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Abstract

Effective Properties of Randomly Oriented Kenaf Short Fiber Reinforced Epoxy

Composite

by

Dayakar Naik L, Doctor of Philosophy

Utah State University, 2015

Major Professor: Dr. Thomas H. Fronk
Department: Mechanical and Aerospace Engineering

Natural fibers have drawn attention of researchers as an environmentally-friendly alter-

native to synthetic fibers. Developing natural fiber reinforced bio-composites are a viable

alternative to the problems of non-degrading and energy consuming synthetic composites.

This study focuses on (i) the application of kenaf fiber as a potential reinforcement and, (ii)

determining the tensile properties of the randomly oriented short kenaf fiber composite both

experimentally and numerically. Kenaf fiber micro-structure and its Young’s modulus with

varying gage length (10, 15, 20, and 25.4 mm) were investigated. The variation in tensile

strength of kenaf fibers was analyzed using the Weibull probability distribution function.

It was observed that the Young’s modulus of kenaf fiber increased with increase in gage

length. Fabrication of randomly oriented short kenaf fiber using vacuum bagging techniques

and hand-lay-up techniques were discussed and the tensile properties of the specimens were

obtained experimentally. The tensile modulus of the composite sample at 22% fiber volume

fraction was found to be 6.48 GPa and tensile strength varied from 20 to 38 MPa. Nu-

merical models based on the micro mechanics concepts in conjunction with finite element

methods were developed for predicting the composite properties. A two-step homogeniza-

tion procedure was developed to evaluate the elastic constants at the cell wall level and the



iv

meso-scale level respectively. Von-Mises Fisher probability distribution function was ap-

plied to model the random orientation distribution of fibers and obtain equivalent modulus

of composite. The predicted equivalent modulus through numerical homogenization was in

good agreement with the experimental results.

(154 pages)



v

Public Abstract

Effective Properties of Randomly Oriented Kenaf Short Fiber Reinforced Epoxy

Composite

by

Dayakar Naik L, Doctor of Philosophy

Utah State University, 2015

Major Professor: Dr. Thomas H. Fronk
Department: Mechanical and Aerospace Engineering

Natural fibers have drawn attention of researchers as an environmentally-friendly alter-

native to synthetic fibers. Developing natural fiber reinforced bio-composites are a viable

alternative to the problems of non-degrading and energy consuming synthetic composites.

This study focuses on (i) the application of kenaf fiber as a potential replacement for glass

fibers and (ii) determining the mechanical properties of the randomly oriented short kenaf

fiber composite both experimentally and numerically. Kenaf fiber micro-structure and its

mechanical properties with varying gage length (10, 15, 20, and 25.4 mm) were investi-

gated. The variation in tensile strength of kenaf fibers was analyzed using a statistical

method called Weibull probability distribution function. It was observed that the Young’s

modulus of kenaf fiber increased with increase in gage length. Fabrication of randomly ori-

ented short kenaf fiber using vacuum bagging techniques and hand-layup techniques were

discussed and the tensile properties of the specimens were obtained experimentally. The

tensile modulus of the composite sample at 22% fiber volume fraction was found to be

6.48 GPa and the tensile strength varied from 20 to 38 MPa. Simultaneously, a computer

program (finite element method) was written to predict the tensile properties of composites
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using a micro mechanics approach. The predicted equivalent modulus through a computer

program (finite element method) was in good agreement with the experimental results.
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Chapter 1

Introduction

1.1 Background

The composite material is processed from a mixture of two or more different materials

in certain proportions. Generally speaking, composite comprises a fiber reinforcement em-

bedded in a polymeric matrix. The motivation behind the invention of a composite material

comes from the demand of low weight and high strength material for the aerospace industry.

The major work in this area was carried out during 1960’s and to date there are several

types of composites being developed for various applications [1]. Examples of some syn-

thetic fibers are glass, carbon, boron, aramid and Kevlar. Commercially available polymer

matrices include epoxy, polypropylene and polyethylene. Metals and ceramics are also used

as matrix materials in composite processing. A wide range of these composite materials

have been successfully used for structural applications in the aircraft, space, automotive,

marine and infrastructure industries.

Generally, for structural applications, composite laminates are processed by stacking

lamina with varying fiber orientations to achieve the desired structural behavior. Structural

functionality includes high tensile load carrying members; low thermal expansion, thermal

barriers etc; and sometimes discontinuous fiber composite as shown in Fig 1.1. The me-

chanical behavior of such laminates is anisotropic in nature, meaning it depends on the fiber

and matrix properties, fiber orientation and volume fraction, the interface bond between

fiber and matrix, and processing techniques. The choice of a particular composite process-

ing technique depends on the type of matrix to be used for composite, either thermoset or

thermoplastic. Techniques used for thermoset kind matrix include resin transfer molding,

vacuum assisted resin transfer molding, compression resin transfer molding, and pultrusion

process. Thermoplastic kind matrix includes compression molding, filament winding and
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injection molding. Application of these techniques depends on the type of structure (flat or

complex), rate of production and type of application.

Fig. 1.1: Various Types of Composites

Most of the existing composite materials (both fibers and polymers) are processed from

petroleum based products and the previously mentioned processing techniques are power

consuming. Consequently, some concerns associated with the commercially available com-

posites are high energy consumption, non-recyclability, non-renewability and cost. There

is a need for developing an alternate composite material or processing technique that is

economical, low energy consuming and environmental friendly. In recent years, researchers

explored the potential natural fibers (derived from plants and animals) as a replacement

for synthetic fibers. An experimental investigation of some natural fibers conducted by S.

V. Joshi et al.[2] proved to be capable of replacing E-glass fibers. At this point, before

proceeding into details, the following questions must be answered:

• What is the morphology of natural fibers?

• Do these fibers have enough benefits to replace existing commercial fibers?

• How does one process a natural fiber reinforced composite?

• What are the major advantages and applications of natural fiber composites?
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Natural fibers in this context imply those derived or obtained from plants. These fibers

can be obtained from different parts of a plant, including the stem, leaf, root, core and fruit

[3]. The fibers obtained from the stem are called bast fibers and those obtained from the

leaf, root and fruit are called leaf fibers, root fibers and fruit fibers respectively. Examples

of bast fibers are hemp, flax, kenaf, and jute, leaf fibers are abaca, sisal and pineapple, and

fruit fibers are cotton, coir and kapok [3]. A summary of worldwide production of various

natural fibers was given in [3, 4]. It was observed that the bast fibers are most commonly

used, followed by leaf and fruit fibers, proving their abundance in nature. This is why

past few years of research have focused on using bast fibers as a replacement for synthetic

fibers. The potential of various bast fibers as a composite reinforcement is discussed in the

subsequent sections. Once the source for fibers has been chosen, the next step is extracting

fibers from the stem (known as retting). Various retting processes currently used in industry

include dew-retting, water retting, chemical retting and physical methods [4]. The effect of

retting methods on the bast fiber properties was collectively discussed in a review article [4].

Water retting results in good quality fiber but takes 2-3 weeks, whereas chemical retting

is done quickly and results in decreased strength of the fibers. The process of retting is

followed by decortication, carding and spinning into yarn. The full process of various fiber

extractions [5] is shown in Fig 1.2.

Table 1.1: Comparison of Natural and E-glass Fiber Properties

Properties E-glass Hemp Jute Ramie Coir Sisal Flax Cotton

Density (g/cm3) 2.55 1.48 1.46 1.5 1.25 1.33 1.4 1.51

E-modulus (GPa) 73 70 10-30 44 6 38 60-80 12

Specific modulus 29 47 7-21 29 5 29 26-46 8

The potential (specific modulus) of the natural fibers as a reinforcement was studied

by Wambua et al. [6] and shown in Table 1.1. Five different fibers; sisal, kenaf, hemp,

jute and coir were selected in [6] and a polypropylene matrix based composite was pro-

cessed. The mechanical properties of these composites were compared to that of E-glass

fiber reinforced composites. Specific modulus of natural fiber reinforced and E-glass fiber

reinforced composites were reported to be comparable except in the case of coir. Earlier
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research focused on flax, hemp, bamboo and jute fibers due to their abundant availability

and extensive use in the textile industry. This study will focus on a similar common fiber

source, the kenaf plant. Kenaf fiber secures third place in terms of worldwide production

(870.103 ton per year) after jute. In addition to its availability, kenaf belongs to the same

family as the jute plant [7] and is likely to share jute’s desirable properties. There is a need

for research about kenaf fiber properties and its surface characteristics if it is to become a

successful reinforcement for composite production.

Fig. 1.2: Processing Steps of Natural Fiber

Unlike artificial fibers, natural fibers show great variation in their mechanical properties

due to: growth conditions, age of the plant, which part of the stem they are extracted

from, varying constituent’s fraction at the microscopic level, etc. Shinji Ochi [8] reported

the variation of kenaf fiber modulus as a function of fiber location on the stem, where

fibers obtained from the bottom part of a plant exhibited more tensile strength (about
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20% more). The tensile strength of a fiber determined experimentally at the macroscopic

scale is governed by the structure and the chemical composition present at the microscopic

scale. Most of the materials available in nature are composite in nature (i.e. the material is a

mixture of different chemical constituents). Similarly, bast fibers also consist of constituents

namely: cellulose, hemicellulose, lignin, pectin and waxes at the microscopic scale [3]. Fibers

obtained from different plants have variation of these constituents and consequently exhibit

different properties. The volume fraction of each constituent in different fibers was reported

in [3, 4] and is presented here in Table 1.2.

The major advantages of developing natural fiber based composites include low cost,

low density, recyclability, low pollution, no health hazards and effective utilization of re-

sources [2]. To this point, natural fiber composites can be used for secondary structural

application due to their lower tensile strength and mechanical properties compared to that

of primary structural applications. Some applications were listed in [10, 11] that includes

seat backs, dashboards, door panels, and sports goods. In order to expand the use of natural

fiber based composites, further detailed investigations are required with a focus on strength

improvement.

1.2 Kenaf Fiber as Reinforcement for Composites

Kenaf (Hibiscus Cannabinus) is an annual herbaceous fiber plant from the tropical and

subtropical regions of Africa and Asia [12, 13]. It is also found in the parts of Europe and

USA. Kenaf plants grow up to 4m in about 3-4 months with a base diameter of 3-5 cm.

The cost of kenaf fibers in the year 2000 was $278-302 per ton and 15MJ of energy was

consumed to produce 1 kg of kenaf fiber, where glass fibers consumed 54MJ [14]. After

processing, the average length of a kenaf fiber available in the market is around 70 mm with

the diameter ranging from 10 µm to 80 µm. The potential of kenaf fiber as a reinforcement

in composite was reported by various authors [6, 12, 15] in the past by comparing the

specific modulus of a composite with that of glass fiber reinforced composite. The tensile

modulus of kenaf fiber reinforced polypropylene composite was reported to be the same as

that of glass fiber mat reinforced composite [6] at 22% volume fraction. A discussion on
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manufacturing problems of kenaf fiber reinforced composite, due to the limited available

length of fiber, was produced by Zampaloni et al. [12]. They concluded that the short fiber

and compression molding technique resulted in a composite with 40% weight fraction of

fiber and greater specific strength compared to E-glass fiber composite. Most of the research

investigations in the past were conducted on composites processed through thermoplastic

techniques that required high temperature and pressure during processing. These higher

temperatures (1600C), resulted in reduced tensile strength [8] which consequently resulted

in reduced composite properties. An alternative to thermoplastic processing is thermoset

processing, which does not require higher temperatures. It is also a good technique for

fabrication of complex structures.

Table 1.2: Volume Fraction of Basic Constituents in a Bast Fiber

Fiber Cellulose (%) Hemicellulose (%) Lignin (%) Reference

Jute
61-71 14-20 12-13 [3]
51-84 12-20 5-13 [4]
45-63 21-26 18-21 [9]

Kenaf
72 20.3 9 [3]

44-57 21 15-19 [4]

Hemp
68 15 10 [3]

70-92 18-22 5-3 [4]

Flax
71 18.6-20.6 2.2 [3]

60-81 14-19 2.3 [4]

The Young’s modulus of kenaf fiber varied from source to source [7]. Many factors,

such as growth conditions, location on the stem from where the fiber is obtained, varying

composition of basic constituents, and defects such as kink bands, can influence the fiber

properties. Along with the above mentioned factors, the cross sectional area calculation of

the fiber also plays a vital role in determining the Young’s modulus. The effective properties

of a composite are a function of fiber volume fraction, Young’s modulus and its geometry,

orientation of fibers, interfacial bonding between fibers and matrix and defects such as

voids. Therefore, the behavior of kenaf fibers should be explored in detail. To the authors

knowledge, neither has there been significant effort to determine the interfacial properties of

kenaf fiber and epoxy matrix, nor to explore the option of short kenaf fiber as reinforcement.
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This study aims at determining Young’s modulus of kenaf fiber and its composite (fabricated

through hand-lay-up technique) and develop a numerical homogenization model to predict

the effective properties of the composite. Objectives are discussed more specifically in the

next chapter.

1.3 Review of Literature

The organization of this section is as follows: micro-structure of bast fiber, mechanical

properties of kenaf fibers and its composites.

Micro-structure of any bast fiber consists of a bundle of cell walls together with a

middle lamella as an interfacing layer. Cell walls are hollow laminated composite tubes

(cross-section) consisting of Primary (P) and Secondary (S1, S2 and S3) layers with varying

micro fibril or cellulose orientation in each layer. Volume fraction of basic constituents in

kenaf fiber is: cellulose 44% - 72%, hemicellulose 20%-22% and lignin 9%-19% based on

values presented in Table 1.2. The schematic representation of cell wall structure of a bast

fiber is shown in Figure 1.3. The micro-structure of a kenaf fiber obtained from an optical

microscope and a scanning electron microscope is presented in Chapter 3.

Fig. 1.3: Schematic Representation of Bundle of Cell Walls in Bast Fiber

It is a well-known fact that the effective properties of a composite are governed by the
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Table 1.3: Tensile Strength and Modulus of Various Bast Fibers from Literature

Fiber Tensile Strength (MPa) Tensile Modulus (GPa) Reference

Jute

400-800 10-30 [7]
533 20-22 [7]

393-773 26.5 [7]
860 60 [13]

Kenaf
223 14.5 [7]

240-600 14-38 [13]
930 53 [17]

Hemp

550-900 70 [7]
270 23.5 [7]

534-900 30-90 [7]
900 34 [7]
920 70 [13]
690 70 [17]

Flax

800-1500 60-80 [7]
1339 54 [7]

343-1035 27.6 [7]
1339 58 [13]

properties of a fiber, matrix and fiber/matrix interface. Experiments were conducted to

calculate kenaf fiber modulus, considering fixed gauge length, loading rate, and the effect of

moisture content. The results were collectively reported in several review papers, which are

compiled and presented in Table 1.3. A significant variation in tensile strength and mod-

ulus values were observed due to varying chemical composition in fibers and uncertainties

associated with measurements of fiber dimensions. Measuring a cross-sectional area of a

fiber provides a major challenge, which is significant in calculating stress and determining

the Young’s modulus of a kenaf fiber. Any assumption of a circular, elliptical or other cross-

sectional shape will produce results with more uncertainty. Obtaining specimen dimensions

(gage length) of the fiber to be tested is vital in calculating a reliable Young’s modulus.

Studies conducted on the sisal fibers [18] showed that there is no effect of gage length on

the fiber properties, whereas studies conducted on polymeric fibers [19] showed that gage

length plays a major role, with defects increasing with an increase in length. There has been

no significant effort made to obtain reliable value of kenaf fiber modulus by considering the

rate of loading, standard gage length and appropriate techniques for cross-sectional area
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measurement.

Kenaf fibers were mostly reinforced in a PLA/PP polymeric matrix and tensile (Ta-

ble 1.4), flexural and impact properties were obtained. Tensile modulus of these kinds of

composites were already discussed in section 1.2. Not many studies have been conducted

on using thermoset polymers, though they provide more wettability, lower cost and are

more effective for manufacturing of complex shapes. To attain composites with increased

strength, effects of kenaf fiber surface treatments were investigated. 3% maleated anhy-

dride poly-propylene (MAPP) improved the strength by 30% [19] and 3% alkali improved

the strength by 20% [20].

Table 1.4: Tensile Modulus of Kenaf Fiber Composites

Material Tensile Modulus (GPa)

Kenaf/PLA
6.3 [14]
20 [8]

Kenaf/PP
8.3 [9]

4.84 [12]
1.2 [16]

Most of these results were based on an indirect measurement technique (i.e., compos-

ites were fabricated from chemically treated fibers and the strength of the composite was

measured). This method does not guarantee the optimum volume fraction of fibers, as the

fiber aspect ratio is not known. A single fiber pull out test will result in evaluating fiber/-

matrix interfacial strength and fiber aspect ratio, which governs the composite properties.

Detailed interfacial studies [21] were conducted on flax and hemp fibers that showed that 9

mm and 13 mm are the critical lengths for complete stress transfer.

Little attention has been given to numerical modeling of the composites reinforced

with natural fibers. Few models were developed in the past for modeling the behavior

of wood and fibers using laminate theory. These are discussed in Chapter 4 in detail.

From the literature, it can be concluded that there is a need for fundamental investigations

on obtaining appropriate tensile modulus of a kenaf fiber, elastic constants of kenaf fiber

reinforced epoxy composite and numerical modeling a natural fiber composite. Dissertation
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objectives were set based on the conclusions from existing literature and are presented in

the next chapter.

1.4 Structure of Dissertation

This dissertation is divided into five chapters followed by references at the end. The

chapters are as follows:

1. Introduction

2. Research Objectives

3. Experimentation

4. Numerical Modeling

5. Summary, Conclusion, and Future Work

The first chapter discussion involves the background of natural fiber composite, a lit-

erature review and some conclusions drawn from the past research, based on which the

dissertation work was established. Chapter 2 lists the research objectives followed by a

section explaining the approach used to accomplish the objectives. Chapter 3 explains

the experimental work carried out to determine tensile modulus of kenaf fibers, fabrication

technique of kenaf fiber reinforced composite, and concludes with an evaluation of Young’s

modulus and Poisson’s ratio through tensile tests. Chapter 4 provides the 3D finite element

micromechanical model of natural fiber composite to predict the homogenized or effective

properties of natural fiber composite. Chapter 5 summarizes the research study, findings

and conclusions from this work, and proposes further future work.
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Chapter 2

Research Objectives

2.1 Objectives

• To determine the Young’s modulus of a kenaf fiber through tensile test by considering

the appropriate fiber cross-sectional area after failure.

• To determine Young’s modulus and Poisson’s ratio of a kenaf short fiber reinforced

composite.

• To develop a RVE based model of a randomly oriented kenaf short fiber composite

that predicts the approximate effective properties of a composite as a function of fiber

volume fraction and its equivalent properties.

2.2 Research Approach

Based on the research objectives established in the previous section, the following tasks

have been identified and proposed. The tasks can be divided into two main categories:

experimentation and numerical modeling.

Experimentation

• To explore the micro-structure of kenaf fiber bundles through optical microscopy and

scanning electron microscope examination. This task will help in understanding the

structural morphology of the fiber.

• To find out a novel technique for evaluating the cross-section of kenaf fiber during a

tensile test. This plays a major role in evaluating the tensile modulus of kenaf fiber.

• To investigate the effect of gage length on Young’s modulus of kenaf fiber subjected

to quasi-static loading. The purpose of this task is to examine the strength-limiting
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defect over a certain length of fiber. With the increase in gage length, there is a

possibility of included defect that limits the tensile strength of the fiber.

• To fabricate the kenaf short fiber epoxy composite by vacuum bagging technique and

hand-lay-up technique. This task involves two processing techniques in preparing the

tensile test specimens.

• To perform a tensile test on kenaf fiber reinforced composites and evaluate the Young’s

modulus and Poisson’s ratio.

Numerical Modeling

• To predict the elastic constants of cell wall layers in bast fiber through unit cell

modeling of the structure at the microscale. The elastic constants as a function of

varying volume fractions of basic constituents in each layer of cell wall will be studied

by developing a parametric 3D finite element model.

• To predict the effective properties of a unidirectional natural fiber composite through

unit cell modeling of the structure at the meso-scale. This homogenization model

incorporates the elastic constants obtained from the previous step as the cell wall

layer properties. Also, the effective properties as a function of micro fibril angle in

the S2 layer of cell wall will be investigated.

• To generate the RVE geometry of randomly oriented short fibers by applying the

Von-Mises Fisher probability distribution function.

• As a final step, applying the orientational averaging technique (Von-Mises Fischer

PDF) on the unidirectional composite properties to evaluate the quasi-isotropic prop-

erties of a randomly oriented short fiber composite.
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Chapter 3

Experimentation

3.1 Micro-Structure of Kenaf Fiber

The micro-structure of a natural fiber consists of a cell wall bundle, as stated in Chapter

1. The shape of a cell wall is polygonal and governs the cross-sectional geometry of a

fiber. This section presents the micro-structure of kenaf fibers examined under an optical

microscope and scanning electron microscope (SEM). To view the micro-structure under an

optical microscope, a polished mounting specimen was prepared with kenaf fibers encased in

an epoxy matrix. The cross-section of kenaf fibers obtained at 50X magnification are shown

in Figure 3.1. Figure 3.1(a)-3.1(d) reveals the inconsistency in cross-sectional shape and

the presence of voids called lumen in the cell wall. The cell walls are seen to be circular or

elliptical in the optical microscopic images. A scanning electron microscope (SEM) image

of a single kenaf fiber, as shown in Figure 3.2, depicts the delamination of cell walls and

kink bands. A single cell wall image shown in Figure 3.2(b) is hollow and rectangular in

shape, with dimensions 13 µm X 7 µm X 2 µm.

The optical microscopic images obtained along the axial direction of kenaf fibers (as

shown in Figure 3.3) displays the defects present in the fiber. The possible defects along

the fiber axial direction include varying diameter, fiber damage and delaminated cell walls.

These defects combined with fiber anisotropy at micro scale level play an important role in

the fiber properties.

3.2 Influence of Gage Length on Kenaf Fiber’s Young’s Modulus

The tensile modulus of artificial fibers (glass, carbon, Kevlar) and natural fibers de-

pends on the test speed and their gage length [23]. When compared with artificial fibers,

kenaf fibers display more uncertainty towards the consistent properties. The tensile testing
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(a) (b) (c)

(d)

Fig. 3.1: Optical Microscopic Image of Kenaf Fibers at 50X Magnification

(a) Bundle of Cell Walls (b) Cell Wall

Fig. 3.2: Scanning Electron Microscopic Image of Kenaf Fibers

of kenaf fiber with varied gage length decides the critical length of the kenaf fiber. In other

words, the influence of defects is less pronounced towards the tensile modulus at the critical

length. This section describes the experimental methodology used to determine the tensile

modulus of kenaf fiber and evaluate the associated uncertainties.

3.2.1 Materials and Procedure

The carded kenaf fibers, averaging 70mm in length, were obtained from Bast Fiber

LLC. The gage lengths of 10, 15, 20 and, 25.4 mm were chosen to study the influence of

gage length on fiber properties. At least ten specimens were tested for each gage length as
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(a) Fiber Delamination

(b) Reduction in Cross-Sectional Area

(c) Diameter Variation Along Length

(d) Fiber Damage

Fig. 3.3: Optical Microscopic Image of Kenaf Fibers Along the Length

per ASTM D3822 standards, Standard Test Method for Tensile Properties of Single Textile

Fibers.

A paperboard of width (25.4mm) suitable for tensile testing was prepared with varying

gage lengths as shown in Figure 3.4(a). The fibers were fixed on the paperboard as per

ASTM D3822 standards and shown in Figure 3.4(b). A tensile test was performed on the

Instron 5848 micro tensile tester machine maintaining an extension rate of 1 mm/min [24].

Before testing each individual fiber, auto calibration was done and load-extension curve was

recorded. The detailed procedure is explained below:
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Procedure

1. A single kenaf fiber (technical fiber) of length 60-70mm was randomly selected from

the sample (up to 15 fibers).

2. As the fibers are naturally curved, they were straightened with proper care while

being fixed on the paperboard. The fiber fixation on paperboard is shown in Figure

3.4(b).

3. Using forceps, the prepared paper frame in step 2 was carefully mounted on the tensile

testing machine and the grips were tightened, followed by cutting the paper frame as

shown in Figure 3.4(c).

4. Bluehill software available on the Instron machine was launched and auto calibration

was done. Tensile testing speed was set to 1 mm/min to carry out a quasi-static test

and the load-extension curve of fibers was recorded.

5. Specimens that failed close to grip or slipped during the test were discarded and the

data of at least 10 specimens were recorded.

6. The tested fibers were carefully stapled to the paper, which was later used for evalu-

ating the cross-sectional area of fibers at the break point.

3.2.2 Cross-Sectional Area Measurement

The cross-sectional image of kenaf fiber was acquired using an optical microscope, based

on the assumption that cross-section remains the same after failure. The mounted speci-

men, for observation under an optical microscope, was prepared by following the procedure

described below:

Procedure

1. Two rectangular hollow boxes (top mold and bottom mold), as shown in Figure 3.5,

were prepared using MPPA blocks.
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(a) Paperboard (b) Fiber Fixation (c) Frame Cut Before Applying
Load

Fig. 3.4: Fixation of Kenaf Fiber Specimen for Tensile Test on Paperboard

2. Double sided tape (blue) was fixed on the faces of the bottom block to adhere to the

fibers.

3. Fibers were carefully attached to the tape, so that the break point of the fiber was

close to the edge of the block.

4. The upper mold was placed on the bottom block to create a full box and sealed on

all sides using duct tape.

5. The mixed epoxy resin was poured into the mold and left for curing.

6. The resulting mounted sample from Step 5 was grinded and polished to prepare the

specimen for observation under an optical microscope.

Four such mounted specimens were prepared, each corresponding to a particular gage

length, and images were acquired at 50X magnification. The acquired images were then

analyzed using an ImageJ software to evaluate the cross-sectional area. The process of

measurement requires an image of the calibrated scale (stage micrometer), acquired at the
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Fig. 3.5: Specimen Preparation for Measuring Area of Fiber

same magnification as that of the fiber. In this study, a Nikon stage micrometer with 0-1

mm range was used as a calibration scale, shown in Figure 3.6. The optical microscopic

images and the evaluated images from ImageJ software are presented in Appendix Table

A.1-A.4

Fig. 3.6: Calibration Scale at 50X Magnification

3.2.3 Uncertainty in Area Calculation

The linear dimension associated with the image was evaluated as a product of con-

version factor (k) and the number of pixels occupied by the image. Mathematically, it is

expressed as [25,26],

s = kN (3.1)

where k is the conversion factor and N is the number of pixels

Following Taylor Series Method (TSM) approach [27], the uncertainty associated with the
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image based measurement is expressed as:
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s
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=
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k

)2
+
(uN
N

)2
(3.2)

where us, uk and, uN are the uncertainties associated with the linear dimension, conversion

factor and the number of pixels respectively. The uncertainty associated with conversion

factor k is given by Equation 3.3 [26]
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where m is the dimension on calibration scale and Nl is the number of pixels obtained for

the calibrated length.

The uncertainty quantification of each term in Equation 3.3 was done by assuming proba-

bility distributions as presented in [26]
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The uncertainty of cross-sectional area is then quantified as
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(3.7)

3.2.4 Uncertainty in Young’s Modulus

The tensile (initial) modulus of kenaf fiber was evaluated using the expression given

in ASTM D638 Standard. The stress-strain curve of kenaf fibers obtained for various gage

lengths are shown in Figure 3.7 and 3.7. Compliance correction was neglected during

calculations, as the cross-sectional dimensions vary from fiber to fiber. Following the step

by step procedure explained in [28], the uncertainty associated with the tensile modulus
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was quantified.

The slope and standard deviation associated with the load-deformation curve of a fiber

was calculated using Equations 3.8 and 3.10,

m =
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(3.14)

The Young’s modulus of a fiber in terms of stiffness is then expressed as Equation 3.15

E = m
L

A
(3.15)
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and the uncertainty according to TSM approach is given by Equation 3.16. The Young’s

modulus with associated uncertainty is shown in Figure 3.8

(uE
E
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m

)2
+
(uL
L

)2
+
(uA
A

)2
(3.16)

(a) Gage Length of 25.4 mm

(b) Gage Length of 20 mm

Fig. 3.7: Kenaf Fiber Stress-Strain Curve
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(c) Gage Length of 15 mm

(d) Gage Length of 10 mm

Fig. 3.7: Kenaf Fiber Stress-Strain Curve (Contd)
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Table 3.1: 25.4 mm

Specimen Stiffness (N/mm) Young’s Modulus (GPa) uE

1 1.37 34.852 0.201

2 1.47 22.949 0.133

3 1.08 30.523 0.176

4 1.70 61.567 0.356

5 2.03 22.264 0.129

6 1.87 33.037 0.191

7 1.91 31.831 0.184

8 2.99 40.203 0.232

9 2.66 34.587 0.2

10 0.74 28.701 0.166

Young’s Modulus 30.994 ± 4.108 GPa

Table 3.2: 20 mm

Specimen Stiffness (N/mm) Young’s Modulus (GPa) uE

1 1.79 25.694 0.148

2 2.32 35.35 0.204

3 2.82 29.80 0.172

4 1.21 11.768 0.068

5 1.85 14.753 0.085

6 2.96 23.99 0.139

7 2.72 21.026 0.121

8 2.81 16.355 0.094

9 2.18 25.57 0.148

10 2.98 27.995 0.162

Young’s Modulus 23.23 ± 5.225 GPa
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Table 3.3: 15 mm

Specimen Stiffness (N/mm) Young’s Modulus (GPa) uE

1 6.37 19.475 0.112

2 3.62 26.106 0.151

3 1.20 31.489 0.182

4 0.99 15.03 0.087

5 2.23 20.522 0.119

6 2.42 26.98 0.156

7 1.19 12.72 0.073

8 1.06 12.061 0.07

9 0.97 12.058 0.07

10 2.21 12.004 0.07

Young’s Modulus 18.845 ± 6 GPa

Table 3.4: 10 mm

Specimen Stiffness (N/mm) Young’s Modulus (GPa) uE

1 1.11 12.29 0.071

2 1.81 9.08 0.052

3 2.51 15.54 0.09

4 0.66 8.58 0.05

5 1.066 10.39 0.06

6 1.68 12.28 0.071

7 1.09 9.86 0.057

8 0.954 11.41 0.066

9 1.51 9.1 0.053

Young’s Modulus 10.948 ± 1.694 GPa
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Fig. 3.8: Young’s Modulus of Kenaf Fiber with Varying Gage Length

Remarks on Young’s Modulus

1. The stress-strain curve of kenaf fiber exhibited linear behavior and brittle failure.

2. Based on the weakest links theory, the tensile strength of each fiber is influenced by

the defects present along the length of the fiber and voids present in the cross sectional

area. More detailed statistical analysis is presented in the next section.

3. The micro fibril orientation at the microscopic scale also plays a major role in the

tensile properties of kenaf fiber.

4. The tensile modulus of kenaf fiber as a function of gage length was observed from the

experiment. Though the wide variability in Young’s modulus was seen in the data

presented in Table 3.5-3.8, an overall observation suggests that the Young’s modulus

decreased with a decrease in gage length. The mean values of Young’s modulus
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calculated are 10.948, 18.845, 23.23 and 30.994GPa for gage lengths of 10, 15, 20, and

25.4 mm respectively.

3.2.5 Weibull Analysis for Tensile Strength of Kenaf Fiber

Kenaf fiber exhibited the brittle failure mode under tensile loading, and it was observed

that the tensile strength varied among fibers. Such brittle behavior of the fiber is governed

by the number of flaws present in the volume of material [29]. Strength characterization of

brittle materials is mathematically expressed by a probability distribution function known

as Weibull Distribution. This mathematical expression used to explain the probability of

failure of a chain with n weakest links, is given as [30]

φ(z) = 1− exp

[(
z − zo
zs

)β]
(3.17)

where zs and β are scale and shape parameters respectively. Weibull distribution (CDF)

Fig. 3.9: Weibull Probability Density Function with Varying Shape and Scale Parameters

[31] applied for strength characterization of brittle materials, based on the assumption that
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the strength of a material is directly proportional to volume of flaws V , yields

P (σ) = 1− exp

[
−V

(
σ

σo

)m]
(3.18)

where P (σ) is the probability of fiber failure below specified stress σ, V is the volume of

flaws, m is the Weibull modulus and σo is the characteristic strength. The higher value

of the Weibull modulus m signifies less variation in the tensile strength of a material.

When the cross-sectional area is constant, Equation 3.18 can be modified and expressed as

Equation 3.19. The average strength of the material is then evaluated as the expectation

of distribution as shown in Equation 3.20.

P (σ) = 1− exp

[
−L

(
σ

σo

)m]
(3.19)

σ̄ = σoΓ

(
1 +

1

m

)
L
−1
m (3.20)

Application of the equation 3.19 was observed to be inadequate in characterizing the

strength of Nicalon ceramic fibers with varying diameters [32]. Therefore, a three parameter

model was proposed by Zhu et al. [31, 32], as shown in Equation 3.21, which takes diameter

of fiber into account. The three parameters m, h, σo were determined from experimental

data.

P (σ) = 1− exp

[
−Ldh

(
σ

σo

)m]
(3.21)

σ̄ = σoΓ

(
1 +

1

m

)
L
−1
m d

−h
m (3.22)

In recent years, significant efforts have been made by researchers to develop the statis-

tical model for strength characterization of natural fiber [33-37]. A Modified Weibull model

was proposed by Xia et al. [38], as given in Equation 3.23, where γ accounts for diam-

eter variation within the fiber. This model predicted the average strength of fiber more

accurately than the two and three parameter model. In his study, Anderson [37] applied

the Weibull of Weibull (WoW) model to characterize the strength of flax fibers. Weibull
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of Weibull (WoW) model was developed by Curtin [39], which accounted for incorporating

the characteristic strength itself as a Weibull distribution.

P (σ) = 1− exp

[
−Lγ

(
σ

σo

)m]
(3.23)

σ̄2 = σ̄1 (L2/L1)
−γ
m (3.24)

In this section, the procedure for evaluating the parameters associated with each

Weibull model is explained. The computed values are presented in Table 3.5-3.7. The

cumulative distribution function, corresponding to each model, was plotted against the ex-

perimental data to observe the parameter fit.

Steps for Two Parameter Model

(a)

1. The tensile strength of all the fibers were arranged in ascending order. The P (σ) value

corresponding to each tensile strength was estimated as i
N+1 , where i=1, 2, 3,...., N

specimens.

2. The plot of ln(−ln(1− P (σ))− ln(V ) vs ln(σ) was obtained for the tensile strength

data, and Weibull modulus m, characteristic strength σo was estimated for the slope

and intercept of the curve respectively as shown in Figure 3.10.

(b)

P (σ) = 1− exp

[
−dh

(
σ

σo

)m]
(3.25)

1. Assumption of constant gage length results in Equation 3.25, which implies probability

of failure is function of diameter.

2. The value of h
m was obtained by plotting ln(σ) vs ln(d) and computing the slope.

3. A trial h value was assumed, and a ln(−ln(1−P (σ)))− h ln(d) vs ln(σ)plot resulted

in a m value, which is the slope of a line. An update h value is evaluated as m times

the value obtained in Step 2. This process is continued till the h value converges.
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4. The parameters h, m, σo were obtained for each gage length by following Steps 2 and

3 and the corresponding plots of probability distribution are shown in Figure 3.11.

Cumulative distribution plots from the evaluated parameters are shown in Appendix

Figure B.1

Table 3.5: Two Parameter Model

Parameters 10 mm 15 mm 20 mm 25.4 mm

h/m 0.839 0.5108 1.5318 1.164

h 3.2 2.93 5.271 4.087

m 3.8148 5.7363 3.441 3.511

σo 36.83 93.56 5.57 16.288

Fig. 3.10: Linear Fit for Two Parameter Weibull Model
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(a) GL : 25.4 mm

(b) GL : 20 mm

Fig. 3.11: Linear Fit for Two Parameter Weibull Model with Diameter Dependence
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(c) GL : 15 mm

(d) GL : 10 mm

Fig. 3.11: Linear Fit for Two Parameter Weibull Model with Diameter Dependence (Contd)
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Steps for Three Parameter Model

Based on the average strength, σ̄ = CLαD−β, taking a logarithm on both sides

ln σ̄ − α lnL = lnC − β lnD (3.26)

ln σ̄ + β lnD = lnC + α lnL (3.27)

1. An assumed value of α is substituted in Equation 3.26 and β is obtained from the

plot of ln σ̄ − α lnL vs ln D.

2. The obtained value of β is substituted in Equation 3.27 to obtain new α. This iteration

is carried out until α and β converge. The cumulative distribution plot for all the data

put together is shown in Figure 3.12. The cumulative distribution plot for consistent

data is shown in Appendix Figure B.2

Table 3.6: Three Parameter Weibull Distribution Constants

α β h m σo

Full Data 0.2334 0.82 3.5 4.284 22.207

Consistent Data 5.41 1.95

Fig. 3.12: Cumulative Distribution Function of Three Parameter Model for Full Data
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Steps for Weibull of Weibull Model

1. The plots of ln(−ln(1 − P (σ)) − ln(V ) vs ln(σ) were obtained for each gage length

and Weibull modulus m, characteristic strengths σo were estimated as the slope and

intercept of the line respectively.

2. The plots of ln (-ln (1-P)) vs ln (σo) were obtained for each gage length and the

parameter ξ and χ were estimated as the slope and intercept of the curve respectively.

3. The parameters γ, α and Σ were evaluated for a batch of fibers using Equations 3.28

- 3.30 given by Curtin.

α =
ξ√

ξ2 +m2
(3.28)

ρ =
ξm√
ξ2 +m2

(3.29)

Σ =
[
1−

(
m2 + ξ2

)−0.75]
χ (3.30)

Table 3.7: Weibull of Weibull Model

GL ξ σo α ρ Σ

25.4 3.3 1903.63 0.54 1.8 609.12

20 2.43 2271.95 0.66 1.6 449.58

15 3.74 954.11 0.49 1.86 801.77

10 2.97 1280.34 0.58 1.74 735.17
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(a) GL : 25.4 mm

(b) GL : 20 mm

Fig. 3.13: Cumulative Distribution Function of Three Parameter Model for Consistent Data
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(c) GL : 15 mm

(d) GL : 10 mm

Fig. 3.13: Cumulative Distribution Function of Three Parameter Model for Consistent Data
(Contd)
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Fig. 3.14: Average Strength Comparison

3.2.6 Results and Discussion

1. The fundamental assumption of the Weibull model, that the flaws are directly pro-

portional to the length, was observed to be inverse in this case. The tensile strength

was observed to decrease with increasing volume.

2. The Weibull model with diameter dependence corresponds well with individual fiber

lengths as observed in Figure B.1

3. Parameters determined for the three parameter Weibull model, given by Equation

3.26 for full tensile strength data of fiber batch, fits well with 10, 15, 20 mm gage

lengths, as shown in Figure 3.12.

4. Tensile strength of fibers with consistent Young’s modulus was selected and a three

parameter model was fit as shown in Figure B.2. The difference in the fit is due to

the varying diameter from fiber to fiber.
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5. Parameters for Weibull of Weibull model (WoW), was observed to fit with the tensile

strength data of 25.4 and 20mm gage length, whereas for 15 and 10 mm there was a

wide range of discrepancy. This suggests that there is less scatter in data for 10 and

15 mm fibers compared to that of 25.4 and 20mm.

6. Average tensile strength predicted from WoW models are very similar to the experi-

mental data as observed in Figure 3.14

3.3 Tensile Modulus of Kenaf Fiber Composite

In this section, the preparation of a tensile specimen and evaluation of tensile modulus

is discussed. The tensile modulus and Poisson’s ratio of epoxy matrix was evaluated through

tensile tests and a similar procedure was carried out on a kenaf composite specimen.

3.3.1 Specimen Preparation

Fig. 3.15: Mold for Casting Tensile Specimens
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Epoxy

The epoxy resin PT2050 and hardener B1 were obtained from PTMW industries. Their

density is 0.9 g/cc. The resin and hardener were mixed in 100:27 proportion according to

the manufacturer’s specification. A mold, as shown in Figure 3.15, was designed for casting

10 tensile specimens at a time and, the dimensions of the specimen were selected from

ASTMD638 type I. Mixed epoxy was pour into mold and left for curing in oven at 80oC

for 12 hrs. Meniscus formed on top of the epoxy matrix sample was grinded using 320,

600, 1200 grit sand paper, until the specimen was flat. The epoxy samples before and after

grinding is shown in Figure 3.16.

(a) Before Grinding (b) After Grinding

Fig. 3.16: Epoxy Samples

Kenaf Composite

The kenaf fibers were chopped to a length of 10-15 mm and soaked in a 3% Na OH

solution for 12 hrs to remove any impurities present on the surface of the fiber. The Na OH

solution was then drained and the fibers were oven dried at 80oC for 8 hrs. The dried kenaf

fibers were shredded using carding brushes and mixed with an epoxy matrix such that a

22% fiber volume fraction was maintained. The mixture was then placed in mold as shown

in Fig 3.17. Pressure was applied to the composite mix by tightening the clamps and left

for curing at 80oC for 12 hrs. An attempt was made to cast the composite through vacuum

bagging as shown in Fig 3.18. This process proved problematic, as there was no way of

ensuring a flat top surface in the end product.
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Fig. 3.17: Casting Kenaf Fiber Composite Sample

(a) Hand-Lay-up (b) Vacuum Bagging Setup

(c) Removal of Resin during Curing (d) Kenaf Composite Plate After Curing

Fig. 3.18: Processing of Kenaf Fiber Composite Plate Using Vacuum Bagging Technique

3.3.2 Experimental Setup

The experimental setup for tensile tests included load cell, strain gage and Vernier

calipers as measuring devices to measure force, strain and specimen dimensions respectively.
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Tests were performed on the Tinius Olsen tensile tester (Figure3.19(a)) available in the

material science lab at USU. In general, when tensile tests are performed on this machine

force and extension readings are obtained through the Navigation software provided by the

manufacturer. In this study, a data acquisition system was designed to acquire force and

strain readings (axial and transverse) through a NI 9237 module, as shown in Figure 3.19(c).

The NI 9237 module reads the Wheatstone bridge output in terms of voltage and converts

to the desired unit such as force and strain.

(a) Tinius Olsen Testing Machine Frame (b) Load Cell on Machine Frame

(c) DAQ setup

Fig. 3.19: Tensile Test Setup

3.3.3 Load Cell and Calibration

The load cell, shown in Figure 3.19(b) attached to the testing machine is an S-shaped

bending load cell constructed on the principle of a Wheatstone full bridge. The output

terminal of the load cell is a 15 pin D-sub connector, with only four pins associated with

the bridge terminals. The connection details are shown in Figure 3.20. A calibration curve
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was generated using a bridge (mV/V) module of NI 9237 as explained below. The load cell

was built based on the Wheatstone bridge principle. The output is read in millivolts. The

change in the voltage of the bridge is proportional to the load applied. A calibration curve

was generated for the load cell using the output (millivolts) of bridge for corresponding

calibrated loads applied as shown in Figure 3.21(c). This procedure involved obtaining

voltage readings for both loading and unloading of calibrated loads (Figure 3.21(d)) using

LabVIEW generated code Figure 3.21(a)-3.21(b). A least squares linear regression method

was applied to the calibration data and the resulting voltage-force conversion equation was

obtained as shown in Figure 3.22. This equation was needed as input for NIDAQ9237 to

convert the bridge output (millivolts) to Newton while performing tensile tests.

Fig. 3.20: Load Cell Wiring Diagram
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(a) Load Cell Block Diagram

(b) Bridge Module Dialog Box (c) Calibrated Loads

(d) Loading and Unloading Diagram
during Calibration

Fig. 3.21: Load Cell Calibration
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Fig. 3.22: Calibration Curve

3.3.4 Tensile Testing

The epoxy samples and kenaf composite samples were prepared as explained in the

previous section and strain gages were fixed on the sample as shown in Figure 3.23. The

LabVIEW code is presented in Appendix Figure B.3. The sample was aligned in the loading

direction and the grips were fixed tightly enough to prevent slipping. The testing speed

was set to 8 mm/min as per ASTM standards and the tensile test was performed until the

specimen failed. The specimens that failed during the test are shown in Figure 3.23 and

Figure 3.24. The Young’s modulus and Poisson’s ratio was calculated using the procedure

explained in [28] and presented in Table 3.8. A similar procedure was followed for deter-

mining kenaf fiber composite properties and the properties of the material were presented

in Table 3.10.
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Fig. 3.23: Epoxy Tensile Test

Fig. 3.24: Kenaf Fiber Composite Tensile Test
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Table 3.8: Epoxy Matrix Properties

Specimen No. Youngs Modulus, E (GPa) uE Poisons Ratio, ν uν

1 2.804 0.022016 0.388 0.00194

2 2.652 0.020864 0.3704 0.001852

3 2.815 0.022339 0.3793 0.001897

4 2.821 0.02223 0.38 0.0019

5 2.912 0.023392 0.3817 0.001909

Table 3.9: Uncertainties Associated with Kenaf Composite Geometry

Specimen No. Width (W ) Thickness (T ) uW uT Area(mm2) uA
1 12.938 5.578 0.03195 0.04445 72.168 0.00834

2 12.858 4.956 0.01538 0.02216 63.724 0.00463

3 12.74 6.624 0.02612 0.08002 84.39 0.01225

4 12.804 6.226 0.01315 0.0869 79.718 0.014

5 12.962 5.504 0.01713 0.04947 71.343 0.00908

6 12.82 5.42 0.01508 0.00892 69.484 0.00202

7 12.832 5.354 0.01931 0.01357 68.703 0.00295

8 12.922 4.459 0.01056 0.01282 57.619 0.00299

9 12.824 5.258 0.0084 0.01056 67.429 0.00211

10 12.865 4.976 0.00908 0.01128 64.016 0.00238

11 12.9 5.228 0.02133 0.02257 67.441 0.00462

12 12.855 4.719 0.01359 0.0291 60.663 0.00626

13 12.9 4.712 0.00954 0.0245 60.785 0.00525

14 12.924 4.434 0.005 0.03818 57.305 0.00862
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Table 3.10: Kenaf Fiber Composite Properties

Specimen No. Young’s Modulus, E (GPa) uE Poisons Ratio, ν uν
1 6.917 0.07911 0.33 0.001639

2 8.89 0.080839 0.43 0.002138

3 6.213 0.090316 0.43 0.002157

4 6.613 0.106066 0.28 0.001378

5 4.923 0.059014 0.3 0.001503

6 6.795 0.054922 0.35 0.001728

7 5.875 0.049137 0.29 0.00147

8 7.369 0.061737 - -

9 6.938 0.056237 0.38 0.001935

10 6.154 0.05034 0.29 0.00149

11 6.132 0.055729 0.28 0.001414

12 5.87 0.058828 0.33 0.00165

13 6.995 0.065921 0.32 0.001584

14 5.094 0.059308 0.28 0.00141

Young’s Modulus 6.48 ± 0.572 GPa

3.3.5 Results and Discussion

Fig. 3.25: Stress-Strain Diagram Kenaf Fiber Composite
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Fig. 3.25: Stress-Strain Diagram Kenaf Fiber Composite (Contd)

1. Kenaf fiber composite exhibited linear brittle failure with a tensile strength in the

range of 20-38 MPa. These values are comparable to that of the tensile strength of

other natural fiber composites published in [40, 41].

2. The Poisson’s ratio varied from specimen to specimen and in the range of 0.28 to 0.43.

A possible reason might be the fiber orientation and inconsistent micro-structure at

the point where the strains were measured.

3. The Young’s modulus of the composite was observed to be 6.48 pm 0.572 GPa for

22% volume fraction of kenaf fibers and comparable to that of glass fiber composites,

as published in [42].

4. The lower tensile strength of the composite was attributed to the amount of voids

present in the specimen due to insufficient pressure applied while casting specimen.
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Chapter 4

Numerical Modeling

4.1 Introduction

This chapter presents the numerical model of a kenaf short fiber reinforced compos-

ite in order to predict the effective properties. Finite element method was applied as a

computational tool to accomplish this objective. To predict the effective properties of a

unidirectional kenaf fiber composite, a two-step numerical homogenization was carried out

on a unit cell at the micro- and meso-scales. The following sections of this chapter ex-

plain the finite element formulation for the homogenization of a unit cell, Von-Mises Fisher

probability distribution and the orientational averaging technique to determine the effective

properties of the short fiber composite.

The unit cell is defined as the smallest repetitive part of the structure, as shown in

Figure 4.1. In the field of composites, it is a very common practice to assume that the

fibers are periodically arranged as a reinforcement in a matrix at the micro-scale. This

leads to two types of basic unit cell models, square and hexagonal, which have been studied

by various researchers [43-46] in the past. The volume fraction of constituents in a unit

cell is same as that of a composite. The motivation behind selecting the unit cell was

to reduce the computational effort involved in analyzing the whole micro-structure. The

appropriate boundary conditions [46] were applied to the unit cell and a stress-strain field

was predicted, leading to evaluation of macroscopic (homogenized) properties. The influence

of homogeneous and periodic boundary conditions on unit cell was described in [47, 48],

which proved that the former is an over-constrained boundary condition.

Macroscopic stress (Σ) is defined as the volumetric average of a microscopic stress

(σij) field in a body subjected to a uniform macroscopic strain (E). The macroscopic

properties of a material can be derived from the analysis of microscopic structure once the
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properties of constituents at the microscopic scale are known. The average stress and strain

is mathematically expressed as [49]

Σ =
1

V

∫
V

σijdV (4.1)

E =
1

V

∫
V

εijdV (4.2)

Fig. 4.1: Schematic Representation of Unit Cell

4.2 Finite Element Formulation

The principle of virtual work is applied to derive the general finite element equations,

which is defined as [49]

Among all admissible configurations of a conservative system, those that satisfy the

equations of equilibrium make the potential energy stationary with respect to small admis-

sible variations of displacement.
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The minimization of potential energy δΠ = δU − δW results in

δU = δW (4.3)

where δU is internal strain energy and δW is external work done given by Equation 4.4 and

4.5 respectively.

δU =

∫∫∫
V

δεTσ dV (4.4)

δW =

∫∫
S

δψTs T dS +

∫∫∫
V

δψTX dV + δdTP (4.5)

where δε, δd, δψs, δψ vector of virtual strains, virtual nodal displacements, virtual displace-

ment function δu, δv, δw and virtual displacement functions acting over surface P, X, T are

vectors of applied nodal loads, body forces and surface tractions. ψ = Nd and ψs = Nsd,

ε = Bd and σ = Dε. Substitution of Equation 4.4 and 4.5 in Equation 4.3 results in

δdT
∫∫∫
V

BTDBdV d = δdT
∫∫
S

NS
TTdS + δdT

∫∫∫
V

NTXdV + δdTP (4.6)

Neglecting body forces,

[K]d = [P ] + [fs] (4.7)

where stiffness matrix [K] =
∫∫∫
V

BTDBdV

and [P] is load vector

Equivalent nodal loads due to surface forces [fs] =
∫∫
S

NT
S TdS

Lagrange Multipliers to Enforce Constraints

The minimization of a potential energy subjected to constraint was solved using the La-

grange multiplier method. Mathematically, the problem was addressed as shown in Equation

4.8, where constraint equation G is added to the potential energy.

L = Π + λG (4.8)
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where L is the Lagrangian function, Π is potential, λ is Lagrange multiplier and, G =

[C]d − [Q] is constraint equation. Minimization of Lagrangian with respect to ’d’, i.e.

∂L
∂d = 0 and λ i.e. ∂L

∂λ = 0 results in the system of equations put in broad form [49], as

shown in Equation 4.9.

 K CT

C 0


 d

λ

 =

 P

Q

 (4.9)

Hexahedral Element

A Hexahedral element, also known as 8-noded brick element, is one of the 3D discretized

elements frequently used in the finite element analysis of a structure. Each node in this

element is associated with three degrees of freedom u, v, w in x, y, z directions respectively

as shown in Figure 4.2.

Fig. 4.2: Hexahedral Element

The associated shape functions for the element, with ri,si,ti as the values of natural

coordinates:

Ni =
1

8
(1 + rri)(1 + ssi)(1 + tti) (4.10)
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The Jacobian and B matrix were computed as:


x,r y,r z,r

x,s y,s z,s

x,t y,t z,t

 =
∑


Ni,rxi Ni,ryi Ni,rzi

Ni,sxi Ni,syi Ni,szi

Ni,txi Ni,tyi Ni,tzi

 (4.11)



εx

εy

εz

εyz

εzx

εxy



= [B] {d} =



1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 1 0

0 0 1 0 0 0 1 0 0

0 1 0 1 0 0 0 0 0




[Γ] 0 0

0 [Γ] 0

0 0 [Γ]





∑
Ni,rui∑
Ni,sui∑
Ni,tui∑
Ni,rvi∑
Ni,svi∑
Ni,tvi∑
Ni,rwi∑
Ni,swi∑
Ni,twi


(4.12)

where [Γ] is inverse Jacobian matrix. The numerical computation of the stiffness matrix for

a single element is written as

[K] =

1∫
−1

1∫
−1

1∫
−1

BTDB|J |drdsdt (4.13)

Average stress in numerical form is written as

Σ =

∑Noof Elem
k=1 σkij

V
(4.14)

Average strain in numerical form is written as

E =

∑Noof Elem
k=1 εkij

V
(4.15)

Algorithm:
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1. Input: ’Nodal Coordinates’, ’Element Connectivity’, ’Material Properties’, and ’Bound-

ary Conditions’ from text file.

2. Compute stiffness matrix of each element.

3. Assembling stiffness matrix of whole structure.

4. Partitioning of stiffness matrix into known and unknown degrees of freedom.

5. Solving system of equations using ’UMFPACK’ algorithm in SCILAB.

6. Recovery of displacements, strains and stress.

7. Computing average stress and strain of the unit cell.

4.3 Boundary Conditions

In order to obtain the macroscopic properties of the cell wall layer and unidirectional

fiber composite, the unit cell was subjected to four load cases: axial, transverse, longitudinal

shear and transverse shear, as the material is transversely isotropic. For axial and transverse

loading, a quarter model was selected due to its symmetry, as shown in Figure 4.3(a).

Transverse shear was simulated by applying periodic boundary conditions to the 2D model

as shown in Figure 4.3(b). The boundary conditions applied to the unit cell as explained

in [46] are described in Table 4.1.

(a) Quadrant Model
(b) 2D Transverse Shear

Fig. 4.3: Schematic Representation of Boundary Conditions on the Model
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Table 4.1: Boundary Conditions

Load Case Ux Uy Uz

Axial
Ux(0, y, z) = 0 Uy(x, 0, z) = 0 Uz(x, y, 0) = 0

Ux(a, y, z) = 0.0005 Uy(x, b, z) = δ Uz(x, y, c) = δ

Transverse
Ux(0, y, z) = 0 Uy(x, 0, z) = 0 Uz(x, y, 0) = 0

Ux(a, y, z) = δ Uy(x, b, z) = 0.0005 Uz(x, y, c) = δ

Longitudinal Shear

Ux(0, y, z) = Ux(2a, y, z) Uy(0, y, z) = Uy(2a, y, z) Uz(0, y, z) = Uz(2a, y, z)

Ux(x, 0, z) = 0 Uy(x, 0, z) = 0 Uz(x, 0, z) = 0

Ux(x, 2b, z) = 0.0005

For longitudinal shear, the face at y=0 is fixed and the displacement Ux, Uy, Uz on

the faces x=0 and x=a are kept same. To obtain shear modulus, a constant displacement is

applied on the face y=a in the x-direction (shear loading). [Uy, Uz] on L = [Uy, Uz] on R;

[Uy, Uz] on T = [Uy, Uz] on B are the periodic boundary conditions in the case of transverse

shear as shown in Figure 4.3(b), where L, R, T and B stand for left, right, top and bottom

surfaces respectively and the periodic boundary conditions are applied to all the nodes on

these surfaces. To simulate transverse shear, a displacement of delta y is applied at (a, h).

4.4 Effective Properties of Cell Wall Layers in Bast Fiber

At the mesoscopic scale, all the bast fibers possess a bundle of laminated tube-like

structures (Figure 3.2(b)) called cell walls. Each cell wall is made of Primary, Secondary

S1, S2 and S3 layers and mechanical properties of each constituent in these layers are given

in Table 4.2. The thickness of each layer differs from the others with S2 layer occupying

80% of the total thickness of the cell wall [51]. The thicknesses of each layer in a cell wall,

obtained from [51], are presented in Table 4.3.

The purpose of this section is to evaluate the effective properties (independent elastic

constants) of a secondary cell wall layer with a varying volume fraction of basic constituents

(C, HC, L). The volume fraction of basic constituents in different bast fibers are given in [52].

Some volume fraction combinations chosen for the analysis are given in Table 4.4. There are
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Table 4.2: Elastic Constants of Constituents [11]

Material E11(MPa) E22(MPa) G12(MPa) ν12 ν23
Cellulose 138000 27200 4400 0.235 0.48

Hemi-Cellulose 7000 3500 1800 0.2 0.4

Lignin 2000 2000 770 0.3 0.3

Table 4.3: Structural Dimensions

Layer Thickness (µm) MFA(◦)

M 0.25 -

P 0.1 -

S1 0.3 ±50◦-70◦

S2 4 0◦-30◦

S3 0.04 ±60◦-80◦

n number of combinations possible and it is impractical to determine the effective properties

for each combination through numerical experiments. From the structural point of view, the

orientation of fibrils, volume fraction and geometry of constituents are all that is required

to evaluate the effective properties. A schematic representation of cell wall layers with

constituents is shown in Figure 4.4. The shape of cellulose and arrangement of constituents

are of significance in the analysis. The shape of cellulose was found to be square with the

work carried out by O’Sullivan [53]. Regarding the arrangement of these constituents, the

results presented by Salmen and Preston [54] are also of importance.

Table 4.4: Volume Fraction of Constituents

S.No Vcellulose Vhemicellulose Vlignin

1 50 27 23

2 55 24 21

3 60 23 17

4 65 20 15

5 70 17 13
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Fig. 4.4: Basic Constituents in Cell Wall Layer

Geometry and Meshing

The full 3-dimensional unit cell geometry of the cell wall layer is shown in Figure

4.5. All the constituents are assumed to be square in shape. This assumption results

in transversely isotropic properties of an equivalent material with five independent elastic

constants. Therefore, five numerical tests were performed to obtain five independent elastic

constants. The unit cell geometry was created in the Gmsh meshing software. Gmsh is a

3D mesh generator software developed by Geuzaine and Remacle[55] with the capability

of meshing 2D and 3D geometries using different kinds of elements. The Gmsh code was

written to create the geometry of a unit cell with a specified mesh size. Also, Gmsh facilitates

the option of selecting the number of elements/division along the line during discretization.

The application of periodic boundary conditions requires the nodal points to be exactly on

the opposite face. Orderly numbering and transfinite algorithms are built-in functions of

Gmsh software, facilitating the use of the structured meshes required to implement periodic

boundary conditions. The mesh file .msh was generated from Gmsh, which comprises nodal

coordinates and element connectivity. A pseudo code is shown in Table 4.5) and the mesh
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file .msh for a simple geometry is presented in Appendix Table ??.

Fig. 4.5: 3D Unit Cell Geometry

Fig. 4.6: Node Numbering of Unit Cell Geometry

The 3D quadrant model created to simulate axial and transverse load case is shown in

Figure 4.7. The geometry of the longitudinal shear model is similar to the one shown in

Figure 4.5.
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Table 4.5: Mesh Format File

$MeshFormat
version-number file-type data-size
$EndMeshFormat
$Nodes
number-of-nodes node-number x-coord y-coord z-coord
. . .
$EndNodes
$Elements
number-of-elements
elm-number elm-type number-of-tags < tag > . . . node-number-list
. . .
$EndElements

(a) Quadrant Cell Geometry Gmsh (b) Mesh in Gmsh

Fig. 4.7: Quadrant Unit Cell Model

FE Analysis and Results

A 3D finite element code was developed in a SCILAB environment, which requires an

input file .msh generated from Gmsh, to compute the effective properties. The input files

required to run finite element analysis were generated by the program created to read .msh

file as shown in Appendix C.1 and boundary conditions (constraints) were generated by

the code sortingsurface.sci (Appendix C.3). The full 3D FE code is presented in Appendix

C.4. A finite element code was run for each load case, according to the boundary conditions

specified in the previous section. Stress and displacement contour obtained for each load case

are shown in Figure 4.8-4.10. The computed elastic constants through the 3D finite element

unit cell model are compared with those values presented in [51] and semi-empirical relations

given in Equations 4.16-4.19. Comparisons of elastic constants with various methods are
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presented in Tables 4.6-4.8, corresponding to each secondary layer and Figure 4.11-4.14.

(a) Stress in x (b) Displacements Ux

Fig. 4.8: Axial Load Case

(a) Stress in y (b) Displacements Uy

Fig. 4.9: Transverse Load Case

(a) Stress in 1-2 (b) Displacements Ux

Fig. 4.10: Longitudinal Shear Loading
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Semi-Empirical Equations:

Rule of Mixtures:

E11 = VCE11(C) + VHCE11(HC) + VLE11(L) (4.16)

Tsai-Hahn Empirical Relation:

1

E2
=

1

Vf + ηVm

(
Vf
Ef

+ η
Vm
Em

)
; η = 0.5 (4.17)

1

G12
=

1

Vf + ηVm

(
Vf
Gf

+ η
Vm
Gm

)
; η = 0.5

(
1 +

Gm
Gf

)
(4.18)

Halpin-Tsai Empirical Relation:

Ef
Em

=
1 + ηΨVf
1− ηVf

; η =
γ − 1

γ + Ψ
; γ =

Ef
Em

; (4.19)

The Young’s modulus in the axial direction and Poisson’s ratio computed by all the

methods are in good agreement and match exactly with the Rule of Mixtures. Transverse

modulus compared from the Tsai-Hahn relation is in good agreement with 3D FE results,

whereas the multi-pass homogenization procedure gives an error of 17%. The Halpin-Tsai

relation involves a parameter that is dependent on the geometry of the fiber and can be

derived if the exact results are known. Here the values compared in the Table 4.6-4.8 are

computed using Ψ = 2 and the error was observed to be around 7%. Based on 3D results

and through inverse calculations, Ψ was found to be 1.58 for the transverse modulus and 0.9

for the shear modulus in this particular problem. The Tsai-Hahn equation, in conjunction

with the Rule of Mixtures, results in the elastic constants approximate to 3D results. After

validating the existing semi-empirical relations with those of the 3D results for a set of

combinations, these equations can be directly applied to derive effective elastic constants.

Given any natural fiber, the geometric parameters that play a major role in the cell wall

tube properties are: micro fibril orientation, thickness of each layer and the cross-sectional

shape. In the next section, the micro fibril orientation in the S2 layer and volume fraction

of the constituents were varied to obtain the effective properties of composite.
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3 D FEM
Rule  of M ixt ures

5 0

5 5

6 0

6 5

7 0

7 5

8 0

8 5

9 0

9 5

1 0 0

3 5 4 0 4 5 5 0 5 5 6 0 6 5 7 0

Fig. 4.11: Young’s Modulus in Axial Direction
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Fig. 4.12: Young’s Modulus in Transverse Direction



62

3 D FEM
Tsai-Hahn
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Fig. 4.13: Longitudinal Shear Modulus
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Fig. 4.14: Poisson’s Ratio from 3D Model
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Table 4.6: Comparison of Elastic Constants in S1 Layer

Elastic Constant 3D FEM Leon Halpin-Tsai Tsai-Hahn

E11(GPa) 51.1 51.1 51.1 51.1

E22(GPa) 5.131 4.28(16.6%) 5.441 5.138

G12(GPa) 1.695 1.71 - 1.648

ν12 0.245 0.25 0.247 0.247

ν23 0.3384 0.34 - -

Table 4.7: Comparison of Elastic Constants in S2 Layer

Elastic Constant 3D FEM Leon Halpin-Tsai Tsai-Hahn

E11(GPa) 71.35 71.35 71.35 71.35

E22(GPa) 7.171 5.86(18.2%) 7.628 7.087

G12(GPa) 2.13 2.15 - 2.087

ν12 0.239 0.24 0.24 0.24

ν23 0.3105 0.35 - -

Table 4.8: Comparison of Elastic Constants in S3 Layer

Elastic Constant 3D FEM Leon Halpin-Tsai Tsai-Hahn

E11(GPa) 64.95 64.95 64.95 64.95

E22(GPa) 6.704 5.56(17%) 7.164 6.698

G12(GPa) 2.118 2.14 - 2.08

ν12 0.235 0.24 0.235 0.235

ν23 0.3198 0.36 - -
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Table 4.9: Elastic Constants with Varying Volume Fractions

Volume Fraction(C/HC/L) E11(GPa) E22(GPa) G12(GPa) ν12 ν23

50/27/23 71.35 7.171 2.13 0.2391 0.3018

55/24/21 78 7.914(17%) 2.55 0.2389 0.2932

60/23/17 84.75 8.919 2.446 0.2372 0.2961

65/20/15 91.4 9.974 2.68 0.2369 0.2962

70/17/13 98.1 11.135 2.83 0.2367 0.2979

4.5 Effective Properties of Unidirectional Composite

The properties of the cell wall layers obtained in previous section were used in the

second step of homogenization which was carried out at mesoscopic scale. The elastic

constants of each layer in a cell wall for various volume fractions of basic constituents

were used in performing parametric modeling of the unit cell of unidirectional kenaf fiber

composite properties. It was assumed that the bond between matrix and fiber was perfect

and the fibers were straight (without any flaws) in the finite element analysis of a unit cell.

The fiber volume fraction was considered to be 22% in this analysis as the experiments were

carried out at the same volume fraction.

Geometry and Meshing

The cell wall geometry was assumed to be hexagonal in shape with the dimensions

adopted from [50] and shown in Table 4.3. The basic geometrical parameters required to

create hexagon is shown in Figure 4.15. The parameter θ in the Gmsh code is a shape

factor, meaning that at θ = 30◦ the geometry of the cell wall is a regular hexagon and

changes to an irregular hexagon at other θ values. A fiber geometry consisting of a bun-

dle of seven cell walls and the periodic arrangement of fibers in the matrix was created

in Gmsh is shown in Figure 4.16 and 4.17 respectively. The unit cell geometry meshed

with hexahedral elements is shown in Figure 4.18. As the properties obtained were invari-

ant of length (Z-dir), the unit cell thickness and number of elements in thickness direction

was kept about (1/10)th of cross-sectional dimension, which reduced the computation effort.
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Fig. 4.15: Basic Hexagonal Shaped Cell

P = [A+B sin(θ), 0] ; Q1 = Q+
[

T
tan(θ1)

, T
]

P1 = P +
[

T
cos(θ) , 0

]
; R = [0, B cos(θ)] ;

Q = [A,B cos(θ)] ; R1 = R+ [0, T ] ;

Fig. 4.16: Schematic Representation of Bundle of Cell Walls
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Fig. 4.17: Periodic Arrangement of Natural Fiber in a Matrix

FE Analysis and Results

The secondary layers of the cell wall consist of micro fibrils with orientations varying

as follows: S1:50◦-70◦, S2:0◦-30◦, S3:60◦-80◦. A finite element analysis by Qing et.al. [50],

concluded that the fiber properties in the axial direction were strongly influenced by the

S2 layer properties. Therefore, only S2 layer micro fibril orientation was varied from 0◦ to

30◦ with an interval of 5◦, whereas the S1 and S3 layer orientation was fixed as 70◦ and

80◦ respectively throughout the analysis. The effect of S1 and S3 micro fibril orientation on

the transverse modulus was observed to be minimal (5%)[50]. In this section, for varying

volume fractions of basic constituents (Table 4.4), the MFA in the S2 layer was varied and

FE analysis was carried out to obtain the macroscopic properties of the unit cell shown

in Figure 4.18. As explained in [50], for layer S1 and S3, the bidirectional reinforcement

was considered and the properties of these layers were calculated in a similar way. The

properties are listed in Table 4.10.
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Fig. 4.18: Unit Cell of Natural Fiber Reinforced Unidirectional Composite

Table 4.10: Material Properties of Each Layer in Cell Wall Except S2 (MPa)

Layer EXX EY Y EZZ GY Z GZX GXY νXY νXZ νY Z

M 2820 2820 2820 1084.62 1084.62 1084.62 0.3 0.3 0.3

P 3970 3970 3970 1550.78 1550.78 1550.78 0.28 0.28 0.28

S1 12845.03 4280 4134.92 1598.67 2213.2 1694.4 0.175 0.157 0.292

S3 35593.55 5560 5475.36 2046.88 2291.83 2136.98 0.197 0.063 0.34
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(a) Stress in Z

(b) Displacements Uz

Fig. 4.19: Axial Load Case

(a) Stress in Y

(b) Displacements Uy

Fig. 4.20: Transverse Load Case
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Augmented Lagrange Method

The Lagrange multipliers method introduces more equations (equal to constraint equa-

tions) to the stiffness matrix and the diagonal terms of the matrix go to zero, implying

that the matrix becomes nearly singular. Therefore, an Augmented Lagrange method was

applied to obtain a new stiffness matrix, that is a combination of penalty and Lagrange

multiplier methods and was solved for displacements. The potential energy functional with

perturbed constraint equation is given by

Π =
1

2
DTKD −DTF +

1

2
α (penaltyfunction− perturbation)2 (4.20)

Let g(D) be the penalty function ([C][D]-[Q]=0) and δ is perturbation

Π =
1

2
DTKD −DTF +

1

2
α (g(D)− δ)2 (4.21)

After expansion of the third term and neglecting delta square term, the final equation takes

the following form:

Π =
1

2
DTKD −DTF +

1

2
gTαg − gTαδ (4.22)

replacing αδ by λT

Π =
1

2
DTKD −DTF + λT g +

1

2
gTαg (4.23)

The first three terms represents the Lagrange multiplier formulation and fourth term is the

penalty function augmented. Minimization of potential w.r.t D results in

[
K + CTαC

]
D = F + CTαQ− CTλP (4.24)

and considering the last two terms of Equation 4.23 as equivalent to Lagrange formulation

λP = λi + αg(D) (4.25)
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Algorithm to obtain λ

1. Input : α (penalty factor), tolerance

2. While λ− λP ≤ tolerance { Calculate D using Equation 4.24

Substitute D in Equation 4.25 to obtain updated λ value. }

(a) Shear Stress in ZX
(b) Displacements

Fig. 4.21: Longitudinal Shear

Transverse Shear Simulation

The transverse shear properties of a composite were obtained by subjecting the unit cell

to the periodic boundary conditions, as explained in [46]. The implementation of periodic

boundary conditions involves the nodes on opposite faces (i.e. i-j and k-l) as shown in

Figure 4.22. These nodes were subjected to same displacements. In order to prevent rigid

body motion during the finite element simulation, the following boundary conditions were

imposed on the unit cell.

Boundary conditions

v(x,−b) = v(x, b);

u(−a, y) = u(a, y);

v(−a, y) = v(a, y) = 0

v(−a,−b) = v(a,−b) = v(a, b) = v(−a, b) = 0

u(x, b) = δ;u(x,−b) = −δ
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Fig. 4.22: Periodic Boundary Conditions for Transverse Shear

The variation of elastic properties as a function of the MFA in the S2 layer are shown

in Figure 4.24. The axial modulus of the composite decreased with an increase in MFA

of the S2 layer. The transverse modulus and transverse shear modulus were least effected.

The transverse modulus decreased by 7%. For the transverse loading case, the maximum

stress in y-direction was observed at the point P of the hexagon, as shown in Figure 4.20(a).

For the transverse shear load, maximum shear stress was observed on the interface between

matrix and cell wall layer P1 and Q1, as shown in Figure 4.23(a).
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(a) Shear Stress in XY (b) Displacements Ux

Fig. 4.23: Transverse Shear

Table 4.11: Elastic Constants(GPa) at Volume Fraction 50/27/23

Volume fraction 50/27/23

θ Ezz Exx Eyy Gxy Gzy Gzx νzx νzy νyx

0 6.4660 3.1690 3.1690 1.0613 2.7490 2.7490 0.3700 0.3700 0.4930

5 6.0720 3.1530 3.1530 1.0609 2.7910 2.7910 0.3720 0.3720 0.4860

10 5.2650 3.1130 3.1130 1.0610 2.8790 2.8790 0.3748 0.3748 0.4670

15 4.5280 3.0660 3.0660 1.0614 2.9620 2.9620 0.3770 0.3770 0.4443

20 3.9930 3.0240 3.0240 1.0625 3.0200 3.0200 0.3790 0.3790 0.4230

25 3.6290 2.9910 2.9910 1.0631 3.0600 3.0600 0.3790 0.3790 0.4067

30 3.3840 2.9690 2.9690 1.0649 3.1400 3.1400 0.3800 0.3800 0.3940
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Table 4.12: Elastic Constants(GPa) at Volume Fraction 55/24/21

Volume fraction 55/24/21

θ Ezz Exx Eyy Gxy Gzy Gzx νzx νzy νyx

0 6.8200 3.2280 3.2280 1.0589 2.7880 2.7880 0.3703 0.3703 0.4964

5 6.4170 3.2120 3.2120 1.0587 2.8280 2.8280 0.3718 0.3718 0.4891

10 5.5700 3.1720 3.1720 1.0584 2.9120 2.9120 0.3747 0.3747 0.4706

15 4.7730 3.1230 3.1230 1.0587 2.9910 2.9910 0.3774 0.3774 0.4480

20 4.1810 3.0790 3.0790 1.0598 3.0470 3.0470 0.3792 0.3792 0.4267

25 3.7730 3.0420 3.0420 1.0614 3.0820 3.0820 0.3801 0.3801 0.4090

30 3.4980 3.0170 3.0170 1.0636 3.0990 3.0990 0.3803 0.3803 0.3957

Table 4.13: Elastic Constants(GPa) at Volume Fraction 60/23/17

Volume fraction 60/23/17

θ Ezz Exx Eyy Gxy Gzy Gzx νzx νzy νyx

0 7.1800 3.2560 3.2560 1.0556 2.7780 2.7780 0.3701 0.3701 0.5011

5 6.7040 3.2390 3.2390 1.0559 2.8240 2.8240 0.3718 0.3718 0.4931

10 5.7340 3.1940 3.1940 1.0566 2.9160 2.9160 0.3752 0.3752 0.4731

15 4.8510 3.1410 3.1410 1.0581 3.0000 3.0000 0.3782 0.3782 0.4488

20 4.2140 3.0920 3.0920 1.0603 3.0570 3.0570 0.3802 0.3802 0.4261

25 3.7850 3.0530 3.0530 1.0625 3.0920 3.0920 0.3812 0.3812 0.4075

30 3.4990 3.0250 3.0250 1.0652 3.1100 3.1100 0.3814 0.3814 0.3936
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Table 4.14: Elastic Constants(GPa) at Volume Fraction 65/20/15

Volume fraction 65/20/15

θ Ezz Exx Eyy Gxy Gzy Gzx νzx νzy νyx

0 7.5340 3.2820 3.2820 1.0902 2.7990 2.7990 0.3699 0.3699 0.5052

5 7.0200 3.2650 3.2650 1.0932 2.8440 2.8440 0.3717 0.3717 0.4934

10 5.9720 3.2200 3.2200 1.0899 2.9360 2.9360 0.3752 0.3752 0.4772

15 5.0190 3.1660 3.1660 1.0897 3.0170 3.0170 0.3783 0.3783 0.4527

20 4.3330 3.1160 3.1160 1.0899 3.0730 3.0730 0.3803 0.3803 0.4294

25 3.8720 3.0750 3.0750 1.0902 3.1070 3.1070 0.3814 0.3814 0.4103

30 3.5660 3.0450 3.0450 1.0907 3.1240 3.1240 0.3816 0.3816 0.3959

Table 4.15: Elastic Constants(GPa) at Volume Fraction 70/17/13

Volume fraction 70/17/13

θ Ezz Exx Eyy Gxy Gzy Gzx νzx νzy νyx

0 7.8910 3.3080 3.3080 1.0961 2.8120 2.8120 0.3698 0.3698 0.5090

5 7.3280 3.2890 3.2890 1.0956 2.8580 2.8580 0.3717 0.3717 0.5010

10 6.1890 3.2440 3.2440 1.0955 2.9500 2.9500 0.3754 0.3754 0.4806

15 5.1620 3.1880 3.1880 1.0951 3.0320 3.0320 0.3786 0.3786 0.4556

20 4.4300 3.1360 3.1360 1.0952 3.0860 3.0860 0.3807 0.3807 0.4317

25 3.9400 3.0930 3.0930 1.0953 3.1190 3.1190 0.3818 0.3818 0.4119

30 3.6160 3.0610 3.0610 1.0955 3.1360 3.1360 0.3821 0.3821 0.3970
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Fig. 4.24: Effect of MFA on Axial Modulus

Fig. 4.25: Effect of MFA on Macroscopic Elastic Properties

Observation

Increase in MFA

1. The axial modulus reduced by 48-54%.

2. Transverse and shear modulus were least effected.

3. The longitudinal shear modulus increased by 15%.

4. The longitudinal Poisson’s ratio increased by 3% and transverse Poisson’s ratio de-

creased by 10% due to reduced stiffness in the axial direction.
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Increase in Cellulose Content

1. The axial modulus increased by 22% at MFA of zero.

2. The shear modulus and Poisson’s ratio were least effected, with an increase in cellulose

content.

4.6 Von-Mises Fisher Probability Distribution

The importance of Von-Mises distributions for directional data is similar to that of nor-

mal distribution for linear data [56]. The generalized (p-1) dimensional Von-Mises density

function for a vector of observations X can be written as

fµ,k,p(X) = CP (k)ekµX (4.26)

where µ is the mean vector, k is the concentration parameter and Cp(k) is the normalizing

factor with the values,

For p=2, circle:

Cp(k) = 1/(2πIo(k))2 (4.27)

For p=3, sphere:

Cp(k) = k/(4π sinh(k)) (4.28)

For low concentration values of k < 1, the distribution is normal on a spherical plot and

as the concentration value increased, all the data points were concentrated (green) in one

direction, as shown in Figure 4.26.
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Fig. 4.26: Von-Mises Fisher Random Variables

The purpose of this probability distribution function is to define the orientational dis-

tribution of fibers in a composite. The higher the k value, the more parallel the fibers are to

the longitudinal axis, as shown in Figure 4.27(d) . The lower the k-value, the more randomly

distributed the fibers are in all directions, as shown in Figure 4.27(a). The derivation of

random variables from the Von-Mises Fisher probability distribution function is explained

below:

Derivation of random variables

Probability density function

f (θ) =
k

2 sinh (k)
ek cos(θ) sin (θ) ; g (φ) =

1

2π
(4.29)

Cumulative distribution function

ξ =
ke−k

1− e−2k

θ∫
−π

ek cos(θ) sin (θ) dθ (4.30)

After evaluating integral in WxMaxima and performing inverse,
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θ = 2 sin−1

[√
−log (ξ (1− λ) + λ)

2k

]
(4.31)

where λ = e−2k

To generate random θ values for a particular concentration factor k, a uniformly dis-

tributed random number vector ξ is given as an input to the Equation 4.31. The PDF

obtained for different concentration values is shown in Figure 4.28. A SCILAB program

was written to generate the randomly oriented cylindrical fiber in a bounded cube, where

the orientation is controlled by a factor k.

(a) Random Fiber Distribution k=1

(b) Random Fiber Distribution k=10
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(c) Random Fiber Distribution k=50

(d) Random Fiber Distribution k=1000

Fig. 4.27: Random Fiber Distribution with Varying k

(a) Von-Mises PDF k=1
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(b) Von-Mises PDF k=10

(c) Von-Mises PDF k=1000

Fig. 4.28: Von-Mises PDF with Varying k

4.7 Equivalent Properties of Randomly Oriented Short Fiber Composite

The orientational averaging technique was explained in the work done by [57] to obtain

the properties of random fiber composite. Some of the other works related to orientation

averaging can be seen in [58-62]. In this section, the Von-Mises probability distribution is

considered for use in obtaining properties of random short fiber composite. The concen-

tration parameter for the distribution is in a selected range of 0.5 to 80, explaining fiber

orientation in a particular direction to random. The properties for various volume frac-

tions were considered, and the orientation averaging technique was applied to each of them

respectively.

Orientational Averaging
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The orientational averaging technique to obtain effective elastic modulus was derived by

Christensen and Waals [57]. The various empirical relations for predicting the elastic mod-

ulus of a 2D and 3D randomly oriented short fiber composite was presented by [62]. The

idea behind orientational averaging technique is to obtain the average of unidirectional fiber

composite properties for all possible orientations. Mathematically, the orientation averaging

is expressed as:

σ′ij
ε′ij

=

π∫
0

π∫
0

σ′ij
ε′ij

(pdf) sin (θ) dθdφ

π∫
0

π∫
0

sin (θ) dθdφ

(4.32)

Fig. 4.29: Coordinate System

Assuming that the fiber is cylindrical and oriented in 3 dimensional space, as shown

in Figure 4.29, with 123 as a rotated coordinate system and 1’2’3’ as a fixed coordinate

system. If the composite properties is transversely isotropic with fiber oriented along 1-

axis, the constitutive relation in transformed axis is given by CM = λijCλ
T
ij
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λ =



a2 b2 c2 2ab 2ac 2bc

d2 e2 f2 2de 2df 2ef

g2 h2 i2 2gh 2gi 2ih

ad be cf ae+ bd af + cd bf + ce

ag bh ci ah+ bg ai+ cg bi+ ch

dg eh fi dh+ eg di+ fg ei+ fh


(4.33)


a b c

d e f

g h i

 =


sin (θ) cos (φ) − cos (θ) cos (φ) sin (φ)

sin (θ) sin (φ) − cos (θ) sin (φ) − cos (φ)

cos (θ) sin (θ) 0

 (4.34)

C =



C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

C44 0 0

C66 0

C66


(4.35)

The relation between σ33 and ε33, σ22 and ε33 for an arbitrarily applied ε33 were given by

σ′33
ε′33

= C11 cos4 θ + (2C12 + 4C66) cos2 θ sin2 θ + C22 sin4 θ (4.36)

σ′22
ε′33

= C11d
2g2 + C12(d

2h2 + e2g2 + d2f2) + C22e
2h2 + 4C66ghde+ C23h

2f2 (4.37)

σ′33
ε′33

=
1

15
(3C11 + 4C12 + 8C22 + 8C66) (4.38)

σ′22
ε′22

=
1

15
(C11 + 8C12 + C22 − 4C66 + 5C23) (4.39)
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For a normal distribution, pdf=1 and the orientational averaging results in Equations 4.39

and 4.38 in 2 and 3 directions respectively.

Assuming the behavior of a randomly oriented composite to be quasi isotropic, the

equivalent relation to the Equations 4.39 and 4.38 were written as

σ′33
ε′33

=
(E(1− ν))

((1− 2ν)(1 + ν))
(4.40)

σ′22
ε′22

=
(Eν)

((1− 2ν)(1 + ν))
(4.41)

Equating 4.39 and 4.41 , 4.38 and 4.40 and solving the equations will result in equivalent

elastic properties E and ν. The Von-Mises Fisher probability density function was chosen to

calculate the average macroscopic properties of a random oriented composite with varying

concentration parameters, as explained in the previous section. For the purpose of analysis,

concentration parameters of k=0.5, 2, 5, 8, 10, 20, 40, 60, and 80 were chosen. The

transverse isotropic properties evaluated on the unit cell as explained in Section 4.5 for

various volume fractions of basic constituents were substituted in the constitutive relation

given in the Equation 4.35 and average value of elastic modulus and Poisson’s ratio were

calculated according to the procedure explained in Equations 4.38 to 4.41. The evaluated

elastic constants for the volume fraction of 50/27/23 is shown in Table 4.35 and the values

of remaining volume fraction are presented in Appendix A.5-A.8.
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Table 4.16: Elastic Constants(GPa) of Random Fiber Composite at Volume Fraction
50/27/23

E(GPa)

θ K=0.5 K=2 K=5 K=8 K=10 K=20 K=40 K=60 K=80

0 5.18406 5.81209 6.82745 7.17109 7.26577 7.38135 7.38273 7.37206 7.36437

5 5.1534 5.73906 6.65229 6.92508 6.98606 7.01121 6.95236 6.91889 6.89925

10 5.08847 5.5865 6.28919 6.41635 6.40814 6.24779 6.0655 5.9853 5.94116

15 5.03039 5.44854 5.95905 5.95311 5.88165 5.55163 5.25638 5.13344 5.06688

20 4.98729 5.34766 5.7195 5.61773 5.50076 5.04877 4.67237 4.51872 4.43605

25 4.9573 5.27661 5.55117 5.38311 5.23483 4.69932 4.26754 4.09296 3.99933

30 4.98993 5.28729 5.49798 5.27767 5.10301 4.49367 4.01106 3.81699 3.71309

ν

0 0.29795 0.28298 0.26253 0.25759 0.25681 0.25767 0.2598 0.26083 0.26141

5 0.2978 0.2835 0.26474 0.26119 0.26112 0.26405 0.26765 0.26926 0.27014

10 0.296 0.2831 0.26796 0.26752 0.26908 0.27677 0.28379 0.28674 0.28833

15 0.2938 0.28219 0.27064 0.27338 0.27664 0.28937 0.30009 0.3045 0.30688

20 0.29237 0.28175 0.27298 0.27824 0.28287 0.2997 0.31348 0.31911 0.32214

25 0.29091 0.28097 0.2742 0.28132 0.28697 0.30691 0.32304 0.32961 0.33316

30 0.289 0.2794 0.27403 0.2827 0.28923 0.31191 0.33016 0.3376 0.34161

Fig. 4.30: Equivalent Young’s Modulus With Varying Concentration Factor
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Fig. 4.31: Equivalent Poisson’s Ratio With Varying Concentration Factor

4.7.1 Observations

1. The finite element model for unidirectional composite properties was based on the

assumption that the bond between fiber and matrix was perfect.

2. From the graph Figure4.30-4.31, it was deduced that the concentration factor of 0.5

and 2 suggests more random fiber orientation and quasi isotropic properties. That is,

properties were least affected by the MFA orientation.

3. The range of equivalent Young’s modulus obtained through orientation averaging was

5.3-6.34 GPa, whereas the mean Young’s modulus evaluated from tensile test was

6.48GPa.

4. The increase in concentration factor k resulted in direction dependent effective prop-

erties. The Poisson’s ratio remained almost same for varying cellulose content.
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Chapter 5

Summary, Conclusion, and Future Work

5.1 Summary of Work Performed

As a part of this dissertation, the micro-structure of kenaf fiber was explored using an

optical microscope and a scanning electron microscope. Defects such as fiber damage, vari-

ation in the fiber width along axial direction, and delamination were observed (Figure 3.3).

The images of the kenaf fiber obtained from the scanning electron microscope revealed one

of the cell wall shapes to be a hollow rectangle Figure 3.2(b), whereas in general the cell

wall shapes were an irregular polygon, as observed from the optical microscope images as

shown in Figure 3.1. In order to obtain the tensile modulus of kenaf fiber, a tensile test

was performed using the Instron 5848 testing machine. To study the influence of fiber gage

length on the tensile modulus, four different gage lengths of 10, 15, 20 and 25.4 mm were

selected and ten fibers in each lot were tested. The approximate cross-sectional area of fiber

after failure was measured using an optical microscope. The procedure used to prepare the

sample for microscopy examination was discussed in section 3.2.2. ImageJ software was used

to evaluate the fiber cross-sectional area of the images obtained from the optical microscope

at 50X magnification.

The kenaf fiber composite sample was processed by mixing chopped kenaf fibers and

epoxy matrix using a vacuum bagging technique in the first attempt. Before preparing

the composite, the chopped kenaf fibers were rinsed in a 3% sodium hydroxide solution

to remove surface impurities and shredded using carding brushes. The vacuum bagging

technique resulted in a composite plate with an uneven surface that was not suitable for

tensile tests.Therefore, in the second attempt composite samples (dimensions as per ASTM

D638) were prepared in HDPE molds by applying pressure through clamps and cured at

800C. Tensile tests were conducted on the composite samples to obtain Young’s modulus and
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Poisson’s ratio. Fourteen samples were tested on the Tinius Olsen tensile testing machine

and force and strain data were acquired through NIDAQ 9237, for which a LabVIEW code

was written, as shown in Figure B.3.

A 3D finite element code was written in a SCILAB environment to calculate the ho-

mogenized or effective properties of the natural fiber composite. A two-step homogenization

was carried out: the first step obtained the properties of the cell wall layers at the micro-

scopic scale and the second obtained unidirectional natural fiber composite properties. To

avoid an ill-conditioned matrix that appeared due to the number of constraint equations,

an augmented Lagrange technique was applied in the finite element code. To create a ge-

ometric model, Gmsh 3D mesh generator software was used, which provided an advantage

of the structured mesh. In the final step of modeling, an orientational averaging technique

was applied to evaluate the random fiber composite properties using the Von-Mises Fisher

probability distribution function, as explained in section 4.6.

5.2 Summary of Findings and Conclusion

Micro-structure of Kenaf Fiber

1. The optical microscopic images of kenaf fibers obtained along the fiber axial direction

exhibited defects such as delamination between cell walls, varying width, damage

of fiber and sudden reduction in cross-sectional area. This lead to varying tensile

strengths of kenaf fiber due to the amount of defects present based on the weakest

links theory.

2. The cross-sectional images obtained through the optical microscope and the scanning

electron microscope revealed the irregular cell wall shape and the hollow portion of

the cell wall. Therefore, an appropriate cross-sectional area was required to evaluate

stress in the fiber, taking into account the voids present on the cross-section. The

cross-sectional area of the kenaf fiber measured after tensile test had an equivalent

circular diameter of 45 µm on average.

Influence of Gage Length on Kenaf Fiber Modulus
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1. The tensile behavior of kenaf fibers was observed to be linear and failure to be brittle.

2. The tensile modulus of kenaf fiber was seen to increase with an increase in gage length.

This might be due to inconsistent micro-structure, accurate cross-sectional area for

evaluating stress and effective gage length in strain calculations. It can be concluded

that to evaluate the Young’s modulus of a kenaf fiber, a minimum gage length of 25.4

mm or more should be adopted.

3. The Weibull method was applied to characterize the tensile strength of a kenaf fiber.

Two parameter, three parameter and Weibull of Weibull models were used to fit the

tensile strength data. The average tensile strength obtained from the Weibull of

Weibull model was observed to be in good agreement with the experimental values.

In order to obtain appropriate Weibull distribution fit, more samples should be tested.

Tensile Properties of Randomly Oriented Kenaf Fiber Composite

1. The kenaf fiber composite exhibited linear behavior and brittle failure with the tensile

strength in the range of 20-38 MPa, as presented by other researchers in the past. The

tensile strength is very low compared to that of the neat resin due to the amount of

tensile strength reducing voids present in the composite.

2. The Poisson’s ratio varied from specimen to specimen and was found to be in the range

of 0.28-0.43. A possible reason for this might be the fiber orientation and inconsistent

micro-structure at the point where the strains were measured.

3. The mean Young’s modulus of the kenaf fiber composite at 22% fiber volume fraction

is 6.48 GPa and comparative to the glass fiber composite of 7-8 GPa. This is an

evidence that the kenaf fiber composite can replace glass fiber composite in terms of

elastic modulus.

Numerical Modeling of Natural Fiber Composite

1. The Youngs modulus in the axial direction and Poisson’s ratio computed using 3D

finite element and semi-empirical relations presented in Section 4.4 were observed
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to be in good agreement with the Rule of Mixtures. The transverse modulus was

observed to be in good agreement with Tsai-Hahn empirical relation, whereas results

from the multi-pass homogenization procedure gave an error of about 17%. Through

inverse calculations, parameter χ of Halpin-Tsai empirical relation was seen to be 1.58

for the transverse modulus and 0.9 for the shear modulus.

2. The homogenized properties of an unidirectional kenaf fiber composite were obtained

using parametric finite element modeling, with varying micro-fibril orientation in S2

layer. The axial modulus was reduced by 48-54% with an increase in MFA in the

S2 layer. The transverse modulus and shear modulus were least affected. The axial

modulus increased by 22% with an increase in cellulose content at MFA of 0o. The

shear modulus and Poisson’s ratio were least affected by an increase in cellulose con-

tent. These results indicate that the axial modulus of a composite is a function of

fiber anisotropy. The numerical tests shows that the axial modulus increases with an

increase in the cellulose content and the composites processed from fibers like cot-

ton and ramie (which constitute 90% cellulose) as reinforcement will have increased

Young’s modulus as .

3. It was deduced that the composite properties remained quasi-isotropic at the concen-

tration parameter of 0.5 and 2 (i.e. equivalent modulus remained almost constant) as

shown in Figure 4.30. With an increase in the concentration parameter, the equivalent

modulus appeared to be directional dependent (i.e. it decreases with an increase in

MFA). The homogenization model developed for randomly oriented short fiber com-

posite was able to predict the equivalent modulus (material is quasi-isotropic) and

also explained the direction dependence property with fibers oriented in a particular

direction.

5.3 Future Work

1. Understanding fiber and matrix interfacial characteristics through fiber pull out test-

s/single fiber fragmentation tests will provide an opportunity for enhancing the strength
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of natural fiber composites.

2. The appropriate manufacturing method for reducing the voids will enhance the strength

of composites.

3. The application of kenaf fiber reinforced composites becomes crucial in the hygroscopic

environment due to fiber water absorption property. Therefore, durability studies will

be required to understand the behavior of the composite.

4. The voids in the unit cell and an imperfect bond (interface model) between fiber and

matrix will be required to model the fracture and damage behavior of the composite.



91

References

[1] Mallick, P. K., Fiber-Reinforced Composites: Materials, Manufacturing, and Design,
CRC press, 2007.

[2] Joshi, S. V., Drzal, L., Mohanty, A., and Arora, S., “Are natural fiber composites
environmentally superior to glass fiber reinforced composites?” Composites Part A:
Applied Science and Manufacturing , Vol. 35, No. 3, 2004, pp. 371–376.

[3] Faruk, O., Bledzki, A. K., Fink, H.-P., and Sain, M., “Biocomposites reinforced
with natural fibers: 2000–2010,” Progress in Polymer Science, Vol. 37, No. 11, 2012,
pp. 1552–1596.

[4] Paridah, M. T., Basher, A. B., SaifulAzry, S., and Ahmed, Z., “RETTING PROCESS
OF SOME BAST PLANT FIBRES AND ITS EFFECT ON FIBRE QUALITY: A
REVIEW,” BioResources, Vol. 6, No. 4, 2011, pp. 5260–5281.

[5] Das, P., Nag, D., Debnath, S., and Nayak, L., “Machinery for extraction and traditional
spinning of plant fibres,” Indian Journal of Traditional Knowledge, Vol. 9, No. 2, 2010,
pp. 386–393.

[6] Wambua, P., Ivens, J., and Verpoest, I., “Natural fibres: can they replace glass in
fibre reinforced plastics?” Composites Science and Technology , Vol. 63, No. 9, 2003,
pp. 1259–1264.

[7] Symington, M. C., Banks, W. M., West, D., and Pethrick, R., “Tensile Testing of
Cellulose Based Natural Fibers for Structural Composite Applications,” Journal of
Composite Materials, 2009.

[8] Ochi, S., “Tensile Properties of Kenaf Fiber Bundle,” SRX Materials Science,
Vol. 2010, 2009.

[9] Rowell, R. M., Sanadi, A. R., Caulfield, D. F., and Jacobson, R. E., “Utilization of
Natural Fibers in Plastic Composites: Problems and Opportunities,” Lignocellulosic-
Plastics Composites, 1997, pp. 23–51.

[10] Sen, T. and Reddy, H. J., “Various Industrial Applications of Hemp, kenaf, Flax and
Ramie Natural Fibres,” International Journal of Innovation, Management and Tech-
nology , Vol. 2, 2011, pp. 192–198.

[11] Holbery, J. and Houston, D., “Natural-Fiber-Reinforced Polymer Composites in Au-
tomotive Applications,” JOM , Vol. 58, No. 11, 2006, pp. 80–86.

[12] Zampaloni, M., Pourboghrat, F., Yankovich, S., Rodgers, B., Moore, J., Drzal, L.,
Mohanty, A., and Misra, M., “Kenaf natural fiber reinforced polypropylene composites:
A discussion on manufacturing problems and solutions,” Composites Part A: Applied
Science and Manufacturing , Vol. 38, No. 6, 2007, pp. 1569–1580.



92

[13] John, S., Nilmini, P., Amandeep, S., and Hall, W., “A review of bast fibers and
their composites. Part 1: fibers as reinforcement,” Composites Part A, Vol. 41, 2010,
pp. 1329–1335.

[14] Won, J. S., Lee, J. E., Jin, D. Y., and Lee, S. G., “Mechanical Properties and
Biodegradability of the Kenaf/Soy Protein Isolate-PVA Biocomposites,” International
Journal of Polymer Science, 2015.

[15] Akil, H., Omar, M., Mazuki, A., Safiee, S., Ishak, Z., and Bakar, A. A., “Kenaf fiber
reinforced composites: a review,” Materials & Design, Vol. 32, No. 8, 2011, pp. 4107–
4121.

[16] Lee, B.-H., Kim, H.-J., and Yu, W.-R., “Fabrication of long and discontinuous natural
fiber reinforced polypropylene biocomposites and their mechanical properties,” Fibers
and Polymers, Vol. 10, No. 1, 2009, pp. 83–90.

[17] Ku, H., Wang, H., Pattarachaiyakoop, N., and Trada, M., “A review on the tensile
properties of natural fiber reinforced polymer composites,” Composites Part B: Engi-
neering , Vol. 42, No. 4, 2011, pp. 856–873.

[18] de Andrade Silva, F., Chawla, N., and de Toledo Filho, R. D., “Tensile behavior of
high performance natural (sisal) fibers,” Composites Science and Technology , Vol. 68,
No. 15, 2008, pp. 3438–3443.

[19] Pan, N., Chen, H., Thompson, J., Inglesby, M., Khatua, S., Zhang, X., and Zero-
nian, S., “The size effects on the mechanical behaviour of fibres,” Journal of Materials
Science, Vol. 32, No. 10, 1997, pp. 2677–2685.

[20] Mohanty, S., Nayak, S., Verma, S., and Tripathy, S., “Effect of MAPP as a coupling
agent on the performance of jute–PP composites,” Journal of Reinforced Plastics and
Composites, Vol. 23, No. 6, 2004, pp. 625–637.

[21] Meon, M. S., Othman, M. F., Husain, H., Remeli, M. F., and Syawal, M. S. M.,
“Improving tensile properties of kenaf fibers treated with sodium hydroxide,” Procedia
Engineering , Vol. 41, 2012, pp. 1587–1592.

[22] Herrera-Franco, P. and Valadez-Gonzalez, A., “A study of the mechanical properties of
short natural-fiber reinforced composites,” Composites Part B: Engineering , Vol. 36,
No. 8, 2005, pp. 597–608.

[23] Lim, J., Zheng, J. Q., Masters, K., and Chen, W. W., “Effects of gage length, loading
rates, and damage on the strength of PPTA fibers,” International Journal of Impact
Engineering , Vol. 38, No. 4, 2011, pp. 219–227.

[24] Xue, Y., Du, Y., Elder, S., Wang, K., and Zhang, J., “Temperature and loading rate
effects on tensile properties of kenaf bast fiber bundles and composites,” Composites
Part B: Engineering , Vol. 40, No. 3, 2009, pp. 189–196.

[25] De Santo, M., Liguori, C., Paolillo, A., and Pietrosanto, A., “Standard uncertainty
evaluation in image-based measurements,” Measurement , Vol. 36, No. 3, 2004, pp. 347–
358.



93

[26] Liguori, C., Paolillo, A., and Pietrosanto, A., “An automatic measurement system for
the evaluation of carotid intima-media thickness,” Instrumentation and Measurement,
IEEE Transactions on, Vol. 50, No. 6, 2001, pp. 1684–1691.

[27] Coleman, H. W. and Steele, W. G., Experimentation, validation, and uncertainty anal-
ysis for engineers, John Wiley & Sons, 2009.

[28] UNCERT, C., “7: 2000-Gabauer, W., Manual of Codes of Practice for the Determina-
tion of Uncertainties in Mechanical Tests on Metallic Materials, The Determination of
Uncertainties in Tensile Testing, Project, No,” Tech. rep., SMT4-CT97-2165, 2000.

[29] Weibull, W., “Wide applicability,” Journal of Applied Mechanics, 1951.

[30] Todinov, M., “Probability of fracture initiated by defects,” Materials Science and En-
gineering: A, Vol. 276, No. 1, 2000, pp. 39–47.

[31] Zhu, Y. T., Blumenthal, W. R., Taylor, S. T., Lowe, T. C., and Zhou, B., “Analysis
of size dependence of ceramic fiber and whisker strength,” Journal of the American
Ceramic Society , Vol. 80, No. 6, 1997, pp. 1447–1452.

[32] Wang, F. and Shao, J., “Modified Weibull Distribution for Analyzing the Tensile
Strength of Bamboo Fibers,” Polymers, Vol. 6, No. 12, 2014, pp. 3005–3018.

[33] Fidelis, M. E. A., Pereira, T. V. C., Gomes, O. d. F. M., de Andrade Silva, F., and
Toledo Filho, R. D., “The effect of fiber morphology on the tensile strength of natural
fibers,” Journal of Materials Research and Technology , Vol. 2, No. 2, 2013, pp. 149–157.

[34] Shao, J., Wang, F., Li, L., and Zhang, J., “Scaling Analysis of the Tensile Strength
of Bamboo Fibers Using Weibull Statistics,” Advances in Materials Science and Engi-
neering , Vol. 2013, 2013.

[35] Da Costa, L., Loiola, R., and Monteiro, S., “Diameter dependence of tensile strength
by Weibull analysis: Part I bamboo fiber,” Matéria (Rio de Janeiro), Vol. 15, No. 2,
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Appendix A

Fiber Cross-Sectional Area

Table A.1: Evaluated Fiber Area Using ImageJ (25.4mm)

Specimen Optical Microscopic Image ImageJ

Fiber 1

Fiber 2

Fiber 3
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Fiber 4

Fiber 5

Fiber 6

Fiber 7
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Fiber 8

Fiber 9

Fiber 10

Fiber 11

Fiber 12



100

Table A.2: Evaluated Fiber Area Using ImageJ (20mm)

Specimen Optical Microscopic Image ImageJ

Fiber 1

Fiber 2

Fiber 3
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Fiber 4

Fiber 5

Fiber 6

Fiber 7
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Fiber 8

Fiber 9

Fiber 10

Table A.3: Evaluated Fiber Area Using ImageJ (15mm)

Specimen Optical Microscopic Image ImageJ
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Fiber 1

Fiber 2

Fiber 3

Fiber 4
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Fiber 5

Fiber 6

Fiber 7

Fiber 8
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Fiber 9

Fiber 10

Fiber 11

Fiber 12

Table A.4: Evaluated Fiber Area Using ImageJ (10mm)

Specimen Optical Microscopic Image ImageJ
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Fiber 1

Fiber 2

Fiber 3

Fiber 4

Fiber 5
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Fiber 6

Fiber 7

Fiber 8

Fiber 9
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Fiber 10

Fiber 11
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Table A.5: Elastic Constants(GPa) of Random Fiber Composite at Volume Fraction
55/24/21

E(GPa)

θ K=0.5 K=2 K=5 K=8 K=10 K=20 K=40 K=60 K=80

0 5.30745 5.97683 7.07735 7.4696 7.58541 7.75367 7.78794 7.78939 7.788

5 5.27136 5.89663 6.89196 7.21203 7.29365 7.37048 7.34403 7.32251 7.30909

10 5.19512 5.7278 6.50239 6.67103 6.68096 6.56606 6.41227 6.34261 6.30395

15 5.12254 5.56833 6.13584 6.16248 6.10518 5.81051 5.53734 5.42254 5.36022

20 5.06717 5.44764 5.8605 5.78186 5.67486 5.24761 4.88656 4.73855 4.65882

25 5.02547 5.36018 5.66583 5.515 5.37409 4.85666 4.43601 4.26552 4.174

30 4.99362 5.29558 5.52663 5.32717 5.16372 4.58701 4.12754 3.94244 3.84329

ν

0 0.29781 0.28239 0.26098 0.25532 0.25418 0.25401 0.25543 0.25619 0.25663

5 0.29711 0.28234 0.26256 0.25825 0.2578 0.25963 0.26245 0.26375 0.26447

10 0.29548 0.28214 0.266 0.26475 0.2659 0.27238 0.27852 0.28112 0.28254

15 0.29369 0.28174 0.26932 0.2713 0.27417 0.28571 0.29554 0.2996 0.30179

20 0.29244 0.28158 0.27213 0.27677 0.28105 0.29685 0.30984 0.31516 0.31802

25 0.29159 0.28151 0.27423 0.28082 0.28617 0.30518 0.32058 0.32687 0.33025

30 0.29147 0.28197 0.27624 0.28421 0.29029 0.31154 0.32865 0.33562 0.33937

Table A.6: Elastic Constants(GPa) of Random Fiber Composite at Volume Fraction
60/23/17

E(GPa)

θ K=0.5 K=2 K=5 K=8 K=10 K=20 K=40 K=60 K=80

0 5.37147 6.082 7.27544 7.72763 7.87109 8.1118 8.19338 8.2126 8.2205

5 5.32812 5.98629 7.05521 7.4222 7.52535 7.65837 7.66848 7.66068 7.65442

10 5.23638 5.78838 6.60487 6.79922 6.82073 6.73563 6.60098 6.53846 6.50352

15 5.15284 5.60826 6.19531 6.23284 6.18021 5.89707 5.63102 5.51883 5.45785

20 5.08907 5.47429 5.89561 5.82066 5.715 5.29049 4.93082 4.78327 4.70376

25 5.04363 5.38063 5.68927 5.53871 5.39758 4.87886 4.45698 4.28596 4.19416

30 5.0098 5.31311 5.54479 5.34386 5.17935 4.59907 4.13682 3.95062 3.85087

ν

0 0.29826 0.2823 0.25966 0.25302 0.25138 0.24979 0.25022 0.25059 0.25082

5 0.29753 0.28235 0.26156 0.25644 0.25557 0.2562 0.25818 0.25916 0.25971

10 0.29582 0.28224 0.2655 0.26376 0.26465 0.27036 0.27596 0.27834 0.27964

15 0.29401 0.28196 0.26927 0.27102 0.27376 0.28491 0.29446 0.29841 0.30054

20 0.29264 0.28175 0.27222 0.27678 0.28102 0.29666 0.30954 0.31481 0.31765

25 0.29182 0.28175 0.27449 0.28108 0.28642 0.3054 0.32078 0.32705 0.33043

30 0.2916 0.28213 0.27646 0.28447 0.29058 0.31188 0.32903 0.33602 0.33978
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Table A.7: Elastic Constants(GPa) of Random Fiber Composite at Volume Fraction
65/20/15

E(GPa)

θ K=0.5 K=2 K=5 K=8 K=10 K=20 K=40 K=60 K=80

0 5.46197 6.21603 7.50126 8.00763 8.17504 8.47639 8.59637 8.62982 8.64514

5 5.407 6.10471 7.25676 7.67262 7.79735 7.98487 8.02944 8.03441 8.0348

10 5.30552 5.88678 6.76404 6.99349 7.03036 6.98374 6.87325 6.81966 6.78936

15 5.20677 5.68259 6.31164 6.37311 6.33087 6.07362 5.82374 5.71751 5.65962

20 5.13359 5.53303 5.98306 5.92399 5.82512 5.41727 5.06785 4.92405 4.84649

25 5.08118 5.42845 5.75735 5.61756 5.48093 4.97304 4.55768 4.38903 4.29845

30 5.04231 5.35348 5.60026 5.40704 5.24567 4.67276 4.21484 4.03019 3.93124

ν

0 0.29759 0.28108 0.25734 0.24995 0.24794 0.24533 0.24504 0.24514 0.24523

5 0.29542 0.27969 0.25788 0.25206 0.25084 0.2505 0.25181 0.25252 0.25293

10 0.29544 0.28145 0.26386 0.26148 0.26205 0.26685 0.2718 0.27393 0.2751

15 0.29387 0.28153 0.26817 0.26941 0.27187 0.28224 0.29122 0.29494 0.29695

20 0.29265 0.28155 0.27154 0.27569 0.27972 0.29473 0.30713 0.31222 0.31496

25 0.29187 0.28166 0.27404 0.28032 0.28549 0.30396 0.31897 0.32509 0.32838

30 0.29164 0.28206 0.27611 0.28388 0.28985 0.31075 0.32759 0.33445 0.33815

Table A.8: Elastic Constants(GPa) of Random Fiber Composite at Volume Fraction
70/17/13

E(GPa)

θ K=0.5 K=2 K=5 K=8 K=10 K=20 K=40 K=60 K=80

0 5.54608 6.34325 7.72093 8.28318 8.4756 8.84088 9.00171 9.05038 9.07362

5 5.48636 6.22089 7.4514 7.91427 8.05994 8.30083 8.37938 8.39698 8.40395

10 5.36526 5.97285 6.90557 7.16771 7.21901 7.20892 7.12155 7.07653 7.05069

15 5.25392 5.74727 6.41223 6.49405 6.46063 6.22527 5.989 5.88778 5.8325

20 5.17037 5.58163 6.05546 6.00949 5.9162 5.52205 5.18103 5.04031 4.96434

25 5.11154 5.46708 5.81216 5.68088 5.54779 5.04834 4.63804 4.47122 4.38159

30 5.06898 5.38633 5.64471 5.45712 5.29798 4.7301 4.27503 4.09138 3.99294

ν

0 0.29725 0.28021 0.2554 0.24726 0.24487 0.24122 0.24022 0.24005 0.23999

5 0.29662 0.28045 0.25766 0.25112 0.24954 0.24819 0.24879 0.24923 0.2495

10 0.29531 0.28098 0.26263 0.25968 0.25996 0.26393 0.26828 0.27018 0.27123

15 0.29381 0.28124 0.26734 0.26815 0.2704 0.28013 0.28864 0.29217 0.29409

20 0.29269 0.28144 0.27104 0.27487 0.27873 0.29323 0.30527 0.3102 0.31286

25 0.29196 0.28164 0.27375 0.27979 0.28484 0.30292 0.31763 0.32364 0.32687

30 0.2917 0.28204 0.2759 0.28349 0.28937 0.30999 0.3266 0.33338 0.33703
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Appendix B

Figures

(a) GL : 25.4 mm

(b) GL : 20 mm

Fig. B.1: Cumulative Distribution Function with Evaluated Parameters
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(c) GL : 15 mm

(d) GL : 10 mm

Fig. B.1: Cumulative Distribution Function with Evaluated Parameters (Contd)
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(a) GL : 25.4 mm

(b) GL : 20 mm

Fig. B.2: Cumulative Distribution Function of Three Parameter Model for Consistent Data
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(c) GL : 15 mm

(d) GL : 10 mm

Fig. B.2: Cumulative Distribution Function of Three Parameter Model for Consistent Data
(Contd)
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Fig. B.3: Block Diagram of Tensile Test
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Appendix C

Finite Element Code



0001  function GenerateInputFile(filename)
0001  
0002      function [xl, k]=GenerateNodes(txt)
0001      
0002      Nodes=evstr(txt(5));
0003      k=Nodes+5;
0004      xl=evstr(txt(6:k));
0005  
0006      fnodes=mopen('C:\Users\Dayakar Naik\Documents\FEMProgramFiles\Scilab program files\nodes3d.txt','wt');
0007      mfprintf(fnodes,'%i %20.16f %20.16f %20.16f\n',xl(:,1),xl(:,2),xl(:,3),xl(:,4));
0008      mclose(fnodes);
0009      
0010  endfunction
0011  
0014  function [El, kr]=GenerateElements(txt, k)
0001    
0002      j=evstr(txt(k+3));
0003      for i=1:j
0004         ty=evstr(txt(k+3+i));
0005         [m,n]=size(ty);
0006               if n==13 then
0007                       El=evstr(txt(k+3+i:k+3+j));kr=k+3+i;
0008                       break;
0009          
0010          end
0011          
0012      end
0013      felem=mopen('C:\Users\Dayakar Naik\Documents\FEMProgramFiles\Scilab program files\elements3d.txt','wt');
0014      mfprintf(felem,'%i %i %i %i %i %i %i %i %i %i
\n',El(:,1)-i+1,El(:,5),El(:,6),El(:,7),El(:,8),El(:,9),El(:,10),El(:,11),El(:,12),El(:,13));
0015      mclose(felem);
0016  endfunction
0017  
0032  function [Sfnodes]=GenerateSurfaceNodes(txt, k, kr)
0001      j=evstr(txt(k+3));
0002      for i=1:j
0003          ty=evstr(txt(k+3+i));
0004          [m,n]=size(ty);
0005          if n==9 then
0006           Sfnodes=evstr(txt(k+3+i:kr-1));
0007          break;
0008      end
0009   end
0010      fsnod=mopen('C:\Users\Dayakar Naik\Documents\FEMProgramFiles\Scilab program files\SurfaceFile.txt','wt');
0011      mfprintf(fsnod,'%i %i %i %i %i\n',Sfnodes(:,5),Sfnodes(:,6),Sfnodes(:,7),Sfnodes(:,8),Sfnodes(:,9));
0012      mclose(fsnod);
0013  endfunction
0014  
0047  ft=mopen(filename,'rt')
0048  txt=mgetl(ft,-1);
0049  mclose(ft)
0050  
0051  [xl, k] = GenerateNodes(txt);
0052  [El, kr] = GenerateElements(txt, k);
0053  [Sfnodes] = GenerateSurfaceNodes(txt, k, kr);
0054  
0055  endfunction
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C.1 Input File Code



0001  function sortingsurface(filename)
0002  
0003  fsf = mopen('C:\Users\Dayakar Naik\Documents\FEMProgramFiles\Scilab program files\SurfaceFile.txt', 'rt');
0004  AA=mfscanf(-1,fsf,'%f %f %f %f %f');[ma,na]=size(AA);
0005  mclose(fsf);
0006  
0007  disp('Enter 1 for Rear Face')
0008  disp('Enter 2 for Front Face')
0009  disp('Enter 3 for Left Face')
0010  disp('Enter 4 for Bottom Face')
0011  disp('Enter 5 for Right Face')
0012  disp('Enter 6 for Top Face')
0013  
0014  sno=input('Enter the Number for Corresponding Face')
0015  w=sno;
0016  ft=mopen(filename,'rt')
0017  txt=mfscanf(-1,ft,'%f %f %f %f %f %f');
0018  mclose(ft)
0019  
0020  SM=txt;
0021  
0022     // h=input('Entert how many surfaces')//Number of Surfaces Divided on One Big Surface
0023     [h,hh]=size(SM(:,sno));
0024      p=1;j=1;
0025      fim=mopen('C:\Users\Dayakar Naik\Documents\FEMProgramFiles\Scilab program files\sortingsurface.txt','wt')  
0026      for k=1:h
0027      //i=input('Entert the surface number in increasing order')
0028      i=SM(k,sno);
0029      if i~=0 then
0030          
0031           for j=j:ma//Gathers the Nodal Data of Particular Surface Selected
0032      
0033           if  i==AA(j,1) then
0034          mfprintf(fim,'%i %i %i %i\n',AA(j,2),AA(j,3),AA(j,4),AA(j,5));
0035           p=p+1;
0036          end
0037  
0038          end 
0039      j=p;
0040      end
0041     end
0042         
0043       mclose(fim)
0044  
0045  tic();
0046  fsrt=mopen('C:\Users\Dayakar Naik\Documents\FEMProgramFiles\Scilab program files\sortingsurface.txt','rt');
0047  A=mfscanf(-1,fsrt,'%f %f %f %f');
0048  [m,n]=size(A);
0049  BB=matrix(A,[m*n,1])
0050  BB=mtlb_sort(BB);
0051  
0052  [m,n]=size(BB);p=0;t=1;
0053  for j=1:m
0054      a=BB(j,1);p=0;
0055      
0056      for i=1:m-t
0057          k=t+i-p;
0058          c=BB(k,1);
0059          if a==c then
0060              BB(k,1)=[];
0061              p=p+1;
0062              [m,n]=size(BB);
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C.2 Sorting Surface Code



0063      end
0064      if a~=c then
0065          break
0066      end
0067      end
0068      t=t+1;
0069      if j==m then
0070          break
0071      end
0072          
0073  end
0074  
0075  time=toc();
0076  
0077  fsrtmod=mopen('C:\Users\Dayakar Naik\Documents\FEMProgramFiles\Scilab program files\modnodes.txt','wt');
0078  mfprintf(fsrtmod,'%i\n',BB(:,1))
0079  mclose(fsrtmod);mclose(fsrt)
0080  printf('\ntime needed to sort: %.3f\n',toc());
0081  
0082  endfunction



0001  //
***********************************************************************************************************
0002  //                                     FUNCTION TO EVALUATE STIFFNESS OF HEXAHEDRAL ELEMENT                                          *
0003  //
***********************************************************************************************************
0004  
0001        function [Elemstiff]=stiffness(x, y, z, D)
0002    
0003                    // INTEGRATION OR SAMPLING POINTS
0004                   r=[-1/sqrt(3);1/sqrt(3);1/sqrt(3);-1/sqrt(3);-1/sqrt(3);1/sqrt(3);1/sqrt(3);-1/sqrt(3)];
0005                   s=[-1/sqrt(3);-1/sqrt(3);1/sqrt(3);1/sqrt(3);-1/sqrt(3);-1/sqrt(3);1/sqrt(3);1/sqrt(3)];
0006                   t=[-1/sqrt(3);-1/sqrt(3);-1/sqrt(3);-1/sqrt(3);1/sqrt(3);1/sqrt(3);1/sqrt(3);1/sqrt(3)];
0007  
0008                   Elemstiff=zeros(24,24);
0009  
0010                 //shape functions (Ref:Chandrakant Desai & Tribikram Kundu)
0011                //*****************************************
0012                                     //N1=1/8*(1-r)*(1+s)*(1+t);
0013                                     //N2=1/8*(1-r)*(1-s)*(1+t);
0014                                    //N3=1/8*(1-r)*(1-s)*(1-t);
0015                                   //N4=1/8*(1-r)*(1+s)*(1-t);
0016                                   //N5=1/8*(1+r)*(1+s)*(1+t);
0017                                   //N6=1/8*(1+r)*(1-s)*(1+t);
0018                                  //N7=1/8*(1+r)*(1-s)*(1-t);
0019                                  //N8=1/8*(1+r)*(1+s)*(1-t);
0020  
0021                    for i=1:8
0022                            //Derivatives of shape functions w.r.t r
0023                             //*****************************************
0024                                 N1r=zeros(8,1);
0025                                 N1r(1,1)=-1/8*(1-s(i))*(1-t(i));
0026                                 N1r(2,1)=1/8*(1-s(i))*(1-t(i));
0027                                 N1r(3,1)=1/8*(1+s(i))*(1-t(i));
0028                                 N1r(4,1)=-1/8*(1+s(i))*(1-t(i));
0029                                 N1r(5,1)=-1/8*(1-s(i))*(1+t(i));
0030                                 N1r(6,1)=1/8*(1-s(i))*(1+t(i));
0031                                 N1r(7,1)=1/8*(1+s(i))*(1+t(i));
0032                                 N1r(8,1)=-1/8*(1+s(i))*(1+t(i));
0033  
0034                                //Derivatives of shape functions w.r.t s
0035                               //*****************************************
0036                                 N1s=zeros(8,1);
0037                                 N1s(1,1)=-1/8*(1-r(i))*(1-t(i));
0038                                 N1s(2,1)=-1/8*(1+r(i))*(1-t(i));
0039                                 N1s(3,1)=1/8*(1+r(i))*(1-t(i));
0040                                 N1s(4,1)=1/8*(1-r(i))*(1-t(i));
0041                                 N1s(5,1)=-1/8*(1-r(i))*(1+t(i));
0042                                 N1s(6,1)=-1/8*(1+r(i))*(1+t(i));
0043                                 N1s(7,1)=1/8*(1+r(i))*(1+t(i));
0044                                 N1s(8,1)=1/8*(1-r(i))*(1+t(i));
0045  
0046                                //Derivatives of shape functions w.r.t t
0047                               //*****************************************
0048                                N1t=zeros(8,1);
0049                                N1t(1,1)=-1/8*(1-r(i))*(1-s(i));
0050                                N1t(2,1)=-1/8*(1+r(i))*(1-s(i));
0051                                N1t(3,1)=-1/8*(1+r(i))*(1+s(i));
0052                                N1t(4,1)=-1/8*(1-r(i))*(1+s(i));
0053                                N1t(5,1)=1/8*(1-r(i))*(1-s(i));
0054                                N1t(6,1)=1/8*(1+r(i))*(1-s(i));
0055                                N1t(7,1)=1/8*(1+r(i))*(1+s(i));
0056                                N1t(8,1)=1/8*(1-r(i))*(1+s(i));
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C.3 Finite Element Code



0057  
0058               //Jacobian Matrix
0059                              J=zeros(3,3);
0060                                Nt=[N1r';N1s';N1t'];
0061                                 J=Nt*[x,y,z];
0062                                 IJ=inv(J);
0063                           IJ=inv(J);
0064  
0065              //Computation of B Matrix
0066              //***********************************
0067  
0068                     Ntt=zeros(6,24);
0069                   Ntt=[N1r(1,1) 0 0 N1r(2,1) 0 0 N1r(3,1) 0 0 N1r(4,1) 0 0 N1r(5,1) 0 0 N1r(6,1) 0 0 N1r(7,1) 0 0 N1r(8,1) 0 0;
0070                           N1s(1,1) 0 0 N1s(2,1) 0 0 N1s(3,1) 0 0 N1s(4,1) 0 0 N1s(5,1) 0 0 N1s(6,1) 0 0 N1s(7,1) 0 0 N1s(8,1) 0 0;
0071                           N1t(1,1) 0 0 N1t(2,1) 0 0 N1t(3,1) 0 0 N1t(4,1) 0 0 N1t(5,1) 0 0 N1t(6,1) 0 0 N1t(7,1) 0 0 N1t(8,1) 0 0;
0072                           0 N1r(1,1) 0 0 N1r(2,1) 0 0 N1r(3,1) 0 0 N1r(4,1) 0 0 N1r(5,1) 0 0 N1r(6,1) 0 0 N1r(7,1) 0 0 N1r(8,1) 0;
0073                           0 N1s(1,1) 0 0 N1s(2,1) 0 0 N1s(3,1) 0 0 N1s(4,1) 0 0 N1s(5,1) 0 0 N1s(6,1) 0 0 N1s(7,1) 0 0 N1s(8,1) 0;
0074                           0 N1t(1,1) 0 0 N1t(2,1) 0 0 N1t(3,1) 0 0 N1t(4,1) 0 0 N1t(5,1) 0 0 N1t(6,1) 0 0 N1t(7,1) 0 0 N1t(8,1) 0
0075                           0 0 N1r(1,1) 0 0 N1r(2,1) 0 0 N1r(3,1) 0 0 N1r(4,1) 0 0 N1r(5,1) 0 0 N1r(6,1) 0 0 N1r(7,1) 0 0 N1r(8,1);
0076                           0 0 N1s(1,1) 0 0 N1s(2,1) 0 0 N1s(3,1) 0 0 N1s(4,1) 0 0 N1s(5,1) 0 0 N1s(6,1) 0 0 N1s(7,1) 0 0 N1s(8,1);
0077                           0 0 N1t(1,1) 0 0 N1t(2,1) 0 0 N1t(3,1) 0 0 N1t(4,1) 0 0 N1t(5,1) 0 0 N1t(6,1) 0 0 N1t(7,1) 0 0 N1t(8,1)];
0078                   B=zeros(6,24);
0079                         bmult=[1 0 0 0 0 0 0 0 0;0 0 0 0 1 0 0 0 0;0 0 0 0 0 0 0 0 1;
0080                                     0 0 0 0 0 1 0 1 0;0 0 1 0 0 0 1 0 0;0 1 0 1 0 0 0 0 0];
0081                          B=bmult*[IJ,zeros(3,6);zeros(3,3),IJ,zeros(3,3);zeros(3,6),IJ]*Ntt;
0082                      B;
0083  
0084                         //Stiffness Computation
0085                        //************************************
0086                           Elemstiff = B'*D*B*det(J)+Elemstiff;
0087  
0088                 end
0089                  Elemstiff;
0090  
0091  endfunction
0092  
0097  //
***********************************************************************************************************
0098  //                                     END OF FUNCTION EVALUATING STIFFNESS OF HEXAHEDRAL ELEMENT                             *
0099  //
***********************************************************************************************************
0100  
0101  //
***********************************************************************************************************
0102  //                                     FUNCTION TO EVALUATE CONSTITUTIVE MATRIX                                                                   *
0103  //////
***********************************************************************************************************
0104  //function [D]=Dmatrix(Ex,Ey,Ez,Gyz,Gzx,Gxy,Nuxy,Nuxz,Nuyz,MIxyx,MIxyy,MIxyz,MUxzyz,theta)
0105  //    
0106  //    m=cosd(theta);
0107  //    n=sind(theta);
0108  //    
0109  //    T1=[m^2 n^2 0 0 0 2*m*n;
0110  //            n^2 m^2 0 0 0 -2*m*n;
0111  //            0 0 1 0 0 0;
0112  //            0 0 0 m -n 0;
0113  //            0 0 0 n m 0;
0114  //            -m*n m*n 0 0 0 m^2-n^2];
0115  //            
0116  //            T2=[m^2 n^2 0 0 0 m*n;
0117  //            n^2 m^2 0 0 0 -m*n;
0118  //            0 0 1 0 0 0;



0119  //            0 0 0 m -n 0;
0120  //            0 0 0 n m 0;
0121  //            -2*m*n 2*m*n 0 0 0 m^2-n^2];
0122  //            
0123  //            S=[1/Ex -Nuxy/Ex -Nuxz/Ex 0 0 MIxyx/Gxy;
0124  //                 -Nuxy/Ex 1/Ey -Nuyz/Ey 0 0 MIxyy/Gxy;
0125  //                 -Nuxz/Ex -Nuyz/Ey 1/Ez 0 0 MIxyz/Gxy;
0126  //                 0 0 0 1/Gyz MUxzyz/Gzx 0;
0127  //                 0 0 0 MUxzyz/Gzx 1/Gzx 0;
0128  //                 MIxyx/Gxy MIxyy/Gxy MIxyz/Gxy 0 0 1/Gxy];
0129  //                 
0130  //                D=inv(T1)*inv(S)*T2;
0131  //       //D=inv(S);
0132  //
0133  //endfunction
0134  function [D]=Dmatrix(Ex, Ey, Ez, Gyz, Gzx, Gxy, Nuxy, Nuxz, Nuyz, MIxyx, MIxyy, MIxyz, MUxzyz, theta)
0135      
0136      m=cosd(theta);
0137      n=sind(theta);
0138      
0001      T1=[m^2 0 n^2 0 2*m*n 0;
0002              0 1 0 0 0 0;
0003              n^2 0 m^2 0 -2*m*n 0;
0004              0 0 0 m 0 -n;
0005               -m*n 0 m*n 0 m^2-n^2 0;
0006              0 0 0 n 0 m];
0007              
0008              T2=[m^2 0 n^2 0 m*n 0;
0009              0 1 0 0 0 0;
0010              n^2 0 m^2 0 -m*n 0;
0011              0 0 0 m 0 -n;
0012               -2*m*n 0 2*m*n 0 m^2-n^2 0;
0013              0 0 0 n 0 m];
0014              
0015               S=[1/Ex -Nuxy/Ex -Nuxz/Ez 0 0 MIxyx/Gxy;
0016                   -Nuxy/Ex 1/Ey -Nuyz/Ez 0 0 MIxyy/Gxy;
0017                   -Nuxz/Ez -Nuyz/Ez 1/Ez 0 0 MIxyz/Gxy;
0018                   0 0 0 1/Gyz MUxzyz/Gzx 0;
0019                   0 0 0 MUxzyz/Gxy 1/Gzx 0;
0020                   MIxyx/Gxy MIxyy/Gxy MIxyz/Gxy 0 0 1/Gxy];
0021  
0022                   
0023                   
0024                   
0025                  D=inv(T1)*inv(S)*T2;
0026        // D=inv(S);
0027  
0028  endfunction
0029  
0030  //function [RD]=Rmatrix(D,thetax)  // Rotation About X-Axis
0031  //    m=cosd(thetax); 
0032  //    n=sind(thetax);
0033  //    Rx=[1 0 0 0 0 0;
0172  //           0 m^2 n^2 2*m*n 0 0;
0173  //           0 n^2 m^2 -2*m*n 0 0;
0174  //           0 -m*n m*n m^2-n^2 0 0;
0175  //           0 0 0 0 m -n;
0176  //            0 0 0 0 n m];
0177  //
0178  //
0179  //          Rx1=[1 0 0 0 0 0;
0180  //           0 m^2 n^2 m*n 0 0;



0181  //           0 n^2 m^2 -m*n 0 0;
0182  //           0 -2*m*n 2*m*n m^2-n^2 0 0;
0183  //           0 0 0 0 m -n;
0184  //            0 0 0 0 n m];
0185  //            
0186  //            RD=inv(Rx)*D*Rx1;
0187  //endfunction
0188  
0189  function [RD]=Rmatrix(D, thetax)  // Rotation About Z-Axis
0190      m=cosd(thetax); 
0191      n=sind(thetax);
0192      Rx=[m^2 n^2 0 0 0 2*m*n;
0193              n^2 m^2 0 0 0 -2*m*n;
0001              0 0 1 0 0 0;
0002              0 0 0 m -n 0;
0003              0 0 0 n m 0;
0004              -m*n m*n 0 0 0 m^2-n^2];
0005              
0006              Rx1=[m^2 n^2 0 0 0 m*n;
0007              n^2 m^2 0 0 0 -m*n;
0008              0 0 1 0 0 0;
0009              0 0 0 m -n 0;
0010              0 0 0 n m 0;
0011              -2*m*n 2*m*n 0 0 0 m^2-n^2];
0012              
0013              RD=inv(Rx)*D*Rx1;
0014  endfunction
0015  
0016  //
***********************************************************************************************************
0017  //                                     END OF FUNCTION TO EVALUATING CONSTITUTIVE MATRIX                                                 *
0018  //
***********************************************************************************************************
0019  
0213  //
***********************************************************************************************************
0214  //                                     FUNCTION TO EVALUATE STIFFNESS MATRIX ASSEMBLY                                                       *
0215  //
***********************************************************************************************************
0216  
0217     function [MatProp, Elmat, gdofg, CM, nceq]=GenerateDOF(xl, El, Eprop, kdo, ceq)
0218      
0219      [mn,nn]=size(xl); [m,n]=size(El);MatProp=El(:,2);[mk,nk]=size(kdo);[mc,nc]=size(ceq);
0220      xc=xl(:,2);yc=xl(:,3);zc=xl(:,4);kdof=kdo';
0221      
0001      Elmat=zeros(m(1),8);
0002      for i=1:m(1)
0003            for j=2:9
0004                 Elmat(i,j-1)=El(i,j+1);
0005            end
0006      end
0007              
0008      
0009      
0010      tdof=mn(1)*3;dof=tdof+mc(1);
0011      ldof=24;       //ldof=number of dof associated with element
0012      ek=m(1);      //e=number of elements
0013      npe=8;         //npe=number of nodes per element
0014      dofpn=3;      //dofnp=dof per node
0015      
0016      CM=zeros(ek,ldof);
0017      



0018  // GENERATE GLOBAL DOF'S SUCH THAT KNOWN DISP ARE SUBSTRUCTRED TO BOTTOM
0019  //-----------------------------------------------------------------------------------------------------------------------------------
0020                 gdof=zeros(tdof,1);p=1;jr=1;
0021                       q=dof-mk+1;
0022                            for i=1:tdof
0023                                  for j=jr:mk
0024                                          if i==kdo(j,1) then
0025                                              gdof(i,1)=q;
0026                                              jr=jr+1;
0027                                              q=q+1;
0028                                         end
0029                                  end
0030                                        if gdof(i,1)==0 then
0031                                           gdof(i,1)=p;
0032                                           p=p+1;
0033                                       end
0034                           end
0035  
0036                   gdofg=zeros(mn(1),3);o=1;
0037                          for i=1:mn(1)
0038                               gdofg(i,1)=gdof(o);
0039                               gdofg(i,2)=gdof(o+1);
0040                               gdofg(i,3)=gdof(o+2);
0041                               o=o+3;
0042                          end
0043                          
0044  //GENERATE GLOBAL DOF'S CONNECTIVITY MATRIX FOR ELEMENTS
0045  //--------------------------------------------------------------------------------------------------
0046                          
0047                               for i=1:ek
0048                                    p=1;k=0;
0049                                     for j=1:npe
0050                                             for l=p:p+2
0051              
0052                                                  CM(i,l)=gdofg(Elmat(i,j),l-k);
0053              
0054                                             end
0055                                              k=l;p=l+1;
0056                                    end
0057                              end
0058  
0059         nceq=zeros(mc,5);    //Incorporate Constraint Equations
0060         for i=1:mc
0061               lp1=gdofg(ceq(i,2),ceq(i,4));
0062               lp2=gdofg(ceq(i,3),ceq(i,5));
0063               lp3=ceq(i,6);
0064               lp4=ceq(i,7);
0065               nceq(i,1)=i;nceq(i,2)=lp1;nceq(i,3)=lp2;nceq(i,4)=lp3;nceq(i,5)=lp4;
0066          end
0067      
0068      
0069      endfunction
0070  // GENERATE STIFFNESS FOR EACH ELEMENT AND STORE IN    kl    MATRIX
0071  //----------------------------------------------------------------------------------------------------------
0072  
0073  function [KG, re, yo]=Assemble(xl, Elmat, Eprop, CM, nceq, MatProp, ek, tdof, dof, mk, mc)
0074       kl=zeros(576,ek);xc=xl(:,2);yc=xl(:,3);zc=xl(:,4);
0296       E11=Eprop(:,2);E22=Eprop(:,3);E33=Eprop(:,4);
0297             G12=Eprop(:,5);G23=Eprop(:,6);G13=Eprop(:,7);
0298             nu12=Eprop(:,8);nu23=Eprop(:,9);nu13=Eprop(:,10);
0001             mix=Eprop(:,11);miy=Eprop(:,12);miz=Eprop(:,13);mu=Eprop(:,14);
0002             theta=Eprop(:,15);thetax=Eprop(:,16);



0003       for w = 1:ek  
0004           xx=zeros(8,1);yy=zeros(8,1);zz=zeros(8,1);
0005              for i=1:8
0006                   j=Elmat(w,i);
0007                   xx(i,1)=xc(j);
0008                   yy(i,1)=yc(j);
0009                   zz(i,1)=zc(j);
0010              end
0011   
0012       mp=MatProp(w,1);
0013     
  [D]=Dmatrix(E11(mp,1),E22(mp,1),E33(mp,1),G12(mp,1),G23(mp,1),G13(mp,1),nu12(mp,1),nu23(mp,1),nu13(mp,1),mix(mp,1),miy(mp,1),miz(mp,1),mu(mp,1),theta(mp,1));
0014       [Cij]=Rmatrix(D,thetax(mp,1));
0015       [Elemstiff]=stiffness(xx,yy,zz,Cij);
0016       kl(:,w)=matrix([Elemstiff],576,1);
0017       
0018       end  
0019      [m,n]=size(kl);
0020      nkl=matrix(kl,m*n,1);clear kl;
0021  
0022  //GENERATE ROW AND COLUMN INDEXES (i,j) BASED ON CM MATRIX FOR CORRESPONDING kl
0023  //---------------------------------------------------------------------------------------------------------------------------------
0024      
0025      rindx=zeros(576,ek);        //Row Index
0026      cindx=zeros(576,ek);        //Column Index
0027      findex=zeros(24,ek);        //Force Index
0028      
0029      for w = 1:ek  
0030           rindx(:,w) = matrix(repmat(CM(w,:)',1,24),576,1);  
0031           cindx(:,w) = matrix(repmat(CM(w,:),24,1),576,1);  
0032      end  
0033      for w = 1:ek  
0034            findex(:,w) = CM(w,:)';  
0035      end  
0036       
0037       nrindx=matrix(rindx,m*n,1);
0038      clear rindx;
0039      ncindx=matrix(cindx,m*n,1);
0040      clear cindx;
0041       
0042      findex=matrix(findex,24*ek,1);
0043      R = sparse([findex,ones(24*ek,1)],zeros(24*ek,1));
0044  
0045       ps=tdof-mk;
0046           ixee=zeros(2*mc,1);
0047           kle=zeros(2*mc,1);
0048           klee=zeros(2*mc,1);
0049           jxee=zeros(2*mc,1);
0050           fii=zeros(4*mc,1);fjj=zeros(4*mc,1);
0051           nceeq=nceq';
0052            ixee=matrix(nceeq(2:3,:),2*mc,1);
0053           kle=matrix(nceeq(4:5,:),2*mc,1);
0054           klee=matrix(repmat(kle,1,2),4*mc,1);clear kle;
0055            jxet=repmat(ps+nceeq(1,:),2,1);
0056           jxee=matrix(jxet,2*mc,1);
0057           fii=[jxee;ixee];fjj=[ixee;jxee];
0058          clear ixee;clear jxee;
0059           KG = sparse([[nrindx;fii],[ncindx;fjj]],[nkl;klee]);
0060           
0061           R(dof-mk,1)=0.0005;
0062           re=R;yo=dof-mk;clear nrindx;clear ncindx;clear fii;clear fjj;clear nkl;clear klee;clear R;
0063           KG(yo+1:dof,:)=[]; KG(:,yo+1:dof)=[];re(yo+1:dof,:)=[];



0064  endfunction
0065    
0066  
0067  //
***********************************************************************************************************
0068  //                                     END OF FUNCTION EVALUATING ASSEMBLY MATRIX                                                              *
0069  //
***********************************************************************************************************
0368  
0369  //
***********************************************************************************************************
0370  //                                     FUNCTION TO EVALUATE DISPLACEMENTS                                                                               *
0371  //
***********************************************************************************************************
0372  function [u]=FEMsol(KG, re, yo, mc, pf)
0373      
0374     u = umfpack(KG(1:yo,1:yo),'\',full(re(1:yo)));//Direct Inverse Method
0375    // u=full(KG(1:yo,1:yo))\re(1:yo);
0376     //Iteration Method Based on Lagrange and Penalty Method Combined
0377  //   KK=KG(1:yo-mc,1:yo-mc);AA=KG(yo-mc+1:yo-mc+mc,1:yo-mc);w=sparse(pf*max(KG)*eye(mc,mc));lp=zeros(mc,1);
0378  //    f=re(1:yo-mc);b=re(yo-mc+1:yo-mc+mc);
0001  //    NK=KK+AA'*w*AA;
0002  //     R=f-AA'*lp+AA'*w*b;
0003  //    u = umfpack(NK,'\',R);
0004  //    lo=lp+w*(AA*u-b);
0005  //    lp=lo;a=1;
0006  //
0007  //while a>0 
0008  //        R=f-AA'*lp+AA'*w*b;
0009  //         u = umfpack(NK,'\',R);
0010  //        ln=lp+w*(AA*u-b);
0011  //         if abs(ln-lp)<=1d-5 then
0012  //            a=1-a;
0013  //            break
0014  //        else
0015  //        lp=ln;
0016  //        end
0017  //        a=a+1
0018  //    end
0019      
0020  endfunction
0021  
0022  //
***********************************************************************************************************
0023  //                                     FUNCTION TO EVALUATE B-MATRIX                                                                                           *
0024  //
***********************************************************************************************************
0025  function [Bm]=Bmatrix(x, y, z, r, s, t)
0026  
0027  //shape functions (Ref:Chandrakant Desai & Tribikram Kundu)
0406  //*****************************************
0407                  N1=1/8*(1-r)*(1+s)*(1+t);
0408                  N2=1/8*(1-r)*(1-s)*(1+t);
0409                  N3=1/8*(1-r)*(1-s)*(1-t);
0001                  N4=1/8*(1-r)*(1+s)*(1-t);
0002                  N5=1/8*(1+r)*(1+s)*(1+t);
0003                  N6=1/8*(1+r)*(1-s)*(1+t);
0004                  N7=1/8*(1+r)*(1-s)*(1-t);
0005                  N8=1/8*(1+r)*(1+s)*(1-t);
0006  
0007            N1r=zeros(8,1);
0008                  N1r(1,1)=-1/8*(1-s)*(1-t);



0009                  N1r(2,1)=1/8*(1-s)*(1-t);
0010                  N1r(3,1)=1/8*(1+s)*(1-t);
0011                  N1r(4,1)=-1/8*(1+s)*(1-t);
0012                  N1r(5,1)=-1/8*(1-s)*(1+t);
0013                  N1r(6,1)=1/8*(1-s)*(1+t);
0014                  N1r(7,1)=1/8*(1+s)*(1+t);
0015                  N1r(8,1)=-1/8*(1+s)*(1+t);
0016  
0017          //Derivatives of shape functions w.r.t s
0018            N1s=zeros(8,1);
0019                  N1s(1,1)=-1/8*(1-r)*(1-t);
0020                  N1s(2,1)=-1/8*(1+r)*(1-t);
0021                  N1s(3,1)=1/8*(1+r)*(1-t);
0022                  N1s(4,1)=1/8*(1-r)*(1-t);
0023                  N1s(5,1)=-1/8*(1-r)*(1+t);
0024                  N1s(6,1)=-1/8*(1+r)*(1+t);
0025                  N1s(7,1)=1/8*(1+r)*(1+t);
0026                  N1s(8,1)=1/8*(1-r)*(1+t);
0027                  
0028           //Derivatives of shape functions w.r.t t
0029           N1t=zeros(8,1);
0030                  N1t(1,1)=-1/8*(1-r)*(1-s);
0031                  N1t(2,1)=-1/8*(1+r)*(1-s);
0032                  N1t(3,1)=-1/8*(1+r)*(1+s);
0033                  N1t(4,1)=-1/8*(1-r)*(1+s);
0034                  N1t(5,1)=1/8*(1-r)*(1-s);
0035                  N1t(6,1)=1/8*(1+r)*(1-s);
0036                  N1t(7,1)=1/8*(1+r)*(1+s);
0037                  N1t(8,1)=1/8*(1-r)*(1+s);
0038  
0039          //Jacobian Matrix
0040                   J=zeros(3,3);
0041                   Nt=[N1r';N1s';N1t'];
0042                   J=Nt*[x,y,z];
0043                   IJ=inv(J);
0044  
0045     Ntt=zeros(6,24);
0046                   Ntt=[N1r(1,1) 0 0 N1r(2,1) 0 0 N1r(3,1) 0 0 N1r(4,1) 0 0 N1r(5,1) 0 0 N1r(6,1) 0 0 N1r(7,1) 0 0 N1r(8,1) 0 0;
0047                           N1s(1,1) 0 0 N1s(2,1) 0 0 N1s(3,1) 0 0 N1s(4,1) 0 0 N1s(5,1) 0 0 N1s(6,1) 0 0 N1s(7,1) 0 0 N1s(8,1) 0 0;
0048                           N1t(1,1) 0 0 N1t(2,1) 0 0 N1t(3,1) 0 0 N1t(4,1) 0 0 N1t(5,1) 0 0 N1t(6,1) 0 0 N1t(7,1) 0 0 N1t(8,1) 0 0;
0049                           0 N1r(1,1) 0 0 N1r(2,1) 0 0 N1r(3,1) 0 0 N1r(4,1) 0 0 N1r(5,1) 0 0 N1r(6,1) 0 0 N1r(7,1) 0 0 N1r(8,1) 0;
0050                           0 N1s(1,1) 0 0 N1s(2,1) 0 0 N1s(3,1) 0 0 N1s(4,1) 0 0 N1s(5,1) 0 0 N1s(6,1) 0 0 N1s(7,1) 0 0 N1s(8,1) 0;
0051                           0 N1t(1,1) 0 0 N1t(2,1) 0 0 N1t(3,1) 0 0 N1t(4,1) 0 0 N1t(5,1) 0 0 N1t(6,1) 0 0 N1t(7,1) 0 0 N1t(8,1) 0
0052                           0 0 N1r(1,1) 0 0 N1r(2,1) 0 0 N1r(3,1) 0 0 N1r(4,1) 0 0 N1r(5,1) 0 0 N1r(6,1) 0 0 N1r(7,1) 0 0 N1r(8,1);
0053                           0 0 N1s(1,1) 0 0 N1s(2,1) 0 0 N1s(3,1) 0 0 N1s(4,1) 0 0 N1s(5,1) 0 0 N1s(6,1) 0 0 N1s(7,1) 0 0 N1s(8,1);
0054                           0 0 N1t(1,1) 0 0 N1t(2,1) 0 0 N1t(3,1) 0 0 N1t(4,1) 0 0 N1t(5,1) 0 0 N1t(6,1) 0 0 N1t(7,1) 0 0 N1t(8,1)];
0055     B=zeros(6,24);
0056        bmult=[1 0 0 0 0 0 0 0 0;0 0 0 0 1 0 0 0 0;0 0 0 0 0 0 0 0 1;
0057                   0 0 0 0 0 1 0 1 0;0 0 1 0 0 0 1 0 0;0 1 0 1 0 0 0 0 0];
0058     B=bmult*[IJ,zeros(3,6);zeros(3,3),IJ,zeros(3,3);zeros(3,6),IJ]*Ntt;
0059     B;
0060   Bm=B;
0061   
0062  endfunction
0063  
0064   function [avrg]=aveg(astrain, x, y, z)
0065        r=[-1/sqrt(3);1/sqrt(3);1/sqrt(3);-1/sqrt(3);-1/sqrt(3);1/sqrt(3);1/sqrt(3);-1/sqrt(3)];
0066         s=[-1/sqrt(3);-1/sqrt(3);1/sqrt(3);1/sqrt(3);-1/sqrt(3);-1/sqrt(3);1/sqrt(3);1/sqrt(3)];
0067        t=[-1/sqrt(3);-1/sqrt(3);-1/sqrt(3);-1/sqrt(3);1/sqrt(3);1/sqrt(3);1/sqrt(3);1/sqrt(3)];
0068         vol=0;asigma=0;
0069     for i=1:8
0479                            //Derivatives of shape functions w.r.t r



0480                             //*****************************************
0001                                 N1r=zeros(8,1);
0002                                 N1r(1,1)=-1/8*(1-s(i))*(1-t(i));
0003                                 N1r(2,1)=1/8*(1-s(i))*(1-t(i));
0004                                 N1r(3,1)=1/8*(1+s(i))*(1-t(i));
0005                                 N1r(4,1)=-1/8*(1+s(i))*(1-t(i));
0006                                 N1r(5,1)=-1/8*(1-s(i))*(1+t(i));
0007                                 N1r(6,1)=1/8*(1-s(i))*(1+t(i));
0008                                 N1r(7,1)=1/8*(1+s(i))*(1+t(i));
0009                                 N1r(8,1)=-1/8*(1+s(i))*(1+t(i));
0010  
0011                                //Derivatives of shape functions w.r.t s
0012                               //*****************************************
0013                                 N1s=zeros(8,1);
0014                                 N1s(1,1)=-1/8*(1-r(i))*(1-t(i));
0015                                 N1s(2,1)=-1/8*(1+r(i))*(1-t(i));
0016                                 N1s(3,1)=1/8*(1+r(i))*(1-t(i));
0017                                 N1s(4,1)=1/8*(1-r(i))*(1-t(i));
0018                                 N1s(5,1)=-1/8*(1-r(i))*(1+t(i));
0019                                 N1s(6,1)=-1/8*(1+r(i))*(1+t(i));
0020                                 N1s(7,1)=1/8*(1+r(i))*(1+t(i));
0021                                 N1s(8,1)=1/8*(1-r(i))*(1+t(i));
0022  
0023                                //Derivatives of shape functions w.r.t t
0024                               //*****************************************
0025                                N1t=zeros(8,1);
0026                                N1t(1,1)=-1/8*(1-r(i))*(1-s(i));
0027                                N1t(2,1)=-1/8*(1+r(i))*(1-s(i));
0028                                N1t(3,1)=-1/8*(1+r(i))*(1+s(i));
0029                                N1t(4,1)=-1/8*(1-r(i))*(1+s(i));
0030                                N1t(5,1)=1/8*(1-r(i))*(1-s(i));
0031                                N1t(6,1)=1/8*(1+r(i))*(1-s(i));
0032                                N1t(7,1)=1/8*(1+r(i))*(1+s(i));
0033                                N1t(8,1)=1/8*(1-r(i))*(1+s(i));
0034  
0035               //Jacobian Matrix
0036   J=zeros(3,3);
0037                                Nt=[N1r';N1s';N1t'];
0038                                 J=Nt*[x,y,z];
0039                                 IJ=inv(J);
0040                   
0041                 v=det(J);
0042                vol=v+vol;
0043    
0044      asigma=astrain(i,1)*det(J)+asigma;
0045               end
0046               avrg=asigma;
0047   endfunction
0048  
0049  //
***********************************************************************************************************
0050  //                                     FUNCTION DISPLACEMENT RECOVERY                                                                                      *
0051  //
***********************************************************************************************************
0052  function [DU, Elementdisp]=DispRecovery(u, yo, mn, dof, ek, gdofg, xl, Elmat)
0053  
0054      xc=xl(:,2);yc=xl(:,3);zc=xl(:,4);
0055      u(yo+1:dof)=0;
0536      gdof1=zeros(mn(1),3);
0537      tt=1;
0538      for i=1:mn(1)
0539             for j=1:3



0540                   gdof1(i,j)=tt;
0001                   tt=tt+1;
0002             end
0003      end
0004  
0005  DU=zeros(dof,1);
0006       for i=1:mn
0007           for j=1:3
0008               DU(gdof1(i,j))=u(gdofg(i,j));
0009           end
0010       end
0011  CM=zeros(ek,24);
0012   for i=1:ek
0013            p=1;k=0;
0014                for j=1:8
0015                     for l=p:p+2
0016                          CM(i,l)=gdof1(Elmat(i,j),l-k);
0017                     end
0018                          k=l;p=l+1;
0019                end
0020       end
0021       
0022        Elementdisp=zeros(24,ek);
0023           for i=1:ek
0024              x=zeros(8,1);
0025              y=zeros(8,1);
0026             z=zeros(8,1);
0027                   for h=1:8
0028                        j=Elmat(i,h);
0029                        x(h,1)=xc(j);
0030                        y(h,1)=yc(j);
0031                        z(h,1)=zc(j);
0032                  end
0033             Eldisp=zeros(24,1);
0034                 for j=1:24
0035                   pp=CM(i,j);
0036                   Eldisp(j,1)=DU(pp,1);
0037                end
0038            Elementdisp(:,i)=Eldisp;
0039         end
0040       
0041       
0042  endfunction
0043  //
***********************************************************************************************************
0044  //                                     END OF FUNCTION DISPLACEMENT RECOVERY                                                                         *
0045  //
***********************************************************************************************************
0046  
0047  //
***********************************************************************************************************
0048  //                                                                         FUNCTION  STRAIN & STRESS RECOVERY                                               *
0049  //
***********************************************************************************************************
0050     
  function [Epsilon, avstrainz, avstrainy, avstrainx, avstrainyz, avstrainzx, avstrainxy]=StrainRecovery(Elementdisp, MatProp, ek, Elmat, xl, Eprop)
0051  
0052             avstrainz=0;avstrainy=0;avstrainx=0;avstrainyz=0;avstrainzx=0;avstrainxy=0;
0593             rr=[-1/sqrt(3);1/sqrt(3);1/sqrt(3);-1/sqrt(3);-1/sqrt(3);1/sqrt(3);1/sqrt(3);-1/sqrt(3)];
0594             ss=[-1/sqrt(3);-1/sqrt(3);1/sqrt(3);1/sqrt(3);-1/sqrt(3);-1/sqrt(3);1/sqrt(3);1/sqrt(3)];
0595             tt=[-1/sqrt(3);-1/sqrt(3);-1/sqrt(3);-1/sqrt(3);1/sqrt(3);1/sqrt(3);1/sqrt(3);1/sqrt(3)];
0596             



0597              xc=xl(:,2);yc=xl(:,3);zc=xl(:,4);
0598             E11=Eprop(:,2);E22=Eprop(:,3);E33=Eprop(:,4);
0599             G12=Eprop(:,5);G23=Eprop(:,6);G13=Eprop(:,7);
0600             nu12=Eprop(:,8);nu23=Eprop(:,9);nu13=Eprop(:,10);
0601             mix=Eprop(:,11);miy=Eprop(:,12);miz=Eprop(:,13);mu=Eprop(:,14);
0001             theta=Eprop(:,15);thetax=Eprop(:,16);
0002             Epsilon=zeros(48,ek);
0003         for w=1:ek
0004            mp=MatProp(w,1);
0005             for i=1:8
0006                   j=Elmat(w,i);
0007                   x(i,1)=xc(j);
0008                   y(i,1)=yc(j);
0009                  z(i,1)=zc(j);
0010             end
0011             
0012            Strain=zeros(6,8);
0013            for i=1:8
0014                
0015                r=rr(i);
0016                s=ss(i);
0017                t=tt(i);
0018                [Bm]=Bmatrix(x,y,z,r,s,t);
0019                Strain(:,i)=Bm*Elementdisp(:,w);
0020                
0021           end
0022           Epsilon(:,w) = matrix(Strain,48,1);
0023           for i=1:8
0024               ostrain(i,1)=Strain(1,i);
0025               ostrain1(i,1)=Strain(2,i);
0026               ostrain2(i,1)=Strain(3,i);
0027               ostrain3(i,1)=Strain(4,i);
0028               ostrain4(i,1)=Strain(5,i);
0029               ostrain5(i,1)=Strain(6,i);
0030           end
0031                avstrainx=aveg(ostrain,x,y,z)+avstrainx;
0032               avstrainy=aveg(ostrain1,x,y,z)+avstrainy;
0033                avstrainz=aveg(ostrain2,x,y,z)+avstrainz;
0034                avstrainxy=aveg(ostrain5,x,y,z)+avstrainxy;
0035               avstrainyz=aveg(ostrain3,x,y,z)+avstrainyz;
0036                avstrainzx=aveg(ostrain4,x,y,z)+avstrainzx;
0037  end
0038       
0039       
0040  endfunction
0041       
0042       
0043       
0044   
  function [Sigma, avstressz, avstressy, avstressx, avstressxy, avstressyz, avstressxz]=StressRecovery(Epsilon, MatProp, ek, Eprop, xl, Elmat)
0045  
0046             avstressz=0;avstressy=0;avstressx=0;avstressxy=0;avstressyz=0; avstressxz=0;
0047              xc=xl(:,2);yc=xl(:,3);zc=xl(:,4);
0048            E11=Eprop(:,2);E22=Eprop(:,3);E33=Eprop(:,4);
0049             G12=Eprop(:,5);G23=Eprop(:,6);G13=Eprop(:,7);
0050             nu12=Eprop(:,8);nu23=Eprop(:,9);nu13=Eprop(:,10);
0051             mix=Eprop(:,11);miy=Eprop(:,12);miz=Eprop(:,13);mu=Eprop(:,14);
0052             theta=Eprop(:,15);thetax=Eprop(:,16);
0654             Sigma=zeros(48,ek);
0655         for w=1:ek
0656            mp=MatProp(w,1);
0001             for i=1:8



0002                   j=Elmat(w,i);
0003                   x(i,1)=xc(j);
0004                   y(i,1)=yc(j);
0005                  z(i,1)=zc(j);
0006             end
0007            Stress=zeros(6,8);
0008            modEpsilon=matrix(Epsilon(:,w),6,8);
0009            
0010             
  [D]=Dmatrix(E11(mp,1),E22(mp,1),E33(mp,1),G12(mp,1),G23(mp,1),G13(mp,1),nu12(mp,1),nu23(mp,1),nu13(mp,1),mix(mp,1),miy(mp,1),miz(mp,1),mu(mp,1),theta(mp,1));
0011               [Cij]=Rmatrix(D,thetax(mp,1));
0012                Stress=[Cij]*modEpsilon;
0013                
0014           
0015           Sigma(:,w) = matrix(Stress,48,1);
0016           for i=1:8
0017                ostress(i,1)=Stress(3,i);ostress1(i,1)=Stress(2,i);ostress2(i,1)=Stress(1,i);
0018                ostress3(i,1)=Stress(6,i);ostress4(i,1)=Stress(5,i);ostress5(i,1)=Stress(4,i);
0019           end
0020                avstressz=aveg(ostress,x,y,z)+avstressz;
0021                avstressy=aveg(ostress1,x,y,z)+avstressy;
0022                avstressx=aveg(ostress2,x,y,z)+avstressx;
0023                avstressyz=aveg(ostress5,x,y,z)+avstressyz;
0024                avstressxy=aveg(ostress3,x,y,z)+avstressxy;
0025                avstressxz=aveg(ostress4,x,y,z)+avstressxz;
0026                
0027  end
0028       
0029       
0030  endfunction
0031  
0032  function [PStress]=PStressRecovery(Sigma, ek)
0033      
0034      for w=1:ek
0035      PSigma=matrix(Sigma(:,w),6,8);
0036      for i=1:8
0037      
0038      A=[PSigma(1,i) PSigma(6,i) PSigma(5,i);
0039            PSigma(6,i) PSigma(2,i) PSigma(4,i);
0040            PSigma(5,i) PSigma(4,i) PSigma(3,i)];
0041      dig=spec(A);
0042     [m,n] =max(real(dig));
0699      PStress(i,w)=m;
0001  end
0002  end
0003      
0004      endfunction
0005  
0006  //
***********************************************************************************************************
0007  //                                     END OF FUNCTION STRESS RECOVERY                                                                                       *
0008  //
***********************************************************************************************************
0009  
0010  //
***********************************************************************************************************
0011  //                                     FUNCTION TO WRITE OUTPUT FILES                                                                                           *
0012  //
***********************************************************************************************************
0013  
0014  function [fim]=postfile(Elementdisp, ek, Epsilon, Sigma, xl, PStress)
0015      



0016      xc=xl(:,2);yc=xl(:,3);zc=xl(:,4);
0716      
0717              fistrx=mopen('C:\Users\Dayakar Naik\Downloads\stressoutx.pos','wt');
0718                fistry=mopen('C:\Users\Dayakar Naik\Downloads\stressouty.pos','wt');
0719                fistrz=mopen('C:\Users\Dayakar Naik\Downloads\stressoutz.pos','wt');
0720                fistrp=mopen('C:\Users\Dayakar Naik\Downloads\Pstressout.pos','wt');
0721                fim=mopen('C:\Users\Dayakar Naik\Downloads\dispgmZ.pos','wt')  
0722              fim1=mopen('C:\Users\Dayakar Naik\Downloads\dispgmY.pos','wt')  
0723              fim2=mopen('C:\Users\Dayakar Naik\Downloads\dispgmX.pos','wt') 
0724                
0725              mfprintf(fim,'View ');
0001              mfprintf(fim," "" ");
0002              mfprintf(fim,'Displacement in Z');
0003              mfprintf(fim," "" ");
0004              mfprintf(fim,'{\n');
0005              
0006                 
0007             mfprintf(fim1,'View ');
0008             mfprintf(fim1," "" ");
0009             mfprintf(fim1,'Displacement in Y');
0010             mfprintf(fim1," "" ");
0011             mfprintf(fim1,'{');
0012             
0013             
0014             mfprintf(fim2,'View ');
0015             mfprintf(fim2," "" ");
0016             mfprintf(fim2,'Displacement in X');
0017             mfprintf(fim2," "" ");
0018             mfprintf(fim2,'{');
0019                
0020             mfprintf(fistrx,'View ');
0021             mfprintf(fistrx," "" ");
0022             mfprintf(fistrx,'Stress in X');
0023             mfprintf(fistrx," "" ");
0024             mfprintf(fistrx,'{');
0025              
0026             mfprintf(fistry,'View ');
0027             mfprintf(fistry," "" ");
0028             mfprintf(fistry,'Stress in Y');
0029             mfprintf(fistry," "" ");
0030             mfprintf(fistry,'{');
0031             
0032             mfprintf(fistrz,'View ');
0033             mfprintf(fistrz," "" ");
0034             mfprintf(fistrz,'Stress in Z');
0035             mfprintf(fistrz," "" ");
0036             mfprintf(fistrz,'{');
0037             
0038             mfprintf(fistrp,'View ');
0039             mfprintf(fistrp," "" ");
0040             mfprintf(fistrp,'Max Principal Stress');
0041             mfprintf(fistrp," "" ");
0042             mfprintf(fistrp,'{');
0043             
0044             for w=1:ek
0045                 
0046                  for i=1:8
0047                   j=Elmat(w,i);
0048                   x(i,1)=xc(j);
0049                   y(i,1)=yc(j);
0050                  z(i,1)=zc(j);
0051             end



0052                 
0053                 Eldisp=Elementdisp(:,w);
0054                   uzdisp=zeros(8,1);
0055                   uydisp=zeros(8,1);
0056                   uxdisp=zeros(8,1);
0057                   kk=1;
0058                         for jj=1:8
0059                               uzdisp(jj,1)=Eldisp(kk+2,1);
0060                               uydisp(jj,1)=Eldisp(kk+1,1);
0061                               uxdisp(jj,1)=Eldisp(kk,1);
0062                               kk=kk+3;
0063                         end
0064                         
0065                         
0066                  Epsi=Epsilon(:,w);
0067                   Epsix=zeros(8,1);
0068                   Epsiy=zeros(8,1);
0069                   Epsiz=zeros(8,1);
0070                   kk=1;
0071                         for jj=1:8
0072                               Epsiz(jj,1)=Epsi(kk+2,1);
0073                               Epsiy(jj,1)=Epsi(kk+1,1);
0074                               Epsix(jj,1)=Epsi(kk,1);
0075                               kk=kk+6;
0076                         end 
0077                         
0078                         PStressp=PStress(:,w);
0079                  Sigm=Sigma(:,w);
0080                   Sigmx=zeros(8,1);
0081                   Sigmy=zeros(8,1);
0082                   Sigmz=zeros(8,1);
0083                   kk=1;
0084                         for jj=1:8
0085                               Sigmz(jj,1)=Sigm(kk+2,1);
0086                               Sigmy(jj,1)=Sigm(kk+1,1);
0087                               Sigmx(jj,1)=Sigm(kk,1);
0088                               kk=kk+6;
0089                         end 
0090                 
0091             mfprintf(fim,'\nSH(');
0092                 mfprintf(fim,'%f,%f,%f,',x(1:7),y(1:7),z(1:7));
0093                 mfprintf(fim,'%f,%f,%f',x(8),y(8),z(8));
0094                 mfprintf(fim,'){')
0095                 mfprintf(fim,'%f,',uzdisp(1:7));
0096                 mfprintf(fim,'%f',uzdisp(8));
0097                 mfprintf(fim,'};\n')
0098   
0099                  mfprintf(fim1,'\nSH(');
0100                 mfprintf(fim1,'%f,%f,%f,',x(1:7),y(1:7),z(1:7));
0101                 mfprintf(fim1,'%f,%f,%f',x(8),y(8),z(8));
0102                 mfprintf(fim1,'){')
0103                 mfprintf(fim1,'%f,',uydisp(1:7));
0104                 mfprintf(fim1,'%f',uydisp(8));
0105                 mfprintf(fim1,'};')
0106   
0107                   mfprintf(fim2,'\nSH(');
0108                 mfprintf(fim2,'%f,%f,%f,',x(1:7),y(1:7),z(1:7));
0109                 mfprintf(fim2,'%f,%f,%f',x(8),y(8),z(8));
0110                 mfprintf(fim2,'){')
0111                 mfprintf(fim2,'%f,',uxdisp(1:7));
0112                 mfprintf(fim2,'%f',uxdisp(8));
0113                 mfprintf(fim2,'};')



0114   
0115                mfprintf(fistrx,'\nSH(');
0116                mfprintf(fistrx,'%f,%f,%f,',x(1:7),y(1:7),z(1:7));
0117                 mfprintf(fistrx,'%f,%f,%f',x(8),y(8),z(8));
0118                 mfprintf(fistrx,'){');
0119                 mfprintf(fistrx,'%f,',Sigmx(1:7));
0120                 mfprintf(fistrx,'%f',Sigmx(8));
0121                 mfprintf(fistrx,'};');
0122  
0123                 mfprintf(fistry,'\nSH(');
0124                 mfprintf(fistry,'%f,%f,%f,',x(1:7),y(1:7),z(1:7));
0125                 mfprintf(fistry,'%f,%f,%f',x(8),y(8),z(8));
0126                 mfprintf(fistry,'){');
0127                 mfprintf(fistry,'%f,',Sigmy(1:7));
0128                 mfprintf(fistry,'%f',Sigmy(8));
0129                 mfprintf(fistry,'};');
0130  
0131                 mfprintf(fistrz,'\nSH(');
0132                 mfprintf(fistrz,'%f,%f,%f,',x(1:7),y(1:7),z(1:7));
0133                 mfprintf(fistrz,'%f,%f,%f',x(8),y(8),z(8));
0134                 mfprintf(fistrz,'){');
0135                 mfprintf(fistrz,'%f,',Sigmz(1:7));
0136                 mfprintf(fistrz,'%f',Sigmz(8));
0137                 mfprintf(fistrz,'};');
0138                 
0139                 mfprintf(fistrp,'\nSH(');
0140                 mfprintf(fistrp,'%f,%f,%f,',x(1:7),y(1:7),z(1:7));
0141                 mfprintf(fistrp,'%f,%f,%f',x(8),y(8),z(8));
0142                 mfprintf(fistrp,'){');
0143                 mfprintf(fistrp,'%f,',PStressp(1:7));
0144                 mfprintf(fistrp,'%f',PStressp(8));
0145                 mfprintf(fistrp,'};');
0146                 
0147  
0148  end
0149  
0150  mfprintf(fistrx,'};')
0151  mfprintf(fistry,'};')
0152  mfprintf(fistrz,'};')
0153  mfprintf(fim,'};')
0154  mfprintf(fim1,'};')
0155  mfprintf(fim2,'};')
0156  mfprintf(fistrp,'};')
0157  
0158  mclose(fim);
0159  mclose(fim1);
0160  mclose(fim2);
0161  mclose(fistrx);
0162  mclose(fistry);
0163  mclose(fistrz);
0164  mclose(fistrp);
0165      
0166  endfunction
0167  
0168  //
***********************************************************************************************************
0169  //                                     END OF FUNCTION WRITE OUTPUT FILES                                                                                   *
0170  //
***********************************************************************************************************
0171  
0172  //
***********************************************************************************************************



0173  //                                                    MAIN PROGRAM                                                                                                               *
0174  //
***********************************************************************************************************
0175  stacksize('max');clear all;clc;
0176  cpt = getdate();   // Inititalising Time 
0177  cpt(3:5) = [];
0178  cpt(6) = cpt(6)+cpt(7)/1000;
0179  cpt1 = cpt(1:6);
0180               disp(' Iterative Method Solution ');
0181               fnd = mopen('C:\Users\Dayakar Naik\Downloads\nodes3d.txt', 'rt');
0182               fed = mopen('C:\Users\Dayakar Naik\Downloads\elements3d.txt', 'rt');
0183               fmd = mopen('C:\Users\Dayakar Naik\Downloads\materials3d.txt', 'rt');
0909               fkd=mopen('C:\Users\Dayakar Naik\Downloads\restraint1.txt','rt');//kdof
0910               fcst=mopen('C:\Users\Dayakar Naik\Downloads\constr1.txt','rt')
0911               
0912               xl=mfscanf(-1,fnd,'%f %f %f %f');
0913               El=mfscanf(-1,fed,'%i %i %i %i %i %i %i %i %i %i');
0914               Eprop=mfscanf(-1,fmd,'%f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f');//LAMINA
0915               kdo=mfscanf(-1,fkd,'%f');
0916               ceq=mfscanf(-1,fcst,'%i %i %i %i %i %i %i');
0917  
0918              [mk,nk]=size(kdo);[mn,nn]=size(xl); [m,n]=size(El);[mc,nc]=size(ceq);
0919              MatProp=El(:,2);tdof=mn(1)*3;dof=tdof+mc(1);ek=m;
0920  
0921               
0922               mclose(fnd);
0923              mclose(fed);
0924               mclose(fmd);
0925               mclose(fkd);
0926               mclose(fcst);
0927  
0928               tic();
0929               [MatProp, Elmat, gdofg, CM, nceq]=GenerateDOF(xl, El, Eprop, kdo, ceq);
0930               [KG,re, yo]=Assemble(xl, Elmat, Eprop, CM, nceq, MatProp, ek, tdof, dof, mk, mc);
0931               save('val.dat','KG','re');
0932               printf('\n Time needed to Assemble Stiffness Matrix: %.3f sec\n',toc());
0933               tic();pf=5000000;
0934               //[u,a]=FEMsol(KG,re,yo,mc,pf);//clear KG;clear re; // For Iterative Solution
0935               stacksize('max')
0936               [u]=FEMsol(KG,re,yo,mc,pf);//clear KG;clear re; // For Direct Solution
0937               //[u]=full(KG(1:yo,1:yo))\full(re(1:yo))
0938               printf('\n Time needed to Solve for Displacements: %.3f sec\n',toc());
0939               tic();
0940               [DU,Elementdisp]=DispRecovery(u, yo, mn, dof, ek, gdofg, xl, Elmat);clear u;
0941             
  [Epsilon, avstrainz, avstrainy, avstrainx, avstrainyz, avstrainzx, avstrainxy]=StrainRecovery(Elementdisp, MatProp, ek, Elmat, xl, Eprop);
0942             
  [Sigma, avstressz, avstressy, avstressx, avstressxy, avstressyz, avstressxz]=StressRecovery(Epsilon, MatProp, ek, Eprop, xl, Elmat);
0943               [PStress]=PStressRecovery(Sigma, ek);
0944               [fim]=postfile(Elementdisp,ek, Epsilon, Sigma, xl, PStress);
0945               printf('\n Time needed to Recover Stresses: %.3f sec\n',toc());
0946               
0947               
0948      cpt = getdate();
0949      cpt(3:5) = [];
0950             cpt(6) = cpt(6)+cpt(7)/1000;
0951              cpt3 = cpt(1:6);
0952       printf('\n Time needed to Run Full Program: %.3f sec\n',etime(cpt3,cpt1));
0953       
0954       stacksize('min');
0955       
0956       RZ=[avstressz/avstrainz avstrainx/avstrainz avstrainy/avstrainz avstrainyz/avstrainz avstrainzx/avstrainz avstrainxy/avstrainz];



0957       RY=[avstressy/avstrainy avstrainx/avstrainy avstrainy/avstrainy avstrainyz/avstrainy avstrainzx/avstrainy avstrainxy/avstrainy];
0958       RX=[avstressx/avstrainx avstrainx/avstrainx avstrainy/avstrainx avstrainyz/avstrainx avstrainzx/avstrainx avstrainxy/avstrainx];
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