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Traditional stochastic approaches for synthetic generation of weather variables often 

assume a prior functional form for the stochastic process, are often not capable of 

reproducing the probabilistic structure present in the data, and may not be uniformly 

applicable across sites. In an attempt to find a general framework for stochastic generation 

of weather variables , this study marks a unique departure from the traditional approaches, 

and ushers in the use of data-driven nonparametric techniques and demonstrates their 

utility. 

Precipitation is one of the key variables that drive hydrologic systems and hence 

warrants more focus. In this regard, two major aspects of precipitation modeling were 

considered: (I) resarnpling traces under the assumption of stationarity in the process, or 

with some treatment of the seasonality, and (2) investigations into interannual and secular 

trends in precipitation and their likely implications. 

A nonparametric seasonal wet/dry spell model was developed for the generation of 

daily precipitation. In this the probability density functions of interest are estimated using 

non parametric kernel density estimators. In the course of development of this model, 



xviii 

various non parametric density estimators for discrete and continuous data were reviewed, 

tested, and documented, which resulted in the development of a nonparametric estimator 

for discrete probability estimation. 

Variations in seasonality of precipitation as a function of latitude and topographic 

factors were seen through the non parametric estimation of the time-varying occurrence 

frequency. Non parametric spectral analysis, performed on monthly precipitation, revealed 

significant interannual frequencies and coherence with known atmospheric oscillations. 

Consequently, a non parametric, nonhomogeneous Markov chain for modeling daily 

precipitation was developed that obviated the need to divide the year into seasons. 

Multivariate nonparametric resampling technique from the nonparametrically fitted 

probability density functions, which can be likened to a smoothed bootstrap approach, was 

developed for the simulation of other weather variables (solar radiation, maximum and 

minimum temperature, average dew point temperature, and average wind speed). In this 

technique the vector of variables on a day is generated by conditioning on the vector of 

these variables on the preceding day and the precipitation amount on the current day 

generated from the wet/dry spell model. 

(241 pages) 



CHAPTER I 

GENERAL INTRODUCTION 

Problem Statement and Research Relevance 

Synthetic sequences of daily precipitation and other weather variables (e.g. dew 

point temperature, maximum temperature, minimum temperature, solar radiation) are often 

used for investigating likely scenarios for agricultural water requirements, reservoir 

operation for analyses of antecedent moisture conditions, and erosion prediction, and for 

runoff generation in a watershed. Traditional statistical approaches for this purpose 

typically fit a parametric statistical model to the data at a site. Organizations (e.g., United 

States Forest Service, United States Department of Agriculture) specify one such model for 

applications from site to site. A problem with this setup is that "models" that work well in 

some regions/sites fail at others. This suggests the need for developing data-adaptive 

statistical methods that can be applied uniformly across regions. 

Precipitation is known to be one of the key variables that trigger several hydrologic 

processes (e.g., runoff, erosion, floods, droughts, etc.) and affect various weather 

variables. There is increasing recognition of strong links between precipitation and other 

hydrologic processes with atmospheric circulation, especially at interannual and 

interdecadal time scales. Consequently there is a need to better understand precipitation 

fluctuations with respect to some known atmospheric oscillations (e.g., EI-Nifio, QBO). 

Another important aspect of precipitation is its seasonality. The timing and duration of the 

"seasons" of high precipitation at a site are important since they indicate the form (rain or 

snow) of precipitation as well as the nature of the input "signal" for the surface hydrologic 

system. 
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Robust nonparametric techniques that are guided only by ioformation in the 

observed data offer an attractive alternative that can better address such nonstationarities. 

These techniques are relatively new and have only had limited application in hydrology. In 

this regard this study represents a point of departure from the traditional attempts at 

stochastic generation of precipitation aod other weather variables. 

Objectives and Scope of Study 

Given the need for simulation of synthetic daily weather sequences and 

nonstationary nature of the precipitation as briefed in the introduction, the major questions 

that come to miod are (I) How best cao one simulate daily precipitation and other weather 

variab les, while preserving the relative frequencies of events, without prior assumptions as 

to the parametric form of the underlyiog probability models? and (2) How can one identify 

systematic variations in precipitation patterns with known atmospheric oscillation? 

As mentioned at the end of the previous section, non parametric techniques are used 

to address these questions. The specific objectives of this work were to: (I ) develop 

non parametric stochastic models for the generation of sequences of daily precipitation aod 

Other weather variables; (2) develop non parametric procedures to identify seasonal 

variability in precipitation aod their implications to precipitation modeling; (3) identify 

variability in precipitation patterns, wi th regard to low frequency atmospheric variability 

through nonparametric spectral analysis techniques . 

Outline 

This study is presented in a multiple-paper format, and is a compilation of 

investigations related to the objectives indentified in the previous section. This work is 

divided into nine chapters including the introductory chapter. Various tasks related to the 

objectives are outlined here. 
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The development of a non parametric model seasonal wet/dry spell model for daily 

precipitation is described in Chapter II. As the name suggests, the model operates on 

seasons. In the course of developing this model, various techniques of non parametric 

probability density estimation of continuous and discrete variables were reviewed and 

tested with various data sets. These experiences are documented in Chapter ill. 

Comparisons of various techniques lead to the development of a new estimator for discrete 

probabilities in Chapter IV. 

Seasonality of daily precipitation , an important aspect of precipitation, was next 

studied, using a fully data-adaptive non parametric technique and was applied to data from 

various sites. This is presented in Chapter V. Significant changes in seasonality across the 

various sites were found. Also the timing varied across the years. This indicated plausible 

low frequency variability in precipitati on at the interannual time scales. Subsequently, 

investigations into low frequency variability of precipitation associated with known 

atmospheric oscillations like El Nifio/QBO were embarked upon using nonparametric 

spectral analysis, which is described in Chapter VI. Strong consistent signals that 

COITespond to these oscillations were found across all the sites analyzed. 

Results from seasonality and spectral studies motivated a need to improve the 

seasonal wet/dry spell model so that the partitioning of the year into rigid seasons is 

obviated. It was then found that a nonhomogeneous Markov chain model using 

non parametric estimators could address this effectively. Consequently a nonpararnetric, 

nonhomogeneous Markov chain was developed in Chapter VII. 

One of the major objective of this study was to develop procedures for synthetic 

generation of other weather variables. In this regard a multivariate nonpararnetric model that 

generates a daily vector of weather variables conditioned on the vector of values on the 

previous day and the precipitation amount of the current day of interest was developed in 
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Chapter VIII. Precipitation is generated from the wet/dry spell model. Summary of the this 

research is outlined in Chapter IX. This study resulted in the development of two different 

non parametric approaches for generating daily precipitation. The attributes of these models 

are also discussed in Chapter IX. 



Abstract 

CHAPTER II 

A NONPARAMETRIC WET/DRY SPELL MODEL FOR 

RESAMPLING DAILY PRECIPITATIONl 
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A non parametric wet/dry spell model is developed for resampling daily precipitation 

at a site. The model considers alternating sequences of wet and dry days in a given season 

of the year. All marginal, joint, and conditional probability densities of interest (e.g., dry 

spell length, wet spell length, precipitation amount, wet spell length given prior dry spell 

length) are estimated nonparametrically using at-site data and kernel probability density 

estimators. Procedures for the disaggregation of wet spell precipitation into daily 

precipitation, and for the generation of synthetic sequences are proffered. An application of 

the model for generating synthetic precipitation traces at a site in Utah is presented. 

Introduction 

Synthetically generated sequences of daily precipitation are often used for 

investigating likely scenarios for agricultural water requirements, reservoir operation for 

analyses of antecedent moisture conditions and for runoff generation in a watershed. 

Preserving the characteristics of multi-day wet and dry spells is often important in these 

applications. This chapter presents a stochastic model for resampling daily precipitation 

where the probability distributions functions (PDFs) of alternating wet and dry spell 

lengths and of rainfall amount are estimated nonparametrically using kernel density 

estimators. This procedure is equivalent to a bootstrap or sampling with replacement of the 

observed data sequence of spell lengths and precipitation amounts. Tt differs from the 

lcoauthored by Rajagopalan Balaji, Upmanu Lall , and David G. Tarboton 
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for resampling, and sequential attributes of spells may be preserved. Necessary calibration 

parameters are chosen automatically from the data set using measures aimed at providing a 

good fit to the unknown underlying PDFs. 

Our particular interest was in developing a scheme for synthetic simulation of daily 

precipitation in mountainous regions in the western United States. Precipitation in these 

areas is in the form of snow in the winter with orographic and frontal mechanisms 

dominant. Convective rainfall processes occur in other seasons. Marked differences in the 

storm tracks and moisture sources over the seasons are observed. A mixture of markedly 

different mechanisms (some related to the El Nifio Southern Oscillation) leads to the 

precipitation process in the western U.S. [Webb and Bettencourt, 1992; Cayan and Riddle, 

1992]. Recognition of such heterogeneities has led to efforts at regime identification and 

modeling of rainfall conditional on weather types [e.g., Katz and Parlange, 1993; Wilson 

and Lettenmeier, 1993; Bogardi eta!., 1993]. While this is an attractive and necessary 

approach, deconvolution of mixtures is not always easy from a ftnite data set and the 

weather type designations used can be subjective. Traditionally parametric probability 

models (e.g., exponential distribution), whose functional form is completely specifted by a 

small set of parameters , are used to ftt the relevant frequency distributions. Selecting the 

best such model is tenuous [see Vogel and McMartin, 1991] even where mixtures are not 

of concern. 

The work presented here was motivated by the following questions: 

1. Is it possible to resarnple the data while preserving the relative frequencies and 

conditional relative frequencies of wet and dry spells and precipitation amounts , without 

prior assumptions as to the parametric forms of the underlying probability models ? 

2. What is a good way to empirically model the relevant PDFs for resampling and to guide 

development of statistical models? 



3. Can such a data-based assessment of probabilities or relative frequencies be used to 

judge the adequacy of conceptual and statistical models posed for daily rainfall? 
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The first question is relevant not only from a conceptual standpoint but also because 

organizations (e.g., United States Forest Service, United States Department of Agriculture) 

specify a uniform procedure for applications from site to site. Where parametric 

distributions or procedures are used, "models" that work well in some regions/sites fail at 

others. In our view it is unlikely that a robust parametric framework for model specification 

and selection can be devised for uniform application given the likely heterogeneity in 

precipitation generation mechanisms. Here we sidestep such issues by using a resampling 

strategy that honors at-site data directly. 

The second question is addressed in a companion paper [Rajagopalan eta!., 1995] 

where we document our investigations into developing appropriate kernel density 

estimators for resampling continuous (e.g., precipitation amount) and discrete (e.g., spell 

length in days) random variables. 

As regards the third question, we argue that the answer is likely to be yes, given 

that the relevant probability densities can be estimated reliably from the data. However, this 

is an area that we expect to research formally in the future, and discuss only generally here. 

We begin with a brief review of available models for simulating daily precipitation 

and an introduction to the central ideas in kernel density estimation. The non parametric, 

alternating wet/dry spell model is presented next and the resampling/simulation strategy is 

indicated. Results from an application to a Utah data set follow. The performance of the 

non parametric scheme is compared with a simple, parametric alternative. A discussion of 

applicability, limitations of the approach , and musings on pointers to related work in 

progress concludes the presentation. 
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Background 

Reviews of stochastic precipitation models are offered by Waymire and Gupta 

[1981 a,b,c], Georgakakos and Kavvas [1987) and Foufoula-Georgiou and Georgakokas 

[1988]. The reader is referred to these papers for an appreciation of the literature and the 

central issues perceived in the field. While we are aware of the need to look at the 

concurrent representation of the precipitation process at different time scales, our focus here 

will only be on daily precipitation. Precipitation models have two components: (1) a model 

for precipitation occurrence, usually formulated as a Markov process, and (2) a model for 

precipitation amount, once a precipitation event has been generated. In the latter case, 

typically a parsimonious member of the Exponential family that best fits a given data set is 

used. A firm basis for such a choice has yet to emerge, and typical tests for selecting 

between parametric distributions, such as the chi-square test, often lack the power to 

discriminate between different candidate distributions, since most of the mass of the PDF is 

concentrated near the origin. This practice is also questionable given our earlier comments 

that a mix of generating processes like! y governs precipitation. A brief discussion of the 

attributes of some models for daily precipitation occurrence follows. 

Markov chain models 

The most popular approach is to consider the precipitation occurrence process to be 

described by a finite state (typically 2, a day is wet or dry) Markov chain (MC) of finite 

order (typically 1), with seasonally (or time varying) transition probabilities. The basic 

assumption is that the present state (wet or dry) depends only on the immediate past. The 

transition probabilities for transitions (i.e., WW, WD, DW, DD) between the two states (W 

or D) are estimated directly from the data through a counting process. Fourier series 
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methods [Feyerharm and Bark, 1965; Woolhiser eta!., 1988] may be used to parameterize 

seasonal variations in the transition probabilities. The degree of dependence in time is 

limited by the order of the MC. Feyerharm and Bark [1967] and Chin [1977] suggest that 

the order may need to be seasonally variable as well. Lack of parsimony is a drawback of 

MC models as the order is increased. A number of researchers [Hopkins and Robillard, 

1964; Haan et al., 1976; Srikanthan and McMahon, 1983; Guzman and Torrez, 1985] 

have also stressed the need for mu1tistate MC models that consider the dependence between 

transition probabilities and rainfall amount. 

Chang eta!. (1984] and Foufoula-Georgiou and Georgakakos [1988] argue that 

Markov chain models do not reproduce long-term persistence and event clustering very 

readily. Markov chain models can be attractive because of their largely non parametric 

nature, ease of application and interpretability, and well developed literature. Wilson and 

Lettenmeier [1993] pursue a hierarchical MC model to describe the daily precipitation 

process given the heterogeneous generating mechanisms prevalent in the western United 

States. While this approach addresses the heterogeneity issue, the relative lack of 

parsimony and shortcomings of the MC model identified above detract from the 

formulation. 

The spell approach 

In probabilistic terminology, this approach is also called the alternating renewal 

model (ARM). The term renewal stems from the implied independence between the dry and 

wet period length while the term a! ternating refers to the fact that wet and dry states 

alternate. No transition to the same state is possible. An advantage of this representation is 

that it allows direct consideration of a composite precipitation event, rather than its 

discontinuous truncation into arbitrary daily segments. 

A Geometric or a negative Binomial distribution [Roldan and Woolhiser, 1982] 
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may be used as a model fo r spell length, where a daily time step is of interest. A 

probability distribution for wet spell precipitation amount also needs to be developed, as 

does a procedure for the disaggregation of wet spell precipitation to daily precipitation, for 

wet spells that are longer than one day. 

The primary difficulties cited with the spell approach for daily rainfall modeling are 

(!)the need for disaggregation of wet spell precipitation into daily or event precipitation 

(this is not an issue if independence in daily precipitation amounts is assumed, since that is 

typical ly assumed by Markov Chain models), (2) justification of the independence between 

the dry and wet spell lengths at short time scales, and (3) the effective reduction in the 

sample size by considering spells rather than days. We also find the usual parametric 

specifications for probability distributions , and assumptions of independence of spells in 

such models objectionable in light of the likely heterogeneous nature of the data of interest 

to us . However, we do find this structure plausible and address some of the difficulties 

cited here in our development. 

Model Fonnulation 

For the non parametric, seasonal wet/dry spell model (NSS) presented here, the 

random variables of interest are the wet spell length, w days; dry spell length, d days; daily 

precipitation amount, pinches; and the wet spell precipitation amount, Pw inches. Note 

that throughout the chapter, wet day precipitation is referred to as daily precipitation. 

Variables w and d are defined through the set of integers greater than I (and less than 

season length), and p and Pw are defined as continuous, positive (actually greater than a 

measurement threshold , e.g., 0.01 inches rather than 0) random variables. A mixed set of 

discrete and continuous random variables is thus considered. Appropriate season 

definitions are prescribed by the model user, and model definitions that follow pertain to a 



given season of the year. The natural sequence of seasons is maintained, and spells in 

progress at the end of a season are allowed to terminate in the succeeding season. 

II 

The general structure of the model is similar to that of a wet/dry spell model. Our 

model differs from the traditional wei/dry spell model in a number of ways, as illustrated in 

Figure 2. 1. The dry and wet spell lengths in a season may be dependent. The data are 

allowed to indicate whether such an assumption is necessary. Rather than fitting parametric 

probability densities to the data, we consider kernel estimators of the probability 

mass/density function (PMF/PDF) of wet spell length f(w), dry spell length f(d) , wet day 

precipitation amount f(p), wet spell precipitation amount f(pw), the joint PMF of wet and 

dry spell length f(w,d), the joint PDF. of wet spell length and wet spell precipitation 

f(w,pw), and the conditional PDFs of wet spell length given dry spell length f(wld), dry 

spell length given wet spell length f(dlw), and wet spell precipitation given wet spell length 

f(pwlw) . 

First, the significance of the dependence between successive wet and dry spell 

lengths is assessed by computing their sample correlation for each season. The precipitation 

occurrence process in a given season is described through the conditional PMFs f(wld) and 

f(dlw) if the correlation is significant and the marginal PMFs f(w) and f(d) otherwise. The 

latter with parametrically specified PMFs corresponds to the traditional alternating renewal 

model. The former is a more general dependence structure. Next, one estimates, for each 

season, the autocorrelation function for precipitation amounts Pi· i=l...w for each spell 

length. If these correlations are not significant, it is assumed that there is no "statistical 

structure" in the within spell precipitation, at least for daily precipitation amounts. In this 

case, daily precipitation is modeled directly through an estimate of the PDF f(p) . If there is 

evidence fur structure in wel spell precipitation, wet spell precipitation Pw becomes the 

primary variable, and a disaggregation approach that preserves the within spell structure is 



Seasonal Wet/Dry Spell Daily Precipitation Model 

Dependence ? 
Yes: f(wld) 
No: f(w) 

Independent daily precipitation - w days 
Daily precipitation PDF 

f( ) 

Figure 2.1. Strucrure of the wet/dry spell precipitation model. 
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used to disaggregate Pw to daily precipitation amounts. In most applications using 

traditional wet/dry spell models or the one presented here, the disaggregation approach is 

eschewed in favor of treating daily precipitation as an independent random variable. 
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The decisions on model structure as well as the relevant PDFs for each variable for 

each season are different and are independently estimated. To save on notation, we have 

chosen not to index any of our variables by season. In summary, the primary differences 

with the traditional wet/dry spell model are (1) the relevant probability functions are 

estimated without recourse to prior assumptions as to the parametric form of the model, and 

(2) a more general conditional dependence structure is admitted. 

We stress that while we are ultimately interested in developing a nonpararnetric 

model fo r generating daily precipitation sequences, the non parametric density estimates 

generated en route are interesting since they reveal tendencies or structure in the 

precipitation process. We now describe how the PDFs and PMFs are estimated. The 

univariate cases are discussed first followed by the bivariate/conditional cases. The 

disaggregation approach is presented last. 

Nonparametric kernel function estimation 

Nonparametric estimation of probability and regression functions is an emerging 

area in stochastic hydrology. A review of recent applications is offered by La!! [1994]. A 

function approximation method is considered nonparametric if (1) it is capable of 

approximating a large number of target {unctions, (2) it is "local," in that estimates of the 

target function at a point use only observations located within some small neighborhood of 

the point, and (3) no prior assumptions are made as to the overall functional form of the 

target function. A histogram is a familiar example of such a method. Such methods do have 

parameters (e.g. , the bin width of the histogram) that influence the estimate at a point. 
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However, they are different from "parametric" methods where the entire function is 

indexed by a finite set of parameters (e.g. , mean and standard deviation), and a prescribed 

functional form. 

Kernel density estimation is a nonparametric method of estimating PDFs from data 

that is related to the histogram. Recent expository monographs that develop these ideas 

include [Silverman, 1986; Scott, 1992; Hiirdle, 1991]. Given a set of observations 

x 1 , .. ,xn (in general x may be a scalar or a vector), the kernel density estimate is defined as: 

(2.1) 

where K(.) is a weight or kernel function, and h is a bandwidth. 

The idea is illustrated through Figure 2.2. Consider the definition of probability as a 

relative frequency of event occurrence. Now an estimate of the probability density at a point 

x (refer to points x 1 and x2 in Figure 2.2) may be obtained if we consider a box or window 

of width 2h centered at x and count the number of observations that fall in such a box. The 

estimate i'(x) is then (number of Xj that lie within [x-h,x+h])/(2hn)). In this example, we 

have used a rectangular kernel (K(t)=l/2 for ld<l , 0 else; t=(x-xi)/h) for the estimate in the 

locale of x. As the sample size n grows, one could shrink the bandwidth h such that 

asymptotically the underlying PDF is well approximated. Note that for a finite sample, this 

is much like describing a histogram, except that the "bins" are being centered at each 

observation or at each point of estimate, as desired. From the point of view of resampling, 

one can treat each observation (xi) as being equally likely to occur in the window Xi± hand 

res ample it uniformly in that interval, for this example. Clearly, one is not restricted to 

rectangular kernels. 



.... 
f(x) 

0.5 
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0.1 

X 

(x1 and x2 are points of estimate, bandwidth, h = 0.125) 

Figure 2.2. Example of kernel density estimation using 20 points with an histogram. 

The "parameters" of this method are the kernel function or "local density" and the 

bandwidth h. A valid PDF. estimate is obtained for any K(.) that is itself a valid PDF. 
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Symmetry of K(.) is assumed for unbounded data to ensure pointwise unbiasedness of the 

estimate. For bounded data, special boundary kernels that correspond to the interior kernels 

are used in the boundary region, to assure unbiasedness . Finite variance of K(.) is assumed 

to ensure that f(x) has finite variance. This still leads to a wide choice of functions for 

K(.). It turns out that in terms of the mean square error (MSE) off(x) the choice of K(.) is 

not crucial . Difkrenl kernels can be made equivalent under rescaling by choosing 

appropriate bandwidths. A Gaussian kernel with a large bandwidth can give MSE of f(x) 



comparable to that using a rectangular kernel with a smaller bandwidth. Thus, given a 

Kernel function, the focus shifts to appropriate specification or estimation of the 

bandwidth. 
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It is important to note that specifying a kernel function does not have the same 

implications as choosing a parametric model for the whole density because the focus 

remains on a good pointwise or local approximation of the density rather than on fitting the 

whole curve directly. Different choices of K(.) still yield a local approximation of the 

underlying curve point by point. One can understand this by thinking of a weighted Taylor 

series approximation to f(x) at a point x. The interplay between the h and K(.) can be 

thought of in terms of the interval of approximation and a weight sequence used to localize 

tl1e approximation. The length of the interval (or bandwidth in this case) is more important 

in terms of approximation error. However, the tail behavior of the K(.) is important in the 

resampling context since it relates to the likely degree of extrapolation of the process. Some 

typically used kernels are listed in Table 2.1. 

The feeling in the statistics literature [e.g., Silverman, 1986] is that the choice of 

kernel is secondary in estimating f(x) and research has focused on choosing an appropriate 

bandwidth optimally (in a likeliliood or MSE sense) from the data. The bandwidth may 

vary by location (i.e., value of x) being larger where the data is sparser. Bandwidth and 

kernel selection issues and the success of the kernel scheme for approximating discrete, 

continuous and bivariate PDF.'s are discussed in Rajagopalan et al. , [1995]. Here, we 

present the estimators that we recommend be used for the NSS model. 

Kernel estimation of continuous univariate PDFs 

The continuous, univariate PDFs of interest to us are f(p), the PDF of daily 

precipitation, and f(pw), the PDF. of wet spell precipitation for a season. The data set in 

the first case is composed of np days of daily precipitation values, Pi• for all days with 



Table 2.1. Examples of Kernel Functions 

Note t = (x-xj)/h 

Continuous Random Variables Univariate 

Kernel 

Nonnal 

Epanechnikov 

Bisquare 

K(t) = (2nr112 e·t2/2 

K(t) = 0.74(1- t2) It I ,; I 

K(t) = 0.9375(1-t2)2 It I,; I 

Discrete Random Variables Univariate (DK) estimator 
Note t = (L-j)/h, and Lis point at which density is estimated 

Interior region fi e L > ll±.U 

Quadratic K(t) = at2 + b for ltl $1 

a = ......:l!L and b = ___lh_ 
(1-4b2

) (l-4h2
) 

Left Boundarv 

for the case l < L < h+ I 

Quadratic K(t) = at2 + b for ltl $! 

a =-.-:)2_ [ I ] and b =[!-...aC.J--l-
2h(h+L) (....!L . ___G!2__) 6b2 (h+L) 

4h3 12h'ch+L) 
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where, C = h(h-1 )(2h-1 ) + (L-2)(i-1)(2L-3); D = -h(h-1) + (L-2)(L-I); E = -(b(h-1))2 + ((L-2)(L-1))2 

for the case L = I 

Quadratic K(t) = at2 + b for ltl $1 

a= .d2. [ ] and b =[1-...aC.]l 
2h2 c.JL . ..Q2.l oh2 

h 
4h3 12h4 

where, C = h(b-1)(2h-1); D = -h(h-1 ); E = -(h(h-1))2 



measurable precipitation, in season s for the y year record. For Pw• the data set is 

composed of nw wet spells with total precipitation Pw,j for each spell of length w, in 

season s for the y year record. 
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A logarithmic transform of the precipitation data prior to density estimation is often 

considered. Such a transformation is also attractive in the kernel density estimation 

context. It can provide an automatic degree of adaptability of the bandwidth (in real space), 

thus alleviating the need to choose variable bandwidths with heavily skewed data, and also 

alleviates problems that the kernel density estimation has with PDF estimates near the 

boundary (e.g., the origin) of the sample space. The resulting kernel density estimator can 

be written as : 

fer) = l :£ lK(log(r)- log(q) ) 
ni=1 hr h 

where h is the bandwidth of the log transformed data, r is p or Pw• and n is 

corresponding! y np or nw. 

(2.2) 

The bandwidth his chosen using a recursive method of Sheather and Jones [1991] 

(SJ) that minimizes the average mean integrated square error (MISE) of f(log(r)). Figures 

2.3a and b provide an illustration of the kernel estimated PDF and the underlying true PDF 

for two situations described in Table 2.2 

Kernel estimation of discrete univariate PMFs 

In this section, we present procedures for the estimation of the discrete, univariate 

probability mass functions f(d) and f(w) for each seasons. This corresponds to the 

assumption of independence between wand din a traditional alternating renewal model. 
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Figure 2.3. True PDF, kernel estimated PDF, and histogram of the data generated from (a) 
O.S[N(-2,1) + N(2,1)] , (b) Exp(O. l5), (c) Geom(0.2) and (d) 0.3Georn(0.9) + 
0.7Georn(0.2). 

19 



20 

Table 2.2. Statistics of Known Distributions from Which a Sample of Size 250 Was Taken 
to Test Kernel Density Estimation Methods 

Sample Sample Kernel 
Figure Parent Method Mean St. Dev Bandwidth 

2. 3a (O.SN(-2,1) Epanechnikov kernel, Sf bandwidth -0.00 2.26 1.22 

+ 0.5N(2,1 ) } 

2. 3b Exp(O.IS) Log transform, Epanechnikov kernel, 0.16 0.18 0.94 
Sf bandwidth 

2.3c Geom(0.2) Quadratic kernel, DK estimator 5.11 4.19 6 
LSCV bandwidth 

2.3d (0.3Geom(0.9) Quadratic kernel, DK estimator 3.92 4.02 2 
+ 0.7Geom(0.2)} LSCV bandwidth 

We adopt the discrete kernel (DK) estimator developed in Rajagopalan and Lall [in press] 

for PMF estimation. The DK estimator for the PMF fcL), where Lis either word, and n is 

the corresponding sample size is given as: 

(2.3) 

where Pj is the sample relative frequency (n/n) of spell length j , nj is the number of spells 

L 
of length j , Lmax is the maximum observed spell length (note that f." p. = 1), Kd(.) is a 

j=l J 

discrete kernel function, and L, j, and hare positive integers. The kernel function Kd(.) is 

given as: 

at/ + b for ltl :> 1 (2 .4) 



The expressions for a and b for the interior of the domain, L > h+ 1 and the boundary 

region L < h are given in Table 2.1. 

The bandwidth his estimated by minimizing a least squares cross validation 

(LSCV) ftmction given as: 

L..., L.~ 
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LSCV(h) = L {f(j) )2 
j=l 

2L f_j(i) P· 
j=l J 

(2.5) 

where, f_j(j) is the estimate of the PMF of spell length j, formed by dropping all the spells 

of length j from the data. This method has been shown by Hall and Titterington [1987] to 

automatically adapt the estimator to an extreme range of sparseness types. Monte Carlo 

results showing the effectiveness of the DK estimator with bandwidth selected by LSCV 

are presented in Rajagopalan and Lall [in press]. Figures 2.3c and d show examples of the 

DK estimator for two situations described in Table 2.2. 

Kernel estimation of bivariate and conditional PDFs 

The bivariate PDFs of interest to us are f(w,d) and f(w,pwl· The conditional PDFs 

of interest are f(wld), f(dlw), and f(pwlw). It is important to note that the order in f(wld) 

and f(dlw) is important, f(wld) is estimated from data pairing wet spells following dry 

spells and vice versa for f(dlw). RecaJl that the conditional PDF f(ylx) of a random variable 

y given xis given as f(x,y)/f(x), where f(x,y) is the joint PDF of x andy, and f(x) is the 

unconditional PDF of x. Since we have discussed univariate kernel density estimation, the 

key step is to show how the bivariate density may be evaluated. 

Bivariate kernel density estimators may be constructed in much the same manner as 

their univariate counterparts, i.e., through the convolution of appropriate kernel functions . 

Two types of bivariate kernel functions -- radially symmetric and product kernels--are 
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popular. Wand and Jones [1992] argue that for typical generalizations of the univariate 

kernels, there is little to choose between these representations. They point out that it is more 

important to choose bandwidths in each direction appropriately. We chose to use a product 

of univariate kernels for the bivariate kernel to allow a natural extension of the univariate 

kernel density estimators presented to discrete, bivariate or mixed (continuous and discrete) 

bivariate situations. The joint PDFs are estimated as follows: 

(2.6) 

(2.7) 

where nsp is the number of consecutive wet and dry spells on record for season s, over the 

y year record , nw is the number of wet spells. 

The conditional PDFs are given by: 

f(wld) (2.8) 

f(dlw) (2.9) 

(2.1 0) 

We see from equations (2.8) to (2. 10) that the kernel density es timator of the 

conditional PDF represents a weighted average of the relative frequency of values of the 
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dependent variable that correspond to a "weighted" neighborhood of the conditioning point. 

It will be seen in the section under generation of synthetic sequences, that for simulation it 

is not necessary to compute the joint and conditional PDFs, estimation of the bandwidths 

alone is sufficient. 

McLachlan [1992] discusses the simultaneous selection of bandwidths in each 

coordinate, versus the use of the optimal univariate bandwidths in each direction. It is not 

clear that the additional effort of simultaneous selection of the two bandwidths is justified. 

Consequently, we choose the bandwidths hw, hd and hPw by the methods described for 

the univariate case. 

As an illustration, a sample of size 250 is generated from a bivariate geometric 

distribution Geom(0.6,0.2) were used to test this procedure. The surface of the observed 

proportions is plotted in Figure 2.4a, the true density surface is shown in Figure 2.4b, the 

kernel estimated density surface is in Figure 2.4c, and the difference between the true and 

kernel estimates is plotted in Figure 2.4d. The bandwidth was 3 in the x direction and 6 in 

the y direction. To illustrate the conditional kernel density estimation, a slice is taken from 

the joint density in Figure 2.4c and presented in Figure 2.5. 

In the precipitation data sets we have investigated thus far, the correlation between 

wand dis generally weak, and the serial correlation between daily precipitation for fixed 

spell length w is also weak. Thus, in most cases, the univariate PDFs, suffice. However, 

for the sake of completeness we describe a nonparametric, kernel-based disaggregation 

strategy for disaggregating a w day precipitation Pw into w daily precipitation amounts Pi· 

Wet spell precipitation disaggregation 

We follow the approach of Aitchison and Lauder [1985] for analyzing 

compositional data. A basic requirement for the disaggregation process is that f. Pi = Pw· ,_, 
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Figure 2.4. Surface plots for data generated from Geom(0.6,0.2) (a) observed proportions, 
(b) true PMF, (c) kernel estimated PMF, and (d) difference between kernel estimated and 
true PMF. 
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Figure 2.5. Conditional slice from Figure 2.4 (b) and Figure 2.4 (c), conditioned at y=5, 
along with the observed proportions at y=5. 

Consider the rescaling xi = P/Pw• so that 0< Xj_ < 1, and LXj_ = 1. Recognizing that the 
w-1 

effective degrees of freedom are (w-1), we can write Xw = 1- L Xi- Aitchison and Lauder 
i•l 

[1985] now apply the transform 

Yi = log(x/xw) i = 1, ... ,w-.1 (2.11) 

The multivariate PDF f(x), where xis a vector of length (w-1) representing the first 

(w-1) proportions, is then estimated using the kernel method with a logistic normal 

kernel and nw wet spells of length w as: 

f(x) I if-L(X,Xi.Y.Yi,h) 
i=l w 

=I e-0.5 (y-y,)Ts;'(y-y,) /h2 

i=l nw (21t)(w-l)/2 h(w-1) det(Sy)l/2IT Xji 
j=l 

(2.12) 
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where i is a spell index, y is a vector of length (w-1 ) as defined in Equation 2.11, xji 

represents the value of the jlh component of x for the ith spell, L(x,xi·Y·Yi·h) is the 

logistic-normal kernel, his a bandwidth, and Sy is the sample covariance matrix of y, 

estimated using a robust method [see Huber, 1981]. The bandwidth his selected using 

maximum likelihood cross validation, i.e., by choosing h to maximize IT Li(Xi) where L 
i=! 

i(Xi) is the estimate of f(x) at Xi obtained by dropping the ith point. Aitchison and Lauder 

[ 1985] demonstrated that performance of this algorithm is comparable to parametric 

alternatives with sample sizes ranging from 23 to 95 for 2 to 10 components. 

The use of the sample covariance matrix Sy of y as the covariance matrix fnr the 

kernel function for y, leads to some degree of preservation of the covariance structure of 

the components of y and hence of the disaggregated daily precipitation amounts Pi· It also 

mitigates the effect of choosing xw, rather than say x 1 as the normalizing variable in the 

transformation of Equation (2.11). 

Using Equation (2. 12), one can evaluate the PDF of the ftrst (w- 1) ratios Xi of daily 

precipitation to wet spell precipitation. A stochastic realization of these ratios can then be 

generated. The last ratio xw is obtained by noting that all the ratios have to sum to one. 

Daily precipitation values are then obtained by multiplying Xj by Pw· This disaggregation 

procedure generalizes the logistic normal based disaggregation procedure through the use 

of the kernel method and admits multimodality and heterogeneity in the PDF of daily 

rainfall in a wet spell. A problem with any wet/dry spell model is that as w increases, nw 

typically decreases. Consequently, this disaggregation scheme may not be practical for 

large w unless long records are available. Also, it fails to "borrow" information from spells 

of length other than the one generated. However, that can be a problem even for the usual 

parametric schemes. 
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Generation of synthetic sequences 

Since our goal here is to generate random samples that are similar to the observed 

sequence, a "raw" bootstrap or resampling of the data with replacement could be 

considered as an alternative to sampling from the kernel density estimate. Such a strategy 

would be equivalent to sampling from the empirical distribution function of the data. The 

kernel density estimation can be thought of as a smoothed (moving average) estimate of the 

derivative of the empirical distribution function. Sampling from the kernel density estimate. 

can lead to a reduced variance of the Monte Carlo design [Silverman, 1986] . It also avoids 

the problem with the bootstrap where a number of the historical values are repeated in a 

generated sample, and provides an ability to fill in and extrapolate to a limited extent 

beyond the observed values. 

Synthetic precipitation sequences at a site are generated continuously from season to 

season. A dry spell is first generated using i(d). By following the strategy indicated in 

Figure 2.1, a wet spell is generated using f(w) or 1\wld). Precipitation for each of w days is 

then generated using f(p) or f<pwlw) followed by f(piiPwl · A dry spell is then generated 

using f(d) or f(dlw) , and the process repeats . If a season boundary is crossed, the PDFs 

used switch to those for the new season. 

For the univariate continuous case (f(r)), the random variate (r) of interest can be 

generated readily from the kernel density following a two-step procedure [Devroye, 1986]. 

Consider the original sample (ri, i=l...n) from which the kernel density (that depends on r, 

ri and h) was constructed using a Kernel function K(.). To generate a random number r that 

follows the estimated distribution, first sample a random integer j uniformly between I and 

n, i.e., identify the historical data point to perturb. Now generate a random variate U from 

the probability density corresponding to the kernel function K(.), (e.g., K(u)= 3/4(1-u2) 

for the Epanechnikov kernel). The random variate r is then given by (rj+Uh) . This 
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reinforces the notion that the kernel density estimator is formed as a convolution of local 

densities centered at each observation, and that the generated sequence will constitute a 

smoothed bootstrap of the data. Any of a number of standard procedures (e.g., based on 

order statistics or rejection) for sampling from a density may be used to generate U from 

the density K(.). Devroye [1986] provides examples for the Epanechnikov kernel. The 

discrete random variables (w and d) are generated directly from the estimated cumulative 

mass function. 

A similar strategy is possible for sampling from the conditional PDFs as well. 

Consider two continuous variables x andy. The conditional kernel density f(ylx) is given 

by: 

(2.13) 

where wti = K(x-x;) I I K(x-x;). Now note that f wti is equal to I, and hence we can 
hx i=l hx i .. ! 

view the wlj values as providing the probability metric with which the ith point should be 

selected. Define F as the set of probabilities Wlj. Sample an integer j E [l,n] using F. Now 

sample a variate U from the density corresponding to the kernel function for y. The variate 

of interest is then y = Uh + Yj· The discrete variate case follows as before. 

Model Application 

The model described was applied to daily rainfall data from the Silver Lake station 

in Utah. Forty-four years of daily rainfall data were available from 1948-1992. For this 
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application we have divided the year into fou r seasons: season l (Jan- Mar), season 2 

(Apr- Jun), season 3 (Jul- Sep) , season 4 (Oct- Dec). Silver Lake is one of the higher 

elevation stations in Utah, situated at 40036'N latitude, Ill 03S 'W longitude, and at an 

elevation of 8740 ft. Most of the precipitation comes in the form of winter snow and 

season 4 rainfall. We see from Table 2.3 that season 4 (fall) has the highest mean wet day 

precipitation and maximum wet day precipitation, while season I (winter) has the highest 

percentage of yearly precipitation. Season 1 (winter) has the highest average wet spell 

length and the longest wet spell length. For the dry spells, season 3 (summer) has the 

highest average dry spell length and the longest dry spell length. 

The successive wet and dry spells and the dry and wet spell length correlations for 

the data from Silver Lake, Utah were all near zero for each season. We present a 

representative scatter plot of the length of successive wet and dry spells fo r season I in 

Figure 2.6. The line in this figure is the LOWESS smooth [Cleveland, 1979]. There is little 

evidence of even nonlinear structure in the relationship. The correlations between daily 

precipitation amoun t on successive days within a spell were also found to be near 0. 

Consequently, we simulated the wet and dry spells alternately using the unconditional 

densities cf(w) and f(d)), and used fcp) to describe the daily precipitation process. We also 

performed conditional simulations using the densities fcwld) and f(dlw) for each season. 

The results of these simulations were very similar in terms of the performance measures 

(see the following section) to those fro m the unconditional simulations. As is to be 

expected , the conditional simulations exhibit slightly greater variability. Results for the 

conditional simulations are not presented here for the sake of brevity. 

We first list some measures of performance that were used to compare the historical 

record and the model simulated record, and then outline the experimental design. As 
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Table 2.3. Statistics from the Historical Precipitation Record at Silver Lake, UT, 1948-
1992 

Statistic Season 1 Season 2 Season 3 Season 4 

(Jan- Mar) (Apr- Jun) (Jul - Sep) (Oct- Dec) 

A vg. wet spell length 2.6 days 2.2 days 1.85 days 2.5 days 

Std. dev. of wet spell length 2.2 days 1.7 days 1.2 days 1.9 days 

Fraction of wet days 0.62 0.44 0.36 0.55 

Longest wet spell length 21 days 11 days 10 days 18 days 

Avg. dry spell length 3.0 days 5.1 days 6.0 days 4.0 days 

Std. dev. of dry spell length 2.80 days 6.0 days 6.0 days 4.0 days 

Fraction of dry days 0.38 0.56 0.64 0.45 

Longest dry spell length 19 days 42 days 45 days 24 days 

Avg. wet day precip. 0.37 in. 0.33 in. 0.26 in . 0.40 in . 

Std. dev. of wet day precip . 0.37 in. 0.33 in. 0.30 in . 0.42 in. 

Fraction of yearly precip. 0.35 0 .20 0.12 0.30 

Max. wet day precip. 3.7 in. 3.0 in. 1.90 in. 3.5 in. 

emphasized earlier in the manuscript our goal is to reproduce the frequency structure (i.e., 

the underlying PDF). One would then expect that the usual statistics are reproduced. 

Performance measures 

I. Probability distribution function of wet spell length , dry spell length, and wet 

day precipitation. 

2. Mean of wet spell length, dry spell length, and wet day precipitation in each 

season. 

3 . Standard deviation of wet spell length, dry spell length, and wet day precipitation 

in each season. 
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Figure 2.6. Scatter plot of preceeding dry spell length and following wet spell length in 
season 1, along with the LOWESS smooth (solid line). 

4. Length of longest wet spell and dry spell in each season. 

5. Maximum wet day precipitation in each season. 

6. Percentage of yearly precipitation in each season. 

7. Fraction of wet and dry days in each season. 

Experiment desj~n 

The resampling process proceeded as follows: 

31 

I . Wet and dry spells for each season are determined from the daily precipitation 

data. Spells that cross seasonal boundaries are truncated at the season boundary and 

included in the appropriate seasons. We recognize that this could have the effect of 



introducing a small bias in the spell characteristics for a given season. Missing data are 

skipped, and the spell count is restarted with the next event. 

2. Probability density/mass functions are fitted for the wet day precipitation, wet 

spell lengths, and dry spell lengths for each season using the recommended kernel 

estimators. 
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3. Twenty-five synthetic records of 44 years each (i.e., the historical record length) 

are simulated using the NSS model. 

4. The statistics of interest are computed for each simulated record, for each season 

and compared to statistics of the historical record using boxplots . 

Results 

In this section we present comparative results of the NSS model for the Silver Lake 

data. The statistics (PDFs) of the simulated records are compared with those for the 

historical record using boxplots. A box in the boxplots (e.g., Figure 2.8) indicates the 

interquartile range of the statistic computed from twenty -five simulations, the line in the 

middle of the box indicates the median simulated value. The solid lines correspond to the 

statistic of the historical record. The boxplots show the range of variation in the statistics 

from the simulations and also show the capability of the simulations to reproduce historical 

statistics. The plots of the PDFs are truncated to show a common range across seasons and 

to highlight differences near the origin (mode) . 

Wet day precipitation 

Figure 2.7 shows that the fitted kernel densities for wet day precipitation amount 

are similar to the histogram of the recorded data in all four seasons. They differ from the 

fitted Exponential and Gamma distribution, particularly in seasons 3 (summer) and 4 (fall). 

The kernel estimated PDFs of the simulated data reproduce the PDFs of the historical data 
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Figure 2.7 . Plots of PDFs of wet day precipitation at Silver Lake, UT, estimated using SJL 
procedure, the fined Exponential distribution, fined Gamma distribution and histogram of 
the observed data (a) season 1, (b) season 2, (c) season 3, and (d) season 4. 



quite well, as can be seen in Figure 2.8. The other statistics are reproduced well by the 

model, as can be seen from the box plots in Figure 2.9. 

Wet spelllen~th 
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Figure 2. 10 shows that the PMF. ' s of wet spell length estimated by DKE and the 

fitted geometric distribution are very close (except perhaps for season 1 (winter)). In this 

case one could argue for using the Geometric distribution rather than DKE. But the "loss" 

in using DKE is small and for uniform application across sites, DKE may still be a better 

choice. The PMFs of wet spell length from the simulations reproduce the historical PDF 

very well in all the seasons as can be noted from Figure 2.11, suggesting that the model is 

performing well in reproducing the underlying freq uency structure. Figure 2. 12 shows that 

the mean, standard deviation, fraction of wet days, and longest wet spell length are all well 

reproduced by the model. 

Dry spelllen~th 

Figure 2.13 shows that the dry spell length PMFs estimated by DKE and the fitted 

Geometric distribution are generally similar with the most difference in season 3 (summer) , 

which we noted as being the most "active" with regard to dry spell length extremes. 

Observationally, we know that there are dry summers with little rainfall activity and other 

summers with intermittent, stagnating precipitation systems in this area. Thus we would 

expect a mixture of mechanisms generating dry spells to show up in this. 

The PMFs of wet spell length from the simulations reproduce the historical PDF 

very well in all the seasons as can be noted from Figure 2.14, suggesting that the model is 

performing well in reproducing the underlying frequency structure. Figure 2.15 shows that 

the statistics of the dry spell length are also well reproduced . 
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Figure 2.8. Boxplots of PDF of wet day precipitation for model simulated records along 
with the historical values (a) season I , (b) season 2, (c) season 3, and (d) season 4. 
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Figure 2.9. Buxplots of statistics of wet day precipitation (a) mean wet day precipitation, 
(b) standard deviation of wet day precipitation, (c) fraction of yearly wet day precipitation, 
and (d) maximum wet day precipitation for model simulations along witb the historical 
values for the fo ur seasons. 
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Figure 2.10. Plots of PMF of wet spell length at Silver Lake, UT, estimated using OK 
estimator. Along with the fitted Geometric distribution and observed proportions (a) season 
I, (b) season 2, (c) season 3, and (d) season 4. 
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Figure 2.11. Boxplots of PMF of wet spell length for model simulated records along with 
the historical values (a) season I , (b) season 2, (c) season 3, and (d) season 4. 



(a) (b) 

r t 
i l ~ 

f 
l 

·~~ Od·Ooo ·~ .... ...... OCI·O.c 

(c) (d) 

< t • f i ~ . f jj 

j ! 

·~~ ...... Od·Ooo ·~ 
........ 

.._ 

Figure 2.12. Boxplots of statistics of wet spell length (a) mean wet spell length, (b) 
standard deviation of wet spell length, (c) fraction of wet days, and (d) longest wet spell 
length for model simulations along with the historical values for the four seasons. 
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Figure 2.13. Plots ofPMF of dry spell length at Silver Lake, UT, estimated using DK 
estimator. Along with the fitted Geometric distribution and observed proportions (a) season 
I, (b) season 2, (c) season 3, and (d) season 4. 
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Figure 2.14. Boxplots of PMF of dry spell length for model simulated records along with 
the historical values (a) season 1, (b) season 2, (c) season 3, and (d) season 4. 
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Figure 2.15. Boxplots of statistics of dry spell length (a) mean dry spell length (b) standard 
deviation of dry spell length, (c) fraction of dry days, and (d) longest dry spell length for 
model simulations along with the historical values for all the four seasons. 
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The reader may be tempted to suggest formal tests to check for a mixture of the 

geometric distributions in this case as an alternative to the kernel density estimate. While 

this may be a fruitful activity (we did consider it), it gets harder to perform and/or justify as 

we consider arbitrary, finite component mixtures. An advantage of the kernel density of the 

kernel density estimator (DKE) employed here is that it readily admits such mixtures 

without requiring that they be hypothesized or fo rmally identified. We feel that this 

provides a more direct and parsimonious representation of this sort of structure if present in 

the data. 

Summary and Conclusions 

A non parametric methodology fo r simulating daily precipitation is presented in this 

chapter. The traditional wet/dry spell model is extended to (1) consider heterogeneity in the 

PDF of precipitation or wet/dry spell length, and (2) consider dependence between wet/dry 

spell length, and between wet spell length and spell precipitation. All functions of interest 

are estimated nonparametrically. The primary intended use of the model is as a simulator 

that is faithful to the historical data sequence. The PDFs evaluated are also likely to be of 

use for justifying the use of other formal , parametric models of the underlying process. 

While a rather flexible framework is provided by the model proposed, it is not 

without a price. Sample sizes needed for estimating the PDFs of interest are likely to be 

larger than for parametric estimation. However, the nonparametric specification of the 

PDFs leads to robustness with respect to the misspecification of the parametric model 

which may be valuable if the use of a particular model is to be legislated across a variety of 

sites and regions with different attributes. Only a crude treatment for seasonal 

nonstationarity is offered. This is something we expect to address in the future. 

A number of issues of interest to stochastic precipitation modelers were not 

discussed here . The foremost is the behavior of the proposed model at different time scales. 
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We view our developments as "operational" and relevant to the time scale of the data, 

which was daily. Spell definitions are tenuous at best at finer time scales and sample sizes 

drop rapidly as longer time scales (e.g., monthly or annual) are considered. Thus while the 

scaling issue is of theoretical and practical interest, it is difficult to formally assess how 

such a model may fit in. It is an issue we expect to explore in due course. A second issue is 

the need to incorporate climatic or precipitation "types" [e.g. , Bogardi et al., 1993, Wilson 

and Lattenmaier, 1993] into the daily precipitation model. We feel that implicit 

consideration of some of these factors is provided by our model by admitting an arbitrary 

mixture of generating mechanisms. Transitions between generating mechanisms are not 

explicitly modeled. However, their relative frequencies ought to be reproduced. Given 

limited data sets and the potentially large number of generating mechanisms, this may be all 

that is reliably feasible in a number of cases. Finally, there is the question of regionalization 

and/or portability of the method. The non parametric approach clearly enjoys broader 

applicability than its parametric competitors. On the other hand, it may be less amenable to 

direct regionalization as is sometimes done in terms of the parameters of a parametric 

distribution. It is meaningless to talk of a regional bandwidth. It may be more fruitful to 

develop a space-time non parametric precipitation model with a nonhomogeneous point 

process structure that is inferred from the data. 

References 

Aitchison, J., and I.J. Lauder, Kernel density estimation for compositional data, Applied 
Statistics, 34(2), 129-137, 1985. 

Bogardi, I., I. Matyasovszky, A. Bardossy, and L. Duckstein, Application of space-time 
stochastic model for daily precipitation using atmospheric circulation patterns, Journal of 
Geophysical Research, 98, D9, 16653-16667, 1993. 

Cayan, D., and L. Riddle, Atmospheric circulation and precipitation in the Sierra Nevada, 
Managing water resources during global change, Conference Proceedings of American 
Water Resources Association, Tucson, AZ, 1992. 



Chang, T.J. , M.L. Kavvas, and J.W. Delleur, Daily precipitation modeling by discrete 
autoregressive moving average process, Water Resources Research, 17, 1261-1271, 
1984. 

Chin, E.H., Modeling daily precipitation occurrence process with Markov Chain, Water 
Resources Research, 13, 949-956, 1977. 

45 

Cleveland, W.S., Robust locally weighted regression and smoothing scatter plots, Journal 
of American Statistical Association, 74,829-836, 1979. 

Devroye, L. , Non-Uniform Random Variate Generation, Springer-Verlag, New-York, 
1986. 

Feyerherm, A.M., and L.D. Bark, Statistical methods for persistent precipitation patterns, 
Journal of Applied Meteorology, 4, 320-328,1965. 

Feyerherm, A.M., and L.D. Bark, Goodness of fit of a markov chain model for sequences 
of wet and dry days, Journal of Applied Meteorology, 6, 770-773, 1967. 

Foufoula-Georgiou, E. , and K.P. Georgakakos, Recent advances in space-time 
precipitation modeling and forecasting, NATO AS! on Recent Advances in the Modelling 
of Hydrologic Systems, Sintra, Portugal, July, 1988. 

Georgakakos, K.P. , and M.L. Kavvas , Precipitation analysis, modeling, and prediction in 
hydrology, Reviews of Geophysics, 25(2), 163- 178, 1987. 

Guzman, A.G. , and C.W. Torrez, Daily rainfall probabilities: conditional upon prior 
occurrence and amount of rain, Journal of Climate and Applied Meteorology, 24(10), 
1009-1014, 1985. 

Haan, C.T., D.M. Allen, and J.O. Street, A Markov chain model of daily rainfall . Water 
Resources Research, 12(3), 443-449, 1976. 

Hall, P., and D.M. Titterington, On smoothing sparse multinomial data, Australian 
Journal of Statistics, 29(1), 19-37, 1987. 

Hardie, W., Smoothing Techniques with Implementation inS, Springer-Verlag, New 
York, 1991. 

Hopkins , J.W., and P. Robillard , Some statistics of daily rainfall occurrence for the 
canadian prairie provinces, Journal of Applied. Meteorology, 3, 600-602, 1964. 

Huber, P. J., Robust Statistics, John Wiley, New York, 1981. 

Katz, R. W ., and M.B. Parlange, Effects of an index of atmospheric circulation on 
stochastic properties of precipitation, Water Resources Research, 29(7), 2335-2344, 
1993. 

La!!, U., Nonparametric function estimation: Recent hydrologic applications, US National 
Report, 1991-1994, International Union of Geodesy and Geophysics, 1994. 



46 

McLachlan, G.J., Discriminant Analysis and Statistical Pattern Recognition, John Wiley, 
New York, 1992. 

Rajagopalan, B. , and U. Lall , A kernel estimator for discrete distributions, Journal of 
Nonparametric Statistics, (in press). 

Rajagoplan, B., U. Lall, and D.G. Tarboton, Evaluation of kernel density estimation 
methods for daily precipitation resampling, Working Paper WP-95-HWR-UL/007, In Utah 
Water Research Laboratory, Utah State University, Logan, UT, 1995 

Roldan J., and D.A. Woolhiser, Stochastic daily precipitation models I. A comparison of 
occurrence processes, Water Resources Research, 18(5), 1451-1459, 1982. 

Scott, D.W., Multivariate Density Estimation: Theory, Practice and Visualization, Wiley 
series in probability and mathematical statistics, John Wiley, New York, 1992. 

Sheather, S.J. , and M.C. Jones, A reliable data-based bandwidth selection method fo r 
kernel density estimation, Journal of the Royal Statistical Society , B. 53, 683-690, 1991. 

Silverman, B.W. , Density Estimation for Statistics and Data Analysis, Chapman and Hall, 
New York, 1986. 

Srikanthan, R., and T.A. McMahon, Stochastic simulation of daily rainfall for Australian 
stations. Transactions of the ASAE, 754-766, 1983. 

Vogel , R.M., and D.E. McMartin, Probability plot goodness-of-fit and skewness 
estimation procedures for the Pearson type 3 distribution, Water Resources Research, 
27(12), 3149-3158, 199 1. 

Wand, J.S., and M.C. Jones, Comparison of smoothing parameterizations in bivariate 
kernel density estimation, Journal of American Statistical Association, 88( 422), 520-528, 
1992. 

Waymire, E ., and V.K. Gupta, The mathematical structure of rainfall representations. I. A 
review of the stochastic rainfall models, Water Resources Research, 17(5), 1261-1272, 
1981 a. 

Waymire, E ., and V.K. Gupta, The mathematical structure of rainfall representations. 2. A 
review of the theory of point processes, Water Resources Research, 17(5), 1273-1285, 
1981b. 

Waymire, E. , and V.K. Gupta, The mathematical structure of rainfall representations. 3. 
Some applications of the point process theory to rainfall processes, Water Resources 
Research, 17(5), 1287-1294, 198lc. 

Webb, R.H., and J.L. Bettencoun, Climatic variability and flood frequency of the Santa 
Cruz river, Pima County, Arizona, U.S. Geological Survey Water-Supply, Paper 2379, 
1992. 



Wilson, L.L. , and D.P. Lettenmaier, A hierarchical stochastic-model of large-scale 
atmospheric circulation patterns and multiple station daily precipitation, Journal of 
Geophysical Research-Atmospheres, 97(ND3), 2791-2809, 1993. 

47 

Woolhiser, D.A. , C.L. Hanson, and C.W. Richardson, Microcomputer program for daily 
weather simulation, United States Department of Agriculture, Agricultural Research Service 
- 75, 49p, 1988. 



CHAPTER Ill 

EVALUATION OF KERNEL DENSITY ESTIMATION METHODS FOR 

DAILY PRECJPITATION RESAMPLINGI 

Abstract 

Issues related to the selection and design of appropriate nonparametric estimators 

for the nonparametric wet/dry spell model developed in Lall et al.[l995) are examined. 

Here we present results of our investigations into selected aspects of kernel density 

estimation for both continuous and discrete variables with reference to the nature of data 

typically available for wet/dry spell modeling of daily precipitation. 

Introduction 

48 

In a companion paper Lall eta!. [1995], a nonparametric approach to a stochastic 

model for daily precipitation was presented. The salient features of this model were the 

consideration of alternating wet and dry spells and of a daily rainfall structure within the 

wet spell. Kernel density estimates were espoused as effective methods for recovering 

univariate, multivariate or conditional , discrete and/or continuous probability densities that 

were needed directly from the historical record. In the process of developing the 

non parametric wet/dry spell model in Lall eta!. [1995], kernel density estimators of 

continuous and discrete variables were reviewed and tested with various data sets. Our aim 

here is to present some of this experience, specifically with the type of data available for 

modeling daily precipitation as a wet/dry spell model. 

Here, we shall explore some of the issues relevant to the implementation of the 

kernel density estimators proposed in La!! eta!. [1995] . These are (1) the specification of 

the bandwidth of the kernel estimator for the continuous case, (2) the role of boundary 

lcoaolhored by Rajagopalan Balaji, Upmanu Lall and David G. Tarboton. 
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effects in kernel estimation, and (3) the selection of the estimator in the discrete case. The 

inten t is to justify our recommended procedures by example, and to provide a comparison 

of some of the estimation schemes available in the li terature. 

Investigations for estimating the probability density function (PDF) of continuous 

random variables (here, it is the precipitation amount for a day or for a wet spell) are first 

presented followed by comparisons of methods for the estimation of the probability mass 

function (PMF) of discrete random variables (here, it is the length of a wet spell or dry 

spell in days). 

Kernel Density Estimation of Continuous 
Random Variable 

We start with the introduction of some basic ideas of kernel density estimation for 

continuous univariate case. The kernel density estimation for univariate, continuous 

random variates was reviewed recently by Lall eta!. [1995], in the flood frequency 

estimation context. The presentation here adds a few recent bandwidth estimation methods, 

and a discussion of the possible utility of boundary kernels with precipitation data. The 

interested reader is referred to Silverman [1986] for a pragmatic treatment of Kernel density 

estimation, to Devroye and Gyorfi [1 985] for a rigorous treatment using L1 (absolute 

value) methods , and to Scott [1992] for a recent monograph with an excellent treatment of 

multivariate estimation. Hydrologic applications are reviewed in Lall [1994]. 

Basic idea.~ 

Hydrologists are familiar with the frequency histogram as an estimator of the PDF 

While the histogram is capable of estimating the relative frequency distribution of the data, 

it has several drawbacks. IL is difficult to manipulate analytically. It is not easy to visualize 

for multivariate situations, and it allows for no extrapolation beyond the data. The 
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indicated frequency distribution is sensitive to the class width, as well as the origio of each 

class . Silverman [1986] illustrates these problems graphically. One can improve the 

histogram by centering bins at each observation (to gain independence from choice of 

origin) and then using boxes of shapes other than a rectangle (to get differentiable and 

continuous densities). This is precisely what the kernel density estimator introduced by 

Rosenblatt [ 1956] does. Given observations x
1 
,x2, .. ,xn, the kernel density estimator at 

any point xis fn(x) is defined as: 

n 
' " 1 x-x · fn (x) = L... - K(-')) 

i=l nh h 
(3.1) 

where K(.) is a kernel function centered on the observation Xj. which is usually taken to be 

a symmetric, positive, probability density function that satisfies conditions in Equation 

(3.2) (positivity, integrates to unity, first moment equal to zero and finite variance) and h 

is a bandwidth or "scale" parameter of the kernel. 

(a) K(t) > 0 ; (b) J K(t)dt = 1 ; (c) J tK(t) = 0; 

(d) J t2K (t)= k2 ~ 0 (3.2) 

From Equation (3.1), we can see that the estimator fn(x) is a local weighted average 

of the relative frequency of observations in the neighborhood of x. The kernel function 

K(.) prescribes the relative weights, and the bandwidth h prescribes the range of x values 

over which the average is computed. lf K(.) integrates to unity, and is positive, the basic 

conditions for a valid probability density are satisfied by fn(x) . Symmetry of K(.) leads to 

equal weighting of observations on either side of xi, and helps reduce the asymptotic bias 
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of fn(x), while finite variance of K( .) ensures that the variance of fn(x) is finite. Examples 

of kernel functi ons that are often used are provided in Table 3.1. In this work, we have 

used the Epanechnikov and the Bisquare kernels . 

Table 3.1. Examples of Continuous Variable Kernel Functions 

Note t = (x-Xj_)/h 

!illzJdr. 

Nonnal 

Epanechnikov 

Bisquare 

K(t) = (21tr1 /2 e·t2/2 

K(t) = 0.74(1- t2) It I s; 1 

K(t) = 0.9375(1 -t2)2 I t I s; 1 

Continuous !Leli) Boundary Kemelr Univariate !MUller 199/) 

Note that q = xlb, OS:q$1 and xis the point at which the density is estimated, and his the bandwidth. 

1 1-q 2 1-q 
for Epanechnikov K(q,t) = 6(l+t)(q-t)--{ I+ 5(-

1
-) + J()...-C-2-t) 

(1 +q)3 +q (I +q)2 

One can also see from Equation (3. 1) that the kernel density estimator is a 

convolution estimator, i.e., it results from the convolution of local densities across the data 

set. This interpretation is illustrated in Figure 3.1 using the Bisquare kernel. Note that 

specification of the kernel function K(.) and the bandwidth completely describes the above 

estimator. These are the parameters of the method. Nevertheless, such an estimator is called 

nonparametric because the resulting estimate is "local," i.e. , defined over a neighborhood ( 

parametrized by K(.) and h) of the point of estimate, and no assumptions have been made 

about the "global" underlying form of the probability density function. Since the PDF is 

estimated piece by piece (essentially as a moving average), a large class of underlying 

PDFs can be estimated by the kernel density estimator. This is a key feature of a 

nonparametric estimator. By contrast, a parametric estimator would have the entire 

function of specified form and could be indexed by a finite number of parameters. 



Consequently, a parametric model addresses a much more restrictive set of target 

probability models. 

2.5 

2 

1.5 

I• Data point ! 

0.5 

0 5 10 15 20 
X 

Figure 3.1. Example of kernel density estimation using 5 equally spaced values (5-13) 
with Bisquare kernel, h = 4. 
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Other examples [see Devroye and Gyorfi , 1985; Silverman, 1986; Scott, 1992] of 

nonparametric estimators are the k nearest neighbor density estimator, Fourier series 

estimators, adaptive shifted histograms, frequency polygons, penalized likelihood 

estimators, and orthogonal series estimators. All these methods can be shown to be 

equivalent to kernel density estimators with special kernels . 

The goal of nonparametric density estimation is to obtain a good pointwise estimate 

of the underlying PDF. Consequently, the performance of the estimator is judged by the 

pointwise error. The choice of the estimator and the bandwidth is motivated through an 

analysis of mean squared error (MSE) in estimating the density at a point x, given as 
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MSE(fn(x)) = E{ [f(x) - fn(x)j2) (3 .3) 

where E[.) denotes the expectation operator. Hardie [ 1991) provides the asymptotic mean 

square error of the kernel density estimate (Equation [3.1)) for differentiable f(x) and for 

kernels satisfying (2), through a Taylor Series expansion of the MSE as: 

The first term in Equation (3.4) is the bias squared and the second is the variance of 

the estimate at x. Since it is a weighted moving average, the kernel density estimator 

typically underestimates the density at the modes, and overestimates it at the an tim odes, 

corresponding to the bias term that is proportional to f'(x). The mean integrated squared 

error (MISE = f MSEcfn(x) dx) and related measures of performance can be developed 

from Equation (3.4). For kernels satisfying (3.2), and an optimally selected, fixed 

bandwidth h, the rate of convergence in terms of MISE of the kernel density estimate is 

proportional to n-415 (compare with n-2/3 for the histogram), see Silverman [1986, sec. 

3.7.2) for details. The best rate for a parametric estimator is proportional to n-1. If higher 

order kernels (these are symmetric kernels with the first [p-1) moments zero, the pth 

moment finite, nonnegativity is not enforced) are used and/or variable bandwidths are 

employed, higher convergence rates ( n-2p/(2p+ 1) for an order p kernel) can be achieved, 

Scott [1992]. However, for p>2, the resulting estimate fn(x) may not be positive, and may 

not constitute a valid probability density. Kernels satisfying (2) are of order 2. 

Epanechnikov [1969) showed that the MSE optimal kernel (among the class of 

kernels that are positive everywhere and have first moment and second moment finite) for 
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density estimation is the quadratic kernel bearing his name given in Table 3.1. He also 

showed that the asymptotic relative MSE efficiency (MSEcfn(x) using kernei!MSE(fn(x) 

using optimal kernel) of any other admissible kernel function (even the rectangu lar kernel) 

was always close to one. The reason for this is that different kernels can be made 

equivalent in this sense through appropriate choices of the bandwidth [Scott, 1992]. 

Consequently it is generally believed that the choice of a kernel function is not very 

important for density estimation as far as the asymptotic MSE is concerned. However, 

there are other factors that are important for choosing a kernel function. The differentiability 

of the kernel function is inherited by the resulting density estimate. The Epanechnikov 

kernel is not differentiable at the ends of its support. The Bisquare kernel (Table 3.1) is to 

be preferred in this regard. Where the random variable is bounded (e.g ., precipitation is 

defined only over [O,oo]) , a kernel with bounded support is to be preferred (e.g., 

Epanechnikov or Bisquare) over one with infinite support (e.g., Normal) to minimize 

boundary effects (which will be discussed in the following section). 

Typically the bandwidth and the kernel are selected by minimizing the estimated 

average mean integrated square error (AMISE=E[ J MSEcfn(x) dx)]). Methods for 

bandwidth selection are described in the section under bandwidth selection schemes and are 

summarized in Table 3.2. 

Since kernel density estimation is a local averaging process, estimates in the tail 

(especially for data from long tailed distributions) can be rough (have high variance of 

estimate) because there will be fewer and fewer data points to average for a fixed 

bandwidth. A natural way to deal with with such situations is to use a larger h in regions 

of low density (e.g., tails) and smaller h in regions of high density (e.g., near the modes). 

The bandwidth may thus vary over the range of the data. The estimator in thi s case is 

called a variable kernel density estimator and is given as: 
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Table 3.2. Choices of Bandwidth Selection for Kernel Estimators of Continuous Variables 

Method Equation Criteria/Remarks 

PR-M hopt = 3.03n·0.2 Based on minimization of MISE, given Epanechnikov kernel 

and assuming underlying probability density function to be 

0.5N(-2 ,1)+0.5N(2,1) . 

PR-N hopt = 2.J3crn·0.2 Based on minimization of MISE, given Epanechnikov 

kernel and assuming the underlying probability density 

function to be N(O,;:r\ ;:r is the sample standard deviation. 

PR-E hopt = 1.970n-0.2 Based on minimization of MISE, given Epanechnikov 

kernel and assuming the underlying probability density 

function to be Exp(~). ;:r is the sample standard deviation. 

LSCY LSCV(h) = J f2
- 2n-1 ~ Uxi) Choose h to minimize LSCV(h) function. 

L represents the kernel density estimate constructed by 

dropping the ith observation. 

MLCV MLCY(h) = n· 1 I logcf_J Choose h to maximize MLCV(h) function. 
i=l 

SJ refer to Equations, 3.13-3.15, Based on recursive estimation of MISE 

SJL Same as SJ, but applied to log transformed data 

Note: 

PR Parametric reference 

LSCV Least squares cross validation 

MLCV Maximum likelihood cross validation 

SJ Sheather and Jones [1991] procedure 

SJL Sheather and Jones [1991] procedure applied to log transformed data 

MISE Mean integrated squared error 
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± _l_K(X-Xi ) 
i=I n hi hi 

(3.5) 

where hi is the bandwidth prescribed at the observation Xi . 

Estimation of a variable bandwidth hi is more difficult than the estimation of the 

global bandwidth h. A practical approach is a procedure suggested by Silverman [1986] 

based on recommendations by Abramson [1982], who showed that choosing h; 

proportional to fnCxir 1/2 could improve the MSE rate of convergence orfn(x) from O(n-

4/5) to O(n-8/9). Here 0(.) refers to "terms of the order of," and for comparison the 

optimal convergence rate for a parametric density estimate is usually O(n-1 ). The strategy 

is to perturb an appropriate fixed or global bandwidth h into a sequence of bandwidths hi at 

each observation Xi as : 

(3.6) 

where g is the geometric mean of fn(Xi). One can iteratively re-estimate fn(Xi) and hence hi 

using the latest kernel density estimate. Two to three such iterations were found to be 

sufficient to achieve pointwise convergence to a fractional tolerance of 0.001 in the 

resulting density estimate. 

Boundary effects and their treatment 

An annoying aspect of kernel estimators of probability densities (both continuous 

and discrete) is the increased bias within one bandwidth of the boundary (e.g., 0) of the 

sample space. The bias is a consequence of the increasingly asymmetric distribution of the 

random variable as one approaches the boundary. Modifications to kernel density estimate 
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are necessitated within a bandwidth of the boundary (e.g., 0 for data from exponential 

distribution) of the sample space. Two problems are faced for estimation in the boundary 

region. 

The first is that a kernel can extend past the boundary if the bandwidth is larger than 

the observation at which a kernel function is centered. This leads to a leakage of probability 

mass, and the resulting fn(x) will not integrate to 1 over the sampling domain. Clearly this 

problem is aggravated if a kernel with infinite support is used (such as the Gaussian kernel, 

see Table 3.1). The boundary problem is illustrated in Figure 3.2. Consider the 

continuous univariate random variable x E [0.~]. and a fixed bandwidth (h=O.l). For the 

point of estimation in the Figure 3.2 (i.e., x = 0.01), which is within one bandwidth of the 

boundary, the interior Epanechnikov kernel is truncated at the boundary (x=O.O), resulting 

in the leakage of probability mass. Boundary kernels developed by MUller [1992] alleviate 

this problem. 

The second problem is increased bias that results from the asymmetric distribution 

of observations around the point of estimate. Let us say that the smallest sample value is 

X], and that X] is greater than h. Now if a kernel estimate of fn(x) is needed for x<h, i.e., 

in the boundary region, all the sample values are to the right of x, leading to an increased 

bias in the estimate fn(x). Attempts to overcome this bias typically lead to an increased 

variance due to the relatively few points caught in a bandwidth of the kernel. 

A number of methods for dealing with the boundary problems mentioned above 

have been proposed. We investigated four methods for boundary modification of the kernel 

estimator. 

The first method is "cut and normalize." One computes the area of each kernel that 

lies within the sample space, and normalizes the truncated kernel to have unit area, by 

dividing the kernel function by this area. Bias reduction issues are not addressed. 
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The second method, reflection, augments the data set by reflection of the real data 

across the boundary. The assumption is that f'(x) = 0. There is no basis for this assumption 

and it is unlikely that it holds for the precipitation data sets . 

" " .. 
> 

30 lr-----------------, 
Interior kernel 
boundary kernel 
pt. of estimation 

daJa 
15 ,~----------------~ 

. 
0 ............... ···-·······································-·· -11"'''''"-''''- ''00:0'''' '''~":. ...... ...... _ ••. ••.•• • •... 

\ / 
\ .: 

\ ,I 
~'-... 

-15 +---r--r--~-,--~--T-~--,---r--,--~~ 

-0.12 -0 .0 8 -0 .0 4 0.00 0 .04 0 .08 0.12 

data 

Figure 3.2. Conceptual figure of the boundary problem in kernel density estimation. 

The third method, which is more general, considers the development of special 

boundary kernels [see Miiller, 1988, 1992; and Table 3.1) that are asymmetric, unbiased, 

and minimum variance but are not nonnegative. These kernels are modified versions of the 

kernels used in the interior of the sample space, and are derived from variational conditions 
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[see MUller, 1992 for details]. We have investigated such kernels in the univariate case with 

reasonably good results. Bias of the density estimate is reduced in the boundary region, 

typically with some increase in the variance of estimate. For the type of data we were 

dealing with (precipitation or spell length), the density is high near the origin (i.e., 0.01 

and 1, respectively), and the possible negative values of the boundary kernel function near 

the origin do not translate into negative density estimates. For the discrete case, Dong and 

Sirnonoff [1994] have developed boundary kernels for the Epanechnikov and Bisquare 

kernels (see Table 3.1 for boundary kernels for Epancchnikov kernel). 

A fourth method relevant for data concentrated near the boundary (e.g., 

Exponential, log normal ) is a logarithmic transforn1 of the data prior to density estimation. 

Such a transformation can also provide an automatic degree of adaptability of the 

bandwidth (in real space), thus alleviating the need to choose variable bandwidths with 

heavily skewed data, and also alleviates problems that the kernel density estimator has with 

PDF estimates near the boundary (e.g. , the origin) of the sample space. The resulting 

kernel density estimator can be written as: 

(3.7) 

where hx is the bandwidth of the log transformed data. The above estimator worked well 

for data concentrated near the origin (e.g., Exponential type) and hence is recommended. 

Bandwidth selection schemes 

In this section we review some choices of bandwidth selection for kernel density 

estimation for continuous variables. Comparisons of these alternatives with synthetic data 

are presented next. Rather than reproducing a variety of statistical results , we shall focus 



on getting the basic ideas across through a brief review of the univariate, continuous 

random variable case. 

Four methods for selecting the optimal global bandwidth were considered. 

I. Parametric reference (PR) procedure. 

60 

The optimal bandwidth hopt and kernel are selected by ftrst minimizing the mean 

integrated squared error (MISE), Equation (3.4) integrated with respect to h. The result is 

the optimal bandwidth hopt and then so lving for the optimal kernel [see Silverman, 1986]. 

The MISE of the fixed, univariate, continuous, kernel density estimator and the 

corresponding optimal global bandwidth hopt are given by Silverman [1986] as: 

(3.8) 

(3.9) 

where R(g) =I g2(x)dx and cri =I x2g(x)dx. The terms R(K) and <{depend only on the 

known kernel K(.). Consequently, the unknown term in Equations (3.8) and (3.9) is 

R(f'), which depends on the unknown density f(x). Now one could fit the "best" 

parametric model for precipitation, e.g., the exponential, and then "knowing" f(x) compute 

R(f") and thereby evaluate hopt· Silverman [1986] provides hopt using the normal 

distribution as a reference. We investigated such schemes, and found that bandwidths 

selected in this martner can be quite sensitive to the choice of the reference distribution. For 

example, for a Gaussian kernel, the hopt for a Normal parent PDF is 1.33 times the hopt 
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for an Exponential parent. The need to refer to a parametric model detracts from the utility 

of this method, but the method is less sensitive to boundary effects while selecting hopt· 

From Equation (3.9) observe that knowing the optimal bandwidth hN for the 

Normal kernel, the optimal bandwidth hK for a kernel different from the Normal kernel can 

be readily evaluated as : 

(3.10) 

where "N" identifies the Normal kernel , and "K" the kernel of interest. Different kernels 

can thus be made equivalent. 

2. Leas t squares cross validation (LSCV) [see Silverman, 1986, section 3.4]. The 

optimal bandwidth is solved by the minimization of 

(3.11) 

where f_i represents a kernel density estimate constructed by dropping the ith observation. 

LSCV is prone to undersmoothing where the data exhibits fine structure, and also 

suffers from a high degree of sampling variability, leading to rather poor MISE 

convergence rates (O(n-1/10) [see Hall and Marron, 1987]. The computational burden and 

poor convergence rate of this method are discouraging. However, its broad applicability to 

a wide class of situations renders it popular. 

3. Maximum likelihood cross validation (MLCV) [see Silverman, 1986, section 

3.4]. The optimal bandwidth is solved by the maximization of a pseudo-likelihood criteria 

given as: 
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MLCV(h) = n-1 i log(f_i(xi)) (3.12) 
i=l 

MLCY leads to degenerate solutions if the data is long tailed, and also suffers from 

the same low convergence rate that characterizes LSCY. The degeneracy can be corrected 

[Schuster, 1985] by excluding a fraction of the right tail data from the MLCV score (not 

from the density estimate). The subjectivity of the choice of such a cutoff point and the 

computational burden of the scheme detract from its usage. 

4. Direct minimization of estimated MSE/MISE. 

"Plug-in" or recursive estimators are methods that use data-driven kernel estimates 

of f(x) and R(f") (or equivalent measures in the discrete case). Such methods were 

originally proposed by Woodroofe [1970], and pursued by Scott eta! . [1977] , Scott and 

Factor [1981] , and Sheather [1983, 1986]. Improvements by Park and Marron [1990] and 

Sheather and Jones [1991] (hereafter, SJ), among others, have lent stability to these 

methods and have led to a MJSE convergence rate of hopt of the order of n-5114, as well as 

a reduction in the size of the constants associated with this rate. 

A summary of the SJ procedure for the continuous, univariate kernel density 

estimator follows . They developed a kernel estimate S(u) for R(f') as : 

S(a) = {n(n-I))-lu-5± i, KiV((x/xi)/u) 
i=l j=l 

(3.13) 

u(h) = 1.357 { S(a)IT(b)} 1/7 h517 (3.14) 

T(b) = -{ n(n-1 ) )-1b-7i, i, KVi((xi-Xj)/b) 
i=l j=l 

(3. 15) 
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a= 0.92/..n-117 and b = 0.912/..n-119 

where a is a bandwidth (not equal to h), and Kiv(.) is a special kernel for estimating fourth 

derivative of the density, Kvi(.) is a special kernel for estimating the sixth derivative of the 

density, and A. is the sample interquartile range (xo.75- xo.2s). T(b) is an estimate of 

R(f'") and a, bare bandwidths that are evaluated with reference to a Normal distribution for 

the derivative kernels considered. 

Relatively crude estimates (with reference to a known distribution) of the 

bandwidths used in estimating R(f'') and R(f'") suffice given that the dependence of the 

MISE expression Equation (3.8) on these expressions is successively weaker (note the 

exponents) . The optimal bandwidth hopt is now evaluated by computing a and b from the 

data, evaluating S(a) and T(b), and substituting the Equation (3.15) into Equation (3.14), 

and Equation (3.14) into Equation (3.13). This leads to a nonlinear expression in terms of 

h, which is solved using the Newton Raphson method. Sheather and Jones specify the 

normal kernel for K(.) and evaluate the derivative kernels as the appropriate derivatives of 

this kernel. While this is the most attractive data-based approach that we tested, it does not 

consider the boundary behavior of the kernel estimator. In the case where the data is 

positive and heavily concentrated near the origin, the SJ procedure tends to grossly 

undersmooth relative to the theoretical optimal bandwidth. 

Comparative results of various bandwidth 
selection schemes 

The most critical aspect of developing the kernel density estimator is the 

specification of the bandwidth. A second factor is the need for specialized treatment near 

x=O (i.e., the boundary problem). We compare the different methods outlined in sections 

2.2 and 2.3 with two synthetic data sets . 
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First we sample (C1) from a Gaussian mixture(0.5N(-2,1)+0.5N(2, l)), to 

demonstrate estimability with location mixtures. The second sample (C2), was generated 

from an Exponential distribution with mean 0 .1 5, to demonstrate the boundary effect. In 

each case a sample of size 250 was used. Sample statistics and values of the key 

parameters in each case are summarized in Table 3.3. The corresponding PDFs estimated 

by selected methods are shown in Figures 3a to 3e. 

We consider six estimators for density estimation for the above mentioned data sets. 

These are (1) (PR-N) parametric reference assuming the underlying probability density 

function to be N(O,cr\ (2) (PR-M), parametric reference assuming the underlying 

probability density function to be a Gaussian mixture 0.5N(-2,1)+0.5N(2,1); (3) (PR-E) 

parametric reference assuming the underlying probability density function to be Exp(a); (4) 

(LSCV) least squares cross validation; (5) (MLCV) maximum likelihood cross validation; 

(5) (SJ) Sheather and Jones [1991] procedure; and (6) (SJL) Sheather and Jones [1991] 

procedure applied to log transformed data. Table 3.2 summarizes the bandwidth estimation 

procedures. In the first three methods the term parametric reference means the bandwidth 

is chosen to be optimal with reference to an assumed underlying parametric distribution. 

The first five methods, which consider untransformed real space data, also use 

Silverman's method (discussed in the section titled basic ideas) to specify a local rather 

than a fixed global bandwidth. Boundary kernels as defined by MUller [1991] were used to 

adjust the density estimates near the lower boundary (x ~ 0) , but were not used during 

bandwidth estimation. The SJL procedure eliminated the boundary problem and provided 

some local bandwidth adaption, so no local bandwidth adj ustment and no boundary kernels 

were used. 

For data set Cl we used methods PR-N, PR-M,LSCV, MLCV, and SJ, while for 

data set C2 we used PR-E, LSCV, MLCV, SJ, and SJL. 
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The following observations are apparent from the figures: 

1. The parametric reference (PR) procedures work very well as expected when the 

assumed PMF matches the underlying PDF. However, under misspecification, 

performance suffers. In case of Cl , the bandwidth from the true reference (PR-M) is 1.0, 

while from using the normal distribution (i.e., misspecification) as the reference (PR-N) 

the bandwidth is 1.76. This results in gross oversmoothing of the two modes present in 

C1 (see Figure 3.3a). The parametric reference bandwidth is the best possible estimate of h 

provided f(x) is known. Of course, one reason we pursue nonparametric estimates of the 

PDF is lack of knowledge of the underlying model. In this context, PR estimates with the 

correct f(x) are useful as a benchmark to compare the performance of fully data driven 

methods. 

2. LSCV and MLCV are prone to undersmoothing especially when the data exhibits 

fine ~true LUre (e.g multiple modes) and is long tailed [see Hall and Marron, 1987). Also the 

cross-validation functions (which are minimized for the bandwidth estimation) have 

spurious local optima (corresponding to clustering of data at different scales) at small 

bandwidths [see Hall and Marron, 1987]. Thus, we expect small bandwidths from LSCV 

and MLCV which leads to an undersmoothed density estimate. This can be seen from 

Figures 3.3b and 3.3d, where the estimates from LSCV and MLCV are very rough, 

suggesting that the variance is high. 

3. SJ has been shown to have a better mean integrated square error (MISE) 

convergence rate than cross validation methods [see Sheather and Jones, 1991] and hence 

should lead to a better estimate. This is borne out in Figures 3.3 a through d, Figure 3.4, 

and Table 3.3 . Note that the SJ optimal bandwidth for C1 is close to the optimal bandwidth 

based on the Oaus~ian mixture as reference (PR-M). However, for C2 the SJ optimal 

bandwidth is much smaller than the optimal bandwidth for the exponential distribution. 



Table 3.3 . Statistics (Sample size =250 for each) and Methods for Figures 3.3 and 3.4 

Data Method 

(corresponding to Appendix 2) 

Cl (Gaussian mixture) 

(X= 0.00, s = 2.26) 

C2 (Exponential) 

(X= 0.16, s = 0.18) 

Note: 

PR-M 

PR-N 

LSCV 

MLCV 

SJ 

PR-E 

LSCV 

MLCV 

SJ 

SJL 

x is sample mean and s is sample standard deviation 

The SJL estimator is, (Equation 3.2) 

f (p) =lf. .l_K(ln(p) - ln(pi)) with Epanechnilcov kernel 
n n 1 hp h 

The Parametric reference, LSCV, MLCV and SJ all use 

Global 

Bandwidth 

1.00 

1.76 

0.48 

0.53 

1.03 

0.11 

0.015 

0.02 

0.04 

0.77 (in log space) 

fn( P) =I +K(xh-x;) with Epanechnikov kernel and MUller boundary kernels. 
i=l 0 I I 
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Local bandwidths hi are given by, hi= hCt\pi)/g)-112, where his global bandwidth, (pi) is 

the kernel density estimate at Pi using the global bandwidth h, and g is the geometric mean 

offlPil· These estimators only differ in the procedure used to obtain global bandwidth. 
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This is due to the fact that the boundary effect is not considered while estimating the SJ 

bandwidth, which is a problem in case C2 but not in C l . In both cases the SJ bandwidth 

is superior to those chosen by MLCV and LSCV. 

Note that in all these cases, the optimal h is determined without using the boundary 

kernels, and is perhaps smaller than it would be (to reduce the effect of leakage across the 

boundary) if boundary kernels were used during bandwidth estimation. This emphasizes 

the need for proper treatment of the boundary of the domain during all phases of kernel 

density estimation. We expect to pursue modifications of the SJ estimator to account for 

boundaries during bandwidth selection. 

4. For C2, in Figures 3.3c and 3.3d, we use the Miiller boundary kernels (except 

when using SJL) to reduce the bias at the boundary. Despite this a considerable bias can be 

observed near the origin in these figures, for each of these estimators. This is a 

consequence of the high curvature of the target density near the origin, and the "leakage" 

from the kernels across the boundary at x=O. Figure 3.4 for the case C2 includes a PDF 

estimated without using boundary kernels (SJ-NBK) along with those from SJ and SJL. 

The inclusion of boundary kernels in SJ offers only a marginal improvement over SJ in this 

case, since it still suffers from a bias due to the high curvature of f(x) in this area. SJL, on 

the other hand, does not suffer as much from this problem and hence performs better. 

5. For data sets with a heavy concentration of data near the origin, a log 

transformation is an attractive choice. We see from Figure 3.4 that the SJL procedure 

provides a very competitive kernel density estimate in this situation. Note that SJL provides 

local bandwidth adaptation in real space. For the wet day precipitation data, which is 

usually modeled using an Exponential, or a Gamma distribution, this may be a natural 

transformation to consider. 
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Figure 3.3. Plots of data, histogram of data, true underlying PDFs and PDFs estimated 
from (a) PR-M (h=l ), PR-N (h=l.76), SJ (h= 1.03) fo r the data set Cl , (b) LSCV 
(h=0.48), MLCV (h=0.53) fo r the data set Cl, (c) PR-E (h=O.ll) , SJ (h=0.04), SJL 
(h=0.77), fo r the data set C2, (d) LSCV (h=0.015), MLCV (h=0.02), fo r the data set C2. 
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Figure 3.4. Plot of PDFs estimated from SJ, SJL, and SJ-NBK (bandwidth chosen from 
SJ procedure but boundary kernels are not used). Along with observed data and histogram 
of observed data, for the data set C2. 

Our recommendation of SJL is motivated largely by a desire to deal with the 

boundary effects and local bandwidth adaptation in a natural way given the nature of the 

precipitation data. Where boundary effects are not of concern (e.g., Cl), a direct 

application of SJ would be preferred. Once a modification of SJ to account for boundary 

effects during bandwidth estimation is successful, SJL need not be the method of choice 

even in this situation. 



Kernel Density Estimation for Discrete 
Random Variables 

Wet spell and dry spell lengths are treated as an integer number of days in our 

rainfall model Lall eta!. [1995]. consequently estimators for discrete data are reviewed 
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here. The presentation of discrete kernel estimators is new to the hydrologic literature, and 

includes a new estimation method we developed [Rajagoplan and Lall, in press]. For a 

discussion of the methods for discrete data refer to Hand [1982], Bishop eta!. [1975], and 

Coomans and Broeckaert [1986]. 

Basic ideas 

The basic concepts of kernel estimation of PDFs in the continuous case introduced 

earlier hold for the discrete case as well. In the discrete case one can first estimate the 

sample relative frequencies. These relative frequencies or multinomial cell proportions can 

then be "smoothed" using a kernel estimator. The problem of nonparametric smoothing of 

the multinomial cell proportions has not been studied as extensively as nonparametric 

density estimation, its counterpart in the continuous case. Here we have a sample 

Yl.Y2····Yn for n multinomial trials with possible outcomes 1,2, .. L..,Lmax with 

probabilities of occurrence f1,fz ... ,fLmax that are unknown. Estimates fn(L) for any cell L 

may be obtained as sarnl?le relative frequencies (ilL = nr)n), or by smoothing the pL. Hall 

and Titterington [1989] note that smoothing can be beneficial when there are many cells 

with small or zero frequencies, i.e., the data are sparse. This is the case with the wet and 

dry spell length data. 

A kernel estimator fn(L) is given as: 

~ Lmax 
fn(L) = I Kd(L, i,h))p 

i=l I 

(3 .16) 



where h is the bandwidth, Lmax is the maximum observed spell 1ength and Kd(.) is a 

discrete kernel (or weight function). 
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A non parametric estimator of the discrete probabilities of the wet or dry spell 

lengths (wor d) would be the maximum likelihood estimator that yields directly the relative 

frequencies (e.g., (number of wj)/nw, for the ith wet spell length wi in a sample of size 

nw). The kernel method is superior to this approach , because (1) it allows extrapolation of 

probabilities to spell lengths that were unobserved in the sample, and (2) it has higher MSE 

efficiency (Hall and Titterington, 1987). Three major estimators identified in literature and a 

fourth one developed by Rajagopalan and Lall [in press] for smoothing probabilities of 

discrete data, are described. Their perfo rmance with synthetic data sets is compared in the 

following sections. 

Choice of discrete kernel estimators 

The estimators considered are (1) the Geometric kernel estimator developed by 

Wang and Van Ryzin [1981], hereafter WV; (2) maximum penalized likelihood estimator 

(MPLE) developed by Simon off [ 1983] ; (3) the estimator by Hall and Titterington [1987] , 

hereafter HT; and (4) the discrete kernel (hereafter OK) estimator developed by 

Rajagopalan and Lal1 [in press]. These are summarized in Table 3.4. 

1. Wang and Van Ryzin [1981] estimator (WV) 

The kernel estimator of the probability mass function (PMF) of a discrete variable 

L, (here the length of wet or dry spell with n sample values) given by Wang and Van 

Ryzin [1981] uses Equation (3.16) with the geometric kernel given as: 
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Kd(L,i,h) 0.5(1-h)hiL-il if IL- il :2: 1 hE (0,1] 

(1-h) ifL=i (3.17) 

The bandwidth h can be global or local. 

Wang and Van Ryzin [1981] derive optimal global and local bandwidths to 

minimize the MSE (mean square error = E[(f(L)-fn(L))2]). They estimate the local 

bandwidths h(i) by minimizing the approximate MSE of fn(i), while truncating the 

geometric kernel at i±2. The resulting expressions are in terms of the unknown true 

probabilities f(i). They show that substitution of the relative frequencies of i, estimated 

from the sample as i\ <1\ = njln) in the expressions, leads to a strongly consistent 

procedure. An optimal global bandwidth is obtained by minimizing the average MSE (i.e., 

1/niiMSE(i)) over the data. Expressions fo r the optimal global and local bandwidths are 

given in Table 3.4. 

Note that for small values of h, the estimator is close to the naive maximum 

likelihood estimator (MLE) (i.e., iJ). and for pi small, his larger, leading to a higher 

smoothing, or larger "smearing" of the relative frequencies. An improved extrapolation in 

the tail of the density can result through the use of the local bandwidths. 

2. Maximum penalized likelihood estimator (MPLE) 

The MPLE was first introduced by Good and Gaskins [1971] for continuous 

variables, and was later extended to the density estimation for discrete variables by 

Simonoff [1983]. Simon off [1983] proposes a solution fo r the "category" probabilities f; 

that maximizes a penalty function given by: 
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LFN = Log likelihood - roughness penalty (3 . 18) 

The idea is to balance the goodness-of-fit of the estimate (i.e., likelihood) with its 

smoothness (i.e., roughness penalty) . The smoothest es timate is obtained if all cell 

probabilities are equal over the range of cells considered. With this in mind , the penalized 

likelihood function is defined as: 

(3.1 9) 

i=l i= l 

Lmu 
where L ~ = I (3.20) 

i=l 

~ :<! 0 is a smoothing parameter, and Lmax is the largest cell considered (or the longest spell 

considered). The smoothing parameter~ controls the relative weight assigned to 

smoothness and consequently has the same role as the bandwidth used in kernel 

estimation. Here a data-dependent~ is used through the following procedure which 

minimizes asymptotic mean square error. 

I . An initial ~is chosen as 0.009N(Lmax)0.6(log(Lmax))0.4), where N is the 

sam pie size. 

2. Given this ~ , the penalized likelihood (Equation 3.19) is maximized with respect 

to~' i = 1 , .. ,Lmax using the method of Lagrange multipliers. 



Table 3.4. Examples of Discrete Kernel Estimators 

Wan g and VanRyzin f/98/l fWV} Geometric Kernel ertima(Or 

Geometric kernel 0.5(1-b)blx-xil if lx- xil ~ I 
K (x) = 

Global bandwidth 

Local bandwidth 

(1-b) ifX=X; 

h = ~, (3/2 + B1 - s, + (n -I J~JOr 1 

h(i) = d ; (p; + LE, + F ; - G ; + (n-l)e/ 
4 

where, pi ci\ = ll jln) are the sample relative frequencies 

Maxbmun Penalized Likelihood Estimator fMPLEl or Simona« 11983 I 

Lmax Lmu 

LfN = L "i log(~) - ~ L [I og(~/fi+ I ) ) 2 
i=l i=l 
t_ 

hE (0,1] 

where L ~ = 1, ~~ 0, is a smoothing parameter, and Lmax is the largest cell (e.g. longes t spe ll length) 

i= l 
considered 
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The smoothing parameter ~ controls the relative weight assigned to smoothness and consequently bas 

the same role as the bandwidth used in kernel estimators. The LFN function is minimized to solve for each fis (the 

required cell probability estimates). 

Hall and Titredngton l/9871 f{[ estimator 

W(t) = K(t)/ L KU/b) 

j=--

1/b E (0,1) 

K(t) is a continuous r.v. kernel, j is integer 

Discrete ([&ft) Boundary Kernels Univariate Dong qnd S'imqnoft: fl9941 

Note tbatq = (x- 1)/h. O$q$l and xis the point at which the density is estimated 

for Epanechnikov K(q,t) = _-_6_t2+3(q'+I) 
(l +q)3 ( l +q)3 

DK e~timator 

Note t = (L-j)/h, and L is point at which density is estimated 



Table 3.4 (contd .) 

Interior reg jon (j e > ..h±.ll 

Quadratic kernel K(t) = at2 + b for ttl :51 

I eft B oun dary {j e l < I < h+D 

for Quadratic kernel K(t) = at2 + b for Itt $1 

a=-·-0- x 1 andb=[ l~)-l-
2h(h+L) c.JL _ ____QL__) 6h2 (h+L) 

4h3 12b\h+L) 

where, C = b(h-1)(2h-l ) + (L -2)(i- 1)(2L-3); D = -h(h-1) + (L-2)(L - I ); E = -(b(h-1))2 + ((L-2)(L -1))2 
I e fl Boyodary 0 e I - ) ) 

for Quadratic kernel K(t) = at2 + b for It! :51 

a= ..o!2.x I andb=[l~jl. 
2h 2 (l.JdL.) 6h 2 h 

4b3 12b4 

where, C = h(h- 1)(2h- l ); D = -h(h-1): E = -(h(h-1))2 
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3. An optim al B is now estimated by minimizing an asymptotic MSE, defined as an 

Lm... 
asymptotic approximation to .L, ( ~- 1ti)2, where 1tj is the unknown probability of cell i. 

i=l 

Simonoff [1983] develops this asymptotic MSE expression in terms of the sample relative 

frequencies p. (iJ. = ni/n) , Band the unknown probability 1ti- For 1ti he uses the estimates~ 
I I 

from step 2. 

4. Steps 2 and 3 are repeated till convergence is achieved. Simonoff [1983] argues 

that although a formal proof for the convergence of this procedure is not available, 

extensive computations have indicated that the scheme does converge. The need to specify 

Lmax (in excess of the longest observed spell) detracts from the use of this method. We 

would prefer a natural extension of the tail of the PMF by the method used, rather than a 

prior specification of its extent. 
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3. Hall and Titterington [1987] estimator (HT) 

The HT estimator developed by Hall and Titterington [1987] uses a discrete kernel 

function formed from a continuous kernel as: 

Kct(L,j ,h) 
K((L-j)/h) 

s(h) 

j ~ L+ b 

(3.21) 

where h > I and s(h) = L, KU/h). K(.) is any suitable continuous univariate kernel 
j~L-h 

function, with compact support, satisfying properties in Equation (3.2). The bandwidth h 

is selected as a minimizer of a least squares cross validation (LSCV) function suggested in 

Hall and Titterington [1987] over a suitable range for h given as: 

Ln .. 
LSCY (h) = L cfnUl )2 

j~l 

Ln.. 

2 L fn,-jUl P· 
j~l J 

(3 .22) 

where fn,-jU) is the estimate of the PMF of spell length j , by dropping all the spells of 

length j from the data. This method has been shown by Hall and Titterington [1987] to 

automatically adapt the estimator to an extreme range of sparseness types. 

Note that this estimator has the same convolution structure as the kernel density 

estimator in the continuous case. The HT estimator uses a standard continuous variate 

kernel function rescaled by the sum of the weights applied to an integer set of points. This 

estimator is defined over the set of integers. However, wet spell and dry spell lengths are 

counting numbers (integers greater than 1). To avoid the problem of the estimator assigning 

probability to integers less than 0 (the boundary problem), Dong and Simon off [1994] 

developed boundary kernels for Epanechnikov and Bisquare kernels, which are given in 

Table 3.4. By HT we refer to the boundary modification of Dong and Simonoff [1994]. 
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For finite samples, some disquieting aspects of the HT estimator become apparent. 

The noninteger bandwidth leads to an effective kernel that also varies with h in a manner 

quite different from that prescribed by Equation (3.2). The effective integer support of 

Kd(L,j,h) in Equation (3 .21) is [(L-h*),(L+h*)], where h* is the closest integer greater 

than or equal to h. HT kernels are defined as quadratics or other polynomials over [L

h,L+h]. Since this is not the effective integer support of the kernel, the effective kernel over 

the space of integers is not the quadratic defined. 

Alternatively, it is possible to develop a kernel that recognizes the data to be in 

integer space, has an integer bandwidth and satisfies all the required conditions in the 

integer space. This also obviates the need for normalization of the kernel weights as done in 

HT. We explored this line of thought and sought a direct, discrete analog of the continuous 

kernel density estimator, which led to the development of the discrete kernel (DK) estimator 

[Rajagopalan and La!! , in press]. 

4. Discrete Kernel Estimator (DK) 

Our estimator fn(L) uses Equation (3 .16) with discrete quadratic kernel (QK) is 

given as: 

(3.23) 

here ti = y. Epanechnikov [1969] showed that the MSE optimal kernel of second order, 

is the quadratic kernel (QK), also known as the Epanechnikov kernel. Here we need to 

specify the constants a and b for the interior (i > h+ I) and the boundary region (I ~ i ~ 

h+l ). The constants a and bare solved to satisfy: (1) the kernel function goes to zero for li

jl2:h, i.e K(tj ) = 0 for 1tj12:1, (2) sum of the weights is unity, i.e., 
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j=i+b . . j=i+b .. 

2:, K(::l) = I and (3) the first moment of the kernel function is zero, i.e 2:, K(::l)~ = 0 
j=i-h h j=i-h h 

These three conditions are the discrete versions of the conditions given in Equation (3.2) 

for continuous variable kernels. One could choose higher order Beta kernels and derive 

results similar to these that follow for DQ. The resulting kernels for the interior and the 

boundary are given in Table 3.4. Derivations of these kernels are presented in Rajagopalan 

and Lall [in press] . 

Note that the kernel and hence the estimator fn(L) are expressed strictly in terms of 

the bandwidth h. An optimal choice of h then completes the definition of the estimator. The 

bandwidth is selected by minimizing the least squared cross validation function given as: 

Lmu: ,... 

LSCV(h) = I (fn(D )2 
j=l 

Lmu:,.... 

22:: fn -JU> P· 
j=l ' J 

(3.24) 

where fn,-jCi) is same as defmed in earlier. Hall and Titterington [1987] also show that 

cross-validation automatically adapts the estimator to an extreme range of sparseness types. 

If the multinomial is onJy slightly sparse, cross validation will produce an estimator which 

is virtually the same as the cell-proportion estimator. As sparseness increases, cross 

validation will automatically supply more and more smoothing, to a degree which is 

asymptotically optimal. 

Comparative results of various discrete 
kernel estimators 

The four methods (WV, MPLE, HT, and OK) are compared with two synthetic 

data sets generated from long-tailed distributions (e.g., Geometric distribution). First we 

use a sample (Dl) from a geometric distribution with 7t=0.2. The second sample (02) was 

generated from a mixture of two Geometric distributions defined as (0.3G(7t=0.9)+ 
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0.7G(7t=0.2)) . In each case a sample of size 250 was used. We also fined a geometric 

distribution (GP) to D I and D2 using the method of moments . Sample statistics and values 

of the key parameters in each case are summarized in Table 3.5. The corresponding 

probabilities estimated by each method forD land D2 are shown in Figures 3.5 and 3.6. 

I. The WV procedure does not smooth the sample proportions (p) properly. In 

most cases, there is very little smoothing. In cases where there is some smoothing (e.g., 

Figure 3.5a, in the range x=4 to 6), the resulting estimate is rather unsatisfactory, and is 

inconsistent with the underlying population. We feel that part of this behavior is due to the 

rapid "drop off' of weight associated with the Geometric kernel, and part due to the method 

used for selecting the bandwidth h. 

2. On the other hand, since the roughness penalty tries to make the PMF uniform, 

MPLE emphasizes smoothness. 

Table 3.5. Statistics (Sample size =250 for each) and Methods for Figures 3.5 and 3.6 

Kernel Method of Bandwidth 

Figure Data Estimator Used Selection 

3.4a Dl (X= 5.11, s = 4.19) wv Geometric kernel MSE 

MPLE 

3.4b Dl HT Epanechnikov kernel LSCV 

DK Quadratic kernel LSCV 

3.4c D2 (X = 3.92, s = 4.02) wv Geometric kernel MSE 

MPLE 

3.4d D2 HT Epanechnikov kernel LSCV 

DK Quadratic kernel LSCV 

Note: x is sample mean and s is sample standard deviation 
Quadratic kernel is the discrete equivalent of the Epanechnikov kernel. 
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Figure 3.5. Plots of data, observed proportions, true underlying PMFs and PMFs 
estimated from (a) WV (h = 0.43), MPLE ((3=30.25), for the data set Dl, (b) HT (h=5), 
DK (h=6), GP (p=0.1956), for the data set Dl, (c) WV (h=0.08), MPLE ((3=28.25), for 
the data set D2, (d) HT (h=3), DK (h=2), GP (p=0.2554), for the data set D2. 
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Figure 3.6. Plot showing the effect of outliers on fitted Geometric distribution (GP), liT 
and DK estimate. Outliers at 45, 50, 75, 100 in the data set Dl. 
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Consequently, when the true PMF has a high second derivative (e.g., near the origin), 

MPLE has difficulty distinguishing between "true" curvature and observed variation. The 

resulting estimate often has a strong downward bias near the origin (Figure 3.5a). The 

MPLE is also sensitive to the value specified for Lmax• the longest spell length considered. 

As Lmax is increased, the downward bias at the origin is increased and the entire PMF is 

"flattened." 
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3. The GP fit is very good (estimated rt=0.1956) for Dl where the true distribution 

was geometric. As expected, a large bias is incurred near the origin for D2 (see Figures 

3.5b and 3.5d), where the estimated rt was 0.2554. 

4. Figures 3.5b and 3.5d indicate that HT and DK perform comparably and are the 

best among the estimators considered. As both these estimators are quite similar in 

construction this is expected. The estimated PMF is smooth, and it also exhibits the least 

pointwise bias. The HT and DK estimators automatically adapts to a large range of density 

variation, providing optimal smoothness in finite samples. Unlike parametric fits, the Iff 

and DK estimates are robust to certain kinds of outliers, as shown in Figure 3.6. Outliers 

were added at 45, 50, 75, and 100. These could be generated if the data were contaminated 

by a few large values (e.g. , from a Geometric distribution with rt=O.Ol). The fitted 

Geometric distribution, i.e. , (GP) is very much affected by the outliers and deviates from 

the true distribution, especially near the mode (i.e., 1). The HT and DK estimators still 

follow the data close] y. 

It is apparent from the figures that the HT and DK estimators perform the best. 

Rajagopalan and Lall [in press] found in their Monte Carlo comparisons of Iff and DK that 

they gave comparable results with better approximation of the tail and the modes by DK. 

DK was also computationally faster, and had a lower variance of optimal bandwidth 

selection that HT. Consequently it is recommended. 

Summary and Conclusions 

Issues in estimating parameters for continuous and discrete kernel density 

estimators were discussed and recommended procedures were developed through 

examples. 

In summary, we recommend using the SJL procedure for estimating the PDF of 

wet day precipitation amount. This entails the use of a Epanechnikov (or quadratic kernel) 



with log transformed precipitation data with bandwidth chosen in log space using the 

Sheather and Jones [1991] recursive procedure. The resulting density estimate is then 

transformed to real space. Generally this may be the method of choice for data sets that 

exhibit a high density near the origin. For discrete data such as spell lengths, we 

83 

recommend the DK procedure with discrete quadratic kernels in the interior and boundary 

regions and bandwidth chosen by least squared cross validation . 

We found that where the parametric procedure was appropriate, the nonparametric 

procedure worked nearly as well . Where the parametric model was inappropriate, the 

non parametric kernel density estimators were superior. Given that the non parametric 

procedures are robust and reproduce different parametric alternatives without prior 

ass umptions, they offer a very general procedure for uniform application across a variety of 

sites and processes. 

Problems with kernel density estimates are high relative bias and variance in the tail 

of the density if local adaption of the bandwidth is not used. Ability to extrapolate is limited 

to one bandwidth of the maximum observed value. Where a local bandwidth is used, the 

local bandwidth at the extreme point of observation is usually quite large and this problem 

is ameliorated. 

The non parametric modeling framework provides a promising alternative to the 

parametric approach. The assumption free, data adapti veness and robust nature of the 

nonparametric estimators makes the model attractive in a broad class of situations. 
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CHAPTER IV 

A KERNEL ESTIMATOR FOR DISCRETE DISTRIBUTIONS! 

Abstract 

We present a discrete kernel estimator appropriate for estimating probability mass 

functions (PMFs) for integer data. Discrete kernel functions analogous to the Beta 

functions used as kernels in the continuous case are derived for the interior and for the 

boundary of the domain. An integer bandwidth is considered. Cross validation is used for 

bandwidth selection. The estimator was motivated by the need to characterize processes 

(e.g., mixtures of Geometric distributions) with long tailed distributions with high mass 

near the origin, and integer arguments of the random variable. Monte Carlo comparisons 

with the Hall and Titterington [1989] (HT) es timator are offered. An application for 

estimating the PMFs of wet and dry spell lengths for a nonparametric renewal model of 

daily rainfall is also presented. Other possible methods for obtaining discrete weight 

sequences are also presented. 

Background 

The problem of non parametric smoothing of the empirical discrete PMF (or 

multinomial cell proportions) has been of interest in recent years. However, it has not been 

studied as intensively as nonparametric density estimation, its counterpart in the continuous 

case. Hall and Titterington [1989] mention that smoothing can be beneficial when there are 

many cells with small or zero frequencies, i.e. , the data are sparse. Here we consider that 

we have a sample XJ .... ,Xn for n multinomial trials with possible outcomes 1,2, .. ,kmax E 

V with probabilities of occurrence Pl ··· ·Pkmax that are unknown. Estimates Pi of the 

l Coauthored by Rajagopalan Balaji and Upmanu Lall. 
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probabilities Pi may be obtained as sample relative frequencies (Pi = n/n) or cell 

proportions, or by smoothing the Pi· In the latter case we presume that Vis an ordered set 

and that "distance" between its members is definable through a standard Lebesgue measure. 

We consider cases where the set V may be bounded or unbounded, and focus on 

developing an appropriate smoother for the sample relative frequencies that properly deals 

with the discrete nature of the process. 

Our practical interest lay in developing a discrete, nonparametric PMF for data on 

the length (in days) of dry or wet spells of rainfall. The shortest spell considered is 1 day. 

In general, the longest possible spell is not known a priori. Data suggests long right-tailed 

distributions for dry spell length that may correspond to a mixture of Geometric PMFs [see 

Rajagopalan eta!., 1993]. 

The concept of smoothing in the context of multinomial cell probability estimation 

was introduced by Good [1965 ; 1967]. TI1is was later studied and improved by Fienberg 

and Holland [1973], Stone [1974], Titterington [1980], Titterington [1976], Aitchison and 

Aitken [1976], and Titterington and Bowman [1985], among others. Bishop eta!. [1975] 

show that these estimators are often better than the cell proportion estimate under squared 

error loss. Hall and Titterington [1989] argue that Pi may not be consistent in data sparse 

situations. The smoothing estimators developed by Wang and Van Ryzin [1981], Simonoff 

[1983], and Hall and Titterington [1989] formed a starting point for our work. 

The general form of smoothing estimators in this context is given by 

j=~ 

Pi L K(i ,j,h) Pj i,j E I, the set of integers (4.1) 
j= -~ 

K(i,j,h) is a weight function or kernel, Pj is the relative frequency of cellj, and his called 

the bandwidth or window width . 
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Wang and Van Ryzin [1981] developed a class of estimators of the form (4.1), 

using a Geometric kernel (WV) (K(i,j,h) = 0.5h(l-h)li-jl if li-jl~1; K(i,j,h) = (1-h) if i=j 

and hE [0,1]). The "drop off' of weights associated with the Geometric kernel is rapid. 

Wang and Van Ryzin [1981] estimate h under an approximate (MSE) criterion formed by 

truncating the Geometric kernel beyond two cells. As a result, very little smoothing is 

obtained in most cases and not much may be gained for sparse data. 

By imposing a smoothness constraint on the cell probabilities, Simonoff [1983] 

obtained relative consistency results for an estimator based on a maximum penalized 

likelihood criterion (MPLE). In this approach, the estimates Pi are solved by maximizing a 

penalized likelihood function defmed as: 

ku ka 

L L ni log(pi) - p_L (log(p/pi+1))2 
i=l i=l 

such that 

(4.2) 
i=l 

P ~ 0, is a smoothing parameter, and V: [1,kul 

The estimates from MPLE depend significantly on the extent of estimation required 

(i.e., ku) beyond the maximum observed cell (i.e., kmaxl· This is of concern, because we 

would prefer a natural extension of the tail of the PMF by the method used, rather than a 

prior specification of its extent. 

The estimator developed by Hall and Titterington [1989] (hereafter referred to as 

HT) is given as: 
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j=~ 

Pi L W(i,j,h) Pj (4.3) 
j=-~ 

where W(i,j,h) 
j=~ 

K((i-j)/h) h > I and s(h) = L K(j/h) . K(.) is any suitable 
s(h) 

j=-~ 

continuous univariate kernel function, with compact support satisfying the conditions of 

positivity, integration to unity, symmetry, and finite variance, which are: 

(a) K(u) > 0; (b) JK(u)du =I ; (c) fuK(u)du = 0; (d) fu2K(u)du= k2 # 0 (4.4) 

where (u = (i-j)/h), and s(h) is a multiplicative factor required to normalize the continuous 

variable kernel function for use with discrete data, such that the desired conditions on W(.) 

j=~ j =~ 

viz., L W(i,j,h) = 1 and L j W(i,j,h) = 0 are satisfied. Hall and Titterington [19R9] 
j= -~ j= -~ 

proposed a cross-validatory procedure for selecting h. This was later studied by Dong and 

Sirnonoff [1994) who extended this estimator to boundary kernels. 

It is well known that kernel estimators suffer from increased bias in the boundary 

region (i.e., I ~ i ~ h+ 1 in our situation of interest). For the estimates of cells in the 

boundary there is a lack of full complement of observations on either side of the cell of 

estimate. As a result, the desired conditions on W(i,j,h) mentioned above will not be 

preserved. To correct this, special boundary kernels that satisfy the required conditions are 

used [see Miiller, 1991]. Muller [1991] formally developed special boundary kernels in the 

continuous case. Dong and Simon off [1994) developed special boundary kernels in the 

continuous case. Dong and Simonoff [1994) developed boundary kernels (condition 4.4 

[a] is relaxed) that could be used in the HT estimator for the discrete case. We refer to the 

HTestimator with the boundary modification of Dong and Sirnonoff [1984) as HT/DS. 
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We performed comparisons of these three estimators (viz., WV, MPLE, and 

HT/DS) on data generated from long tailed distributions [see Rajagopalan eta!., 1993) and 

found HT/DS to be the best. Hence, we compare the relative performance of the estimator 

we develop later in this paper with HT/DS. 

For finite samples, some disquieting aspects of the HT estimator become apparent. 

The non integer bandwidth leads to an effective kernel that also varies with h in a manner 

quite different from that prescribed by (4.4). The effective integer support of W(i,j,h) is 

[(i-h *),(i+h *)],where h* is the closest integer less than or equal to h. HT/DS kernels are 

defined as quadratics or other polynomials over [i-h ,i+h). 

Alternatively, it is possible to develop a kernel that recognizes the data to be in 

integer space, has an integer bandwidth, and satisfies all the required conditions in the 

integer space. This also obviates the need for normalization of the kernel weights as done in 

HT/DS . We explored this line of thought and sought a direct, discrete analog of the 

continuous kernel density estimator. 

The estimator is first presented. Bandwidth estimation is described next. Monte 

Carlo comparisons with HT/DS are then presented. Comparisons with real data sets 

follow. Discussion of the new estimator and other possible discrete estimators conclude the 

chapter. 

The Discrete Kernel Estimator (DKE) 

We defme our estimator Pi for cell i through a weighted linear combination of the 

sample relative frequencies, Pi· as: 

kmu: 

Pi = L K(tj) Pj 
j=l 

(4.5) 
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where i,j and hare positive integers, tj = (i-j)/h, K(t) is a kernel function, and V: [1,= ]. In 

the continuous case, Epanechnikov [1969 J showed that the MSE optimal kernel of second 

order is the quadratic kernel (QK), also known as the Epanechnikov kernel. The general 

form of the QKis: 

K(u) = au2 + b for lui ~I (4.6) 

In the continuous case, a=-0.75, b = 0.75. Scott [1992, p. 140, Equation 6.25] points out 

that this corresponds to a Beta density function, defined fortE [-1, 1]. Other members of 

this class can be used if additional smoothness is desired. 

Here, we chose a discrete quadratic (DQ) kernel of the form K(tj) = atp + b, where 

tj = (i-j)/h. The main focus then is to specify the constants a and b for the interior (i > h+ 1) 

and the boundary region (1 ~ i ~ h+ 1). The constants a and bare solved to satisfy : (A) the 

kernel function goes to zero for li-jl <!h, i.e. , K(tj) = 0 for ltjl<!l, (B) sum of the weights is 

j=i+h .. 

unity, i.e ., I, K(~) = 1 and (C) the first moment of the kernel function is zero, i.e., 
j=i-b h 

j=i+h .. 

. I, K(~)tj = 0. Note that the above conditions are the discrete versions of the conditions 
J=l·h 

are the discrete versions of the conditions given in Equation (4.3) for continuous variable 

kernels. One could choose higher order Beta kernels and derive results similar to these that 

follow for DQ. 

For the interior region (i > h+ 1) using conditions (A) and (B) gives Equations 

(4.7) and (4.8) as: 



j=i+h 

I (at}+ b) 
j =i-b 

1, where tj = (i-j)/h 
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(4.7) 

(4.8) 

Condition (C) is satisfied if a=-b. The coefficients a and b can now be expressed in terms 

of the bandwidth h as: 

For the boundary region (l<i$h+l) condition A is modified as: 

K(t) = 0 fort$ -1 and t<!q where q = (i-1)/h. 

Applying conditions (B) and (C), we get Equations (4.11) and (4.12) as : 

j=i+b 

I (at}+ b) 
j=l 

j=i+h 

I tj(at}+b) 
j=l 

Solving for a and b we get: 

0 

b = [J..Jl.C...]-l-
6h2 (h+i) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 
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where 

C = h(h+1)(2h+1) + (i-2)(i-1)(2i-3); D -h(h+l) + (i-2)(i-l); E = -(h(h+l))2 + ((i-

2)(i-1))2 

From Equation (4. 10) it can be seen that at the boundary (i.e. , i = 1) the weight associated 

with the kernel is zero. This is not desirable because, for longtailed distributions defined on 

the interval [1.~ ), most of the mass is concentrated right at i=l. Clearly, using the 

boundary modification in Equation (4.13) for estimation of PMF at the boundary (i.e., i=1) 

will introduce a large bias in the estimate. Therefore, we need a further modification for 

estimation at i=l. By not enforcing the K(t) = 0 at i = 1, we modify (A) to be: 

K(t) = 0 for rs -I (4.14) 

while Equation (4.11) and (4.12) remain the same. Solving Equations 4.14, 4.11 and 4.12 

for a and b we get: 

(4.15) 

where 

C = h(h-1)(2h-1); D = -h(h-1); E = -(h(h-1))2 

From Equations (4.9), (4.13) and (4.15), note that the kernels and hence the 

estimator Pi are expressed strictly in terms of the bandwidth h. An optimal choice of h then 

completes the definition of the estimator. 

Three criteria often used for bandwidth estimation are (1) direct minimization of 

average mean square error (MSE), (2) maximum likelihood cross validation (MLCV), and 
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(3) least squares cross validation (LSCV). These could be optimized over a discrete set of h 

values. 

We tested all the three methods and found LSCV to be the best. Hall and 

Tinerington [1989] and Dong and Simonoff [1994] also argue in favor of LSCV. The 

bandwidth is selected by minimizing the LSCV function given as: 

krnu kn1ax 

LSCV(h) = L cPi )2 - ~ L P-i ni (4. 16) 
i=l i=l 

where P-i is the estimate of the ith cell, by dropping the ith cell and n. In a related context, 

Hall and Titterington [1989] also show that cross validation automatically adapts the 

estimator to an extreme range of sparseness types. If the multinomial is only slightly 

sparse, cross validation will produce an estimator which is virtually the same as the cell

proportion estimator. As sparseness increases , cross validation will automatically supply 

more and more smoothing, to a degree which is asymptotically optimal. 

An example application comparing DKE (with DQ kernel) to HT/DS with QK-

based kernels for fo ur data sets is shown in Figures 4.1 , 4.2, 4.3, and 4.4. The data in 

Figure 4.la were sampled from a Geometric distribution (Gl) defined as G(n=0.2). The 

data in Figure 4.1 b was sampled from a mixture of two Geometric distributions (G2) 

defined as (0.3G(n=0.9) + 0.7G(n=0.2)). The sample sizes for Gl and G2 are 250. 

Figure 4.lc shows the PMF estimates estimated for the mines data of sample size 55, 

analysed by Dong and Simonoff [1994]. Figure 4.ld shows the estimated PMF from both 

estimators of dry spell length data, for season 3 (i.e., Jul- Sep) for the Woodruff station 

in Utah. The sample size in this case was 539. All four figures indicate that both DKE and 

HT/DS perform comparably. Because both the estimators are similar, this is expected . 

Through Monte Carlo simulations we investigate the behavior of these estimates fo r 
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selected situations. The behavior of the weight sequence from both the estimators is also 

probed. The results are discussed in the following section. 

Monte Carlo Comparisons 

We present results from Monte Carlo simulations, comparing our estimator with the 

HT/DS estimator using QK. Data sets were generated from situations that may be of 

interest in our particular context (e.g. , Geometric distribution, with a considerable 

boundary region). We generated 500 realizations from the two populations G 1 and G2. 

Sample sizes chosen were n =50, 100, 200, 300, 500. 

The statistical measures computed to assess the relative performance of DKE and 

HT/DS estimators are: 

j=nsim i =ku 

I. Average sum of squared errors (ASSE) ( L ( L cPij - Pi)2 ) I nsim) 
j =I i= I 

across all realizations for each sample size. 

i=ko 

2. Sum of squared error (SSEj) ( L cPij - Pi)2) for each realization j = 
i= 1 

l, . . ,nsim 

j = nsim i = ku 

3. Average sum of absolute error (ASAE) ( L ( L abscPij- Pi)) I nsim) 
j =I i= I 

across all realizations for each sample size. 

j = nsim 

4. Cell root mean square error (CRMSE) { L CcPij- Pi)2) I nsim )0.5 across 
j =I 

all realizations for each sample size and for each cell i = I , .. ,ku 

5. Fractional cell root mean square error: FCRMSEj = CRMSEj/pi 

j = nsim 

6. Average cell bias (CBIASi) L CcPij - Pi) I nsim) across all realizations for 
j =I 

each sample size and for each each cell i = l , .. ,ku 

7. Fractional cell bias: FCBIASi = CBIAS/Pi 



8. Coefficient of variation of bandwidth Cv = s/h for each sample size, where s 

and hare the standard deviation and mean of the bandwidths obtained for all the nsim 

realizations. 
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Note that we chose ku to be 30 in this case, and pj's are the true PMFs obtained 

from the known underlying distributions from which the samples were generated, nsim is 

the number of simulations, in our case 500. 

Table 4.1 shows the ASSE and ASAE for the two estimators for the two 

populations 01 and 02 considered. It can be observed from Table 4.1 and Figures 4.2a 

and 4.2b that the performance of the two estimators over these two measures is quite close. 

Figures 4.2a and 4.2b indicate that the ASSE appears to decrease with n at rates -1.03 and 

-0.86 for HT/DS and -0.85 and -0.9 for DKE, for 01 and 02, respectively. These rates 

are very similar, and are close to the rate n-1 as anticipated in Hall and Titterington's [1989] 

Theorem 2.1. However, the SSE for HT/DS has a larger spread that DKE as can be seen 

from Figures 4.3a and 4.3b for 01 and 02, respectively, for a sample size of 50. The 

results were generally similar for other sample sizes. 

As mentioned earlier we are interested in the behavior of these estimators at the 

boundary (left boundary) and in the tails. To assess this, CRMSEj and FCRMSEj for 

different sample sizes n were estimated. As an illustration we present the estimates of 

FCRMSEj for sample sizes 50 and 500 for 01 in Figures 4.4a and 4.4b, respectively. 

Figures 4.5a and 4.5b are corresponding figures for 02. These figures suggest that DKE 

performs better than HT/DS in the tail region for all sample sizes, more so for smaller 

sample sizes. The resulLs for other sample sizes were intermediate. 

From Figures 4.6a and 4.6b we see that part of the poorer performance of HT/DS 

in the tails is due to higher bias. 

The MSE expression of the estimate Pi as given by Wang and Van Ryzin [1981] is 
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Table 4.1. Comparison of ASSE and ASAE 

DKE PAR HT/DS DKE PAR HT/DS 

Samples generated from G I (Geometric C=0.2)) 

n =50 0.0058 0.0008 0.0084 0.2032 0.0816 0.2737 

n = 100 0.0032 0.0006 0.0038 0.1558 0.0599 0.1814 

n = 200 0.0019 0.0003 0.0019 0.1183 0.4250 0.1264 

n = 300 0.0013 0.0002 0.0012 0.1000 0.0323 0.0987 

n = 500 0.0008 0.0000 0.0008 0.0780 0.0226 0.0797 

Samples generated from G2 (0.7* Geometric (7t=0.2)+0.3* Geometric (7t=0.9)) 

n =50 0.0080 0.0081 0.2300 0.2481 

n = 100 0.0039 0.0038 0.1676 0.1638 

n = 200 0.0021 0.0022 0.1261 0.1194 

n = 300 0.0016 0.0016 0.1071 0.0978 

n = 500 0.0010 0.0011 0.0855 0.0785 

Note: 

PAR is the fitted parametric (in this case the fitted Geometric distribution) 
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Figure 4.6 FCBIASi from HT/DS and DKE, of samples of size 500 (a) generated from 
Geometric (7t=0.2), and (b) generated from 0.7*Geometric (7t=0.2)+0.3* Geometric 
(7t =0.9). 
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L ( L W(i,j,h)Pj- Pil 2 (4.17) 

i= l j = l 

where Pi is the true PMF, W(i,j,h) is the weight function, his the bandwidth, and n is the 

sample size. For the the two populations considered, viz., G1 and G2, we know the true 

PMF. Substituting this for Pi in the above equation, the optimal bandwidth can be 

determined for various sample sizes. These bandwidth values are then compared with the 

corresponding average bandwidths obtained from the simulations. These along with the 

coefficient of variance of bandwidth Cv are summarized in Table 4.2. It can be observed 

that Cv is smaller for DKE for all the sample sizes for G1 and G2. Note that DKE smooths 

the Geometric distribution data (G 1) more than HT/DS, and smooths the mixture datn (G2) 

less than HT/DS. Also the average bandwidths from DKE are close to the MSE optimal 

bandwidths. This suggests that the bandwidth from DKE is more stable than from HT/DS. 

The behavior of HT/DS in these simulations is interesting. There is a tendency to 

undersmooth relative to the optimal bandwidth. As a result the boundary bias decreases 

with n, while the tail bia~ may be high. The higher coefficient of variance of the HT/DS 

bandwidth suggests a higher degree of adaptation to sample attributes. However, this fails 

to consistently provide a lower bias on MSE than DKE. 

The need to choose a bandwidth in the boundary region that is different from the 

interior has been recognized by several researchers [e.g., Miiller, 1991]. Generally 

variation in h across the range of the data, and especially in the tails is needed. The 

selection of a "local" bandwidth considering boundary kernels and tail regions remains an 

area of research. 
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Table 4.2. Bandwidth Statistics 

Ca~WcietH Q( Va.riatiQD A~m~e Band~idth Qptirnalllandl!lidlb 

[tQW MSE Criteria 

DKE HT/DS DKE HT/DS DKE HT/DS 

Sample fiQID GJ 

n =50 0.349 0.442 6.73 5.48 7.00 8.06 

n = 100 0.305 0.401 6.13 4.97 6.00 8.06 

n = 200 0.316 0.361 4.96 4.36 5.00 7.14 

n = 300 0.290 0.314 4.51 4.21 4.00 6.25 

n = 500 0.275 0.341 4.00 3.47 4.00 5.56 

Samol!~ from Q2 

n =50 0.309 0.29 1 2.844 3.067 3.00 4 .10 

n = 100 0.210 0.220 2.280 2.931 2.00 4.03 

n = 200 0.007 0.213 2 020 2.902 2.00 4.03 

n = 300 0.000 0.212 2.000 2.912 2.00 4.03 

n = 500 0.000 0.214 2.000 2.844 2.00 4.03 
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Other Possible Estimators 

MUller [1991] shows how one can develop minimum variance kernels and kernels 

belonging to different smoothness classes for continuous variates. Extensions of these 

ideas to the discrete case are also feasible. Here we outline two such extensions. 

A discrete, minimum variance (DMV), second-order kernel can be developed as the 

solution to: 

i+b 

Minimize L w2 

j=ql 
(4.18) 

Subject to: 

wq=wi+h =0 (4.19) 

i+b 

.L,w=l 
j=q J 

(4.20) 

i+h 

L,t.w. =0 
j=q J J 

(4.21) 

where tj=Ci-j)/h, i,j,h are integers, and q=max(i-h, 1) recognizes whether we are in the 

boundary region or the interior. 

A smooth, discrete (DS~) kernel of smoothness ~ can be defined by solving the 

problem: 

i+h->t 

Minimize L (w. -w/ subject to the conditions (4.19) through (4.21) above. 
j=q J+>t J 

Solutions to the two problems defined above can be readily obtained by defining the 

associated Lagrangian problems and solving them for the weights wj that define the kernel 

sequence over the appropriate span of integers. 
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The weight sequences resulting for DMV and DSI (Jl=l) for selected values of h 

and i are compared with the DQ, and HT/DS weight sequences in Table 4.3. In the interior, 

the HT/DS, DQ, and DSI weight sequences coincide. This is to be expected since they all 

converge to the quadratic kernel. The DMV sequence degenerates to uniform weights as 

expected. An examination of the weight sequences in the boundary region shows that the 

DQ sequences stay closer to the DSI sequences than the HT/DS ones. Thus if a 

computationally fast approximation to the DSI sequences was desired in the boundary 

region, DQ would be preferred. Note that the DMV sequences in the boundary region are 

still generally closer to the DSI than the HT/DS. 

An interesting aspect of the HT/DS sequence is the adaptation of the weight 

sequence ash varies between two integers. We observe that the weight sequences at the 

intermediate h value are not strictly in between the weight sequences at the end points. 

While this may lead to a high degree of adaptability of the HT/DS procedure, it makes it 

rather difficult to assess its impact on the estimation procedure. The high coefficient of 

variation of the bandwidth selected by HT/DS may be related to the nature of the resulting 

weight sequence. 

The boundary kernels developed by Dong and Simonoff [1994] do not correspond 

to the ones presented by Miiller [1991] for the continuous case. It may be interesting to try 

the Miiller [1991] boundary kernels, possibly with a floating boundary value, directly with 

the HT procedure. 

Computational considerations have restricted our Monte Carlo investigations thus 

far to DQ and HT/DS. The relative utility of DMV and DS may be investigated 

subsequently. Except in the boundary region, our limited investigations show that 

differences between the different kernels may not be large. Consequently, kernels that are 

easier to compute are expedient. In this respect the DQ kernels are to be preferred. 



Table 4.3. Comparison of Weight Sequences 

DQ 

HT/DS 

DMV 

DSl 

Boundary 

i=l 

DQ 
HT/DS 

i = 2 

DQ 
HT/DS 

DMV 

DSl 

i = 3 

DQ 
HT/DS 

DMV 

DS1 

Notes: 

h=2 

0,.3, .4,.3,0 

0,.3,.4,.3,0 

0,.33,.33,.33,0 

0,.28, .44,.28,0 

1,0,0 

0,1,0 

0,1,0,0 

0,.63 ,.37 ,0 

0,1,0,0 

0,1,0,0 

h = 2.5 

0,.11 ,.25,.29,.25,.11,0 

0,1.7,-.7,0 

0,.62,.45,-.07,0 

0,.28,.35,.28, .08,0 

i is the point of estimate, on which the kernel is placed, h is the bandwidth. 

DQ, DMV and DS1 do not admi t non integer bandwidths. 

The HT/DS weights correspond to a quadratic kernel, and admits noninteger b. 

h=3 

0,.14,.23,.26,.23 ,.14,0 

0,.14,.23,.26,.23,.14,0 

0, .2,.2,.2,.2,.2,0 

0,.14,.23,.26,.23,.14,0 

.75,.5,-.25,0 

0,.88,.12,0 

0,.75,.5,-.25,0 

0,.5,.4 ,. 1 ,0 

0,.83,.33,-.16,0 

0,.8,.4,-.2,0 

0,.3,.4,.3,0,0 

0,.28,.32 ,.28,. 12,0 

0, .4,.3 ,.2,.1 ,0 

0,.34,.37,.23,.06,0 
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Summary and Conclusions 

The estimator presented here was motivated by practical considerations. We offer 

this work in the hope that it will stimulate interest and theoretical development. We show 

that the discrete kernel procedure advocated can give results comparable to those from the 

HT/DS procedure. Computational advantages of the DKE procedure and the similarity of 

its properties to kernel sequences based on smoothness criteria were demonstrated. The 

relative stability of the bandwidth selection procedure and the DQ weight sequence also 

recommend it as an alternative to the HT/DS method. 

We present only one special case (a quadratic kernel in the interior and in the 

boundary region). Clearly other similar higher order kernels can be derived. However, as 

is typical in the kernel smoothing literature, bandwidth selection is likely to be a more 

tenuous issue than kernel specification. The LSCV choice of h appears to perform quite 

satisfactorily for the test cases. Extensions to the multivariate case are being investigated. 
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Abstract 

CHAPTER V 

SEASONALITY OF PRECIPITATION ALONG A MERIDIAN 

IN THE WESTERN U.Sl 

Ill 

We investigate seasonality of daily precipitation along a meridian in the western 

U.S. using a non parametric technique. The occurrence of daily precipitation is treated as a 

nonhomogeneous Poisson process and the time-varying intensity function is estimated for 

every calendar day using a kernel estimator. The technique is fully data adaptive. We apply 

this technique to selected long record stations along a meridional transect spanning from 

Tuscan, Arizona to Priest River, Idaho. Differences in the seasonality of precipitation 

occurrence and magnitude are revealed as a function of latitude and topographic factors. A 

monotonic trend in the seasonality of precipitation over the length of record is also 

observed. 

Introduction 

Seasonality in hydroclimatic variables is usually related to the unequal heating of the 

earth's surface over the year, particularly as one moves to higher latitudes. Precipitation is 

an imp01tant hydrologic variable since it is a primary input into surface hydrologic models. 

The timing and duration of the "seasons" of high precipitation at a site are important since 

they indicate the form (rain or snow) of precipitation as well as the nature of the input 

"signal" for the surface hydrologic system. 

Here we were interested in dynamically visualizing how the seasonality of rainfall 

varies by latitude along a transect in the western U.S. (approx.longitude 112" W). Long 

record precipitation stations that had essentially complete records were selected from 

I coauthored by Rajagopalan Balaji and Upmanu Lall. 
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latitude 48' 17' N to latitude 32' 15' N. We were interested in daily precipitation because 

of its use for agriculture, crop management, and forest management. The attributes of 

interest considered are precipitation "magnitude" and "relative frequency of occurrence." 

Stochastic precipitation models as well as other hydrologic models often deal with 

the nonstationarity in precipitation and other climatic inputs by dividing the year into a 

number of seasons and then fitting model parameters independently for each season. The 

leading terms (one or two) of a Fourier series representation of the precipitation data are 

commonly used to identify seasonality, for time-varying parameter description, and for 

delineating seasons. 

An attractive alternative to Fourier series methods is provided in this chapter. We 

focus first on the rate of occurrence of precipitation as a function of calendar date (I to 366) 

within the year. A kernel estimator is used to estimate the "rate" of rainfall occurrence of 

precipitation by calendar day, by "smoothing" a binary (1 or 0) indicator sequence that 

represents precipitation occurrence on a given day in the historical record. This rate is 

interpretable as the time varying rate parameter of a nonhomogeneous Poisson process. 

Variation in precipitation magnitude over a 90-day moving window is also investigated. 

An interesting trend in seasonality is exhibited by the stations we analyzed. There 

appears to be a consistent shift in the seasons identified on the basis of precipitation rate. 

The calendar dates associated with the highest and the lowest precipitation rates for a given 

year appear to move forward each year of the record. 

Methodology 

Precipitation is an intermittent process. For understanding climatic variations it is 

often useful to con,ider adaptive representations that allow a smooth, continuous time 

interpretation of precipitation. The Poisson process has been used to describe rainfall 
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occurrence as a point process [Waymire and Gupta, 1981; Cox and Isham, 1980].ln the 

stationary point process, the number of events (e.g., the events are occurrence of wet days) 

n(T) occurring in a duration Tis a random variable with a Poisson distribution with mean 

p(n(T) = k) = (A.T)k e-(AT)fk! k = 0,1,2 .. (5.1) 

where A is called the rate or intensity parameter. Often, it is hard to distinguish between 

changing intensity of the process and event clustering . This situation can be addressed by 

explicitly allowing changing event intensity in the model, and consequently modeling the 

daily precipitation as a nonhomogeneous Poisson process (same as Equation (5 .1) but with 

a lime-varying rate parameter A, i.e., A('!:), 1: = 1, .. ,366) to capture the changing 

precipitation pattern over the year. Our thesis here is that this time varying rate parameter is 

a useful indicator of precipitation seasonality at a site. 

Kernel intensity estimators [see Diggle, 1985; Solow, 1991] can be used to estimate 

A('!:) from the record , through an optimal, weighted· moving average of the rate of rainfall 

occurrence over time. To form such an estimate, we need to define an appropriate weight 

function, a span over which to average and a criterion for choosing the weight function and 

span in an optimal way. Our presentation here is informal and is restricted to a description 

of the estimation process used. 

Daily precipitation data from about a dozen sites spread along Arizona, Utah, and 

Idaho were used to estimate the intensity parameter for each day of the historical record. 

Table 5.1 summarizes the site and data information. 
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Table 5.1. Data Sets Analyzed 

Elevation 

Latitude Longitude (ft. above MSL] Record Length 

Priest River, ldabo (PRR) 48 ' 21' N 116' 50' w 2380 1911-1992 

Sandpoint, ldabo [SNP] 48' 17' N 116 ' 34' w 2100 1910-1992 

Laketown, Utab [LAK] 41 ' 49' N Ill ' 19' W 5980 1948-1992 

Logan, Utab [LOG] 41' 45' N 111 ' 48' w 4790 1928-1992 

Woodruff, Utab [WOD] 41 ' 32'N 111 ' 09'W 6320 1948-1992 

Si1verlake, Utab [Sll.] 40' 36' N 111' 35' w 8740 1948-1992 

Snake Creek, Utab [SNC] 40' 33' N 111 ' 30'W 6010 1928-1992 

Heber, Utab [HEB] 40' 30' N Ill" 25' w 5630 1928-1992 

Spanish Fork, Utab [SPF] 40' 05' N 111 '36'W 4720 1932-1992 

Alton, Utab [ALT] 3T26'N 112'29'W 7040 1929-1992 

Miami, Arizona [MIA] 33' 24' N 110' 53' w 3560 1914-1992 

Tucson, Arizona [TUS] 32' 15' N 110' 57' w 2440 1901-1992 
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Estimation Procedure 

We considered the estimation of A.(-r), for each calendar day "C (1 ,2, .,366), for each 

year of record y. The average across years of the estimates of l..('t) provides a measure of 

the typical seasonality at the site. 

The kernel estimator used for A.y('t), the rate on calendar day 't, in year y is 

(5.2) 

In Equation (5.2), "C (1,2, .. ,366) is the calendar day on which the estimate is 

required; "Ci,y is the index of a calendar day on which there was rain in year y; K(.) is a 

kernel function which is taken to be a positive function that integrates to unity, is 

symmetric, and has finite variance; and hy is a bandwidth or "scale" parameter (for year y) 

of the kernel function, which controls the smoothness of A.y('t). 

The estimator in Equation (5.2) is very similar to a kernel density estimator [see 

Silverman, 1986; Scott, 1992]. The choice of a kernel function is considered secondary 

[Silverman, 1986; Scott, 1992] to the choice of the bandwidth in terms of the mean square 

error (MSE) of the resulting estimate A.y('t). Different kernels can be made equivalent in this 

sense through an appropriate choice of the bandwidth. Diggle and Marron [1988] show the 

equivalence between density and intensity (or rate) estimation and show that the same 

bandwidth is optimal in both cases under a mean square error criterion. The "plug-in" or 

recursive bandwidth estimator due to Sheather and Jones [1991] has worked the best in our 

tests for kernel density estimation [Rajagopalan et al ., 1995]. This procedure strives to 

minimize the average mean integrated square error in density estimation through a data-
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driven estimate of the pointwise bias and variance of the estimate. We used this procedure 

to select the bandwidth hy. For this study we used the Epanechnikov kernel, given as: 

lxl $ I where x = 't-'ti 
hy 

(5.3) 

Periodic boundaries are used for the estimation process by (I) recognizing that 

dates from the end of one year can be within a bandwidth hy of dates in the beginning of 

the next year, and (2) using data from year (y-1) or (y+ I) for estimates on days within 

such a bandwidth in year y. 

The intensity parameter of the nonhomogeneous Poisson process is estimated for 

each calendar day ('t = 1, .. ,366) of each year (l, .. ,y) in the historical record using the 

estimator in Equation (5.2) . Weighted average precipitation for each calendar day of each 

year in the historical record is also estimated using the Epanechnikov weight function with 

a bandwidth of 90 days. 

Results 

The average rate across years and the average weighted precipitation for each 

calendar day, estimated as described above, are plotted for all twelve stations. The x-axis 

on all the figures is the calendar day (i.e., 1 to 366), where I corresponds to January 1 and 

366 to December 31, respectively. In all these figures the solid line denotes the average 

daily rate, and the dotted lines indicate the average weighted precipitation. The following 

observations are offered from the fig ures. 

1. The average daily rate and the average weighted precipitation fluctuate in about 

the same way at all the stations (see Figures 5.la through 5.1L). Thus, the use of the rate 

to describe seasonality seems to be a useful notion. 
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2. Stations in the north of the meridional transect (namely, SNP, PRR, LAK, 

LOG, SIL,SNC, HEB, and SPF) have similar shape of the rate and precipitation curves as 

can be seen from Figures 5.la, 5.1b, 5.1c, 5.ld, 5.1f, 5.1g, 5.1h, and 5.1i. These 

stations seem to have higher than average values of the rate function around the first 70 to 

I 00 days and the last 70 to 100 days of the year, with the exact number of days varying 

from station to station. A similar trend is seen in the precipitation. 

3. The curves of rate and precipitation are similar for stations near the southern end 

of the meridional transect (namely, ALT, MIA, and TUS) as seen from Figures 5.lj, 5.1k, 

and 5.11. These stations appear to have high rates during the middle 100 days of the year 

and increased rates during the first and last 30 to 60 days of the year. This is prominent at 

ALT, and is subdued in MIA and TUS. The "wet" seasons in the north appear to 

correspond to "dry" seasons in the south and vice versa. This observation corresponds to 

the largely zonal flow driven winter/spring precipitation in the north, as opposed to the 

largely convective summer precipitation in the south [Ropelewski and Halpert, 1986, 

1987]. 

4. Station WOD exhibits an interesting pattern (see Figure 5.1e). The rate appears 

to be high during day 70 to 130 of the year (i.e., in spring) and is low the rest of the time. 

WOD lies in a rain shadow region with respect to the large-scale atmospheric flow and 

hence gets very little precipitation during the general wet period and gets all its precipitation 

during the spring time due to local orographic/convective effects . There are two periods 

with higher than average daily precipitation at this station. One that corresponds to the high 

rate (day 70 through 130) and another during day 190 to 290. Apparently this station can 

receive high convective rainfall in the summer/fall even though the number of rainy days is 

low then. 
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(a) 
(b) 

! : 

(f) 

Figure 5.1. Average daily rate (solid line) and average weighted precipitation (dotted line) 
for each calendar day, at (a) Priest River, ID, (b) Sandpoint, ID, (c) Laketown, UT, (d) 
Logan, UT, (e) Woodruff, UT, (f) Silverlake, UT, (g) Snake Creek, UT, (h) Heber, UT, 
(i) Spanish Fork, UT, U) Alton, UT, (k) Miami, AZ, and (L) Tucson, AZ. 
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Seasonality Trends Over This Century 

Schneider [1995] reports that D. J. Thomson found significant changes in the 

timing of seasons since around 1940 in the northern hemisphere by analyzing the 1651-

1991 central England temperature record. The seasonality of temperature in the northern 

hemisphere is determined by radiative heating which peaks on June 22, and transport of 

heat from other parts of the globe. The peak temperature occurs later in the year as one 

moves to higher latitudes in the Northern hemisphere reflecting the delay in transport of 

heat. Thomson's thesis is that in an atmosphere enriched by carbon dioxide, heating and 

transport of heat are more efficient, and the advance in the seasons in the northern 

hemisphere is evidence of global warming. 
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Consequently, it was of interest to examine changes in the seasonality of 

precipitation along our meridional transect, as reflected by the estimated rate and average 

weighted precipitation amounts. We estimate the average rate for the periods before and 

after 1950 (a time approximately in the middle of the data sets) at four stations with long 

records, which are PRP, SAN, MIA, and TUS, and plot them in Figures 5.2a, 5.2b, 5.2c, 

and 5.2d, respectively. In these four figures the thick line is the average rate from the entire 

historical record, the dotted line is the average rate from the historical record before 1950 

and the dashed line is the average rate from the historical record after 1950. The average 

rate curves for the periods before and after 1950 are shifted from the average rate curve 

estimated from the entire historical record. It can be seen that the average rate after 1950 is 

shifted to the left (i.e., the peaks and valleys are shifted left) relative to the average rate 

before 1950. Similar observations can be seen from the above analysis on the average 

weighted precipitation amounts, in Figures 5.3a, 5.3b, 5.3c, and 5.3d at the four stations 

PRN, SAN, MIA, and TUS, respectively. 
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Figure 5.2. Average daily rate from the entire historical record (solid line), from the 
historical record before 1950 (dotted line) and from the historical record after 1950 (dashed 
line), at (a) Priest River, ID, (b) Sandpoint, ID, (c) Miami, AZ, and (d) Tucson, AZ. 
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Figure 5.3. Average weighted precipitation from the entire historical record (solid line), 
from the historical record before 1950 (dotted line) and from the historical record after 1950 
(dashed line) , at (a) Priest River, ID, {b) Sandpoint, ID, (c) Miami, AZ, and (d) Tucson, 
AZ. 
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On observing these patterns in seasonality, we decided to analyze the records to see 

how this shift was occurring over time, i.e., is it a sudden or continuous trend. The 

calendar day in each year on which the estimated rate was maximum and the date on which 

it was a minimum were selected. The maximum (minimum) rate at PRRfTIJS occur near 

the end (or beginning) of the calendar year. Thus a change in seasonality could move this 

date across calendar year boundaries. It is easier to analyze the transition in the date of the 

maximum rate at PRR and the minimum rate at TUS if we change the year boundaries away 

from these dates. Consequently, the date associated with maximum rate at PRR and the 

minimum rate at TUS is computed on a calendar year that runs from July 1 to June 30, 

rather than Jan. 1 to December 31. The dates for the minimum rate at PRR and the 

maximum rate at TUS are computed using the standard calendar. 

These dates are plotted for two stations, PRR and TUS (the northern and the 

southern extremes of our data set), in Figures 5.4a and 5.4b for maximum rate and 

Figures 5.5a and 5.5b for minimum rates, respectively. The line in these figures is a 

non parametric smooth fitted by LOWESS [Cleveland, 1979]. One can see that the date for 

both the maximum and minimum rates has a decreasing trend with year. The 

nonparametric Mann-Kendall test [Gilbert, 1987) for monotonic trend showed that these 

trends were significant (p-values in all cases were ofthe order of e-10). Robust estimates 

of the Sen slopes [see Gilbert, 1987] range from -0.33 to -1 days per year. We performed 

the above analysis with the average weighted precipitation and a similar behavior was 

observed. Results are not presented for brevity. It is rather curious that the march of 

seasons as measured by the precipitation rate and also the average weighted precipitation is 

advancing at these sites at roughly a constant rate over the whole record. 
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Figure 5.4. Calendar date of maximum estimated average daily rate in each year (dots) , 
along with a LOWESS smooth (thick line), at (a) Priest River, ID, and (b) Tucson, AZ. 
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Figure 5.5. Calendar date of minimum estimated average daily rate in each year (dots), 
along with a LOWESS smooth (thick line), at (a) Priest River, ID, and (b) Tucson, AZ. 
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Closure 

The nonparametric methods presented here were shown to be useful for identifying 

seasonal variations in precipitation occurrence as a function of latitude and also for 

variations in seasonality across years. For the data sets we analyzed, remarkable 

differences were seen in the timing and duration of the precipitation seasons along the 

meridional transect selected west of the Rockies. An interesting trend in the seasonality 

across the sites was also identified. If this trend is related to global warming, it has 

important implications for the form of precipitation in these areas, and also for crop water 

requirements in the growing season. Further investigation of such trends and their 

relationslllp to atmospheric circulation is warranted. 
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CHAPTER VI 

LOW FREQUENCY VARIABILITY IN WESTERN U.S. PRECIPITATION! 

Abstract 

Low frequency (interannual or longer period) climatic variability is of interest 

because of its significance for the understanding and prediction of protracted climatic 

anomalies. Since precipitation is one of the key variables driving various hydrologic 

processes, it is useful to examine precipitation records to better understand long term 

climate dynamics. Here we use multi-taper spectral analysis (MTM) to analyze the monthly 

precipitation time series (both occurrence and amount) at a few stations along a meridional 

transect from Tucson, Arizona to Sandpoint, Idaho. We also examine spectral coherence 

berween monthly precipitation and widely used atmospheric indices like Central Northen 

Pacific (CNP) and Southern Oscillation Index (SOl). This analysis reveals strong "signals" 

in 3-7-year frequency bands and 2-year frequency bands, which seem to be consistent 

across time series. These interannual signals are consistent with those related to El Niiio 

Southern Oscillation (ENSO) and quasi-biennial variability identified by others. 

Introduction 

The search for hidden order is one of science's aspirations. The identification and 

explanation of recurrent climatic patterns can have significant implications for long-term 

climatic forecasts. Though the variation in climate from year to year may seem random, 

careful examinations of historical data can sometimes reveal a remarkably coherent global 

pattern of oceanic and atmospheric anomalies that reappear every few years in 

approximately the same sequence and form. There is growing evidence to this effect and 

also to the fact that global and regional climate variability is well organized on interannual 

I Coauthored by Rajagopalan Balaji and Up manu La!!. 
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and interdecadal time scales [Mann and Park, 1993; in press]. Two modes of low 

frequency variability (at the interannual time scales) are the EI Nino/Southern Oscillation 

(ENSO) and the Quasi-Biennial OsciUation (QBO) [Ropelewski and Halpert, 1986; 

Burroughs, 1992; Peixoto and Oort, 1992; Rasmusson and Wallace, 1983]. ENSO-related 

events can have major impacts on U.S. atmospheric weather patterns, which in turn 

modulate the surface climate (i.e., wind, temperature, and precipitation) and consequently 

the streamflow [Kahya and Dracup , 1993; in press; Cayan and Peterson, 1989; Cayan and 

Webb, 1992]. 

Recognition of low frequency variability leads to changes in the interpretation and 

utili ty of hydro-climatic records. The impact of climate variability on the hydrologic cycle is 

also important from the point of view of understanding the underlying dynamics of the 

system. The iden tification of coherent, low frequency patterns may also be relevant to 

interpretation of long-range persistence or the Hurst effect. 

From the recent works of Klein and Bloom [1987] , Kiladis and Diaz [1989], Cayan 

and Peterson [1989], Leathers et al. [1991 ], and Lins [1993] , among numerous others, it is 

clear that atmospheric oceanic conditions in the Pacific basin exert considerable influence 

on the low frequency patterns of North American climatic and hydrologic variability. 

In this study we focus on connections between two atmospheric indices and 

variability in precipitation along a meridional transect in the western U.S. Past studies 

include simply examining the historical records for subtle changes in climatic patterns 

[Rasmusson and Wallace, 1983; Rasmusson and Carpenter, 1983], using correlation type 

of analysis to find strong statistical relationship between atmospheric indices versus 

precipitation, temperature, and streamflow [e.g., Bradley et al., 1987; Yarnal and Diaz, 

1986; Cayan and Peterson, 1989], and a harmonic analysis to examine the climate 
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anomalies [Ropelewski and Halpert, 1986, 1987, 1989; Piechota and Dracup, in press], on 

a case-by-case basis. 

In this chapter we use the nonparametric multi-taper method (MTM) of spectral 

analysis due to Thomson [1982] on the time series of monthly precipitation and monthly 

rates (defined as number of wet days in the month divided by the number of days in the 

month). The monthly rate is used as a proxy for the occurrence process. A significance 

testing of peaks is done as part of the MTM procedure. 

In what follows, a brief description of the data sets is first provided. The MTM 

procedure of spectral analysis is next outlined. Results from the analysis are then 

summarized and discussed. 

Data Sets 

We chose seven stations at approximately 112-116"W longitude going from 

Arizona (AZ) to Idaho (ID). In order to look for connections in precipitation with large

scale atmospheric fluctuation (ENSO, QBO), we chose two atmospheric indices, namely, 

the Southern Oscillation Index (SOl) and Central North Pacific index (CNP), which have 

been shown as good indicators for western U.S. atmospheric variability [Cayan and 

Peterson, 1989]. The hydrologic impact of variability in atmospheric circulation is strong in 

this arid region. The station and data information (latitude, longitude, elevation, and source 

of data) are given in Table 6.1. To keep the length of the record common across the various 

data sets, we chose a common period of 1932-1992, during which all the data sets were 

available. 

From the daily precipitation data, total monthly precipitation and the monthly rate 

(i.e., number of wet days in the month divided by number of days in the month) were first 

calculated for each station. 
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The SOI data are a time series of monthly mean difference in sea level pressure 

(SLP) at Tahiti (approximately lSO' W, IS'S) and Darwin (approximately 130'E, 13' S). 

ENSO is an identified family of atmospheric and oceanic variations. ENSO is a warm event 

in the tropical Pacific Ocean and is considered a significant perturbation of general 

atmospheric circulation. The ENSO has typically a life cycle of about 22 months and 

recurrence interval of about 3-8 years. When SOI is a low negative value, a strong El Nifio 

event is in progress , the atmospheric pressure in the eastern Pacific decreases, and the trade 

winds usually weaken. Then the warm water pool extends eastward, piling up off the coast 

of Peru and southern Ecuador. 

Table 6.1. Data Sets Analyzed 

Elevation 
Latitude Longitude (ft. above MSL) 

Priest River , Idaho [PRR] 48' 21'N 116' SO'W 2380 

Sandpoint, Idaho [SNP] 48' 17' N 116' 34'W 2100 

Logan, Utah [LOG] 41' 45' N Ill ' 48' W 4790 

Snake Creek, Utah [SNC) 40' 33' N Ill ' 30' W 6010 

Alton, Utah [ALT) 37' 26' N 112' 29'W 7040 

Miami, Arizona [MIM) 33 ' 24' N 110' 53' w 3560 

Tucson, Arizona [TUS] 32' 15' N 110' 57'W 2440 

South Oscillation Index [SOl) SLP(Tahiti) - SLP(Darwin) 

Central Northern Pacific [ CN] average SLP(l70E-I50W, 35N-55N) 

Note: 
SLP ; sea level pressure 
All the data except SOl and CNP were obtained from Earth Info, CD-ROM 
SOl and CNP data were obtained from Dr. Cayan. 
All the data sets were of the same length, i.e .. 1932-1992. 
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The CNP index [Cayan and Peterson, 1989) is constructed by averagiog the sea 

level pressure (SLP) over the region 35·N- ss ·N and 170.E- 1so·w. This index is similar 

to the Pacific North America (PNA) index and is available for a longer period than PNA. 

The CNP index has been shown to be more strongly tied to the precipitation in the north

west than SOl [Cayan and Webb, 1992). The SOl and CNP data were obtained from Dr. 

D.R. Cay an at the Scripps Institution of Oceanography, San Diego. 

Multi-taper Method of Spectral Analysis (MTM) 

We performed spectral analysis using the multi-taper method on each of the time 

series given in Table 6.1 and identified significant frequency peaks. Next, we estimated the 

spectral coherence between the precipitation series and the atmospheric indices (SOl and 

CNP) to identify the significant coherent frequencies. Lastly, we bandpassed the time 

series at a few significant frequencies and examine the bandpassed time series for 

variability in the amplitudes. 

The description of the multi-taper method of spectral analysis is abstracted from Lall 

and Mann [1994]. Thomson [1982] provides the following motivation for the MTM 

algorithm. He points out that (1) the classical periodogram is an inconsistent estimator of 

the spectrum, (2) without a taper window, it may be too biased to be useful, (3) usual 

tapers can reduce variance efficiency, (4) smoothing the periodogram is unsatisfactory for 

spectra with large range and line and broadband components, since the true spectrum is not 

smooth, and (5) since the periodogram-based spectral estimator does not directly use phase 

information, line detection is poor. He sets his sights on developing an estimator (MTM) 

that (I) is consistent, (2) has good small sample performance in terms of variance 
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efficiency, (3) is data adaptive, (4) is nonparametric, i.e., locally approximates the 

spectrum using information only from neighboring frequencies , (5) works well with 

spectra with a high dynamic range, (6) is computationally easy, and (7) has statistics that 

can be estimated, and hence significance tests for line components and coherence can be 

provided. We outline the aspects of the MTM algorithm relevant to our presentation and 

refer the reader to Thomson [ 1982] for details. 

The finite discrete Fourier transform (DFT) of the data, x(O) , .x(t), .. x(n- 1) is given 

by: 

n-1 
y(f) = 2> -;2n/ (<-(n-l)/2 ) x(t) (6.1) 

t:O 

For a finite datR set, the DFT is related to the spectrum as: 

y(f) = T sinmt(f -v) dZ(v)= 'j'c(n,J ,v)dZ(v) 
-112 smtt(f -v) -112 

(6 .2) 

where the spectrum S(f) is defined through { S(f) df = E[ldZ(f)l2]}, where E[.] denotes 

expectation. 

The periodogram estimate Sp(f) is simply ly(f)l2, whose properties will not 

correspond to those of S(f), since the term G(n,f,v) in Equation (6.2) poorly approximates 

a Dirac delta function. This term is a consequence of a rectangular window of width n 

placed on the underlying process. Given the estimate y(f), one can seek a solution for 

dZ(f0 ) in Equation (6.2) in some locale (f0 -W, f0 +W) of a frequency f0 . This is an inverse 

problem parameterized by G(n,f,v). Thomson pursues a least squares solution by 

considering a weighted eigenfunction expansion in this locale, and then an appropriate 
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combination of the resulting estimates. Consider the K term (k=O .. K-1) eigenfunction 

expansion: 

w 
llk(n,W)·Uk(n, W;f)= J G(n,f,v)U(n,W;v)dv (6.3) 

-W 

where Uk(n,W;f) is the kth eigenfunction centered at f, with window width W, and 

A.k(n ,W) is the corresponding eigen value. 

The eigen functions (called discrete prolate spheroidal wave functions) are ordered 

by decreasing eigenvalue, with the first nW eigenvalues close to I. Consequently, of all 

functions that are DFTs of some discrete sequence, these leading eigenfunctions have a 

maximum energy concentration in the interval (f0 -W, f0 +W). This implies that the tapers 

arc leakage resistant. The window width W is O<W <1/2, and is usually of order 1/N to 

retain high resolution of the resulting estimate. The idea here is that if the K term 

approximation in Equation (6.3) is "good," then a good solution to the estimation of S(f) is 

available. Thomson derives such a solution by first considering K spectral estimates 

corresponding to each of the eigenfunctions and then combining them using an optimality 

criterion derived from estimates of the mean square error of estimate of the spectrum in the 

locale of interest. The K eigen spectra Sk(f), k=O, ... K-1, are defined through: 

(6.4) 

(6.5) 
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where Ek is I fork even, and i fork odd; and vt k(n,W), the kth discrete prolate spheroidal 

sequence (DPSS) is defined such that its Fourier transform gives Uk(n,W;f-f
0

) . 

The MTM estimate is obtained as: 

K-1 

SM(f)= I.w,(J)S,(f) (6.6) 
k=O 

and wk(f) is a weight associated with the kth eigen spectrum estimate at frequency f. 

The windows Uk(.) are positive everywhere, and hence the problem of getting 

negative estimates of S(f) resulting from traditional higher order spectral windows is 

averted. The combined estimate from K orthogonal tapers also circumvents the loss of 

resolution and variance efficiency problems endemic to periodograms smoothed with a 

single taper. The orthogonality of the eigen functions leads the sk to be approximately 

uncorrelated. MTM recovers information lost by using a single taper and by ignoring the 

phase information in the periodogram. A number of strategies for choosing the weights 

wk(f) at each frequency fare indicated by Thomson. These range from a simple average, to 

weights proportional to the eigenvalues A.k, to a fully data adaptive and recursive procedure 

that internally estimates the bias and variance of the local estimate. We used the last two 

strategies in our work. The latter allows improved separation of the line and broad band 

spectral components. We refer the reader to Thomson for details of the DPSS and the wk 

and discuss the choice of W and K, the user-selected parameters ofthe model. 

The half bandwidth W is usually specified in terms of the Rayleigh frequency fR = 
(nll.tt 1, where Ll.t is the sampling frequency, as pfR, where pis usually a small integer. 

The corresponding DPSS is called a p1t taper. The corresponding spectral estimate averages 

in the frequency band f±pfR For example, a 2Jt taper, for a 100-year annual data set, 
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would average over f±0.02 cycles/year. Note that this would correspond to periods of 1.92 

to 2.08 years for a band centered at f=O.S, and 14.28 to 33.33 years for a band centered at 

f=O.OS. We see from this example that it is desirable to use a small value of p to get higher 

resolution in the low frequency range. On the other hand, a small value of p can lead to 

peak splitting in the high frequency range. Comparing estimates obtained by varying p over 

a small range is consequently desirable. AsK increases, the variance of SM decreases; 

however, the broad band bias can increase. SM is distributed as x22K, rather than as x2
2 

for the periodogram, and the increased degrees of freedom correspond to reduced variance. 

The first (2p-l) tapers are leakage resistant, so K is usually taken to be 2p-l. Asp 

increases, the number of leakage resistant tapers increases. Note that, as n increases, one 

can increase p while retaining the same spectral resolution. The estimate SM(f) is unbiased, 

but its local features (amplitude) will depend on p and K. Consequently, it is desirable to 

also look at a significance test for line components based on the ratio of variance explained 

by a peak at f0 to unexplained variance in a band centered at f0 . 

Thomson shows that an F variance ratio test with 2, and 2K-2 degrees of freedom 

can be constructed for significance of line components through the statistic F(f): 

2K-1 2 
(K-l)lf!(f)l }.; Uk(n,W;O) 

F(f) = k=O 
K-1 2 
}.; ly (f)- f!(f)U (n,W;O)I 
k=O k k 

(6 .7) 

(6.8) 
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Vautard eta!. [1992] point out that the maxima of SM(t) and F(t) do not always 

coincide, and suggest using the maxima of F(t) for peak identification. We examined SM(t) 

for the different time series analyzed to identify any clear-cut bands with high values of 

SM(t). Then we assessed the total power (integral of SM(t)) in each such band, and ranked 

the importance of each such band for each time series. Finally, we examined F(t) to 

identify any peaks that passed the 95% significance test in each frequency band where 

SM(t) is large. 

The coherence C(t) across two time series xt(l), t=O ... ,n-1 , and x/2l, t=O, ... n-1, 

is estimated as: 

I.] y~l)* (t)y ~2) (f) 
C(t) = k=O 

1/2 

(
K-1 (!)* (I) K-1 (2)* (2) ) 
I y k (t)y k COI Y. (t)y (f) 

k=O J=<l J J 

(6.9) 

where * represents a complex conjugate. 

A confidence test [see Brillinger, 1981] similar to the F variance ratio test is used to 

test for the significance of the coherence amplitude. 

Our experience with synthetic data suggested that the MTM procedures were very 

reliable and were not as sensitive to signal-to-noise ratio, or to the memory in the 

broadband noise process. MTM is generally superior for identifying phase coherent 

frequency structure. 

Results from Spectral Analysis 

The results from the spectral analysis are summarized in Table 6.2. After a 
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preliminary screening of the spectral output, it was clear that one could designate bands in 

which there was power. The bands are wider near the lower frequencies, recogni zing the 

increasi ng effect of the averaging window in frequency space. The approximate spectral 

Table 6.2. Results from Spectral Analysis 

Period 
Data Set 2-3 yr 3-5 yr 5-8 yr 8-10 yr 10-12 yr 

PRR-RM I 2(2.3,3.0) 1(3.3,4 .7) 3[11.8, 12.6] 

PRR-P Ml 1 (3 .3,3. 7,4 .0,4.6) 2[11.6] 

SNP-RM1 1[2.5] 2(3.2 ,4 .5) 3(5.6,7.3) 

SNP-P Ml 1 [2,2.2,2.5] 2(3.3,3.7) 3(6.8,7.1) 

LOG-RMI 1(2. 0) 2[3.3,3.6,4.6] 3[5.3,5.4,8.8] 

LOG-PM! 1(2.0,2.4) 2(5.2,6.6) 

SNC-RMl 2(2 0,2.8) 1(3.3,3.7) 3(6.3) 

SNC-PMI 2(2.0) 2[4.6) 3(5.5,7.0) 

ALT-R MI 1(2.0,2.3,2.6) 2(5.0) 

ALT-PMI 1(2.1,2 .6) 2(3.5) 3(5.2) 4[9.5] 

MIM-RMI 3(2.1,2.6) 2(3.0,3.4,4.2) 1(5.3 ) 

MIM-P Ml 1(2. 1,2.6) 2(3.4,4.0) 3(5.3,6.4) 4[8.3] 

TUS-RMI 1(2 .1 ) 2(3.3) 3(5.3) 4[8.8] 

TUS-PMI 1(2.1,2.6) 2(3.3,2. 9) 3(5.3) 

Legend: R refers to the Rate of occurrence and Prefers to the Precipitation. 

M I =based on MTM with 3, 21t & 2,17t tapers. Frequencies significant at both the tapers are reponed here. 

For MTM the entries for each band represent rank of spectral power for the band (#,#, ... =peaks significant 

from Flest at 95%). 

The rank is based on the integral of the spectrum over the band. The band with the most power is ranked I . 
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power in each band was ranked for each time series, and any spectral peak in that band that 

met the F variance ratio test for significance at the 0.95 level, for MTM was also recorded. 

Features that are resistant to the indicated variations in MTM parameters are reported in 

Table 6.2. The sites are arranged from north to south (downwards). 

The behavior of precipitation amount and rate was found to be very similar. 

Representative MTM spectra of precipitation amount and rate (the spectrum of precipitation 

amount and rate is plotted) for three stations PRR, LOG and TUS are presented in Figures 

6.la, b, and c, respectively. The thick line in these figures indicate the spectra of 

precipitation amount and the dotted lines of precipitation rate, respectively. 

The following observations are offered. 

l . There is significant power in these series at selected bands, particularly in 2-3-yr, 

3-5-yr and 5-8-yr frequency bands. These features seem to be consistent across sites. 

2. Coherent cyclic activity with periods around 2., 2.3, 2.5, 3.0, 3.3, 4.6, 5.0, and 

5.3 years shows up in the MTM analysis of virtually all the series. These frequencies are 

also found in the analyses of Mann et al., [1 994]; Lall and Mann [1994); Mann and Park, 

[1 993, in press]; Keppene and Ghil [1 992) ; and Dettinger and Ghil [1991) to name a few . 

3. Periods less than 3 years may relate to the QBO, which is observed in 

stratospheric winds. Those in the 3-5-yr range may be related to ENSO. 

4. Representative MTM estimates of coherence and phase of the precipitation 

amo unt (Figures 6.2a, b, and c) and rate time series (Figures 6.3a, b, and c) at these three 

stati ons with SOl and CNP are presented . The thick line in Figures 6.2 and 6.3 

corresponds to the squared coherence and the dotted line to phase, and the dashed 

horizontal line in all these figures shows the 95% confidence level of squared coherence. It 

can be seen from these figures that the coherence and phase of the precipitation amount and 

rate with SOl and CNP are quite consistent at the three stations. Table 6.3 presents the 



Table 6.3. Results from Coherence Analysis 

Data Set 2-3 yr 

Coherence wjth CNP 
2(2.3,3.0) 

1[2.2] 

1[2.62] 
2[2.2,2.3,3] 
1[2.2,2.3] 

2[2 .2,2.3,3] 
1 [2.2,2.3,2.8) 

1[2.6,2.7) 
1[2.1,2.6] 

Period 
3-5 yr 5-8 yr 8-1 Oyr 

1(3.4,3.7,4.) 
2(3.4,3.7,4.0) 

1(3.2,3.3,3.4,3.5) 2[5.2,5.9,6,6.9] 
2(3.2,3.4) 

1(3.3) 3[7.8] 
2(3.7) 
1(3.3) 
2(3.6) 3[6.8] 

2(4 .3) 
2[3.2.4.2.4.3.4.5) 3[9) 

2(3. 1,3.2) 1[7.5] 

10-12yr 

1[10.9] 

PRR-R 
PRR-P 
SNP-R 
SNP-P 
LOO-R 
LOO-P 
SNA-R 
SNA-P 
ALT-R 
ALT-P 
MIA-R 
MIA-P 
TUS-R 
TUS-P 

1[2.1) 2[3.2,4.3,4.4) 3[7.4,7.5,7 .7,8] 4[8.1 ,8.3,8.5,8.7 ,9] 

1[2.5] 
2[2.5) 

1[2.2,2.3) 
1[2.6,2.7] 

1(4.) 
1(4.0) 

2[3.2] 

1[4.1,4.7] 

1[9.4] 

1[7.5,7.9) 
2[7.1,8) 

3[8.9] 

Coherence wj!h SOl 
PRR-R 
PRR-P 
SNP-R 
SNP-P 
LOO-R 
LOO-P 
SNA-R 
SNA-P 
ALT-R 
ALT-P 
MIA-R 
MIA-P 
TUS-R 
TUS-P 

2[2.2,2.5] 
1[2.1] 2[3.8,3.9,4.2,4.6,4.7] 3[9.0) 

1 [2.2,2.4,2.5] 
1[2,2. 1) 

2[4.6 ,4.7] 3[7.2,7 .3,7.5,7.6) 
2[4 .5,4.6,4.7] 

2[7.3,7.4] 

Legend: R refers to the Rate of occWTence and Prefers to the Precipitation. 
the results are based on MTM with 3, 27t 

2[12] 

1[12] 
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The entries for each band represent rank of squared coherence for the band(#,#, .. =coherence peaks significant 

from Ftest at 95%) 

The band with the highest squared coherence is ranked 1. 
for 3, 27t tapers the F value for the squared coherence at 95% confidence is 0.79. 



Figure 6.1. Spectra of precipitation amount (thick line) and rate (dotted line) from data at 
(a) Priest River, ID , (b) Logan, UT, and (c) Tucson, AZ. 
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Figure 6.2. Squared coherence between precipitation amount and CNP (thick line), and the 
phase angle (dotted line) from data at (a) Priest River, ID, (b) Logan, UT, and (c) Tucson, 
AZ (dashed lines denote the 95 % confidence level for the squared coherence). 



N 
0 

(a) 

t-~ 
·:· l

·.IV''; ; 

~ ~ 
~ ~0.-0 --0-.1 ~0-.2~07.3~07.4~0.5 

cy/yr 

Figure 6.3. Squared coherence between precipi tation rate and CNP (thick line), and the 
phase angle (dotted line) from data at (a) Priest River, ID, (b) Logan, UT, and (c) Thcson, 
AZ (dashed lines denote the 95% confidence level for the squared coherence). 
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freq uencies with significant coherence between the precipitation time series and SOI and 

CNP. The frequencies with significant coherence are seen to be mainly in the 2-3 yr band 

and 3-5 yr band. These are consistent with the frequencies that are significant in the 

analysis of the individual time series (see Table 6.2). Note that the rates appear to be more 

coherent than the precipitation amount with the atmospheric indices, and are hence better 

indicators of the atmospheric variability-precipitation connection. This could be (1) 

because of nonlinearity in the generation of precipitation as a function of atmospheric flow 

and (2) because precipitation occurrence may have a larger coherent spatial "signal" than 

precipitation amount, which may fluctuate quite a bit due to local influences. Also note that 

the spectral coherence with SOI appears to increase as we move southwards, and the 

spectral coherence with CNP increases as we move northwards. This phase reversal is 

consistent with those observed by Kahya and Dracup [in press]; Cayan and Webb [1992] , 

Cayan and Peterson [1989], and others in western U.S. using streamflow data, and 

precipitation and temperature data [Ropelewski and Halpert, 1986; Yarnal and Diaz, 1986). 

5. Noting that a number of significant frequencies from the MTM spectra (Table 

6.2) and from coherence analysis (Table 6.3) are in the 3-5 yr band, we band passed each 

of the time series to retain only this frequency band. Band passing can be thought of as 

filtering using the desired frequency band. The amplitude of the bandpassed series of SOI 

and CNP is similar as can be seen from Figure 6.4. Consequently, representative 

band passed series of precipitation amount and CNP (Figures 6.5a, b, and, c), and rate and 

CNP (Figures 6.6a, b, and, c) at the three stations are presented. Note that for the station 

PRR (Figures 6.5a and 6.6a) the amplitudes of precipitation amount and rate are in phase 

with CNP, station LOG (Figures 6.5b and 6.6b) also exhibits similar behavior. As we 

move to TUS (Figures 6.5c and 6.6c) there appears to be a considerable phase shift. For 

the stations in between TUS and PRR, transi ti onal behavior was observed. 
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Figure 6.4. Band passed series of CNP (thick line) and SOl (dotted line), (bandpassed at 3-
5 yr frequency band). 

The phase lag between the band passed series of SOl and CNP corresponding to 

this frequency band is 1.6 months. The phase lag and coherence between the band passed 

series of CNP and the precipitation amount at the southernmost station TUS is 2.9 months 

and 0.7; for the station LOG in the middle of the transect it is 2.7 months and 0.78; while it 

is 2.1 months and 0.84 for the northernmost station PRR, respectively. The coherence with 

SOl was 0.81, 0.6, 0.5, respectively, at TUS, LOG, and PRR. As can be seen, the phase 

lags of the precipitation amount with CNP increase and the coherence decreases moving 

south, and with SOl the coherence increases moving south. This observation is consistent 

with our expectation, since the CNP is a more direct measure of the atmospheric flow Get 

stream behavior) in the northern end of the domain, while the SOl may more directly 

measure the modulation of the atmospheric flow in the lower latitudes by tropical 

variability. Of course, the SOl and the CNP may reflect related modes of atmosphere-ocean 

variability as well. 
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Figure 6.5. Band passed series of precipitation amount (thick line) and CNP (dotted line), at 
(a) Priest River, ID, (b) Logan, UT, and (c) Tucson, AZ (band passed at 3-5 yr frequency 

band) . 
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Figure 6.6. Band passed series of precipitation rate (thick line) and CNP (dotted line), at (a) 
Priest River, ID, (b) Logan, UT, and (c) Tucson, AZ (bandpassed at 3-5 yr freq uency 
band). 
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6. Correlation between the bandpassed series of precipitation amount and CNP 

were estimated and are reported in Table 6.4, and correlations with SOl were estimated and 

reported in Table 6.5. Note from Tables 6.4 and 6.5 that the maximum and minimum 

correlations occur at a lag of approximately 24 months. Also note that the maximum 

correlations occur at a lower lag in the north and at a higher lag in the south (i.e., from 

Alton onwards) and vice versa for the minimum correlation, with the exception ofTuscon, 

Arizona. This suggests that in the 3-5 yr frequency band the modulation in the precipitation 

due to CNP appears to be opposite while going from north to south, which again 

corroborates the findings of various others mentioned in observation 4 above. 

From this study we found that the precipitation pattern along the meridional transect 

that we chose seems more influenced by CNP. However, the band passed SOI and CNP 

series are highly correlated, suggesting that tropical atmospheric variation as represented by 

SOI is manifested in the western U.S. through its modulation of north Pacific atmospheric 

circulation. 

Closure 

Spectral analysis was performed on time series of precipitation amount and rates at 

seven stations along a meridional transect from Arizona to Idaho. We find consistent 

evidence for structured low frequency variability from the spectral analysis. Strong signals 

in 3-7 and 2-year frequency bands were revealed from the analysis, which seem to be 

consistent across time series. These interannual signals are consistent with El Nifio 

Southern Oscillation (ENSO) and quasi-biennial variability identified by others. Spectral 

coherence between the precipitation amounts and rates with CNP and SOl were also 

shown to be significant in the above frequency range. 
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Table 6.4. Correlation Between Band passed Precipitation Amounts and CNP (Band passed 
at 3-5 yr Band) 

PRR SNP LOG SNA ALT MIA TUS 
(ID) (ID) (UT) (UT) (UT) (AZ) (AZ) 

Max. Corrin. 0.9 0.8 0.8 0.6 0.5 0.5 0.3 

(2) (4) (4) (4) (28) (31) (9) 

Min. Corrin. -0.8 -0. 8 -0.8 -0.5 -0.5 -0.5 -0.2 

(23) (28) (28) (27) (5) (5) (33) 

Table 6. 5. Correlation Between Band passed Precipitation Amounts and SOI (Bandpassed 
at 3-5 yr Band) 

PRR SNP LOG SNA ALT MIA TUS 

(ID) (ID) (UT) (UT) (UT) (AZ) (AZ) 

Max. Corrin. 0.7 0.6 0.7 0.3 0.5 0.3 0.5 

(!) (!) (4) (5) (24) (33) (7) 

Min. Corrin. -0.6 -0.5 -0.7 -0.2 -0.4 -0.3 -0.4 

(24) (24) (28) (27) (!) (7) (31) 

The high coherence between precipitation amount and rates with SOI and CNP and 

also the significant frequencies in the ENSO band as suggested by the analyses here have 

directed our efforts into seeking an understanding of the coherent spatial variability of these 

variables at the chosen locations. We anticipate publishing that work as Rajagopalan eta!, 

[1995]. 
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A number of authors [Ropelewsk:i and Halpert, 1986, 1987, 1989; Cayan and 

Webb, 1992; Cayan and Peterson, 1989; Kahya and Dracup, in press] have looked for 

connections between El Nifio and La Nifia events and precipitation, temperature, and 

streamflow series in the western United States, by focusing on first identifying El Nifio/La 

Nifia years in the record and then looking for evidence of anomalous behavior in the at-site 

hydrological variables over a time window centered at each such year. Such an approach is 

attractive, because it is easily understood and communicated. One can even visually present 

the results of such an analysis to show spatial patterns quite effectively [e.g., Kahya and 

Dracup, 1993]. Given the anharmonic nature of the ENSO, such analyses are justified. 

The MTM-based approach presented here allows one to go beyond such analyses-

one can identify frequency bands where there is structure in individual series, check to see 

if such structure is phase coherent (the F test) across the series analyzed and directly assess 

the associated phase lags, and finally bandpass the series at selected frequency bands to 

examine connections between the different time series. The most striking example of the 

utility of such an analysis is the suggestion of a meridional (south to north) pattern in the 

il1leraction of tropical atmospheric variability (as represented by ENSO) with continental 

precipitation. It is also interesting that the connections seem to manifest themselves more 

clearly through a North Pacific index of atmospheric circulation than the SOl directly. Is 

this simply because the CNP index is defmed at a geographically closer location? Or, is 

there a suggestion that the high latitude North Pacific atmospheric flow is more directly 

modulated by the tropical variability? The latter is an area of active research. 

Results from a rather limited data analysis were presented here. The meridional 

transect west of the Rockies was chosen on purpose. Given limited resources, we chose to 

analyze selected long record stations with minimal to no missing data. We feel that the 

results presented here are quite interesting and suggestive, and provide a useful illustration 
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of the MTM methodology in this context. We hope to perform a more comprehensive 

analysis of precipitation and streamflow data sets once requisite computational and financial 

resources are available. 

References 

Bradley, R.S., H.F. Diaz, G.N. Kiladis, and J.K. Eischeid, ENSO signal in continental 
temperature and precipitation records , Nature , 327(11), 497-501 , 1987. 

Brillinger, D. R., Time Series, Data Analysis and Theory, Holden-Day, San Francisco, 
1981. 

Burroughs, W. J., Weather Cycles: Real or Imaginary ?, Cambridge University Press , 
1992. 

Cayan, D. R, and D. H. Peterson, The influence of north Pacific atmospheric circulation 
on streamflow in the west. aspects of climate variability in the Pacific and the Western 
America, AGU, Geophysics Monogram, 55, 75-397, 1989. 

Cayan, D., and R. Webb, El Nino/Southern oscillation and streamflow in the western 
United States, in El Nifio : historical and paleoclimatic aspects of the Southern Oscillation, 
edited by H. F. Diaz, and V. Markgraf. Cam bridge University Press., 29-68, 1992. 

Dettinger, M. D. , and M. Ghil, Interannual and interdecadal variability of surface-air 
temperatures in the United States", in Proc. XV/th annual climate diagnostics workshop, 
U.S. department of commerce, NOAA, Los Angeles, CA, 209-214, 1991. 

Kahya, E. and J.A. Dracup, U.S. Streamflow patterns in relation to the El Nino/Southern 
Oscillation, Water Resources Research, 29(8), 2491-2503, 1993. 

Kahya, E., and J.A. Dracup, The influences of type 1 El Niiio and La Nina events on 
streamflows in the southwestern U.S., Journal of Climate, in press. 

Keppene, C.L. , and M. Ghil, Adaptive filtering and prediction of the Southern Oscillation 
Index, Journal of Geophysical Research, 97,20449-20454, 1992. 

Kiladis, G.N., and H.F. Diaz, Global climatic anomalies associated with extremes in the 
Southern Oscillation, Journal of Climate, 2, 1069-1090, 1989. 

Klein, W.H., and H.J. Bloom, Specification of monthly precipitation over the United 
States from the surrounding 700mb height field , Monthly Weather Review, 115, 2118-
2132, 1987. 

Lall , U., and M. Mann, The great Salt Lake: A barometer of low frequency climatic 
variability, Working Paper WP-94-HWR-UL/005, in Utah Water Research Laboratory, 
Utah State University, Logan, UT, 1993. 1994. 



Leathers, D.J., B. Yarnal, and M. Palecki, The Pacific/North American teleconnection 
pattern and United States climate. Part I: Regional temperature and precipitation 
associations, Journal of Climate and Applied Meteorology, 24, 463-471, 1991. 

152 

Lins, H.F., Streamflow variability in the United States: 1931-1979, Journal of climate and 
Applied Meteorology, 29, 463-471, 1993. 

Mann, M. E., U. Lall, and B. Saltzman, Low frequency climate variability: understanding 
the rise and fall of the great Salt Lake, Working Paper WP-94-HWR-UL/009, in Utah 
Water Research Laboratory, Utah State University, Logan, UT, 1993. 1994. 

Mann, M. E., and J. , Park, Spatial correlations of interdecadal variation in global surface 
temperatures, Geophysical Research Letters, 20, 1055-1058, 1993. 

Mann, M.E. and J.,Park, Global modes of surface temperature variability on interannual to 
century time scales, Journal of Geophysical Research, in press. 

Peixoto, J.P., and A.H. Oort, Physics of Climate, AIP, New York, 1992 

Piechota, T.C, and J.A. Dracup, Precipitation and temperature patterns in the United States 
associated with El Nino/Southern Oscillation, Journal of Geophysical Research, in press. 

Rajagopalan, B. , Mann, M.E. and U. Lall, Spatial correlations of low frequency variability 
in precipitation along a meridion in western U.S. , Working Paper WP-95-HWR-UL/013, 
in Utah Water Research Laboratory, Utah State University, Logan, UT, 1995. 

Rasmusson, E.M. , and T.H. Carpenter, The relationship between eastern equatorial Pacific 
sea surface temperatures and rainfall over India and Sri Lanka, Monthly Weather Review, 
111, 517-528, 1983. 

Rasmusson E.M., and J.M. Wallace, Meteorological aspects of theE! Nino/Southern 
Oscillation, Science, 222, 1195-1202, 1993. 

Ropelewski, C. F., and M. S. Halpert, North American precipitation and temperature 
patterns associated with the El Nino/Southern Oscillation (ENSO), Monthly Weather 
Review, 114, 2352-2362, 1986. 

Ropelewski, C. F., and M. S. Halpert, Global and regional scale precipitation patterns 
associated with the El Nino/Southern Oscillation, Monthly Weather Review, 115, 1606-
1626, 1987. 

Ropelewski, C. F., and M. S. Halpert, Precipitation patterns associated with the high 
index phase of the Southern Oscillation, Journal of Climate, 2, 268-284, 1989. 

Thomson, D. J., Spectrum estimation and harmonic analysis., IEEE Proceedings, 70, 
1055-1096, 1982. 

Yautard R., P. Yiou, and M. Ghi1, Singular Spectrum Analysis: A toolkit for short, noisy 
and chaotic series, Physica D, 58, 95-126, 1992. 



153 

Yamal, B., and H.F. Diaz, Relationships between extremes of the Southern Oscillation and 
the winter climate of the Anglo-American Pacific Coast, Journal of Climatology, 6, 197-
219, 1986. 



Abstract 

CHAPTER Vll 

A NONHOMOGENEOUS MARKOV MODEL FOR 

DAILY PRECIPITATION SIMULATIONl 
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We present a one step nonhomogeneous Markov model for describing daily 

precipitation at a si te. Daily transitions between wet and dry states are considered. The one

step, 2x2 transition probability matrix is presumed to vary smoothly day by day over the 

year. The daily transition probability matrices are estimated nonparametrically. A kernel 

estimator is used to es timate the transition probabilities through a weighted average of 

transi tion counts over a symmetric time interval centered at the day of interest. The 

precipitation amounts on each wet day are simulated from the kernel probability density 

estimated from all wet days that fall within a time interval centered on the calendar day of 

interest over all the years of available hi storical observations. The model is completely data 

driven. An application to data from Utah is presented. Wet and dry spell attributes 

(specifically the historical and simulated probability mass functions (PMFs) of wet and dry 

spell length) appear to be reproduced in our Monte Carlo simulations. Precipitation amount 

statistics are also well reproduced. 

Introduction 

Markov chains [Gabriel and Neumann, 1962; Todorovic and Woolhiser, 1975; 

Smith and Schreiber, 1973] have been a popular method for modeling daily precipitation 

occurrence. Typically a two-state (wet or dry), one-step model is used , and the state 

transition probabilities (e.g. , transition from wet a day to a wet day, wet day to a dry day) 

are estimated fro m the data. One problem with such a description is that the transition 

lcoautbored by Rajagopalan Balaj i, Upmanu Lall and David G. Tarboton. 



probabi lities may vary over the year, i.e. , the process of precipitation occurrence is 

nonstationary. 
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Two approaches are commonly used to address this problem. 1n the first approach, 

the year is divided into periods (or seasons) and the transition probabilities are estimated 

separately fo r each period. There is an implicit assumption that the occurrence process is 

stationary over the period. This assumption may not be tenable. The second approach is to 

consider essentially a nonhomogeneous Markov process by allowing the transition 

probabilities to vary sytematically over the year, and to model such a variation through a 

Fourier series expansion [Feyerherm and Bark, 1965; Woo!hiser eta!., 1973; Woolhiser 

and Pegram, 1979]. This can be an effective approach where adequate data are available, 

and the seasonality in the precipitation process can be captured by a few Fourier series 

terms. Our nonparametric analyses [Rajagopalan and La!!, 1995] of the seasonality of 

precipitation for stations along a meridional transect in the western United States suggest 

that sometimes the number of Fourier series terms needed may be large relative to the 

amount of data available. 

1n this chapter, a nonhomogeneous Markov (NM) model is presented that uses 

kernel methods to estimate a nonhomogeneous transition probability matrix, and to estimate 

a corresponding nonstationary probability density function (PDF) of daily precipitation 

amount. Kernel methods are local, weighted averages of the target function (relative 

frequency of occurrence in this case). Since they are capable of approximating a wide 

variety of target functions with asymptotically vanishing error, and use only data from a 

"small" neighborhood of the point of estimate, they are considered nonparametric. Fourier 

series methods are shown to be a subset of kernel methods by Eubank [1988, sees. 3.4 and 

4.1]. A review of hydrologic applications of nonparametric function estimation methods is 
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provided by Lall [1994]. 

A brief description of the Markov chain and its terminology is first presented as a 

background to motivate our formulation. The general structure of the NM model proposed 

is next outlined with the non parametric estimators for the transition probabilities. The 

simulation procedure is then outlined. Results from an application of the model to a 

precipitation data from Utah follow. Musings on the results and discussion on limitations 

of the approach conclude the paper. 

Background 

The basic assumption in a two-state Markov chain model is that the present state 

(wet or dry) depends only on the immediate past. The transition probabilities for 

transitions (i.e., WW, WD, DW, DD) between the two states (WorD) are estimated 

directly from the data through a counting process . Two dements of the transition 

probability matrix are the probability of a dry day following a wet day, PwD = a1, and the 

probability of a wet day following a dry day, PDW = a2. The other probabilities, 

probability of a wet day following a wet day, Pww. and the probability of a dry day 

following a dry day, PDD· are (l- a1) and (l- a2) . respectively. 

Seasonal variations in the transition probabilities can be accounted for by 

expressing the changing transition probabilities through a Fourier series [Woolhiser and 

Pegram, 1979; Roldan and Woolhiser, 1982]. As an illustration, the transition probability 

P(WD) can be expressed as : 

PWD(t) = PWD + :f Cksin(2ntk/365 + 8k); t = 1,2, .. ,365 (7.1) 
k =I 
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where m =the maximum number of harmonics required to describe the seasonal variability 

of the transition probability, Pwn is the annual mean value of the parameter, C]< is the 

amplitude, and 8k is the phase angle in radians for the kth harmonic. 

The means, amplitudes, and phase angles are estimated by numerical optimization 

of the log likelihood function, as described by Woolhiser and Pegram [1979] and Roldan 

and Woolhiser [1982]. Fourier series representations of parameters of a first-order Markov 

chain for precipitation have been used (among others) by Feyerherrn and Bark [1965] , who 

used least squares techniques for parameter estimation, and by Stem and Coe [1984], who 

formulated the estimation problem as a generalized linear model to obtain maximum 

likelihood estimators. 

The degree of dependence in time is limited by the order (i.e. , the number of past 

days the present state is presumed to depend on) of the Markov chain. Feyerharm and Bark 

[ 1967] and Chin [ 1977] suggest that the order may need to be seasonally variable as well. 

Lack of parsimony is a drawback of Markov chain models as the order is increased. A 

number of researchers [Hopkins and Robillard, 1964; Haan et al., 1976; Srikanthan and 

McMahon, 1983; Guzman and Torrez, 1985] have also stressed the need for multistate MC 

models that consider the dependence between transition probabilities and rainfall amount. 

In this paper, we shall consider only a two state, first order Markov chain. Extensions to 

other situations follow in the same spirit. 

Model Formulation 

The NM model that we present allows the one-step transition probability matrix to 

change over each day, thus capturing the day-to-day variation in the occurrenct: process in a 

natural manner. The daily transition probability matrices are estimated using a discrete 



kernel estimator, which we describe in the fo llowing section. Daily precipitation 

occurrence sequences are then simulated using the transition probability matrices. To 

complete the model, precipitation amounts on each wet day are simulated from the 
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non parametric probability density estimated from all wet days that fall within a time interval 

or bandwidth centered on the calendar day of interest over all the years of available 

historical record. The model is completely data driven. 

Transition probabilities and their estimation 

The precipitation occurrence process is shown in Figure 7.1. From the daily 

precipitation record we can obtain four types of data (for illustration refer to Figure 7 .1), 

which are (1) the day indices tw 1, tw2 •. . ,twnw of nw wet days; (2) the day indices tct 1, 

td2, .. ,tdnd of nd dry days; (3) the day indices twd1· twd2, .. ,twdnwd of the nwd days on 

which a transition occurs from wet to dry, meaning days twd 1, twd2 • ... are wet and days 

lwd 1 +I , twd2+ I ... are dry; (4) the day indices tctwl' tctw2 •.. ,[ctwndw of the ndw days 

on which a transition occurs from dry to wet, meaning days tctw 1, tctw2 •... are dry and 

days tdw 1+1 , tdw2+ I ... are wet. A day index refers to a number between I to 366, 

representing the calendar day of the observation. From these we estimate the transition 

probabilities Pwd(t) (probability of transition from a wet day on calendar day t to a dry day 

on calendar day t+ 1), Pdw(t) (probability of transition from a dry day on calendar day t to a 

wet day on calendar day t+ !). The other two transition probabilities (namely Pww(t) and 

Pdd(t)) can be estimated directly from the relations Pwd(t) + Pww(t) = 1 and Pdw(t) + 

Pdd(t) = 1. The transition probabilities for calendar day tare estimated from the data using 

discrete non parametric kernel estimators. 

For a traditional Markov chain the transition probabilities are estimated simply as 

the ratio of the number of transitions in the historical record to the number of wet or dry 

days in the historical record, as appropriate . Here, we try to localize such estimates about 
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the calendar day of interest using kernel estimators. The general idea is that the events (i.e., 

tdJ. tdz ~ ·r-. 
t,vz: :I: I I . IV! :I: 

tl !2 !3 t4 

tt ,tz, ... are the day indices 
tw1,twy · are wet day indices 

td1,tdy · are dry day indices 

t .. 
:wn 

!5 

tdw 1,tdwy· are day indices of transition from a dry day to wet day 

twd1,twd
2
, .. are the day indices of transition from a wet day to dry day 

Figure 7 .1 . Precipitation occurrence process. 

a wet or dry day, or a state transition) occurring near the calendar day of interest should be 

given more weightage while the ones further away should be given a lower weightage. The 

resulting kernel estimators for the transition probabilities Pwd(t) and Pdw(t) are given as: 

(7.2) 

(7.3) 
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where nwd is the number of transitions in the historical record from wet day to dry day, 

ndw is the number of transitions in the historical record from dry day to wet day, nd is 

the number of dry days in the historical record, nw is the number of wet days in the 

historical record, K(.) is the kernel function (or weight function) and h(.) is a kernel 

bandwidth, tis the calendar day of interest and the to's have the definitions described 

earlier. Note that the estimates on any calendar day tare obtained by using the information 

from days in the range [t-ho, t + hol- Note that the definition of calendar dates is 

periodic, i. e., day 365 and day 1 are recognized as I day apart for a non-leap year. The 

contribution to the estimate of an event that lies within this range is determined by the 

kernel or weight function K(.),which is described below. 

Since we have a discrete situation (i.e. each day being discrete), we use the discrete 

kernel developed by Rajagopalan and Lall [in press] as: 

K(x) = ___3h_(l - x2) for lxl $1 
(l-4b2

) 

(7.4) 

where x =(t-to)lho, that measures how far an event to that lies within a bandwidth h(.) 

of the day t, is from t; and h(.) is au integer. 

The kernel in Equation (7.3) was derived from the consideration that the. sum of all 

I 
weights ascribed to events that lie within a bandwidth h(.) oft sum to I , i.e., I K(x) = 

x=-1 
I 

I; that the weights be symmetric on either side of t, i.e., I xK(x) = 0; that each weight 
X=-] 

be positive; and that the resulting estimate of probability have minimum mean square error. 

The estimators in Equations (7 .2) and (7.3) are fully defined once the respective 

bandwidths are specified. We choose the bandwidth using the least squared cross 

validation (LSCV) procedure [Scon, 1992], where the bandwidth is chosen that minimizes 

a LSCV function, which is given as: 
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LSCV(h) = 11 ± (1- P-t/ti) )2 (7 .5) 
i= I 

where P -t/ti) is the estimate of the transition probability (P wd or P dw) on day ti dropping 

the information on day ti, n is the number of observations (ndw or nwdl· The observed 

probability of transition is taken to be 1 on the days on which transitions have occurred 

hence the 1 in the Equation (7 .5). The bandwidth is searched from 1 to 182 (length of half 

year). Once the transition probabilities are estimated for each day in the historical record, 

the simulation of the precipitation occurrence for each day using the transition probability 

matrix of the previous day is possible. 

Precipitation amount generation 

Precipitation amounts for the wet days are generated from a kernel probability 

density estimated from all wet days that fall within a time interval or bandwidth centered on 

the calendar day of interest over all the years of historical record. This amounts to two 

steps: ( 1) choosing the time interval or bandwidth and (2) generating from the kernel

estimated PDF. 

An appropriate bandwidth for localizing the estimate of the probability density of 

precipitation amount may be obtained by determining the bandwidth appropriate for 

estimating the probability that a day is wet. If the probability of daily precipitation is low, 

the precipitation data will be sparse, and the bandwidth needed for stabilizing the variance 

of the estimated probability distribution of precipitation will be large. Conversely, as the 

probability of daily precipitation is high, a large number of days with precipitation will 

occur and the bandwidth needed to localize the estimate can be smaller. 

Consequently, we first consider the smoothing of the proportion of wet days (pt = 

nt/NT, ntis the number of times calender day twas wet; NT is the total number of calendar 



162 

day tin the historical record) on each calendar day t = 1,2, .. ,366. These raw proportions 

are smoothed using the discrete kernel (DK) estimator of Rajagopalan and Lall [in press] 

which in this case is: 

366 . 

Pt =I K(J) Pj 
j=l hp 

(7.6) 

where K(.) is the discrete kernel as defined by Equation (7 .3), and hp is the bandwidth that 

we are interested in. The bandwidth hp can be obtained using the LSCV procedure similar 

to Equation (7 .5) as given by Rajagopalan and Lall [in press] as: 

366 

LSCV(hp) I <Pt )2 
t= l 

366 

2 I P-tPt (7.7) 
t=l 

where P-t is the estimate of the calendar day t, by dropping the information on that day. 

Once we estimate the time interval hp, the next step is to pick the precipitation 

amounts on all the wet days that fall within the time interval hp from the day of interest in 

all the years of the historical record. Let us say that the precipitation amounts so picked 

from the historical records are y l'y2, .. ,y np and tJ.l2····tnp are the corresponding calendar 

day index. The tas k now is to generate precipitation amount for the calendar day t, which is 

a wet day. This can be accomplished by fitting a conditional PDF f(ylt) (see Equation 

[7 .1 0]) and then simulating from it. This step is carried out for each wet day that is 

simulated. Before describing the simulation procedure we introduce a kernel density 

estimator for continuous variables, which is given as: 

(7 .8) 
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where KcO is a univariate, continuous kernel, and hy is the hand width. Here we use the 

Epanechnikov kernel given by : 

Kc(x) = 0.75(1.- x2) for lxl ::; I (7.9) 

= 0. otherwise 

where x = y ~ Yi . For a detailed exposition of kernel density estimation for continuous 
y 

variables and issues related to bandwidth selection, we refer the reader to Silverman [1986] 

and Scott [1992] , and for kernel density estimation methods with specific application to 

precipitation modeling we refer to Lall et al. , [1995] and Rajagopalan et al., [1995]. 

A logarithmic transform of the precipitation data prior to density estimation is often 

considered. Such a transformation is also attractive in the kernel density estimation 

context, since it can provide an automatic degree of adaptability of the bandwidth (in real 

space). This alleviates the need to choose variable bandwidths with heavily skewed data, 

and also alleviates problems that the kernel density estimation has with PDF estimates near 

the boundary (e.g., the origin) of the sample space. The resulting estimator works out as: 

(7 .10) 

where hL y is the bandwidth of the log transformed data. This is chosen using a recursive 

app roach due to Sheather and Jones [1991] (SJ) to minimize the mean integrated square 

error (MISE) and recommended by Rajagopalan et al. , [1995] typically for precipitation 

data. 
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The two-step procedure discussed above can be more formally considered tbrough 

the conditional PDF fcylt), defined using a product kernel representation as: 

(7 .11) 

Equation (7.11) shows that the conditional probability density of a rainfall amount 

yon calendar day tis obtained by considering a window of width hp centered at t, 

weighting the precipitation amounts on wet days that fall within this window using the 

kernel K(.), and then forming a density estimate by further weighting these amounts with 

the kernel Kc(.). Strictly speaking, the bandwidths hp and hL y should be chosen by 

optimizing a criterion relevant to the conditional density. The description of our procedure 

given earlier shows that we are essentially choosing these bandwidths independently. 

McLachlan [1992] discusses the simultaneous selection of bandwidths in each coordinate 

versus the use of the optimal univariate bandwidths in each direction. It is not clear that the 

additional effort of simultaneous selection of the two bandwidths is justified. 

Consequently, we choose the bandwidths hL y and hp by the methods described for the 

univariate case. Rajagopalan et al., [1995] show that bandwidths selected in this way are 

often satisfactory. For simulation from the kernel estimated PDF (such as Equation [7.11]) 

it is not necessary to explicitly estimate the density f(ylt) . The estimation of the bandwidths 

hL y and hp and subsequent perturbation of the historical data is sufficient. 

Simulation procedure 

The simulation procedure from the NM model can be described in the following 

steps. 

1. From the historical precipitation sequence evaluate the transition probabilities 
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cPwd(t) , Pww(t), Pdw(t) and Pdd(t)) for each calendar day t using the estimators described 

earlier. Similarly evaluate the probability density function for precipitation amount on day t 

using the procedure described in the previous section. 

2. Start the simulation with a wet or dry day (deciding by generating a uniform 

random number U in [0,1] , if U $ 0.5 then wet else dry). 

3. The precipitation state for the next day is simulated from the transition probability 

matrix for the current day (as estimated in step 1). 

4. Precipitation amounts on wet days are generated following the process illustrated 

in Figure 7 .2, which is described below: 

(i) Pick all the wet day precipitation amounts (e.g., y 1 ,y2, .. ,y np) from all the years 

in the historical record that fall within the window hp centered on the corresponding 

calender day of interest and also the corresponding calendar day indices t} ,t2, .. ,tnp· 

(ii) For the calendar day of interest, pick a historical wet day to perturb using the 

bandwidth hp and the kernel K(x) to specify the resampling metric. Recall that the kernel 

function describes the weight given to each calendar day that lies within hp of calendar day 

t, which depends on the "distance" between the two dates relative to the bandwidth hp, and 

the kernel function given in Equation (7.4). Let the weights associated with each nf np wet 

days that are thus identified be Wt],Wt2, .. ,wtnp· Now generate a random integer j between 

I and np from a probability metric given by these weights. 

(iv) The simulated precipitation amount is y* = expOog(yj)+UhL y) where Yj is the 

precipitation on the historical day point picked to be perturbed. The random variate U is 

generated from the probability density corresponding to the kernel function KcO· As 

mentioned earlier, we have used the Epanechnikov kernel in this study and simulation 

from this kernel is easily accomplished using the two-step procedure described in 

Silverman [1986]. 
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t is the calendar day on which precipitation is required 
hp is the time interval around the calendar day t 
I , ... ,N are the years in the historical record 
Thick dots are the rainy days in the historical record 
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The kernel function shown at the bottom is used to weight the rainfall amounts on each of 
the 
rainy day. 

Figure 7 .2. Precipitation amount generation process. 

5. The process (steps 3 and 4) is repeated day by day until the desired length of 

record is generated. 

Model Application 

The model described was applied to daily rainfall data from Salt Lake City in Utah. 

Thirty years of daily weather data were available from the period 1961-1991. Salt Lake 
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City is at 40°46 ' N latitude, 111° 58' W longitude and at an elevation of 1288 m. Most of 

the precipitation comes in the form of winter snow. Rainfall occurs mainly in spring, with 

some in fall. 

We shall first list some measures of performance that were used to compare the 

historical record and the model simulated record, and then outline the experimental design. 

The aim here is to capture the frequency structure of the events (i.e., the underlying PDF), 

which then amounts to the reproduction of all the statistics. By events we mean the wet 

spell lengths, dry spell lengths , and the wet day precipitation. The wet and dry spell lengths 

are defined as the successive wet or dry days. Clearly the wet spell lengths and dry spell 

lengths are defined through the set of integers greater than I. We look at the model 

performance both at the seasonal scale and the annual scale. For the seasonal scale 

comparison we have the year divided into four seasons: winter or season 1 (Jan- Mar), 

spring or season 2 (Apr- Jun), summer or season 3 (Jul- Sep), and fall or season 4 (Oct

Dec). 

Performance measures 

1. Probability mass function of wet spell length, dry spell length, and probability 

density function of wet day precipitation in each season and annual . 

2. Mean of wet spell length, dry spell length, and wet day precipitation in each 

season and annual. 

3. Standard deviation of wet spell length, dry spell length, and wet day precipitation 

in each season and annual . 

4. Length of longest wet spell and dry spell in each season and annual. 

5. Maximum wet day precipitation in each season ami annual . 
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6. Percentage of yearly precipitation in each season and annual. 

7. Fraction of wet and dry days in each season annual. 

Experiment design 

Our purpose here is to test the utility of the NM model. The main steps involved in 

this are described below. 

I. Thirty sets of synthetic records of 30 years each (i.e., the historical record 

length) are simulated using the NM model . 

2. The statistics of interest are computed for each simulated record, for each season, 

and are compared to statistics of the historical record using boxplots. The PMFs of wet and 

dry spell lengths are estimated using the DK estimator of Rajagopalan and Lall (in press) 

(same as the estim ator in Equation [7.6]) and the PDFs of the wet day precipitation is 

estimated using the estimator in Equation (7 .10). The statistics listed in the previous section 

are computed for the simulated record and compared with those of the historical record. 

Results 

In this section we present comparative results of the NM model for the Salt Lake 

City data. The PDFs/PMFs of the simulated records are compared with those for the 

historical record using boxplots while other statistics are summarized in Tables 7.1, 7 .2, 

and 7.3. A box in the boxplots (e.g., Figure 7.3) indicates the interquartile range of the 

statistic computed from thirty simulations, and the line in the middle of the box indicates the 

median simulated value. The solid lines correspond to the statistic of the historical record. 

The boxplots show the range of vari ation in the statistics from the simulations and also 

show the capability of the simulations to reproduce historical statistics. The plots of the 

PDFs are truncated to show a common range across seasons and to highlight differences 

near the origin (mode). 
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Figure 7.3 shows the boxplots of kernel estimated PDFs of simulated data of wet 

day precipitation and the historical data. It can be seen that the historical PDFs are very well 

reproduced by the simulations in all the fo ur seasons. The other statistics are also seen to be 

well reproduced by the model for all the seasons and also annual, as can be noticed from 

Table 7.1. 

Box plots of kernel estimated PMFs of simulated data of wet spell length are found 

to enclose the PMF of the historical data of wet spell length for all the fo ur seasons in 

Figure 7.4 and for the annual in Figure 7.6. The other statistics are also preserved quite 

well by the simulations , as seen from Table 7.2. Good performance of the model in 

reproducing the dry spell statistics can be seen from Figures 7.5 and 7.7 and also from 

Table 7.3. The coefficient of skew, the coefficient of variation, the 25% quantile, and the 

75% quantile were also preserved for all the three variables , but are not shown here. The 

extreme statistics (e.g .,. longest spell length or maximum wet day precipitation) exh.ibit a 

high degree of variability in the simulations (refer Tables 7. 1, 7.2, and 7.3) and an 

asymmetric sampling distribution, as one would expect. 

Note that none of the statistics that we have listed in the section under performance 

measures are explicitly or implicitly considered in the model. Hence the good reproduction 

of PDFsfPMFs of the three variables is quite heartening. 

Summary and Conclusions 

A nonhomogeneous Markov model for simulating daily precipitation is presented in 

this paper. The traditional Markov chain model is extended to consider the a smooth 

variation in the transition probabilities from day to day, thus attempting to capture the 

nonstationarity in the precipitation occurrence process. The 2x2 daily transition probability 

matrix is estimated non parametrically. The primary intended use of the model is as a 

simulator that is faithful to the historical data sequence, obviating the need to divide the year 
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Table 7.1. Statistics of Wet Day Precipitation for Salt Lake City, UT, 1961-1991 from 
Historical Precipitation Record and Averaged over 30 Simulated Precipitation Records 

Mean Wet Std. Dev. Fraction of Maximum 
Day PPT Wet Day PPT Yearly PPT WetDayPPT 
(inches) (inches) (inches) 

Season I 
25% quantile 0.16 0.19 0.23 1.26 
Median 0.16 0.20 0.23 1.36 
75% quantile 0.17 0.21 0.24 1.59 
historical 0.15 0.17 0.21 0.92 

Season 2 
25% quantile 0.19 0.24 0.26 1.74 
Median 0.19 0.25 0.27 1.86 
75% quantile 0.20 0.26 0.28 2.18 
historical 0.20 0.24 0.28 1.62 

Season 3 
25% quantile 0.18 0.27 0.24 1.94 
Median 0.18 0.28 0.26 2.3 
75% quantile 0.19 0.30 0.26 2.87 
historical 0.18 0.29 0.26 2.28 

Season 4 
25% quantile 0.16 0.19 0.24 1.37 
Median 0.17 0.21 0.24 1.7 
75% quantile 0.18 0.23 0.25 2.16 
historical 0.17 0.19 0.25 1.23 

Annual 
25% quantile 0.18 0.24 2.35 
Median 0.18 0.25 2.55 
75% quantile 0.19 0.25 3.45 
historical 0.17 0.22 2.30 
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Table 7.2. Statistics of Wet Spell Length for Salt Lake City, UT, 1961-1991 from 
Historical Precipitation Record and Averaged over 30 Simulated Precipitation Records 

Mean Wet Std. Dev. Fraction Of Longest Wet 
Spell Length Wet Spell Wet Days Spell Length 
(days) (days) (days) 

Season I 
25 % quantile 1.89 1.29 0.31 9 
Median 1.92 1.37 0.32 10 
75 % quantile 1.99 1.43 0.33 11.8 
historical 1.86 1.29 0.32 10 

Season 2 
25 % quantile 1.87 1.27 0.25 8 
Median 1.91 1.34 0.25 9 
75 % quantile 1.95 1.41 0.26 10 
historical 2.12 1.47 0.27 12 

Season 3 
25% quantile 1.79 1.23 0.19 8 
Median 1.86 1.29 0.20 9 
75 % quantile 1.91 1.37 0.20 10 
historical 1.60 0.9 0.18 7 

Season 4 
25% quantile 1.85 1.27 0.25 8 
Median 1.87 1.32 0.26 9 
75% quantile 1.92 1.38 0.27 10 
historical 1.97 1.36 0.26 9 

Annual 
25% quantile 1.88 1.32 0.26 10 
Median 1.91 1.36 0.26 11 
75% quantile 1.94 1.39 0.26 13 
historical 1.91 1.31 0.26 12 
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Table 7.3. Statistics of Dry Spell Length for Salt Lake City, UT, 1961-1991 from 
Historical Precipitation Record and Averaged over 30 Simulated Precipitation Records 

Mean Dry Std. Dev. Fraction of Longest Dry 
Spell Length Dry Spell Dry Days Spell Length 
(days) (days) (days) 

Season I 
25% quantile 3.8 3.5 0.67 23 
Median 3.92 3.63 0.68 25 
75% quantile 4.0 3.75 0.68 27 
historical 3.91 3.64 0.68 30 

Season 2 
25% quantile 5.21 5.64 0.74 39 
Median 5.48 5.91 0.75 46 
75% quantile 5.59 6.25 0.76 50 
historical 5.5 5.41 0.73 28 

Season 3 
25% quantile 6.82 7.12 0.79 44 
Median 7.05 7.53 0.80 52 
75% quantile 7.26 7.943 0.81 72 
historical 6.87 6.92 0.82 55 

Season 4 
25% quantile 4.91 5.47 0.73 38 
Median 5.09 5.71 0.74 43 
7 5% quantile 5.28 5.91 0.75 51 
historical 5.21 5.38 0.74 31 

Annual 
25% quantile 5.29 6.13 0.74 58 
Median 5.41 6.32 0.74 70 
75% quantile 5.54 6.67 0.74 86 
historical 5.45 5.99 0.74 61 
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Figure 7 .3. Boxplots of PDF of wet day precipitation of model simulated records along 
with the historical values for (a) season I, (b) season 2, (c) season 3, and (d) season 4. 
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Figure 7.4. Boxplots ofPMF of wet spell length of model simulated records along with 
the historical values for (a) season 1, (b) season 2, (c) season 3, and (d) season 4. 
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Figure 7.5. Boxplots of PMF of dry spell length of model simulated records along with 
the historical values (a) season 1, (b) season 2, (c) season 3, and (d) season 4. 
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Figure 7 .6. Boxplots of PMF of wet spell length over the whole year for model simulated 
records along with the historical values. 
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Figure 7.7. Boxplots of PMF of dry spell length over the whole year for model simulated 
records along with the historical values. 
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into seasons and subsequently fitting the Markov chain parameters separately for each 

season. Simulations from the model are shown to preserve the frequency structure 

( PDF!PMF) of the wet spell length, dry spell length, and wet day precipitation at both the 

seasonal and annual time scales. 

In many cases, the Fourier series approach to addressing seasonal variation in 

Markov chain parameters may be just as effective. Recall that the Fourier series approach 

can be shown to be a subset of the kernel approach with a specific kernel choice. The 

kernel approach presented here is attractive because it is relatively parsimonious, locally 

adaptive, and extends quite naturally to localizing the probability density estimation for 

precipitation amount as well. Extensions to higher order chains or those with more states 

follow directly. One needs to define the appropriate events as was done here and go 

through the solution of the corresponding smoothing problem. 
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Abstract 

CHAPTER VIII 

MULTIVARIATE NONPARAMETRIC RESAMPLING SCHEME FOR 

GENERATION OF DAILY WEATHER VARIABLES I 
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A nonparametric resampling technique for generating daily weather variables at a 

site is presented. The method samples the original data with replacement while smoothing 

the empirical conditional distribution function . The technique can be thought of as a 

smoothed conditional Bootstrap and is equivalent to simulation from a kernel density 

estimate of the multivariate conditional probability density function. This improves on the 

c lassical Bootstrap technique by generating values that have not occurred exactly in the 

original sample and by alleviating the reproduction of floe spurious details in the data. 

Precipitation is generated from the non parametric wet/dry spell model as described in Lall et 

al. , [1995]. A vector of other variables (solar radiation, maximum temperature, minimum 

temperature, average dew point temperature and average wind speed) is then simulated by 

conditioning on the vector of these variables on the preceding day and the precipitation 

amount on the day of interest. An application of the resampling scheme with 30 years of 

daily weather data at Salt Lake City, Utah, USA is provided. 

Introduction 

Daily weather variations influence agricultural and engineering management 

decisions. Crop yields and hydrological processes such as runoff and erosion are very 

sensitive to weather. Recognizing the inherent variabil ity in climate, it is often necessary to 

assess management scenarios for a number of likely input sequences. Stochastic models are 

!coauthored by Rajagopalan Balaji, Upmanu Lall , David G. Tarboton and DavidS. Bowles. 
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consequently useful for simulating weather scenarios. Such models need to simulate 

sequences that are representative of the data. While there is a substantial literature for 

rainfall simulation and for other variab les one at a time, only a few "multivariate" models 

have been developed. 

ln this chapter we develop and exemplify non parametric procedures for resampling 

a vector of daily weather variables, such that selected lag 0 and lag I dependence 

characteristics are preserved. Dependence is defined in terms of joint or conditional 

probabilities , rather than correlation. 

This work is an off-shoot of the ongoing Water Erosion Prediction Project 

(WEPP) of the United States Department of Agriculture (USDA). WEPP is a key model for 

soil and forest conservation studies . WEPP includes a climate generator (CLIGEN) and the 

work presented here intends to improve it. Hill slope erosion is driven largely by 

precipitation and a suite of other weather variables. Hence, the main objective is to generate 

weather sequences that will be used by WEPP to estimate hill slope eros ion. ln this study, 

we chose a set of five daily variables (solar radiation [SRAD], maximum temperature 

[TMX], minimum temperature [TMN], avg. wind speed [WSPD] and avg. dew point 

temperature [DPT] in addition to precipitation [P], that are of interest for erosion prediction. 

Most of these weather variables are sensitive to precipitation. Solar radiation, dew point 

temperature, maximum temperature, and minimum temperature are more likely to be below 

normal on rainy days than on dry days, while the wind speed may be above normal on 

rainy days than on dry days. Consequently precipitation is chosen as the driving variable of 

the models developed so far. Typically [see Jones et al., 1972; Nicks and Harp, 1980; 

Richardson, 1981], daily precipitation is generated independently and the other variables 

are generated by conditioning on precipitation events (i.e., whether a day is wet or dry). 
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Throughout this chapter we denote the historical time series of the five weather 

variables chosen above as [zlmkj (m=l , .. ,NY, k = 1, .. ,366, j=1, .. ,NV), where NY is the 

number of years of record, and NV(=5) is the number of variables considered (SRAD, 

TMX, TMN, DPT, and WSPD). Further, we define [Z]kj and [STDlkj as the 

corresponding mean and standard deviation vector for each calendar day k (k=l, .. ,366) of 

each variable j (j= I , .. ,5). The historical time series of the precipitation is denoted as [Plmk-

We now discuss key attributes of some strategies for res am piing or synthesizing 

vectors of these variables. 

Resampling Approaches 

Multivariate stochastic simulation of weather variables has not been studied as 

extens ively as streamflow or precipitation. Two broad approaches that are possible are ( 1) 

parametric, and (2) nonparametric- Bootstrap (raw, conditional and smoothed). 

Paramettic 

The parametric approach is the traditional method [see Jones et al., 1972; Bruhn et 

al. , 1980; Nicks and Harp, 1980; Lane and Nearing, 1989; Richardson 1981] for 

stochastic daily weather simulations. Figure 8.1 summarizes the general structure of the 

parametric approaches. The general strategy is to generate precipitation independently and 

the other variables conditioned on the status of precipitation (i.e., rain or no rain on the 

day) . The other variables are generated from either independent statistical distributions 

fitted separately to each of the variables for each of the two precipitation states (i.e., rain, 

no rain). Independently or jointly fitted auto regressive models of order 1 (AR-1) are 

sometimes used. 

Usually the year is divided into periods (seasons) and moments (i.e., mean 

standard deviation and skew) are calculated for each variable for each period for each 
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precipitation state. The moments are used to fit statistical distributions or models. Dividing 

the year into various periods assumes homogeneity within each period and offers a 

!. ata 
Given the historical time series of precipitation 

Pm~cand other weather variables 
[zlmkjwhere, m = 1, .. ,NY, k = I , .. ,366, j = 

J, .. ,NV 

II Deseasonalization 
treatment for seasons (e.g. separate 

analysis by season, removal of seasonal 
means etc. 

III Generation 
Precipitation is generated independently day by day. 

Occurrence: Markov chain or point process 
Amount: Exponential, Gamma, truncated Normal etc. 

fitdtodta. 

No 

- Fit distribution for each variable for 
each period (season) and for each 
precipitation state. Generate random 
vectors from appropriate fitted 
distribution (depending on the 

reci itation status) 

Yes 

- Fit Auto Regressive model of 
order 1 (AR-1) for each variable 
for each period, and generate from 
them (this preserves lag dependanc 
and no cross dependance). 
or 
-Fit multivariate AR-1 to the data 
and simulate from it (this preserves 
lag and cross dependance up to lag-

Figure 8.1. General structure of parametric approaches. 
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treatment of seasonality. Jones et al.[l972], Bruhn eta!., [1980], Nicks and Harp [1980] , 

and CLIGEN [Lane and Nearing, 1989] divide the year into 14-day and one month periods 

respectively in their works. Richardson [1981] adopted a method wherein the means and 

standard deviations of each periods and each precipitation state are smoothed using Fourier 

series. The smoothed daily values of the means and standard deviations are subsequently 

used for deseasonalization. 

Daily precipitation is typically generated from a fitted first order Markov chain for 

precipitation occurrence and by sampling from the distribution (such as Gamma, 

Exponential, Truncated Normal, etc.) fitted for the daily precipitation amounts for each 

period. 

One approach to generate the other variables is to fit distributions independently for 

each variable for each period and for each precipitation state. Here, the simulations are 

made under the assumption that each variable is independent and identically distributed 

(i.i.d). This approach and its variants are used by Jones eta!. [1972] , Bruhn eta!. [1980], 

and CLIGEN [Lane and Nearing, 1989]. In CLIGEN each variable is assumed to be an 

independent Gaussian variable for each month, with parameters dependent on the 

precipitation state transition (e.g., wet to wet, dry to wet, etc.). This approach does not 

consider the dependence between the variables or the serial dependence for each variable. 

Only the dependence on the precipitation state or the precipitation transition is considered. 

Serial dependence was incorporated by Nicks and Harp [1980], who fit auto 

regressive models of order one (AR-1) independently to each variable for each period. 

Cons:deration of dependence across variables is added by Richardson [1981] who used a 

multivariate auto regressive model of order one (MAR-l). When the cross dependence 

terms are neglected in MAR-l, it reduces to an AR-1 process. These AR models suffer 

from the drawback of assuming the data to be normally distributed. As a result only linear 
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dependence can be reproduced. In practice, changes in the weather variables relative to a 

change in precipitation or other weather variables are not proportional and the assumption 

of linearity is questionable. Transformation of the data to be multivariate normal may be 

difficult and may lead to biased statistics upon transforming back to the original space. 

The parametric approaches discussed have three main drawbacks, which are (1) 

choice of a model (i.e., a statistical distribution or the order) is often subjective and rarely 

formally tested on a site by site basis, (2) reliance on an implicit Gaussian framework (e.g. , 

AR or MAR), which preserves only linear dependance and is not appropriate for bounded 

variables, and (3) the fitted models have limited portability in the sense that 

procedures/distributions used at one site may not be best at other sites. The last point is 

important where an agency wishes to prescribe a uniform procedure over its domain. 

Non parametric 

Non parametric techniques do not require preselected distributions or models to be 

fit to data. The Bootstrap (or Raw Bootstrap) is a non parametric technique introduced by 

Efron [1979] . It is often used for constructing a confidence region, attaching a standard 

error to an estimate, carrying out a test of a hypothesis , or estimating the sampling 

distribution of some statistic. Historical data are resampled with replacement. Since they are 

the same data, the simulations by construction have the same distributional properties as 

that of the historical data. Since each resampled observation is drawn independently, serial 

dependence is not preserved. Serial dependence can be accommodated by using the block

resampling scheme (a conditional bootstrap) developed by Kunsch [1989] and Liu and 

Singh [1988]. Here a block of k observations is resampled as opposed to a single 

observation in the Bootstrap. Serial dependence is preserved within, but not across a block. 

The block length k determines the order of the serial dependence that can be preserved. 
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A property of the Bootstrap technique is that the simulated samples will only have 

values that have occurred in the historical data and consequently the simulations are 

restricted to the historical set of values. Silverman [1986] points out that this behavior may 

reproduce spurious fine structure in the original data. This is not a desirable feature while 

applying the technique to simulation of daily weather variables, where we may wish to 

have simulated values that have not been observed in the historical data and may be also 

beyond the maximum/minimum of the observed data. This problem can be alleviated by 

using a "Smoothed Bootstrap". 

In the Smoothed Bootstrap [Silverman, 1986], each observation Yi (i= I , .. ,n) is 

considered to be representative of a region (yi-h, Yi+h) around it. The extent of this region 

h is called the bandwidth and is determined from the data. Intuitively, it is desirable to 

resample such that the maximum weight is given to the observation Yi and weights decrease 

when moving towards Yi-h or Yi+h. This is accomplished by having a weight function 

centered at each observation. The weight function is usually chosen to be a valid probability 

density function, such as the Gaussian (N(O,J)) . The simulation proceeds by picking an 

observation Yi with replacement from { Yi····Ynl and then generating a value from N(yi, h) 

with h specified. Formally, the Smoothed Bootstrap is equivalent to resarnpling from a 

kernel density estimate. 

In this paper, we develop a Smoothed Conditional Bootstrap that considers 

multivariate and serial dependence amongst the variables of interest. Hereafter, we refer to 

the scheme presented as the NP model. We first provide the motivation and main ideas of 

the model. The simulation algorithm is outlined next. The utility of the model is then 

illustrated through application to daily weather data at Salt Lake City, Utah, USA. In a 

related work Sharma et al.[1995] describe the application of the NP model to simulation of 

monthly streamflow. 
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Main Ideas of the NP Model 

Our goal is to develop an approach that is driven dire<.:tly by the observed data with 

reasonable assumptions, is easy to implement, is readily transferable from site to site and 

captures the relative frequencies of the data in a natural manner. We do this by defirting the 

appropriate probability densities that we need to resample from and then discuss their 

estimation. 

Overview of the NP model 

A conceptual flow chart of the model is shown in Figure 8.2. The historical data of 

the other weather variables other than precipitation is standardized as [x]JJcj=([z]llcj

(Z]k)/[STDlkj• where 1, k, and j are the same as defined earlier. This removes the 

seasonality present in each variable. Precipitation for day 't' (Pc) is generated from the 

wet/dry spell model as described in La!! et al.[l995] that is briefly summarized in later in 

this chapter. However, the user can generate daily precipitation from any other model that 

is considered appropriate. 

In the NP model the year is divided into four periods or seasons (for the Salt Lake 

City example, these are season 1 (Jan-Mar), season 2 (Apr-Jun), season 3 (Jul-Sep), and 

season 4 (Oct-Dec)). Simulations for days in any particular period are made using the 

historical data of that period. Subsequently, the comparison between the simulations and 

the historical data are also made by season. One could choose different periods (e.g., 

monthly, weekly, etc.). We chose the above four periods so as to be consistent with the 

wet/dry spell model [Lall et al., 1995] for daily precipitation. 

The aim of the model is to capture the day-to-day dependence present between the 

variables. The standardized vector of variables Xt for any day 't' is simulated from the 

multivariate conditional PDF f(xt I Vc). Here, xt is a standardized vector 
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( Given the the series [ z] mkj and P lk 
where m = 1, .. ,NY, k = 1, .. ,366, j = 

1 .. ,NY 
I 

Deseasonalize [z]mkj as; 
[x]mkj = ([z]rnkj -[Zlkj)/[STD]kj 

where [Z]kj and [STD lkj are vectors of 
means and the standard deviations of 

variable i for calendar dav k 
I 

[ Generate a precipitation sequence Pt 
from nonparametric renewal model 

(NPR) 

.. 
Givenxt-1 andPt 

simulate Xt from a kernel density 
estimate of the PDF f(xt I Xt-1 • P t) 

I 
Recover zt as 

) Zt = Xt*[STDlkj + [Zlkj where kis the 
calendar day corresponding to day t 

I 
( t=t+l ) 

Figure 8.2. Overview of development of the NP model. 
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[SRAD,TMX, TMN, WSPD, DPT]t of length d(=5) that is to be generated for day t, Pt is 

the generated precipitation for day t from the wet/dry spell model, and V t = [xt-1, PtJ is the 

conditioning vector of length d'(=6). The joint density is estimated in a space of dimension 

dg (=d+d'). 

The conditional density f(xt I V tl is defined as: 

f(xt i Vt)= f(x,VJ 
j f(x1, V Jdx, 

f(x,,V ,) 
fv(VJ 

where fv(Vt) is the marginal density of Vt. 

(8. 1) 

The standardized sequences xt are then transformed to zt = Xt * [STD]k + [Zlk , 

where k is the calendar day associated with day t. Thus, the key idea here is the estimation 

of thi s conditional probability density function from the historical data using nonpararnetric 

density estimators (kernel estimators) and subsequently simulating or bootstrapping from 

it. The mechanism of kernel density estimation and the algorithm for simulation from a 

conditional PDF (as in Equation 8. 1) using kernel density estimators is developed and 

outlined in later sections. 

Precipitation model 

The seasonal wet/dry spell model for daily precipitation described fully in Lall eta!. 

[1995] has three random variables--wet spell length, Lw days; dry spell length, Ld days; 

and wet day precipitation amount, Pinches. The periods (seasons) are as defined in the 

previous section. Variables wsp and dsp are defined through the set of integers between 1 

and the season length, and Pis defined as a continuous, positive random variable. A mixed 

set of discrete and continuous random variables is thus considered. The simplified version 

of the wet/dry spell model described in Lall eta!. [1995] that considers successive wet 
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days' precipitation amount and successive wet and dry spell lengths to be independent is 

adopted in this study. Correlation statistics computed for the data sets analyzed supported 

these assumptions. 

The PDFs of wet day precipitation amount f(P) and the probability mass functions 

(PMFs) of wet spell length f(Lw) and dry spell length f(Ld) are estimated for each season 

using kernel density estimators. 

A dry spell is first generated using f(Ld). Then a wet spell is generated using 

f(Lw)· Precipitation for each of the Lw wet days is then generated from f(P). The process 

is repeated with the generation of another dry spell. If a season boundary is crossed, the 

PDFs used for generation are switched to those for the new season. This procedure 

continues until a synthetic sequence of the desired length has been generated. The PDFs 

f(Lw), f(Ld) and f(P) are estimated using kernel density estimators detailed in Lall eta! . 

[1995] and Rajagopalan eta!., [1995] and are described below. 

Kernel density estimation 

The kernel density estimator generalizes the frequency histogram as an estimator of 

the PDF. While the histogram is capable of showing some features of the data, it has 

several drawbacks. It is difficult to manipulate analytically, it is not easy to visualize for 

multivariate situations, and it allows fo r no extrapolation beyond the data. The histogram is 

sensitive to the class width, as well as the origin of each class. Silverman [1986] illustrates 

these problems graphically. One can improve the histogram by centering rectangular boxes 

at each observation (to gain independence from choice of origin). A kernel density 

estimator, introduced by Rosenblatt (1956], is formed by centering a smooth kernel 

function at each observation. 
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An attractive feature of kernel estimators of the PDF is that they are local (use only a 

neighborhood around the point of estimate) and hence are not globally affected by outliers. 

Since they make weak prior assumptions of the underlying probability density function, 

they are data driven and robust and are portable across sites/data sets . For details on kernel 

density estimation, refer to Silverman [1986] and Scott [1992]. 

Univariate continuous variables . The kernel density estimator for a continuous 

variable (such as the wet day precipitation P) is defined as 

(8.2) 

where K(.) is a kernel function centered on the observation Pi, and can be any valid 

probability density function and his a bandwidth. The bandwidth h controls the amount of 

smoothing of the data in the density estimate. Bandwidth h may be constant or variable, 

taking on different values at different locations. An estimator with constant bandwidth h 

(like in Equation 2) is called a fixed kernel estimator. Commonly used kernel functions are: 

Gaussian Kernel K(t) = (27t)- 1/2 e-t2f2 (8.3a) 

Epanechnikov Kernel K(t) = 0.75 (I - t2) I t I :<;; 1 (8.3b) 

Bisquare Kernel K(t) = ( 15116) (I - t2)2 I t I :<;; 1 (8.3c) 

The kernel function represents the weight given to the observation Pi based on 

distance between P and Pi. One can see from Equation (8 . 2) that the kernel estimator is a 

convolution estimator that forms a local weighted average of the relative frequency of 

observations in the neighborhood of the point of estimate. This is illustrated in Figure 8.3. 

The kernel function, K(.), prescribes the relative weights, while h prescribes the range of 
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Figure 8.3. Example of kernel density estimation using 5 data points with Gaussian 
Kernel, h = 0.5 
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data values over which the average is computed. The PDF of wet day precipitation f(P) is 

obtained by applying a kernel density estimator to log transformed data. Note that most of 

the data of wet day precipitation is concentrated near the lower boundary (i.e., 0.). This is a 

problem fo r kernel density estimation methods since modifications to kernel density 

estimate are necessitated within a bandwidth of the boundary. The kernel centered at an 

observation that is within one bandwidth of the boundary extends past the boundary 

thereby leading to leakage of probability mass in the resulting density estimate (i.e., an 

increase in the bias of the estimate). This boundary problem can be avoided by applying the 

kernel density estimator to logarithmically transformed data. The resulting estimator is 

given as: 

f(P) = -'-I K(log(P)-log(P0) 
nhP i=l h 

(8.4) 



The Epanechnikov kernel is used and the bandwidth h is chosen for the log transformed 

data using the recursive approach of Sheather and Jones [ 1991] to minimize the mean 

integrated square error (MISE) of estimate of f(log(P)). 

Silvennan [1986] points out that in terms of mean square error of the estimated 
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density, the kernel density estimator is more sensitive to the choice of the bandwidth than to 

that of the kernel, and the general practice is to choose a kernel and then seek an optimal 

estimate of the bandwidth h, under some criteria. 

Uni variate discrete vari ables . In this section, we present procedures for the 

estimation of the univariate probability mass functions fo r discrete vari ables (such as wet 

spell lengths w, dry spell lengths d). We reco mmend the discrete kernel (DK) estimator 

developed in Rajagopalan and Lall [in press]. The DK estimator for the PMF fcL), where L 

is either w ord, and n is the corresponding sample size, is given as : 

(8.5) 

where Uj is the sample relative frequency (n/ n) of spell length j , nj is the number of spells 

Lmox 
of length j , L max is the maximum observed spell length (note that I a. = 1), Kd(.) is a 

i=l J 

discrete kernel function, and L, j , and hare positive integers. The kernel function Kd(.) is 

given as : 

Kd(t) at} + b fo r ltl S:l (8.6) 

The expressions for a and b for the interior of the domain, L > h+ 1 and the boundary 

region L < h, are developed in Rajagopalan and Lall [in press]. 
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The bandwidth h is estimated by minimizing a least squares cross validation 

(LSCV) function given as: 

Lmax 

LSCV(h) = I cfU) )2 
j=l 

(8.7) 

where, f-jU) is the estimate of the PMFof spell length j, formed by dropping all the spells 

of length j from the data. This method has been shown by Hall and Titterington [1987] to 

automatically adapt the estimator to an extreme range of sparseness types. Monte Carlo 

results showing the effectiveness of the DK estimator with bandwidth selected by LSCV 

are presented in Rajagopalan and Lall [1995]. 

Multivariate continuous variables. By extending the idea of the kernel density 

estimator for univariate continuous variables, a kernel density estimate of the multivariate 

PDF of a vector y is defined as [Silverman, 1986]: 

f(y) = ~±, K(u) (8.8) 
i= l 

(y- y·)T s-l(y- Y) 
where u = 1 1 and K(u) is a multivariate Gaussian kernel function. y = 

h2 ' 

[YJ .n, .. ,yd]T denotes the d dimensional random vector whose density is being estimated 

with Yi = [YJi•Y2i· .. ,YdiJT i = I ton the sample values of y, n is the number of sample 

vectors, h is a bandwidth and S is the sam pte covariance matrix. The Gaussian kernel 

function used is given as: 

K(u) ----'~--exp(-u/2) 
(27t)d12det(S) 112 hd 

(8.9) 
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Just as in the univariate case described in the earlier section, K(u) represents the weight 

given to an observation Yi that is based on distance between y, and Yi· The distance used 

here is the Euclidean distance modified to recognize the covariance of they. It can be seen 

that the estimator in Equation (8.8) is similar to the univariate estimator in Equation (8.2) 

since it is a local weighted average of the relative frequency of observations in the 

neighborhood of the point of estimate. Here too the kernel function K(. ) prescribes the 

relative weights, h prescribes the range of data values over which the average is computed, 

and the covariance S provides the orientation. of the weight function. 

Here, we chose the bandwidth h as the one that minimizes mean integrated square 

error in fey) if the underlying distribution is assumed to be multivariate Gaussian. 

Silverman [1986] gives an appropriate h to use for a multivariate Gaussian PDF. using the 

Gaussian kernel as: 

h ={(4/(2d+l))li(d+4)}n-l/(d+4) (8.10) 

Here n is the number of observations and d is the dimension. As the dimension d increases , 

h also increases. This happens because in higher dimensions large regions of high density 

may be completely devoid of observations in a sample of moderate size. The bandwidth in 

such a situation has to be bigger to cover these large regions. 

The above choice of bandwidth is optimal for PDFs that are near Gaussian and is 

an adequate choice for many cases [Silverman, 1986]. Cross validation [see Sain eta!., 

1994] or plug-in methods [see Wand and Jones, 1994] could be used here to choose has in 

the wet/dry spell model. However, this increases the computational burden substantially. 

Recall that the parametric approaches often assume a Gaussian distribution. In a Bayesian 

context, using this bandwidth can be thought of as developing a posterior kernel density 
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estimate with a Gaussian prior. The resulting tail behavior and degree of smoothing 

supplied will be consistent with an underlying Gaussian PDF, with some adaption to local 

features. 

In the Bootstrap context we have a region that each observation Yi represents. The 

orientation and shape of the region are given by the scaling factor hS and the kernel 

function K(u). Resampling from the kernel density estimate entails picking a point Yi 

uniformly in [YJ ····Ynl and then simulating from the kernel K(u), i.e., N(yi,h2S). We 

extend this approach formally for simulation from a multivariate conditional PDF in the 

following section. 

Kernel Density Estimation of Multivariate 
Conditional PDF 

For the simulation of interest here an estimate of the conditional PDF f(Xt I Vt =V*) 

is needed. The strategy used here is similar to the one used by Sharma et a!. [ 1995] for 

streamflow simulation. Applying the estimator in Equation (8.8) to the conditional PDF in 

Equation (8.1) with sample vectors Xi=[Xt, Xt_J,Ptli denoted as [xi,Vil we get: 

(8.11) 

where S is the dg by dg covariance matrix of the vector (Xi,Vi) estimated from historical 

data. Let the matrix S be partitioned as: 

[ 
Sx s -

Sxv 
(8.12) 
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where Sx is the d by d covariance matrix of x, Sv is the d' by d' covariance matrix of v, 

and Sxv is the d by d' cross covariance between x and V. Using the Gaussian kernel 

function (i.e., Equation 8.9) Equation (8. 11) can be reduced to a weighted sum of 

Gaussian functions: 

n 

f(xt I Vt =V*) = L w;N(b;,c ;) (8.13) 
i=l 

where 

(8.14) 

b · I (8.15) 

n 

Note that L w; = I 
i=l 

From Equation (8.13) we see that the conditional PDF reduces to a weighted sum 

of Gaussian functions. It can be thought of as a slice through a multivariate density 

function, estimated as a weighted sum of slices with the same orientation through the 

kernels placed on each observation. Simulation from the conditional PDF can be achieved 

by picking a point Xi with probability wi, then sampling from N(bi,c). 

NP Simulation Algorithm 

The simulation proceeds as: 

1. Simulate precipitation for all the days of the year from the wet/dry spell model 

2. Estimate the NP model parameters (i.e., bandwidth h and the covariance matrix 

S) from the data for each season. 



3. At the start of each period of interest, initialize t=O, Xt = one of the historical 

observation randomly selected. 

4. Generate Xt sequentially (day by day) from f(xt I V tJ, where the conditioning 

vector Vt consists of the previous day's vector Xt-1 and the current day's generated 

precipitation Pt 

(i.e., Vt = [xt-J,Ptl) as: 

i. Estimate weights (wi) associated with each data point (xi) (Equation 8.14) 

ii. Resample an index i using Wi (i = l, .. ,n) as probabilities. point xi and Vt 

(Equation 8.15) 
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iv. Generate vector Xt = bi + E where E is from a multivariate normal distribution 

with mean 0 and variance c [see Devroye, 1986] 

5. Recover Zt as Zt = Xt*[STD]k+[Xlk where k is the calender day corresponding 

to day t. 

6. At the start of a new simulation go to step 3. 

Model Application 

To demonstrate the utility of the resampling model for generation of daily weather 

variables, the model was applied to daily weather data from the station Salt Lake City in 

Utah. Thirty years of daily weather data were available from the period 1961-1991. Salt 

Lake City is at 40046' N latitude, Ill o 58' W longitude and at an elevation of 1288 m. 

Most of the precipitation comes in the form of winter snow. Rainfall occurs mainly in 

spring, with some in fall. 

We shall first outline the experiment design and then some measures of 

performance used to judge the utility of the model. 
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Experiment design 

Our purpose here is to test the utility of the NP generation scheme. The main steps 

involved in accomplishing this are 

I. Daily precipitation is generated from the wet/dry spell model. 

2. The other variables are generated following the simulation algorithm described in 

the previous section. 

3. Twenty-five synthetic records of 30 years each (i.e., the historical record length) 

are simulated using the NP model. 

4. The statistics of interest (described below) are computed for each simulated 

record, for each period, and are compared to statistics of the historical record using 

boxplots. 

Performance measures 

The following statistics were considered to be of interest in comparing the historical 

record and the NP simulated record of other weather variables. 

~: 

I. Mean of each variable for each season. 

2. Standard deviation of each variable for each season. 

3. Skew of each variable for each season. 

4. Coefficient of variation of each variable for each season. 

Relative Frequencies: 

5. 25% quantile of each variable for each season. 

6. 75% quantile of each variable for each season. 

Dependence: 

7. Cross correlation on any given day between the variables for each season. 
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8. Lag-! daily cross correlation between the variables for each season. 

9. Lag-1 daily correlation of each variable for each season. 

Results 

The statistics of interest calculated from the simulations are compared with those 

for the historical record using boxplots. A box in the boxplots (e.g., Figure 8.4) indicates 

the interquartile range of the statistic computed from twenty-five simulations, and the line in 

the middle of the box indicates the median simulated value. The solid lines correspond to 

the statistic of the historical record. The boxplots show the range of variation in the 

statistics from the simulations and also show the capability of the simulations to reproduce 

historical statistics. 

Figures 8.4 through 8.7 show the boxplots of moments and relative frequency 

measures of Solar Radiation, Maximum Temperature, Minimum Temperature, and Average 

Dew Point Temperature, respectively. It can be seen that the historical values of mean, and 

the quantiles are well reproduced, while standard deviation, coefficient of skew, and 

coefficient of variation are not quite well reproduced. This is to be expected as the kernel 

methods inflate the variance by a factor equal to (I +h2) [see Silverman, 1986], which in 

tum effects the skew and the coefficient of variation. This inflation can be corrected 

through an appropriate scaling of the random terms during simulation [see Silverman, 

1986]. However, it may be desirable to have to have a slight increase in the variance of the 

simulations as compared to that of the historical. 

lllustrative statistics of wet spell lengths, dry spell lengths and wet day precipitation 

for the simulations from the wet/dry spell model are also estimated and are shown in 

Figures 8.8, 8.9, and 8.10, respectively. Figure 8.8 shows the boxplots of average wet 
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Figure 8.4. Boxplots of statistics of SRAD (a) mean SRAD, (b) standatd deviation of 
SRAD, (c) skew of SRAD, (d) 25% quantile of SRAD, (e) 75% quantile of SRAD, and (e) 
coefficient of variation of SRAD for model simulations along with the historical values for 
the four seasons. 
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Figure 8.5. Boxplots of statistics of TMX (a) mean, (b) standard deviation, (c) skew, (d) 
25% quantile, (e) 75 % quantile, and (e) coefficient of variation of TMX for model 
simulations along with the historical values for the four seasons. 
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Figure 8.6. Boxplots of statis tics of TMN (a) mean, (b) standard deviation, (c) skew, (d) 
25% quantile, (e) 75 % quantile, and (e) coefficient of variation for model simulations along 
with the historical values for the four seasons. 
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Figure 8.7. Boxplots of statistics of DPT (a) mean DPT, (b) standard deviation of DPT, (c) 
skew of DPT, (d) 25% quantile of DPT, (e) 75% quantile of DPT, and (e) coefficient of 
variation of DPT for model simulations along with the historical values for the four 
seasons. 
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Figure 8.8. Boxplots of statistics of wet spell length (a) mean wet spell length, (b) standard 
deviation of wet spell length, (c) fraction of wet days, and (d) longest wet spell length for 
simulations from wet/dry spell model along with the historical values for the four seasons. 
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Figure 8.9. Boxplots of statistics of dry spell length (a) mean wet spell length, (b) standard 
deviation of wet spell length, (c) fraction of wet days, and (d) longest wet spell length for 
simulations from wet/dry spell model along with the historical values for the four seasons. 



207 

(a) (b) 

~ 
~ ~ i 

i i 
I J ~ • ! ! Q 

,__, Season .2 ,.._, 
·~· ·~2 ·~3 ,.._, 

(c) (d) 

! 
i 

~ ~ • § 
~ 

,.._, s-~2 S•sonl ~· ·~· 
~2 ~3 -· 

Figure 8.10. Boxp!ots of statistics of wet day precipitation (a) mean wet day precipitation, 
(b) standard deviation of wet day precipitation, (c) fraction of yearly wet day precipitation, 
and (d) maximum wet day precipitation for simulations from wet/dry spell model along 
with the historical values for the four seasons. 
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spell length, standard deviation of wet spell length, fraction of wet days, and length of 

longest wet spell length for each season. Figure 8.9 shows the box plots of these statistics 

of the dry spell length. Figure 8. 10 shows the boxplots of average wet day precipitation, 

standard deviation of wet day precipitation, percentage of yearly precipitation in each 

season. The box plots in Figures 8.8, 8.9 and 8.10 show that the historical statistics are 

reproduced well by the simulations . 

Figures 8.11 and 8.12 show the boxp1ots of the !ag-O cross correlation and lag-1 

cross correlation berween the variables. Figure 8.13 shows the lag-1 auto correlation of 

each variable for each of the four seasons. The correlations from the simulations and the 

historical correlations seem to be different in a number of cases. The correlations that are 

reproduced most poorly are the ones with precipitation. While the correlations of the 

variables with precipitation are very small as can be seen from these figures and in many 

cases seem insignificant. 

One reason for this mismatch of the correlations is that the precipitation is supplied 

externally from the wetldry spell model. As a result the covariance between Xt-1 and Pt 

need not correspond to that of the historical covariance between them. This introduces a 

bias in the conditioning plane from which Xt is generated and results in a mismatch of the 

correlations. To verify this, we made rwenty five simulations without conditioning on 

precipitation (i.e. simulated Xt from f(xt I Xt-Jl where both Xt and Xt-1 are of dimension 5). 

The correlations from this simulation are shown in Figure 8.14,8.15 and 8.16 

respectively. It can be seen from these three figures that the correlations are well 

reproduced, which strongly suggests that the conditioning on the precipitation is the reason 

for mismatch of correlations in Figures 8.11, 8.12 and 8.13. 

One way to get around this problem is to generate the precipitation also in the 

multivariate model, i.e. simulate Xt from f(xt I Xt-J ) where both Xt and Xt-1 are of 

dimension 6. This should reproduce the correlation statistics. However, negative values 
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Figure 8.11. Boxplots of Lag-0 cross correlation between (a) SRAD and TMX (b) SRAD 
and TMN, (c) SRAD and DPT, (d) TMX and TMN (e) TMX and DPT (f) TMx 
(g) TMN and DPT, (h) TMN and P, and (i) DPT and P for model simul~tions and P, 
along wtth the histoncal values for the four seasons. 
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Figure 8. 12. Boxplots of Lag-1 cross correlation between (a) SRAD and TMX, (b) SRAD 
and TMN, (c) SRAD and DPT, (d) TMX and TMN, (e) TMX and DPT, and (f) TMN and 
DPT for model simulations along with the historical values for the four seasons. 
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Figure 8. 13. Boxplots of Lag-! Auto Correlation of SRAD,TMX,TMN, WSPD, and DPT 
for (a) season I , (b) season 2, (c) season 3, and (d) season 4 for model simulations along 
with the historical values. 
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Figure 8.14. Boxplot.-; of Lag-0 cross correlation bt:Lwt:t:n (a) SRAD and TMX, (b) SRAD 
and TMN, (c) SRAD and OPT, (d) TMX and TMN, (e) TMX and OPT, and (f) TMN and 
OPT for model simulations (without conditioning on precipitation) along with the historical 
values for the four seasons. 
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Figure 8.15. Boxplots of Lag-! cross correlation between (a) SRAD and TMX, (b) SRAD 
and TMN, (c) SRAO and OPT, (d) TMX and TMN, (e) TMX and OPT, and (f) TMN and 
OPT for model simulations (without conditioning on precipitation) along with the historical 
values for the four seasons. 
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Figure 8.1 6. Boxplots of Lag-1 Auto Correlation of SRAD,TMX,TMN, WSPD, and DPT 
for (a) Season I , (b) season 2, (c) season 3 and (d) season 4 for model simulations 
(without conditioning on precipitation) along with the historical values. 



215 

for precipitation may then be simulated. Since most of the precipitation is concentrated near 

0., simulating precipitation also along with the other variables may lead to oversmoothing 

of the mode of the precipitation density. 

Summary and Conclusions 

A multivariate nonparametric model that aims at capturing dependence up to lag- ! 

was presented and illustrated. The simulations are made from the conditional PDF 

estimated from the data using kernel density estimators. The kernel estimators (being local 

average estimators) have the advantage of readily admitting arbitrary probability densities 

without requiring that they be hypothesized or formally identified. Broader dependence 

structures can be consequently considered. The need to choose/justify and fit the best PDF 

is side stepped. 

The bandwidth is the key parameter in the NP model, because it determines the 

degree of smoothness that will be imparted to the PDF. The larger the bandwidth the 

smoother the PDF and vice versa. Choosing h automatically using cross validation [see 

Sain eta!., 1994] or plug-in approaches [see Wand and Jones, 1994] from the data would 

be more appropriate than the choice used here. However, the additional variance in the 

choice of h induced by such an estimation process may detract from its use where the 

primary purpose is to resample the data. Bandwidth selection methods are undergoing 

continuous improvement. We expect to implement more formal selection procedures in due 

course. One could also use a local covariance matrix estimated at each data point using a 

few neighbors of that point (i.e., Si instead of Sin Equation 8.8). Sharma et a1.[1995] use 

this method for streamflow simulation. 

Another problem with simulations is the boundary effect. For the variables that are 

bounded (e.g., Solar Radiation and Precipitation), values that violate the bounds could be 
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generated. Typically these are censored to the bound. This may introduce a bias in the 

simulations. Procedures to better address this problem in univariate situations are described 

in Miiller [1992) and Rajagopalan et al.[l995], but for multivariate situations effective 

methods are yet to be developed. 

We chose to apply the NP model on a seasonal time scale, because the precipitation 

model that was used to drive the NP model is a seasonal model. However, we checked the 

results of the seasonal NP model at a monthly time scale, and found the performance to be 

similar (results are not presented here) . 

The NP model developed here underscores our growing conviction that 

non parametric techniques have an important role to play in improving the synthesis of 

hydrologic time series. They can capture dependence structure present in the data, without 

imposing arbitrary distributional assumptions, and produce synthetic sequences that are 

statistically similar to the historic sequence. The idea of resampling the data with 

appropriate perturbation of each value while maintaining selected dependance characteristics 

(or data sequencing) is easy to accept as a practical matter. 
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This research developed non parametric resampling procedures for simulation of 

daily precipitation and a suite of other weather variables. The procedures avoid prior 

assumptions as to the parametric forms of the underlying probability models. Consequently 

these procedures can be applied uniformly across regions/sites. A nonparametric seasonal 

wet/dry spell (NSS) model was developed for simulating the daily precipitation, and a 

multivariate nonparametric resampling scheme for simulating the daily values of other 

weather variables. 

In the course of development of the wet/dry spell model, various nonparametric 

density estimation techniques for both discrete and continuous variables were compared, 

and a new discrete nonparametric estimator for estimation of discrete probabilities was 

developed. 

Seasonal variation in precipitation was studied through the nonparametric estimation 

of the Poisson process rate, leading to a smooth representation of the occurrence process. 

Significant changes in seasonality were found in stations going from north to south along a 

meridional transect in the western U.S. 

Recognizing that precipitation is one of the key variables that triggers several 

hydrologic processes, and also the increasing evidence that precipitation is strongly driven 

by large scale climatic fluctuations, an auempt to beuer understand the climatic fluctuations 

and their effect on precipitation pauems was also made in this study. Spectral analysis 

using the nonparametric multitaper method (MTM) was performed on monthly precipitalion 

an10unts at a a few stations along a meridional transect in the western U.S. revealed strong 
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signals in the 3-7 yr and 2-yr frequency band that were consistent with the atmospheric 

oscillations such as El Nino/Southern Oscillation (ENSO) and Quasi-biennial Osciallation 

(QBO). Significant spectral coherence was also found wi th the atmospheric indices e.g., 

Southern Oscillation Index (SOI) and Central Northern Pacific (CNP). 

Results from the seasonality and the spectral analysis motivated us to seek a 

precipitation model that obviated the need to divide the year into seasons, which were 

fo und to vary from location to location. A nonhomogeneous Markov (NM) chain model 

that does not require the year to be divided into seasons was developed. The transition 

probabilities for each day were estimated using the discrete nonparametric estimator that 

was developed. The NM model is relatively parsimonious and locally adaptive. One 

objective of the study was to develop a multivariate resampling scheme for a suite of 

weather variables that would consider the day to day dependence and the precipitation 

status. A multivariate resarnpling procedure that simulates a vector of weather variables for 

any given day, conditioned on the vector of variables of the previous day and the 

precipi tation status of the current day was developed. This approach is likened to a 
(3 

smoothed)l'ootstrap, wherein the nature and amount of smoothness is provided by the 

multivariate kernel density estimators. 

Precipitation Models 

In the course of this research, two models for simulating daily precipitation were 

developed, the nonparametric seasonal wet/dry spell (NSS) model and the 

nonhomogeneous Markov (NM) model. A brief discussion regarding the nature and 

attributes of these two models is presented below. 

NMmodel 

The simplest traditional approach is the Markov chain model. Typically a first-
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order, two-state (viz., a day is wet or dry) Markov chain is considered and the transition 

probabilities between the states are estimated from the data. The transition probabilities are 

assumed stationary over a chosen period (usually a a month) and hence this is one of the 

major drawbacks of this traditional approach. As a result they cannot reproduce long term 

persistence and clustering of events readily. Despite this the Markov chain model is 

anractive because of its largely nonparametric nature, ease of application and 

interpretability, relative parsimony, and well developed literature. 

Non parametric estimation methods readily offer to extend the traditional 

homogeneous Markov model to a nonhomogeneous situation. This admits first-order 

dependence parsimoniously. In the light of changing seasonality in precipitation, 

assumptions of homogeneity can be hard to justify; in such situations the NM that avoids 

the seasonality issue is better suited and is to be recommended. 

Strong signals of low frequency variability have been seen in precipitation records 

at many sites. This indicates nonstationary behavior at the interannual time scales, contrary 

to the general assumption that precipitation process is stationary from year to year. The NM 

model can capture this interannual variability; however, inclusion of atmospheric indices 

(such as SOl, CNP, etc.) that quantify some of the know low frequency oscillations will 

improve the performance of the NM model. Attempts have been made to address this 

heterogeneous nature, by pursuing a hierarchical Markov chain model that considers 

"weather types" to describe the daily precipitation process, but the parameter estimation can 

be cumbersome. The NM model, on the other hand, can be modified easily in a 

parsimonious manner to accommodate this. Future work in this regard is needed. 

NSS model 

The main advantage of this representation is that it allows direct consideration of a 

composite precipitation event, rather than its discontinuous truncation into arbitrary daily 
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segments. This model can capture the clustering of events rather better than the traditional 

Markov chain. As the name suggests, a wet (dry) period is always followed by a dry (wet) 

period (i.e. no transition to the same state is possible) . 

The primary difficulties with this approach are (1) the inability to discriminate 

between rainfall events at short time scales, (2) the possible need for disaggregation of wet 

spell precipitation into daily or event precipitation, (3) justification of the independence 

between the dry and wet period lengths, and (4) effective reduction in the sample size by 

considering spells rather than days . The other objectionable aspect is the parametric 

specifications for probability distributions, and assumptions of independence of spells, 

especially in the light of heterogeneous nature of the data. 

However, this structure is plausible and the NSS model developed in Chapter II 

addresses some of these difficulties. That model resamples precipitation traces under the 

assumption of stationarity within the season. lf event characteristics are of interest, such as 

the wet and dry spells are of interest for planning crop/water management in arid regions, 

the NSS model is to be recommended. If the wet and dry spells are strongly correlated, the 

NSS model is highly recommended as it allows for conditional resampling. Also, the 

nature of the NSS model allows a rich structure for the wet and dry spell distribution. 

However, the division of the year into fixed seasons is restrictive, especially in the 

event of significant changes in precipitation seasonality identified in Chapter V. This could 

be addressed by having a moving window, instead of the fixed season, and then estimating 

the probability density functions using the spells captured by this moving window, thereby 

capturing the nonstationarity. Data limitations detract from this moving window approach. 

In closing, the two models developed here provide a very general framework for 

precipitation modeling, unlike the traditional approaches; however, future research to work 

around the problems mentioned in these two models is needed. 
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