance remained low (see Table 13, Attempts 30-33). However, Participant 10’s 

interactions with DragonBox Algebra 12+ showed a relatively lower degree of 

technological distance (indicated by the greater portion of values on the upper right 

diagonal of the plot in Figure 21 than the plot in Figure 20) and more variation in the 

degree of mathematical distance (indicated by the greater concentration of values toward 

the bottom of the plot in Figure 20 than the plot in Figure 21). Similar to Participant 10, 

most participants encountered a relatively higher degree of technological distance while 

interacting with Motion Math: Zoom than while interacting with DragonBox Algebra 

12+. There were also differences in distance between participants, such as those shown in 

the excerpts from the data tables (Table 14) used to generate the rhombus plots depicting 

the (mathematical, technological) distance values for Participant 6 and Participant 10’s 

interactions with Motion Math: Zoom (Figures 22 and 20, respectively). 
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Table 14 
 
Excerpts from Distance Data Used to Generate Rhombus Plots for Participant 6 and 
Participant 10’s Interactions with Motion Math: Zoom 
 

Participant 6 
────────────────────────── 

Participant 10 
────────────────────────── 

A B L N M T A B L N M T 

7 6 15 1 1 4 7 6 15 1 1 3 

8 6 15 1 2 4 8 6 15 1 1 4 

9 6 15 1 3 3 9 6 15 1 1 3 

10 6 15 1 2 3 10 6 15 1 2 3 

11 6 15 1 2 3 11 6 15 1 2 3 

12 6 15 1 2 4 29 6 15 1 2 4 

13 6 15 1 2 4 30 6 15 1 3 4 

14 6 15 1 3 4 31 6 15 1 4 4 

15 6 15 1 1 4 32 6 16 1 1 4 

16 6 15 1 1 4 33 6 16 1 1 4 

17 6 15 1 4 4 40 6 16 1 1 4 

18 6 16 1 1 4 41 6 16 1 1 4 

19 6 16 1 2 3 42 6 16 1 1 4 

20 5 12 1 4 4 43 6 16 1 1 4 

21 4 9 1 4 4 44 6 16 1 2 4 
Table key. A indicates attempt, B indicates bin, L indicates level or chapter and level. N indicates presence 
of needle (0 is inactive, 1 is active). M indicates mathematical distance value; T indicates technological 
distance value.  
 
 

The distance values for Participant 6 and Participant 10’s interactions with 

Motion Math: Zoom provide evidence of differences in distance across their interactions 

with the app. Whereas Participant 10 required 25 attempts to sufficiently decrease 

mathematical distance and technological distance to complete Level 15 with the needle 

active, Participant 6 required only 11 attempts to do so (see Table 14). Participant 6 then 

attempted different levels in multiple bins with varying degrees of mathematical distance 

evident (indicated by the plot in Figure 22 showing attempts in every bin along the upper 

right diagonal). Participant 6 also maintained a relatively lower degree of technological 
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Figure 22. Rhombus plot of Participant 6’s interactions with Motion Math: Zoom. (M,T) 
indicates (mathematical, technological) distance value. Bin indicates level group.  
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distance than Participant 10, which was especially evident during their interactions with 

levels in Bin 6 (indicated by the plot in Figure 22 showing a greater proportion of Bin 6 

attempts on the upper right diagonal than the plot in Figure 20). Differences were also 

evident in the excerpts from the data tables (Table 15) used to generate the rhombus plots 

that depict the (mathematical, technological) distance values for Participant 6 and 

Participant 10’s interactions with DragonBox Algebra 12+ (Figures 23 and 21). 

Rhombus plots and tables for Participant 6 and Participant 10’s interactions with 

DragonBox Algebra 12+ provide evidence of differences in distance across their 

 
Table 15 
 
Excerpts from Distance Data Used to Generate Rhombus Plots for Participant 6 and 
Participant 10’s Interactions with DragonBox Algebra 12+ 
 

Participant 6 
───────────────────────── 

 Participant 10 
───────────────────────── 

A B L M T  A B L M T 

35 7 2:12 1 4  35 7 2:12 1 4 

36 7 2:12 1 3  36 7 2:12 1 3 

37 7 2:12 1 3  37 7 2:13 1 3 

38 7 2:12 1 4  38 7 2:13 1 4 

39 7 2:12 4 4  39 7 2:13 1 2 

40 7 2:13 1 3  40 7 2:13 1 2 

41 7 2:13 1 4  41 7 2:13 1 3 

42 7 2:13 4 4  42 7 2:11 4 3 

48 7 2:17 1 4  43 7 2:12 1 4 

49 7 2:17 1 4  44 7 2:12 2 3 

50 7 2:17 1 4  45 7 2:13 3 3 

51 7 2:17 4 4       

52 7 2:18 1 3       

53 7 2:18 1 4       

54 7 2:18 1 4       

55 7 2:18 3 4       
Table key. A indicates attempt, B indicates bin, L indicates level or chapter and level. N indicates presence 
of needle (0 is inactive, 1 is active). M indicates mathematical distance value; T indicates technological 
distance value. 



102 
 

Figure 23. Rhombus plot of Participant 6’s interactions with DragonBox Algebra 12+. 
(M,T) indicates (mathematical, technological) distance value. Bin indicates level group.  
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interactions with the app. Both participants exhibited the common occurrence of 

generally maintaining a low degree of technological distance that slightly increased 

shortly after beginning Bin 6 (Level 2:05) (indicated by the presence of a greater 

proportion of attempts outside of the upper right diagonal in Bins 6-9 than in Bins 1-5 in 

Figures 21 and 23). However, while Participant 6 decreased the degree of technological 

distance (indicated by the presence of few attempts outside of the upper right diagonal on 

the plot in Figure 23), Participant 10 consistently had higher degree technological 

distance after this point (indicated by the presence of a greater portion of attempts in Bins 

6-9 outside of the upper right diagonal than on the right diagonal on the plot in Figure 

21). Both participants had similar degrees of mathematical distance during interactions 

with levels in the same bins, though Participant 6 often had slightly less mathematical 

distance. Each participant reached levels where they encountered a high degree of 

mathematical distance, particularly in Bin 7 (specifically Levels 2:12 and 2:13), which 

required multiple attempts to decrease the degree of mathematical distance enough to 

successfully complete the levels (see Table 15). Participant 6 then continued in Bin 7 

beyond Level 2:13, often cycling through degrees of mathematical distance, beginning a 

level with a high degree of mathematical distance and decreasing it after multiple 

attempts (see Table 15, Participant 6, Attempts 48-55). A similar pattern was evident by 

bin, wherein there was more likely to be a high degree of mathematical distance during 

interactions with advanced levels in a bin compared with earlier levels in the same bin. 

Both qualitative and quantitized qualitative analyses showed that distance did not remain 

static throughout user-app interactions. 
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Interactions between Mathematical Distance  
and Technological Distance  

Data analysis provided evidence of interactions between mathematical distance 

and technological distance. Table 16 shows examples of excerpts from memos and 

transcripts coded as interactions between the two types of distance. 

 
Table 16 

Interactions between Mathematical Distance and Technological Distance 

Motion Math: Zoom DragonBox Algebra 12+ 

P04 
“The intro… was really easy so I kept kinda 
playing… whole numbers was really easy so I 
changed to decimals. Hundredths was still fairly 
easy and thousandths…. was a little bit harder 
because there was more zooming in and 
sometimes it got a little confusing. Same with 
negatives cuz like I’m so used to positives where 
you go forward I was not used to going 
backward to get to a higher number.” (P04 ZFT) 

P02  

 Tries to divide by appropriate [variable] but 
misses--ends up then trying to [add] (A35 
L2:13) 

 Tries to use two [variables] at the same time 
(multi-touch) (A40 L2:13) 

 

P03 

 Gesture is two-hand mostly horizontal and 
quick--app struggles to read at times (may 
touch too lightly?). Chooses correct interval for 
zooming, but zoom becomes diagonal and 
[difficult] for app to recognize (A4 L4) 

 Reverses zoom in/out gestures and ends up 
traveling at inefficient interval (A6 L6) 

 “I knew the math, but the zooming in and 
zooming out part is hard.” (ZFT) 

P06 

 Multiple extra one-dot [coefficients made] 
when drag/tap input mistakes. Ends up with 
extra moves. (A32 L2:09) 

 Creates extra one-dot [coefficients] while 
trying to combine variables before clearing 
[coefficient] (A33 L2:10) 

 Accidentally makes one-dot [coefficient] 
while trying to drag (A36 L2:12) 

P07  
“In between zero and one there is a certain 
amount of hundredths.… [For] one and sixty-
sixty hundredths, I would go past one and 
estimate about how far past the bee would I 
zoom in to get onto the little ants. If I got farther 
then I might have got to thousandths.” (P07 
ZFT) 

P01 

 Missed placement… drag/tap dot [drags 
instead of tapping] (A44 L2:07) 

 Drag/tap dot (app recognizes, but actually 
dragging or flicking) (A49 L2:10) 

 Moving quickly, gestures blur (A54 L2:13) 

Note. Alphanumeric sequences in parentheses indicate references to specific memos. P indicates 
participant, A indicates the attempt number, L indicates level or chapter and level. ZFT indicates Motion 
Math: Zoom Follow-Up Questions Transcript. Quotation marks indicate direct quotes from participants. 
Brackets indicate clarifications. 
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As seen in Table 16, user-app interactions and comments provided evidence of 

connections between mathematical distance and technological distance. For example, 

Participant 4 referred to comparison and magnitude in connection to changing intervals 

using a specific gesture, as well as using the navigational terms “forward” and 

“backward” for “higher” positive and negative numbers. Participant 3 implied that the 

technological distance encountered when zooming made it difficult to complete the 

mathematical tasks and minimize the mathematical distance. This was similar to evidence 

from interactions with DragonBox Algebra 12+, particularly those involving Level 2:05 

and beyond. Participant 6 was one of nine participants who at times chose an 

inappropriate gesture to perform the multiplicative identity property, which often resulted 

in the generation of coefficients to address (i.e., 1*X became 1*1*X), decreasing the 

efficiency of the solution process. In each case, the degree of mathematical distance and 

technological distance could influence one another, whether or not the participants were 

aware this occurred. 

In summary, mathematical distance and technological distance were present 

throughout user-app interactions. The degree of each type of distance could be 

quantitized, organized into tables, and visualized using novel rhombus plots, which 

showed that the degree of mathematical distance and the degree of technological distance 

changed over time for each participant. Furthermore, mathematical distance and 

technological distance influenced each other. 

 
  



106 
 

Research Question 4: Relationships among Constructs 
 

The fourth research question addressed evidence of relationships among the major 

constructs—attributes, affordance-ability relationships, and distance in fifth graders’ 

interactions with mathematics virtual manipulative iPad apps. As discussed in the 

Methods chapter, the researcher addressed this question by analyzing the video data of 

user-app interactions and follow-up questions, the observation field notes, and the results 

of prior stages of the coding process during data analysis stages that included identifying 

relationships among constructs, developing a framework, and contributing to the 

development of theory based on the evidence resulting from the entire analysis. Analysis 

of the data involved coding to examine whether any relationships were present, as 

indicated by the presence of multiple constructs in the same portion of the data, and 

emergent relationships. Analysis indicated the presence of relationships between: (a) 

attributes and affordance-ability relationships, (b) attributes and distance, and (c) distance 

and affordance-ability relationships. Further analysis led to the development of a 

conceptual framework based on these relationships. 

 
Attributes and Affordance-Ability Relationships  

Analyses provided evidence of relationships between attributes and affordance-

ability relationships. Attribute modification could lead to modification of affordance-

ability relationships and vice versa. Table 17 shows examples of memo excerpts coded as 

relationships between attributes and affordance-ability relationships. 
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Table 17 

Examples of Relationships between Attributes and Affordance-Ability Relationships 

Motion Math: Zoom DragonBox Algebra 12+ 

Change in attributes leading to change in affordance-ability relationship 

P03: Changing user attributes changes ability to 
access to efficient precision affordance 

 Chooses accurate places to zoom but 
struggles at times as [P03] tries diagonal and 
may touch too lightly (A5 L5) 

 Sometimes reverses zoom in/out gestures and 
ends up traveling at inefficient interval (A6 
L6) 

 [No] trouble zooming (A23 L15N) 
 Started zooming in from 1.00 as 1.78 came 

up (A37 L15N) 

P04: Changing app mathematical attributes 
changes focused constraint affordance 

 Tries to drag variable across but stopped by app 
(A5 L1:05) 

 Tries to drag one-dot across (A24 L2:01) 
 New power--drag across (A54 L3:01) 
 Uses drag across for direct combos (app counts 

as two moves) as example of efficient precision 
(as opposed to when this is not allowed much 
earlier--focused constraint) (A55 L3:02) 

Change in affordance-ability relationship leading to change in attributes 

P02: Changing affordance-ability relationship 
leads to change in app attributes 
 Only zoomed when forced to do so--

otherwise, always traveled by 1 (A5 L4) 
 No longer waiting to be forced to zoom by 

the end of this level. (A6 L5) 
 Uses most appropriate travel interval…. 

correct direction and immediate responses for 
L-R and zoom in-out; consistent with choice 
of appropriate zoom interval (A7 L6) 

 [Needle] popped first task (0.05); tried 0.5 
placement even after app filled the empty 
space. (A8 L15N) 

P04: Changing affordance-ability relationship 
leads to change in user attributes 
 Tries to drag variable across but stopped by app 

(A5 L1:05) 
 Tries to drag one-dot across (A24 L2:01) 
 New power--drag across (A54 L3:01) 

 Uses drag across for direct combos (app counts 
as two moves) as example of efficient precision 
(as opposed to when this is not allowed much 
earlier--focused constraint) (A55 L3:02) 

Note. Alphanumeric sequences in parentheses indicate references to specific memos. P indicates 
participant, A indicates the attempt number, L indicates level or chapter and level. Brackets indicate 
clarifications. 
 

 As seen in Table 17, relationships between attributes and affordance-ability 

relationships were present throughout the interactions. Attribute modification contributed 

to modification of affordance-ability relationships. Modifying user attributes led to 

modification of ability, and thus also modification to affordance-ability relationships. For 

example, improving the motor skills required to hone the zoom input while interacting 
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with Motion Math: Zoom contributed to Participant 3 choosing to incorporate planning as 

part of efficient precision. Modification to affordance-ability relationships could also lead 

to modification of app attributes, such as when Participant 2 increased accession of 

efficient precision by traveling using efficient intervals while interacting with Motion 

Math: Zoom, which contributed to advancement through levels with different content.  

Participant 4’s interactions with DragonBox Algebra 12+ provided examples of 

how modifying app mathematical attributes modified the focused constraint affordance, 

and how these modifications to the affordance-ability relationship led to modification of 

user attributes. Participant 4 initially tried to combine the additive inverse property and 

the additive equality property to move a variable from one side of an equation to the 

other, but the app prohibited this in early levels. After completing a series of levels 

during which the additive inverse property and the additive equality property were 

performed only in separate steps, the level content changed to focus on combining these 

properties, permitting the “drag across” move. After this, Participant 4 began combining 

the properties when possible, providing evidence of a change in the participant’s 

mathematical attributes. Some attributes contributed to multiple affordance-ability 

relationships. For example, coordination (user technological: motor skills) contributed to 

accession of planning (efficient precision) and navigation restrictions (focused 

constraint). Improving coordination could lead to a different approach to planning and 

avoidance of encountering navigation restrictions. Thus, attribute modification often led 

to modified affordance-ability relationships, and vice versa. 
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Attributes and Distance  

Analyses provided evidence of relationships between attributes and distance. 

Attribute modification often led to modification of distance, while modification of 

distance could also contribute to modification of attributes. Table 18 shows examples of 

memo excerpts coded as relationships between attributes and distance. 

As seen in Table 18, interactions with each app provided evidence of relationships 

between attributes and distance, which were often present when either attributes or 

distance changed. When advancing to a new level, mathematical distance often increased. 

Participants then attempted to decrease mathematical distance by modifying user 

mathematical attributes. Some participants proactively modified app attributes to 

decrease mathematical distance, providing an environment in which to improve user 

attributes, leading to decreased distance when encountering levels that were initially too 

challenging (e.g., P10 A40-45). Users also modified user technological attributes to align 

with requirements for interacting with levels within the apps. Modification of structural 

attributes (e.g., needle timer) and personal attributes (e.g., goals) also influenced 

mathematical distance and technological distance during these interactions. Cross-

referencing rhombus plots and data representing (mathematical, technological) distance 

values (e.g., rhombus plots: Appendix F; data: Appendix G) with the presence of 

attributes (e.g., Tables 2 and 3; level bins in Appendix E) and attribute modification (e.g., 

Table 6) also supported connections between distance and attributes. Table 19 includes 

data excerpts used to make annotated (mathematical, technological) distance rhombus 

plots (Figures 24 and 25) for Participant 5. 
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Table 18  

Examples of Relationships Between Attributes and Distance 

Mathematical attributes and mathematical distance 

App attribute change: Advance level, increase distance: P05 
 Navigates with multiple intervals (ones and tens) (A4 L3) 
 Chose level 15…. Tried to place 0.04 at 0.4. Zoomed in at non-ideal range. For 1.81 from 1.00, 

zoomed in to hundredths at 1.00…. Non-ideal [range] selection for zooming in and out. Often out 
too far [and] never in where ideal. (A5 L15) 

App attribute change: Reduce level, decrease distance: P03  
 Mistakes in division lead to extended, systematic attempts to try nearly everything (with many math 

mistakes, extra moves, etc.) Eventually exits level. (A36 L2:13) 
 Tries to divide top to bottom, then immediately corrects. [Makes errors but completes level] (A37 

L2:10) 

User attribute change: Improve mathematical content knowledge, decrease distance: P05 
 Choice of [range] to zoom still far from ideal…. Rushes past a handful of intended targets in both 

directions. (A15 L10) 
 Chooses appropriate travel interval (from zooming out) but inefficient zoom placement (zoom in 

range)…. By the end of the level, choosing more efficient ranges for between-interval travel. Much 
faster than previous attempt. (A16 L10) 

Reduced distance allows for user attribute modification: P10  
 Restart via Undo. (A40 L2:13) 
 Exit to menu. (A41 L2:13) 
 [Completes] level where “forgotten” power was demonstrated. (A42 L2:11) 
 Correct division... [completes level] (A44 L2:12) 
 Begins with addition… [completes level] (A45 L2:13) 

Technological attributes and technological distance 

App attribute change: Allow zoom input: P01 
 Smooth navigation via swiping…. No choice for within or between interval travel (all swiping) (A2 

L2) 
 Zooms out/in/out/in to find 24 and uses two fingers on one hand…. odd choice of gesture--may 

have been trying to acclimate (A3 L3) 

User attribute change: Perform precise tap input: P01 
 Drag/tap dot difficulty (A41 L2:05) 
 Tapped dots and completely ignored division on non-box side (A42 L2:06) 

Reduced distance allows for user attribute modification: P05 
 Zooms out instead of zooming in (A8 L15) 
 Zooms out to find 10, then appropriate [range to] zoom in for 27, out for 35 with appropriate [range 

to zoom] in. [Zooming more constrained on this level] (A9 L3) 

(table continues)
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Structural attributes and distance 

Presence of needle (timer) influences mathematical distance and technological distance: P08 
 Not controlling zoom gesture makes difficult zoom placement (A3 L15) 
 For 0.05, zooms in at 0.4, hesitates, moves toward 0.5, then toward 0.05 but nowhere close when 

popped by needle. (A4 L15N) 
 Much faster zoom and swipe. Mixes zoom in/out at times, which influences math placement. 

Uncontrolled zooming gesture, especially out. Near ideal range attempts but sometimes misses 
because of zoom gesture. (A5 L15N) 

Personal attributes and distance 

Goal change (quick completion) increases mathematical distance: P09  
 Makes into opposite before dividing (as if adding), then tries to interrupt... [divides] incorrectly 

again. Restarts. [No trouble with input] (A38 L2:11) 
 New power (again) correct this time. Uses drag for [multiplicative identity. Rushes on repeat.] (A39 

L2:11) 

Goal change (planning) increases technological distance: P06 
 Some hitches when zooming in/out… (deciding how far to zoom in and trying to do so) (A10 

L15N) 

Note. Alphanumeric sequences in parentheses indicate references to specific memos. P indicates 
participant, A indicates the attempt number, L indicates level or chapter and level, N indicates presence of 
needle. 
 

Table 19 
 
Excerpts from Distance Data Used to Generate Rhombus Plots for Participant 5’s 
Interactions with Motion Math: Zoom and DragonBox Algebra 12+ 
 

Motion Math: Zoom 
───────────────────────────── 

 DragonBox Algebra 12+ 
───────────────────────── 

A B L N M T  A B L M T 

3 2 2 0 3 4  35 7 2:11 4 4 
4 2 3 0 4 3  36 7 2:12 1 4 
5 6 15 0 2 3  39 7 2:13 1 4 
6 6 15 0 2 3  43 7 2:14 4 4 
7 6 15 0 1 3  44 7 2:15 1 4 
8 6 15 0 1 2  46 7 2:16 4 4 
9 2 3 0 3 3  47 7 2:17 4 3 

10 2 4 0 3 3  48 7 2:18 1 3 
       51 7 2:19 1 4 
       53 7 2:20 1 4 

Table key. A indicates attempt, B indicates bin, L indicates level or chapter and level. N indicates presence 
of needle (0 is inactive, 1 is active). M indicates mathematical distance value; T indicates technological 
distance value.  
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Figure 24. Annotated rhombus plot of Participant 5’s interactions with Motion Math: 
Zoom. (M,T) indicates (mathematical, technological) distance value. Bin indicates level 
group.  
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Figure 25. Annotated rhombus plot of Participant 5’s interactions with DragonBox 
Algebra 12+. (M,T) indicates (mathematical, technological) distance value. Bin indicates 
level group. 
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As seen in Table 19, Figure, 24, and Figure 25 Participant 5’s interactions with 

each app provided evidence of some common occurrences among the participants. For 

example, Participant 5’s interactions with DragonBox Algebra from Bin 6 onward 

provided evidence of the common occurrence wherein technological distance increased 

after the introduction of tapping to perform the multiplicative identity property (as 

indicated in Figure 25, where only Bins 6 and 7 have multiple attempts that are not on the 

upper right diagonal). However, akin to most participants, Participant 5 encountered a 

relatively higher degree of technological distance while interacting with Motion Math: 

Zoom (as indicated by the greater proportion of attempts not on the upper right diagonal 

in Figure 24 than in Figure 25, and the T columns in Table 19), which required multi-

touch input. 

Figure 24 annotations and Table 19 Motion Math: Zoom data highlight another 

common occurrence seen while interacting with Motion Math: Zoom. Participant 5 

encountered increased mathematical distance upon skipping from Bin 2 to Bin 6 (as 

indicated by the downward trajectory of the path from Attempt 4 to Attempt 5, denoted 

by oval endpoints, in Figure 24, and the corresponding Motion Math: Zoom data in Table 

19), which corresponded with a change in app attributes from a focus on whole numbers 

to including decimals to the hundredths place. Upon proactively modifying app attributes 

to focus on whole numbers by returning to Level 3, mathematical distance decreased (as 

indicated by the upward trajectory of the path from Attempt 8 to Attempt 9, denoted by 

triangle endpoints in Figure 24, and the corresponding Motion Math: Zoom data in Table 

19).  
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These relationships could also be cyclical, such as during interactions with 

DragonBox Algebra 12+, which introduced new properties through isolated 

demonstration followed by application in scenarios that generally became more complex 

until beginning the next cycle. Figure 25 annotations and Table 19 DragonBox Algebra 

12+ data highlight this cycle. This cycle was particularly evident in Participant 5’s 

interactions with levels from Bins 6 and 7, during which there was a low degree of 

mathematical distance on the introduction level, with initial attempts on subsequent levels 

in the bin often showing a higher degree of mathematical distance (as indicated by the 

circled attempts in Figure 25 and the DragonBox Algebra 12+ data in Table 19). In these 

instances, participants frequently required multiple attempts to decrease the mathematical 

distance enough to advance to the next level. Thus, attribute modification often led to 

distance modification, and vice versa. 

 
Distance and Affordance-Ability Relationships 

Analysis provided evidence of relationships between distance and affordance-

ability relationships. Accession of affordances could influence distance, and distance 

could influence accession of affordances. Table 20 shows excerpts from transcripts and 

memos coded as examples of relationships between distance and affordance-ability 

relationships.  

As seen in Table 20, relationships between distance and affordance-ability 

relationships were present throughout the interactions. Affordance-ability relationships 

could influence distance, such as when Participant 10 implied that the difficulty of levels 

in DragonBox Algebra 12+ depended on what combination of content was present. After  
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Table 20 

Relationships between Distance and Affordance-Ability Relationships 

Example Description 

“It starts off easy and then gets harder and it tells you what [math] 
to do at first and then you do that on your own on the next one.” 
(P10 DBFT) 

Focused constraint influencing 
mathematical distance 

 [It would be better] “if it wouldn’t zoom in as far. You zoom in 
once and it goes way too far.” (P03 ZFT) 

Focused constraint influencing 
technological distance 

Not direct combo (missed) first time--then not second time either, 
but did not attempt to direct combo. (May have thought not 
possible from imprecise tech input) (P08 A33 L2:03) 

Technological distance 
influencing accession of efficient 
precision 

“The whole thing is frustrating. Makes you wanna punch 
something or throw something at someone…. it [zooms] on the 
wrong spot and I have to start over [because the bubble is 
popped]. (P01 ZFT) 

Technological distance 
influencing accession of 
motivation 

“To make the app better they would have to make it so you can 
zoom better so if you wanna zoom out it perfectly zooms out 
where you wanna be—when you let go it just keeps going.” (P01 
ZFT) 

Technological distance and 
mathematical distance influencing 
accession of simultaneous linking 

Ideal for 0.05 (each time using [navigation restriction] to stop 
swipe at 0). (P09 A16 L15N) 

Efficient precision influencing 
mathematical distance 

[Quit before full time elapsed] “It was easy, but it just wouldn’t 
let me pass the level I was on for some reason. Well it was easy, 
but it wouldn’t give me enough time to do stuff because it was 
super-hard to get to areas you wanted to go to.” (P08 ZFT) 

Perception of low degree of 
mathematical distance and high 
degree of technological distance 
influencing accession of 
motivation 

Note. Alphanumeric sequences in parentheses indicate references to specific memos. P indicates 
participant, A indicates the attempt number, L indicates level or chapter and level. DBFT indicates 
DragonBox Algebra 12+ Follow-Up Questions Transcript. ZFT indicates Motion Math: Zoom Follow-Up 
Questions Transcript. Quotation marks indicate direct quotes from participants. Brackets indicate 
clarifications. 
 

a level focusing solely on introducing the new power (i.e., mathematical property), the 

app provided a more challenging level that required the user to apply the newest power 

with other powers to solve, usually resulting in an increase in mathematical distance. 

Distance could also influence affordance-ability relationships. Participant 1’s comments 

about the apps showed that a great degree of (technological) distance could influence 



117 
 
access to (negative) motivation, while a great degree of mathematical and technological 

distance could influence access to simultaneous linking. Participant 8’s comments about 

Motion Math: Zoom showed that perceived interactions between mathematical distance 

and technological distance could influence accession of motivation. Observations 

suggested that Participant 8 was not entirely fluent with the mathematical content and 

struggled with some of the technological input required for success in the chosen levels, 

and the degree of mathematical distance and technological distance contributed to 

Participant 8’s decision to stop interacting with the app. Thus, distance modification often 

led to modified affordance-ability relationships, and vice versa. 

 
Conceptual Framework 

Overall analysis provided evidence of interconnected relationships among 

attributes, affordance-ability relationships, and distance throughout user-app interactions. 

These relationships were used to develop the proposed Modification of Attributes, 

Affordances, Abilities, and Distance (MAAAD) for Learning framework for user-tool 

interactions (see Figure 26).  

 Figure 26. Modification of Attributes, Affordances, Abilities, and 
Distance for Learning framework. 
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The MAAAD for Learning framework begins with attributes. The difference 

between relevant tool and user attributes or attribute clusters forms distance. Attribute 

modification may align attributes (e.g., the user masters the content the tool presents) and 

decrease distance, or it may misalign attributes (e.g., the tool presents more challenging 

content when a user is successful), and increase distance. Clusters of user attributes form 

abilities, each of which relate to specific affordances stemming from clusters of tool 

attributes. Variations in user attributes lead to different approaches or degrees of 

affordance access. A given attribute may contribute to multiple affordance-ability 

relationships and to distance. Distance also influences affordance-ability relationships, as 

a greater degree of distance from misaligned attributes can lead to different affordance 

access than when attributes are aligned and a lesser degree of distance is present. An 

expanded version of the MAAAD for Learning framework as applied to learning 

mathematics through user-app interactions appears in Figure 27. 

An expanded version of the MAAAD for Learning framework developed as a 

result of the data analyses of user interactions with mathematics virtual manipulative iPad 

apps in this study includes both the attribute categories and subcategories and the 

distance types identified from the results of the research questions. The difference 

between relevant clusters of app mathematical attributes and user mathematical attributes 

is the mathematical distance, while the difference between relevant clusters of app 

technological attributes and user technological attributes is the technological distance. 

Clusters of user mathematical attributes, user technological attributes, and personal 

attributes form abilities used to access app affordances, which stem from clusters of app 
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Figure 27. Expanded version of the Modification of Attributes, Affordances, Abilities, 
and Distance for Learning framework applied to learning mathematics through user-app 
interactions. 
 

mathematical attributes, app technological attributes, and structural attributes. 

Affordance-ability relationships can influence other affordance-ability relationships, as 

each attribute can contribute to multiple affordance-ability relationships. Mathematical 

distance and technological distance can interact, and both types of distance can influence 

affordance-ability relationships, which can contribute to variations in affordance access. 

Example of conceptual framework from interactions with DragonBox 

Algebra 12+. Participant 1’s interactions with DragonBox Algebra 12+ provided 

evidence of the integrated MAAAD for Learning framework, as shown in Table 21 which 

pairs memo excerpts with (mathematical, technological) distance values. 
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Table 21 

Excerpts from Participant 1’s Interactions with DragonBox Algebra 12+ Paired with 
(Mathematical, Technological) Distance Values 
 

Excerpt (M,T) 

Solution…. repeatedly tries to quickly tap--too quickly for app to recognize… (frustration?) 
(A53 L2:13) 

(1,3) 

Restart [at end]: fails to replicate solution…. ends up dividing far too many unneeded 
[variables], repeatedly tries to combine terms in denominator... [voices] frustration…. once 
frustrated [and] moving quickly, gestures blur together and repeatedly attempts to make 
disallowed moves (A54 L2:13) 

(1,2) 

Restart [at end]…. divides too soon--before clearing, lets it sit a moment, does not finish the 
incorrect division before using restart (A55 L2:13) 

(1,4) 

[Calmer.] Very hesitant to divide second side each time…. drag/tap dot (app recognizes, but 
actually dragging/flicking) [Completes level, ends app interaction] (A56 L2:13) 

(4,4) 

Note. Alphanumeric sequences in parentheses indicate references to specific memos. P indicates 
participant, A indicates the attempt number, L indicates level or chapter and level. M indicates 
mathematical distance value; T indicates technological distance value. Distance values are 1-4, where 1 is a 
high degree of distance and 4 is a low degree of distance. Brackets indicate clarifications. 
 
 

As seen in Table 21, excerpts from Participant 1’s interactions with DragonBox 

Algebra 12+ highlight connections among the relationships that form the MAAAD for 

Learning framework. During Attempt 53, Participant 1 proactively used the solution 

scaffold to determine how to complete Level 2:13. However, Participant 1 did not 

succeed in replicating the solution during Attempt 54 and showed signs of frustration and 

a high degree of access to negative motivation. Furthermore, there was a higher degree of 

technological distance as Participant 1 blurred the tap and drag input gestures. During 

Attempt 55, Participant 1’s goal changed to accurate completion. Participant 1 used 

deliberate, relatively precise gestures to decrease technological distance, and recognized 

the missed application of reverse order of operations. Upon restarting the level for 

Attempt 56, Participant 1 correctly applied the properties using the reverse order of 
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operations, providing evidence of changing mathematical attributes leading to a decrease 

in mathematical distance. Participant 1 also continued to apply appropriate gestures, 

which contributed to decreasing technological distance and the ability to access the 

affordance of simultaneously linking actions with mathematical representations. Figures 

28-31 set these interactions in the context of the MAAAD for Learning framework. 

As Figures 28-31 demonstrate, relationships within the MAAAD for Learning 

framework were evident throughout Participant 1’s interactions with DragonBox Algebra 

12+. For example, Participant 1 initially showed a high degree of access to negative 

motivation. Through modification of user attributes (e.g., mathematical: reverse order; 

technological: tap and drag input; personal: goals of quick vs. accurate completion) and 

app attributes (structural: use of solution scaffolding), Participant 1 decreased both 

 

 
Figure 28. Applying MAAAD for Learning: Participant 1, Part 1. Participant 1 attempted 
to decrease mathematical distance due to unaligned mathematical attributes through 
proactive modification of app structural attributes (solution scaffolding). Participant 1 
showed a high degree of access to negative motivation. 
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Figure 29. Applying MAAAD for Learning: Participant 1, Part 2. Participant 1 failed to 
correctly replicate solution while attempting to quickly complete the level. A high degree 
of mathematical distance remained and technological distance increased as Participant 1 
struggled to make the app recognize some input gestures. Participant 1 continued to have 
a high degree of access to negative motivation and ended the attempt by resetting the 
level. 

 

Figure 30. Applying MAAAD for Learning: Participant 1, Part 3. Participant 1 slowed 
and attempted to accurately complete the level, but failed to correctly replicate solution. 
However, Participant 1 noticed the missed use of the reverse order of operations for 
solving. A high degree of mathematical distance remained but technological distance 
decreased as Participant 1 produced recognizable input gestures. Participant 1 reduced the 
degree of access to negative motivation and ended the attempt by resetting the level. 
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Figure 31. Applying MAAAD for Learning: Participant 1, Part 4. Participant 1 further 
slowed interactions and accurately completed the level, having changed mathematical 
attributes and reduced mathematical distance by correctly applying the properties in the 
correct (reverse) order. Participant 1 also reduced technological distance, completing the 
level without struggling to perform recognizable input gestures. Participant 1 showed a 
low degree of access to positive motivation.  
 
 
 
mathematical distance and technological distance. This same process influenced access to 

motivation to shift from a high degree of negative motivation to a low degree of positive 

motivation.  

Example of conceptual framework from interactions with Motion Math: 

Zoom. Participant 6’s interactions with Motion Math: Zoom provided evidence of the 

integrated MAAAD for Learning framework, as shown in Table 22, which pairs memo 

excerpts with (mathematical, technological) distance values. 

As seen in Table 22, excerpts from Participant 6’s interactions with Motion Math: 

Zoom highlight connections among the relationships that form the MAAAD for Learning 

framework. During Attempt 15 (Level 15 with needle active), Participant 6 initially 

struggled to navigate using hundredths and tenths on the number line, leading to a high  
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Table 22  

Excerpts from Participant 6’s Interactions with Motion Math: Zoom Paired with 
(Mathematical, Technological) Distance Values 
 

Excerpt (M,T) 

1/10 [complete] In correctly for 0.05 but far off for 0.13--tries to swipe beyond 1.0 at tenths. 
(Focused constraint restricts further rightward navigation) Rushing [while attempting to plan] 
(A15 L15N) 

(1,4) 

 (All complete) Zooming inefficient as more planning sometimes efficient but sometimes slows 
overall process. For 1.00 to 1.53, chooses appropriate place to zoom in (not quite ideal) and 
pauses briefly at tenths to adjust. When placing 0.01, zooms out to 1 before [feedback] (Balance 
of sufficient accuracy with lots of speed--and memory of type of upcoming task for planning) 
(A17 L15N) 

(4,4) 

0/11 [complete] 0.10 from tenths (0.7)--right first, then zoomed in at 0.5 to travel by 
hundredths. (A18 L16N) 

(1,4) 

Returns to menu, chooses level 12. Completes. Planning zoom out not always effective in this 
level [because] of new prompt and does not continue [planning]. (A20 L12N) 

(4,4) 

Note. Alphanumeric sequences in parentheses indicate references to specific memos. P indicates 
participant, A indicates the attempt number, L indicates level or chapter and level. M indicates 
mathematical distance value; T indicates technological distance value. Distance values are 1-4, where 1 is a 
high degree of distance and 4 is a low degree of distance. Brackets indicate clarifications. 
 
 

degree of mathematical distance. During Attempt 17 (Level 15 with needle active), 

Participant 6 decreased mathematical distance by effectively applying understandings of 

comparison and magnitude to hundredths on the number line. Modifying these attributes 

also helped Participant 6 modify the ability to access the planning affordance, shifting 

from creativity toward efficiency. The app then modified mathematical attributes, 

presenting new tasks using similar content in Level 16 (Attempt 18), resulting in 

increased mathematical distance as Participant 6 struggled to flexibly transfer the 

understandings used in the previous level. Participant 6’s ability, based on these and other 

attributes, also led to a low degree of access to efficient precision of consistent range 

contents (e.g., 0.0-0.1 always contains 0.11, 0.12, etc.). Participant 6 then proactively 
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modified app attributes, reducing the level (i.e., Level 12 from Level 16), which 

presented different mathematical content (i.e., tenths instead of hundredths). This 

decreased mathematical distance, as Participant 6 effectively applied understandings of 

comparison and magnitude to tenths on the number line to complete these tasks. Figures 

32-35 show these interactions using the MAAAD for Learning framework. 

As Figures 32-35 demonstrate, relationships within the MAAAD for Learning 

framework were evident throughout Participant 6’s interactions with Motion Math: 

Zoom. For example, Participant 6 consistently attempted to plan when it was possible to 

do so. Participant 6 initially experimented with a creative approach to planning, but this 

contributed to failure to complete the level. Modifying the approach to planning to 

 
 

Figure 32. Applying MAAAD for Learning: Participant 6, Part 1. Participant 6 
experimented with planning as part of completing the level but lost track of hundredths 
on the number line, showing a high degree of mathematical distance. Time ran out to 
complete a task in the level and the needle popped the bubble. There was a low degree of 
technological distance because the app recognized the efficient input gestures. Participant 
6 restarted the level.  
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Figure 33. Applying MAAAD for Learning: Participant 6, Part 2. Participant 6 modified 
user mathematical attributes to effectively navigate hundredths on the number line and 
decreasing mathematical distance. Participant 6 changed approach to planning, planning 
with a balance of efficiency and precision instead of experimenting. Technological 
distance remained minimal.  
 
 
 

Figure 34. Applying MAAAD for Learning: Participant 6, Part 3. The app changed 
mathematical attributes, presenting different tasks that focused on similar content. 
Mathematical distance increased as Participant 6 was unable to effectively transfer 
understanding of ranges to the new tasks. Participant 6 struggled to access the affordance 
of efficient precision related to consistent range contents. Technological distance 
remained minimal. 
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Figure 35. Applying MAAAD for Learning: Participant 6, Part 4. Participant 6 
proactively modified app attributes by reducing the level and changing mathematical 
content to focus on tenths, decreasing mathematical distance. Technological distance 
remained minimal. During this attempt, Participant 6 discontinued planning after 
recognizing it was not necessary to complete the tasks. 
 

 
emphasize efficiency, coupled with modification of mathematical attributes, contributed 

to decreasing mathematical distance and successful completion of Level 15. The degree 

of mathematical distance was so great during Participant 6’s first attempt at Level 16 that 

Participant 6 did not complete a single task and thus did not have the opportunity to plan. 

Upon decreasing mathematical distance by proactively changing app attributes via 

choosing to attempt Level 12, Participant 6 was once again able to access the planning 

affordance, but discontinued planning after realizing it was not necessary to do so. As 

shown in the figure sequences and coding excerpts, constructs and relationships that form 

the MAAAD for Learning framework were present throughout the participants’ 

embodied interactions with mathematics virtual manipulative iPad apps.  
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Summary of the Results 
 

In summary, the results of this study showed that attributes, affordance-ability 

relationships, and distance were present when fifth-grade children interacted with 

mathematics virtual manipulative iPad apps, and that there were relationships among 

these constructs. The relationships were used to develop the MAAAD for Learning 

framework. The results of this study showed specific subcategories and variations of the 

constructs. Apps have mathematical attributes, technological attributes, and structural 

attributes, while users have mathematical attributes, technological attributes, and personal 

attributes. Attributes were not always aligned, and reactive attribute modification was 

common, but proactive modification also occurred. Affordance-ability relationships 

aligned with Moyer-Packenham and Westenskow’s (2013) affordance categories, 

primarily varied by approach or degree, and could influence one another. Both 

mathematical distance and technological distance were present, and the degree of each 

distance varied throughout the interactions.  

The results of the study also showed relationships among the focus constructs. A 

given attribute may contribute to multiple relationships. Clusters of user attributes form 

abilities in direct relation to specific affordances, which stem from clusters of app 

attributes. Differences between clusters of app attributes and user attributes formed 

distance. Attribute modification often led to modification of affordance-ability 

relationships or distance, and vice versa. Distance modification could also lead to 

modification of affordance-affordance-ability relationships and vice versa. The 

integration of these relationships is depicted by the MAAAD for Learning framework. 
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CHAPTER V 

DISCUSSION 
 

 The increasing use of technology in mathematics education requires detailed 

examinations of constructs that influence users’ mathematical interactions with 

technology, including mathematics virtual manipulative iPad apps. The purpose of this 

study was to conceptualize the relationships among attributes, affordances, abilities, and 

distance in a framework that describes the nature of children’s interactions with 

technology to learn mathematics, here set within fifth-grade children’s interactions with 

mathematics virtual manipulative iPad apps. Analyses focused on user-app interactions, 

which involved physical interactions with representations of mathematics to provide 

evidence of mathematical practices, including mathematical thinking and learning. 

Results indicated that the focus constructs were present in the interactions, and 

interpretation led to the development of the MAAAD for Learning framework. Emergent 

themes also included variations and change within the constructs and interrelationships 

among the constructs. Importantly, modification of examples of any of these constructs 

led to modification of relevant examples of the other constructs. The proposed MAAAD 

for Learning framework provides a structure for examining user-app interactions in 

mathematics, and the framework has broader implications for characterizing children’s 

interactions with educational technology. 

 The discussion of the results has four sections. The first section discusses the 

results concerning individual constructs: attributes, affordances-ability relationships, and 

distance. The second section discusses the relationships among the constructs and the 
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emergent MAAAD for Learning framework. The third section discusses the limitations of 

the study. The fourth section discusses the study’s implications and potential applications 

for those who develop, implement, and research educational technology, particularly 

mathematics apps.  

 
Attributes, Affordance-Ability Relationships, and Distance 

 

 The first group of results from the study concerned the presence of and patterns 

related to attributes, affordance-ability relationships, and distance in user-app 

interactions.  

 
Attributes 

The first research question addressed the presence of attributes in user-app 

interactions. User attributes and app attributes were consistently present during the user-

app interactions and could be categorized using similar structures. Attribute modification 

to align or misalign attributes was common, but users were more likely to reactively 

modify attributes than to proactively modify attributes. Together, these results indicate 

that attributes and the modification of attributes were part of user-app interactions for the 

participants in this study. App attributes were mathematical (e.g., content: integers; 

representation: number line), technological (e.g., input range: multi-touch; input 

complexity: swipe), and structural (feedback: points; context: timer; scaffolding: demo). 

The presence of app attributes observed in this study is consistent with literature that 

describes mathematical content of apps (e.g., fraction models: Rick, 2012), technological 

capabilities of apps relating to input (e.g., input gesture range: Byers & Hadley, 2013), 
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and structural aspects of apps (e.g., scaffolding: Belland & Drake, 2013; feedback: Blair, 

2013). User attributes were mathematical (e.g., content: integers; representation: number 

line; flexibility: transfer), technological (e.g., motor skills: coordination; input familiarity: 

input recognition), and personal (affect, goals, persistence). The presence of user 

attributes observed in this study is consistent with literature that describes children’s 

mathematical understandings (e.g., fraction models: Moyer-Packenham, Bolyard, et al., 

2014), physical actions used to interact with apps (e.g., motor skills: Ginsburg et al., 

2013), and personal characteristics of users (e.g., affect: Goldin, Epstein, Schorr, & 

Warner, 2011; persistence: Jong, Hong, & Yen, 2013). The specific attribute 

categorizations were a novel finding of this study. 

Attributes or clusters of attributes could be aligned (e.g., performing appropriate 

gestures) or misaligned (e.g., attempting to add instead of divide). This led to attribute 

modification, which could be reactive (e.g., allowing the app to repeat a level) or 

proactive (e.g., purposefully choosing a level). Attribute modification has been reported 

in other research (e.g., Parsons & Sedig, 2014) and relates to progressive mastery, 

wherein learners continue to develop skills while interacting with technology (Murray & 

Arroyo, 2002). However, proactive and reactive attribute modification types are novel 

findings of this study. These results are important because they identify attributes as a 

construct that contributes to user-app interactions, aligning with findings and implications 

of several studies. 

 From an embodied cognition and representation perspective, results concerning 

attributes are important because they indicate that attributes play a role in mathematical 



132 
 
thinking and learning. The recorded interactions provided evidence of mathematical 

thinking (i.e., bodily interactions with mathematical representations), and attributes 

contributed to these interactions (e.g., coordination and magnitude influencing navigation 

on the number line). Attributes included various app and user representations of 

mathematical content, and modification of attributes concerning mathematical 

representation could lead to changes in externalization of mathematical representations. 

In particular, attribute alignment and modification during these physically embodied 

interactions with mathematical representations imply that some children were learning, as 

their attributes and the behaviors (i.e., bodily engagement in mathematical practices) 

associated with manifesting these attributes were not static. For example, some reactive 

modification involved learning, as participants adapted the attributes they applied in 

response to the new content presented by the app. Proactive modification could also 

involve learning, both in adapting user attributes and in learning to choose app attributes 

(e.g., representations of mathematical content) that were more appropriate for the user’s 

mathematical understandings. Thus, attributes are an important construct in the context of 

embodied cognition and representation. 

 
Affordance-Ability Relationships 

 The second research question addressed the presence of affordance-ability 

relationships in user-app interactions. Affordance-ability relationships were consistently 

present during the user-app interactions and could be organized using Moyer-Packenham 

and Westenskow’s (2013) affordance categories. Affordance access varied, most notably 

by approach and degree, and outcomes of accessing the same affordance could vary. 
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Consistency of approach to and degree of affordance accession also varied. Furthermore, 

there were interactions among affordance-ability relationships. Together, these results on 

affordance-ability relationships and the modification of affordance-ability relationships 

were part of user-app interactions. The presence of affordance-ability relationships 

documented in this study corroborates claims that affordances and abilities exist in 

relation to one another (Greeno, 1994) and are coupled in continuous systems (Chemero, 

2003). Results included examples of all five of Moyer-Packenham and Westenskow’s 

(2013) categories of affordances of virtual manipulatives (e.g., efficient precision: 

planning). Consistent with other literature (e.g., Moyer-Packenham & Westenskow, in 

press; Tucker et al., 2015) results indicated that creative variation was identified less 

frequently than other affordances with the participants in this study.  

Results also showed that affordance access varied by approach (e.g., efficient 

precision: direct combinations or separate steps) and varied by degree (e.g., motivation: 

degrees of positive or negative motivation). However, accessing the same variation of an 

affordance could lead to different outcomes, such as accessing efficient precision of 

planning contributing to both success and failure. Several other studies (e.g., Kay, 2012; 

Moyer-Packenham et al., in press; Su, 2012) have reported variation in children’s 

accession of affordances of technology. Emerging research also identified variation of 

affordance access by approach and degree, with similar affordance access leading to 

different outcomes (Tucker et al., 2015), which adds nuance to Greeno’s (1994) assertion 

that affordances are graded. Affordance-ability relationships influenced each other, such 

as the balance of planning and multiple visible intervals as part of efficient precision, 
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focused constraint, and creative variation during interactions with Motion Math: Zoom. 

Other researchers provided evidence of the interrelated nature of affordances, such as 

Burris (2010, 2013), who implied connections between simultaneous linking and creative 

variation. However, specific interrelationships are novel findings of this study. These 

results are important because they identify affordance-ability relationships as a construct 

that contributes to user-app interactions, aligning with findings and implications of other 

research. 

From an embodied cognition and representation viewpoint, results concerning 

affordance-ability relationships are important because they indicate that affordance-

ability relationships are involved in mathematical thinking and learning. Accessing an 

affordance as part of an affordance-ability relationship took place during embodied 

interactions with mathematical representations. Variations of affordance accession within 

and between participants during the user-app interactions provided evidence of 

differences in mathematical thinking and learning. Degrees of and approaches to 

affordance access, particularly in response to the same affordance (e.g., three approaches 

to accessing guided placement efficient precision affordance), indicated a range of 

mathematical thinking that might stem from different internal representations. Within the 

same participant, consistent changes in abilities as part of affordance-ability relationships 

(e.g., beginning to use navigation constraints for efficient precision and applying 

whenever appropriate) provided evidence of changing mathematical practices and thus 

mathematical learning. Thus, affordance-ability relationships are also an important 

construct in the context of embodied cognition and representation. 
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Distance 

 The third research question addressed the presence of distance in user-app 

interactions. Two types of distance were consistently present throughout the user-app 

interactions: mathematical distance and technological distance. The degree of each type 

of distance could change, and there were interactions between mathematical distance and 

technological distance. Together, these results indicate that distance and the modification 

of distance are part of user-app interactions. Mathematical distance included the degree 

of difficulty of applying the additive inverse property, while technological distance 

included the degree of difficulty of applying the pinching gesture to zoom across 

intervals. Sedig and Liang (2006) proposed four types of distance—semantic, 

articulatory, conceptual, and presentation—that mainly fit within technological distance 

in the MAAAD for Learning framework. The rhombus plots used to visualize the data in 

support of this analysis was a novel technique. 

Distance could also change, such as when participants successfully completed a 

level after multiple attempts, decreasing mathematical distance. The changes in distance 

observed in this study align with Sedig et al.’s (2001) assertion that balancing the degree 

of distance occurs during interactions with educational technology tools. Interactions 

between mathematical distance and technological distance included high degrees of 

technological distance negatively influencing the degree of mathematical distance. This 

occurred during interactions with both apps, but was more common during interactions 

with Motion: Math Zoom, which required coordinating multi-touch input on an idealized 

number line. This relates to Byers and Hadley’s (2013) observation that novel ways to 
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interact with mathematics may be unfamiliar, even when valuable. This is akin to Sedig 

and Liang’s (2006) multiple distance types contributing to an overall concept of distance, 

and aligns with Rick’s (2012) implied relationships between mathematical distance and 

technological distance when users of a fraction app prioritized figuring out difficult input 

gestures over learning the mathematical content. However, mathematical and 

technological distance classifications and the interaction among these distance types are 

novel findings of this study. These results are important because they identify distance as 

a construct that contributes to user-app interactions and align with findings and 

implications of prior research.  

Using a lens of embodied cognition and representation, results concerning 

distance are important because they indicate that distance is involved in mathematical 

thinking and learning. Evidence of distance was present throughout embodied 

interactions with mathematical representations. In the context of user-app interactions, 

distance is the difference between what is required for successful embodied practices and 

the actual enacted embodied practices. In terms of mathematical thinking and learning, 

mathematical distance provided evidence of mathematical thinking (e.g., knowing when 

to apply a given mathematical property). Interactions between the distance types implied 

that high degrees of technological distance might hinder mathematical learning (e.g., 

struggling to perform a gesture needed to apply a mathematical property and progress to 

different representations of the mathematical property). Thus, distance is also an 

important construct in the context of embodied cognition and representation. Results 

from the first three research questions indicated that each of the focus constructs 
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contribute to user-app interactions and are relevant to the theoretical framework of 

embodied cognition and representation. 

 
The Modification of Attributes, Affordances, Abilities, and  

Distance for Learning Framework 

 
 The fourth research question addressed the presence of relationships among 

attributes, affordance-ability relationships, and distance in user-app interactions. Results 

indicated that there were relationships among the focus constructs in user-app 

interactions, and these relationships form the MAAAD for Learning framework.  

Relationships among attributes, affordances, abilities, and distance were present 

throughout user-app interactions. Results indicated that attributes relate to affordance-

ability relationships. Based on Greeno’s (1994) definitions and set within the context of 

user-app interactions, clusters of app attributes form affordances, whereas clusters of user 

attributes form abilities. Results indicated that modification of attributes could lead to 

modification of affordance-ability relationships (e.g., honing zoom input gesture leads to 

relatively efficient planning), while modification of affordance-ability relationships could 

lead to modification of attributes (e.g., app changes constraints to allow focus on different 

mathematical content). These modifications could lead to changes in mathematical 

practices (e.g., planning mathematical actions; combining mathematical properties), 

which from an embodied cognition perspective of interacting with representations 

indicates mathematical learning. Similarly, other research found that students’ access to 

app affordances such as audio feedback (as part of motivation and simultaneous linking) 
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decreased as they became adept at performing a certain task (Bartoschek et al., 2013; 

Paek, 2012). Furthermore, an attribute could contribute to multiple affordance-ability 

relationships. For example, coordination contributed to the ability to access planning as 

efficient precision and the ability to access navigation restrictions as focused constraint. 

Results indicated that attributes relate to distance. Distance, being the degree of 

difficulty interacting with a tool (Sedig & Liang, 2006), in part relates to the cognitive 

fidelity of the tool (Dick, 2008). Distance and cognitive fidelity are both relationships 

between characteristics (i.e., attributes) of the tool (e.g., app) and the user. From a 

theoretical standpoint, the embodied interactions with mathematical representations 

provided visual evidence of distance between a user’s mathematical thinking and the 

mathematical content represented by the app, based on user mathematical attributes and 

app mathematical attributes, respectively. For example, results indicated that 

modification of attributes influenced attribute alignment, which could lead to 

modification of distance. In response to the modification in distance, attribute 

modification could occur. These changes could manifest as changes in engagement in 

mathematical practices, providing evidence of mathematical learning. Sedig et al. (2001) 

reported similar implications in their example of the cycle modifying the presence of 

scaffolding to maintain an appropriate amount of distance, during which a tool decreases 

scaffolding as the user increases familiarity with the representation.  

Results indicated that distance relates to affordance-ability relationships. Both 

distance and affordance-ability relationships are based on attributes and attribute 

alignment. The same attribute can contribute to distance and affordance-ability 
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relationships, such as flexibility contributing to both mathematical distance and the 

ability to access planning as efficient precision. Distance can influence affordance-ability 

relationships (e.g., high degree of technological distance leading to high degree of access 

to negative motivation), and affordance-ability relationships can influence distance (e.g., 

constraining focus to whole numbers providing a level with a low degree of mathematical 

distance). Using a lens of embodied cognition and representation, these relationships 

influence how one engages in mathematical practices as evidence of mathematical 

thinking and learning (e.g., focused constraint intended to minimize mathematical 

distance influences which mathematical properties one can enact during a task). Multiple 

studies imply connections between distance and affordance-ability relationships, 

including affordance access varying by both students’ mathematical proficiency (e.g., 

Gadanidis, Hughes, & Cordy, 2011; Moyer-Packenham & Suh, 2012) and technological 

proficiency (e.g., Rick, 2012; Tucker & Moyer-Packenham, 2014). 

 The results are important because they indicated that relationships among 

attributes, affordances, abilities, and distance contribute to the proposed MAAAD for 

Learning framework. Furthermore, these results and interpretations connect the 

framework to theoretical foundations, as the analyses focused on user-app interactions 

that involved physically embodied interactions with mathematical representations and 

provided evidence of mathematical thinking and learning. Syntheses of the literature also 

indicate the presence of each of these constructs, and some researchers have implied the 

existence of relationships among multiple constructs, such as Sedig and Liang (2006), 

who included affordances and distance among 12 interactivity factors of visual 
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mathematical representations. However, before this study, no published research had 

identified all of these constructs in the context of user-app interactions, coherently 

articulated and integrated relationships among these constructs, nor grounded these 

relationships in embodied cognition and representation. Findings from this study indicate 

that the MAAAD for Learning framework provides a structure for examining user-app 

interactions. 

 
Limitations  

 

 Characteristics of the exploratory design place delimitations on the study. At the 

time of this study, there was no previous research identifying and integrating these focus 

constructs to examine user-app interactions. Therefore, the purpose of this exploratory 

research was to describe these physically embodied user-app interactions to generate 

hypotheses and support theory development for future research (Marshall & Rossman, 

2010). The study used specific definitions of terms (e.g., affordance of motivation: 

Moyer-Packenham & Westenskow, 2013), but using alternative definitions (c.f., 

motivation: Belland, Kim, & Hannafin, 2013) could lead to different interpretations of 

the results. The sample was limited to ten fifth-grade children from a local community, 

and it was beyond the scope of the study to generalize by specific demographic 

characteristics, including age, socioeconomic status, and ethnicity. Furthermore, this 

study occurred in a research lab using individual participants, but there are other contexts 

in which learning can take place (e.g., classroom with teacher and groups of students). 

Additional research is required to address these limitations, which are standard for 
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exploratory research (Stebbins,  2001). Thus, the study focused on trustworthiness 

through thorough description, allowing evaluation by the reader (Rolfe, 2006), and laying 

the foundation for future investigations. 

 
Implications and Potential Applications 

 

The results of this study, including the MAAAD for Learning framework, align 

with theoretical foundations and have implications and applications for app developers, 

those who implement apps (e.g., educators), and researchers who study how users interact 

with apps and other educational technology.  

 
Alignment with Theoretical Foundations 

Development of the MAAAD for Learning framework was consistent with 

theories of embodied cognition and representation. The user-app interactions in which 

these constructs and relationships were identified were a form of perceptuomotor 

integration, wherein mathematical thinking was evident in participants’ bodily activity as 

they physically interacted with mathematical representations. The changes that took place 

during these interactions provided evidence of transformations in participants’ bodily 

engagement in mathematical practices, which is equivalent to mathematical learning. 

Evidence indicated that the constructs and relationships among the constructs related to 

both mathematical thinking and mathematical learning. Thus, the framework is both 

grounded in and has implications for theories of embodied cognition and representation, 

as it models specific constructs and relationships among constructs that contribute to 

physically embodied interactions with representations (i.e., mathematical practices) that 
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constitute mathematical thinking and learning. Researchers could also consider MAAAD 

for Learning in relation to frameworks that approach human interactions with technology 

from other theoretical perspectives. These include frameworks based in activity theory 

(e.g., Artifact-centric activity theory: Ladel & Kortenkamp, 2013), complex cognitive 

activities (e.g., EDIFICE-AP: Sedig & Parsons, 2013), and multimedia learning (e.g., 

Interactive Multimedia Model for Cognitive Learning: Daghestani, 2013), and also 

inform design, implementation, and research related to educational technology. 

 
Implications for Development 

The MAAAD for Learning framework has implications and applications for 

developers of educational apps. For example, developers could consider the framework 

when designing and testing apps as a way to examine the attributes that contribute to the 

affordance-ability relationships involved in the user-app interactions, as well as the 

various ways these relationships may manifest. Designers could also consider the 

purposeful modification of the constructs involved in the framework, such as how and 

when an app could modify attributes that lead to modification of distance and affordance-

ability relationships, as well as the potential outcomes of these modifications. 

Furthermore, designers could encourage proactive modification by clarifying for users 

which app attributes they can modify. Technology research and development groups 

could also consider these results and implications in relation to literature on human-

computer interaction as applied to technology design, such as decision making, adaptive 

systems, and information visualization (e.g., Jacko, 2012). 
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Implications for Implementation 

The MAAAD for Learning framework also has implications and applications for 

those who implement educational apps and those who train others to do so. For example, 

teachers and parents could consider the alignment of user attributes and app attributes 

when choosing an app for children. Because of the rarity of proactive attribute 

modification despite repeated attribute misalignment, teachers may wish to provide 

additional external scaffolding, such as by helping children recognize the potential for 

modifying app attributes and by supporting the performance of appropriate input 

gestures. Furthermore, attribute change was evident during these relatively short 

interactions, though participants were not always aware they were engaged in 

mathematics. Teachers may consider both monitoring user-app interactions for evidence 

of changing attributes and supporting recognition of the mathematics by facilitating 

intentional discussions of these mathematical interactions. Educators and professional 

development providers could consider these results and implications in relation to 

literature about teachers’ use of educational technology, including Technological 

Pedagogical Content Knowledge (Mishra & Koehler, 2006) and teacher beliefs about 

technology integration (e.g., Ertmer, 2005). 

 
Implications for Research 

The MAAAD for Learning framework has many potential implications and 

applications for researchers of learning and technology. The theoretical alignment 

indicates that researchers can apply this framework to investigations grounded in 

embodied cognition and representation, or alternatively examine this framework using 
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other theoretical lenses. Fine-grained applications of the framework include investigating 

specific mathematical learning trajectories (e.g., Sarama & Clements, 2009) or examining 

the role of particular examples of the constructs (e.g., efficient precision affordance).  

Lateral applications of MAAAD for Learning include applying it to interactions 

with other apps, which could lead to additional examples of each of the constructs (e.g., 

distance: mathematical and technological) and further develop the emergent themes from 

this study (e.g., attribute modification: proactive and reactive). Other lateral applications 

include applying the framework to characterize interactions with other subject matter 

(e.g., science) and technology tools (e.g., video games), or using it for different settings 

(e.g., classroom) and participants (e.g., diverse learners). Broader applications of the 

framework include linking it to specific learning outcomes and implementing micro-

longitudinal or longitudinal investigations. Furthermore, it is possible to combine these 

applications, such as by applying the framework to examine connections between novel 

attribute modification types and learning outcomes when college students use educational 

technology to learn physics content. The MAAAD for Learning framework has 

implications and applications for development, implementation, and research concerning 

mathematics virtual manipulative apps in particular and educational technology in 

general. 

 
Conclusion 

 

 This study represents an integration of multiple constructs that contribute to 

children’s experiences of interacting with educational technology. Extensive research 
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exists on results of these interactions (e.g., Moyer-Packenham et al., 2015; Paek, 2012; 

Zhang et al., 2015), and some research has identified constructs that play a role in related 

interactions (e.g., Sedig & Liang, 2006; Tucker et al., 2015). However, research had not 

coherently examined relationships among these contributing constructs. The purpose of 

this study was to conceptualize the relationships among attributes, affordances, abilities, 

and distance in a framework that describes the nature of children’s interactions with 

technology to learn mathematics. This study was built on the premise that (a) 

mathematics learning occurs when children physically interact with mathematical 

representations, including those that involve mathematics virtual manipulative iPad apps, 

and (b) attributes, affordance-ability relationships, and distance are involved in these 

interactions.  

 The results of this study indicated that the focus constructs were present in the 

user-app interactions and that the relationships among these constructs are explained with 

the MAAAD for Learning framework. During the user-app interactions, attributes, 

affordance-ability relationships, and distance were consistently present and often 

changing. Important emergent themes included proactive and reactive attribute 

modification, relationships among affordance-ability relationships, and the presence of 

mathematical distance and technological distance. Furthermore, each construct influenced 

the other constructs, with modifications to one construct leading to modifications of the 

connected constructs. These relationships form the MAAAD for Learning framework.  

The results of this study suggest the MAAAD for Learning framework models 

relationships among attributes, affordance-ability relationships, and distance in the 
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context of user-app interactions. The framework is a useful tool for developers, 

educators, and researchers. Developers designing technology tools can use the framework 

to consider relationships among constructs that contribute to the users’ experiences when 

interacting with the tools. Educators implementing technology tools to support children’s 

learning can use the framework to evaluate the appropriateness of the tool for the 

children, as well as a way to evaluate learning during children’s interactions with 

educational technology in the classroom. Researchers can apply the framework when 

investigating constructs that play a role in children’s learning while interacting with 

technology, as well as the potential outcomes of these interactions.  

The constructs, relationships, and framework identified in this study advance the 

literature on children’s interactions with educational technology tools, in particular 

literature concerning children’s interactions with mathematics virtual manipulative iPad 

apps. Future investigations involving connections to learning outcomes, different 

contexts, diverse populations, additional content areas, and various technology tools will 

contribute to the development of the emergent themes and novel findings, as well as the 

application of the MAAAD for Learning framework. 
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Facilitation Protocol 
Before Participant Arrival 

 Set up materials (paperwork, cameras, iPad and apps)  
 Begin room camera recording 

Upon Participant Arrival 
 Greetings/introductions 
 Distribute, explain, and complete consent/assent form with video waiver 

Introduction 
 You’ll play one app, I’ll ask you some questions, you’ll play a second app, and 

I’ll ask you some more questions. No worries, there’s no math quiz; I just want to 
learn more about what you were doing and thinking.  

 You can play each app for up to thirty minutes, but let me know if you want to 
stop playing and we will move on. 

 The cameras only record your interactions with the apps. They focus on your 
hands and the iPad, but they can’t move, so please keep the iPad in place so the 
cameras can see. 

 I’ll be here the whole time, but I’m not here to help. I want to learn about what 
you do, not what I do. Just do your best. I’ll take notes about so I can ask good 
questions. 

 Do you have any questions? Address questions. 
 I’m going to start the computer recording now. Begin computer recording. Check 

angle! 
App Interaction & Follow-Up Questions #1 (Open app, begin timer and observation 
protocol) 

 You may begin. 
 After 30 minutes or when the child requests to stop playing, ask some or all of the 

follow-up questions, depending on the situation. Adjust for occurrences and 
purposefully build on responses that include one or more of attributes, 
affordance-ability, and distance.  

o What did you think of the app? Why? 
 Easy/hard, etc.: Was it always easy/hard or did it change? Why?  

o Why did you stop/would you have liked to play longer? Why? 
o How did you figure out what you were supposed to do (if possible, in 

specific situations where stuck on math, tech, or both)? 
 Specific to Zoom: How did you decide when to zoom instead of 

swipe? 
o How did you use what you already knew while playing this app? 
o Did you learn anything while playing?  

 How did you use that in the app?  
 How might you use that when you aren’t playing the app? 

o What would make the app better? 
App Interaction & Follow-Up Questions #2 

 Repeat similar for second app 
Summative Follow-Up Questions 
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 Ask follow-up questions such as the following, adjusting for specific occurrences 
o What mathematics did you notice in these apps? 
o Did you notice any features of the app that helped you to complete the app 

tasks? What were they and how did they help you?  
o Which app did you like better? Why? 
o Which app was easier/harder? Why? 

Debriefing 
 Debrief child and parent: answer any questions and thank them for participating. 
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Appendix B 

Observation Protocol
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Observation Protocol  
(Print Version of Digital Excel Document) 

Observation Field Notes Protocol 
Participant # Date 

App 1:(app name) App 2: (app name) 
Time (0+) Occurrence Time (0+) Occurrence 

App 1 Follow-Up Questions App 2 Follow-Up Questions 
Q A Q A 

Integrated Follow-Up Questions 
Q A 
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Appendix C 

Distance Magnitude Codes and Quantitization Steps
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Distance Magnitude Codes and Quantitization Steps 

Step 1: Apply directly related attribute cluster codes with distance magnitude codes 
based for each attempt to complete level 
 
Motion Math: Zoom distance magnitude coding structure with descriptors 
 Mathematical Distance: 

o Comparison-Navigation (left-right choices) 
 NA: Accurate: few, brief mistakes, no extended; no scaffold; rare past 

off-screen 
 NG: Generally Accurate: more brief mistakes, rare extended (1/level) 

or POS; no scaffold 
 NO: Often Inaccurate: frequent brief mistakes, may multiple 

extended/POS; may include 1 scaffold 
 NI: Inaccurate: most tasks have inaccuracies, may multiple 

extended/POS; any 2+ scaffolds 
o Comparison-Target/Placement choices (correct answers: must be corrected to 

finish) 
 TA: Accurate: few mistakes or pauses 
 TG: Generally Accurate: more mistakes or pauses (<1/3 tasks) 
 TO: Often Inaccurate: frequent mistakes or pauses (appx. 1/2) 
 TI: Inaccurate: mistakes/pauses on most tasks 

o Magnitude-within interval (swipe interval choice—not direction) 
 WA: Accurate: ideal interval (nearly) every time; no scaffold 
 WG: Generally Accurate: occasional non-ideal interval (<1/3 tasks); 

no scaffold 
 WO: Often Inaccurate: frequently non-ideal interval (appx. 1/2); may 1 

scaffold 
 WI: Inaccurate: rarely ideal interval; any 2+ scaffold 

o Magnitude-between/across interval (zoom interval choice—note if precise) 
 BA: Accurate: ideal intervals (nearly) every time; near when not ideal 
 BG: Generally Accurate: mixed ideal intervals; near ideal interval 

(nearly) every time  
 BO: Often Inaccurate: often not near ideal interval 
 BI: Inaccurate: rarely near ideal interval (i.e., choose whatever is 

closest); any uses hint 
 Technological Distance 

o Swipe (efficiency when using) 
 SE: Efficient 
 SG: Generally efficient 
 SO: Often inefficient 
 SI: Inefficient 

o Zoom (efficiency when using) 
 ZE: Efficient 
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 ZG: Generally efficient 
 ZO: Often inefficient 
 ZI: Inefficient 

 
DragonBox Algebra 12+ distance magnitude coding structure with descriptors 
 Mathematical Distance: 

o Moves (Efficiency: moves allowed by app) 
 MA: Accurate: Ideal 
 MG: Generally Accurate: 1 off or Ideal with Undo 
 MO: “Often” Inaccurate: 2-3 off or 1 off with Undo 
 MI: Inaccurate: 4+ off or 2+ off with Undo 

o Leftovers (Elegance: completely cleared) 
 LA: Accurate: Ideal 
 LG: Generally Accurate: Tries to finish while sweeping  
 LO: “Often” Inaccurate: No attempt to finish while sweeping, 1-2 left 
 LI: Inaccurate: No attempt to finish while sweeping, 3+ left 

o Accuracy (Disallowed math attempts) 
 AA: Accurate: Ideal 
 AG: Generally Accurate: 1-2 different errors, not repeated (separately) 
 AO: “Often” Inaccurate: 1-2 different errors, repeated (separately) 
 AI: Inaccurate: 3+ different errors (repeats or not) 

 Technological Distance 
o Performance of input gestures (tap, drag, etc.) 

 PE: Efficient: smooth, no difficulties 
 PG: Generally efficient: few difficulties 
 PO: Often inefficient: frequent difficulties, one gesture  
 PI: Inefficient: frequent difficulties, multiple gestures 

o Choice of correct input gesture 
 CE: Efficient: Always appropriate choice 
 CG: Generally efficient: few inappropriate choices 
 CO: Often inefficient: frequently attempts one inappropriate gesture 
 CI: Inefficient: frequently attempts more than one inappropriate 

gesture 
 
Step 2: Assign values to distance magnitude codes 
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Table C1  
 
Distance Magnitude Code Values 
 

Magnitude Code Scale Value

A, E 4
G 3
O 2
I 1

 
 
 
Step 3: Determine overall attempt value 
 
Overall attempt value determination for Motion Math: Zoom 

 Mathematical Components: [(N + T + W + B) / 4] – (decimal of % of level 
incomplete) 

o Note: The value determination is adjusted to reflect the number of codes 
applied (e.g., if no “B” because there was no changing intervals, divide by 
3 instead of 4)  

o Example A 
 NA, TA, WG, BG, completed 10 of 10 tasks  
 [(4 + 4 + 3 + 3) / 4] – 0.0 = 3.5 

o Example B 
 NO, TO, WI, BI, completed 3 of 10 tasks 
 [(2 + 2 + 1 + 1) / 4] – 0.7 = 1.8 

 Technological Components: (S + Z)/2 
o Note: The value determination is adjusted to reflect the number of codes 

applied (e.g., if no “Z” because there was no zooming, divide by 1 instead 
of 2)  

o Example A 
 SE, ZE 
 (4 + 4) / 2 = 4 

o Example B 
 SE, ZI 
 (4 + 1) / 2 = 2.5 

 
Overall attempt value determination for DragonBox Algebra 12+ 

 Mathematical Components: (M + L + A) / 3  
o Note: Ending an attempt by resetting the level using Restart, Solution, or 

Undo results in a mathematical distance score of 1 for the attempt 
o Example A 

 MA, LA, AG 
 (4 + 4 + 3) / 3 = 3.67 
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o Example B 
 MG, LG, AI 
 (3 + 3 + 1) / 3 = 2.33 

 Technological Components: (P + C)/2 
o Example A 

 PE, CE 
 (4 + 4) / 2 = 4 

o Example B 
 PG, CO 
 (3 + 2) / 2 = 2.5 

 
 
 
 
Step 4: Scale attempt values to distance value 
 
 
Table C2 
 
Distance Value Scale 
 

Distance scale value Attempt value range

4 3.67 ≤ x
3 3 ≤ x < 3.67
2 2 ≤ x < 3
1 x < 2

 
 
Examples 

 Motion Math: Zoom 
o Example A 

 Mathematical: 3.5 scaled to 3 
 Technological: 4 scaled to 4 

o Example B 
 Mathematical: 1.8 scaled to 1 
 Technological: 4 scaled to 4 

 DragonBox Algebra 12+ 
o Example A 

 Mathematical: 3.67 scaled to 4 
 Technological: 4 scaled to 4 

o Example B 
 Mathematical: 2.33 scaled to 2 
 Technological: 2.5 scaled to 2 
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Step 5: Pair values to determine (Mathematics, Technology) distance value 
 

 Motion Math: Zoom 
o Example A: (3, 4) 
o Example B: (1, 2) 

 DragonBox Algebra 12+ 
o Example A: (4, 4) 
o Example B: (2, 2) 
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Appendix D 

Examples of Approach Variants for Efficient Precision
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Figure D1. Situation where additive equality and additive inverse properties can be 
applied.  
 
 
 

 
Figure D2. Direct combination on both sides. 
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Figure D3. Separate steps on both sides. 
 
 
 

 
Figure D4. Direct combination on the first side and separate steps on the other side. 
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Figure D5. Partially complete additive equality property. Square target space, with 
additional animations in response to attempted interruption of the additive equality 
property after direct combination. 
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Appendix E 

Level Bins 
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Table E1  

Motion Math: Zoom Level Bins 

Bin Start level Focus content 

1 1 Intro 

2 2 Integers to 1,000 

3 6 Integers to 10,000 (Changing Intervals) 

4 9 Positive and negative integers to 10,000 

5 12 Decimals: Tenths 

6 15 Decimals: Hundredths 

7 19 Decimals: Thousandths 

8 21 Challenge (all previous) 

 

 

Table E2 

DragonBox Algebra 12+Level Bins1 

Bin Start Level New Content 

1 1:01 Additive identity 

2 1:03 Additive inverse (internal2) 

3 1:09 Additive equality (external3) 

4 1:16 Additive inverse (external) 

5 2:01 Multiplicative inverse (internal) 

6 2:05 Multiplicative identity (internal) 

7 2:11 Multiplicative inverse (external) 

8 3:01 Additive inverse (across4) 

9 3:07 Multiplicative inverse (across) 
1 First three chapters (levels 1:01-3:20) of DragonBox Algebra 12+ 
2 Internal refers to steps involving only tiles already present in the equation without moving the variable 

from one side of the equation to the other side of the equation 
3 External refers to steps involving bringing in variables from outside the equation 
4 Across refers to steps involving moving a variable from one side of the equation to the other. 
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Appendix F 

Rhombus Plots: Small Multiples
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Rhombus Plots: Small Multiples 
 

  
 

Figure F1. Rhombus plot small multiples for Motion Math: Zoom data. (M,T) indicates 
(mathematical, technological) distance value. Bin indicates level group. 
 

(Figure F1 continues) 
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(Figure F1 continues) 
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Figure F2. Rhombus plot small multiples for DragonBox Algebra 12+ data. (M,T) 
indicates (mathematical, technological) distance value. Bin indicates level group. 
 

(Figure F2 continues) 
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(Figure F2 continues) 
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Appendix G  

Quantitized Distance Data
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Quantitized Distance Data Used to Generate Rhombus Plots for Interactions with Motion 
Math: Zoom 
 

 
Key. A indicates attempt, B indicates bin, L indicates level or chapter and level. N indicates presence of 
needle (0 is inactive, 1 is active). M indicates mathematical distance value; T indicates technological 
distance value.  
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Key. A indicates attempt, B indicates bin, L indicates level or chapter and level. N indicates presence of 
needle (0 is inactive, 1 is active). M indicates mathematical distance value; T indicates technological 
distance value.  
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Quantitized Distance Data Used to Generate Rhombus Plots for Interactions with 
DragonBox Algebra 12+ 
 

 
 
Key: A indicates attempt, B indicates bin, L indicates level or chapter and level. M indicates mathematical 
distance value; T indicates technological distance value.  
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Key: A indicates attempt, B indicates bin, L indicates level or chapter and level. M indicates mathematical 
distance value; T indicates technological distance value.  
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Appendix H 

Institutional Review Board (IRB) Certificate
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Spring 2014; Fall 2014; Spring 2015) 
Undergraduate Course. Relevant mathematics instruction in the elementary and middle-level 
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practicum is required. 
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TEAL 6521 – Mathematics for Teaching K-8: Numbers and Operations (Fall 2013) 
Master’s Course, Co-Taught with Dr. Amy Brown. This course, for K-8 teachers, covers the 
content of Number and Operations to develop comprehensive understanding of our number 
system, relating its structure to computation, arithmetic, algebra, and problem solving. Delivered 
via broadcast distance education technology. 
 
ELED 5100 – Student Teaching – Primary (Grades 1-3) (Fall 2011) 
ELED 5150 – Student Teaching – Elementary (Grades 4-6) (Fall 2011) 
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teaching. Students begin their transition from university student to professional teacher. 
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SPED 5340 – Teaching Math to Students with Mild/Moderate Disabilities: Expressions, 
Equations, and Algebraic Thinking (January 14, 2014) 
Undergraduate Course. Planned and delivered in person instruction on expressions, equations, and 
algebraic thinking in middle grades to students as guest instructor for Dr. Jessica Hunt for one 
three-hour class session. 
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Transformations and Tessellations; Similarity and Congruence (March 19, 2013) 
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session.  

 
 

  



201 
 

CURRICULUM DEVELOPMENT 
 

Utah State University, Logan, Utah (2011-present) 
College of Education and Human Services 

 
CCSSM Elementary Mathematics Teacher Academy, member (2012-present) 

Developed course materials for master’s level courses and online professional development 
for Utah State University’s Elementary Mathematics Teacher Academy (EMTA). Courses 
designed to develop teachers’ mathematical knowledge for teaching aligned with the 
Common Core State Standards for Mathematics. Materials developed included readings, 
video lectures, application assignments, and assessments for online course delivery. Assisted 
in development of program structure and badges system. Authored two mathematics content 
blog posts. Developed the following 27 curriculum modules: 

4.NBT | Big Idea: Student-Generated and Alternative Algorithms (2013) 
4.NBT.A.1-2 | Multi-Digit Place Value (2013) 
4.NBT.A.1-3 | Multi-Digit Place Value with Rounding (2013) 
4.NBT.B.4 | Fluent Addition and Subtraction (2013) 
4.NBT.B.5 | Multi-Digit Whole Number Multiplication (2013) 
4.NBT.B.6 | Multi-Digit Whole Number Division (2013) 
4.NF | Big Idea: Proportional Reasoning (2013) 
4.NF.A.1 | Equivalent Fractions (2013) 
4.NF.A.2 | Comparing Fractions (2013) 
4.NF.B.3a,d | Adding and Subtracting Fractions in Word Problems (2013) 
4.NF.B.3b,d | Decomposing Fractions (2013) 
4.NF.B.3c,d | Adding and Subtracting Mixed Numbers in Word Problem Contexts (2013) 
4.NF.B.4a,c | Fractions as Multiples in Word Problem Contexts (2013) 
4.NF.B.4b,c | Fractions as Multiples of Multiples in Word Problem Contexts (2013) 
4.NF.C | Decimals, Notations, and Computation (2013) 
4.OA.A.1-2 | Multiplicative Comparison (2013) 
4.OA.A.3 | Multi-Step Word Problems (All Operations) (2013) 
4.OA.B.4 | Factoring, Primes, and Composites (2013) 
4.OA.C.5n | Patterns: Numbers (2013) 
4.OA.C.5s | Patterns: Shapes (2013) 
K.MD.A.1-2 | Describe and Compare Measurable Attributes (2014) 
K.MD.B.3 | Classify and Count Data (2014) 
K.NBT.A.1 | Composing and Decomposing Numbers (11-19) (2015) 
K.OA.A.1 | Representing Addition and Subtraction (2015) 
K.OA.A.2 | Solving Addition and Subtraction Word Problem (2015) 
K.OA.A.3 | Composing and Decomposing Numbers (0-10) (2015) 
K.CC.B.5 | Count to Answer “How Many?” (2015) 

 
Reflective Mathematics Educators Group, member (2011-present) 

Redesigned syllabus, assignments, and assessments, and planned instruction for ELED 4060 
Elementary Mathematics Methods courses 
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SERVICE 
PRESENTATIONS—SERVICE 

 
University—Invited Presentations 
 

University of Washington – Tacoma 
Tucker, S. I., Boyer-Thurgood, J. M., Mejia, J. A., & Norman, P. (2014, April). Experiencing 
Autoethnography. Invited Presentation, TCORE 123C: The Autoethnographic Self. Instructor: Dr. 
Rich Furman. University of Washington – Tacoma.  
 
Utah State University (USU) 
Tucker, S. I., Mejia, J.A., & Norman, P. (2015, January). From Many Stories, One: Reflecting on 
Autoethnographic Experiences. Invited Presentation & Panel, EDUC 7780: Qualitative Methods 
II. Instructor: Dr. Sherry Marx. Logan, Utah. 
 
Boyer-Thurgood, J. M., Tucker, S. I. & Mejia, J.A. (2014, January). Experiences with 
Autoethnography. Invited Presentation, EDUC 7780: Qualitative Methods II. Instructor: Dr. 
Sherry Marx. Logan, Utah. 
 
Tucker, S. I. (2013, July). Zotero: Getting Organized. Invited Presentation, TEAL 7050: 
Instructional Leadership. Instructor: Dr. Susan Turner. Logan, Utah. 
 
Tucker, S. I. (2012, March). Analyzing and Implementing REFractions: The Representing 
Equivalent Fractions Game. Invited Presentation, TEAL 6522: Mathematics for Teaching K-8: 
Rational Numbers and Proportional Reasoning. Instructor: Dr. Amy Brown, Logan, Utah.  

 
University—Teaching Presentations 
 

Utah State University (USU) 
Tucker, S. I. (2015, March). Barbie and Friends Take the Measure of Math for Social Justice. 
Teaching Workshop Presentation for Preservice Elementary Teachers, Logan, Utah. 
 
Tucker, S. I. (2015, February). Analyzing and Implementing REFractions via Inquiry: The 
Representing Equivalent Fractions Game. Teaching Workshop Presentation for Preservice 
Elementary Teachers, Logan, Utah. 
 
Tucker, S. I. (2014, October). Barbie and Friends Teach Math for Social Justice. Teaching 
Workshop Presentation for Preservice Elementary Teachers, Logan, Utah. 
 
Tucker, S. I. (2014, October). Analyzing and Implementing REFractions via Inquiry: The 
Representing Equivalent Fractions Game. Teaching Workshop Presentation for Preservice 
Elementary Teachers, Logan, Utah. 
 
Tucker, S. I. (2014, February). Analyzing and Implementing REFractions via Inquiry: The 
Representing Equivalent Fractions Game. Teaching Workshop Presentation for Preservice 
Elementary Teachers, Logan, Utah. 
 
Tucker, S. I. (2014, February). Barbie and Friends Teach Math for Social Justice. Teaching 
Workshop Presentation Workshop for Preservice Elementary Teachers, Logan, Utah. 

 
Tucker, S. I. (2013, February). Analyzing and Implementing REFractions: The Representing 
Equivalent Fractions Game. Teaching Workshop Presentation for Preservice Elementary 
Teachers, Logan, Utah. 
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Tucker, S. I. (2012, October). Investigating REFractions: The Representing Equivalent Fractions 
Game. Teaching Workshop Presentation for Preservice Elementary Teachers, Logan, Utah. 

 
Tucker, S. I. (2012, February). Investigating REFractions: The Representing Equivalent Fractions 
Game. Teaching Workshop Presentation for Preservice Elementary Teachers, Logan, Utah. 
 
Tucker, S. I. (2011, October). Fraction Interactions: Using Technology to Develop Fraction 
Concepts in the Elementary Classroom. Three Presentations, ELED 4060: Elementary 
Mathematics Methods. Instructors: Dr. Dicky Ng, Katie Anderson, and Jessica Shumway, Logan, 
Utah. 

  
PROFESSIONAL LEADERSHIP & SERVICE 

 
INTERNATIONAL SERVICE 

 
Session Chair 2014 Hawaii International Conference on Education  

o Early Childhood Education 
o Teacher Education 

 
NATIONAL SERVICE 

 
Reviewer (2015-present)  Technology, Knowledge, and Learning 
 
Reviewer (2014-present)  Journal of Teacher Education 
 
Reviewer (2012-present)  Teaching Children Mathematics, National Council of Teachers of 
Mathematics 

 
INSTITUTIONAL LEADERSHIP & SERVICE 

 
UTAH STATE UNIVERSITY 

Institutional Service—University Level 
 

Committee Membership 
 Department Teaching Excellence Award Committee, graduate student representative (2011-2013)  

o Reviewed application proposals, observed instruction, and determined winners of a 
$20,000 university-wide award intended for the department that best demonstrated it 
values learning and teaching excellence. Revised review process, including measures, 
scales, and procedures. 

 Graduate Student Interview Committee for Associate Vice President and Associate Dean of the 
School of Graduate Studies, member (2012) 

o Co-interviewed three candidates and provided feedback to inform the hiring process. 
 Graduate Student Senate Research and Projects Grant Review Committee, member (2012) 

o Reviewed graduate student research and project grant proposals to determine recipients 
of awards up to $1,000. 

 Graduate Robins Awards Selection Committee, member (2013) 
o Reviewed departmental nominations to determine university-wide winners of Graduate 

Researcher of the Year and Graduate Teaching Assistant of the Year awards. 
 Graduate Enhancement Awards Selection Committee, member (2013) 

o Reviewed graduate student applications to determine 20 recipients of merit-based $4,000 
grants. 
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Other Service 

 USU Physics Day, Judge, Mathematics, Science, Engineering, Achievement (MESA) Prosthetic 
Arm Challenge Contest (2014) 

o Judged the throwing distance & accuracy component of the MESA Prosthetic Arm 
Challenge Contest, high school section.  

 LGBTQA Allies, member (2013-present) 
o Trained and served as an LGBTQA Ally to help reduce homophobia and heterosexism on 

a personal and professional level. 
 

Institutional Service—College Level 
 

 Group Assessment Admissions Interviews, member (2013-present) 
o Collaborated to conduct group interviews and review candidates for entrance into the 

elementary education major. 
 Student Teaching Portfolio Reviewer (2011-present) 

o Reviewed pre-service teacher student teaching portfolios, provided feedback and scores 
according to Utah Effective Teaching Standards. 

 
CHARLOTTE-MECKLENBURG SCHOOL SYSTEM 

Institutional Service—District Level 
 

 Third Grade Math Alliance, East Learning Community, Member (2009-2010) 
 

Institutional Service—School Level 
CLEAR CREEK ELEMENTARY SCHOOL 

 
 Teacher/Parent/Student Mathematics Skills Development, Founder/Instructor (2011) 
 Third Grade Mathematics Tutoring, Co-founder/Instructor (2011) 
 Clear Creek Elementary Technology Drive, Founder/Leader (2011) 
 PTA Communications Committee, Member (2010-2011) 
 School Scrabble Club, Creator/Instructor (2010-2011) 

 
ALBEMARLE ROAD ELEMENTARY SCHOOL 

 
 Maximizing Teacher Utilization of Smart Board Resources, Founder/Instructor (2009-2010) 
 National Young Scholars Program Student Fundraiser, Founder/Leader (2009) 
 Albemarle Road Elementary School Math Leadership Committee, Member (2008-2010) 
 School Scrabble Club, Founder/Instructor (2008-2010) 

PROFESSIONAL AFFILIATIONS & LEADERSHIP ROLES 
 
 American Educational Research Association, Member (2014-present) 

o Division I: Education in the Professions (2014-present) 
o Division C: Learning and Instruction (2014-present) 
o Division K: Teaching and Teacher Education (2014-present) 
o Special Interest Group: Research in Mathematics Education (2014-present) 
o Special Interest Group: Technology, Instruction, Cognition, and Learning (2014-present) 

 International Group for the Psychology of Mathematics Education, Member (2014-present) 
 Association of Mathematics Teacher Educators, Member (2012-present) 
 National Council of Teachers of Mathematics, Member (2011-present) 
 Utah Council of Teachers of Mathematics, Member (2011-present) 
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