Utah State University
DigitalCommons@USU

Problem Set 7

Charles G. Torre
charles.torre@usu.edu

Follow this and additional works at: https://digitalcommons.usu.edu/foundation_wave
Part of the Physics Commons
To read user comments about this document and to leave your own comment, go to https://digitalcommons.usu.edu/foundation_wave/32

Recommended Citation

Torre, Charles G., "Problem Set 7" (2014). Foundations of Wave Phenomena. 32.
https://digitalcommons.usu.edu/foundation_wave/32

This Book is brought to you for free and open access by the Open Textbooks at DigitalCommons@USU. It has been accepted for inclusion in Foundations of Wave Phenomena by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

PROBLEM SET 7

Problem 7.1

Recall the mechanical system consisting of two coupled oscillators. The kinetic energy T for the system is defined as usual $\left(T=\frac{1}{2} m\left(v_{1}^{2}+v_{2}^{2}\right)\right)$. The potential energy is denoted by $V\left(x_{1}, x_{2}\right)$ and is defined so that the force, F_{i}, on the $i^{t h}$ particle $(i=1,2)$ is given by

$$
F_{i}=-\frac{\partial V}{\partial x_{i}} .
$$

Find the form of V, and prove that the total energy $E=T+V$ is conserved, that is, $\frac{d E}{d t}=0$ for solutions of the equations of motion.

Problem 7.2

Solutions to the wave equation have a conserved momentum. The momentum density for a wave $q(x, t)$ is defined by

$$
\rho=\frac{\partial q}{\partial t} \frac{\partial q}{\partial x} .
$$

Find the corresponding momentum current density j for the wave. (Hint: Use the continuity equations.)

Problem 7.3

Recall the Gaussian wave

$$
q(x, t)=A\left[e^{-(x-v t)^{2}}+e^{-(x+v t)^{2}}\right] .
$$

Compute the total energy contained in this wave by integrating the energy density $\rho(x, t)$ over all x and show that the result does not depend upon the time t.

Problem 7.4

In the previous problem, it is shown that the total energy of the Gaussian wave is time independent. Explain this result by showing that the energy current density j vanishes as $x \rightarrow \pm \infty$.

Problem 7.5

Verify that

$$
\rho(\vec{r}, t)=\frac{1}{2}\left[\left(\frac{\partial q}{\partial t}\right)^{2}+v^{2}(\nabla q \cdot \nabla q)\right]
$$

and

$$
\vec{j}(\vec{r}, t)=-v^{2} \frac{\partial q}{\partial t} \nabla q .
$$

satisfy the continuity equation when q satisfies the (3-d) wave equation.

Problem 7.6

If $q(\vec{r}, t)$ depends only upon x and t (i.e., q is independent of y and z) show that the 3 -dimensional forms for the energy density, energy current density, and continuity equation reduce to the 1-dimensional results.

Problem 7.7

Use the divergence theorem (14.33) to derive (14.28).

Problem 7.8

Verify (14.17). Show that the time rate of change of energy in the region is the net flux of energy into the region (14.18).

Problem 7.9

Derive the approximate formula (14.40).

Problem 7.10

Show that the quantity

$$
\Pi(t)=\int_{-\infty}^{\infty} d x \frac{\partial q(x, t)}{\partial t}
$$

is independent of t (i.e., is a conserved quantity) for all solutions q of the one-dimensional wave equation whose first derivatives vanish at infinity,

$$
\lim _{x \rightarrow \pm \infty} \frac{\partial q(x, t)}{\partial x}=0 .
$$

Problem 7.11

Compute the energy contained in a cylindrically symmetric wave within a cylinder about the z axis of radius R as a function of time. Compute the flux of the energy current density through the cylinder and verify conservation of energy.

