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ABSTRACT 

Magnesium Ion Inhibi•ion of Calcium Carbonate 

Precipitation and its Relation 

To Water Quality 

by 

John J. Hasse••, Doctor of Philosophy 

Utah State University , 1970 

Major Professor: Dr . Jerome J . Jurinak 
Departmen•: Soils and Meteorology 

The effect of Mg++ ion on the solubility of calcium carbonate was 

determined using P. K. Weyls "carbonate sa•urometer . " 

The amount of calcium carbonat:e precipitated or dissolved was 

measured for five series of wa•ers when equilibrated with solid 

It was found that the effect of Mg++ ion on solubility depended 

upon the nature of the solid phase: surface area , coprecipitated Mg++ , 

mineralogy , etc . 

Pure low area calcite showed an increase in solubility which 

could be explained by ion-pair formation , while its other carbon-

ates departed from this behavior . 

( 67 pages) 



INTRODUCTION 

The precipitation or solution of Caco3 in terms of water quality 

is important. From the industrial and municipal view, the solution of 

Caco
3 

and MgC03 by irrigation return flow waters increases the concen­

tration of Mgt+ and Ca++ ions in solution. Eldridge (11) considers the 

increase of water hardness due to Ca++ and Mgt+ ions to be the most 

important single adverse effect contributed by irrigation return flows. 

Hardness results in increased cost of soap, water softening and boiler 

scale . 

From an agronomic approach Caco3 precipitation, while reducing 

the total salt load of the water, can increase the sodium hazard of the 

water when used for irrigation purposes. Eaton (10) recognized the 

potential hazard caused by caco
3 

precipitation from the irrigation 

waters when he introduced the concepts of (a) possible sodium percent-

age and (b) residual sodium carbonate (RSC) . These were attempts to 

estimate the sodium hazard by assuming that all Mgt+ and Ca++ ions in 

solution would precipitate quantitatively in the presence of excess 

Hco; and co; ions . 

Possible sodium percentage 

Residual sodium car bonate 

where ( ) represents concentrations expressed in meq/liter . 

Wilcox (25) in field and laboratory studies came to the conclusion 

that waters with more than 2 . 5 meq/liter RSC were not suitable for 
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irrigation purposes . Waters concaining 1.25 to 2.5 meq/liter RSC were 

marginal and those concaining less than 1.25 meq/liter RSC were prob-

ably safe. Babcock et al. (2) found in a 4-year lysimeter study, using 

artificial waters, that the amount of exchangeable Na+ produced did noc 

appear to be closely relaced to che Hco; in the water. This is in 

contrast to what might be expected from Eaton ' s (10) principle of 

possible sodium percentage. 

Langelier (16) devised an index co indicate the extenc of waters 

flowing in a closed system (no loss of C02) to precipitate or dissolve 

Caco3 . The saturation index is defined as the actual pH of the water 

(pHa) minus the theoretical pH (pHc) that the water would have if it 

were in equilibrium wich Caco3 (calcite). 

Saturation index pHa - pHc 

Positive values of the index indicate that Caco3 will precipitate 

from the water, whereas negative values indicate that the water will 

dissolve Caco3 . Langelier's equation for the pHc is: 

pHc (pK~2 - p~p) + pea + pAlk 

I I 

where pKa2 and pKsp are, respectively, the second dissociation constant 

and the solubility constant of H2co3 and CaC03 corrected for ionic 

strength . pCa is the negative logarithim of the calcium ion concen-

tration and pAlk is the negative logarithim of the equivalent concen­

tration of titratable base (co; + Hco;). 

Bower (4) , and Pratt , Bronson and Chapman (21) found the fraction 

of applied Hco; that precipitated in the soil was highly related to a 

modified Langelier saturation index. The modification was the 
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replacement of the actual pHa of water with the pH of the highly-

buffered soil (pHs). The saturation index used was: 

(Modified) Saturation index pHs - pHc 

Bower , Ogata and Tucker (5) further modified the saturation index, 

to obtain a better fit with experimental data , by replacing pCa with a 

linear combination of the concentration of magnesium and calcium in the 

solution , p(Ca + Mg) . 

pH~ (p~2 - pK~p) T p(Ca + Mg) t pAlk 

6 
where saturation index = pHs - pHc. 

The above equations assume that the chemical reactions of magne­

sium are the same as calcium and that Ca++ +Mgt+ can be combined in a 

linear combination to allow for the precipitation of both caco
3 

and 

It is the contention of the author that this type of additivity 

is not valid since (a) MgC03 has a greater solubility than Caco3 , 

(b) Mg++ ion may inhibit precipitation by interfering with nucleation, 

(c) Mg++ can increase the total amount of Caco3 which will dissolve 

due to the formation o£ ion-pairs and (d) Mgrt can interact with the 

Caco3 crystal forming a more soluble crystal than pure calcite. 



REVIEW Of LITERATURE 

The solution and precipitation of caco
3 

are controlled by several 

variables. Ponnamperuma (20), Garrels and Christ (13) and others give 

the following equilibria which control simple Caco
3 

systems (Mg++ ion 

absent) . 

co2Cgas) + H20 :; H2co3 K1 = AH 2co3/PC02 

H2co3 :;: H 
+ 

+ Hco; Ka
1 

AH-t AHCO;/ AHio 3 

Hco; :_ H+ ;- co; Ka2 AH+ · ACO;/AHCO; 

Caco3 :;: Ca++ + co; Ksp ACa++ · AC03/ACaC0 3 (~) 

Usually the ACaCOJ(s) is taken to be unity reducing Ksp to: 

Ksp ACa++ · Aco; 

Kern (15) showed that the solution of C0
2 

(gas) to give H
2
co

3 
is two 

separate processes . K
1 

is the correct value for the equil~brium con-

stant of the first reaction and the value for Ka 1 is a composite of 

the second process and the value for the first dissociation of carbonic 

acid . 

K
2 

= AH
2
co

3
/AC0

2
(aq) 

Ka1 = AH+ · AHC0
3

/AH 2co
3 

In addition to these equilibria , the system is complicated by 

ion-pair formation , which involves the co; , Hco; , OH and Ca++ ions. 
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Davies (7) implies 1:hat formation of ion-pairs is the result ot ">'"'-

cific short range interactions which produce soluble , but unais~o-

ciated, species . The effect of the presence of these ion pairs is to 

increase the amount of CaC0
3 

which will dissolve and to lessen the 

amount which will precipitate compared to a system without ion-pairs. 

The ~quilibrium condition (Ksp = ACa++ TAco;} still holds for the 

system , Lut an increased amount of Caco
3 

must dissolve 1:0 meet it . 

ImportanT ion-pairs equilibria for a simple Caco
3 

system 

(11g ++ ion absent} are given below: 

CaC0° ~ Ca++ + co; Kd
1 

ACa++ = 0 

3 ~ ACO:/ACaco3 

Ca (HC0
3

}+ Cat+ 
T Hco; Kd 2 

ACa+t - t 
: AHCO/ACa(HC0

3
) 

Ca(OH)+ ;- Cat+ t OH Kd
3 

ACat+ AOH-/ACa(OH)r 

Nakayama (18) found in saturated Caco
3 

solu1:ions, under atmos­

pheric conditions , that 20 percent of the calcium in solution ~xists 

as ion-pairs , with CaCO~ being che predominant species. 

Effect of Mg 

Mgt+ ion can affect carbonate equilibria by interacting wi t1 the 

solution or the solid phase . 

Solution phase 

In addi.:ion to the ion-pairs involving t:he Ca+t ion , Greenwald 

(14) , Garrels and Chrisc (13) , Davies (7} and others have shown that 

the Mgt+ ion can react to form ion-pairs with t:he same erfect on 

carbonate equilibrium as t:he Cat+ ion , ion-pairs . The important equi-

libria are listed below: 
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0 ++ -MgC03 : Mg + C0 3 

Mg.,.+ + Hco-
3 

Mg(OH)+ t Mgt+ t OH 

ACO;/AMgCO~ 

AHCO;/AMg(HCO~).,. 

AOH-/AMg(OH)+ 

Doner and Pratt (8) found that Caco
3 

precipitated in ca t+ and Mgtr_ 

saturated montmorillinite suspensions was more soluble than calcite . 

When Caco3 was precipitated from CaC12 and NaHco; in clay suspensions 

with Mg-saturation as a variable, its solubility was related to the 

amount of Mgt+ ion in solution with apparently no effect of the clay 

per se . Doner acd Pratt (9) measured the solubility of Caco3 precipi­

tated in the presence of various salts at controlled C02 partial pres­

sures . They found that in NaCl solutions the solubility or carbonate 

precipitated was that of calcite while ic MgC12 solutions the sol utility 

was higher . In the MgC12 solutions , both the aragonite and calcite 

were detected and Mg+t was coprecipitated in the solid phase . 

In addition to the effect of Mgt+ ion-pair formation on Caco3 

solution or precipitation , Mgt+ may directly effect calcium carbonate 

precipitation by inhibiting calcite nucleation . 

The formation of a precipitate may be considered to consist of 

two distinct processes : nucleation and crystal growth. The fact that 

s upersatura1.ed solutions exist for definita periods of time suggests 

that the process of initiating precipitation differs from the process 

of continuing precipitation once it has been initiated . fisher (12) 

slates that the distinction between the two processes results from 

the fact tha the force in crystal growth is the overcoming of h~·dra-

tion energy by lattice energy , while in he nucleation process no 

lattice and hence no lattice energy exists . There exists , therefor~ , 



7 

an energy barrier to nucleation which must be overc~me betore crystal-

lization can occur . One result of the energy barrier is the develop-

ment of various degrees of solution supersaturation prior to 

crystalization . 

The effect of Mg++ ion on CaC03 nucleat1on was t1rst recvgniz~d 

by Leitmeir (17) who found that Mg•+ ion favored the precipitation 

of aragonite over calcite . Bischoff (3) found that Mg+~ ion inhibited 

the diagenetic aragonite-calcite transformation by reacting with cal-

cite nuclei . Since the dehydration of the reactants on the surface of 

growing crystals is often the rate controlling step , Bischoff (3) 

postulated that Mg++ ion being more strongly hydrated than ca•• re-

mains hydrated when it reacts with the calcite nuclei and thus inhibits 

further growch . This i nhibiti on is overcome when sufficient nuclei 

have been formed to remove the Mg++ ion to a level at which new nuclei 

can form which do not contain Mgt+ ion. Pytkowicz (22) found that 

Mg++ ion inhibited the precipitation of Caco3 from sea water by forming 

MgC0
3 

complexes , thus making more collisions necessary to initiate 

precipitation . 

Solid phase 

Mg++ ion can affect carbonate equilibrium by intera~ting wi h 

the solid phase as well as the solution phase . Akin and Lagerwerff (1} 

reported enhanced solubility of CaC03 precipitating from supersaturated 

solutions in the presence of Mg++ and SO~ ions . He developed a theory 

of enhanced solubility based on the Langmuir adsorption of Mgt+ and 

SO~ ions , and the ions of CaC03 on a crystal surface consisting of 

caicite and CaC03 having a modified crystal lattice. 
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Weyl (24) found that he could not explain the slow kinetics he 

found for calcite dissolution in the presence of Ca++ and Mg'+ ions by 

ion- pair formation and concluded that the rate inhibiting mechanism 

was at the solid- liquid interface . He also found that 1 rn mole of 

Mgt-t per kilogram of solvent can increase solubility approximately 12 

percent over pure calcite . 

Chave and Schmalz (6) found using pH-sensing techniques that three 

factors invoLving the solid phase , mineralogy , grain size and char­

acter, control the interaction of the carbonate crystal with the 

associated water . He also found the activities of rnagn~siurn calcite~ 

were four times greater than pure calcite and that particles of calcite 

10- 6 ern in diameter have activities more than eight times greater than 

1 ern particles . 



MBTHODS AND MATERIALS 

The determination of the state of CaC03 equilibrium is compLi­

cated by the number of variables whlch cannot be experimentally meas-

9 

ured . AtTempts TO use thermodynamic-derived constants for the various 

equilibria require correction for ion-pair formation , ionic strength 

and deviation of the activity of the solid phase from its standard 

state of unit activity . 

It was decided because of hese difficulties tha"t lhe metr,od 

developed by Weyl (24) would be used as a measure of carbonate solu-

bility . Weyl (214-) developed the "carbonate saturometer" which makes 

it possible to measure the degree of departure of most acqueous solu-

tions from saturation with respect to a particular solid carbona1:e. 

The method is based upon the fact That the pH of a solution changes as 

the co; ion is added or removed from solution. If a water sample is 

undersaturated with respect to a solid CaC03 , CaC03 dissolved produces 

co; ions which combine wi~h H
4 

ions increasing the pH of the solution . 

If the water is supersaturated with respect to a solid CaC0
3

, CaC0
3 

precipitates , Hco; ions dissociate and the pll decreases . 1f tht! -~a ter 

is saturated with respect to a solid caco3 , rhe pH of Tbe suspension 

remains the same . 

The "carbonate sa1:urometer" is calibrated by comparing the amount 

of strong acid or base required to produce 1:he same change in pH (ApH) 

that results when a standard addi ion of Hco; is made . 

F(x) = z/y 



where z equals the amount of s tr•ong acid ( +z) or base ( -z) rt 1uired 

to produce the same ~pH as y moles of bicarbonate and f(x) 1~ a 

function of the hydrogen ion activity: 

Once the function F( x) is determined for a water , the wat!!r 

can be equ~llbrated with a solid CaC03 and the ~pH results noted. 

Comparison of this ~pH with the amount or standard acid or base 

required to produce the same ~pH and with the function F(xl allo~~ 

calculation of the amoum: of Caco
3 

which will dissolve in a g.o.ven 

wa~~r, i. y equals the nur.:ber of ml)lt" of Caco
3 

whict, d!:>solve 

then: 

-y z/(1- F(x)). 

A detaile<.l development of the "carbonat<' staurometel' ' Is present.,d 

is Appendix 1. 

++ Experimen s wel'e initiated to show the effect of Mg l)n Caco
3 

10 

precipitation and solution from unsaturated and slightlf supersaturatort 

waters . These experiments consisted of two series of wat~rs (Tdblu 

and 2). In the first series (Table ll, equal amounts of Ca++ and 

Hco; were added . The degree o± saturation was var1ed by incl'easing 

++ - H the amounts of Ca and HC0 3 equally. Mg ion concentration was 

varied from OM to 2xl0- 3M and the ionic strength was held constant by 

addition of NaCl. rn the second series (Table 2) Catt ion ronG~n-

tration was held constant and -che degree of satura-cion var1ed by 

increasing the amoun-c of Hco; added . Mg•+ ion concenrration was 

varied from OM to 2xl0- 3M and the ionic strength Wds held con .. tam 
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Table l. Composirion of warers (Series 2) 

Water Calcium HCO Mg lOnH! 
Cone M Cone M Cone M Streng h 

(1 ) 

l a Sxl0- 4 Sxl0 - 4 
I) . 05 

lb 5xl0- 4 Sxl0- 4 Sxl0- 5 
.05 

lc Sxl0- 4 
SxlO 

-4 
2.~xl0 

-~ 
.05 

ld SxlO - 4 Sxl0- 4 5xl0 -~ .os 

le 5xl0- 4 
5x10 - lxlO - 3 

.05 

lf Sxl0- 4 Sxlu-4 2xl0 
-1 .os 

4a lxJ.O - 3 .lxlO -3 0 , ()5 

4b l xl0- 3 lxl0- 3 ~xl0- 5 
. 05 

4c lxl0- 3 lx.l0- 3 
2 . 5xl0 

-4 
. OS 

4d l xl0- 3 lxl.O -3 Sxl0-4 .05 

4e lxl0- 3 lxl0- 3 lxl0- 3 
. 05 

Iff lxl0- 3 lxl0- 3 2xl0- 3 . 05 

Sa 2xl0- 3 2xl0- 3 
0 .OS 

Sb 2xlo- 3 2xl0- 3 5xl0- 5 .t' C.. 

Sc 2xlo- 3 2xl0- 3 2 . 5xl0 
-4 

. 0!' 

Sd 2xl0- 3 2xl0- 3 Sxl0- 4 
.05 

5e 2xl0- 3 2xl0- 3 lxl0- 3 
. OS 

Sf 2xl0- 3 2xl0- 3 2xlo- 3 . 05 



Table 2. Composi:ion of waters (Series ll 

Watei' Calcium HCO Mg toni 
Cone M Cone M Cone M Strength 

( 1) 

1~ SxlO SxlO - 4 
0 .05 

Sxl0-1! Sxl0-4 _, 
til SxlO .0 ~ 

lc SxlO 
- 4 -4 -4 

.0~ 5xl0 2 . 5xl0 

ld Sxl0-4 5x10_., SxlO 
-~ .o:. 

-I. SxlO-~ <c SxlO lxlO -~ . 0!> 

lf Sxl0- 4 
5xl0 -4 2xl0- 3 

. v5 

?a SxlO 
- 4 lxlO-J 0 .OS 

2b SxlO 
- 4 lxlo- 3 SxlO-S . 0~ 

2c Sxl0- 4 lxl0- 3 2.5xl0- 4 
.OS 

2d SxlO - 4 lxl0- 3 SxlO - 4 
.O S 

2e Sxl0- 4 lxlo- 3 lxlo- 3 
.OS 

2f Sxlo- 4 lxl0- 3 2xl0-3 . 05 

3a SxlO 
- 4 SxlO -J 0 .o~ 

3b Sxl0- 1! 5xl0 -3 SxlO-S .05 

3c 5xl0 Sxl0- 3 
2.~xl0 

-4 .as 

3d O>xlO - 4 Sxl0- 3 5xl0- 4 
. 05 

3e Sd0- 4 Sxl0- 3 lxl0- 3 .OS 

3f SxlO 
- 4 Sxl0- 3 2xl0 

-3 
.O> 



l3 

by addicion of NaCl . Wa~ers (1, 2 and 4) w~ra undarsatura cd , wh le 

waters (3 and 5) were supersaTurated. 

Four solid carbonace macerials , Mal1inckro~ reagenc Caco
3 

lot 

TEJ {"f) , Purecal U (U) , Millville soil (M) and Portnu":' soil (P) , were 

equilibrated wich che wacers . 

T and U were shown by x-ray diffraction techniques to be pure 

calcite . Surface ~asuremcnt~ using stedcic acid ad~orpr~on after 

t1e method of Suho , Masafumi and Arakawa ( 23) showed T to be a low 

su~fa~L area CaCO ( 

Caco3 ( 13 . o m2/gm). 

8 m
2

/gm) and U to be a high :.urfa~e at•ea 

MiLlville soil is a highly calcare()U.S soil ( • 45'!. CaCO J equiv-

alent) from Utah Scat:e Agriculcural Exp.,rim.,nt Station's north farm. 

X-rat diffraction showed the calcareous nature co be predom"nately 

dolomitic in nature, with a small amount: of calcite present . 

Portnuef soil is a calcar.,ous ( • 20%) loess soli from th"' .5n }.e 

River Valley io southwestern ldaho. X-ray diffraccicn showed the 

<'alcar~>ous macerial to contain about equal amounts ot calcite and 

dolomice. 

A de ailed description of the experimental method is present~d 

below . 

A. Prepare cwo lit:ers of water by addition of the a~propriat~ 

amounts of lm NaCl, .lm NaHC0
3

, .lm CaCL
2 

and .lm MgC1
2

. 

B. NaOH or HCl titration 

1. Pipette 100 ml sam~le into reaction ,·essel (Figure lJ. 

2 . Aerate to constant pH , r.,cor·d pH. 

3 . Flush atmosphere above water with N
2

, e5tablish a 

slight pressure gradient of N2 be Wt!en reacnon "Jessel 
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Electrodes 

!igure 1 . Reaction vessel 
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and armosphere. 

4 . Add . 25 ml increments of ., 2xl0-3 N NaOH or HCL from 

burerre , allowing pH ro stabilize berween readings. 

o. Record pH resulring irom addirion ot each increment. 

ti. Plot the titration curve; ~quivalents/llter vs. 6pH . 

C. . NaHC03 titration 

1. Aerat.e a new 100 ml suLsample o a constant pH , record 

2. -2 While aerating add . 5 ml incr~ments ot lxlO M NarlC03 

to undersat rated san1ples , . 5 ml increments oi lxlO-l M 

NaHco3 to supersaturated ~ample~ allo;, ing pH '" s td.hi li ze 

between readings. 

~ - Record BpH that results from addition of lildch .incremen<:. 

4 . From the base or acid ti tr•ation curve determine the 

equivalents/liter of base or acid required to produce the 

same pH as results from addition of each increment of 

bicarbonate . 

5. Determine F(x) 

f(x) 

Acid-bicarbonate comparison 

D. Solid Caco3 addition 

1 . Aerate a new sample of warer to a constant pH , record pH . 

2 . Add excess of solid C.aco3 . 

3 . Aerate to a constant pH, record llpH . 

4. fr"om titra'tion curves with NaOH or HC1. (part B) determirac' 

the equivalents/lit:er of acid or ba»e 1·equ1red t:o produce 



same 6pH as result~d from the addition or ~~lJj Cac0
0

. 

5 . Calculate 

-y = z/(1- f(x)) 

Where y equals tbt< number ~r mo e:s of CaC0
3 

whi~t. 

dissolvt!d . 

lb 

for these experiments , a fi.;a-;:h pH reco:rd1 ng elecu•ometer ~1odo=l 

EU-301A was used tc obtain the necessary pH measurement.; . Th" insu u­

r.;ent is capable of five full scale !·H s~;ans ot • , 2 , 5 , 10 dnd 14. 

For- these ~Xferimen'ts a pH s~an of 2 wa..:.~ '!.SC · wttn :a hJ.,Jt::r j_rJd.:x 

So'!tting of 8 for supersaturated waters. Tt.e ac; uracy u1 tile instru 

ment .is better than 0 . 5% full-scale (bett"r than 0 . 01 pH en a S(Jdn vl 

2) . for these experiments , the standard deviation (as) was found to 

range from as = .017 to crs = . 01 depend~ng on th" saturati.on water·s. 

Tables 3 , ll, 5 , 6 and 7 give F(x) and ib standard deviation. 
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Table 3 . f(x) and ~he amount or CaC0 3 d1~solved upon addirion or 
carbonate ma•erial 

Water F( x) ~ OS Tx10
5 

Uxl0
5 

Mx o' PxlOt' 
l moles/L mole,/l. m::>J,,./L mohos/L 

a -. 0167 . 001 1. 35 l.b2 . 15 1.1Pt 

b -. 0121 . 0()1 1. 33 l. 58 . 51 l. 39 

c -. 235 . 002 l. ~I) l. 8' .oa l. 55 

d - . 0224 .001 l. 52 l. 8-l . 67 1.50 

i - . 0216 . . 001 1. /5 2 . 27 .65 1. 70 
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Table 5. F(x) and the amount of Caco 3 dissolved upon addicion of 
carbona e material 

flater F(x) OS Txl0
5 

Uxl0
5 

11xl0
5 

Px10
5 

3 moles/L moles/L moles/.L moles/L 

a -. 032 . 001 5 . 62 3 . 95 . 96 2 .13 

b - . 0339 . 002 3 . 38 4 . 45 . 58 2 . 13 

c -. 0349 • . 001 4.29 6 . 11 1.9 1.35 

d -. 0361 • . 002 4 . 34 5.40 2 . 9 2.27 

e 

f -.0370 ± .002 4 . 98 ~ . 80 3.0 2 . 20 

Table 6 . F(x) and the amount of CaC03 dissolved upon addition of 
carbona~e mater ial 

Wat:er F(x) 1. am Txl0
5 

Uxl0
5 

t1x10
5 

Px10
5 

4 moles/L moles/L moles 1L moles/L 

a -. 0268 ± . 006 . 589 l. 22 . 098 . 852 

b -. 0273 ± .003 . 676 l. 22 . 175 . 99 

c -. 0291 ± . 003 . 557 1 . 57 .155 1.01 

d - . 0281 ± . 001 . 593 l. 29 .146 . 758 

e - . 0231 ± . 001 . 43 1.07 . 04~ . 332 

f - . 0289 ~ .001 . 57 1. 32 0 .0 0 . b5 



!9 

F(x) and he amount or O:ct\..0 di:::,solved upon c.dditl ... n ~f 
carbonate material 

Txlu
5 " ' Px 0

5 
,Ci tr '(x) ·m Ux10 Mxlv 

moles/L fll<.'l~s/L moles L moles/L 

a - . 0~15 t . 003 5 . 18 4 . 7 . Oh . 46 

b - . 0354 ± .003 ·~ . 94 4 . 06 .lb . 9'~ 

c - . 0315 .!: .002 4 . 25 3 . 75 . 00 . q I 

d -. 0384 . 004 If, 98 3.97 .liJ .L . 21 

e -. 0380 ~ . 003 4.56 . 46 . 3 !. 01 

f -. 0362 . 003 3.02 4 . 31 . 95 . 86 
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RESULTS AND DISCUSSION 

The results of the " carbonate saturome1:er" experiment» tor ;;a ers 

1 , 2 , 3 , 4 and 5 are presented in Tables 3 ro 7 . The columns golng 

ft'Om a lc f are at constant ionic s1:reng"th and constan-r initial Ca 1"1-

and Hro; concentrations , but increasing in MgH ion concen•ratlon !rom 

-~ 
OM to 2xl0 - M. 

Water 1 (Tdble 3) , the least sa urated of the waters wi1:h respe=t 

tv caco
3

, sho10s tha-r wich incre3sing arr.owlts of Mg-t ic.o :r.1 !ally 

pr~ Enl an increase: in the amt.>unt of carLonates di.ssvlved o..;c.u!,re-.j in 

all four carbonate systems (T , J , M, !') . The amJuot disJ>.Jlved was ot 

he order U p ~ T M, forT the solubilJty of CaC03 increar.ed trom 

1. :JSxlO-S moles/liter to l. 75xl0-S moles/liter , >~i th a simllat' incC'~as• 

with Lhe other solid carbona tes . 

For water 2 (Table ~) the solid carbonates T and U sno>ted an 

increase in "the solubilicy wi-r.h increasing initial Mgt+ .:. .. :m couc~n-

rarion , while the soil materials M and P showea a rie.:rea e n ~he 

amount ot carbonate dissolved. 

Water 3 (Table 5 J was supersarura1:ed wi -rh rt:spect ~·~ all torJr 

calca!'eous materials. ForT , a decrease in 1:he arnoun1. ..:>i carbonate 

precipil:a ted resulted upon increa,.ing the initial cone en r ra Lion Mg H. 

Thi.; can be shown to be in agreement wlth the effe::t or ~1g" lon on 

waters 1 and 2. For U and he soil r:~aterials M and F , ar. tncrea ·e ln 

the amount of carbonate precipi-rated occurred upon increasing thA 

initial concenrration of Mg'+ . 

Wa1eer 4 (Table 6) wa,; an undtersdturat:ed wa1:er with he leaJt 



potential 0 dissolve CaL03 . rr followed the sam~ ;ctt ~n oi WQte~ L 

IT~ble 4) Pxcept for wa er he solubil1 ry of 1 and L "a~ essent.ally 

constant a~ Lhe Mgt+ concentrate _ ncreas~d . 

via er 5 (Table 7) was the most supersaturated water ~n t'e-pect o 

<>.ro
3

. The s~lubil ry pattern w1th reg~rd .:l r.cr,e.;~.ng Mg •' .on 

«>ncentra ion also followed that of ~<at"r' .l (Table 5). 

~~d ~d~bor.atc~ ~r~~tn .. eager 6Laje a.~tt~ t ) , a 

rf!!>d. k;a"-I e:l t .B m2/gm) , r.av d...;. trea ... c,..~a lf H lt:m-rca .. r 

~ ecs .,. '"~t: amount o! a ll J .. 

a f ..1~d to be he ca.:;.c ror T in dll <'\dters. 

Pul'ecal U (U ) , a high urface Qrea «lc!te 

similar o T when it was qui Ubl .;ted "i rh undersa" l::'.;•etl .a r 

Pureca l U was found to have a higher solub.li y r~a •• ; 

ably due o its higher surfa e area . have ana ~-hmalz \ ) a 

particles of calci e 10-6 em tn diameter had ~ct1v t•e m r- "' e ght 

tlm~~ !edt r hdn par icle~ of 1 em rltameter. EqJiltbra 

up~r qt d -td waters did n~ resu t in a de:rea~e of~ 

lJ 

incre sing in.i.t.ial t~g++ ion conc~ntrat.ion as wa!:l. tht:: cas.a WLL11 T , bu"1" 

preci9 i taL ion was found to 1 ncrease t-1.1 h i ncr~d~:ang con en • ra t1')n 

Mg < 'uit.ally vr·esem:. 

Or.~> e ·pt .. nat on :ror lh~s !Jehav.or i hat Pur.,cal , a lngt• ~w-

face area caJcitc , ls capable of adsorbing sutficient Mg 1
t .on rrvm 

solution o allow a low area , less soluble alclte tv prec pi·~te. 

This i•1 !3upp-orted i:.y tt.e fac hat ere ol J •• it)· of l <I - e d 0 

h 
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value close to he solubility of the low surface area cal. c (1 J, 

Another ,>ossiliilit:y is the replac<!ment oi Ca ~• hy Mg 1 a he 

c st:al ,urface , prodt:cing a solu1:ion of higher superset:. a ion and 

resulting in increasing precipita ion . 

Both ~1 cmd f' are calcal:'eou~ SOl's . The calcareous motet'Jdl in 

M is prPdcmlinately dolomite , whil<> P con ains about equal amuuur; of 

th d •• e an1 dolcml1:~. ~. 1 '"' M one 

1 ( nbl 3), they ehaved sj,mila < t r and J in tha; mere o id 

car Jpo:: e. · 1 • bz at on of 

wn ,.. 2 ! Ta le l ii!ld wat:et• 5 (fa le 6 tr.e amount dissolved d" rea~ d . 

Waret- 1 was suf iciently undersa ura'ted with caco3 hat incre"~­

ing Lh., initial amounts of ~1g+t ion initially present r~ ulted ouly in 

addit:ional ion- pairs being formed, tt•us iucreasing ;he soltb lity e>f 

'the carbon te present: . While in water 2 and wa er , which are c oser 

to saturation , increasing the initial amoun s of Mg++ re~Jlted in a 

dP.crease in the amount dissolved and an increa ~ ir. the amol.lnt te ..... -

ita ed probably due to he conunon icn efre, of Mg+T .. d • ::Jlte 

pres em: ln the soils . Tbe same ex.plana<ion can be us"d to expldi n he 

resulls with 1:he supcPsatuPated waters 3 and 5. 

Comparison of the results ob'tained frorn the " carbonate a ur rn-

etet" eXtJt:!l'itntnts with those predicted Ly a lheore ticdl dp!Jr .... a~...h 

r·equlres he abl ity to predict he affect or Mg+t ion on cal , e 

solution or precipitation . 

lf Mgi+ ion concer.tration only ar1e<' 

by ior-!>ail formation , he iol owing treatn.en can be applied. !or 



systems cont:aining OH-, Hco; and co3 as the only complexir.6 ~pt!de, 

~r,,. total Cat , tot:al Mgt and to1:al HC0
3

t car, !.>•· wr. t r,n "'s : 

..~ f ~he d~vcl~pment given in Af-·lJC~tdix 2 r,J.r .ac.a • t, aMgt t, .:1nd 

AfiL''( .s f?llo;oed, ;,.•e obtnin: 

' 

ACa-t-t 

and 

AMg+t 

and 

= Ca /l-1 
t t yCa+t 

KKa
1

PC0
2 

Kd2AH~Hco; 
Kw 

Kw Ki':a~I<.a.IPl 
2

1 

Kdb( AH. 

(~_) 

(~) 

2J 

Th<!se equations can now be used to pred1ct. the pH and aCJ~ ot •i:e 

wa"ters . The aCO~ along with 1:he aCa H given ab.Jvt in ~quat i..>n ( 'll can 



be used ~o predict ~he amoun• of Caco3 (calci•e precipita•ea 01 d~s­

solved) . 

Appendix 3 gives the computer program used for •his calculatlon . 

Briefly •he program entails •he use of Hco; to predict the pH from the 

following equations: 

pH pKa1 t log AHCO~ - log KPC02 
(2_/ 

This pH is used to calculate aca•+ , aMgtt and hen ~~co; trom ~uaticns 

(~, ~and ~) , -rbe aHco; ·,alt.e _,. then su.bs•i t~ "'d fo<- ~' ; 3t to recal-

culate the pH. The values of a•: a+•, aMg'+, and aHCO- are recalculated 
0 

using the new pH value. The i•erarion sequence is re~eated until con­

st.ant values for pH, aHco;, aca'', and dMg" are obtaint>d, The •Jalue 

of aco; is ob•ained from: 

A co; 

Once •he value of aco; and aca'+ for -rhe wa•er ace known , cl iunc-

tion (EE) is calculated: 

(EEKSP) ACa+.,. · Aco; (~) 

or EE (EEKSP)/KSP (!OJ 

If EE = 1 then the water is ln equilibrium wh:h calcite , if Er 1 Jht: 

wat.er is supersa•urate<l and if EE then the water is und<:t·~aturdted . 

After obtaining the value of EE , tbe program calculate~ he 

amount of Caco3 precipitated or dissolved i n the following manner. 

(a) The original state of the wa•er results in : 
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++- H - -
yea [ Ca ]yco;[co;J : (EEKSPl (11) 

(b) At equilibrium the following condi•ion will hold: 

KSP 

where x : amount of Caco
3 

l:hat precipitates (-x) or •he amoun• that 

dissolved (+x) . 

Equa1:ing (ll) and (12) we oha ln : 

= -t-+ :: 
vco i ca J[co, J 

EE. 
( .!.:!, ) 

d ;nplifying 

x can then be determined by solving equa•ion (14), using the quadratic 

equation . 

Table 8 presents EE and •he predicted amountti of CaC03 ~htch 

dissolved or precipita•ed from the various waters . 

Comparison of Table 8 with Tables 3 and 7 shews that •he 

theore•ical method used here consistently predicc~ ~ •wice as mucn 

caco
3 

dissolved or precipitated as was measured. The method further 

does not predict the market effec• upon adding Mgt+ i on to the waters 

as was measured. It is felt that the equations which predict the 

ft f Mg++ c ++ M ++ ~a= 1 d e ect o on a a , a g , a~ 3 etc. are va _ . The dl.sdgreem~n t 

between the predicted and measured value probably lies in the way x, 

the amount of Caco3 dissolved or precipitated , was calcula•ed. 

An additional comparison can be made be•ween the change in pH 

(6pH) that resulted upon equilibration of the waters 1 , 2 , 3 , 4 ~,a 5 



Table 8 . CalculaTion of amounc of CaC ) dissolved or pr<>• -f. ra~ed 

Water l EE x(moles/L) 

a . 0840 4 . 434xl0 

b . 083'1 4 . 434xl0 

c .083[) 4 , a35xl0 

d .0832 4 . 4J6xl0 

e . 082, l,4~9xl~ 

f . 080'3 h . q4:>xl0 

Wa--er 2 

a .30:t 3.0.7>:10 

b . 301 3.57xl0 

c . 300 3 . 58xl0 

d . 298 3.59xl0 

. 295 :; . 6vlxl0 

r • 2!1~ 3.o3xlQ 

Water 3 

a 2 . 294 -7 . 337xl0 

b 2.292 ., .337xlG 

c 2 . 283 - 7 . 335xl0 

d 2 . 271 -7. 3:jxlU 

c 2.263 -7 , ;,lxlC 

f 2 . 263 - 7. 3lxl 0 
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Table 8 . Continued 

Water 4 EE x(moles/L) 

. 558 - 5 
a l. 216xl0 

b . 557 l. 217xl0 - ~ 

. 555 - 5 
c l. 23xl0 

d . 552 l . 236xl0 - 5 

. 546 -5 
e l. 246xl 0 

f .535 l. 275xl0 -5 

Water 

2 . 813 -5 a 2 . 95xl0 

b 2.809 2 . 947xl0 -5 

c 2 . 798 2.92xlo- 5 

d 2 . 783 2 . 89xl0-~ 

2 . 755 -5 e 2 . 89xl0 

f 2 . 700 2 . 74xl0- !:> 
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with the four solid carbonates and hose predicted by tt.e saturation 

index. for the purpos~ of thes~ compari5ons , the act al pH 01 the 

water was replaced by the pH predicted for each water by the comput~r 

program in Appendix 2. 

figures 2 , 3 , 4, 5 and 6 give tl..: actual llpH's that l"esult"'<l Upt;n 

equilibration of the waters 1 , 2 , 3 , 4 and 5 with the solid carbon-

ates (T , U, M and P) . 

figures 7 , B, 9 , 10 and ll give the comparison between rhe actual 

llpH of Caco
3 

(1") and those pred1cted by: 

plical - pHc. 

pHcal - pHg 

Where pHcal is the pH predicted by th program in Appendix 2, and pHc 

pHc (pK~2 - p~p) + pCa t pAlk 

is defined by Langelier (16) , and pHc is pHc 

pHc (pK~2 - pK~p) + p(Mg t Ca) t pAlk 

as modified by Bower et al . (5) and: 

2 1 - .. 
5 . 994 - 3 log PC02 t 2 (log )HC0 3 - log r a J 

where pHg is the pH of a water open to the atmosphere as det"1Ved by 

Ponnamperuma ( 20) . 

* 0 ~ The difference between pHc , pHc and pHc is that pHL and pHc were 

derived for closed systems (no co2 exchange with the dtmosph.,r·;d, 
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whereas pHg was derived for a water O!Jen tu the atmv:.~phere (op~n 

system) . The difference between pile c.nd pi<~ i:, rt,at fHc att<:mpt, 

correct for the presence of Mg++ ion in solution by coniliini n& Mg with 

Ca as p(Ca + 14g) . 

Cxamina-rion of figures 7 , 8 and 10 f..:>r under;.<stut·ate<l Wdt~r~ 

1, 2 ;,md 4 shows that the bes-r and n.ost consistent agreement betwt:t:n 

-rhe actual llpH and a predicted llpH is obta ined wil:h pHcal - pH2 . 

pHcal- pHc shows the same trend as the actual llpH but 1.he magnituae 

does not agree as well . The worst fit is obtained by the compcuison 
.•. 

of actual llpH with pHcal - pHc . pHcal - pHc does not follow the am~ 

trend as the actual llpH and even predicts that precipita tion will take 

place . See figures 3 , 8 and 10 where ac tua.tly no l'recipitation tal« ..... 

place. 

Examination of Figures 9 and 11 for s upersac ura ted wat.;rs J and ~. 

again shows that the best fit is consistently obtained by comparison 

of actual llpH and pHcal - pH~L pHcal - pHc and e&pecially pHc'd - pH~ 

predict considerably more precipitation than actually occurs . Thd 

poor fit between actual llpH and pHcal - pHc (Figure 9) is prol,abl)• due 

- -3 
to the high amoun't of HC0

3 
present (5xl0 M) and the mall am~nn• 

Ca++ ( 5xl0- 5M) . This results in a J ew amount of predpi atiun taking 

place and thus a small llpH result. 
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SUMMARY AND CONCLUSIONS 

Fou~ different calca~eous materials we~e equilibrated with series 

of waters of different deg~ee:. ot saturation w1t1. re!.pecr to cal ite. 

Within each series of wate~s . we~e wate~s at constant ionic strength 

and constant Ca++ and Hco; concent~ation , but increasing in Mg+t ion 

concent~ation . The effect of Mg++ ion on the equilibrium position was 

measured by the "carbonate sat urometer" developed by 1\'eyl ( 24) . 

It was demonstrated that the natu~e of the solid phase present, 

as· well as the composition of the solution, can effect: tt.e solution 

and precipitation of calcareous materials . It we~.s dem.Jnbt.ra Led , in 

ag~eement wi1:h Chave and Schmalz (6), that high ~urface area cal~it~s 

('\. 13 . 5 m/grn) are mo~e soluble than low su~face area ('•· .8rn/gm) 

calcites . Both the high and low surface area calcites sho"'"d the 

similar increases in solubility due to inc~eased Mg++ ion when chey 

were equilibrated with unsatu~al:ed wate~s . 

Equilibration of the low surface a~ea calcite with super-

saturated waters resulted in a decrease in precipil:ation .,.,i th inc~eas­

ing Mg++ ion concentration , 14hil" the high surface al'"a rnatet•Jal showed 

an increase in p~ecipi tation. The resul1:s fo~ the low :;urface ar•ea 

calcite when equilibrated with unsaturated or supersaturated waters 

and the results for the equilibration of high su~face area cdlclt~ 

wi h unsaturated waters , can be explained by the formation ot Mg ion-

paJrs or the adsorption of Mg on the calcite crys al or beth. 

Solubilities of the calcareous soil ma"terials M and P when 

equilibrated with very unsaturated waters increased due Lo ion-pal~ 
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formation as the calcite materials did . When M and P were equilibrated 

wi~h waters which were close to saturation or were supersaturated , a 

decrease in solubility was noted . This decrease in solubility was 

explained by the common ion effect of Mg++ ion on the solid phase 

dolomite present in the soils . 

A method was developed to predict the effect of Mg++ ion-pair 

formation on calcite equilibrium . The predictions were compared with 

the experirr~ntal values obtained from the saturometer . While the cor-

reel trend was predicted by the theoretical treatment, the amount 

precipitated or dissolved was consistently higher than the actual 

amounts measured . The predicted effect of increased Mg++ ion on Caco
3 

equilibrium was considerably less than the actual measured effect . 

The theoretical treatment considered only "the effect of Mg on 

calcite equilibrium due to the formation of Mg(HC03)+ and MgCO~ ion­

pairs . The effects of Mg++ due to the adsorption of Mg++ on the 

Cl'Ystal sw'face or due to coprecipi ation of Mg +-+ with "the calcite 

were not considered and they are probably important to quantiTative 

predic ion. 

Coprecipitation of Mgt~ with the calcite crystal or the inter­

ac ion of Mg++ with the surface of the calcite crystal , if the pro-

cesses are separable , would have the same effect as ion-pair forma-

tion . Both would increase the amount of Caco3 dissolved by under­

saturaTed waters . The effect of both adsorbed and coprecipitated 

Mg would be o decrease the amounts of calcite precipitated from 

supersaturated waters , but the mechanisms would be different. 

roprecipitation results in Mg rich calcites , which would have higher 

solubilities than pure calcite , while interaction of Mg++ with the 
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surface of the crystal, due to the strong hydration energy of Mg++ 

compared to Ca++, "poisons" sites to fur1:her precipi"tation . Upon 

dehydra"tion of the adsorbed Mg++ , the Mg++ could be incorporated into 

the crystal allowing precipitation to proceed . 

A comparison was made between the actual 6pH that resulted when 

reagenL grade calcite (T) was equilibrated with the waters and the 

6pH predicted by theoretical approaches . 

The "theoretical equations chosen were: 

pHcal - pHc 

pHcal - pH~ 

pHcal - pHg 

where pHcal is the calculated pH of the waters before equilibration 

with calcite , pHc is the theoretical pH of a "closed" water (no co2 

exchange) when equilibrated with calcite as derived by Langelier (16) , 
.•. 

pHc is the theoretical pH of a "closed" water as modified by Bower (4) 

to .:.nclude ~lg, and pHg is "the "theoretical pH of an "open" water (C02 

exchange occurs) of a water in equilibrium with calcite. 

For all waters used in these experiments , the best and most 

consistent fit was obtained for the comparison of pHcal - pHg and the 

actual 6pH . 

In conclusion it was demonstrated that for waters far enough 

removed from saturation with respect to any solid carbonate the 

effec1: of increasing "the concentration of Mg++ ion in solution will 

be to increase the amount of carbonate dissolved . As saturation is 

approached and exceeded , if the solid phase does no1: contain Mg , then 
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the effect of added Mgt+ will be to increase solution of and decrease 

the precipitation of that carbonate. If the solid phase contains Mg 

to any extent, the effect of added Mg+t will be to decrease solution 

and increase precipitation of that carbonate due to the common ion 

effect of Mgt+ on that solid phase . 

It was demonstrated that the theoretical equations based on closed 

systems are not as effective as the equations based on open systems 

for predicting precipitation or solution of carbonates from or by 

waters. 

It was also shown that the addition of Ca and Mg in predictive 

equations is not a valid operation when considering precipitation or 

solution of caco 3 from waters. If these equations hold for soils, 

then it is due to the concentration of water in the soil profile by 

evapotranspiration processes . 



PROPOSALS FOR FUTURE WORK 

The value of the "carbonate saturometer" to water quality re­

search lies in its ability to measure quantitatively the amount of 

carbonate which precipitates or dissolves when a certain water is 
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used for irrigation. Of greater value to water quality research would 

be the development of a method which would allow the prediction of the 

amount of carbonate precipitated or dissolved from irrigation waters. 

Before these predictive equations can be formulated, certain 

questions need to be answered. 

1. What is the range in solubility of the calcareous fraction 

of soils? 

2 . How does surface area, degree of crystallinity and copre­

cipitation effect this range? 

3 . What effect does co2 production by actively growing crops 

have on solubility? 

It is proposed that in order to answer these questions the fol­

lowing experiments be performed . 

1 . Column experiments 

a . Set up columns using different calcareous soils. 

b . Leach the columns with three waters; an undersaturated 

water, a saturated water and a supersaturated water , 

at a set leaching fraction (L . f) ~ .5 . 

c . Establish degree of saturation using the carbonate 

saturometer before and after leaching . Analyze Ca++ , 

Mg++ , total Alk , EC . 



2 . Lysimeter experiments 

a. Repeat the column experiments in 5 gallon drums , in 

which an actively growing crop has been established . 

45 

With the above data develop an en~erical equation , using regres­

sion techniques , to predict the amount of carbonate precipitated or 

dissolved from or by a given irr igation water . 
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Appendix A 

Development of the Carbonate Saturometer Theory after Weyl (24) 

The carbonate saturometer is based upon the following equations 

and equilibrium constants: 

C02 + H20 : H2co3 

H2co3 
-> HCO-
<- 3 

+ H+ 

Hco3 .. co; + H+ 

H 0 ~ 2 ~ 
H+ -~ OH 

CaC03 
... Ca++ + co; + 

(16) 

I I 

Where Ka1 and Ka
2 

are apparent equilibrium constants based on concen-

trations, xis the hydrogen ion activity. 

The conservation of total carbonate in solution is expressed by: 

yo + y (17) 

Where yo is the original (total) amount of carbonate present and y is 

the amount of carbonate added to the solution . Expressing equation 

(17) in terms of equations (15) and (16) it becomes: 



[ 
X K~2J 1+ - , - + - -

Kal X 

yo t y 

The conservati on of charge requires that electr oneutrality be 

maintained in solution , this can be expressed as : 

N • 
(Hco;) + (OH- ) + 2(co;l + 2 iY- 1 

i=l 

50 

(18) 

(19) 

Where Y- i represents the total concentration of all anions of charge 

(-i) which do not react with the H+ ion . x+j represents the total 

concentrations to all cations of charge ( t j) which do not react with 

"the H+ ion . 

We now define P as the net positive charge in the original solu-

tion of those ions whose concentrations can be changed without changing 

the hydrogen ion concentration. 

N • 
p 2 jx +] 

j =l 

N . 2 iY- 1 
i=l 

This allows equation (~)to be rewritTen as : 

(20) 

p (21) 

We now define N(x ) as a function of the hydrogen ion activity . 

N(xl (.33_) 

Writing equation (21) in terms of N(x) we obta in: 
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p (23) 

I f we now examine what happens to equation (23) when we make small 

additions of strong acid, base or solution Hco; or co; . 

For the addition of strong acid (+z) , base ( - z) : 

p - z 

For the addition of soluble carbonate: 

p + 2y 

For the addition of soluble bicarbonate: 

p y 

(24) 

(3.?_) 

(~) 

The next part of the development involves the combination of the 

conservation of charge equation and the conservation of total carbonate . 

Utilizing equations (15) and (16) we obtain : 

[ 
2Kx~2) (Hco; > + 2(co;) = (Hco;> 1 + 

Substituting for (Hco; ) from equation (18) we obt ain : 

(yo + y) [ 1 
1 + 

We now define a function F(x) such that: 

(27) 

(~) 
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I I I 2 
1 + 2Ka2/x Ka1 Ka2 - X 

F(x) I - 1 I 2 I I (29) 
1 + x/Ka1 + Ka2/x Ka1x + X + Ka1 Ka2 

To obtain the working equations we express the sum (Hco;) + (CO~) in 

equations ( 24, ~, ~) in terms of F( x) . 

I 

For the addition of y moles of carbonate : 

yo[l + F(x)] + N(x) P + y
1

[1- F(x)] (30) 

For the addition of y moles of bicarbonate: 

yo[l + F(x)] + N(x) P - yF(x) (31) 

For the addition of (+z) equivalents of strong acid or (-z) 

equivalents of strong base: 

yo[l + F(x)] + N(x) p - z 

It is now possible to determine F(x) by a comparison of equation 

( 31) and ( 32): 

F(x) z (acid-bicarbonate comparison) 
y 

(E_) 

By determining the amount of base (-z) or acid (+z) necessary to pro-

duce the same change in pH (6pH) as a standard addition of bicarbonate 

produces , F(x) can be calculated. 

A comparison of equations (30) and (32) results in: 

z -y 
1 - r (x) 

By determining the amount of base or acid necessary to produce the 

same change in pH (6pH) as res ults when the water is equilibrated with 
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a solid Caco3 and utilizing F(x) calculated above , the number of moles 

' (y ) of Caco
3 

which dissolved or precipitated can be determined. 
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Appendix B 

Calculation of aCa++ , aMg++, and aHco; as Effected by Ion-pair Formation 

For waters containing OH- , Hco; and co; as the only complexing 

species , the total calcium (Cat), total magnesium (Mgt) and total Hco; 

(HC03t) can be expressed as follows: 

(35) 

and 

++ + 0 + [Mg ] + [Mg(HC03) J + [MgC03] + [Mg(OH) ] (36) 

and 

[ CaCO~ ] + [MgCO~] (I?_) 

where brackets[] represent the concentration , in moles per liter , of 

the various ions and ion-pairs in solution . Considering the Ca++ ion 

alone , equation (35) can be expressed in terms of activities and ionic 

activity coefficients : 

aCa++ 
--- + 
yCa++ 

+ 
aCa(OH)+ 

yCa(OH) + 

aCaCO~ 
+ ---

yCaCO~ 

where a represents the activity of a particular ionic specie and 

represents its ionic activity coefficient . 

(38) 

0 Since Caco 3 is an uncharged species the assumption is made that 

yCaCO~ is unity . + In addition, it is assumed that both yCa(HC03) and 
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yCa(OH)+ are of the same magnitude as yHco;. The above equation can 

now be wi'itten: 

aCa++ aCa(HC0
3

)+ 
- - -+ + 
yCa++ yHco; 

aCa(OH)+ 
- ----- + aCaCO~ 

yHco; 
(~) 

Considei'ing the appropriate expressions for the dissociation 

constants of the ion-pairs and factoring out aCa++ the equation (39) 

becomes: 

whei'e 

and 

[ 

l 
++ aCa --- ~ 

Ca++ 

aHco; 
- ---- + 
Kd2yHco; 

aOH 
--- -+ ( 40) 
Kd

3
yHco; 

Introducing the first and second dissociation constants of car-

bonic acid and the dissociation constant of watei' , allows equation (40) 

to be wi'itten in ter ms of experimentally measui'able quantities . 

++ [ 1 aCa ----- + 
yCa++ 

where 

K Ka1 PC02 

Kd2 aH+ yHco; 

K Ka1 Ka2 PC02] 
+ ------ + (41) 

Kd H+ HCO - Kd
1 

(aH+) 2 -
3 a Y 3 

Kw 

10-6 . 38 
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10-10.31 

rearranging and solving for aca++ equation (~)becomes: 

aca++ 
KKa1PC02 

+ -Kd
2

aH yHC0
3 

+ 
__ K_w,_-- + KKa1 Ka2PC02J 
Kd H+ HCO- Kd

1
(aH+)Z 3a Y 3 

(42) 

expressing the above equation in terms of Ca++ concentration results 

in the following: 

++ 
KKa/C02yCa 

+ -Kd
2

aH yHC0
3 

KwyCa++ 

Treating Mg++ ion in a similar fashion and using the same assump-

tions results in the following equat ions: 

and 

where 

Mg/[~+ yMg 

KKa
1

PC0
2 

+ Kd4aH yHC0 3 

KKa
1

Ka2Pco2 
+ + 

Kd
5

(aH+l 2 

++ KKa1PC0 2yMg KKa
1

Ka
2

PC0
2
yMg++ 

+ + Kd4aH yHC0 3 
Kd

5
(aH+) 2 

++ = 0 aMg . aC03/aMgC0 3 

(44) 

( 45) 



Applying a similar treatment to equation (37) for HC03t total 

we obtain: 

aCa [-K-d-
2 

y-:- c-o-
3
- + -a:-:-~-d-J + 
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aMg [-Kd- S-:-H-C-0-
3 

+ a::~dj] ( 46) 

The effect of ion- pair formation on aCa++ , aMg++ and aHco; can 

now be measured. 



Appendix C 

Computer Program 
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The following is the computer program for the calculation of 

accivities of CaTT , Mg+T, Hco; and HT and the calculation of the amount 

of CaC0
3 

which precipitated or dissolved . 

A Input needed 

1 . On data cards 

a. Total calcium (CAT(M)) 

b . Total bicarbonate (HC03T(t~)) 

c . Total magnesium (MGT(M)) 

d . Partial pr essure C02 (PC02) 

B Output 

1. Activities of H+ , Ca++, Mg++, Hco; before and after adjustment 

for ion-pair formation . 

2 . X2 = amount Caco 3 precipitated or dissolved . 

C Variables 

l. CCA Concentration Ca++ 

2. ACA Activity of Ca++ 

3. CC03 Concentration of co; 

4 . ACA Activity of co; 

5. AHCO = Activi ty of Hco; 

6. AMG = Activity of Mg++ 

7. EEKSP = Activity product before precipitation or solution of 



DIMENSION CAT(M) , HC03T(M) , MGT(M), PC02(M) 
REAL MGT 

C ACTIVITY COEFFICIENTS 
GC03 . 43 
GCA = . 43 
GMG = .43 
GHC03 = . 81 

C EQUILIBRIUM CONSTANTS AS DEFINED IN TEXT Of 
DISSERTATION 
AKAl 1.72E-04 
AKA2 5 . 60E-ll 
AKl 3.39E- 02 
AK2 2 . 42E-03 
AKSP 4 . 787E-09 
AKW 1 .0E- 14 
AKD1 3 . 29E-05 
AKD2 5 . 64E-02 
AKD3 5 .02R- 02 
AKD4 3. 98E-04 
AKDS 6 . 91E- 02 
AKD6 2.63E- 03 
0020 N 1 ,M 

20 READ(S , l) CAT(M) , HC03T(M) , MGT(M), PC02(M) 
1 FORMAT(4E10 .2) 

C CALCULATION ON INITIAL ACTIVITIES BEFORE ION- PAIR 
C CORRECTION 

AHC03 = HC03T(M) •'1GHC03 
ACA = CAT(M}':GCA 
AMG = MGT(M)'''GMG 

C ITERATION SEQUENCE TO CALCULATE ACA , AMG , AHCO , AH 
C AS EFFECTED BY ION-PAIR FORMATION 

DO 9 J = 1 ,10 
PH = -ALOG(AKAlXAK2)+ALOG(AHC03)-ALOG(AKl'''PC02(M) 
AH = EXP(-PH) 
WRITE (6,4) AH , AHC03 , ACA , AMG , CAT(M) , HCO (M) 

lMGT(M), PC02(M) 
4 FORMAT (lOX , 8El2 . 5) 

ACA = CAT( M)/ ( l. /GCA+(AK1'''AKAl•'•PC02(M) /( AKD2;'AH 
1'''6HCO 3 )+AKW/ ( AKD3•':AW1GHC03 )+ ( AKl'''AK2AKAl 
2''1AKA2 '''PC02( M)/(AKDl''AH'"''2)) 

AMG = MGT(M)/(l.lGMG+(AKl''AK2•''AKAl'''PC02(M )/(AK05 
l'•AH>'1GHC03 )+AKW/ ( AKD6 •'• AH;•GHC03 )+ (AKl•'•AK2•'•AKAl * 
2AKA2•'•PC02 )/(AKD4•'•AH •'II'<2)) 

A l. /GHC03 
B AKA2/(GC03•'•AH) 
C AH/(AK2 •':AKA1) 
D (ACN•AKA2)/(AKDl'''AH) 
E ACA/(AKD2•'1GHC03 
F = AMG;•AKA2)/(AKD4''AH) 
G = AMG/(AKDS*GHC03) 
AHC03 = HC03T(M)/(A+B+C+D+E+F+G) 

9 CONTINUE 
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C CALCULATION OF AMOUNT Of CAC03 PRECIPITATED OR 
C DISSOLVED AS EFFECTED BY IO!I'~ PAIR FORMATION 

AC03 = (AKA2>'<AHC03)/AH 
EI:KSP = ACA•'AC03 
EE = EEKSP/AKSP 
CCA = ACA/GCA 
CC03 = AC03/GC03 
TF(I:E) 50 , 60 , 70 

70 AA EI: 
BB = -EEA( CC03+CCA) 
CC = (EE-l):'<(CC03•'•CCA ) 
WRITE (7 ,75) 

75 FORMAT (5X,'WATER UNDERSATURATED X2 AMOUNT 
!DISSOLVED ' , ) 

GO TO 80 
50 AA EE 

BB = EEi<(CC03+CCA) 
CC = (EE-l ):~(CC03•'CCA) 
WRITE (6.55) 

55 FOP.MAT (5X ,' WATER SLTERSATURATED X2 AMOUNT 
!PRECIPITATED', ) 

GO TO 80 
60 WRITE (6.65) 
65 FORMAT (SX , 'WATER SATURATED X2 = 0 ') 

GO TO 10 
80 X= (-BB-SQRT(BB''"''2-li.'''AA'''CC ))/( 2 .'''AA) 

WRITE (6 , 85) X2 
85 FORMAT (5X , ' X2 = ', El2 . 5) 
10 CONTINUE 

STOP 
END 
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