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ABSTRACT 

~bdels for Estimating Energy and 

Protein Utilization for Feeds 

by 

Muhammad Fadel Wardeh, Doctor of Philosophy 

Utah State University, 1981 

Major Professor : Lorin E. Harris 
Department: Animal , Dairy and Veterinary Sciences 

Data on the proximate nutrient content of feedstuffs, digestibility 

and energy utilization available from the International Feedstuffs 

Institute (Utah State University) were used to develop mathematical 

models for estimating energy and protein utilization of five classes 

of feedstuffs for various kinds of animals. 

Classes of feedstuffs were subdivided into more related sub-

classes. Furthermore, data from all feeds were pooled together then 

subgrouped into more related subgroups in an attempt to gain high 

precision in prediction of digestible proximate nutrients and TON 

from a single chemical entity by the use of simple regression models 

(Y = bo + b1x1). 

Digestible percentages (Y) of crude protein, ether extract, 

crude fiber and nitrogen free extract IVere highly correlated 1vith 
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their proximate contents (Xs) of most classes, subclasses and 

subgroups of feedstuffs for various kinds of animals. However, the 

use of linear multiple regression equation resulted in more precision 

in estimating each digestible nutrient (Y) from proximate analysis 

(Xl = CP%, X2 = EE%, x3 = CF% and x4 = NFE%) of the different 

classes of feedstuffs for various kinds of animals . 

Prediction of digestible proximate nutrients made it possible 

to calculate TQ~ by the conventional equation: 

TDN = DCP% + DCF% + Q~FE% + 2.25 x DEE%. 

And to calculate digestible energy (DE) from the following equation: 

DE(~lcal/kg) = 5. 72 (DCP%) + 9. 5 (DEE%) + 4. 79 (DCF%) + 4. 03 (NFE%) 
100 

TDN, DE and ME (Ys) were highly correlated with the digestible 

proximate nutrients (X1 = DCP%, x2 = DEE%, x3 = DCF% and x4 = DNFE%) 

and with proximate analysis (upon the use of multiple regression 

models). 

However, TIN, DE and ~IE (Ys) t;ere not predictable with high 

precision from any one single chemical entity (Xs) in most cases of 

the different classes of feedstuffs for various kinds of animals. 

DE (Y) was highly correlated with TDN values (X), and ME (Y) 

was highly correlated t;i th DE and TDN (Xs) values of the different 

classes of feedstuffs for various kinds of animals. 

The inclusion of physical descriptions (qualitative factors) 

of feedstuffs along with chemical analysis (quantitative factors) 

gave promising results predicting TDN content of feedstuffs. 
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~~nand NEP for poultry were highly correlated with proximate 

analysis of the different classes of feedstuffs. NEP was also estimated 

with high precision from MEn. However, both MEn and NEP were not 

highly associated 1;ith single chemical entities. 

The dissertation contains an extensive literature review on 

systems of evaluating nutritive value, and factors affecting 

digestibility of feedstuffs . 

This dissertation also contains numerous equations 1;hich predict 

each digestible nutrient from its proximate content and from 

proximate analysis; TDN, DE and ME from each proximate nutrient, 

digestible proximate nutrients and proximate analysis; DE and~~ 

from TDN; and ME from DE contents of different classes of feedstuffs 

for various kinds of animals. Moreover, there are complex equations 

to predict TDN from proximate analysis and their interactions and 

from proximate analysis plus physical descriptions of feedstuffs for 

various kinds of animals. 

(504 pages) 



INTRODUCTION 

Animal nutrition is a science depending on information of nutrients 

that animals require for both the needs of their body systems (main

tainance) and production (gain, milk, egg, \VOol, \VOrk, etc.), and on 

information of the nutritive value of feedstuffs . Nutrient requirements 

by th~ different kinds of animals can be estimated by metabolism 

trials. ll'hile the nutritive value of feedstuffs can be measured by 

digestibility trials. 

Two factors besides management govern animal production. First is 

the animal itself, and second is the available feedstuffs. 

The increase of feed costs, narrowing profit margins in livestock 

enterprises, the energy shortage, and growing concerns for increasing 

food production have refocused attention on the need of more effective 

evaluation for forage and food crops throughout the world. In many 

parts of the world, such as in the ~1iddle East, nutritional information 

on feeds is scarce and the content of many nutrients in common feed

stuffs is almost completely unknown. Protein and energy are the most 

prominent nutrients of the animal diet and some proximate analysis have 

been completed on feedstuffs. 

To determine the utilization of the nutrients in feeds , it is 

necessary to have biological data. Considerable time, effort and 

capital must be expended in biological trials to determine the utilization 

of nutrients of feeds by animals. It is also practically impossible 

to obtain experimental biological data on all feeds for all kinds of 



economical animals because of the time factor and the expenses 

involved. 

Schneider et al . (1952) developed regression equations to predict 

the digestibility of feedstuffs from their proximate analyses. There 

was more variation involved when predicting digestibility between feeds 

than within feeds. Variation in t he proximate analysis accounted for 

more than thirty percent of the between-feed variance in digestibility 

(Schneider et al ., 1950) . 

Harris et al. (1972) used the databank of the International Feed

stuffs Institute (IFI) to develop mathematical models to predict the 

total digestible nutrients (TDN) from the proximate composition of the 

different classes of feeds for various kinds of animals. Cook and Child 

(1977) and Cook et al. (1977) also developed linear equations to predict 

nutrient diges tibility from the nutrient content of plants and TDN and 

digestible energy (DE) values from proximate analysis of range plants 

for sheep and cattle. 

A new method which approximately partitions dry matter of forages 

into cell wall and cell content by the use of a neutral detergent 

digestion was introduced by Van Soest (l963a). Fonnesbeck and Harris 

(1970a) modified this approach (prepeps in digestion and a detergent 

solution at pH 3.5) in order that high energy feeds and protein 

supplements could also be analyzed by the detergent technique. 

Digestion trials and regression analysis indicate that the deter

gent technique is more accurate than crude fiber procedure in det er

mining total feed fiber (Christiansen, 1979). However , that does not 

mean that we should t hrow out all of the accumulat ed data based on the 
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old system of proximate analysis. Instead, better means for conversion 

from one system to another is needed. 

There are many systems that describe the energy values of feedstuffs . 

The TDN system has traditionally been the most widely used system. 

There is presently a trend to shift from TDN to other energy systems 

such as to digestible energy (Swift, 1957) and to net energy for the 

various body functions (~be and Flatt, 1969; Van Soest, 1971, 1973). 

Regression equations were developed to predict digestible energy 

from various chemical components of diets for various species of 

animals (Fonnesbeck et al., 1975), for sheep (Christiansen , 1979) and 

for cattle and sheep on various seasonal range types (Cook and Child, 

1977) . ~ffi was also predicted from the chemical composition of feed

stuffs (Bickel and Landis, 1978; VanEs, 1978; Vermorel, 1978). 

However, it is possible to estimate ~ffi from DE by the use of re

gression equations that were developed by Harris and Asplund (1968). 

The concept of "net nitrogen" can be of great importance in studying 

the nitrogen contribution to a certain ration (Harris and Asplund, 

1968). Regression equations to determine digestible protein from crude 

protein were developed (Knight and Harris, 1966) for each class of 

feedstuff and kind of animal. 

In view of the above, it is proposed to develop mathematical models 

to predict the utilization of energy and protein from the chemical 

analysis of feeds available from databank of IFI. 

The objective of this study was: to develop models to predict 

the utilization of energy and protein of feedstuffs f rom information 

available in the "International Feedstuffs Institute Databank" at 

Utah State University. 



4 

LITERATURE REVIB~ 

Chemical Analys is to Determine the Nutritive Value of Feedstuffs 

Chemical procedures are avail able t o determine the concentration of 

most of the required nutrients in feedstuffs. However, there are some 

nutrient component s that are very difficult to isolate chemically . 

These nutrients are often determined as combinations of nutrients that 

have some common property permitting a chemical analysis of the group. 

The nutritional significance of such nutrient groups depends on factors 

that are not indicated by the proportion of the feed comprising the 

group (Crampton and Harris, 1969). 

The earliest animal nutritionists began to wonder tvhat nutritive 

matter is and how the nutritive value of feed can be determined. Bergin 

(1781, cited by Tyler, 1975) tried to determine nutritive value by 

comparing the ability of a few common feeds to promote growth of Stvine 

and milk production in cattle . 

The first attempt to chemically analyze feeds consisted of rubbing, 

sieving , and washing of the ground pl ant material with water in a sieve 

until no starch could be r ecovered in the water passing t hrough the 

sieve . The material retained on the sieve was called fiber, and the 

material extracted tvas considered the nutritive matter (Einhof, 1905a, 

1905b, cited in Fonnesbeck, 1976} . 

Davy (1813) described the i solation of fiber or wood as a re

peated extraction of the plant material with boiling tvater and alcohol. 
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The term lignin was used for the substance remaining after extracting 

wood with dilute acid and alkali (Brande, 1836). 

Johnston (1844) described the white fibrous mass remaining after 

boiling plant tissue in successive portions of water and alcohol as the 

"woody fiber", while Wolff (reproduced by Hamm, 1853) did not agree with 

the asst.mtption that the woody fiber (cellulose, hemicellulose, lignin, 

and much of the protein in our present term) was non-nutritive matter 

(Tyler, 1975). 

The crude fiber analysis and Weende system of proximate analysis 

were developed by Henneburg and Stohmann (1860, 1864). These analyses 

were improved and standardized by agricultural and feed control chemists 

to make the procedure more precise and compatible to routine analysis, 

but with little regards for the nutritive qualities of the proximate 

components (Fonnesbeck, 1976). The TDN system of feed 1;as based on this 

analysis (Atl;ater, 1895; Henry, 1898) . 

The Proximate Analysis System. The proximate analysis was probably the 

most generally used chemical scheme for describing feedstuffs in spite 

of the fact t hat the information it gave might often be of uncertain 

nutritional significance or may even be misleading (Crampton and Harris, 

1969). 

Chemical analysis of feedstuffs serves tl;o basic purposes. In 

conjunction with feeding traits, it helps researchers to elaborate and 

assess nutritional phenomena. It also provides a practical means of 

evaluating feedstuffs in the laboratory without the time and expense 

associated with feeding experiments (Van Soest, 1969). This scheme of 

analysis 1;as devised by workers at the Weende Experiment Station in 
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Germany (Crampton and Harris, 1969). The proximate analysis partitions 

a feeds tuffs into six fractions, namely: water, ether extract, crude 

fiber, nitrogen free extract, crude protein, and ash. The Association 

of Official Agricultural Chemists adopted the Proximate Analysis as an 

approved scheme for partitioning feed dry matter in 1891 (AOAC , 1891). 

Henry (1898) applied the proximate technique extensively soon after 

adoption. 

Even though the proximate analysis system has been accepted through

out the world , there are certain limitations that were subject to 

criticism, namely, the determination of crude fiber, nitrogen free 

extract and ether extract. 

Because crude fiber analysis depends on the collection of a residue 

which is not soluble in the reagents but merely less solubl e than other 

constituents , variation in conditions under which the analysis is 

conducted are likely to lead to variation in the data resulting from 

the analysis (Schneider and Flatt, 1975). 1'/hile this lvill apply 

especially to methods of crude fiber analysis, it is also likely to be 

true for cellulose and l ignin determinations , for which standard 

methods have not yet been fully agreed upon. 

Other factors can cause variation in crude fiber analysis by stan

dard technique; for example, a difference in boiling temperature due to 

difference in altitudes of laboratories (Todd, 1951; Hallsworth , 1950). 

Extreme fineness of grinding of samples results in lower CF values 

(Gallup and Hobbs, 1944) . Fine grinding may occur in both feeds and 

feces in digestibility t rails , but the accuracy should not depend on 

such "balancing of errors" (Schneider and Flatt, 1975). 
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Thus, the evidence suggests that many times analytical results 

from different laboratories, which may have been obtained by so-called 

standard method, may be be comparable with each other (Raymond, 1951). 

The error in CF determination by imperical means leads to an error 

in nitrogen free extract since the latter is calculated as: 

100 - (CF% + CP% + EE% + Ash%) 

Theoretically, CF is considered to contain the less digestible portion 

of the plant, namely, cellulose, hemicellulose, and lignin . While NFE 

is thought to contain the readily available carbohydrate fraction. 

However, animal experiments have given contradictory digestion data, 

where CF is more digestible than NFE. Digestion coefficients calculated 

by Woodman and Evans (1930) for grass herbage fed to sheep, showed CF having 

greater digestibility than NFE and CP. Crampton and Maynard (1938) 

published a table 1;ith four feed types with percentage of cases where 

the digestibilities of CF 1;ere equal to or greater than those of NFE. 

Morrision (1956) published feed tables with contradictions of CF and 

NFE. Twenty to thirty three percent of the feeds listed show the 

digestibility of NFE to be less than CF. 

Evaluating the effects of the acid and alkaline reagents used to 

determine crude fiber may explain the problem of the CF-NFE contradic

tion. Using brain, maize, and bean straw, Norman (1935) found that 

CF to be almost exclusively of cellulose and lignin. Cellulose 

recovery was 60- 80% while that of lignin was highly variable, 4-67% . 

From comparisons of residue composition at different analytical stages, 

it l<as shmm that lignin losses were brought about by sodiLDTI 

hydroxide treatment. Hemicellulose was also lost due to the sulfuric 
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acid hydrolysis. Bondi and Myer (1943) supported their findings and 

observed that the large percentages of pentosans (hemicellulose) and 

lignin 1vere extracted into the NFE portion of both feed and feces, while 

most of the hexoses (cellulose) remained in the crude fiber fraction . 

Norman (1935) criticized the value of CF and NFE to evaluate 

feeds as NFE may be only more digestible than CF in some feeds and CF 

does not contain all of the non-nutritive matter. 

Thus, CF, in spite of the name, did not include all of the most 

fibrous and coarse substances in the feed. In a general way, the CF% 

indicated the coarseness of a forage or a feedstuff (Schneider and 

Flatt, 1975). 

Another critique of the proximate analysis was in the inaccuracies 

in the determinatiQn pf EE. Since ethel ether did not completely extract 

the lipids, EE contained substances other than pure fats (Fonnesbeck, 

1976). It contained all the non-nutritive lipids in the feed that were 

soluble in ether such as waxes, resins, chlorophyll, various pigments, 

the various steriods, carotene, phospholipids, etc., as well as 

certain essential oils that gave taste and odor to feeds and the true 

nutritive lipids (Jordan and Hall, 1900; Fraps and Rather, 1912; Cook 

et al. 1952; Crampton and Harris, 1969; Roberts et al. 1963). In 

green feeds, EE might contain very little true fat and it was mainly 

chlorophyll (Schneider and Flatt, 1975). 

Many lipids were bonded to proteins with water molecules involved 

in the union . Lipids were released from lipo-protein molecule only if 

a dehydrating agent such as acetone, methanol or ethanol breaks the 

linkage (Hannahan, 1960). A 2:1 mixture of chloroform and methanol had 
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been used to efficiently extract all lipids at room temperatures 

(Folch et al. 1951; Bligh and Dyer, 1959). Fonnesbeck and Harris 

(1974) modified the chloroform methanol method extraction procedure and 

made it easily adaptable as a routine laboratory analysis for total 

solvent extract to replace ether extract. 

The crude protein analysis by the Kejeldahl method did not distin

guish one form of nitrogen from another, thus, one cannot tell if a feed 

mixture has urea or the highest quality of protein such as casein . In 

addition, nintreate N was not converted into ammonium salts by this 

method so nitrogen in this form was not included (Church and Pond , 1976). 

From a nutritional point of view, data on protein analyses were appli

cable to ruminant species 1vhich could efficiently utilize almost all 

forms of nitrogen, but the information might be of little value for 

nonruminant species (such as man, swine, or poultry). Non ruminant 

species had specific requirements for various amino acids and did not 

efficientl y utilize non-protein-nitrogen compounds such as amides, 

ammonium salts, or urea (Church and Pond, 1976). In addition, protein 

%was calculated by multiplying nitrogen by 6.25 assuming that all 

proteins were the same; and this was not the case. 

Nitrogen free extract (NFE) was calculated by difference. 

100- (1vater% +ash%+ crude protein%+ crude fiber%+ ether extract%) . 

It was called NFE because it contains no nitrogen even though there was 

no extract involved in determining it. NFE was primarily made up of 

readily available carbohydrates such as sugars and starches, but it 

also contained most of the hemicellulose and lignin, particularly 

in feeds tuffs as forages (Church and Pond, 1976). But NFE 1vas not 

entirely nutritive matter (Fonnesbeck, 1976) nor 1vas it a good 
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evaluation for feed since it might be slightly more digestible than 

crude fiber in some feeds (Norman, 1935). ~fuch of the lignin (nondi

gestible) and most of the hemicellulose (partially digestible) were 

found in the NFE portion (Van Soest, l966b) . 

A more appropriate analysis woul d be one specifically for readily 

available carbohydrates--one in which starches were hydrolyzed to sugars 

and then an analysis is done for al l sugars present. Nutritionally, the 

NFE fraction of grains was well utilized by nearly all species, but NFE 

from forages and other roughages are less well utilized (Church and 

Pond, 1976). 

Ash determination was another subj ect of criticism for the proximate 

analysis. Ash was the inorganic residue from the ignition of organic 

matter. Ash content and composition depended on the nature of feed or 

food ignited and on the method of ashing . Ash was determined by weighing 

the dry mineral residue of organic materials which wer e ignited at a lm; 

red heat which is about 600° C (AOAC, 1965). About 1:\;o hours are 

needed to burn off all organic matter. 

Some of the possible inaccuracies of the ignition method of deter

mining ash were that the ash might contain carbonates and sulfates which 

were formed by oxidation to organic compounds . The carbon and oxygen 

in them came from organic substances and from the air (Schneider and 

Flatt, 1975). Materials with high phosphorous to base ratio fuse to a 

dark melt in which carbon particles were trapped and did not burn 

(Pomerang and ~1eloan , 1971). 

It should be noted that some mineral elements such as chlorine, 

iodine, and selenium, were volatile and were lost upon ashing (Church 
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and Pond, 1976). Feeds with a high alkaline balance showed progressive 

decomposition of the carbonates and volatilization of chlorides 

(Pomerang and Meloan, 1971). 

Thiers (1957) summarized reported losses during dry ashing. Iron 

volatilized as ferric chloride at 450° C, and when materials with a high 

phosphorous-to-iron ratio were ashed, an unidentified compound was 

formed 1vhich resisted solution or hydrolysis giving low results. 

Phosphorous volatilized as one of the oxyacids, especially when 

sulfate was present, except in the presence of excess magnesium, 

volatilized as the chloride above 450° C (Thiers , 1957). In cases of 

silicat es , the silica might be volatilized. However, ashing samples 

rich in silicon and aluminum might form as insoluble residue . 

Some lead loss might occur in regular dry ashing above 550° C. 

However, dry ashing with H2so4 as an ashing aid permited increasing 

temperature to 650°C 1vith little lead loss (Gorsuch, 1959) . 

Another main objection against dry ashing was the interactions 

between components themselves or the receptacle material. The use of 

either silica or porcelain crucibles led to the absorption of certain 

trace elements by the vessels . If the temperature of ashing was not 

excessively high, the absorption loss might be greater than the 

volatilization loss (Pomerang and Meloan, 1971) . Excessive heating 

might make certain metallic compounds such as those of tin, insoluble, 

and might cause salt (Nai) to be lost. 

High hygroscopicity, lightness, and fluffiness of ash might some-

times present problems in determining precisely the total ash content 

or in handling the mineral residue for further analysis (Pomerang and 

Meloan, 1971). 
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Even though elements in ash present only a very small percentage of 

the total, little error was involved, researchers progressed in pre

venting such error to occur. Wet ashing was another way to prevent 

certain losses (Harris, 1970). Addition of a few drops of pure olive oil 

after drying and before ashing a carbohydrate rich sample would help 

prevent swell ing and excessive foaming of the sample (Pomerang and 

iV!eloan, 1971). In cases of silicates, the silica might be volatilized 

by careful treatment with sulfuric and hydrochloric acids, taking special 

careful precautions to remove fluoride ions before subsequent deter

minations were made. 

Dry ashing was the most commonly used procedure to detemine water 

soluble, water insoluble and acid insoluble ash. It was also applicable 

to determine most of the common metals. It took a long time, but could 

be shortened by accelerated methods (Pomerang and Meloan, 1971) or by 

ashing over night. 

The problem of error of crude fiber was further studied by many 

scientists. Crampton and ~~ynard (1938) developed methods to detemine 

cellulose and lignin, but their methods were never widely adopted and 

did not solve all the objections to crude fiber, as the hemicellulose 

was still included in an undetermined fraction they called "other 

carbohydrate." 

The use of detergents for extracting protein from plant cell wall 

constituents had proven to be an improvement over the acid and alkaline 

treatments of the crude fiber analysis. 

Foster et al. (1950) obtained 85 - 95% protein extraction from corn by 

using detergent solution al alkyl benzine sodium sulfonate plus a re

ducing agent, bisulfite. Williams and Bevenue (1956) found that 
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detergents could be used to seperate carbohydrate f ibrous residues of 

protein without appreciable losses in plant fiber. Effective protein 

removed by detergents from bean and pea fiber '"as demonstrated by 

Bevenue and Williams (1959) who also showed that non-ionic detergents 

1;ere not effective for protein extraction. However, 92-95% extraction 

of nitrogen constituents was accomplished by using an alkylaryl sulfonate 

sodium sulfonate detergent solution . Only a trace of hemicellulose 

loss was observed . 

The Detergent System. Van Soest (1963 a ,b) and Van Soest and Wine (1967) 

conducted experiments using alfalfa and grass forages, found out that a 

chemical digestion using a 3% buffered solution, neutral or slightly 

alkaline (pH 7.0-7.4), of sodium lavryl sulfate detergent yielded a 10\v 

protein fiber residue . To increase protein removal , it ~;as suggested 

that sodium sulfite be added (Van Soest and Wine, 1967). Sulfite reduced 

the protein content through its ability to cleave disulphide linkages 

in proteins. This capacity allowed it to be a very effective means of 

eliminating kerati naceous tissues from animal derived foods and of such 

excretions in fecal analysis (Van Soest, 1968). Ho~;ever, sulfite 

attacked lignin with a significant loss (Van Soest, 1978a). 

Another way to reduce nitrogen content of fiber was through the 

use of detergent - stable proteases . Ho~;ever, the enzyme would not de

grade resistant keratinized animal tissue; hence , it was proposed by 

Robertson and Van Soest (1977) to omit the use of sulfite except as 

required in specific instances . 

The parti tioning of plant dry matter into neutral detergent fiber 

(NDF) and neutral detergent solubles (NOS) had been presented as an 
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accurate separation between cell wall constituents (cellulose , hemi

cellulose , and lignin) and the readily soluble portion contained 1<ithin 

the plant cell (l ipids, sugars, organic acids , nonprotein nitrogen, 

pectins, soluble proteins, etc.) (Van Soest, 1963a; Van Soest and ~·!arcus, 

1964; Van Soest and Moore, 1965; Van Soest, 1965a) . 

Van Soest (1963b), in addition to the neutral detergent separation, 

suggested that plant fiber can be prepared for alignin determination by 

using an acid detergent digest (1 normal sulfuric ac i d plus 2% cet yl

trirnethyl ammonium bromide). The acid detergent fiber (ADF) residue 

was composed primarily of lignocellulose since most of the protein and 

hemicellulose 1;ere removed by the acidic detergent (Van Soest, 1963b; 

Van Soes t, 1965b; Colburn and Evans , 1967). This extraction was thought 

to reduce the probability of high lignin values due to protein and car

boyhydrate artifacts (Van Soest , 1963b; Van Soest, 1965a; Van Soest and 

Moore , 1965). Lignin was determined by a 72% sulforic acid digest 

followed by ashing (Van Soest, 1963b; Van Soest and ~loore , 1965). A 

potassium permenganate digest of ADF had also proven useful in calcu

lating lignin percents (Van Soest and Wine , 1967). Whereas the 72 % 

sulfuric acid lignin procedure dissolved the cellulose and any residual 

polysaccharides in acid-detergent residue, leaving the lignin. The 

permenganate procedure utilized the oxidation of aromatic rings by 

saturated potassium permenganate to solubilize the lignin and leave a 

residue composed mainly of cellulose. However, t he analysis should 

be conducted at 20 to 25°C (Van Soest, 1978b) . 

The percentages of the individual carbohydrate components of t he 

cell wall (cel lulose and hemicellulose) could be calculated by 

difference (Keys and Van Soest, 1970; Van Soest and McQueen , 1973). 



Hemicellulose was calculated by NDF% - ADF% and percent cellulose by 

ADF% - Lignin%. However, accuracy of these calculations was varied 

depending upon hemicellulose and protein residue in NDF and ADF 

(Christiansen, 1979). 
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Generally, acidic polysaccharides were more insoluble in acid deter

gent through precipitation as the quarternary ammonium detergent salts. 

Pectic acids from legumes, citrus, etc . tended to precipitate giving 

greater values for acid detergent fiber . The pectins of other plants 

such as Brassica remained soluble (Bailey et al. 1978). Tannin-protein 

complexes and biogenic silica are soluble in neutral-detergent but not 

acid-detergent; hm-rever, a reverse situation existed with regards to 

cell wall proteins which were soluble in acid-detergent but not in 

neutral-detergent (Van Soest, 1978a). 

ADF was shown to retain residual protein and hemicellulose. The 

amount retained differed with feed type (Colburn and Evans, 1967; Kim, 

1967). Some studies demonstrated ADF hemicellulose recovery to be 

14-16% and protein recovery to be 5-16% (Colburn and Evans, 1967; 

Kim et al. 1967). 

Tannins found in certain feeds and food materials precipitated 

protein or inhibit proteolytic digestion and formed a resistant tannin

protein complex that was passed on to the feces . An ordinary lignin 

analysis would usually measure such complexes as lignin (Van Soest, 

l978a). 

The main purpose of the detergent system was to provide a rational 

and practical alternative to the system of proximate analysis; the 

principle defects of crude fiber being the failure to recover unavailable 

and undigestible residues in lignin, cellulose, and hemicellulose 
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(Van Soest, l978a). The neutral-detergent fiber (NDF) was shown to 

recoveT these fractions quantitatively in the case of n.nninants and 

horses fed normal forage diets (Van Soest , 1967; Fonnesbeck, 1969). 

However, NDF fails to recover dietary residues in feces was chaTacter

istic of diets high in staTch and tannin (Van Soest and Robertson, 1978). 

Validity of partitioning of plant dry matter into NDF and NDS had 

been supported by animal digestion experiments together 1vith chemical 

and regression analysis (Van Soest and Moore, 1965; Van Soest, 1965b; 

Van Soest et al. 1966). NDS% content was regressed against NDS% di

gestible amount, shm;ed that the NDS fraction is chemically unifoTID 

R2 
= .99 (Van Soest and ~boTe, 1965; Van Soest , 1967; Fonnesbeck, 1969). 

A lit erature review had shown Van Soest's detergent procedures to 

be a marked improvement over the crude fiber anal ysis in partitioning 

plant dry matter (Christiansen, 1979). Cell wall constituents were 

separated from soluble cell contents in different feed types without 

significant mispartitioning as had been shmvn between crude fiber and 

nitrogen free extract in the proximate analysis system (Christiansen, 

1979) . 

Fonnesbeck and Harris Modified System. An improved method of a chemical 

system for partitioning plant dry matter was proposed by Fonnesbeck 

and Harris (1970 a,b) and was found to show certain advantages over 

the Van Soest systems of analysis (Christiansen, 1979) . 

The neutral detergent procedures proposed by Van Soest (1963a) 

had been used to dissolve fiber protein when separating forage pl ant 

materials into cell wall and cell contents. However, studies showed 

that NDF might retain up to 30% of the protein in the sample (Colburn 
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and Evans, 1967). This protein residue was counted as 1\'DF and could 

result in significantly high cell wall estimates for high protein 

feeds (Christiansen, 1979). There were also filtering difficulties 

during the washing of NDF for prot ein supplements, energy feeds, mixed 

diets containing these ingredients, and feces from animals eating these 

diets (Van Soest, 1966b; Martinet al. 1975; Robertson and Van Soest, 1977). 

The filtering problems would give higher NDF results than expected. 

Fonnesbeck and Harris (1970a) studied these analysis problems and 

proposed an improved chemical procedure in order that all feed types 

could be accurately analyzed for cell \;alls and cell contents by the 

same procedure . 

A 24-hour preliminary pepsin digestion prior to sodium lauryl sul

fate reflt.L'< to rid cell wall of residual protein ,;as recommended 

(Fonnesbeck and Harris, 1970a) . The addition of pepsinsted t o high 

protein samples of alfalfa leaf meal and alfalfa hay resulted in the 

removal of above 95% of the protein while only 66% of the sample protein 

was removed with the use of detergent above. The increased reraoval 

of protein residues also helped overcome filtering problems experienced 

in analyzing energy feeds and protein supplements . Foods that were 

analyzed by the pepsin-detergent method resulted in high protein 

removal. 

Fonnesbeck and Harris (1970a) observed that a sodium lauryl sulfate 

pH change from 7.0 to 3. 5 \;as needed for maximum recovery of cell wall 

constituents. Barley straw was chosen to represent more mature cell 

\;alls and Kentucky Blue Grass, early vegetative, was used to represent 

younger growing cell walls . Detergent cell wall samples 1;ere deter

mined over a pH range of 1 to 10. l'laximum cell wall recovery was 
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shmvn to occur at a pH of 3 to 4. A pH of 3. 5 was chosen as a com

promise for the pH values determined. Hare studies on alfalfa samples 

using pepsin-detergent method at pH 3.5 and pH 7. 0 showed effective 

protein removal at a higher cell wall recovery at pH 3.5. 

The use of 2-3% sodium lauryl sulfate detergent concentration for 

proper cell wall extraction was found sufficient (Van Soest and Wine, 

1967; Van Soest, 1963a). Fonnesbeck and Harris (1970a) agreed with the 

results by showing that sodium lauryl sulfate concentrations ranging 

from 1.5-3% are adequate for plant cell wall determinations. 

A one-hour detergent reflux for NDF determinations was recommended 

(Van Soest and Wine, 1967) . Increasing the reflux time was found to 

significantly reduce cell wall recovery (Fonnesbeck and Harris, 1970a). 

Plant cell walls were further quantitatively partitioned into 

fractions of-cellulose, hemicellulose, and acid insoluble ash. Using 

a 4% sulfuric acid reflux for one hour, Fonnesbeck and Harris (1970b) 

observed an effective separation of hemicellulose from the cell wall 

residue. The cellulose portion of cell walls was determined by differ

ence following a 3-hour 72% sulfuric acid digest of the 4% sulfuric 

acid residue. The lignin component of plant cell \valls was calculated 

by difference after the 72% sulfuric acid residue had been ashed. 

Acid insoluble ash represented that portion of the total feed ash not 

absorbed by the animals digestible tract, primarily silica. The 

nutritive ash portion, soluble ash, was, therefore, calculated by sub

tracting acid insoluble ash from the total ash value. 

To solve the filtering problems when digesting and washing the 72% 

sulfuric acid residue in Van Soest's 72% sulfuric acid lignin 
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determination, Fonnesbeck and Harris (1970b) placed the lignocellulose 

containing crucibles in beakers of acid allowing the acid to seep up 

slowly through the filtered disc and wet the fibrous residue. 

Fonnesbeck and Harris (1974) also modified the technique of chloro

form : methanol extraction procedure to make it easily adapted as a 

routine laboratory analysis for total solvent extract to replace EE. 

The solvent extract could be further separated into nutritive lipids 

and non-nutritive lipids in a silicic acid column with ethyl ether in 

hexane. More refinement of the method to separate nutritive lipids 

was still needed as waxes and strols 1vere carried into the fraction 

containing fat, fatty acids, and phospholipids remained in the column 

with the non-nutritive lipids (Fonnesbeck, 1976). 

The solvent extract of all feeds and foods was greater than EE 

while nutritive lipid fraction was less than EE . The non-nutritive 

lipids of the leaves and stems of plants usually exceeded the nutritive 

portion (Fonnesbeck, 1976). 

The ratio of non-digestible lipids to digestible lipids was highly 

variable among feeds (Fonnesbeck, 1976). \\'hen the quantity of the 

nutrient portion was low compared to the indigestible portion, extreme 

error in the calculations of other extract digestibility occurred. 

The EE analysis probably had not been emphasized by most researchers 

because the ether extract content of most feeds was relatively small 

compared to other feed components, i . e . carbohydrates and protein 

(Christiansen, 1979) . 

Fonnesbeck (1976) further partitioned plant dry matter by cal

culation after determining total lipids . The quantity of available 

carbohydrates or carbohydrates readily digested by enzymes produced by 



21 

an animal's digestive tract was calculated as cell contents minus crude 

protein minus total lipids minus soluble ash. 

Christiansen (1979) reported that the chemical procedures by 

Fonnesbeck and Harris (1970 a,b) showed an improvement over the NDF pro

cedure by reducing the residual protein in cell walls and by increasing 

the recovery of cell walls, hemicellulose, lignin and ash. The improved 

procedure could also be used in analyzing energy feeds, protein feeds 

as well as fibrous feeds without the filtering problems faced in the 

NDF method. The additional partitioning of plant material into more 

simplified components of cellulose, hemicellulose, lignin, acid insol

uble ash, soluble ash, and available carbohydrates by simplified 

laboratory methods had also been shown by Fonnesbeck and Harris (1970 a, 

b; 1973). 

Van Soest and Robertson (1978) also modified the procedure of the 

detergent system. These modifications were made in an attempt to over

come the problems of the contamination of fiber residues with protein 

and starch, difficulties in filtration and handling related problems in 

analysis of certain foods. These modifications were as follows: 

l. Elimination of decalin originally added to overcome foaming, 

since it was found to increase the fiber yield and contributed to 

difficult filtering (Van Soest, 1973a) . Decalin was not used in the 

preparation of neutral-detergent fiber any more. 

2. Treatment of fresh sample of high lipid materials (more than 

10%) with four volumes of acetone or ethanol to prepare a material that 

could be easily ground and was sufficiently low in lipid content to 

avoid interference in the detergent analysis. Thus, eliminating its use 

of heat which would affect the nitrogen content of the fiber (since the 
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detergents, at high levels of lipids, were soluble in the lipid phase 

and would not be adequate amounts in the water phase). 

3. In samples high in proteins (more than 30%), the results of 

the analysis of detergent fibers might vary because the high protein 

content of such samples exceeded the capacity of the detergent to form 

soluble complexes. Addition of a protease might be employed. However, 

not all protein or other nitrogen could be removed from vegetable fibers 

by proteases. In fact, the resistant fraction more or less appeared in 

feces as an indigestible fraction which was composed of indigenous to the 

mature plants and of Millard reaction and heat damage to protein in 

cooking and baking as well as the tannin-protein complexes. Therefore, 

drying samples below 65°C was recommended to avoid Millard products . 

4. The filtration problem encountered in the cell wall procedure 

due to protein, starch, mucillages, and gums ~auld be eliminated. In 

samples high in proteins, the use of sodium sulphite was eliminated 

because it resulted in a loss of lignin which could more than compensate 

for the reduction in residual nitrogen. Sodium sulphite might also 

attack the Millard complex in heat damaged feedstuffs causing a further 

reduction in cell-wall value. Instead, an Oklahoma state filter screen 

(Labconco R ) was used to help removal of the protein detergent com

plexes before filtering the neutral-detergent residues the crucible. 

While in samples high in starch, filtration was a problem since 

starch geled as the content of the crucible cooled. Robertson and 

Van Soest (1977) proposed the use of a detergent stable a --amylase from 

Bacillus sublilis to eliminate the residual starch. The enzyme was type 

IIIA (eg. a--amylase, Type IIIA--Sigma Catalogue No . A6505) with an 

optimum activity at pH 6.9 and S0°C. 



5. Lumping of the residue might create problems in lignin 

determination. The residue should be washed 1vith hexanes after the 

water wash but prior to the acetone wash to overcome the problem. 
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A sequential analysis system (Figure 2) was proposed to be con

sidered if there was a limited amount of a sample that contained some 

of the interfering substances, or if pre-extraction of the sample to 

enrich the fiber content was r equired (Van Soest and Robertson, 1978) . 

Barnes (1973) divided the chemical methods used in estimating some 

aspects of quality into: (1) definitive procedures identifying specific 

chemical entities or groups of related substances and (2) empirical pro

cedures that solubilize forage dry matter 1vith little attempt to define 

the actual chemical groups involved, as long as the results were 

correlated with some in vivo parameter. The first category involved the 

use of strong acids or solvents at high temperatures (crUde protein, 

cellulose, and lignin analysis). The latter category of solubility 

indices involved the use of 1veak acids, aqueous solutions, or enzymes 

at moderate temperatures. 

In definitive chemical procedures, crude protein percentage in 

herbage had an associative relationship with the amount of cell wall con

stituents, hmvever, it is of little value in the prediction of energy 

availability. The second category of chemical methods that were used 

in estimating quality of herbage was the solubility indices. This 

method was based upon an estimation of the digestibility soluble frac

t ion or an estimation of both the digestible soluble fraction and the 

digestible fibrous fraction of herbage. The difference from the con

ventional chemical procedures was that the soluble indices procedures 
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measured the loss of dry matter upon acid, solvent, or enzymatic treat-

ment and no attempt was made to measure a specific chemical entity. 

In summary, proximate analysis, Van Soest's method, Fonnesbeck 

and Harris's method, and the sequential method of analysis were a means 

for partitioning feedstuffs into their components; and they were methods 

for chemical evaluation of the nutritive values of feedstuffs as shown 

in the following scheme: 

A Schematic Comparison could be drawn for the Van Soest, Harris 
and Fonnesbeck Methods: 

Fraction 

Cell Contents 

Cell Walls 

Components Included 

Van Soest 

sugars, soluble 

Carbohydrates, starch, 
pectin, NPN, protein 
lipids, other solubles 

hemicellulose 
cellulose 
lignin 
heat-damaged proteins 

Harris and Fonnesbeck 

soluble carbohydrates, 
proteins, fats and 
fatty acids, soluble 
ash 

hemicellulose 
cellulose 
lignin 
non-nutritive solvent 
extracted acid in
soluble ash 

The usefulness of chemical evaluation is that it could (1) compare 

recovery with standard substances, (2) compare the results by other 

methods, (3) compare to values obtained by proven methods and (4) make 

a comprehensive chemical analysis of the substances recovered and/or 

extracted (Fonnesbeck, 1976). However, further research is needed in 

determining these proposed analytical methods (Christensen, 1979). 
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Digestibility Trials or Biological Trials for the Evaluation of Feedstuffs 

Feedstuff analysis usually involve chemical procedures to determine 

specific elements, compound or a group of compounds. These chemical 

procedures depend on the chemical properties of the various nutrients 

and nonnutritive components of feedstuffs. 

Chemical methods involve drastic degradation of feeds with reagents 

such as concentrated acids or bases, extraction with concentrated sol

vents or other harsh treatments. Biochemical reactions that make feed 

nutrients available to the animal system proceed at animal body tempera

ture catalyzed by specific enzymes and under control of the digestive 

system. 

Chemical analysis could be the starting point for determining the 

nutritive value of feedstuffs. The nutritive value did not entirel y de

pend upon the amounts of several nutrients it contained but on the 

amounts of these nutrients that the animal could digest and use 

(Schneider and Flatt, 1975). The chemical composition alone of any 

feedstuffs was usually an imperfect standard by lvhich to judge nutritive 

value. Digestibility was one of the first considerations, since undi

gested or insoluble nutrients did not enter the body properly at all 

(Schneider and Flatt, 1975). 

Since chemical methods often left questions regarding the availa

bility of nutrients from feedstuffs, biological procedures or comparative 

feeding trials were used, although t hey 1vere time consuming, t edious, 

and expensive (Church and Pond, 1976). Biological met hods, however, 

might be a more accurate estimate of animal utilization. They deter

mine hmv the animal utilized the nutrients of a feed. 
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Digestibility trials were used to estimate proportions of a feed 

that was available to an animal for absorption from the gastroint estinal 

tract. A diet of known composition was fed t o animals over a time period 

of several days during which the feces wer e collected and analyzed for 

the components of interest. It was advisabl e t o maintain a constant 

daily feed intake over several days t o minimize day-to-day variation in 

fecal output (Schneider and Flatt, 1975; Church and Pond, 1976) . Values 

of apparent digestibility of any desired nut rient could be obtained, but 

data may be meaningless for some nutrients such as the vitamins and 

minerals whose passage bot h from lumen of gastro-intestinal tract into 

the body and from body into the lumen of gastro-intestinal tract 1•as 

quite variable and subject to change (Church and Pond, 1976) . 

Digestibility of a feed or its components could be estimated by u•o 

general ways; one way by total collection of feed and feces which allm•s 

a direct measure of apparent digestibility. It was computed as follows : 

nutrient intake - nutrient in feces X 
Apparent Digestibility% = nutrient intake 100 

A problem in pasture arised from the animals selecting certain 

plants and refusing others (Church and Pond, 1976; Cook et al. 1952). 

Besides; equating actual consumption with assumed consumption based on 

anal ysis of clipping from a given area might be misleading. However, 

Crampton and Harris (1969) stated that "A r egression equation det er-

mined for one set of conditions does not work under all sets of 

conditions. " The regr ession might not be always linear or linear 

throughout the range of values . The steeper the slope, the more re-

liable the estimat e would be. The percentage digestibility 1,ras not all 

that determined the value of feed . Two feeds might be equal in 
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composition and equally digestible, yet one might be more valuable than 

the other because its digested matter could be used to better advantage 

by the body (Schneider and Flatt, 1975) . The next step after chemical 

analysis was to accur ately determine the percentage of each nutrient 

digested (Arrnsby, 1917). 

Comparative feeding trials lvere being conducted to obtain data per

taining to either a feedstuff or to the needs of an animal. Regardless 

of what other criteria l<ere also employed, most studies of the nutritive 

properties of foods include an examination of their digestibility and/or 

the biological nitrogen balance and/or carbon balance as fundamental 

criteria (Lloyd et al. 1978) . 

Digestion means all those processes that happen to a feed in the 

alimentary tract of an animal . Digestion depends on (1) presence of 

enzymes, (2) their physiological environments in which they function, 

(3) the properties of feeds including their susceptability to enzymatic 

hydrolysis and the action of inhibitory substances which the feeds may 

contain, and (4) total processing capacity of the animal's digestive 

tract (Schneider and Flatt, 1975) . 

As feed i s taken into the alimentary canal of an animal, it is 

partly dissolved in water and acted upon by certain liquid agents such 

as the saliva in the mouth, the gastric juice in the stomach, and the 

juices in the intestines. In addition to these processes ruminant 

animals use, micro-organisms in the rumen have a very important role in 

ruminant nutri tion. That part of feed which is dissolved, or digested, 

can be absorbed into the blood and lymph vessels. The undissolved, un

digested, or unabsorbed portion of the feed is excreted from the body 
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as the feces or dung, and thus constitutes one part of the feed which 

is useless for t he purposes of nutrition of that particular animal 

(Schneider and Flatt, 1975). 

There were very important differences in the digestibilities of 

feedstuffs and also of the nutrients within the same feed. Knowledge 

of the differences was of great importance to livestock nutritionists 

and to the national economy of any country (Schneider and Flatt, 1975). 

The losses resulting from incomplete digestion and absorption were 

economically important, and nutritionists must understand them in order 

to use feeds correctly (Lloyd et al. 1978). 

Digestible nutrients mean the difference beuveen the amounts of 

each nutrient in the feed and the feces. Thus, digestible energy (DE) 

is energy of the digestible nutrients. The term digestible nutrient 

means the portion of a nutrient which is apparently digested and taken 

into the body (Schneider and Flatt, 1975) . 

The digestible percentage of any substance was called the digestion 

coefficient of that substance. The digestion coefficient of a nutrient 

might be defined as the percentage consumed in the ration which did not 

appear in the feces. It was an expression of how much of each nutrient 

had disappeared during the passage of the feed through the digestive 

tract (Schneider and Flatt, 1975). 

The first step in assessing the energy values of the organic nut

rients to the animal was considering the losses of these nutrients in 

the feces. The chemical composition was the basis, but the percentages 

of digestible carbohydrates, digestible fat, and digestible protein 

became the modified val ues that more nearly represented the benefit to 

the animal in terms of these substances. In addition to the digestion 
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coefficients of crude protein, crude fiber , nitrogen free extract , and 

fat (ether extract) , digestion coefficients were sometimes reported for 

organic matter in a feed or ration, or for the total dry matter 

(Schneider and Flatt, 1975). Also, most present-day digestion experi

ments and some older ones include the digestible energy. 

The heat of combustion of both feed and feces was determined, and 

the difference was expressed as a percentage or digestion coefficient, 

or as the digestible energy per unit of feed (~leal/kg) . The amounts of 

certain vitamins , lignin, cellulose, etc., digested, have been estimated 

in relatively few experiments (Schneider and Flatt, 1975). 

Fecal losses 1vere the largest and most variable nutritive energy 

losses. Therefore, by taking the fecal losses into consideration in 

evaluating feedstuffs, a more comparable basis was provided and a better 

measure 1<as obtained by which one feed could replace another (Schneider 

and Flatt, 1975). 

Digestion trials were conducted as soon as the chemical methods were 

developed. The early 1vork on losses of nutrients in the feces leading 

to evaluation of the energy values of feeds in terms of total digestible 

nutrients, began before 1860 (Hennenber g and Stehman, 1860 , 1864; ll'olff, 

1870; Atwater, 1895; Hills , 1900) . TI1e earliest American report of di

gestibility experiments (Jordan and Hall, 1900) was oub1ished in 

1884. 

The percentage digestibility of feedstuffs could be determined only 

by trials with animals. Digestion coefficients were determined by 

means of these digestion or balance trials. 

Most of the knowledge concerning animal requirements and values of 

feeds had been obtained through numerous and laborious experiments with 
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animals. As data were accumulated from animal feeding experiments, it 

had become obvious that the quality of a ration could not be accurately 

ascertained in other ways. Emphasis in modern grassland thought was 

placed increasingly on herbage quality (Davis, 1950). The inability 

to measure the feeding value of a sample of herbage lvithout digestibility 

experiments became increasingly evident (Crampton, 1950). 

To make kno1vledge of the nutritional value of feeds more useful, it 

\vas necessary to compile, tabulate and publish all data that could be 

obtained or which had been previously reported into tables applicable 

for calculating rations for different kinds of livestock. These tables 

would be suitable for use by researchers, feed manufacturers and farmers 

(Schneider and Flatt, 1975; Harris, 1963). 

Most of the data describing the grass nutrients make-up of foods 

and feedstuffs were obtained by chemical analysis. The average com

position of commonly used feeds might be found tabulated in books and 

publications in the literature of nutrition. These chemically deter

mined data were an adequate description of some of the nutrients in some 

feeds . But the grass composition of most sources of nutrients must be 

supplemented with figures indicating the extent of utilization figures 

obtainable only from experimentation with animals (Lloyd et al. 1978). 

Data for the quantities of nutrients needed by the body, and information 

concerning the digestibility and the biological usefulness of the energy 

and of the nutrient components of feedstuffs 1vere necessary before a 

nutritionist can formulate a ration that meets specific nutritional 

needs. 

In obtaining the required biological information, nutritionists 

employed various species of animals, including at least seven kinds of 
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laboratory animals (Lloyd et al. 1978; Schneider and Flatt, 1975). For 

a l:iJnited number of problems, htnnan subjects were also used. 

Some feeds could not be fed alone. Horses and rtnninants were not 

fed concentrates alone, without hay or other roughages. Pigs might be 

fed grain only; however, feeds such as tankage and linseed meal were 

too rich in protein to be fed alone. The digestibility of such feeds 

must be found by difference instead of directly (Schneider and Flatt, 

1975; Crampton and Harris, 1969) . 

For example, in an experiment to determine the digestibility of 

oats for sheep, the sheep were first fed hay for several days, and the 

digestibility of hay was found. Then oat was added to the ration and 

the total amount of nutrients were determined that were digested from 

the combination of oats and hay. The amounts of the digestible nutrients 

coming from the hay were then subtracted from the total, leaving the 

amounts which were asstnned to be digested from the oats (Schneider and 

Flatt, 1975). 

Thus, two digestibility trials were conducted: the first (A) to 

determine the digestibility of the hay, and the second (B) to determine 

the digestibility of the mixture. 

The assumption in this procedure, that mixing two feeds together 

did not alter the digestibility of either over what it would have been 

if fed alone, was often not true (Crampton and Harris, 1969). With 

poor-quality roughage, we might find that the digestibility of its dry 

matter was relatively poor. Much of the digestibility of such poor 

materials was largely dependent on the activity of microfloral breakdown 

of cellulose resulting volatile fatty acids readily available for the 

animal. It was conceivable that a meal supplement, especially one that 
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contained suitable food for micro-organisms is fed with the roughage 

might result in a more complete digestion of the cellulose portion of the 

poor roughage (Crampton and Harris, 1969). This increase in digestibilit y 

of poor roughage was usually accounted for the meal supplement, whereas 

in reality, it might have been an improvement in the di gestibili ty of 

roughage itself which was involved (Crampton and Harris, 1969). This 

kind of interaction beuveen feedstuffs is referred to as associative 

digestibility (Crampton and Harris, 1969; Schneider and Flatt, 1975). 

Therefore, animal or biological studies could (1) compare the 

nutritive value of the chemical components, (2) determine the digesti

bility of chemical methods to partition nutrients, and (3) demonstrate 

the ability to predict nutrient utilization from chemical analysis 

(Fonnesbeck, 1976) . However, there Here two main limitations to the 

interpretation of digestion coefficient values (Ranjhan, 1980). The 

first limitation was that nutrients excreted in feces were not rep

resentative of the undigested portion of food residues for which the 

digestion coefficients were determined. Part of the nutrients excreted 

in feces came from endogenous and bacterial origins. 

Because it was assumed that feces were composed entirely of undi

gested food substance while the part of the nutrients coming from body 

itself the digestion coefficients were called apparent digestion co

efficients. For the calculation of true digestion coefficients metabolic 

fecal losses were to be accounted. The true digestibility of protein 

in the feeds was not affected by increasing the indigestible matter 

by the apparent digestibility of protein would decrease because of 

the increase in metabolic fecal nitrogen (MFN) . 
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The second limitation of the digestion trials was that the carbohy

Jrates were JegradeJ in volatile fatty acids (VFA), carbon dioxide (Co2) 

and methane (CH4) . The later bvo gases did not yield any energy to the 

animals but were computed as digestible carbohydrates since they were 

not recovered in feces . Hence, digestible carbohydrates lvere over 

estimated. 

Factors Affecting Digestibility of Feedstuffs 

Schneider and Flatt (1975) assumed that there are more than fifty 

factors that affect digestibility of feedstuffs. These factors 1vould 

then, affect the results of digestion coefficients used to evaluate 

feeds and supply data for feed tables. 

Effect of Feeding Level. Farm animals digested a larger percentage of 

the nutrients in their feeds when fed a scanty ration than 1vhen they 

received a full ration. Schneider and Flatt (1975) concluded that there 

were variations benveen experiment stations and between trials within 

stations as far as feeding levels were concerned. H01vever, most data 

indicated that apparent digestibility of feedstuffs was decreased as 

the level of feed intake increased. 

Since most average digestibility coefficient s of feeds were deter

mined at the maint enance level or slightly higher, they might be 5 per

centage units high 1vhen applied to full-feed animals (Mitchell, 1942). 

Therefore, the planes of nutrition lvhich were employed in digestion 

trials might not be desirable if results were to be applied in practical 

feeding (Schneider, 1947) . 
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14itchell , et al. (1932) reported t he most complete digestibility of 

all nutrients at the most of feeding . Digestibil ity of crude protein, 

dry mat ter, organic matter, and carbon of rat ions fed t o steers, was 

highest at maintenance level (Forbes et al. 1937) . 

High roughage intake was found t o decrease di gestibility (Hogan 

et al. 1967). Timot hy hay \<aS fed at two l evel s , l imited and ad libit um 

plus ten percent refusal . The mean energy digest ion coefficient for all 

forages fed at the high level '"as significantly lm;er than that of the 

limited forage. 

The digestibilit y of feeds seemed to be more affect ed by levels 

of feeding than by the place of nutrition. Mitchell (1942) found that 

digestibility was more depressed with high level of feeding mixed ration 

than with all-roughage ration. llut, when fre5h forage was fed, there was 

a small depression in digestibility. \Vhen Anderson et al. (1959) fed 

700 grams , 1000 grams , and 1200 grams green, first growth and green, 

after-math forage per day to sheep, they did not observe a change in the 

digestibility of dry matter associated with feeding high levels of the 

green, first grm.th forage . However, at high level feeding of green, 

after-math forage depressed digestibility by 2. 4 percent. Only three 

out of thirteen trials of depressed digestibility due to hi gh level of 

feeding in comparison t o medi um level, were observed. 

Animal s indoors might not consume much cut grass as they might eat 

when grazing in a good pasture. Hutton (1962) observed in 120 digestion 

experiments in identical-o;in cattle were fed clipped pasture herbage 

at two levels . One o;in of each pair was fed at libitum, the second 

twin was fed about sixty percent of the amount consumed by the former . 



Digestibility was lowered by .08 percentage unit by high levels of 

feeding. 
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Depressed digestibility of corn silage, when fed to steers at high 

levels, was reported by Watson et al. (1939), and in cattle and sheep 

(Colovos et al. 1970). 

Blaxter (1961) put the following equation to express the changes 

in energy digestibility associated with feeding levels of roughages: 

Depression in digestibility of long roughage per unit increase in 

feeding level= 0.119 (100- digestibility at maintenance). However, 

the constant in this equation changes to 0.152 when roughage was pelleted. 

Thus, the extent of digestibility decline with increasing feeding 

levels was directly related to digestibility at the maintenance level. 

As feeding levels increased, a greater depression in digestibility 

(increment of maintenance) of a poor quality hay than of a good quality 

hay was reported (Bla.xter, 1961). This difference was explained to be 

due to the necessity to consume more of poor quality hay for each energy 

unit increase in feeding level. 

Total digestible nutrients of rations composed of concentrates and 

either early or late cut hay at various intake levels as percentages of 

total digestible nutrients (TDN) content was studied at maintenance 

(Moe et al. 1963). More than sixty observations were taken from cows 

producing from zero to 54.4 kilograms of milk per day. As feeding 

level increased from maintenance to six times maintenance , the relative 

total digestible nutrients decreased so that a diet which had a TDN 

value of 82 percent at maintenance would have a TDN value of 63 percent 

(that was 77 percent of the 82 percent) at six times maintenance. 
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Reid et al. (1966) expressed the multiple of maintenance needed 

for measuring the plane of nutrition or level of intake in terms of 

total digestible nutrients consumed, as follows: 

kilograms of TDN consumed 
plane of nutrition = kilograms of TDN for maintenance 

The estimated plane of nutrition might be then 0.9 (for 90 percent of 

maintenance), 1.0, 1.5, 2.0, etc., to represent 0. 9 x maintenance, 

1.0 x maintena~ce, 1. 5 x maintenance, 2.0 x maintenance, etc. 

Lactating dairy cattle have the highest energy demand among rumi-

nants. The response of dairy cows to increments of feed \vas one of 

diminishing returns in relation to milk production (Van Soest, 1978b). 

Balance trials at high levels of feed intake demonstrate that the de-

crease in digestion was very significant in dairy cows and involves 

structural carbohydrates and starch. 

Cattle digested more of starch when the pH levels in the lower 

intestine range about 6. 9 (\'/heeler, 1980). Dry dairy cows fed at 

maintenance levels digested 10 percent more starch in the rations than 

those fed at the rate of two to three times maintenance levels during 

lactation. Digestibility of dietary starch decreased from 96 percent 

at maintenance l evels to 86 percent during lactation. 

The true digestibility of cellular content might decline with an 

increasing feed intake, especially in forages of high starch content 

(Karr et al . 1965) . The bacterial endogenous excretion might not be 

constant with level of intake, and could have an important effect on the 

decline of apparent digestibility as the level of intake increased in 

dairy cattle (Brown, 1966; Van Soest, 1966a). 
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The depression in digestibility with the increased level of intake 

predicted a lower net energy for lactating cows than that which \vould be 

predicted from ordinary digestion trials. Tyrrell and Moe (1974) in

dicated variable lower net energy values for fibrous feeds at high levels 

of milk production. There was variability among feedstuffs in depression 

in digestibility per unit of maintenance intake and that variation de

pended on the relative rate of cell wall digestion and passage rates. 

The apparent efficiency of an added increment of feed energy for 

dairy cows decreased with the increased intake, "but is certainly linear 

if regressed as metabolizable energy directly determined at each intake 

level. This would correct for decrease in digestibility which is a 

major part of the decreased response" (Moe and Tyrrell, 1973). 

Net energy coulJ.b~ predicted at production levels of intake if 

the decrease in digestibility could be estimated, and rates of digestion 

and passage could be known. "The alternation of digestibility values 

with intake level is passed on to metabolizable and net energy values 

and constitutes the greatest single error in estimating them" 

(Moe and Tyrrell, 1973). 

Blaxter et al. (1956) explained the reason for the lowered di

gestion at higher planes of nutrition. The rapid movement of feedstuff 

materials allowed less time for digestion or absorption. As the amount 

of fermentation and gestation was reduced due to increased rate of 

passage of feed materials, the overall nutritive value of the feed was 

reduced. Therefore, there would be a decline in enzymatic and microbic 

action especially on more fibrous substances (Campling et al. 1962). The 

fast movement of chyme through the digestive tract resulted in an 

incomplete absorption of nutrients, too. 
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The increased passage may have depressing effects upon digestibility 

or extent of fennentation in rumen if rates of passage were in competi -

tion with rates of digestibility (Van Soest, 1978b). If digestion (ks) 

and passage (kp) rates were first -order differentials , the theoretical 

fractions escaping digestion (E) would be: 

E = Kp 
Ks + Kp 

Thus, from the equation , if passage and digestion rates were equal, 

one half of the potentially digestible matter would escape. The in-

creasing intake of any feed increased the probability of rumen escape and 

that the effect wuuld be more significant with less soluble and more 

slowly digested feed fractions (Van Soest and Robertson, 1978). 

Escape from nnnen was beneficial in cases as feed proteins, since 

the post-ruminal digestion of proteins was more efficient than that of 

the rumen. But escape was generally harmful in case of structural 

carbohydrates which 1vould have little opportunity for further utilization 

(Van Soest and Robertson, 1978). 

The decrease resulting from high level of feeding might be also due 

to the fact that certain feedstuffs had higher digestibilities. Thus, 

i ncreasing proportions of such feeds in the ration would influence the 

digestibility QMitchell et al . 1940; Stone and Fontenot, 1965) . Changing 

the energy concentration of a ration and the level of feed intake of 

the same ration were two different factors that had an influence when 

more feed \vas consumed but at the same time the character of the feed 

mixture was altered. 

Since digestibility depression had been directly estimated for 

only a relatively small number of feeds, values for feeds that were not 
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evaluated must be interpreted from rate of digestion and passage es

timates (:-<RC , 1978) . This situation would leave judgment as the final 

resource in doubtful cases; hence, there was need for continued collection 

of rate of passage and digestion data (Van Soest, 1978b) . 

Not only ruminant animals OMitchell, 1942), but other animals such 

as swine also digested some nutrients in their feeds somewhat less 1.ffien 

fed higher levels (l-1itchell and Hamilton, 1929). 

Effect of Chemical Composition of Feedstuffs on Digestibility. Chemical 

compos ition determined the nutritive value of feedstuffs, and greatly 

affected the apparent digestibility of the chemical components. 

Schneider and Flatt (1975) suggested that digestion coefficients for a 

chemical or nutrient should never be reported for any feed without re

porting the percentage composition of the same nutrient for which the 

coefficients had been determined . Digestion coefficients were of no 

value apart from information on the chemical content of the same 

sample or feedstuff. 

Changes in chemical composition of feeds were due to (1) different 

treatments such as cooking, grinding or pelleting, (2) methods of 

preserving , (3) stage of maturity, (4) environments, (5) season, and 

(6) associative effect of one feed on another. 

The apparent digestibility of the nutrient components of a feed 

depended on many factors. For example, change in crude protein and/or 

change in crude fiber exerted a change in digestibility of that feed

stuff. The digestibilities oi Ieedstuiis also differed because of 

different components of nutrients especially as some of these components 



lowered the chance for the digestive enzymes to come in contact with 

their substrates (Schneider and Flatt, 1975) . 
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Schneider and Lucas (1950) observed that between 25 to 45 percent 

of the variation in digestibility of different samples from the same 

feedstuffs might be attributed to differences in the chemical composition. 

The chemical composition of a feed influenced its apparent digestibility 

(Sclmeider et al. 1950). Therefore, feeds of the same name but 

different in composition MJuld show variations in digestibility. 

It 1vas very important to note the change of chemical composition 

in feedstuffs, especially of those feeds that change rapidly as they 

progress in growth and those feeds that were altered by milling pro

cesses resulting in different levels of proteins and still given U1e 

same name. Cereal grains had significant differences.in. chemical com

position. Barley, for example, had 9 to 19 percent protein (Schneider 

and Flatt, 1975) . A change in protein content of a feedstuff must be 

followed by a change of other components. 

The protein level in feedstuffs greatly affected apparent digesti

bility coefficient. Protein also affected the grmvth and activity of 

microorganisms in ruminant animals. Harris and Mitchell (194lb]observed 

that when feedstuffs high in protein were added to balance the low 

protein rations, the microorganisms were stimulated and would degrade 

more fiber . Supplementing rations that contain low-nitrogen roughage 

with urea improved the digestibility of cellulose. Addition of protein 

to low protein diets of sheep increased the digestibility of dry matter 

at different levels of starch (Williams et al. 1953). 

Since metabolic fecal nitrogen (MFN) \vas constant, the apparent 

digestibility of crude protein depended t o a great extent on the protein 
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level in the feedstuffs. In n.nninants, the MFN was about three grams 

of crude protein per 100 grams of feed dry matter eaten (Schneider 

and Flatt, 1975). If a feed contains six percent crude protein, the 

apparent digestibility of this protein could not be more than SO percent. 

If a feedstuff contained less than three percent crude protein, the 

digestible protein supply to the animal might be reduced (McDonald 

et al. 1973). 

Metabolic fecal nitrogen was found to be 2. 8 percent by Blaxter and 

Mitchell (1948) while Christiansen (1979) estimated it to be 3. 5 percent 

when applied Lucas model in a study on sheep. Fonnesbeck (1969) reported 

a value of 3.2 percent for MFN in horses. As a result of metabolic 

crude protein, apparent. digestibility of crude protein was shown to 

decrease with a decreasing crude protein content in the diet or increase 

with an increasing crude protein content in the diet (Christiansen, 

1979) . 

As the nutritive ratio (ratio of apparent digestible nonprotein 

nutrients to apparent digestible protein) became wider , the apparent 

digestibility of all nutrients tended to decrease, particularly for the 

apparent digestibility of protein. This effect explained on basis of 

output of metabolic nitrogen (Schneider and Flatt , 1975). Hence, the 

apparent digestibility of protein was lower with a wide ratio even 

though the true digestibility might not be. In ruminants, the addition 

of protein or non-protein nitrogenous compounds to a ration with wide 

nutritive ratio increased the microbial digestion of structural 

carbohydrates (Schneider and Flatt, 1975). This diges tion made other 

nutrients more digestible with mature fattening cattle and sheep. 
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A ration low in protein or the addition of non-nitrogenous feeds 

of any kind to a ration caused a greater excretion of nitrogen in the 

feces. The amount of the additional loss of nitrogen in feces depended 

chiefly on the amount of feed added and its digestibility. This extra 

excretion consisted not only of undigested protein, but of metabolic 

nitrogenous substances that had been assimilated and then excreted as a 

waste (Mitchell, 1924). 

There was a negative correlation beu;een the crude fiber content of 

feedstuffs and the digestibility of their organic matter (A~elsson, -

1938; cited in Schneider and Flatt, 1975). Schneider (1947) observed 

that, with poor quality roughages fed to sheep, the effect of crude 

fiber and nitrogen free extract (NFE) on digestibility differed from that 

of better roughages. The greater the percentage of crude fiber, the 

lower its digestibility. ~breover, the digestibility of organic matter 

of such poor feeds decreased as the NFE increased . This decrease could 

be explained by the larger quantity of lignin that the usual chemical 

methods did not include in the fiber portion and became a part of the 

NFE as it 1;as calculated by subtraction (Schneider and Flatt, 1975). 

Crude fiber depressed the apparent digestibility of crude protein 

because as the percentage of crude fiber increased, the percentage of 

crude protein decreased in the feed. 

Differences in digestibility of crude fiber influenced the di

gestibility of all nutrients because undigested crude fiber hindered 

the action of digestive enzymes on the other nutrients especially in 

plant parts such as stems, seeds and seed coats, and al so for cells 1;ith 

fibrous membranes (Schneider, 1947). 
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The nature and amount of crude fiber present 1vere important factors 

affecting the digestibility of nutrients in feeds . Since the plant cell 

wall was the main fract ion contributing to the depression in digesti

bility , the degree of the depression with increased intake was related 

to cell wall content (Robertson and Van Soest, 1977). Hmvever , it 1vas 

inversely related to lignin content (Van Soest, 1970). High lignin 

content meant inherent low cell 1vall digestibility (Van Soest et al. 

1978). 

Since lignin was a primary factor limiting digestibility, lack of 

association IVith cellul ose might cause crude fiber (mainly cellulose) 

to be poorly related to digestibility in tropical plants (Buttenvorth, 

1967). Lignin and acid detergent fiber (ADF) were more associated with 

digestibility while other components such as hanicellulose and neutral 

detergent fiber (NDF) were related to voluntary intake (Van Soest et al . 

1978). 

The difference between rate of digestion by ruminal microbes in

creased as the cell wall and l ignin content of forage increased (Koller 

and Hintz, 1978). 

Forbes and Garrigus (l950a) showed relationships between organic 

matter digestibility and the crude protein, crude fiber and lignin 

content of forages grazed by steers and wethers in a total of 70 grazing 

trials averaging over three animals per trial. Similar digestive 

capacities were observed in steers and 1vethers . The best correlation 

between chemical composition and organic matter digestibility was ob

tained by lignin. The regression of organic matter di ges tibility 1vith 

lignin content of the dry matter of the forage was presented in the 

follmving equations: 
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Hhere Y is organic matter digestibility and x is lignin content of dry 

matter of feed. 

There Has also significant correlation betHeen digestible organic 

matter intake, and lignin content. Results from trials Hith steers and 

wethers sh01;ed a depression of 8. 2 percent and 9. 0 percent respectively 

of the maximum intake for each percentage unit increase in lignin content 

of the forage (Forbes and Garrigus , 1950a). Total digestible nutrient 

(illN) content of several forages varied inversely with lignin content 

of forage (Forbes and Garrigus, 1948). 

The efficiency with which digested energy was used·for production 

was curvilinearly associated with cell wall content (Van Soest, 1973b). 

The decrease in efficiency re·lative to TDN content at maintenance would 

include the depression in digestibility and the energy cost of runima

tion which Has porportioned to cell wall content of the ration (Van 

Soest and Robertson, 1978) . Beside decreasing digestibility, crude 

fiber tended to exert a protective influence against the digestibility 

of all nutrients, since the undigested cell walls protect the nutrients 

that were found 1;i thin the cell walls. 

The f iber mass of plants was considered t o be more bulky and more 

slowly digested than the nonfibrous parts (Balch and Campling, 1962). 

The amount of crude fiber desired in rations might depend on the size 

and anato!ll)' of the animal ' s digestive tract. The bulkiness of rations 

might depend on the desired level of production. Too much bulk would 

not allow the animal to consume enough digestible nutrients. However, 
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very low bulk canbined with high feeding level might result in indigestion 

problems and animals might go off-feed. 

Microorganisms in the nnen \vould util ize the more available car

bohydrates instead of attacking the resistant celluloses and hemi

celluloses that ~Vould be left partially fermented. Thus, digestibility 

of structural carbohydrates \Vas r educed in rations high in eas i ly 

digested carbohydrat es . Gl ucose addit ion to a basal ration cont aining 

roughages markedly depressed the digestibility of crude fiber of the 

basal diet in cattle (~li tchell et al . 1940) . 

TI1e addi tion of carbohydrates such as starch , glucose or sucrose 

to basal diet was also found to reduce diges t ibility of the basal ration 

(Ellet and Holiday , 1917). Corn feeding slightly lo~Vered the digesti

bility of her bage (Brannon ct al. 1954), while corn sugar ( cerelose) 

added at six percent of r ation decreased the digestibility of protein 

but had no effect on the digestibility of dry matter, organic matter , 

crude fibe r or energy (Woods et al. 1956). 

~!classes was found to have a favorable effect on digestibility of 

certain roughages (Paterson and White , 1912). When only one fourth of 

the nutrients of corn were r eplaced by those from molasses, the average 

diges tibility coeffi cient of crude fiber ~Vas increased from 49.7 to 54.6 

percent . However, Davis et al. (19 55) observed no effect on protein 

digestibility at this level of molasses in the diet. More mol asses was 

added to well balanced rations for ruminants might slightly reduce 

digestibility of nutrients in feedstuffs especiall y that of cellulose 

(Bohman et al. 1954), and of protein (King et al . 1956 ; 1957) . Davis 

et al . (1955) observed a significant drop in the protein apparent 
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digestibility coefficient when half or all of the nutrients from corn 

were replaced by TDN from molasses. 

Komkris et al. (1965) found that digestibility of organic matter and 

NFE \vas greater at 19.7 percent than 13.0 percent molasses in rations 

fed to sheep. There was no significant difference in protein digest:

bility when the roughage and the concentrate, including molasses, were 

fed in a mixture . However, when the ingredients were fed separatel y , 

the digestibility of protein decreased ir, rations containing higher 

molasses levels (Komkris et a l. 1965). 

Nitrogen free extract (NFE) was significantly higher when molas;es 

replaced all of the corn than when corn was fed alone in a ration (Dc.vis 

et al. 1955). Swift et al. (1948) reported that the digestibility of 

NFE decreased as the percentage of this nutrient decreased in the diet . 

The amount of NFE also affected the digestibility of other nutrients 

adversely. This adverse condition might be caused by the decrease ir. 

the protein percentage or by the lignin content of NFE of some feeds . 

However, increasing NFE intake from 58 to 66 percent improves 

digestibility (Axelsson, 1949; cited in Schneider and Flatt , 1975). 

The effect of rations high in carbohydrates or the addition of 

carbohydrates on digestibility depended to a certain extent on the nature 

of carbohydrates (Crampton and ~~ynard, 1938). 

The addition of fats t o diets might also have an effect on 

digesti bility of nutrients. When corn oil was added to bring up the 

total ether extract from 2. 8 to 6 .4 percent in sheep rations, S1vift 

et al. (1948) found t hat t he apparent digestibility of all constituents 

of a mixed ration had increased. Then, when et her extract was increased 



!8 

to 9.7 percent, digestibility declined. Envin et al. (1956) reported 

that increasing the amonnt of fat in rations lm;ered the digestibility 

of carbohydrates, especially that of crude fiber and dry matter . Fat 

addition also lowered cellulose digestibility (Summers et al. 1957). 

Added fats might be more digestible than the ether extract content 

of certain feedstuffs (Schneider and Flatt, 1975), especially that oi 

browse plants that were high in nondigestible fats such as waxes, 

pigments, essential oils and resins (Cook and Harris, 1968a). 

Total lipid apparent digestibility was shown to vary considerab~y 

between all- hay and hay- com rations, and was also affected by the 

addition of corn since the oil of corn increased the nutritive fract:on 

of total lipids in the ration (Christiansen, 1979). Also, total lip:d 

apparent digestibility was affected by an increase in lipid content :n 

general due to effects of bile (metabolic lipid residue) (Schneider 

and Flatt, 1975). 

The mineral content of diets influenced the digestibility of 

nutrients in feedstuffs, too. Minerals might aid digestion if the 

elements added were deficient in the ration and are essential for life 

and activity of micro-organisms in ruminants. 

Adding SO to 70 grams per day of each steamed bone meal and grocnd 

limestone to dairy cows rations, Schneider and Ellenberger (1927) 

observed a slight increase in digestibility. However, minerals increased 

dry matter digestibility when cows were fed at high level of milk 

production. Also, these minerals increased the digestibility coefficient 

of ether extract at maintenance levels. 

Swift et al. (1952) observed increased digestibility upon addit jon 

of alfalfa ash to corn cob ration. The digestibility of all nutrients 
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increased with alfalfa ash added to cotton seed hulls (Tillman et al. 

1954). This increased digestibility was explained by increased activity 

of micro-organisms in the rumen. Such activity lead to higher efficiency 

in utilizing crude fiber and other nutrients in corn cobs and cotton 

seed hulls. 

The estimated true digestibility for ash was ~gh (Christiansen, 

1979) . The apparent digestibility of ash was also affected by changes 

in the ash content of t he diet alone as a result of a high ash endogenous 

residue (Schneider and Flatt, 1975). 

Thus , the nutritive value of forages \;as limited by composition. 

Use of compositional predictors of forage quality was a common practice 

and it was important that such analytical quality standards reflect the 

real factors that determine composition quality (Van Soest et al. 1978) . 

The negative association of digestibility with lignin or fiber content 

was easy to realize, since it involved the nutritive availability of 

different chemical constituents of forages and factor affecting this 

availability such as lignification (Van Soest, 1965a). 

Therefore, it might be practical to classify the effects of forage 

composition upon nutritive value according to how chemical constituents 

affect intake, digestibility and the relationship ben;een them (Van 

Soest, 1965a). These classes could be: (1) the factors that affect 

intake, but had no direct reliable effect on digestibility, such as 

high moisture silages or toxic materials; (2) positive relationship 

ben..een intake and digestibility '"as promoted such as fibrous , bulky 

feedstuffs , and (3) negative relationship between intake and digesti

bility was promoted, such as high quality feeds where fiber content was 

low and probably did not affect intake. In this case intake of 
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digestible energy might be limited by the requirements of the animal. 

It could be concluded that fiber will positively relate to voluntary 

intake , since as fiber increases, digestibility decreases, and the 

animal had to consume more to meet energy requirements (Van Soest et al. 

1978). 

Effect of Stage of Maturity on Digestibility of Feedstuffs. Stage of 

maturity of forages affects digestibility by two ways . The first is due 

to a change in the chemical composition (Arnold and Dudzinski, 1978), and 

the second because of changes that occurred in physical state of the 

plants. As plants mature, their crude fiber contents increased and 

became less digestible than fiber of younger plants (Schneider and Flatt , 

1975). Animals consumed less as plants became mature and less palatable 

(Cook and Harris, 1968a). The cell walls hardened through lignification 

and protein content reduced and other nutrients became less available 

to rumen micro-organisms (Dietz, 1972). 

As grasses and broad leaved herbs mature, they decreased in crude 

protein and increased in crude fiber, lignin, cellulose and other car

bohydrates. These were the actual changes in the plant as a whole and 

were further affected by changes in leaf-stem-fruit ratios (~~Ilvanie, 

1942; Cook and Harris, 1950 ; Cook and Harris , 1968a). 

Stage of maturity of plants was found to account for about eighty 

percent of variability in forage nutritional quality (Troelsen and 

Campbell, 1969). Reid (1957) observed a rapid decrease with advancing 

maturity in the digestibility of dry matteT by dairy cows of first

cutting forage. Digestion coefficient declined from about 77 percent 

for eaTly grmnh to appToximately 52 percent lateT in the season. 
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Meyer et al. (1957) examined the maturity effect on the feeding 

value of oat hay \;hich was harvested at seven d_ifferent growth stages 

(51 percent jointing, 16 percent flagleaf , 12 percent boot, 1 percent 

flower, 8 percent flower, milk stage and dough stage). As growth pro

gressed, holocellulose increased up to 52 percent in milk stage. Lignin 

also increased to the milk stage (9.0 percent). Lignin content of the 

hay decreased to about 8.4 percent at grain formation in dough stage. 

Decline in total digestible nutrients (TilN) was from 68 percent in the 

joining stage to 60 percent in the flowering stage; then to 50 percent 

during the milk stage followed by an increase to 53 percent with grain 

formation. The rate of gain of sheep fed the hay at the various stages 

followed TDN pattern closely. Sheep gained significantly higher in the 

joining stage , continued at a constant rate through the intermediate 

stages, then significantly gained less in the milk and dough stages . 

Lignin percentages were highly negatively correlated (-0.89) with TDN 

values. 

Thus, not only did the digestibility of the structural carbohydrates 

of cell walls decline with stage of maturity of forage, but also these 

components tended to form an increasing proportion of the dry matter of 

the plant with age (Van Soest, 1967) . Studies on the components of the 

cell wall showed that resolution of the cell wall into nutritionally 

uniform constituents was not possible. The consequence of this non

uniformity was to invalidate use of single fractions to predict the 

digestibility of dry matter in forage plants (Van So est, 196 7) . 

Stage of maturity was also found to affect the digestibility of dry 

roughages and silages. E'qleriments with cattle, sheep and horses showed 
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that digestion tended to decline as crops advance in maturity. This was 

true with both grass and legume hays . Staples et al . (1951) observed 

that the protein content of hay was affected by time of harvest . Late 

cut hay had only SO to 70 percent as much protein as early cut hay. Dry 

matter, ether extract, crude fiber and nitrogen free extract were found 

not to be affected by harvest time . Hmvever, the time of cutting of 

hay affected the apparent digestibility of the nutrients in the hay. 

Protein digestibility showed the largest decline with advanced maturity 

of hay, while digestibility of dry matter, ether extract, nitrogen free 

extract and fiber were slightly reduced when late-cut hay 1vas compared 

with an early-cut hay. 

The effect of maturity on in vit ro digestibility of plant parts 

(leaves , heads and stems) in timothy, orchard , brome, reed canary, tall 

fescue, and mountain rye grasses, was studied by Pritchard et al. (1962). 

All grasses were cut at nine separate stages of maturity . In vitro 

digestibility ~<as lower for s t ems than for leaves. At the same time, in 

vitro digestibility declined more rapidly with progress in maturity than 

did leaves. Due to species difference in rate of maturity, cutting date 

was not found to be a good indicator of maturity of grasses. 

Johnson and White (1965) also concluded that since the contribution 

of leaf, stem, and sheath and head portions of grasses after heads 

emerged were 11 to 12 percent, SO to 60 percent and 20 percent of the 

total dry matter, respectively. Thus, it might be that digestibility 

changes in grass stems determined to a certain extent the digestibility 

of the entire plant (Cook and Harris, 1950 ). Lignification of the 

leaves, sheaths, and stems followed diges tibility patterns in which 



stems of lowest digestibility were more lignified than leaves or 

sheaths . Species variation in rate of maturity was also observed. 
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However, when Hogan et al. (1967) harvested one half of each plot 

of timothy hay on June 15, and the second half on June 25, signi ficant 

differences were found in forage intake level beuveen harvest dates. 

Harvest date had a significant difference in forage crude fiber content 

and energy digestibility when harvest date was delayed. Digestibility 

of energy was significantly decreased (P < 0.01) regardless of feeding 

level. The difference beuveen the energy digestibility coefficient 

was 3. 3 percent favoring the harvest at an early date . 

Digestibility of com silage with dairy cows was found to be 

62 . 7 percent at dent stage and 56.7 percent at mature stage (Byers and 

Omiston, 1964). While Bryant et al. (1965) obtained dry matter 

digestibility coefficients of 66.7 percent and 60.6 percent for com 

silage harvested at milk and medium hard dough stages, respectively. 

However, Coloves et al. (1970) observed that maturity from soft dough 

through medium hard dough, early dent , and glazed and frosted stages 

of com silage exerted no effect on digestibility in steers. 

Digestibilities of dry matter, gross energy and total digestible 

nutrients were significantly higher for the two most mature com silages 

when fed to wethers. 

Neutral detergent fiber (NDF) percentages in anclo clover were 

detemined by Stanley et al. (1968) in a study of maturity effect on hay 

quality . In young vegetative forage , NDF was less than 40 percent of 

the total yield, and it increased to 47 percent then to SO percent 

during flowering and at maturity stages, respectively. Combined forage 
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production, cell wall and weather data indicated that during wet conditions 

forage yields increased rapidly; and forage quality as measured by cell 

wall percentages decreased more rapidly than forage under dry conditions 

with lower yields. 

Stone et al. (1966) observed higher digestibility of early-cut than 

late-cut alfalfa and red clover-timothy mixed hay which was fed forms 

of long, chopped, ground and pelleted. All forms of early-cut hay 

showed significantly higher digestibilities of dry matter, protein and 

total carbohydrates. Anderson (1976) observed higher total dry matter 

with delayed cutting of alfalfa; however, chemical data showed that it 

was due to increased fibrous parts of the plants, namely neutral deter

gent fiber (NDF) and acid detergent fiber (ADF). It was also noted that 

crude protein and dry matter digestibilities declined t;ith age of forage. 

Cogswell and Kamstra (1976) observed maturity effects on the 

chemical composition and digestibility of certain range grasses. As 

maturity advanced, holocelluiose content of plants increased. Similarly, 

hemicellulose increased but less than acid detergent fiber and cellulose. 

These results agreed with those of l'h1rray et al. (1979) . At latter 

stages lignin content increased the acid detergent fraction more than 

did cellulose. It was also demonstrated that lignification increased 

and crude protein and dry matter digestibilities decreased in all grass 

species with maturity . These results were in agreement with those of 

Cook and Harris (J968b) who found that in summer ranges, grasses had 

the lowest protein percentage and highest energy content while shrubs 

had the highest protein and phosphorous cont ents as summer advances. 

Besides, the digestibility of cellulose decrea&~d with plant 

maturation . The same decline occurred in the case of hemicellulose, 
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but this fact was not well-recognized because the ready solubility of 

hemicellulose in dilute acids and bases and its long standing inclusion 

in the NFE (Van Soest, 196 7). 

Christiansen (1979) showed forage maturity to be a significant 

factor in altering apparent digestibilities for most of the nutrients 

in feedstuffs with lambs. Treatments included u;o forage types (grasses 

and legumes) and three stages of maturity . There was no significant 

difference in apparent digestibility of cell walls between late vegeta

tive and mid-bloom stages. However, the full bloom stage was significantly 

lower than late vegetative or midbloom stages in cell wall digestibility. 

This pattern held true for neutral detergent fiber (NDF) and acid 

detergent fiber (ADF) apparent digestibility as well. 

Comparing maturity effects on the apparent digestibility of 

cellulose, hemicellulose and lignin; Christiansen (1979) observed no 

significant maturity effects for hemicellulose apparent digestibility 

between any of the maturity levels. This was in agreement with Van 

Soest (1967) and Cross et al. (1974) . However, maturity significantly 

affected the apparent digestibility of cellulose in the same pattern 

as that of cell walls, NDF, and ADF. Lignin apprent digestibility 

was shown to be significantly higher (23.5 percent) in mid-bloom than 

in the late vegetative stage (13.9 percent) or full bloom (12.9 percent) 

stages. This difference could be due to rain damage or heat damage 

to baled hay. No significant difference was observed beu-1een late 

vegetative and full bloom stages. 

It was also observed (Christiansen, 1979) that the apparent digesti

bility of cell walls , NDF, or ADF was much greater in midbloom grass 
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than in late vegetative or full bloom stages of maturity. However, in 

alfalfa, cell wall, NDF illlU ADF apparent digestibility declined as 

maturity advanced. Lignin in midbloom grass was high in apparent 

digestibility (37 . 6 percent). Crude protein was significantly lower in 

apparent digestibility in diets containing full bloom forage than in 

diets containing late vegetative or midbloom stages. Crude protein 

apparent digestibility was not significantly different between late 

vegetative and midbloom stages. The decrease in crude protein content 

was relatively small betlveen late vegetative and midbloom stages within 

alfalfa or grass diets. However, a large decrease in crude protein 

content for the full-bloom stage resulted in a slightly lower crude 

protein apparent digestibility in full bloom stage in both alfalfa and 

grass forage types. 

Available carbohydrates digestibility was demonstrated to be sig

nificantly lower in midbloom than late vegetative or full bloom stages 

(Christiansen , 1979). The available carbohydrate difference between 

late vegetative illld full bloom stages was not significilllt. The principle 

cause of the significant decrease in available carbohydrate apparent 

digestibility in midbloom diets, was the significantly low carbohydrate 

content in mid bloom grass. Even though dry matter and gross energy 

digestibilities decreased with advancing stage of maturity, differences 

were not significant. 

Murray et al. (1979) found that in all grass species that were 

studied, the total nitrogen content exceeded three percent (18 . 8 per

cent protein) in April, then declined to less than one percent (6.2 

percent protein) by the end of the grazing season . Ni t rogen levels 

in desert wheatgrass fell below the maintenance level by early June. 



All grass species under consideration provided insufficient protein 

by August. 
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Murray et al. (1979) also reported an increase in the percentage of 

NDF in all species under consideration with plant maturity. Cell content 

decreased with increased maturity, while NDF increased in the forage . 

\Vheatgrass digestibility (cell wall contents) values were erratic and 

no trends with plant maturity could be shown, even the NDF percentage 

was correlated to plant maturity. The rate of decline in cell wall 

digestibility was great est in the basin tvild rye , followed by desert 

cheatgrass, squirreltail, needle-and-thread grass , and blue grass. 

These species became less digestible with increasing maturity. By 

September, all species except cheatgrass and blue grass Nere less than 

50 percent digestible . The estimated true dry matter digestibility 

(TD~ was a measure of the digestible cell contents and digestible 

liquified cell wall corrected for silica content {}lurray et al. 1979). 

The NDF percentage subtracted from 100 gives the cell content. The 

digestible cell wall percentage (100 - NDF percent age) minus the 

silica correction gives the TDDI~I. ffi'l or the expected apparent dry 

matter digestibilities are about 13 units less than TDr:t-1 because of 

the loss of metabolic matter in feces (}lurray et al. 1979). The TD!Jvl 

follows similar trends to digestible cell walls and the rates of 

decrease are similar. By September, most species were lower than 

60 percent digestible. Olsen and Slinger (1968) found that dry matter 

digestibilities tvere 72 , 63 , and 65 percent for mid-July, mid-August, 

and early SepteQber , respectively. 
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In a comparison study of the nutritive value of forbs, grasses, 

and shrubs, Cook (1972) and Cook et al. (1977) demonstrated that in 

range forages the digestibility of protein may vary from 70 percent in 

early growth to about 10 to 15 percent in the quiescent stages. Thus, 

it was more logical to evaluate diets of grazing animals on the basis 

of digestible protein rather than a total protein unless standards had 

considered the high variability in digestibility of protein as plants 

mature. The digestibility of gros s energy in range forages followed a 

s imilar trend, but digestibility of mature forages, even when dry, 

seldom goes below 45 percent (Cook et al . 1977) . 

Cook (1972) also observed that grass species declined in digestible 

protein rapidly and generally fail to meet the lactation requirements 

at about the time they come into full anthsis. This was a result of 

a rather rapid loss of total protein. Hence, a more rapid decrease in 

digestibility of protein as grmvth advanced. Grasses in general , lost 

about 75 percent of their protein during the period from early grmvth 

to seed formation; on the other hand, browse l os t only about 40 percent 

of their protein during a similar period. As a result, grasses that 

had matured were considered poor sources of apparent digestible protein. 

Shrubs, however, were considered good sources of digestible 

protein during most of their active growing period; and even after they 

reached full maturity they continued to meet gestation requirements 

(Cook and Harris, 1968a). 

Forbs were found to be intermediate between browse and grasses 

1;ith respect to protein content during most seasons. Most forb species 

failed to furnish adequate diges tible protein to meet the requirements 

of animal gestation after r eaching the fruit stage (Cook, 1972). 
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Since shrubs had high contents of essential oils, resins, or Haxes 

that give high energy content, but their materials Here not available 

for livestock metabolism, neither the grass energy nor the digestible 

energy of shrubs was considered a good index of true energy values of 

forages (Cook and Harris, 1968b) . Thus, shrubs were not considered good 

sources of energy, especially after they reached the phenological stage 

of fruit development. Thereafter, they generally failed to meet the 

energy requirement for animals in gestation. While grasses were 

generally considered good to excellent sources of energy primarily 

because of their high content of cellulose. Even when grasses reached 

maturity, they seldom failed to furnish the energy requirements of 

lactation (Cook, 1972 ; Cook and Harris, 1968b). 

Hmvever, digestion trials carried out by Biswell et al. (1945) 

showed that older, more mature, fall and 1vinter shrub material Has less 

readily digested than ne1ver, tender, spring grmvth. Thus, protein 

deficiency in the fall and winter might be much greater than shown by 

routine chemical analysis . \Vhile Cook and Harris (l968a) demonstrated 

that the change in the chemical content of forage plants on 1vinter 

ranges was small during the grazing season. Browse showed the least 

seasonal changes and grasses the greatest. 

Van Soest (1964) concluded, in a revie; of chemical composition 

of forage plants, that digestibility variations in forages due to 

maturity changes Has a result of quantitative changes between non

digestible and readily digestible chemical components for all forage 

plants. As plant s mature , lignin and fiber increase while crude 

protein and other cell \vall components decrease. These conclusions 



1;ere in agreement 1vith those of Crampton and Forshaw (1939) ; and 

Crampton and Jackson (1944) who showed that young pasture was much 
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more digestible than the same pasture at later stages of gro1vth. Young 

plants differed from those which were more mature by being tender and 

having much less fiber and lignin on dry basis than later stages of 

maturity. This was in agreement with Cross et al. (1974) who observed 

that immature forage digested 68 percent more rapidly than mature forage 

fiber. Immature forage cell 1valls, henicellulose and cellulose digested 

faster than these components in mature forages (p < . 01). The 

digestibilities of cell wall, hemicellulose, and cellulose of immature 

forages were 76 percent, 75 percent, and 85 percent, respectively. 

ll'hile the digestibilities of these components of mature forages were 

52 percent, 50 percent, and 64 percent, respectively. During growth 

the hemicellulose and particularly the xylan fraction which contained 

uranic acid in its side chain became progressively less digestible 

Qvaite et al. 1964). 

Cross et al . (1974) also observed that the digestibilities of 

cellulose were different for species (p < .OS), stage of maturity 

(P <. 01), and fiber preparation (P <. 01) . Young unlignified forage 

cell walls were light and had a high bulk volume that decreased 1vith 

age as cell walls thickened and became more lignified (Van Soest et al. 

1978) . Feed volume and cell wall content have been factors associated 

with lower intake of forage . The association of lignin with intake 

might be confined to the secondary association with date-of-cutting 

studies, where lignin and cell 1vall increased 1vith plant maturity 

while intake and digestibility declined (Van Soest et al . 1978). Such 
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associations disappeared when forages of similar maturity were collected 

and compared (Van Soest , 1965a). 

Hardison et al . (1957) found that dry matter in the bottom portion 

of the alfalfa plants was only 87 percent digestible as that of the top 

portion . As the stage of maturity advanced , digestibility of dry 

matter in the base decreased at a rate of 0.6 percent per day, but 

digestibility of the top portion remained unchanged . 

The effect of variation in chemical composition of the forages on 

organic matter digestibility 1vas investigated by use of correlation 

and regression analysis (Forbes and Garrigus, 1950a). Organic matter 

digestibility was used, rather than dry matter since a widely variable 

content of ash was noted in the feces; animal grazing young forages 

were likely to have 20 to 25 percent ash in their feces while feces 

from animals grazing more mature f<"JTages usually contained 12 to 5 

percent ash (Forbes and Garrigus, 1950a). 

~urray et al . (1979) demonstrated that forage moi sture, certain 

mineral components, and certain ratios exhibited trends with advancing 

plant maturity. Forage moisture, N,P,S,K,Zn,Cu,N:S , and K/(Ca + ~~) 

declined. The Ca - P ratio increased, even though the Ca contents 

were not related to forage maturity. 

In most plant species studied by ~urray et al. (1979) Ca, ~~' Na , 

~~. and Fe contents were not related t o date of maturit y. 

Schneider et al. (1950) shmved that the apparent digestibility of 

a feed was influenced by its proximate analysis . Hence, that feed of 

the same name but different in chemical make-up would show different 

digestibility. This factor would be important with all feeds, but 
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certainly notable with forages where chemical composition changed 

largely with stage of maturity, although the feed might still be called 

the same name. 

Hence, the precision ofequations used to predict forage digesti

bility from chemical composition should be negatively affected by 

changes in forage maturity. 

Effect of Forage Type on Digestibility of Feedstuffs. The seasonal 

variation of forage nutrient quality on rangelands was closely related 

to plant species characteristics and the growth stage of the vegetation 

(Cook et al . 1977) . The kind of forages (legumes versus grasses) also 

accounted for variations in reported results of digestibility (Schneider 

and Flatt, 1975). Separate equations were used for the forage type 

and were shown to be significantly different (Tomlin et al. 1962). It 

was also shmvn that lignin was significantly correlated to in vivo 

cellulose digestibility for grasses and legumes. 

Johnson et al. (1962) reported high correlations (R = .95) for the 

in vitro cellulose digestibility with in vivo measurements for grasses . 

1Vhen alfalfa data were included, correlations dropped (R = .86). 

Regression equations were developed using in vivo and chemical data as 

independent variables used were extremel y variable between feed classes 

suggesting differences between grasses and legumes. 

RohiVeder et al. (1978) reported high correlations betlveen acid 

detergent fiber concentration and in vitro digestible dry matter in 

alfalfa, temperate grasses, and subtropical grasses. HoiVever, pre

diction equations for digestibility of dry matter from ADF percent 

IVere different between alfalfa and grasses (Table 1). 



TABLE 1 Regression Equations for Predicting In Vivo Digestible Dry Matter (DDM) From Acid-Detergent 
Fiber (ADF) and Dry Matter Intake (IJv!I) from Neutral-Detergent Fiber (NDF), Correlation Values (R) 
and Standard Deviation (SD) Values for Alfalfa, Temperate Grasses and Subtropical Grasses 

R2 
sD2 Description (%) 

1. In vivo digestible dry matter (DIJvl) 
a. Alfalfa n = 40 

. 0221 ADF%2 North only D[XI1 = 71.1 + . 593 ADF% - 71 3.61 
North and South DI:M = 65.5 + . 975 ADF% - . 0277 ADF% 2 68 3.50 

b. Grasses 2 Temperate DDM = 41.9 + 2.15 ADf.% - .0433 ADF%2 53 4.98 
l'ii th aftennath DDM = 49.7 + 1.67 ADF% 0 . 0364 ADF% 2 46 5.23 
With pangolagrass D[XI1 = 44 + 2.01 ADF% - .0412 ADF% 2 49 4.96 
With bahiagrass b DDM = 34.8 + 2.56 ADF% - .0491 ADF% 2 58 4. 81 
With bennudagrass DDM = 59.2 + 1. 32 ADF% - .0338 ADF% 48 5.74 

2. Dry matter intake (DMI) 
a . Alfalfa 

.0164 NDF%~ North only [XI1I 86 . 7 + .425 NDF% 56 6.13 
North and South DMI 39 + 2. 68 NDF% .0410 NDF% 39 7. 95 

b. Grasses 
.0668 NDF%~ Temperate rt.1I = 95.3 + 6.70 NDF%- 89 3. 04 

With aftennath DMI = 118 + 7.41 NDF% - .0723 NDF% 2 56 6.79 
\'lith pango1agrass DMI = 92.5 + 6. 39 NDF% - .0623 NDF%2 64 6. 75 
With bahiagrass DMI = 54.8 + 1. 22 NDF% - .0176 NDF% 58 7.64 
With bennudagrass [XI<[ = 123 + 1. 22 NDF% - .00385 NDF% 2 35 8. 71 

aStandard deviation from regression. 
b 'Suwannee ' bennudagrass (adapted from Rohweder et al. 1978). 
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Crude protein was correlated with dry matter digestibility and with 

its own digestibility in legumes; however, it did not estimate digesti 

bility in grasses satisfactorily (~artin et al. 1975). 

Correlations between holocellulose and the in vivo digestibility of 

organic matter in grass and legumes were determined by Gaillard (1962 , 

1966). Lmv correlations for both chemical fractions were observed when 

forage types 1vere not distinguished. Hmvever, high, significant 

correlations were shown 1;hen forage gr oups were separat ed. Gaillard 

(1962) proposed that the differences beth'een forage types were mainly 

due to digestibility differences bebveen forage hemicellulose, since 

holocellulose contained a considerable amount of hemicellulose . These 

differences were possibly due to differences in the structure of hemi

cellulose of the different types of forages . 

Gaillard (1965) checked his suggestion by a study of the monosacc

haride composition of the three main hemicellulose polymers (the linear 

polymer from hemicellulose A and the linear and the branched polymers 

from hemicellulose B fraction) from Gramineae and Leguminosae . Distinct 

structural differences were found betlveen corresponding polymer frac

tions from each group , especially in linear xylan from the hemi

cellulose A fraction and in the branched polymer form the hemicellulose 

B. 

The action of rumen microbial enzymes on the isolated polymer 

fractions of hemicellulose, from grass and clover was studied in vitro 

(Gaillard et al. 1965). The three polymers from grass were hydrolyzed 

at a rate higher than that of the corresponding polymers from clover. 

While the branched B polymers from both grass and clover were the most 
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resistant to action of the enzyme. The rate of hydrolysis of the 

linear A polymers was somewhat greater and the linear B polymers were 

degraded the most rapidly . Therefore, the hemicelluloses from roughages 

1vere better digested when they contained more of the linear B polymer. 

It 1vas also found that the ratio of hemicellulose A to B differs between 

various plants at different stages of maturity (Gaillard, 1966). 

Legumes were characterized by low content and digestibility of hemi

cellulose, while grasses were high in both respects (Sullivan, 1966; 

Van Soest, 1967) . Individual regression slopes did not reveal these 

differences . \il'lile grasses and l egumes tended to have similar cellulose 

content, grasses may contain up to four times the amount of hemi

cellulose found in l egumes. The use of cellulose to estimate structural 

carbohydrates was particularly dangerous when applied in mixed species 

of plants (Van Soest, 1967). 

The hemicelluloses were found to be lower in legumes than in 

grasses, when expressed either as percent or dry matter or in relation 

to cellulose (Sullivan, 1966). There were also significant species 

differences in hemicellulose content among grasses, but there might be 

a higher ratio of hemicellulose to cellulose in Kentucky bluegrass and 

fescue than in other grasses. Sullivan (1966) reported a higher ratio 

in the samples of feces in comparison with the corresponding forages , 

indicating a lower digestibility of hemicellulose than that of cellulose. 

The correlation beuveen percent hemicellulose and the digestion 

coefficient of dry matter was significant for alfalfa (-. 59), orchard

grass (-.48), and highly significant for timothy (- . 80). The hemi

cellulose: cellulose ratio (H:C) was positively correlated with 
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digestibility in many species and in the total population, except for 

timothy (Sullivan , 1966) . 

Differences in fiber digestibilit y between grasses and legumes, 

including fractions of hemicellulose, cellulose , neutral detergent fiber 

(NDF), acid detergent fiber (ADF), and cntde fiber , were observed (Van 

Soest, 1964; Donker et al. 1976). 

Christiansen (1979) observed highly significant apparent digesti

bility differences between forage types for nearly all of the fibrous 

components. Cell walls, NDF, ADF and cellulose 1•ere shoM1 to be more 

digestible in grasses than alfalfa (p <. 01) . Hemicellulose was also 

found to be more digestible in grasses than alfalfa by sheep, but was 

not significantly different in digestib ility. These results were in 

agreement ~<ith results obtained by Moir (1972) who reported that on the 

average grass cell walls were 40 . 0 percent digestible versus 19.8 

percent digestibility for legume cell walls of temperate and tropical 

species of grasses and l egumes fed to sheep. 

Christiansen (1979) also observed a considerable amount of varia

bility beu•een lignin digestibility coefficient within and between 

forage types. Grass lignin was shown to be more digestible (25. 4 

percent) than alfalfa l ignin (8.2 percent) for all maturity stages. 

The cell walls digestibility in alfalfa followed the cl assic pattern 

by decreasing with increasing lignin content. Hm•ever , the digesti

bility of grass cell ~<alls closely follo~<ed the digestibility pattern 

of lignin. Van Soest (1962) reported marked differences in the 

relationship of lignin and digestibility in plant species, particularly 

between grasses and legumes. Correlations bet1.een lignin and 
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digestibility for grasses, legumes and both forages combined were -.82, 

-.74, and -.40, respectively. 

Alfalfa had a higher lignin content than grasses of equal diges

tibility. Such differences might be explained by supposing grass lignin 

to be combined with carbohydrates in a way to cause more inhibition of 

digestion (Van Soest , 1964). But, grass lignin was more dissolved than 

that of alfalfa . The ratio of lignin to cell walls in alfalfa was 

greater than in grasses, thus higher digestibility of the grass cell 

walls (Keys et al. 1969). 

A greater proportion of total grass lignins was dissolved by alkali 

than with lucerne lignins, but digestion increased this proportion with 

both species. Compared with the grass alkali lignins , the lucerne 

lignin had more total but less aromatic protons (Gordon, 1975). The 

correlation between amount of lignin in the cell wall and rate of cell 

wall digestibility was reported (Smith et al. (1972) to be -. 89 for 

grasses but only -. 35 for legumes. Thus, legume lignins appeared to 

have a smaller effect on digestion of cellulose and hemicellulose than 

did grass legumes. 

Reid et al. (1962) conducted in vitro fennentation for cellulose 

digestion and gas production at 12, 24, and 36 hours. When the in 

vitro fennentation was used, alfalfas were characterized by a high 

initial gas production followed by a leveling off, while grasses 

fennent at a slower rate and did not level off to the same extent. 

Legumes were expected, because of a large available fraction 

(about 60% dry matter), to have a rapid burst of fennentation followed 

by a leveling off as soluble cell contents were used up (Van Soest, 
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1965a). With grasses, a slower start was observed because of the smaller 

quantity of highly digestible cell contents , anu the fermentation con

tinues steadily as the lightly lignified holocellulose continues to 

ferment at an appreciable rate. 

Keys et al. (1969) and Donker et al. (1976) observed no significant 

differences ben;een grass and alfalfa dry matter apparent digestibilities 

by sheep but shmved significantly higher apparent digestibility for 

crude protein of alfalfa. lVhile Christiansen (1979) found that crude 

protein , available carbohydrates, dry matter and gross energy were to 

be significantly more digestible in alfalfa than in grass. 

The digestibility of proximate nutrients of forage by horses was 

studied by Fonnesbeck et al. (1967) . Pennscot red clover, Atlantic 

alfalfa, Timothy, Lincol~b\om grass, Reed Canarygrass, and Alta fescue 

hays were evaluated in one experiment. In a second experiment , Atlantic 

alfalfa, Lincoln bromgrass, Reed canarygrass, orchardgrass , Alta fescue, 

and Midland bermuda grass hays were evaluated. 

The legume forages contained significantly (P <.01) higher di

gestible dry matter and TDN (Fonnesbeck et al . 1967). Alfalfa hay had 

lower digestible crude fiber and digestible ether extract contents than 

all other forages . The bromgrass had the most digestible crude fiber 

content (P <.OS). 

Results reported by Fonnesbeck et al . (1967) suggested that there 

were among and within plant species differences in digestibility of 

forages when fed to horses. The nutritive value of legume hays was 

superior to all grass hays studied. The Nutritive Value Index was 

highest for red clover (68 . 0), followed by alfalfa (56 . 8 and 62.5), 
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timothy (52.8) , bromgrass (48 .1 and 48 . 8), canarygrass (46.9 and 46 . 0) , 

orchar dgrass (45 . 2), bermuda grass (44.0) , and fescue (36 . 8 and 44 . 6) 

i n both experiments. 

The digestibility of Sudan grass was sh01m to be higher than that 

for timothy and equal to that of barnyard millet for sheep (Lindsey 

et al. 1917) . The in vitro cellulose digestibility of bromgrass was 

found to be 52 . 9 and 43 .1 percent for two stages of maturity. While 

in vitro cellulose digestibility for orchardgrass was 66 . 3 and 53.3 

percent for the two stages of maturity (Quicke et al. 1959) . 

The percent of hemicellulose and cellulose 1vas significantly 

(P < . 01) correlated in every plant species studied except Reed canary 

grass and Kentucky bluegrass , and in all total samples (Sullivan, 1966) . 

These results suggest that the species of plant was an important factor 

in determining the proportions of the different cell wall constituents , 

especially the proportion of lignin to the structur al carbohydrates . 

The interrel ationship between intake, digestibility , and chemical 

composition 1vere highly species oriented (Van Soest , l965a) . Tall 

fiscue was consumed more when mature . Results with tiVO different sets 

of alfalfa from Utah and \vest Virginia agreed in that there ~Vas not a 

consistent relationship bet~Veen intake and digestibility or chemical 

composition. 

Horses consumed significantly (P <. OS) gr eater intake of legume 

than of grass hays when fed ad libitum (Fonnesbeck et al . 1967). 

Roh\Veder et al. (1978) used NDF to estimate voluntary intake 1Vhich 

\Vas a function of the rate of digestion , that in turn affected the rate 

of passage and hence t he amount of forage t he animal can consume . 



Different equations were reported for different types of forages 

(Table 2). 
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Comparing alfalfa to a mixture of weed plants, Martin and .lmdersen 

(1975) found that the dry matter digestibility was not different , but 

the weeds contained more NDF and less ADL and crude protein than 

alfalfa. Thus , while the weed mixture contained more fiber, this fiber 

was less lignified and more digestible than the fiber of alfalfa. Ten 

out of the twelve weeds studied had higher digestibility than that of 

oats forage . 

Linn et al. (1975) reported that the digestibility of dry matter 

and crude protein of aquatic weeds (Myriophyllum exalbesins Fern) and 

(Potamogeton pectinatus L.) were lower than those for dehydrated alfalfa. 

Browse species on all ranges were higher in protein, calcium, 

phosphorus and lignin, while grasses were higher in crude fiber, 

cellulose, and energy-yielding components (Cook and Harris, 1968b) . 

Generally, forbes were intermediate to brmvse and grass in nutritive 

content in the spring and summer ranges. 

Legume forage required as much water per unit of dry matter for 

ingestion as the grass forage, but because of the higher digestibility, 

more water was absorbed from the intestines and less water was excreted 

in feces of horses (Fonnesbeck, 1968). A greater volume of urine was 

excreted from horses consuming legumes. The ash content had an 

apparent influence on 1vater intake and water excretion. Thus, kinds 

of forages, grain mL~tures, hay-grain rations , and other environmental 

factors might also account for a part of the variations i n reported 

results of digestibility of feedstuffs (Schneider and Flatt, 1975). 
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Animal Effects. Nutrients of various feedstuffs were not equally di

gested by the different kinds of animals because of the variations in 

the digestive systems and feeding habits. Herbivores, especially rumi

nants, digested fibrous feeds more than carnivores or amnivores 

(Schneider and Flatt, 1975) . Horses and pigs digested less fiber than 

cattle and sheep . Pigs had lower digestive power than ruminants but 

higher than poultry; however, poultry digested feeds that 1vere low in 

fiber as well as cattle and sheep (Fraps, 1932). The main variation in 

the digestibility among animals was usually in the case of roughages 

because they IVere higher in fiber content. The ability of ruminants 

to utilize large amounts of roughages was great and they can consume 

rations IVhich were only partially digested and still get enough nutrients 

for body functions. S1vine and poultry an the ather hand, . sh.ould have 

highly digestible rations in order to meet their nutrient requirements 

(Schneider and Flatt, 1975). 

S1vine digested some concentrates more and roughages less than 

cattle. Concentrate digestibility ~Vas about 100 percent by SIVine. 

Hence, calculating rations for SIVine could not be based on digestibility 

trials of sheep or cattle. Calculated digestible crude protein and 

total digestible nutrients for farm gains shown by Crampton and 

11/hiting (1943) were significantly lm;er than those tabulated by 

1-'lorrison (1936) , IVhich were largely obtained using ruminant animals 

(Schneider and Flatt, 1975). 1-'!onogastric animals digest more hemi

cellulose than cellulose (Keys et al . 1969; Fonnesbeck et al. 1974), 

while ruminants had a great ability to digest more cellulose. The 

digestion coefficients for hemicellulose 1vere greater than those for 
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cellulose in both swine and rats (Keys et al. 1969). However, in sheep 

t rials , hemicellulose in grasses was more digestible t han cellulose 

while the reverse was true in the case of alfalfa. 

Fonnesbeck et al. (1974) compared the apparent digestibility of 

plant cell wall contents for sheep, rabbits, swine, rats, and chickens. 

Eleven diets were formulated that increased in cell wall content from 1 

to 55 percent. Sheep diets contained 28 . 7 to 55.0 percent cell t;all; 

rabbits received 25.0 to 55.0 percent cell wall containing diets; swine 

and rats received 1.0 to 34.3 percent cell wall containing diets; and 

chickens received 1.0 to 41.9 percent cell tvall containing diets. The 

apparent digestibility of cell wall constituents, cellulose, hemi-

cellulose (Table 3) lignin, and acid insoluble ash, by sheep was 30'. 0, 

40.3, 5.1, and -7.3; by rabbits 16,1, 24.7, -7.4, and -7 . 4; by st;ine 

·30.4, 46.4, 2. 0, and -7.7; by rats 20 . 7, 25.9, -1.2, and 00.1; and by 

chickens 9.6, 4.2, 5.64, and -5.0 percent, respectively. Cellulose 

and hemicellulose were partially digested in swine and rats as tvell as 

herbivorous animals such as sheep (ruminal digestion) and rabbits 

(cecal digestion) . Chickens digested the cell wall components to a 

much lesser extent (Table 4) . Lignin and acid insoluble ash were 

found essentially indigestible or nonnutritive matter for all the 

animals mentioned (Fonnesbeck et al. 1974). 

The cell t<all carbohydrates were digested by enzymes produced by 

microflora t<ithin the digestive tract rather than enzymes produced by 

the digestive systems. The differences in digestibility of cell tvall 

carbohydrates among species of animals could be due to conditions 

favoring or reducing anaerobic bacterial fermentation. Bacterial 
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TABLE 2 Appar ent Digestibility of Hemicellulose by Animals 

Diet Hemi- Digestibility by species 
cellulose 

Diet No. Content Sheep Rabbits Swine Rats Chickens 

% 
l 0.4 67 .4 51.8 57.1 
2 4.6 62.5 45.1 24.7 
3 7.7 56.3 44.2 7.4 
4 9.2 53.0 32.2 4.5 
5 10.2 37.8 23 . 3 43 .0 28.7 4.4 
6 11.4 45.9 26.4 46 . 4 25 .6 1. 3 
7 12.2 41. 7 27 . 0 43.2 17.3 - 7.2 
8 14. 7 49 . 8 29.0 0.4 
9 15.3 35.1 21.4 

10 16.3 34. 7 21.3 
ll 18.0 37 .4 24 . 7 

Adapted from Fonnesbeck et al . (197 4) 

TABLE 3 Apparent Digestibility of Plant Cell Walls by Animals 

Digestibility by species 
Diet 

Diet No . Content Sheep Rabbits S1vine Rats Chickens 

% 
l l.O 66.5 59 . 4 60.6 
2 8.6 40.4 33.9 22 . 8 
3 15.0 46 . 9 31. 4 13.6 
4 20 .4 37 .1 18.8 ll . 7 
5 25 . 0 18. 2 31.0 18 . 2 13.5 
6 28 .7 29.4 16. 5 31.8 20.6 7. 1 
7 34 .3 29.9 18.8 33 . 8 17.1 5. 8 
8 41.9 34.8 17.3 3.9 
9 47.0 26.9 16.7 

10 50.2 27.2 16.5 
ll 55.0 28.6 18.0 

Adapted from Fonnesbeck et al . (1974) 
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fermentation of cell 1vall carbohydrates produced volatile fatty acids 

namely acetic, propionic, and butyric acids . In addition, this 

fermentation produced methane and carbon dioxide, with a loss of free 

energy as heat (Fonnesbeck et al. 1974) . Since ruminants pass the 

fermented diet through t he true stomach they could get the energy 1vithin 

t he microbial cells as well as that of nutrients in solution. However, 

microor ganisms living beyond the gastr ic stomach might not be digested 

and pass in the feces . The organic matter of those microbial cell s 

might reduce the absorbed energy into the animal. The cell Hall car

bohydr at e as apparently di gested by rabbits, sHine, rats, and chickens 

might be absorbed at a lmv etficiency to pr ovide metabolizable energy 

(Fonnesbeck et al. 1974) . 

Equines are herbi vorous animals Hhich utilized forages as a sole 

part of their diet s . . However, unlike ruminants, results of digestion 

trials shrnving their efficiency in digesting t he const ituents of forages 

Here scarce (Schneider, 1947). This lack of informat ion lead Morrison 

(1956) to use digestion coefficient s obtained from ruminant studies on 

various feedstuffs that Here common to both species as a guide in 

computing rations for equines. 

Vandernoot and Gilbreath (1970) r eported that the fibrous portion 

of feeds Has more digested by ruminants than equines . Steers digested 

all components in gr ass hay better than gelding Hith exceptions of 

protein and NFE . While the components of alfalfa hay Here digested 

to the same extent by steers and gildings , Hith except ions of crude 

fiber and cellulose. 



Darlington and Hershberger (1968) observed that horses, apparent 

capacity to digest dry mat ter, crude protein, fiber, NFE, and energy 

Has inversely rel ated to the percentage of crude fiber in the diet. 
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The greater digest ion of fiber in ruminants could be due to the 

slmver rate of diges t ion than in equine and thus fiber Has exposed longer 

to microbial activi ty (Vandernoot and Gilbreath, 1970) . In equine, 

feed Has partially digested in the stomach and small intestines before 

it Hent to the cecum and colon (Hintz et al. 1971) Hhere most 

fermentation occurred. Thus, the prolytic activity of bacteria in the 

terminal intestine might be more important in the horse than in the 

steer for maintaining body nitrogen balance 1vhen similar diets Here 

offered (Kern et al. 1973). 

Even though identical diets Here fed to steers and horses , the 

ingesta entering the equine cecum varied from that entering the rumen 

of the steer. This variation might partially account for the difference 

in the digestibility of various components of forages by horses and 

steers (Vandernoot and Gilbreath, 1970). 

Steers' rumen and horses' cecum had similar cellulolytic bacterial 

count per gram ingesta ~Vhen oats Here fed or not. HoHever, addition 

of oats to forage diets increased the proteolytic bacterial count in 

ponies' cecal ingesta but not in the steers ' ruminal ingesta (Kern 

et al. 1973). This increase might suggest that cecal bacteria might 

have a potential to provide nitrogen to the horses. 

Using the Lucas test, Fonnesbeck (1969) found that the crude 

protein of forage had an average true digestibility of 81. 7 percent 

compared to only 51. 2 percent apparent diges t ibi lity (Figure 3) 1Vhile 
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FIGURE 3 Regression of digestible amount of crude protein with 
the crude protein content of forage. Treatment means (6 trials) 
are plotted for Atlantic alfalfa (A) , Lincoln bromegrass (B) , 
Reed canarygrass (C), alta fescue (F) , Midland bermudagrass (M) , 
orchardgrass (0), red clover (R) and timothy (T) . (Adapted 
from Fonnesbeck, 1969) 
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the average true digestibilities of forage protein estimated by Lucas 

test for cattle were 87 percent (Colburn et al. 1968) and 93 percent 

(Van Soest, 1967). The less efficient utilization of protein might 

be expected in the horse due to the fact that feed protein was digested 

more directly by enzymes of the intestinal tract, and microbial prot ein 

formed in the cecum may not be as efficiently utilized , since enzymes 

are not secreted later by the large intestine and colon (Fonnesbeck, 

1969) . The metabolic fecal protein tvas estimated by regression constant 

to be 3. 2 percent of the dry matter intake (Fonnesbeck, 1969). \\lhile 

that of ruminants was 2. 8 percent (Blaxter and Mitchell, 1948). 

In vitro studies showed that the rate of digestion of alfalfa was 

rapid when incubated with inocula from steer rumen or from horse cecum. 

The rate of digestion of other hays, however, t>~as faster when samples 

were incubated with inocula from the rumen rather than from the cecum 

(Kern et al. 1973). 

Because of the rumen reticulum that cattle have, they probably 

digested fibrous forages better than deer of genus Odoceilus (Short, 

1963). The rumen population might also adapt to substances which were 

normally antimicrobial . For instance, while cedar oils inhibited 

fermentation by the rumen microbes of a steer on an alfalfa corn

concentrate ration, but did not inhibit the microbial activity from 

a deer adapted t o a diet of cedar, leaf spray (Short, 1 96~). 

Sheep and cattle might have different nutrient digestion according 

to many workers . Others believe that sheep and cattle digest feeds 

essentially the same assuming that both species have the same way 

of utilization. Forbes (1950) obtained tvidely different constants 
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for each species for an equation showing the relationship between protein 

digestibility and protein content of the dry matter of forages. 

Wethers digested more mature com silage better than steers; hence, 

data obtained with sheep could not be applied to cattle in all cases 

(Colovos et al. 1970). There were also significant differences between 

sheep and cattle in the digestibility of organic matter, crude fiber, 

nitrogen-free extract, ether extract, and in the TDN contents of dry 

roughages (Cipolloni et al. 1951). There was also a significant species

by-feed interactions for the digestibility of protein in dry roughages 

and digestibility of ether extract in concentrates, indicating that 

cattle digested certain nutrient better in certain feeds and sheep digest 

them better in other feeds. Cattle tended to digest roughages and 

silages better than sheep (Bartlett, 1904; Cipolloni et al. 1951). 

However, Forbes (1950) illustrated that protein of low-protein forages 

to be better digested by sheep than by cattle and that this difference 

disappeared 1;ith high-protein forages. Cattle digest high protein 

forage better. These results were similar to those reported by Devendra 

(1978) who concluded that with decreasing quality of roughages, the 

digestibility of the fiber component increased, and that the efficiency 

of utilization was higher in goats than in sheep. Under situations 

where feedstuffs were high in fiber content, goats could utilize the 

nutrients much better than sheep or cattle. Sheep also digested low 

quality grass, hay or low protein better than cattle (Alexander et al. 

1962). 

Protein was reported to be digested better by cattle than by 

sheep (Watson et al. 1948), while Swift and Bratzler reported a slight 
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advantage in protein digestion by sheep and higher dry matter digesti 

bility coefficients with cattle than with sheep . Steers had higher 

digestion coefficients than wethers for all nutrients except for prot ein 

in prairie hays (Jordan and Staples , 1951). Crude protein was also 

more di gested by goats t han by st eers (Byerset al. 1961) although both 

species digested dry matter, cellulose, and energy of fpur al falfa 

hays to the same extent. 

Van Dyne and Heady (1965) developed separate correlations for 

dietary components of roughage for sheep and cattle because the two 

species did not select many botanical and chemical constituents to the 

same degree with decreasing amounts of herbage available. Cook and 

Child (1977) sho1ved that the various predictor factors varied in accounta-

bility of variation in digestible protein benveen cattle and sheep and 

among various seasonal range types. 

On summer mountain r anges the predictive equation for digestible 

protein tvhen using total protein and lignin was slightly better than 

using total protein alone for both sheep and cattle. The variation 

in Y accounted for R2 in sheep diet was 0.72 compared to 0.48 for 

cattle. This result was not expected since sheep diets during the 

summer varied more in species diversity among forage classes than did 

cattle diets (Cook and Child, 1977). 

Eitl1er total protein or gross energy for predictors of digestible 

energy were highly variable among seasonal range types and bett;een sheep 

and cattle on different seasonal ranges which varies from 0. 10 to 0.70 

for R2 (Cook and Child, 1977). 
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On Saltbush (Atriplex confertifolia) ranges . The diet of sheep 

averaged about sixty percent browse and forty percent grass . Cattle on 

the same range would consume about forty percent browse and sixty percent 

grass. Composit ion of the sheep diet contained more digestible protein 

and phosphorous than the diet of cattle on similar ranges. However, 

cattle consumed more energy than sheep because cattle grazed more grass 

(Cook et al. 1977). The same trend was true on summer mountain ranges 

in Utru1 (Cook and Harris , 1968a). 

Animal preference for certain classes of forages affected the nut

rient content of the diet . Both sheep and cattle changed their herbage 

preference as the season progresses (Cook and Harris, 1968~. Preference 

for grasses by both species decreased while it increased for browse. 

Cattle preference for forbes increased during early season and remained 

intennediate for grasses and browse during the season. 1'/hile sheep 

preference for forbes 1;as higher during the whole season. 

Generally speaking, diets of sheep were higher in protein, 

phosphorous, and lignin and cattle diets were higher in cellulose. 

Sheep digested protein better than cattle but cattle digested cellulose 

better than sheep. Hence, sheep diets were higher in digestible protein 

and cattle diets were higher in digestible energy and TDN (Cook and 

Harris, 1968b) . 

In vitro microdigestion studies (Van Dyne and ll'eir, 1964) shOI<ed 

that there was no difference in percent cellulose digestibility (PCD) 

between cattle and sheep except for alfalfa (Solka-flak) digested 1<ith 

inocula from animals on range. However, in vivo microdigestion sh01;ed 

that cattle had significantly higher digestion than sheep for alfalfa 
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(Solka-flock). On the range, sheep had higher in vivo digestibilities 

than cattle for many samples resulting from the fact that sheep grazed 

higher quality forage than cattle (Cook and Harris, 1968b; VanDyne and 

lVeir, 1964), thus, sheep should have developed a denser and more vigorous 

microbial population (VanDyne and Weir, 1964). In vivo percent dry 

matter digestibility for Solka- flock was significantly lower for cattle 

than for sheep. However, cattle digested significantly cellulose higher 

than sheep according to lignin ration technique (VanDyne and Weir, 

1964). 

Bartlett (1904) suggested that if sheep were to be used to deter

mine coefficients for bovines, great care should be taken to select 

strong animals that were good feeders and would eat coarse fodders 

readily. Otherwise, results which were too low were likely to be 

obtained. 

Devendra (1978) concluded from a list of reports from tropical 

conditions that under identical feeding and management conditions, 

distinct differences existed be,tween goats and other ruminants in the 

digestibility of dietary constituents (Table 4). n;elve of nineteen 

references showed statistically significant differences in favor of 

better digestion by goats, five no differences, and three showed 

higher digestibility by sheep. Goats differed from sheep feeding 

behavior and rumination when fed hay, silage, or mature rye grass. 

The digestion in the goat was essentially dependent on nature of diet, 

level of feed intake, salivary secretion, pattern of rumen fermentation, 

and movement along the alimentary tract. 

Calculations of efficiencies of energy and protein production in 

meat and milk production in goats showed that meat production was 



TAR LE 4 Sunuuary of Digestibility Studies in Goats Compared to Other RLuuinants 

Species Compared Location 

). Goats vs Bullocks Pakistan 

2. Goats vs Bullocks India 

3. Goats vs Bu.Llocks India 

4. ,Poats vs Steers Canada 
5. Goats vs Bullocks Pakistan 

6. Gaots vs Sheep India 

7. Goats vs St eers Canada 

8. Goats vs Sheep Nigeria 

9. Goats vs Sheep France and 
Glade Ioupe 

JO . ~ats vs Sheep Texas 

11. Goats vs Sheep India 
vs Cattle vs Buffalo 

12. Goats vs Sheep Canada 
vs Heifers 

13 . .._Goats vs Sheep lliadeloupe 

14 . ~ats vs Sheep Nigeria 

!5. Goats vs Sheep Tiinidad 

Diet 

Pipal l eaves (Ficus religiosa) 
ad 1 ih. 
8;1nbd leaves (Firus 
Bcngaisens is) ad lib. 
Banlad leaves (Ficus religiosa) 
ad lib. 
(i) leaves only ad lib. 
(ii) leaves + rapeseed cake 
Alfalfa 
Bargad l eaves (Ficus 
Bangalens is) .ad lib 
Grnzing + concentrate 
supplement 
Vemal alfalfa 
bromcgra ss fordge 
Napier grass ad 1 ib 
(Pe1misetum purpureum) 
3. 6 and 9 weeks gr01~th 
Pangola grass (Digitaria 
declUnbens) 30 or SO days 
grm-rth ad lib. 
Roughage Concentrate diet 

Speargrass (Andropogon 
contortus) + groundnut 
cake fed on met abo 1 ic 
1 ive 1v-cight basis 

Al fa t[;; lwy ad lib. 

!lay or silage of rye 
grass w.i th .or without 
urea and mol asses 
Cocoa husk in concentrate 
diets based on li vc weight 
Napic1· grass ad lib. 
(PeMisetum pm]JUrClun) 
4. 5 and 6 weeks growth 

Differences 

t-b~nitudl" of 
CFD Di (fcrence 
Favouring 

in Digestibility Goats (\) ** Reference 

Hi gher (l.QJ and CFD 
by goats 

10.2 Hossain (19v0) 

Iii gher IJ.UJ and CFD 
by goats 

9.8 ~lia et al. (1960a) 

Higher IJ.UJ and CFD 9.8 
bygo3tS 4.7 
No d iffercnccs 
Higher IJ.UJ, CI'D and 
COP by goats 25.5 
ll igher cellul ose 
digestibility by goats 16.9 
OCP higher in goats 

Higher 1)-UJ and <J.UJ by 
sheep no di He renee 

No difference in 
digestive ability 

No differences in J:t-ID 

Goats and sheep 
utilized nutrients 
better than cattle and 
buffalos , hO\,•cvcr 
there was no d.i'ffercnce 
bet~o.•cen goats and sheep 
lligher cellulose 24.0 
digestibility by goats 
compared to heifers 
No d ifferenccs in 
digestible ab~lity 

llighcr CFD by sheep 

Higher IJ.UJ and CFD 
by goats 

3. 7·12.9 

Mia et al. (!960b) 

Byer et a!. (1961) 

Hossain (1961) 

Pmt et al. (1962) 
BaLUugardt et al. 
(1964) 

Adcmosum (1970) 

Chenost (1972) 

Gallagher and 
She! ton (1972) 
Jang and 
Majwndar (1972) 

Jones e t a l. (J 972) 

Geoffrey (1974) 

Adeyan et al. 
(1975) 
llevendra (1975) po 

N 



TABLE 4 (CONTINUE!)) 

Species Campa red 

16. ·Goats vs Sheep 

17. Goats vs Sheep 

18. Goats vs Calves 

1 9·. Goats vs Sheep 

20. Goats vs Sheep 

Location Diet 

Australia Casuaring cristata· 
llctcroJcndn,un ole ifoluin 
woodland conrnun ity, grazing 

Sudan Uersccm hay (Mcdkc:1go 
sativ<.~), lokh grass 
(Diunthtun annulatlun) 
and desert grasses 
(flactyloctcnilun aegyplhan, 
Shoenefcld ia gracilis. 
Eragrostis pUosa, Aristida 
funiculata and Aristida sp.) 
la lib. 

India Conccn t rate • Luce me 
(~ledkago sativa) or Berseem 
(TrjfoJ hun alexandriruun) 
l ed ad lib. 

f.W.laysia Qdnca grass c1d lib. 
(Panicun maximun var 
ScrJang) 16·19, 21-28, 28-35, 
35·42 and 42-49 days grO\vth 

Australia Tree leaves 
A. pcnduJa 
C. cristata 

Di ffercnces 
in Digestibility 

OCP higher in sheep 

Higher ll>IIJ, CFD and 
CPO by goats 

Higher ll>lll and (}.IIJ 
by goats 

II igher ll·lll and CFD 
with increasing age 
of grass by goats 

Higher 
CFD by goats 

Magnitude 
CFO Di ffcrence 
Favouring 
Goats (I)** Reference 

Wi I son et al. 
(1975) 

5. 4 El Hag (1976) 

29 . 1 ~1Jdga1 and 
Dalgit Kaur (1976) 

8.6 • 10.9 Devendra (1977) 

6.5~·3 . 9~ 
6. 2 -9.1 

Wilson (1977) 

* fl\ID CND CFD and CPO refer to dry matter organic matter, crude protein digestibility, respectively· 

** 111e , dige~tibili ty units indicated refer only to statistically significant differences. 

1 In vitro. 

2 Acid detergent fibre. 

3 Neutral detergent fihre. 

(Adapted from nevendra, 1978) 
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comparable to sheep and cattle, but 1vith milk production, the efficiency 

was higher in goats (Devendra, 1975). It was also demonstrated 

(Gallagher and Shelton , 1972) that efficiency of feed conversion to 

fiber in goats was 3. 7 to 3.2 times higher than that of sheep. The 

fact that goats had higher digestibility of crude fiber suggested that 

this woul d influence metabolizable energy value of feeds . On high 

fiber diets, the metabolizable availability could be higher with goats 

than with sheep or cattle (Devendra , 1978). 

Wilson et al. (1975) noted that the nitrogen intake was higher in 

goat's diets than that of sheep. When fed similar diets goats had a 

lmver level of rumen ammonia, blood urea concentration and higher 

nitrogen retention than did sheep (El-Hag, 1976). Nitrogen balance was 

significantly higher in goats than in sheep when both were fed Guinea 

grass at different stages of maturity (Devendra , 1977) . It could be 

concluded that differences in the intake and utilization of dietary 

nitrogen were associated with differences in digestive efficiency bet

ween goats and other species. 

Variation of diges tibili ty among breeds of animals and within 

breeds have been reported in many cases. In comparing zebu cattle (Bos 

indicus) with European cattle (Bos taurus), Phillips et al. (1960) 

reported an average dry matter digestibility of 67.7 percent for Zebu 

and 65 . 0 percent for mixed breeds grade European steers . Zebu was 

also found to halLe shorter rumen retention time. The effect of varying 

crude fiber contents of fodder on digestibility as found in digestion 

trials in India, United States, and Europe was statistically compared 

(Duckworth , 1946) . The regression coefficients indicated that in Bos 
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taurus an increase of one percent in the crude fiber content of fodder 

results in a decrease of the digestibility of organic matter by about 

0. 9 percent, 1vhile in Bos indicus cattle the decrease in about 0. 5 

percent. 

Howes et al. (1963) found that Brahman cat t le had higher digesti

bility coefficients for all nutrients except fat than Hereford cattle . 

HOIVever, only protein digestibility 1vas significantly higher (P < 0. OS). 

These results 1vere true whether animals were allowed to eat ad libitum 

or feed intakes \\ere equalized. Ether extract was better digested by 

Herefords, but the difference was not significant. Brahman ate more of 

low-protein feeds and hence more protein intake. 

Variations among individual animals with breeds were also reported 

in cattle and sheep (Bartlett, 1904; Alexander et al. 1962) . Where 

variation among individual animals was slightly greater for sheep than 

cattle . The greatest difference among horses was in their ability to 

digest crude protein. Horses differed significantly in their digestion 

of nitrogen-free extract, dry matter digestibility, and TTh~ obtained 

from forages (Fonnesbeck et al. 1967). 

Significant or slightly significant differences were observed 

among sheep and among cattle in digestive power as measured by three 

microdigestion techniques (VanDyne and Weir, 1964) . The r ange among 

cattle was greater in late summer than early or mid- summer , while the 

range among sheep 1vas relatively constant throughout the summer. 

However, the range among cattle 1;as greater than among sheep for stan

dard forage samples (Solka flock alfalfa), while the range of micro

digestion for grazed forages among cattle ~Vas comparable to that among 

sheep . 
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The degree of beDveen animal variation al so differed by type of 

herbivore (VanDyne , 1962). Many other workers did not note signif icant 

differences in digestibility of feedstuffs among species or breeds with

in species . French (1940; cited in Schneider and Flatt, 1975) concluded 

that there were no significant differences in digestibility of feed

stuffs between Zebu (Bos indicus) and high-grade European cattle 

(Bos taurus). This was in agreement with Fonnesbeck et al . (1980) who 

found that there were no significant differences in digestibility of 

dry matter, gross energy , plant cell wall, cellulose, hemicellulose, 

neutral detergent fiber, or crude protein beD<een breeds of cattle 

(Hereford and Charolais heifers). Digestibility trials with Medicago 

sativa , Cenchrus cilaris, chaffed wheaten-hay, and combinations of 

these diets, showed no significant difference in the digestion of dry 

matter of these feeds by cattle and camels (Newman , 1975). 

Swift and Bratzler (1959) indicated no significant difference 

bebveen the digestion efficiencies of cattle and sheep . There were 

highly signific~<t correlations bebveen cattle and sheep digestion 

coefficients for dry matter (R = 0.86), protein (R = 0. 77), crude 

fiber (R = 0.95), nitrogen-free extract (R = 0.87), ether extract 

(R = 0.83) , energy (R = 0.85) and TDN content (R = 0.89) >Vhen 17 

different results were averaged. The wethers, steers, and cows were 

maint ained under the same environmental conditions and fed the same 

feeds (2 of oat silage , 4 of corn silage , and ll of coastal bermuda

grass hay) (Alexander et al. 1962) . These results are in agreement 

with those reported by Blaxter and \\lainman (1961), Langlands et al. 

(1963) and S1vift and Brat zler (1959). 
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Cipolloni et al. (1951) could not state that sheep had poorer or 

better digestive powers than cattle or the two species of animals were 

identical in this respect. It could be possible that significant dif

ferences exist between data from cattle and sheep digestion trials. 

Hm;ever, the direction and magnitude of these differences may be func

tions of the feed and of the nutrients involved (Cipolloni et al . 1951). 

Also individual nutrient species-by-feed interaction has been found. 

This interaction meant t hat cattle digest a certain nutrient signifi

cantly better than sheep with certain feeds and the reverse was true 

with other feeds (Cipolloni et al. 1951; Keating et al. 1965; Barnes, 

1977) . 

Age of animal was debated whether it affected the digestibility of 

feedstuffs or not . Thompson et al. (1972) reported that advancing age 

and maturation of ruminant digestive processes were accompanied by 

increased efficiency of utilization of dietary carbohydrates, resulting 

in increased TDN and net energy per unit dry matter consumed. Young 

sheep did not digest fiber as well as old sheep (Lindsey et al. 1917) . 

Raymond et al . (1954) concluded that digestibility increased on 

an average of one unit for an increase of each year in age of sheep . 

Crude protein was higher in apparent digestibility in older sheep. 

This r esult was not true for all eight experiments run by Raymond 

et al. (1954) . However , the results were surprising since positive 

nitrogen balance tended to be higher in younger animals (Schneider 

and Flatt, 1975). 

Age of animal did not significantly affect the digestibility of 

pasture forages with three age groups of grazing sheep (Schneider et 
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al. 1953}. The interaction bet,;een stage of maturity of grass and age 

of animal ,;as not significant either. Hence, all of the three age 

groups of sheep ,;ere equally efficient in digesting the forage grazed 

at all three different stages of maturity. 

Smaller ruminants could not eat or digest very much roughages 

until their digestive tracts (especially the rumens} ,;ere developed. 

The ability of old animals to digest feed ,;as often impaired by poor 

teeth, which made chewing difficult. Health problem could affect 

digestibility adversely as age of animal advances (Schneider and 

Flatt, 1975}. 

To give an opinion whether there were variations in digestibility 

of feedstuffs among animal species, it 1vas necessary to give a con

current definition of the type and number of animals used, age, condition, 

variability of animals within species, variations in the feedstuffs 

fed, and level of feeding (Devendra, 1978}. Besides, season of the 

year and the reproductive status of the test animals could affect feed 

utilization and should be minimized through experiment design (Short, 

1963}. Increasing replicates could also minimize within species and 

within feed class variations. 

Effect of Physical Form of Feed and Processing on Digestibility of 

Feedstuffs . Change in the physical form of feedstuffs might influence 

the digestibility of the nutrients in feedstuffs . Moreover, the methods 

by which feedstuffs were handled exert a great effect on their 

digestibilities . 

lihen fresh grass was offered to sheep, Osuji (1973} found that 

the rate cf dry matter intake was slow even though they eat wet matter 
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rapidly. This slm• rate was mainly due to the high moisture content of 

the grass lo/hich was ingested. The energy cost of eating (Calories per 

gram dry matter) the same grass was about twice as great when fresh 

than when it was given in a dry form. The work of digestion involved 

in handling the bulky fresh grass might account for the high fraction 

of the total heat increment of feeding observed in ruminants (Osuji, 

1974). 

Drying of green forage was most common and may not lm•er digesti

bility much if there was no waste in leaves and if fermentation was 

prevented during the drying process. But there would always be losses 

of finer and more nutritious parts during and after drying process. 

~·loreover, fermentation and leaching will remove nutrient s and hence, 

digestibility was lowered. ~lore energy was needed to digest dry 

forages than green forage (Schneider and Flatt, 1975) and concentrates 

(Young, 1966). The storage of dry feedstuffs for many months, even 

under favorable conditions, decreased their digestibility (Schneider 

and Flatt, 1975). 

Under intensive feeding conditions, hmvever, the greater part of 

the ration carbohydrates might be in the form of starch. The extent 

of fermentation of a particular carbohydrate would depend on the ease 

'"ith which it could be attacked by microbial enzymes and its rate of 

passage through the rumen (Hobson, 1969). The rate of passage might 

depend on the physical nature of the diet and the way in which it was 

fed. The extent of fermentation depends on the solubility of that 

carbohydrate. In plant materials the availability of even soluble 

carbohydrates may depend on their position in the plant material and 
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on the degree of lignification. The ease of hydrolysis and solubilization 

of polysaccherides also depended on the treatment of feed. Crushed 

starch granules were more easily attacked than whole starch granules , and 

a finely chopped hay would present a larger surface area for cellulolysis 

than IVOuld long-fiber hay (Hobson, 1969) . 

The first step in producing food or feed from its ra\V source was 

to isolate certain part or parts to be fed. This part was usually 

changed during isolation, or was subsequently altered t o make it more 

useful as a feed ingredient. Certain changes 1ver e employed t o improve 

the keeping quality or to make the feed physically compatible with 

other ingredients in the ration (Harris et al. 1968b). 

Feed processing could be physical and/or chemical. Physical 

alterations resulted f rom things like moisture addition or removal, 

heat, pressure, agglomeration, and particle size reduction. Chemical 

changes might include structural changes in the starch and disrupting 

the protein matrix, r esulting in changes in digestibility and metabolic 

and products (Ensminger and Olentine, 1978) . Feed processing referred 

to performing all the operations necessary to achieve the maximum 

potential nutritive value of feedstuffs (Ensminger and Qlentine, 

1978) . 

Processing methods might be classified as follows (Ensminger and 

Ol entine , 1978; Harris et al . 1968b) : 

1. ~~chanical: dehulling, extracting, grinding, rolling (dry 

and steam) . 

2. Heat treatments: dry heat process (cooking , exploding) , 

flaking (steam flaking and pressure flaking) , pelleting 



(crumbling), moisture alteration (bran mash, drying, high 

moisture grain), reconstituted grain, 1vatered feeds. 

3. Blocks. 

4. Liquid supplements. 

5. Fermenting. 

6. Hydroponics (sprouted grain). 

7. Unprocessed (whole) grains. 
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Particle size was an important physical characteristic of fiber . 

Reduction of particle size would be a promising method for upgrading 

forage quality. It was generally observed that the lower the quality 

of a forage, the greater the nutritive advantage gained by reduction of 

its particle size (Donefer, 1972). Finer grinding increased the 

possibility that fiber particle will flow with liquid while coarser 

fiber 1;ould tend to mat and become a block through 'the filtration 

effects (Van Soest and Robertson, 1976). Fine ground fiber could pack 

more densely and therefore, has a reduced bulk effect. These filtration 

and bulk effects became the mechanism for differential passage of 

residues through the digestive tract . 

Upon grinding, digestibility of hay was lower than that of long or 

chopped hay. Pelleted feedstuffs were first ground then pelleted. 

Hence pelleting had the same effecton digestibility of feedstuffs as 

grinding. In mixed rations where a forage was supplemented with a 

1vhole or ground, high energy feed such as corn or barley, the crude 

fiber digestibility was depressed by pelleting (Schneider and Flatt, 

1975) . 

The digestibility of the entire ration, however, was often not 

affected or might be sli ghtly higher than unpelleted diets (Campling 
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et al. 1963; Anderson et al. 1975; Johnson et al. 1964; Waldo et al. 

1971) . ~loore (1964) described the fol101ving significant changes in 

ruminant digestive processes as a result of feeding ground or pelleted 

forages: 

a. Prehension (Jensen et al. 1962; Jorgensen et al. 1978; Sud

weeks and Ely, 1979; Sudweeks et al. 1979) and rumination time was 

reduced (Van Soest, 1976). 

Kick et al . (1937) found that steers required for the prehension of 

equal amounts of lvhole hay, two inches cut and one-fourt h inch cut, and 

ground hay, 153, 130 , 90 and 78 minutes, respectively. Rumination time 

\vas 402, 437, 418, and 227 minutes, respectively. Horses also consumed 

the pelleted ration more rapidly than t he meal (76 . 7 vs 107 . 9 minutes; 

Ott, 1972). 

b. Saliva secretion 1vas reduced. Ground or pelleted forage 

results in more rapid comprehension with less mustication; which results 

in less salivation with less secretion or buffer salts into the rumen. 

Since the feed particles were fine, there \vas less rumination and 

probably less stimulation of saliva secretion. Balch (1958) showed a 

three-fold increase in saliva secretion during mustication and swallowing 

of the same weight of hay as compared to concentrate . 

c . pH of rumen contents decreased (Qrshov et al. 1974) resulting 

from rapid fermentation that lead to rapid production of organic acids . 

There was an increased concentration of volatile fatty acids (VFA) 

and a consequent lowering of pH further intensified because of the 

lower amount of buffer from saliva being present. 

Rumen pH was reduced from 6. 9 to 6.0 \vhen dairy cows were fed 

dehydrated alfalfa pellets as compared to alfalfa hay as the only feed 
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(Hinders et al. 1961). Cullison (1961) fed rations containing 30 percent 

CO!btal bennuda grass (Cynodon dactylon (L) pres . ) hay in the fonn of 

l ong , grot.md and pelleted feed and fot.md that pH was lower (5. 22) in 

the animals fed pelleted ration than those fed long hay (6 .28). Pro

viding straw to animals receiving pellets increased pH from 5. 22 to 

6 . 45 . This change in pH might be due t o the increase of salivation due 

to stimulation of rumination. 

d . Rate of fermentation in the rumen was increased because with

in the reticulon.nnen, fine particles of feeds 1vere easily wetted and 

there were more of bacterial attack, hence a more rapid fermentation . 

Disappearance of dry matter was fot.md to be more rapid after feeding 

pelleted forages (one and half hours) i n comparison 1vith coarsely 

chopped forages (four hours) Q1e>:er et al. 1959a). 

e . Concentration and proportion of volatile fatty acids (VFAs) 

increased the proportion of propionic acid to acetic acid in the rumen 

also increased at one and a half hour and four hours after feeding 

either grot.md or pelleted forage in comparison with either chopped or 

long forage (Van Soest , 1955; Moody, 1962) . Generally, propionic acid 

increases upon feeding ground forages (Qrshov et al . 1974) . 

The volatile fatty acid concentrations ( ~ moles/ml of rumen 

fluid) were 51, 80, 44 for acetate; 8, 23 , 12 for propionate; and 10, 

14, 7 respectively for butyrate for diets of corn silage that was 

chopped into 0. 62 , 1. 27 , and 1.91 centimeter (Sudweeks et al . 1979) . 

The concentration of each acid was highest on the 1.27 centimeter cut 

silage, foll01ved by 0. 62 and 1. 91 centimeter cut diet. However, 

Jorgensen et al. (1978) , ensiled a second alfalfa harvest that was 
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chopped at three particle sizes . The silage was fed wit h 40 percent 

concentrate to lactating cmvs. No difference in VFA production acetate : 

propionate ratio, or milk fat percentage 1vere noted that could be 

attributed to particle size. Moe and Tyrrell (1977) found , however, 

that milk fat was reduced upon feeding diets containing 45 percent 

corn grain (whol e , cracked, or ground), 40 percent timothy hay , and 

15 percent grain mix (protein, minerals, and vitamin mix). 

f. Rate of passage 1vas increased 1vhen grotmd or pelleted forages 

1vere fed (Osuji , 1973; Blaxter et al. 1956; King et al. 1962; ~1eyer 

et al. 1959a; Ott, 1972). Since gound and pelleted forages had finer 

particle size than long or chopped hays, rate of passage from the 

reticule-rumen was enhanced; and therefore, the amotmt of digestion was 

lo1ver especially that of cellulose and crude fiber fractions . Coarse 

particles t ended to pass through the digestive tract slmver than fine 

particles, and elimination of coarse fiber might reduce the differential 

sorting of feed residues (~loore, 1964) . 

The processing of grain, particularly small grained cereals, 

appeared to reduce tactile stimulation of the rumen, lvhich in turn 

reduced the rate of rumen fluid passage and restricted intake (Weston, 

1974) . 

However, plant cell wall was the factor most highly related t o 

animal efficiency. That was because plant cell 1vall determined intake, 

and the level of intal<e above maintenance 1vas the largest single fac

tor influencing efficiency (Van Soest, 1976) . The effect of cell 

\vall upon intake 1vas not linear but decreased, increasingly as cell 

wall of a feedstuff increased. The level of cell wall intake 
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affected the rate of passage and IU!Ilination, which constitute energy 

losses. Increased passage as a result of intake of fiber caused a 

decline in diges tibility with level of intake expressed mainly in the 

fiber fraction. 

The combined effect of increased rumination, lowered fiber digesti

bility at productive level of feeding were responsibl e for the lower 

efficiencies of high cell wall forage. Grinding or pelleting dried 

forage, can help eliminate the reduced efficiency due t o high cell wall 

content by reducing rumination and increasing intake (Van Soest, 1976). 

H01vever, grinding did not eliminate the decline in digestibility of 

the fibrous fraction but may actually increase it. Animal studies 

shwed that fine grinding of the fiber increased the feed density and 

altered passage and the character of the gastro intestinal fermenta

tions (Moore, 1964). Grinding of wheat bran decreased its bulk volume 

primarily through collapse and demolition of the cell structure. 

Hydration capacity was a more complex function of the surface area, 

which was increased upon grinding, and the interior cell space, 1vhich 

was decreased upon grinding (Van Soest, 1974) . 

Slinger (1972) fed pelleted wheat bran and shorts to rats . Results 

showed a marked increase in feed intake, which led to increased weight 

gain and decreased feed per gain ratio . Part of this improvement 

was probably due to higher bulk density of feed with less amounts of 

time and energy expended for comprehension of feed (Jensen et al . 1962). 

Olsen and Slinger (1968) showed that when wheat bran was pelleted and 

reground to the consistancy of mach, feed intake, 1veight gain, and 

protein and amino acid digestibilities were markedly enhanced in rats. 
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g. Dry matter digestibility was depressed especially that of 

the crude fiber fraction . However, very fine grinding increased 

cellulose digestibility in vitro but decreased it in vivo (1-·!inson, 1963) . 

Blaxter and Graham (1956) reported decreased digestibility of dry matter, 

crude fiber, nitrogen free extract, crude protein and cellulose when 

fed at 600 grams per day and at 1500 grams per day of pelleted (medium 

and finely ground) compared with chopped hay. The degree of fines of 

ground feedstuffs could be responsible for the main variation in results 

among researchers (Blaxter and Graham, 1956; Rodrigue and Allen, 1960). 

Feeding lactating cows ground or pelleted forage as the only feed in 

comparison '"ith long or chopped forage, resulted in increased dry matter 

intake, increased milk production, decreased milk fat percentage, de

creased digestibility of crude fiber, and increased rate of passage of 

Cr2o3 (Keith et al. 1961) . 

Christiansen (1979) shrn"ed that pelleting the diet significantly 

lowered the apparent digestibility of cellulose, lignin, cell walls, 

NDF and ADF. Hemicellulose apparent digestibility was not significantly 

affected by pelleting, though hemicellulose values '"ere l~er in 

pelleted diet s. The apparent digestibility of ash was also significantly 

lowered by pelleting. This low value was not expected since the 

significant digestibility difference was not shown for the soluble ash 

fraction between texture levels (Table 5). 

Digestion of dry matter, organic matter, crude protein, and 

nitrogen free extract was not affected by pelleting for horse feeds 

(Haenlein et al. 1966) . This was in agreement with results reported 

by Ott (1972) who also found that the digestion of ether extract was 



TABLE 5 Treatment Means of Apparent Digestion Coefficients (Texture) 

Cell Content Cell Wall Constl tucnts 

Avail- Acid Neutral Ac i d 
able Jnsol- Deter- Deter-

Crude Carbo- Soluble Total Ccl1u- Cellu- uble Cell gent gent Dry 
Protein hydrate Ash Lipids lose lose Lignin Ash Nalls3 Fiber Fiber Ash ~btter CE 

Treatments (I) (\) (\) (I) (I) (I) (\) (I) (\) (I) (I) (I) (\) (I) 

Texture 

Coarse 6Z.lb 80.9b so. gh 45. 3b 59. 3f 53. 3b Z0 . 4f -ll.Zb 44.4b 45. 7b 44.6b 39.9f 61. sb 61.4b 

Pe lle ted 64 . ob sz. sb 54 . 4b 44. 3b 46 . z& 51. 7b ll . lg 9. sb 42.0c 4!.6c 39.6c 47 .lg 61. zb 60 . 8b 

aPlant cell \vall as determined using detergent procedures by l'onnesbeck and Harris (1970a). 
b,c 

~1eans of the same nutr ient component and the same factor with t he same super script are not 
significantly differ ent; P <. 05 

d ' e~leans of t he same nutrient component and the same factor 1vi th the same superscript are not 
significantl y different; P < .Ol 

f , g , ~·leans of the same nutrient component and the same factor lvith the same superscript are 
not significantly different; P <.001 
(Adapted from Christ i ansen , 1979) 
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more digested in the pelleted ration. Crude fiber was significantly 

decreased by pelleting horse rations (Haenlein et al. 1966). This de

crease in crude fiber digestibility and the variance of Cr2o3 excretion, 

which had been related to the different forms of hay, suggested that 

the pelleted alfalfa moved through the digestive system more rapidly 

than laos e hay. 

Although total TDN of the hay was apparently not influenced by 

pelleting, the increased consumption resulted in an increase in the 

nutritive value index. Hence, the pelleted and wafered hay had a greater 

value to the horses on a free-choice basis (Haenlein et al. 1966). 

The apparent digestibilities of crude protein and available carbohy

drates were shown not to be significantly affected by feed pelleting 

(Christiansen, 1979). That oou1d be due to the fact that crude protein 

and available carbohydrate digestibilities were primarily affected by 

a change in the crude protein and available carbohydrate composition 

of the diet only . 

.<Ulerd et al. (1957) , noted a growth response to pelleting even 

when the pellets were ground to a particle size and density similar to 

mash in rat diets. Thus, some chemical change due to pelleting as the 

major benef_icial effect could be postulated. H01vever, there was no 

improvement in protein digestibility when cereal grains were pelleted 

and reground (Olsen and Slinger, 1968). Grinding was found to 

increase the nutritive value of rice straw (Willis et al. 1980) by 

apparent disrupting the encrusting materials such as lignin, and 

allowing micro-organisms direct access to the cellulose fibers (Wainman 

and Blaxter, 1972). Grinding and pelleting mature grasses increased 
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by 47 percent and digestibility of dry matter by 27 percent. However, 

reduction of the bulk factor by mechanical grinding increased the 

requirement for dietary nitrogen (Minson and Milford, 1968). 

The theory of incrustation had been supported by evidence that ball 

milling of lignified tissue greatly increased the in vitro digestibility 

by cellulose (Dehority et al. 1962). Explanation of this phenomenon 

on the basis that milling broke away incrusting lignin did not allow 

for the very probably degradation of carbohydrates by ball milling. 

Ball milling of cotton, which had no lignin, greatly increased the rate 

of digestion by cellulytic organisms (Van Soest, 1969). Very fine 

grinding by ball milling also exposed degraded cellulose to attach by 

B-glucanase. ~~tensive milling reduced chain length, and was a method 

of degrading cellulose and separating it from lignin (Van Soest and 

Robertson 1976). Harkin (1973) used ball milling to prepare lignin 

without the use of harsh treatment of hydrolytic reagents. 

h. Net energy values of feedstuffs were not affected upon grinding 

or pelleting (Blaxter and Graham, 1956; Meyer et al. 1959a). However, 

Blaxter and Graham (1956) reported differences between DE and ME of 

ground and pelleted forage compared to chopped forage. The same 

trend was reported when the same feeds were fed at low (600 grams per 

day) and high (1500 grams per day) levels. 

Osuji (1973) found that visceral heat increased due to aerobic 

gut metabolism in sheep accounted for about 66 percent of the increased 

heat production of the portal drained viscera disregarding the type 

and physical form of the diet. However, the eating pelleted diets did 

not result in appreciable measures in heat production attributed to 



100 

grinding during eating (Osuji, 1973) . Pelleting 1vheat middlings caused 

no significant increase in ~1E but resulted in marked improvement in 

feed intake and performance (Cave et al . 1965). 

Improvement in animal productivity upon grinding and pelleting 

forages depended largely on the increase in intake of the digestible 

energy afforded by grinding and pelleting (Van Soest, 1978b). Fine 

grinding produced a faster passage and a decline in digestibility 

reflected mainly in the structural carbohydrates. In addition, there 

~Vas an increased intake. Hence, the improvement in animal response 

\Vas likely restricted to quality forages in IVhich the digestion rate 

\Vas not very slow as to cause excessive losses of potentially digestible 

carbohydrates that IVould affect the advantage of a higher intake 

(Van Soest, 1978b). 

It should be \Varned , hoiVever, that these physical properties as 

measured might not be representative of those occurring in the lmver 

gut (Van Soest, 1978b). Because bacteria might ferment components 

contributing to the ration exchange or hydration capacity. Bacteria 

may also cause a reduction in fiber structure through fermentive di

gestion, IVhich \Vas altered by production of microbial cell mass IVhich 

had its own hydration and apsorption capacities (Fitt et al. 1972). 

The bacteria, therefore, replaced fiber IVhich had been fermented. 

Wafers were another form into IVhich long hay could be processed. 

Results tended to folloiV those of pelleted diets IVith increased intake 

coming from their greater acceptability to livestock and increased 

digestibility over that of unprocessed feedstuffs (Michalk and Saville 

1979). Results conflicted concerning the effect of feed IVafers to 
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lactating cows. These conflicts could be due to animal variations and 

wafering procedures (Moore, 1964) . Ronning and Dobie (1962) reported 

increased consumption and milk production on a wafered alfalfa ration, 

while Bringe et al. (1958) did not find any advantage in feeding \;afers 

in terms of lactation. Wafer feeding did not increase consumption of 

forage dry matter in dairy cows and heifers (Veltman et al. 1962), in 

growing sheep (Meyer et al. 1959b) or in weaned Hereford calves (Wallace, 

1961). Cooking could also alter the physical properties of feedstuffs 

through gelation, softening of the fiber (McConnell et al. 1974) and 

production of the heat damage products of the Millard reaction (Van 

Soest and Robertson , 1976). The more easily gelled fraction probably 

were more fermentable and might disappear in the lower gut to be re

placed by microbial matter. However, cooking allm;s less fee~ s~lection 

by pigs and lowers digestibility of some of the nutrients especially 

that of the proteins (Ensminger and Olen tine, 1978) . While cooking 

cereals for mink improved the carbohydrates digestibility of wheat, 

corn, and barley but has little effect on digestibility of oat groats 

(S tout, 1972) . Flaking caused gelatinization of starch granules, 

rendering them more digestible. Flaking corn seemed to improve the 

digestibility of dry matter, protein, crude fiber, nitrogen-free extract, 

and energy for steers (Arnett and Bradley , 1961) . Steam processing 

milo improved the digestibility of innprotein organic matter for both 

steers and sheep although it depressed nitrogen digestion (Buchanan

Smith et al . 1968). 

Dry rolled wheat was found to be as digestible as steam flaked or 

micronized flaked wheat for steers and sheep (Cornett et al. 1977). 
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However, steam processing and flaking milo increased the digestibility 

of certain nutrients (Hale et al . 1966; Mehen et al . 1966; Husted et al . 

1968) . This increase in digestibility could be attributed t o a 

gelatinization of the starch granules, that were, hydrat ion and rup

turing of t he compl ex starch molecules , rendering them more digestible 

and causing more colatile fatty acid production (Ensminger and Olentine , 

1978) . 

Although Osman et al. (1966) , found that starch digestion in vitro 

of barley and milo appeared to vary with the amount of steam and 

pressure and 1;as improved by flaking. Garret et al. (1968) found that 

amount of pressure used in steam processing milo influenced dietary in

take and feed efficiency in cattle, but there was no significant effect 

of steam processing on digestibility. There was a consistent effect of 

st eam processing barley on its digestion by steers (Pa rrott et al . 1969) 

although complete gelatinization of mixed barley and milo diets decreased 

protein digestion by cattle (Riley et al . 1965) . Crude fiber and pro

tein digestion was decreased upon heat treatment of sorghum fed to 

steers 0vard and Morrill, 1966) and protein digestion by lambs but 

improved nitrogen free extract digestion in lambs (Keating et al. 1965). 

Chapman and Matsushima (1970) compared t he digestibility and feed 

lot performance of cattle fed dry and wet extruded, flaked, and whole 

shelled corn for fattening cattle . Think-flaked com was more highly 

digestible. It seemed that processing performed a different effect 

in each case, and thus the proper method of processing could well be 

different for each kind of feedstuffs (Slinger, 1972) . 
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The ME values of the soybean meal diets processed at high tempera

ture (90°C) were significantly lower than that for the lower temperatures 

(70 and 80°C) in chickens (Bayley et al. 1968). However, Henstrom 

et al. (19S9) used cattle to determine the digestibility of nutrients 

of growing and fattening diets that contained corn dried at different 

temperatures. There were no significant differences in the digestion 

of dry matter, organic matter, crude protein, ether extract, crude 

fiber, nitrogen free extract or energy between diets in either the 

grmving or fattening phase. The influence of dehydration temperature on 

the digestibility of protein and energy in citrus pulp was studied by 

Annnerman (1972) and .1\mmerman et al. (196S). Protein and energy in a 

diet containing citrus pulp dehydrated at lowest temperature were 

(P < 0. OS) more digestible than the same nutrients in diets containing 

citrus pulp dried at higher temperatures (Annnerman, 1972). Depending 

on temperature of drying, citrus pulp 1vas commercially classified as 

light, gray and black in color. These colored meals were fed as 72.S 

percent of the total diet in digestibility trials witi1 sheep. The 

protein digestibility ranged from 70.3 percent for the diets containing 

light citrus meal (low dehydration temperature) to S6.S percent for 

the black citrus meal (high dehydration temperature) (P < 0. OS). 

Similar differences related to color were observed in energy digestion 

(Annnerman et al. 196S). Energy in diets containing light citrus meal 

was 77.2 percent digestible, while that in diets containing black 

meal was 64.9 percent digestible (P <O.OS). 

In vitro studies on dehydrated alfalfa showed that protein digesti

bility was decreased upon dehydration (Booth et al. 1972). This 
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digestibility of cellulose and pentosans was considered to be possible 

affected in the same manner as protein. Plant sugars and proteins con

dense by heat treatment t o fonn end product s that ~Vere t ot ally indi

gest ible by cattle (Byers, 1979) . When evaluat ed for evidence of heat 

damage , protein content ~Vas normally reduced for l evel of ni trogen in 

the acid detergent f i ber fraction . The feed digestibl e ener gy was also 

reduced for level of nit rogen in the acid detergent f i ber. The 

digestible energy of feed 1vas reduced by heating. Beef cattle gained 

slower and less efficiently on heat-damaged dehydrated alfalfa meal 

than on pelleted sun-cured alfalfa hay, indicating a reduction in 

digestible energy (Byers , 1979) . Since , in alfalfa, energy \Vas more 

limited than protein fo r beef cattle. The reducti on in available energy 

was oore critical than that of protein per se. 

Protein in dehydrate.d alfalfa became less available for micro

organisms in rumen on bypass into the true stomach. The nnnen micro

organisms , however , needed a certain amount of nitrogen in the form of 

ammonia, and feeding slo~Vly degraded protein as a sole source of 

nitrogen might have lead into nitrogen deficiency in the rumen. As a 

result, there would be less efficient utilization of other dietary 

nutrients (Klopfenst ein et al. 1979) . Such a si tuation could be 

correct ed by t he supplementation of urea t o meet mi cr obial r equirements. 

Oven drying of forages (at l00°C) appeared to reduce in vitro 

digestibility by increasing the content of the lignin- like compounds 

(Van Soest, 1964) . Drying may also create physical impediments to 

microbial attack in some plant materials . Eriogonum became cottony 

and almost imprevious to \vetting when dried and mechanically ground 



(Urness et al. 1977) . Soaking , 1vashing, and ensiling were processes 

that had been suggested for improving the digestibility of straw 

(Kehar, 1953). 
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Ensiling lowered the rat io of hemicellulose to cellulose in alfalfa 

and legumes, suggest ing t hat some hemicellulose may be l ost by ensiling 

(Sullivan , 1966) . Digest ion t rials and laboratory st udies (Baker, Jr ., 

1972) with sorghum grain showed increased digestibility of ensiled, 

reconstituted, high-moisture grain than dry grain, possibly because the 

ensiling process of a protein compound surrounding starch granules. 

Ensminger and Olentine (1978) gave a summary about the effect of 

sprouting on the nutritive value of grains . Sprout ing resulted in an 

average loss of 83 percent of dry matter of oat grains. TU'I 1vas re

duced from 75 . 7 percent i n the oat grain to 70.2 percent of sprouted 

oats. Besides digestibility of dry ~atter, energy, protein, ether 

extract, and nitrogen-free extract was lower for sprouted oats than for 

oat grain. However, when sprouted oats were added to an adequate ration , 

dairy cows yielded more milk. Processing seemed to influence mineral 

utilization differently. Calcium from all available sources appeared 

to be well utilized by animals, and feed processing had little 

influence (Loosli , 1972). Steam-pell eting of feedstuffs that did not 

contain added phosphorous supplements increased the utilizati on of 

phosphorous for chickens and pigs (Loosli, 1972). Methods of processing 

rock phosphates for defluorination might greatly affect the availability 

of phosphorous. Nagnesium utilization was not knm.m to be affected by 

feed processing (Loosli, 1972). 



106 

Range feeds had sometimes been modified by being chopped after 

clipping, by being dried, milled and pelleted to be easily fed, sampled 

and chemically analyzed. The resulting data represent the processed 

materials rather than the range plants (Short, 1963) . The digestion 

coefficients obtained from feeding freshly clipped forages in dry lot 

were meaningful indicators' of range forage quality if, however, the 

test feeds 1vere identical in co~osition to forages selected by the 

ruminant animals. 

Chemical treatment 1vas a method used to improve the nutritional 

quality of crop residues and by-products that are characterized by a 

high fibrous content and lower digestibility. Lignification of the 

cell wall component of these roughages seemed to be responsible for the 

low digestibility. Lignin encrusted the energy-rich carbohydrates, 

cellulose and hemicellulose and kept the microbes in the rumen from 

breaking them dmvn to release energy (Ensminger and Colen tine, 1978) . 

There were many chemical ways to delignify and increase digesti

bility of poor-quality roughages. Treatment with NaOH, NaHC04, Ca(OH2), 

KCOH2, NaS, NH4, acid hydrolysis (H2so4 AND HCl), and pressurized 

heating (Ensminger and Olentine, 1978; Schneider and Flatt, 1975; 

Van Soest and Robertson, 1976) were practiced. Graminaceous lignin 

appeared to be composed of polymerized substituted phenolpropanoic 

acids esterified to xylan hemicelluloses (Van Soest and Robertson, 1976). 

Treatment with alkali saponified this link 1vithout reducing lignin 

content, but increasing digestibility. Clawson et al. (1970) concluded 

that treatment of rice strmv 1vith caustic alkali brought about exten

sive delignification and increased digestibility of cellulose and the 
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supposedly inert lignin. Others, however, concluded that lignin content 

was generally not reduced by chemical treaonent (Klopfenstein et al. 

1972; Rexan and Thomsen, 19 76) . The increase in the extent of digestion 

might probably be due to breaking of bonds between lignin and hemi

cellulose without actual removal of lignin (Klopfenstein, 1978). 

Treatment of rice straw with NaOH resulted in an increase in 

apparent digestibility and utilization of energy , dry matter consumption 

and daily gains (Chandra and Jakson , 1971; Garrett et al . 1974). There 

was a significant increase (10.1 percent) in the digestibility of dry 

matter of rice straw, and (8. 1 percent) for that of bagasse, however, 

energy digestibility did not increase significantly in sheep (Stone et al . 

1966). 

\'Iillis et al. (1980) showed that NaOH treaonent of rice straw 

increased dry matter digestibility in vitro and in vivo. ·There \vas also 

an improvement in the coefficients of energy digestibility, increased 

dry matter intake and a more positive response of nitrogen retention 

suggesting that chemical treatment of rice straw increased the utiliza

tion of energy by steers . Hence, NaOH seems to facilita te the activity 

of microbial enzymes thus improving the feeding value of rice straw in 

ruminants (Willis et al. 1980). 

Digestibility of crude protein was slightly superior in the 

control silage compared to NaOH treaonents (Willis et al. 1980) . NaOH 

alone gave the least negative nitrogen balance, followed by NaOH plus 

enzyme treatment. However, the control group had the most negative 

balance of the treaonents. Weight loss and negative nitrogen retention 

indicated that the diets might have been deficient in metabolizable 
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energy, increased digestible energy and the subsequent reduction of 

negat ive nitrogen balance, suggested that improved energy 1vas due to 

the chemical treated diets (Willis et al. 1980) . 

Berger et al . (1980) used ruminally f istulated l ambs t o' measure 

the effect of sodium hydroxide treatment on rate of passage and rate of 

ruminal fiber digestion. Com cobs IVere raised to 60 percent moisture 

and treated IVith different levels of NaOH concentrations (0 , 2. S, S.O, 

7. S and 10.0 per cent) on dry matter basis . Eighty percent com cobs 

1vas mixed IVith 20 percent supplement , giving a complete mixed diet 

containing 0, 2. 0, 4. 0, 6.0 and 8. 0 percent NaOH on dry basis. As level 

of NaOH treatment increased, rate of passage increased linearly 

(P < • OS) . Mean ruminal retention time decreased f rom 32.4 hours for 

the control diet to 20. 7 hours for the 8 percent NaOH diet . Nylon bags 

containing . lS grams cotton IVere used to estimate ruminal digestion. 

As level of Naa~ increased, the rate of ruminal cotton di gest ion de

creased linearly (P < • OS) . ll'hen rate of cotton digestion ~Vas regressed 

against NaOH level, t he s lope of t he line 1vas - . 488 percent per hour 

per unit NaOH , IVit h r 2 
= . 934 . 

The addition of five percent NaOH (dry matter basis) as a SO 

percent solution to alfalfa hay ground through a two-inch screen, 

follmved by cubing in a stationery cuber. Forage composition \Vas 

generall y similar \Vhether chemically t reated or not, except for an 

increase in hemicellulose (Byers , 1979). In vivo digestibility at ad 

libitum intake \Vas similar betiVeen treatments for cellulose, lignin 

and solubles IVhile digestibility of hemicellulose \Vas increased about 

20 percent IVith NaOH addition. There \Vas al so a 20 percent increase in 



109 

ad libitum intake with NaOH treatment, hence an increased intake of 

digestible forage carbohydrates and energy (Table 6) . Dehydrated 

alfalfa meal contained 30.7 and 45 percent acid detergent fiber (ADF) 

and cell wall, respectively. With NaOH treatment, ADF and cell wall 

content were 29.1 and 42.6 percent . Nitrogen in the ADF fraction was 

0. 45 percent and 0. 36 percent for control and NaOH treated,dehydrated 

alfalfa , respectively. Hence, NaOH treatment seemed t o be effective in 

reversing some of the heat damage by reducing ADF-bound nitrogen by 

about 20 percent while simultaneously reducing overall protein solu-

bilit y (Byers , 1979). 

Experiment s with beef cattle showed that NaOH treatment with cubing 

of alfal fa increased digestibility of forage carbohydrates and energy, 

consumpt ion of dry matter and digestible nutrients or both (Byers , 1979) . 

TABLE 6 In Vivo Digestibility of Cubed Alfalfa Hay 
Fed to Growing Steers at Similar Intakes,a 

Item Control 5% NaOH SEM 

Number of observations 27 27 
ADF 31. 1 40 . 1 0.96 
NDF 36 . 8 46 . 5 1. 09 
Cellulose: 

ADF 47.8 55.4 0.87 
Crampton and Maynard 43.0 47 . 6 1.0 

Hemicellulose 61.0 64 .4 2. 7 
Cell solubles 66.2 68 . 8 0.54 

a . Least squares means at 6. 2 kg dry matter per day; 
215 kg steers. (Adapted from Byers , 1979) 

Environmental Factors Affecting Digestibility of Feedstuffs. Environ

metal conditions of plant growth determined the plant composition 

which controled the limits of the nutritive value (Van Soest et al. 

1978) . Studies of environmental conditions indicated that increasing 
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light intensity tended to increase soluble carbohydrate content and 

digestibility of grasses through photosynthetic accumulation of car

bohydrates. Increasing temperature, however, caused more conversion 

of photosynthetic products into structural matter (Deinum et al. 1968). 

Legt~e plants might follow the same pattern (Kalu, 1976). 

Environmental temperat ure increased lignification in a dominant 

effect in comparison with plant maturity and light intensity (Van 

Soest et al. 1978) . Differences between tropical and temperature forages 

could be the result of both environment and management, however, the 

fast maturation of tropical forages exerted a greater pressure upon 

management to maintain the nutritive value. 

The differences between tropical and temperature forages and the 

environmental interactions upon lignification were relevant to the 

evaluation of forages (Van Soest et al . 1978). The correlation between 

lignin and cellulose in tropical grasses was significant, while that of 

temperate grasses was in the order of +. 80. Lignin 11as an important 

predictor of digestibility. Simple correlation coefficients from the 

composition data showed permenganate lignin to be the best predictor 

(R = -.74) of in vitro dry matter digestibility (IVD~ID) for all 

grasses, while protein gave the best positive correlation (R = . 70). 

ll'hen grasses were subgrouped, the correlations changed. The correlation 

coefficient between protein and IVD!\1D was high for tropical grasses 

(R = . 90) but lm; for the temperate grasses (R = - .17). Lignin was 

highly negatively correlated with IVDI~ID (R = - . 72) for tropical grasses 

and (R = -.67) for temperate grasses (Barton et al. 1976) . Differences 

in the cell wall matrix of tropical and temperate grasses could cause 
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discrepancies in predicting digestibility from chemical composition 

data, however (Barton et al. 1976). l"lultiple linear regression analysis 

were shm;n in Table 7. 

The fiber from tropical plants tended to be less fermentable because 

of the effect of environmental temperature upon lignification (Deinum 

et al. 1968; Deinum, 1976). Cellulose was the main component of ADF 

and its association with digestibility depended on its association 

with lignin. This association 1;as in turn dependent upon environmental 

temperature and the nature of plant species (Van Soest et al. 1978). 

Hm;ever, the ADF fraction from tropical grasses 1;as found to be more 

digestible than that isolated from temperate species (Barton et al . 

1976) . 

Rohweder et al. (1978) found that alfalfa grown in Florida had 

similar concentrations of ADF and NDF to that grown in Wisconsin, 

Indiana , and Pennsylvania at similar st ages of maturity. Hm;ever, 

crude protein ,;as higher in alfalfa grown in Florida at all stages of 

maturity. Crude protein concentration i n alfalfa, timothy , and oats 

increased at wanner t emperatures while dry matter digestibility re

mained constant (Smith, 1969; Vough and ~lartin , 1971) . 

ADF concentration was highly correlated with in vivo digestible 

dry matter in alfalfa, temperate grasses, and subtropical grasses 

(Rohweder et al. 1978) . However, NDF concentrations in subtropical 

grasses were higher than in temperate gr asses. Hemicellulose seems to 

be the major important composition difference beu;een tropical and 

temperate grasses . Hemicellulose 1;as found to be higher in tropical 

grasses (30-35 percent) than in temperate gr asses (22-27%) as shm;n 



T.lillLE 7 Equation, Coefficients o£ De termination and Residual Standard Deviation 
Obtained from MJltipl e Linear Regression Analysis 

Coefficient o£ Resi dual 
De2ennina tion SignFicance Standard 

Equation (R ) o£ R (P ) Deviation 

Tropical and temperate 

Y1 = 79 . 89 - 4.52X8 
b . 55 . 0005 3.88 

yl = 94.25- . 56X6 - 4. 29X8 .76 . 0001 2. 94 
c . 42X1 - .47X6 - 3. 36X8 . 80 . 0001 2. 73 y 1 = 81.87 -

Tropical 

Y1= 41. 88 + 1.18X1 . 81 .005 3. 12 
Y1 = 61 .15 + 1. 04X1 - . 26X4 . 83 . 02 3. 24 

Y1 = 121 . 42 + 1. 77X1 = 5. 27X3 = 82X4 .90 .02 2.78 
c .85 .OS 3. 46 Y1 = 70 . 81 + .72X1 - .36X6 = 2.49X8 

Temperate 

yl = 76 . 46 - 3. 49X8 . 45 . OS 2. 86 

yl = 47.28 + 88x5 - 3.16X8 . 74 . 01 2.06 

v1 = 31. 26 + 1.43x2 + 1. o6x5 - 2. 32X8 .86 . 01 1.69 
c .13X1 - . 64X6 - 3. 20X8 . 67 .OS 2.45 y 1 = 93 . 24 -

aCompositional data used for regression analysis is tabul ated in Table 1. 

bx1 = Crude protein; x2 = Ether extr act ; X = Ash; x4 = Neutral detergent fiber; 
x5 = Acid detergent hber ; x6 = llemicelluiose; x8 = Pennanganate lignin. 

~he same paramet ers are used for these three equations lvith the different data 
sub-set s . 

(Adapt ed f rom Barton et al. 1976) 
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by the higher NDF values (tropical average 66 . 2 percent versus temperate 

average 56 . 9 percent that 1vere reported by Barton et al. (1976). Van 

Soest (1973a also reported results that showed higher NDF content of 

t ropical and subtropical grasses than that of temperate grasses. 

The average in vitro dry matter digestibility (IVU.ID) of four week 

stnnmer regrowth tropical and t emperate grasses were 61.6 percent and 

63 . 4 percent, respectively and did not reflect a significant difference 

in digestibility . These results could be related to immature stage of 

all the grasses and to the manner in which they were handled in this 

particular study (Barton et al. 1976; Barton and Akin, 1977). 

Comparing of first cutting and aftermath of tropical forages, 

Van Soest et al. (1978) found lignin and cellulose t o be positively 

associated in first cuttings and negatively associated in aftermath 

cuttings. This contrary effect might reflect the tropical nature of 

temperate summers and the interaction of regrowth rate and date of 

aftermath cuttings. 

The nutrient content among grass species varied IVidely depending 

on the length of time required to mature (Cook and Harris , 1968a). Cool 

weather grasses usually start gr01vth in the fall and mature early in 

the summer IVhile warm weather gr asses mature and set seeds in late 

summer or fall . As a result, the warm \Veather grasses IVere higher 

in nutrients during late stnnmer but the cool weather grasses \Vere 

more suited to early summer and spring grazing (Table 8). 

The negative association of temperature IVith forage quality might 

predict improvement of forage quality with date of fall cuttings since 

later leaves develop at lo~Ver t emperatures. ll'hether or not such 



TABLE 8 Average Nutrient Content of Cool Weather and Wann Weather Grasses on Mountain 
Range During Early (July 1) and Late (September 1) Summer 

Digestible Digestible 
Protein Cellulose Energy TDN p 

Forage Type Season (%) (%) (kcal/lb) (%) (%) 

Cool weather Early 6.9 40.3 1266 64. 1 . 24 
grassesl Late 2.4 44.5 959 53.2 .16 

Wann weath!;? Early 8.8 38.5 1183 61.2 . 30 
grasses Late 4. 7 40 . 6 1091 57.4 .23 

1cool weather grasses consisted of mountain brome , slender wheatgrass , and blue wildrye 
grass . 

21vann weather grasses consisted of Ken tuck')' bluegrass, green needl e-and-thread grass and 
Idaho fescue. 

(Adapted from Cook and Harris , 1968a) 
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improvement 1vit h age occurred, was dependent on the fact that temperature 

1vas mere important t han light and plant maturity (Van Soest et al. 

1978). Such conditions could occur in midwest and Atlantic states 

1vhere temper atures are tropical in midsummer and decline in fall down 

to f r eezing . Hence, improvement in forage quality would be dependent 

mainly on vegetative regrowth (Kalu, 1976) . 

The range in digestibility declines from firs t grmvth to maturity 

as affected by the altitude where forages were grown. The digestibility 

of first cuttings is very high and constant north of 30° latitude. 

North of t his l ine , perenial forages usually r egre1v after frost, while 

to it south growth occurred after cutting or dry winter conditions of 

warmer temperatures (Van Soest et al. 1978) . Digestibility at maturity 

declined progressively towards the equator. As the mean temperature 

increased, the average forage digestibility decreased (~'Iinson and 

McLeod, 1970) . 

In addition , the greater morphological differentiation of leaves 

and stems within tropical grasses as compared to temperate grasses was 

evidence showing a greater range of digestibilities lvithin the plant 

parts of the tropical grasses (Van Soest et al. 1978). 

Cook and Child (1977) found that using both total protein and 

lignin was slightly better to predict digestible protein than total 

protein alone on summer mount ain ranges. The same trend 1vas true on 

desert ranges. In mixed grass areas of northern Color ado during the 

grazing season from ~y 15 t o September 15 digestible protein could be 

predicted from total protein 1vhich account s for as much as 88 percent 

of total variability in digestible protein. By using both t ot al pro

t ein and dry matter digestibility as predictors, 96 percent of the 
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variability in digestible protein could be accotillted for. In short 

grass plains in Colorado , however, predictive equations for digestible 

prot ein showed that total protein alone gave R2 values of 0.92 . By 

using total protein and digestible energy as predictors , . 96 percent of 

variability in diges tible protein in diets of steers could be accounted 

for (Table 9) . 

Nitrogen fertilization and water availability have marked effects 

on forage composition. Light-induced photosynthesis promoted reduction 

of nitrate and its conversion with carbohydrate to amino acids and 

protein (Van Soest et al. 1978). Nitrogen fertilization did not improve 

digestibility of grasses because incr eased nitrogen compounds were used 

for a reduction in soluble carbohydrates and increased lignification . 

The proportions of lignin and hemicellulose were altered upon nitrogen 

fertilization (Deinum, 1976; Deinum et al. 1968). 

Pieper et al. (1974) did not find a significant difference in 

dry matter digestibility between fertilized and unfertilized plants at 

every stage of maturity. Dry matter disappearance declined markedly 

from the full-bloom stage to the stem cured stage for both fertilized 

and unfertilized plants . However, crude protein of a mixture of '"eed 

plants was low because soil, in which the mixture was grmm, was 

nitrogen difficient (Martin and Andersen, 1975). 

Other factors such as water stress and infestation of alfalfa 

'"eevil (Liu and Fick, 1975) may cause a higher digestible plant of 

lower yield . That could be due to promotion of the maintenance of 

forage quality for a longer time by stress factors that hinder plant 

development (Van Soest et al. 1978). 



TABLE 9 Nutrients Shotm in a Predictive Linear Equation for 
Determining Digestible Protein in Range Plants for Three 
Seasonal Range Types for Sheep and Cattle 

Predictive factors (b's) 

Sheep, Spring (seeded foothi l ls) 
- 4. 10 + 0.97 (TP%) 92.9 
19.49 - 1. 97 (Ligp 61.9 
84 . 80 ; 0. 64 (Lig %) 72 .0 
0. 77 + 0. 82 (TDP%) - 0. 51 (Lig%) 94 . 9 

108.60 - 0.50 (Lig2%) - 0.03 (Cellu. % x CHO%) 82.0 

Cattle , Spring (seeded foothills) 
- 2. 79 + 0. 84 (TP%) 

21.63 - 2.11 (Lig%) 
- 3.45 + 0.85 (TP%) + 0.08 (Lig~) 
-10.42 + 10.17 (TP%) - 0.35 (TP %) 
81.07 + 13 . 19 (TP%) + 1.52 (Cell. %) 
- 0.43 (TP2) 

Shee~ , Summer (mt. range) 
- . 32 + 0.69 (TP%) 
10.56- 0.50 (Lig%) 
1.27 + 0. 60 (TP%) - 0. 32 (Lig%) 

Cattle , Summer (mt. range) 
0.77 + 0.48 (TP%) 
6.57 - 0.27 (Lig%) 
1. 93 + 0.40 (TP%) - 0. 20 (Lig%) 

Sheep, \\'inter (desert range) 
- 3.02 + 0. 84 (TP%) 

3.64- 0.01 (Lig%) 
- 1.59 + 0.87 (TP%) - 0. 14 (Lig%) 

90.0 
44 . 7 
90.4 
90 . 9 

93 . 4 

60.3 
31.6 
72 .0 

34.1 
25 .5 
48.0 

84.0 
00.7 
87.6 

Cattle, Spring-Summer (mixed grass) 
- 1. 98 + 0. 86 (TP%) 88.3 
- 7.32 + 0.21 (DDM%) 52 . 7 

9. 61 - 0. 002 (GE kcal /lb) 0. 4 
- 7. 38 + 0. 011 (DE kcal/lb) 54. 6 
- 6. 27 + 0. 710 (TP%) ; 0.094 (DDM%) 95.6 

Cattle, Sprin~·Summer (short grass) 
- 2. 01 + o. 1 (TP9;) 91.9 
16.84 - 0. 006 (GE kcal / l b) 3.4 

- 3. 54 + 0. 16 (DDM%) 24.5 
4.99 + 0.009 (DE kcal /lb) 43.7 

- 4.55 + 0.80 (TP%) ; 0. 003 (DE kcal/lb) 94.9 
.13 + 0. 76 (TP%) - 0. 003 (GE kcal/lb) 

+ 0.004 (DE kcal/lb) 95.5 

(Adapted from Cook and Chil d, 1977) 

117 



ll8 

Ht.nnidity tended to lower quality of forages. Plants gr01m under 

arid conditions have better quality than that from humid conditions (a 

probability was, everything else being equal). Water stress depressed 

plant development and improved digestibility while cloud cover reduced 

light and hence digestibility (Van Soest et al. 1978). 

Chemical composition and in vitro digestibility of forages consumed 

by sugora goats were compared on heavily-stocked, fair-condition range 

and lightly-stocked, good condition range in the Em;ards Plateau region 

in Texas (Malechek and Leinweber, 1972). There was a great variability 

in chemical composition and in vitro digestibility of forages depending 

on season. HOl>ever, as a general trend, forage on lightly stocked 

range was higher in crude prate in, cell wall constituents, cellulose, 

lignin but was l01;er in hemicellulose content and in vitro digestibility 

than that on the heavily-stocked range. 

H01;ever, Pieper et al. (1959) and Cook et al. (1952) found that 

digestibility of nutrients in the diet was seriously reduced by heavy 

grazing on typical desert range from October to April. The nutrient 

intake of animals grazing winter ranges varied from area to area and 

was influenced by many factors of which intensity of grazing was most 

important (Cook and Harris, 1968a). As degree of utilization increased, 

the content of desirable nutrients in the diet decreased and digesti

bility of nutrients decreased because animals would eat the less nut

ritious portion of plants. These results were in agreement with those 

reported by Vavra et al. (1973) and Armstrong et al. (1959). 

Frost could be a factor that might cause a reduction in ~igestibility 

of feedstuffs (Whiting and Bezeau, 1954; Woodman and Oosthuizen, 1934). 
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Thus, environmental factors influence forage composition and quality 

and account for regional and seasonal differences in forage crops 

(Van Soest et al. 1978). Such information was related to the practical 

problem of forage evaluation as experienced in a laboratory receiving 

samples from different sources, in the compiling of an NRC publication, 

or by the establishment of hay grading standards (Rohweder et al . 1978). 

The principal animal evaluation consisted of digestibility and 

voluntary intake measurements of unsupplemented forages. 

Associative Effects. The digestion of a single nutritive component of 

a feed was not sufficient to explain the variability in the digestibility 

of feedstuffs (Van Soest, 1967). Differences in digestibility of a 

feed might arise because the combination of feeds might represent a 

higher or a lower plane of nutrition than individual feeds fed alone 

(Schneider and Flatt, 1975) . \~en proper amount of a nitrogenous 

supplements or essential minerals were added to a mi.xed ration, cellulose 

digestion in that ration may be increased. The microorganisms in the 

rumen attacked fiber more vigorously and hence, fiber digestibility 

1;as enhanced (Harris and Mitchell, 194la). 

Apparent associative effects might arise because of the variations 

of average digestion values found in feed tables. Digestion coefficients 

of ration obtained by digestibility trials carried with these rations 

often differed significantly from calculated digestibilities using 

table values. l~tever the cause of these combination effects, their 

degrees ~<ere much influenced by the relative quantities and relative 

digestibilities of the basal diet and the added feed . The digesti

bility of which was to be determined by difference (Schneider and 
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Flatt, 1975) . The combination effect plus the results of all errors and 

imperfections of experimentation ~<ere, by the difference procedure 

attributed to the added feed . 

The digestibility of a mixture was not necessarily the average 

of the values for its constituents determined separately or indirectly. 

Each feed might affect digestibility of the other ~~ynard and Loosli , 

1969). Although it was very tlifficult to determine the specific factors 

involved in this associ ative digestibility, the influence of crude 

fiber content and the nutritive ratio made it easy to understand that 

marked variations from computer average might occur . 

Experiments indicated that in some cases one feed did not infl uence 

the digestibility of the individual nutrients of another feed with lvhich 

it was fed. 1'/hile in other cases, it made the nutrient more or less 

digestible than when the feed was fed alone (Schneider and Flatt, 1975). 

Variations associated with digestion coefficients for energy feeds 

could also be high. Energy feeds such as grains were usually not fed 

alone to ruminant animals to determine their digestibility values. 

These feeds were fed along with fibrous (high cell wall) basal feeds 

of known digestibilities. The digestibility of the basal feed was 

assumed to remain constant when fed alone or mixed with a test feed. 

Again, the variation from combination effect as well as from error of 

experimentation 1vere attributed to the added energy feed (Schneider 

and Flatt, 1975; Swift, 1947) . 

Staples et al . (1951) observed that the associative effect might 

be greater when a feed was of poorer quality. The addition of oat 

and soybean meal to hays improved the digestibility of medium and late 
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cut hay rations to a relatively greater extent than that of an early

cut hay ration. However, studies by Houser et al. (1975) and Chirnwano 

et al. (1976) showed that increasing levels of grain in ruminant rations 

lowered cellulose digestibility. 

The kind and amounts of the combined feeds had an effect on the 

digestibility of these feedstuffs (Titus, 1926). Hence part of the 

improved digestibility in goats was probably due to the associative 

effects due to compositions of feeds consumed. This was particularly 

distinct in goats in vie.; of their wide feeding habits of a variety of 

f eeds (Devendra, 1978). 

Associative digestibility of nitrogen-free extract, ether extract, 

and crude protein were observed in sheep fed diets containing different 

ratios of corn grain to dehydrated alfalfa (Clemens, 1968). The apparent 

digestibility of crude protein decreased lineary 1;ith the increase of 

corn in the diet. The curvilinearity of the digestible crude protein, 

ether extract, and nitrogen-free extract indicated that the digestibility 

of these nutrients increased with an increase of concentrates in the 

diet (Figure 4). 

When starch was fed in excessive amounts, it seemed to exert a 

depressing effect upon the digestibility of the nitrogen and crude 

fiber even when the excess was not great. When 47.3 percent of the 

net energy of the ration was supplied in the form of starch, there was 

also a depression in the digestibility of the total ash. These 

depressions in digestion of nitrogen, crude fiber, and ash were accom

panied by a rise in the digestion of fat, which was high in the high 

starch rations (Ewing, 1915). 
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FIGURE 4 Linear and curvilinear relationships between the digestion 
coefficient and percent ration ingredients. (Adapted from Clemens, 1968) 
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In studies 1vi th steers, Slyter et al. (1971) reported that 13 

percent starch in the ration reduced both the number of cellylytic 

bacteria and total cellulose digested. Despite no reduction in cellulo

lytic numbers, there was a depression in the cellulose activity of the 

bacteria when grain was added to a rumen innoculum source (Slyter and 

Weaver, 1972). Furthermore, the change in proportion of volatile fatty 

acids in equine cecal fluid or bovine rumen fluid when grain 1vas added 

to a forage diet indicates a change in bacterial activity (Kern et al. 

1973). 

The feeding of grain rich in protein with corn meal apparently 

increased the digestibility of the ration, particularly that of the 

protein (Bartlett, 1904). Clanton et al. (1966) and Cook and Harris 

(1968ij found that energy supplemenxs.(barley and corn) reduced the 

digestibility of protein in the forage while protein supplements (cotton 

seed meal and soybean meal) increased the digestibility of cellulose and 

protein in the diet under range conditions . 

. ~plund and Harris (1971) studied the associative effects of 

equal parts of alfalfa hay and dried molasses beet pulp with sheep. 

The EE and CP digestibilities were lower and NFE digestibility was 

higher in the mixed diet than as calculated from values of the 

individual feeds . The digestion coefficients for gross energy (GE) 

and NFE in beet pulp and dry matter (DM) , CP, CF, and NFE in alfalfa 

hay were higher when determined by difference than when determined 

directly on feed. Digestion coefficients at intakes below maintenance 

were greater than above. It was emphasized that an individual feed

stuffs expressed its nutritive value only as it was part of a ration 

(Asplund and Harris, 1971). 
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Hmvever, supplying carbohydrates should be done with care since the 

provision of easily digested carbohydrates can depress the utilization 

of fiber (Topps, 1972). A useful rule was to supply enough energy 

supplement to increase forage consumption, but not to rep l ace it. 

Dry matter and organic matter in potato-bean silage with hay were 

highly digestible than in the Uvo rations containing cabbage silage 

(Barth and Gelaye, 1980) . Adding hay to cabbage silage decreased its 

organic matter digestibility, probably because apparent ash digesti

bility 1vas higher in cabbage silage than in hay. Crude protein 

digestibility was higher and not significantly different among the three 

rations (78 .4) , (75 . 3) and (75 .4) for potato-bean silage and hay, 

cabbage silage, and cabbage silage and hay ration, r espectively. Crude 

fiber digestibility of all rations was high, especially when cabbage 

silage alone was fed (89 . 2) . Addition of hay depressed fiber digesti

bility of 82.2 . 

Kromann et al. (1977) observed a linear increase in the digesti

bility of nitrogen-free extract, ether extract, and dry matter when the 

level of pea scalping increased in the diets that consisted of varying 

proportions of pea scalping and straw, and fed to wether and ewe lambs. 

Crude fiber digestibility was not affected by the diet rations since 

crude fiber content was not significantly different among the four 

rations. Digestible energy (DE) and metabolizable energy (ME) were 

shmvn to have a third order relationship with percent pea scalpings 

in the diet. NEm+p showed only a linear relationship to the peastraw 

rations. 

The digestibility of gross energy, crude protein, dry matter, and 

ether extract was greater for the urea-treated corn silage diet than 
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the hay crop silage diet while the mixture of both silages were 

intennediate. There was no positive associative effects between these 

forages when fed to Holstein heifers (Jolms and Holter, 1975). 

The interactions of plant species and method of harvesting was 

revealed in the efficiency of feed utilization. A statistically highly 

significant interaction of plant species (alfalfa and trefoil orchard 

grass) and method of feeding (soilage or pasture) was found when the 

amount of feed per 100 pounds of grain was analyzed (Hull et al. 1957). 

Greater increase in efficiency of feed utilization occurred when alfalfa 

1vas pastured rather than soiled. 

For feed consumption by the steers, however, a highly significant 

interaction \vas present for method of feeding versus kind of forage. 

Feed consumption of the steers given alfalfa pasture was much lower 

than that of the other lots. It seems that feed consumption of steers 

or pasture \vas influenced by the kind of forage offered. This effect 

1vas not noted in sheep (Hull et al. 1957). Christiansen (1979) reported 

the following findings on associated effects on digestibilities: 

a . A significant forage-by-maturity interaction was found to 

affect on the apparent digestibility of neutral detergent fiber (NDF) 

and lignin, The apparent digestibilities of cell wall, neut ral deter

gent fiber and acid detergent fiber in alfalfa decreased with increasing 

maturity; however, this trend was not maintained in grass. Cell \valls, 

neutral detergent fiber, and acid detergent fiber in midbloom grass were 

much more digestible than in the late vegetative and full bloom grass 

stages. 

The available carbohydrate content in mid-bloom grass was much 

lower than in the late vegetative and full bloom grass. As a result, 
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digestibility of the available carbohydrate was extremely low in mid

bloom grass . Hence, a highly significant (f<.OOl) forage -by-maturity 

interaction 1vas observed to affect available carbohydrate apparent 

digestibility. Besides , a forage-by-energy level interact ion signifi

cantly affected available carbohydrate apparent digestibility only . 

The extremely low available carbohydrate content of the midbloom grass 

was probably primarily responsible for the forage-by-energy l evel inter

action effect on available carbohydrate digestibility. 

b. A significant maturity-by-energy level interaction affected 

the apparent diges t ibility of crude protein, available carbohydrates, 

cellulose, neutral detergent fiber , and acid detergent fiber. It was 

also observed that , though fibrous components in the hay-corn diets 

tended to be of greater digestibility than in the all-hay diets at the 

late vegetative and full bloom stages, the opposite was true at the 

midbloom maturity stage . The fibrous constituents in midbloom grass 

1vere much more digestible than in late vegetative or full bloom grass. 

This condition was probably the major cause of the significant maturity

by-energy level differences among the fiber constituents. 

c. Hemicellulose and cell wall apparent digestibili ties followed 

the same trend as other fibrous constituents though di fferences were 

not signifi cant. 

d. The pattern of apparent digestibilit y of crude protein beuveen 

all-hay and hay-corn diets was altered by an increase in crude protein 

content in the full bloom hay-corn diet. The full bloom grass was very 

low in crude protein. The addition of corn with full bloom grass 

signicantly increased the crude protein content of the ration. Crude 



protein became more digestible in the hay-corn rations at the mature 

level. 
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e . A significant decrease in apparent digestibility of cellulose, 

hemicellulose , cell walls, and neutral detergent fiber was observed 

with pelleted diets . The energy level-by-texture interaction was 

shmvn to affect digestibility of fibrous constituents of the diets. 

Combining corn with coarse hay also r educed considerably the fiber 

apparent digestibility. Hmvever, the opposite phenomenon was observed 

for hay-corn pelleted diets . Fiber digestibility increased when pelleted 

hay-corn diets replaced pelleted all-hay diets . Significant differences 

in the apparent digestibility of fibrous constituents due to the 

addition of corn to t he diet were cancelled out 1vhen differences were 

averaged over coarse and pelleted diets. 

f. The energy level-by-texture interaction also affected the 

apparent digestibility of crude protein, soluble ash, ash, dry matter, 

and gross energy significantly. However, no significant maturity-by

texture nor forage-by-texture interaction effects 1vere observed. 

Other Methods to Predict the Nutritive Value of Feedstuffs 

The Ratio Technique . The digestibility of grazed forage could not be 

determined directly because the forage intake of the grazing animal 

could not be measured (Harris et al . 1968b; Streeter, 1969). The in

direct techniques had been employed to estimate the digestibility of 

grazed forages by many workers. 

Bergeim (1926) computed digestion coefficients from the ratio of 

the concentration of iron oxide added to rat rations to the concentration 
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of iron oxide in the feces. However, the use of iron as an indicator 

of digestibility of grazed forage was limited because digestion 

coefficients were often variable (Gallup and Kuhlman, 1931). 

Chromogens were first used by Reid et al. (1950) as internal in

dicators in digestion studies. Certain oils present in desert range 

plants might carry some chromogens through the intestinal wall and caused 

substantial urinary excretion of chromogens and thus negative digesti

bili ties were obtained (Cook and Harris, 1951). Hmvever, Connor et al. 

(1963) reported that chromogens proved to be a more reliable indicator 

than lignin in studies involving desert range plants with a low ether 

extract content. Chromogen also appeared to be a good indicator for 

succulent green forages during the summer (Reid et al. 1952); while 

lignin appeared to be a good indicator for winter range plants (Cook 

et al. 1951). 

Lignin was a substance found in plant cell 1vall material which 

\vas insoluble in a solution of 72% sulfuric acid. Lignin ratio was 

extensively in studies on Utah ranges by Cook and Harris ~968a); Cook 

et al. (1951) . Hill et al. (1961) compared the recovery of ingested 

lignin by confined heifers by using five procedures for collecting 

feces: (1) 24 -hour fecal bag collection, (2) 4-hour fecal bag 

collection, (3) 6-hour fecal bag collection, (4) 4-hours on a concrete 

platform and (5) 6 hours on a concrete platform. Percentage lignin 

recoveries for the five procedures were : ll7.4, 104.9, 105.7, 79.6, 

and 75 . 5, respectively. Part of the high recovery of lignin using 

24 -hour fecal bag collection was probably due to sampling . Also, the 

procedures might have resulted in increased excretion of feces during 

the short test period. 
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Hill (1965) also used lignin as an indicator of digestibility 

and 4- or 8-hour fecal collections by means of harness and bag to 

measure fecal output of cows on desert rangeland. The forage sample 1vas 

hand-plucked by a technician while observing a CO\v during the daylight 

hours of a 24-hour grazing observat ion period. There were no significant 

differences between two cows IVithin each breed (Hereford and Santa 

Gertrudis) nor among samples IVithin COIVS. Digestibility estimates of 

Hereford cows grazing appeared satisfactory; hmvever, this method did 

not provide reliable estimates of the organic matter intake of Santa 

Gertrudis cmvs because the estimate of fecal output were too loiV. The 

Santa Gertrudis cows were very active and it was difficult to catch and 

restrain them lvhich resulted in fecal losses both before and after the 

collection bags were attached. 

The lignin content of the forage was consistently higher in samples 

collected through a rumen fistula than in hand-plucked samples. Be

cause lignin \Vas used as the internal indicator, all digestibility 

values based on the lignin content of rumen samples were abnormally loiV. 

TI1us, organic matter intakes based on rumen samples were unreliable 

as they considerably underestimated the organic matter intake necessary 

to support the COIVS (Hill , 1965) . However, the organic matter digesti

bility or range plants was similar among breeds when calculated by 

using the lignin-ratio method with samples of hand-plucked forage and 

collecting feces for 4 or 8-hour periods with harnesses and bags. 

Fonnesbeck et al . (1974) found that the apparent digestibility of 

lignin was near zero for all species of animals tested (Table 10). 

These results justify lignin as a non-nutritive matter for all species. 
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TABLE 10 Apparent Digestibility of Lignin by Animals 

Diet Digestibility by species 
Lignin 

Diet No. Cont ent Sheep Rabbits Swine Rats Chickens 

% % % 
1 0.1 3.1 
2 0. 6 -4 . 5 - 4. 8 
3 1.0 2.9 4. 7 
4 1.9 2.0 2. 9 -4.3 
5 2.6 -1.1 -13 . 2 4.2 -4. 6 -1.8 
6 3 .• 0 4.6 -7.8 4.4 -2.3 -9.4 
7 4.0 14.5 -10.0 -3.1 -1.4 
8 4.9 4.6 - 7. 5 -6.3 
9 5.6 3.8 -8.9 
10 6.5 7. 2 -2.3 
11 7.1 2.5 -19.2 

(Adapted from Fonnesbeck et al. 1974) 
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In nature, only a few fungi product enzymes digested lignin. The small 

arnollllt of lignin in the ration and expected variation among individual 

animals combined with the limited precision of the experimental methods 

to yield digestion coefficient near zero (Fonnesbeck et al. 1974). When 

lignin was less than one percent, the limited precision of the chemical 

analyses gave wild digestion coefficients that are not reported (rations 

1-3) 0 

Calculated digestibility of dry matter by the use of lignin ratio 

compared 1;ell with digestibility results obtained by many workers on 

similar forages (Cook and Harris, 1951). This trend was not true for 

determinations made by the chromogen method. Forbes and Garrigus 

(1950a) found that the digestion coefficient for steers calculated by 

conventional method and by the lignin ratio were reasonably close. The 

most significant correlation between organic matter digestibility and 

forage composition was related to the lignin content of the forage. 

Regression equations to predict organic matter digestibility from 

lignin content were not statistically different between the conventional 

calculations and the lignin ratio calculations for either steers or 

wethers. 

However, the digestion coefficients for forages fed to wethers, 

determined by the two methods of calculations were not in such a good 

agreement as were those shown for steers due to the less satisfactory 

apparent digestion coefficients for lignin (Forbes and Garrigus, 1950b). 

The following sources of error could result from lignin methods 

employing 72 percent sulfuric acid: (1) contamination with nitrogenous 

substances; (2) incomplete hydrolysis of carbohydrate; (3) formation 
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of reversion products from carbohydrates; and (4) removal of lignin by 

preliminary treatment Hi th organic solvents, boiling Hater, and boiling 

dilute acids (Phillips, 1940). 

Contaminating proteins could be removed by trypsin in a sodium 

carbonate buffer (Armitage et al. 1948) or sodium carbonate (Thacker, 

1954) . HoHever, more than sixty percent of the lignin might be dis

solved in high pH solutions such as sodium carbonate solutions (Van 

Soest , 1964). NaOH solutions Hould also dissolve lignin while dissolving 

protein from crude fiber (Norman, 1935). Thus, a major problem in the 

chemical partitioning of fibrous plant tissues Has the efficient 

separation of protein from lignin (Van Soest, 1964). 

Moreover, lignin analyses Here also complicated by the effect of 

drying and heating during the preparation of laboratory samples. Heating 

forage samples at temperatures above 50°C significantly increased the 

lignin and insoluble nitrogen content (NacDougall and Jelong , 1942; 

Hodge, 1953). Lignin content of moist samples such as freshly harvested 

green chop forage, ruminal fistula samples, and fecal samples Here 11.5, 

53.2, and 28.8 percent greater, respectively, when dried at 60°C than 

when freeze-dried (Bohman and Lesperance; 1967). This increase could 

be attributed to the condensation of carbohydrate degradation products 

with proteins and amoni acids via the non-enzymatic bro14ning reaction 

(MacDougall and Delong, 1942; Hodge, 1953; Van Soest, 1962) which was 

enhanced greatly by water (Van Soest, 1965b). 

Immature high-protein grasses were particularly sensitive to heat 

damage. The combination of low lignin content and susceptibility to 

heat damage might increase the apparent lignin content by about three 
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times the true value because of heat applied during ordinary drying 

procedures at 80-100°C (Van Soest, 1964). feces were relatively less 

susceptible to heat damage, lignin >vould appear to have a significant 

digestibility, especially in young grasses. Negative lignin digesti

bilities might appear if heat damage to feces was more than that of 

feed. This latter effect could be found in digestibility trials with 

silage or with hays that have not been heat-dried (Van Soest, 1964). 

Christiansen (1979) observed that in all-hay diets, the grass 

lignin digestibility coefficients were high, ranging from 7.1 to 25.8 

percent with a mean of 20.8 percent. No negative digestion coefficients 

were observed for the grass diets while several negative lignin digesti

bility coefficients were calculated for the aifalfa diets . The lignin 

digestibility of alfalfa ranged from -1.3 to 17.1 percent with an 

average of 4.5 percent. Procedure of Fonnesbeck and Harris (1970b) 

was used by Christiansen (1979) to determine lignin composition. 

Not only the different chemical procedures of lignin extraction 

was accounting for the variations in lignin digestibility. These 

variations could also be attributed to feed lignin reacting differently 

to the chemical extraction than lignin in feces (Christiansen, 1979) . 

Scales et al. (1974) reported that the lignin ratio technique 

and forage lignin determined by KMno4 procedures gave unsatisfactory 

estimation of in vivo digestibility. However, forage lignin determined 

by the 72 percent sulfuric acid procedures was satisfactory (R = • 94). 

Wallace and Van Dyne (1970) reviewed the apparent digestibility 

of lignin in various forages by different analytical procedures. The 

conclusions was that lignin might be digested to a large extent, 

particularly in immature forages. 
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Baines and Marten (1979) listed the following problems associated 

with the use of lignin concentration as a predictor of digestibility: 

(1) the complex and incompletely kno\\lll structure of lignin; (2) the 

lack of an efficient and reliable procedure to determine lignin; 

(3) the inherent variation in lignin content among forages; and 

(4) variations in the relationship between indigestible lignin and 

partly digestible cellulose, depending on environmental conditions. 

These facts \vould prevent effective use of conventional lignin as 

a marker in digestibility trials (Van Soest, 1964). However, more 

accurate experimental techniques were needed to prove or disprove the 

indigesti bility of lignin. 

The fecal nitrogen index was also used as an alternative to methods 

that required sampling of forage consumed to determine digestibility 

(Cordova et al. 1978). Mitchell (1924) found a constant r elationship 

betHeen the feed consumption of rats and metabolic fecal nitrogen. 

Raymond (1948) demonstrated that the percent nitrogen in sheep diets 

could be predicted from the nitrogen content in the feces. A relation

ship was found between fecal nitrogen (N) and organic matter digesti-

bility (Y) of Y - 0.80/N for forages containing over 15 percent 

protein andY~ 1 0.67/N for forages containing less than 15 percent 

protein (Lancaster, 1949a,b). A linear regression between digestibility 

and fecal nitrogen was found (Raymond et al. 1954). 

Errors associated with regression equations found in many studies 

have indicated that their application could be limited to cases Hhere 

very large differences in intake or digestibility exist. Variability 

in digestibility coefficients ranged from 9 percent (Lancaster, 1949b) 

to 13 percent (Jeffery, 1971). 
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Feed nitrogen index regression also varied with season (Minson and 

Raymonu, 1958; Langlands et al. 1963). The seasonal variations were 

mainly due to the differences in the leaf-to-stem ratios beuveen the 

herbage clipped for conventional digestion trials and that was actually 

consumed by grazing animals (Lambourne and Reardon, 1963). 

The consumption of a variety of plant species by grazing animals 

1<ould result in different relationships beu<een fecal nitrogen and 

the feed-to-feces ratio (Streeter , 1969). Feed consumed (Nit chell, 

1924) , body weight (Schneider, 1943), and the fiber content of feed 

(Blaxter and ~titchell, 1948) had an effect on the amount of metabolic 

fecal nitrogen which in turn affected the fecal nitrogen index. 

However, the assumption that fecal nitrogen was related to metabolic 

fecal material which was related to the feed-to-feces r atio seems weak 

(Virtanen, 1966). The fecal nitrogen was mainly of bact erial origin 

rather than metabolic. The non-bact erial f r action of fecal nitrogen 

l<Ould be present in the lignin molecule (Van Soest, 1967) . 

Fecal nitrogen method 1<as found to be better suited for digesti

bility than for intake estimates (Cordova, 1977). Fecal nitrogen was 

also an exceptionally valid est imator of digestibility of sandhill 

range fo rages (Wallace and VanDyne, 1970; Scales et al. 1974). 

Other internal markers such as iron (Gallup and Kuhlman, 1931) , 

silica (Gallup and Kuhlman, 1936; VanDyne and Lofgreen, 1964) , ~1ethoxyl 

groups of forage (Richards and Reid, 1952) , crude fiber content of 

feces Richards and Reid, 1952; Raymond et al. 1954), and soluble fecal 

fraction (Owen and Ingleton, 1963) were also used to estimate the 

di gestibility and intake of forages . 
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External indicators were a second kind which l·tas fed to the animals 

w estimate fecal output without the use of feces bags and include 

chromic oxide (Chromium sequioxide), orinoxide, monastral blue (Church 

and Pond, 1976; Crampton and Harris, 1969; Schneider and Flatt, 1975) , 

and rare earth compounds (Kays et al . 1980; Kotb and Luckey, 1972) . 

It was obvious that an in~icator should be non- toxic, palat able, 

easily measured, should be insoluble and should pass out of gastro-

intestinal tract at a uniform rate. 

If the digestibility of a component of a diet was knmvn, and if 

its fecal output of a grazing animal could be measured by fitting an 

animal tvith a feces bag to collect the total output, or by feeding an 

external indi cator to the animal. Therefore, the only purpose of the 

external indi cator was to permit estimation of the fecal output t;ithout 

using feces bags (Crampton and Harris, 1969) . Calcul ation of the fecal 

output by using an external indicator was as follows: 

% external indicator in feed X 100 
Fecal dry matter output (grams) = % external 1nd1cator in feces grap 

sample dry matter 

Forage intake and digestibility by grazing animals could be estimated 

by the use of the ratio technique and by the fecal index technique 

(Crampton and Harris, 1969): 

weight of internal indicator in feces 
Dry matter consumption = % Lndlcator 1n forage 

or 

Dry matter consumption 

feces) 

(Schneider and Flatt, 1975). Apparent digestibility of a particular 
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nutrient could be calculated as follows: 

Apparent digestibility = 100 - indicator in feces X % nutrient in feces 
md1cator m feed ' % nutrient in feed 

Such a ratio provided an estimate of digestibility of a particular 

nutrient without knowing either total intake of feed or the total 

excretion of feces (Church and Pond, 1976; Schneider and Flatt, 1975} . 

Then it was possible to estimate the dry matter as follows: 

Indigestible dry matter = 100 - % digestible dry matter 

. _ dry matter in feces (g) X 100 
Dry matter consumpt1on - %ind1gest1bility of ~ry matter 

(Crampton and Harris, 1969}. 

The ratio technique needed accuracy in collecting samples of the 

forage consumed by the animal and a completely indigestible indicator 

(Crampt on and Harris, 1969} . 

The most widely used internal indicators fo r the ratio technique 

were chromogen and lignin. Chromogen appeared to be a good indicat or 

for succulent green forage during the summer (Reid et al. 1952}; while 

lignin appeared to be a good i ndicator for winter range plants (Cook 

et al. 19 51} . 

I t was necessary to clip forage and feed i t in a conventional 

digestion trial in which the fo r age intake and fecal output of a few 

animals were quantitatively measured using a digestion stall (Crampton 

and Harris, 1969} . Analyses of feed and feces for an internal indicator 

(grass energy , organic matter, nitrogen, silica-free dry matter or 

dry matter} were necessary. 

\Vhile the conventional diges tibilit y trial was being conducted, 

animals equipped 1vith fecal bags or animals fed an external i ndi cat or 
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to calculate the total fecal output were grazed on the pasture, and the 

concentration of the internal indicator in feces was determined (Cook 

et al . 1951). Regression equations for the data on the animals fed in 

the conventional trial were developed and used to calculate digestibility 

of forage pasture on range (Crampton and Harris, 1969). 

When both external and internal indicators were used together in 

grazing animals, both the parameters, namely, consumption and digesti-

bility of pasture forage could be measured without the total collection 

of feces for 24 hours by feces bags (Reid et al. 1951; Reid et al. 

1952). The internal indicator gave the indigestibility of the consumed 

dry matter. A mathematical relationship between the internal indicator 

(Chromogen in this study) - dry matter ratio was established benveen 

the fecal output and the forage consumption . This relationship allm;ed 

the circumvention of sampling of the forage. The forage consumption 

might be determined from the following formula: 

external indicator fed 
Dry matter consumed (g)/day = (g) external Lnd1cator 1n feces X 

fg) d;y matter in feces 
; 1nd1gest1bile dry matter 

In Vitro Methods. The invitro methods, in which organisms or enzymes 

which were similar in function to those present in the digestive tract 

of ruminants, were used to estimate the digestibility of feeds in the 

laboratory. The n•o-stage technique for the in vitro digestion of 

forage crops was described by Tilley and Terry (1963). The method 

involved incubation of small (0.5 gram) samples of dried forages with 

rumen liquor first, then with acid pepsin. A regression equation 
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dry matter digestibility (X): Y = 0.99 X -1.01. 
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Van Dyne and Meyer (1964) also proposed an in vitro technique to 

measure in vivo forage digestibility of grazing animals. The first 

phase of the method involves the determination of the in vivo and in 

vitro cellulose digestion of several hard-fed forages. The in~ivo 

cellulose digestion coefficients of the hard-fed forages 1vere lineary 

regressed on the in vitro cellulose digestion coefficients of the 

hard-fed forage. 

The second phase involved grazing trials in ,,.flich samples of the 

diet and feces were obtained. In vitro digestion .vas conducted on 

these samples . A sample of a hand-fed forage used in the firs t phase 

must be included in t he vitro study and inoculated with inoculum from 

each of the grazing animals in order to permit the adjustment for 

differences in the relative fermenting capacity of different in vitro 

trials. The adjusted in vitro cellulose digestibility was calculated 

by dividing the in vitro cellulose digestibility of the dietary samples 

by the in vitro cellulose digestibility of the respective hand-fed 

forage sampl es . 

The in vivo digestibility of cellulose of the dietary samples 

was then predicted from the adjusted in vitro cellulose digestibilities 

using the equation developed in the first phase. The in vivo digesti

bility of the dry matter consumed could then be computed by subtracting 

the in vivo cellulose digestibility from the percent cellulose in the 

ration and dividing the remainder by the percent cellulose in the feces. 

Van Dyne and Meyer (1964) assumed in t his technique that (1) the 

relationship benveen cellulose digestibility in vivo and cellulose 
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digestibility in vitro must be the same for the grazed and the hand-fed 

forages; (2) this relationship was not affected by different sot.rrces of 

inoculum; and (3) dietary samples were of the same composition as the 

total forage consumed by the grazing animal. 

Testing the applicability of the micro-digestion techniques range 

digestion studies, Van Dyne and Meyer (1964) found that the ratio 

between the overall mean digestion coefficient for cellulose as cal

culated by the lignin ratio technique and the microdiges tion technique 

\Vl!S 101 and 111 percent for cattle and sheep, respectively. The higher 

digestion coefficients as calculated by the microdigestion technique 

were related to partial digestibility of lignin based on the in vitro 

digestion of lignin of approximately 4 percent. 

In vitro ulgestibility of feedstuffs could be influenced by source 

of inoculum (Van Dyne and Weir, 1966; Eikenberry, 1963), length of 

fermentation (Van Dyne, 1962; Teri et al. 1963; Van Dyne and ~~yer, 1964) 

and stage of maturity of forage (Wallace et al. 196la,b). 

The in vitro methods of forage analysis to estimate the digesti

bility of the fibrous fraction (usually cellulose) were criticized 

by Van Soest (1969). Apart from poor analytical precision, the 

difficulties with the in vitro rumen fermentation techniques were that 

cellulose was only a part of the cell wall and a small part of the 

forage dry matter, and that factors affecting the availability of 

cellulose might not be the same of those affecting other constituents. 

Thus, in vitro fermentation was not a suitab le mean of evaluating 

concentrate feeds. 

Moreover , one might expect the two- stage in vitro (Tilley and 

Terry, 1963) digestibility to be higher than digestibility in vivo due 
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to the fact that there was no in vitro endogenous excretion (Van Soest 

et al. 1966). On the other hand, the in vitro indigestible residue 1nay 

contain bacterial residue or forage digestion might not be as 

complete as that in the animal. 

Van Soest et al. (1966) modified the Tilley and Terry (1963) in 

vitro digestion technique . The modified method consisted of nvo stages. 

The first stage '' as a 48-hour in vitro rumen fermentation as in Tilley 

and Terry (1963) procedure. The second stage 1<as replaced by a cell 

wall determination, using the neutral detergent procedure. Percentage 

of dry matter disappearance was also calculated. 

Digestibilities resulted from this method were higher than those 

of Tilley and Terry (1963) technique. The in vitro digestibility by 

cell walls yielded values nearly equal to those of true digestibility 

in vivo. The matter comprising the difference ben<een the n.o techniques 

was not of forage origin but of bacterial residues resisting acid 

pepsin digestion. 

The modified in vitro digestion technique could be used to ascer

tain true digestibilities and apparent digestibilities 1<ith slightly 

less precision. It was also shorter by nvo days and requires fffi<er 

manipulations (Van Soest et al. 1966). 

The cell wall in vitro digestion resulted in slightly less accurate 

predictions of in vivo digestibility, but like the summative equation 

t echnique (Van Soest, 1967) was within acceptable limits of accuracy 

(R = .85) (Scales et al. 1974). 

lVhen acid-pepsin was employed in the second stage of the in vitro 

procedure, the technique combined all three components of the summative 
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equation: rx:c, DOl', and MFOM. Substituting neutral detergent for acid

pepsin resulted in an estimate of true organic matter digestibility (J:Q\1) 

and required a correction for MFOM in order to predict 00!>1. Major 

problems associated with the use of in vitro methods for routine hay 

evaluation programs were precision and cost under commercial operations, 

and time that was required for the analysis of samples (Barnes, 1975). 

Another in vitro technique for the estimation of digestibility and 

metabolizable energy content of ruminant feedstuffs \vas carried by 

measuring the gas production when they were incubated with n.nnen liquor 

in vitro (}Ienke et al. 1979). Gas production in 24 hours from 200 

milligram feed dry matter was well correlated (R ; . 82) with digesti 

bility of organic matter , determined in vivo >Yith sheep. DO; 7.65 

(~ 0.59), where 00; digestible organic matter (00, gram per kilogram 

organic matter). Gb; gas production in 24 hours. Since gas production 

reflected more the content of digestible carbohydrates than of protein 

and fat, a multiple regression analysis including these crude nutrient 

contents was carried out (R ; . 96) . 

DO ; 13.3(~ 0.22) Gb - 0. 05 (~ 0.002) Gb2 + 511 (~ 25.0) XL+ 91 . 2 

(~ 0.31), >Yhere XP ; crude protein and X; ethe r extract (gram per 

gram dry matter). 

\Vhen multiple regression analysis included data from proximate 

analysis, it resulted in an equation (R ; . 98) for prediction of meta

bolizable energy content (based on 30 experiments >Yith ration varying 

in protein and crude fiber content, and 59 other experiments 1d th 

concentrates) : 
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~~r = 0.118(~ 0. 0009) Gb + 8.72(~ 0. 087) XP + 19 . 21 (~ 0.303) XL 

+ 3. 38 (0 . 103) XX + 9.691(~ 0.0038), where ~r =metabolizable energy 

(MJ/kg dry matter ) , XP = crude protein, XL = ether extract, and 

XX = nitrogen- f ree extract. The relationship between in vitro and 

in vivo was : ~~ (in vitro) = 0.949 ~ (in vivo) + 0.565 ; R2 = 0.95. 

The critical points of the gas production technique were: (1) the 

l ow sample weight which might lead to errors. (To overcome this problem, 

it was recommended to use rrore samples instead of using larger samples); 

(2) the difficulties in keeping a standard feedstuff for correction for 

deviations caused by changes of the rumen liquor, and (3) that feed

stuffs that showed a significantl y slower gas production than the 

majority might have higher digestibilities in vivo than was indicated 

by the gas product ion method. 

When time of incubation increased to 26 hours , the expected im

provement in correlation predicted from the mathematical correlation 

was not achieved. The feeds t hat showed an early maximum in gas production 

showed almost the same increment in the l ast t\vo hours as those \vith 

slower increase. The difference between in vivo and in vitro measure-

ments with those feeds might be due to either the differences in passage 

rate and retention time in the rumen, or to higher uti l ization in the 

small intestines of nutrients that bypass rumen fermentation. 

Other possible interferring factors were the at mospheric pr essure , 

the pH of sample, and the organic acids present in the feed. In 

silages the content of organic acids might cause deviations because the 

metabolizable ener gy (~) content was higher than indicated by the 

production of carbondioxide (Co2) in rumen liquor. Hence, a separate 
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equation for silages should be developed (!>1enke et al. 1979). 

The reason for high correlation between gas production in vitro 

and digestibility (and metabolizability) in vivo could be to the fact 

that this method was not based on a filtration process to separate the 

digested and undigested materials. Such a separation might not lead to 

full information on digestibility, partially because some partially 

digestible and/or indiges tible substances might pass through the filter, 

and partly because some digestible matt er might not be extracted from 

the indigestible fraction on the fiber . 

Barnes (1973) described two t ypes of errors associated with the in 

vitro procedures. The random errors lvhich involved those factors con

tributing to the variability in the in vitro result s. The magnitude of 

the random errors refl ecting t he precision of the in vitro methods were 

those associated 1vith the within and between trial variability. The 

failure of the investigator to handle each sample similarly contributed 

to the random variation . More variation betlveen trials than within 

trials had been reported. 

A study was conducted among 19 laboratories where a standaFdized 

tlvo-stage in vitro rumen fermentation technique was used (Barnes, 

1973). In vitro dry matter disappearance from duplicat e determinations 

within each of three runs was obtai ned for the same 12 herbage sampl es 

by each laboratory . The mean in vitro dry matter digestibility among 

laboratories averaged over herbages ranged 57.1 to 64.2 percent with 

a mean standard deviation within runs of 1. 3 and among nms of 2. 0. 

The second type of errors was the prediction errors that result 

from the failure of the in vitro data to estimate accurately the i n vivo 
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parameters due to an inaccurate mathematical model. The correlation 

coefficients could be high and significantly greater than zero. However, 

the predictive equations derived from in vivo - in vitro relationships 

might have limited value if the standard errors of the estimate (Sy.x) 

were large (Barnes , 1973) . 

The In Vivo Nylon Bag Digestion . The in vivo nylon bag digestion was 

another method for digestibility estimation. Harris et al. (1968b) 

summerized factors affecting the results of the nylon bag technique , 

sample preparation and fermentation time (Van Dyne, 1962; Gallinger 

and Kercher, 1964) and type of diet (Van Dyne, 1962; Van Dyne and Weir, 

1966; Gallinger, 1965; Hopson et al. 1963) were the factors that would 

influence the results of digestion carried by the nylon bag technique . 

Particle size of forage kept in the bags would influence digestibility. 

The finer the particle of forage put in the nylon bag, the greater would 

be the disappearance (Hopson et al. 1963) . Moreover, the dietary regime 

of fistulated animals would influence the disappearance of test forages 

put in the nylon bags. 

Small Animal Bioassay Techniques. Small animal bioassay techniques to 

evaluate forages were used (Barnes, 1977; Barnes and ~1arten, 1979) . 

Small animals like hamsters, guinea pigs, rabbits, and meadow voles, 

had been used. Satisfactory prediction of ruminant intake and digesti

bility had been obtained with the vole , using tropical and temperate 

forage species (Shenk and Barnes, 1974) . The Heanling meadow vole 

(a common herbivore in the grasslands of most of North America and 

Europe) was successfully used to predict milk production potential 

of alfalfa for dairy cows (Shenk et al. 1975). 
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Insects such as crickets had also been proposed and used for bio

assays of forage quality for certain forage species (Pfander et al. 1964) . 

Near-Infra-Reflectance Method. Recently, a new technique had been 

proposed as a rapid assay for chemical constituents of feeds tuffs. 

Near-infrared-reflectance spectra (1.4 to 2.4 ~m) were recorded for 87 

samples of ground dry forages (Norris et al. 1976). Temperate and 

tropical forage species were included in the study . Laboratory analysis 

of crude protein , acid detergent fiber , neutral detergent fiber, lignin, 

and in vitro dry matter disappearance, as well as in vivo digestibility , 

dry matter intake and digestible ener gy intake 1vere determined for the 

same samples. Reflectance (R) spectra were recorded as log (1/R) versus 

wave length and transformed to the second derivative of log (1/R) versus 

wave length for correlation with composition and nutritional data. 

Multipl e-linear-regression techniques were used to determine the optimum 

wave l engths for predicting each of the chemical in vitro and in vivo 

analysis . By use of nine wave length points for the prediction equations, 

the correlation coefficients were . 99 , .98, . 96, . 96, .95, .88, .80, 

.85 for crude protein , neutral detergent fiber , acid detergent fiber, 

lignin, in vitro dry matter digestibility, dry matter digestibil ity, 

dry matter intake, and digestible energy intake , respectively. 

The low-protein samples were characterized by a broad absorption 

band at 2.1 ~ m while the high-protein samples exhibited almost a 

straight line in the same region. 

Lignin content was determined by permanganate and sulphuric acid 

procedures. The simple correlation coefficient between the tlvo 

procedures was . 95 . Infrared reflectance gave a correlation coefficient 
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of .96 with the permanganate method so that the standard error of .80 

percent may reflect errors equally from the chemical procedure and 

from infrared reflectance. 

Norris et al . (1976) also found that errors in predicting animal 

responses were greater than those in predicting chemical composition 

because these errors could have originated from animal response data 

since appeared that much of the errors might be in only a few samples. 

Barnes (1977) and Barnes and Marten (1979) predicted that infrared 

reflectant spectroscopy of forages and other feedstuffs might replace 

many routine laboratory quality assays. The potential existed for this 

procedure to predict the animal nutritive responses without the need to 

predict the chemical composition first. 

The greatest source of variation was sample preparation. Unifonn.i.ty, 

finness, and temperature fluctuations during assay were knrnvn to affect 

infrared reflectance (Barnes and Marten, 1979). 

Other physical methods to estimate forage quality and animal response 

included approaches to such as: artificial mustication of forage tissue 

in order to measure the relative tissue breakdrnvn into particles of a 

certain size (Troelsen et al . 1970). Measurement of a fibrous index 

based upon the electrical energy required to pulverize a given size 

sample of hay (Chenost, 1966), and anatomical-histological observations 

(Monson et al. 1972; Chatteron and Po1vell, 1974; Shenk and Elliot, 

1971) . 

A canparison of laboratory methods in attempts to determine the 

most reliable procedures of evaluating the nutritive value of feed

stuffs (Oh et al. 1966; Sullivan, 1964; Van Soest, 1964), was reported 

by Barnes (1973). 
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Lignin was often cited as the most promising for estimating in vivo 

digestibility, especially when individual species were evaluated 

(Sullivan, 1964; Van Soest, 1971). The inability of a single chemical 

entity or solubili t y index to accurately predict various in vivo para

meters was inherent in the complex biological systems. The difference 

betHeen grasses and legumes was one of the main problems. Grasses and 

legumes with similar digestibility values might differ significantly in 

chemical composition. Legumes had a higher lignin content and usually 

lower hemicellulose than grasses. Therefore, the calculation of sepa

rate regression equations for different species would reduce the residual 

error in the prediction of digestibility with most laboratory methods. 

A summative chemical equation was effective for prediction of digesti 

bility, if all the correcc constituents were analyzed (Barnes, 1973). 

However, the expense and time required for all the analyses in a summative 

equation might not be practical. 

The Dvo-stage in vitro rumen fermentation technique was reported 

superior to other laboratory methods in predicting in vivo digesti

bility (Barnes, 1966; Deinum and Van Soest, 1969) . The sensitivity of 

the digesting microorganisms to undetermined factors accounted for much 

of the superiority of the in vitro system. However, the many sources 

of variations inherent with the method made it difficult to standardize, 

especially with respect to the source and handling of inoculum (Barnes, 

1973). 

~~thematical Methods to Predict Digestibility of Feedstuffs 

Regression Equations. Regression studies showed that significant rela

tionships existed bebveen the chemical analysis and the digestion 
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coefficients of the different nutrients . The regression of apparent 

digestibility on one or more of these independent variables , the per-

centages of proximate nutrients, was very significant in most cases 

(Schneider and Flatt, 1975). The proximate analysis and other chemical 

entities could be used to predict the digestibilities of nutrients. 

These predictions were more accurate than fixed average coefficients 

multiplied by the composition values of a sample or by the average com-

position of a feed. 

Feedstuffs differed considerably in their chemical and physical 

characteristics depending on their species, stage of maturity, disease 

and insect damage, genetic and environmental variation and harvesting, 

processing, and feeding procedures (Barnes, 1973). Hence , the digesti-

bility of feeds ~<as related to their chemical composition (Ss_hneider 

and Flatt, 1975) . 25 to 45 percent variance in digestibility between 

samples of a given feed was associated with proximate composition was 

found in a statistical study of digestibility data (Schneider and Lucas, 

1950). Thus, the use of the adjustments which took into consideration 

the chemical composition of a certain sample would l ead to more precise 

estimates of digestibility than would the use of tabulated averages. 

However, feeds for which there Here missing digestibility data , equation 

for estimating digestion coefficients and total digestible nutrients 

(TDN) from the chemical analysis of a given feed Has developed (Schnieder 

et al. 1952): Y = C + b1x1 + b3x3 + b4X4 \vhere C was a constant specific 

for the nutrient and the class of feed under consideration. b1, b2, 

b3 and b4 were the partial regression coefficients, and x1, x2, X3, 

and X were the moisture-free percentages of the crude protein, crude 
4 

fiber, nitrogen-free extract, and ether extract, respectively, for the 
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sample of feed for which it was desired to estimate the digestibility. 

Schneider and Flatt (1975) gave the constants and partial regression 

coefficients for the several nutrients in each feed class for cattle 

and sheep. 

The use of crude fiber in feedstuff analysis was based on the 

assumption that the amount of crude fiber was negatively related to the 

available nutrient content in forages. However, the crude fiber content 

often gave an inaccurate estimate of nutrient availability and the 

analytical procedures used lack precision (Barnes , 1973). A correlation 

coefficient of R = -.65 (Sy.x = 4.1) between crude fiber and dry matter 

digestibility was obtained with a group of 65 samples of grass (Sullivan, 

1964). A correlation coeffici~nt of R = -0. 49 (Sy.x = 4.8) was obtained 

with a group of 98 samples of grass, alfalfa, and grass-alfalfa mL~tures . 

Crampton (19.SO) and Crampton and Jackson (1944) also reported that 

little correlation could be obtained between crude fiber and digestibility 

of roughages (Crampton et al. 1940). 

High correlations, however, had been obtained between crude fiber 

of roughages and digestibility of the organic matter (Axelsson, 1949; 

McMeekan, 1943; Walker and Hepburn, 1955). Meyer and Lofgreen (1956) 

used the crude fiber content (S) to estimate TON (Y) in 152 di gestion 

trials on 31 samples of alfalfa hay of variabl e quality: Y = 79 . 7- 0.84X. 

The correlation coefficient was -0.86, (Sy.x = 2.96). 

Barnes (1977) reported that correlations benveen crude fiber and 

in vivo dry matter digestibility had been cited as ranging from an 

R = .SO toR= 0.94. The lack of agreement among workers might be due 

to the mi.~ture and species of the roughages studied (Meyer and Lofgreen, 

1956). 
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~tarry other analytical precedures had been developed for predicting 

forage quality, such as anhydro-uronic acid solubility, cellulose, 

methoxyl, modified crude fiber , and normal acid fiber . However, these 

procedures had sho~Yn little or no improvement over crude fiber (Barnes , 

1977). 

Lignin had been successfully used to predict energy or organic 

matter digestibility (Lancaster, 1943; Forbes and Garrigus, 1950a, 

1950b; ll'alker and Hepburn, 1955). The regressions of organic matter 

digestibility on lignin content (X) for cattle Here: 

Y 95 - 4.10X (for conventional calculations) and, 

Y 100 - 4.53X (for the calculations made up by lignin ratio) . 

These equations Here not statistically different by the (t) test (Forbes 

and Garrigus , 1950a). The regression of organic matter digestibility 

(Y) or lignin content (X} for wethers Here : 

Y = 9 - 5.32X (for the conventional calculations) and, 

Y = 101 - 4.92X (for the calculations made up by lignin ratio) . 

Results of the digestion trials carried by Meyer and Lofgreen (1956) 

showed a great range in alfalfa quality (36.2 - 63.4 percent TDN). The 

regression equation of TDN (Y) or lignin content (X) was: 

Y = 84.57 - 3. 21X. 

Both the regression coefficient (b = 3. 21) and the correlation coefficient 

(R = -0. 88) 1vere statistically highly significant. Correlations of 

nitrogen content Hith TDN \olaS 0. 77 . 

\Vhen organic matter digestibility Has related to lignin, crude 

fiber, or nitrogen content, the correlation coefficients Nere practically 

identical to those relating TDN to lignin, crude fiber , or nitrogen . 
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A multiple regression of TDN on lignin and nitrogen did not prove to be 

more significant than a simple regression of TDN or lignin . 

. ~other study of regression equations relating total digestible 

nutrients (TDN} and digestfuble protein to lignin, crude fiber, crude 

fiber plus silica, and protein revealed that the modified crude fiber 

was most satisfactory for predicting both TDN and digestible protein 

(Table 11} (Meyer and Lofgreen, 1959}. The inclusion of silica as a 

part of the crude fiber seemed desirable. Since fibrous portion of the 

hay had less nutritive value 1~an the non-fibrous portion, inclusion of 

silica with the fiber might give a better indication of hay quality 

than treating it as part of the non-fibrous portion. 

TABLE 11 Regression and Correlation of Alfalfa Constituents With 
TDN ansi Digestible Proteina 

Standard 

Regression Equa tionb 
Error of Correlation 

Item Estim.J.te Coefficient 

Total digestible nut rients 
Lignin y - 79.1 2. 67X 3.13 -. 84** 
Crude fiber y- 78.7 - 0.8027X 2. 84 -. 87** 
M:xlified crude fiber y • 81. 07 - 0. 8558X 2. 52 -. 89** 
Protein Y • 1.142X • 33.33 3. 41 0.80 .. 

Digestible protein 
Lignin y • 30.6 1. 21X 1. 94 - . BS*it 
Crude fiber y • 29.5 - O.Sl68X 1. 95 -. 85*"' 
l>bdificd crude fiber y • 30.7 - 9.5416X 1. 89 -. 86** 
Protein y • 0. 915SX - 3.1 0. 63 0. 99** 

aDigestion trials conducted on 43 different samples of alfalfa hay. 

by equals total digestible nutrients or digestibl e protein, as the 
case may be; X equals lignin, crude fiber, modified crude fiber or 
protein , as the case may be. All results are reported on an oven-dry 
basis. **Significant at the 1% level. (Adapted from ~!eyer and 
Lofgreen, 1959} 



153 

The relationships beuveen lignin and digestibility of 5 forage 

fractions was examined by Van Soest and Moore (1965). Correlations were 

computed expressing lignin content in different ways: as a percentage 

of the dry matter, of NDF, and of ADF, and as the logarithm of lignin 

concentration of .~F. The correlations of all forms of lignin expression 

with digestibility of fibrous portions were highly significant. However, 

in case of the non-fibrous fractions, significance was attained only 

when lignin was expressed as a percentage of dry matter. In the case 

of nitrogen, the decline in nitrogen with increase in lignin concentra

tions would account for the correlation. For the purpose of predicting 

availability of fiber fractions, expression of lignin on the basis of 

ADF rather than NDF was preferred because this was the preparatory step 

in the isolation of lignin. This mode of expression appeared to involve 

less error and 1vas termed lignification (L). 

The high correlation beuveen NDF digestibility and logarithm of L 

was of importance. The NDF included the entire fibrous fraction of 

the forages, which lacked uniformity in respect to nutritive value. 

Lignification accounted for the lack of uniformity and the variation 

in digestibility. ~breover, the change of the undigested plant residue 

(F) with respect to lignin was proportional to the lignin content in 

the fibrous fraction: df/dl KL, where K was the slope of the regression 

of the fiber indigestibility on natural logarithm of L (Van Soest and 

Moore, 1965) . 

Since the lignification (L) tvas negatively related to digestibility 

and the ND solubles (S) were positively related to digestibility, it was 

possible then to express these two factors as ratio. This ratio could 
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be written L/ s, which was an estimate of indigestibility. The ratio was 

found to regress linearly with digestibility. Hence, an index of 

availabil i t y (A) was expressed as : A = 100- 100(1/s) . 

Digestibility has been det ermined by total collection from 39 feeds 

including forages of different forage species (Grasses and legumes, 

mixture of forages, and rnJ,xed feeds wi th concentrates. On a group 

of 29 feeds crude fiber correlated -0.77 while (A) yielded = .95 with 

digestible energy (Table 12). 

TABLE 12 Prediction Equations for t he Estimation of Nutritive Value 
from Index of Availability 

N of 
Evaluation Equation Correlation Feeds 

Digestible dry matter (%) 0.782A + 12.7 +0.94 39 
Digestible energy (%) 0. 732A + 13. 7 +0 . 96 39 
TDN (%) 0.653A + 16.7 +0.95 29 
Estimated net energy 

(therms) 0.905A- 11. 2 +0 . 95 29 

(Adapt ed from Van Soest and ~bore , 1965) 

The utilization of forages by ruminants \vas limited by feed intake 

whi ch was generally a more limiting factor than digestibility, relative 

to animal productive yields (Van Soest, 1978b) . 

Survey and correl ation data indicate that while intake and digesti-

bility are interrelated, the intake fact or had a great degree of 

independence and seems t o be influenced by certain factors (hemicellu-

loses that have little association with digest ibility) . Lignin was 

a major factor limiting digestibility , and had a cons i stent effect on 

intake (Van Soest , 1965a) . 

However, Cook and Child (1977) found out that no chemical con-

stituent included in the proximate analysis of diets of range animals 
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appeared to account for any statistical amount of variation in daily 

conswnption. Regression equations 1vere developed to determine intake of 

range forages by sheep during different seasons from the nutrient content 

of forages . There was no significant correlation. Protein, lignin, 

and gross energy were perhaps the most influential but even these 

constituents varied ~1idely among seasons. 

It was now known yet why animals eat the species they did during 

various seasons or on certain sites. Feed volume and the content of 

cell wall were factors associated with lmv feed intake. The association 

of lignin 1vith intake could be considered a secondary association that 

appeared in date-of-cutting studies, where lignin and cell wall increased 

with plant maturity while intake and digestibility declined (Van Soest, 

1965a). 

Lignin rate of passage had a very high correlation (+ . 90) with cell 

wall intake (Van Soest, 1965a). Cell wall might be correlated better 

with forage intake than forage volume because it was better associated 

with the relief factors of communication and passage (Van Soest, 1978b). 

In range plants, Cook (1966) and Cook and Harris (1950) found that 

digestible dry matter and crude protein 1vere inversely related to 

lignin content of range forages . 

However, the problems associated with the use of lignin concen

tration as an estimate of the nutrient digestibility might be summarized 

as: (1) the complex and incompletely unknown structure of lignin, 

(2) the lack of efficient and reliable standardized procedure, and 

(3) the inherent variability in lignin content among forage species 

(Barnes , 19 77) . 
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Cellulose was the principal constituent of crude fiber and the 

"true" cellulose was detennined by the method of Crampton and Maynard 

(1938) usually. This procedure was more rapid than crude fiber but 

provided no advantage f or the estimation of digestibility (R = -0 . 46 for 

cellulose and -0.49 for crude fiber) that 1vas reported by Sullivan 

(1964) . 

Gaillard (1966) observed that hemicellulose was composed of a 

mi.xture of different pol ymers, which could have different digestibili

ties. The less digestible hemicellulose was found to contain high 

amounts of anhydro-uronic acid . Values of anhydro-uronic acid deter

mined from neutral detergent fiber were used to predict organic matter 

digestibility. The correlation of cell wall content and anhydro-uronic 

acid with organic matter digestibility was 0. 59 (Sy.x - 7. 8) (Gaillard 

and Nijkamp, 1968). The inclusion of lignin resulted in a correlation 

of R = 0.95 with organic matter digestibility . 

The relationship benveen digestible amounts of hemicellulose (Y) 

and the content in the dry matter (X) was: 

Y 9.4 + 0.37X (R = 0.50) for grasses 

Y 2.4 + 0.36X (R = 0.80) for legumes 

Y = 0.79 x -2.3 (R = 0.94) for total grasses and legumes. 

Schneider et al. (1951) used the proximate nutrients as predictors 

in equations which allowed the adjust ment of digestibilities of al mos t 

all feeds fed to cattle and sheep. The feed involved was also taken 

into account. It was assumed that the digestion coefficients of the 

various nutrients and the content of TU~ could be expressed as function 

of proximate compositions as in the following equation: 
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Y = y + b1 CX
1

- x
1

} + b2Cx2 - Xz} + b3(x3 - x3} + b4(x4 - x4} where Y 

was the digestion coefficient fo r a given nutrient (or the content of 

TDN} in a particular sample of feed; y was the average value of the 

digestion coefficient (or content of TDN} for the feed which the sample 

represents; b
1

, b2, b3, and b4 were the partial regression coefficients ; 

x1 , x2, x3, and x4 were the percentages of the crude protej.n, crude fiber, 

NFE , and ether extract in the sample; and x
1

, x2, x3, and x4 were the 

average percentages of crude protein, crude f i ber , NFE, and ether 

extract for the feed . The partial regression coefficients for adjusting 

digestion coefficients and TDN to proximate composition for cattle and 

sheep 1vere computed for five different classes of feeds . 

Christiansen (1979} estimated nutrient digestible amounts from 

nutrient percent content by two ways. Fi rst, by simple regression 

equations of the form Y = b
0 

+ b
1
X

1 
where Y was the nutrient digestible 

amount and X was the nutrient percent content. This statistical model 

was used by Lucas et al. (1961} in estimating t he true digestibi l ity 

(b
1

} of a given chemical component of animal feeds. The regression con

stant (b
0

} estimated the nutrient endogenous excretions and the standard 

devi ation of the regression coefficient (Sb} together with the coefficient 

of determination (R2} estimates how uniformily the nutrient was digested 

(true digestibility} over t he diets anal yzed. 

Crude protein and available carbohydrat es were sho"~ to be highly 

uniform in true digestibility across al l diet treatment (R2 
= .97, 

Sb = 2.3%; R2 
= .98, Sb = 2.1% respectivel y, for crude protein and 

available carbohydrates}. 

Second, Christiansen (1979} used complex regression equations to 

es t imat e nutrient digestible amount from nutrient percent content. Two 



158 

types of multi-variant equations '"ere generated by using indicator or 

dummy variables (A quantitative indicator used in a regression model to 

identify the classes of a qualitative variable (Neter and Wasserman, 

1974) in addition to the nutrient percent content to predict the di

gestible amount of the nutrient. The indicator variables were added to 

the model to adjust for variability due to the treatment main effects and 

interaction effects. While the analysis of variance was used as a guide 

in picking the treatment factors that showed a substantial effect upon 

digestibility of a given feed constituent. 

All type one equations showed a significant improvement over the 

simple equations in estimating the digestible amount of each nutrient. 

All type one equations also shm,red higher coefficients of determination 

(R2) than those shown by the simple equations (crude protein, . 98 vs 

. 97; available carbohydrates , .99 vs .98; total lipids, . 55 vs .19; 

hemicellulose, . 94 vs . 89 ; cellulose, . 94 vs . 79 ; cell walls , . 95 vs .81; 

neutral detergent fiber, .96 vs .84; acid detergent fiber, . 93 vs .69; 

and crude fiber, . 94 vs . 76). 

Type two equations for hemicellulose, cellulose, cell walls, 

neutral detergent fiber , acid detergent fiber, and crude fiber showed 

only a slight improvement in the R2 value over that shown by the type 

one equations. 

Dry matter digestibility 1•as computed from crude protein of 165 

herbage samples of different sources (Sullivan, 1964). The correlation 

coefficient was as low as 0. 24 with a standard error of the estimate 

Sy.x = ~ 7. 1. Crude protein 1,ras not likely to be a very reliable 

predictor of dry matter digestibility because it was much affected by 

nitrogen fertilization and relative differences in content among 
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legume and grass species (Van Soest, 1967). Besides, the use of crude 

protein to estimate digestibility of dry matter was based on the hope 

that the decrease in protein content was uniformly associated with the 

decline in digestibility and maturity of forage. Hence, it was not 

sound to expect the amount of the available components such as protein 

to form a fixed relationship \;ith the digestibility of the cell ,;all or 

any fiber constituent \;hose availability was affected by different 

factors. The use of crude fiber to estimate digestibility of protein or 

cellular contents was invalid (Van Soest, 1967). 

However, Sullivan (1964) showed that digestible crude protein could 

be predicted for crude protein content of feedstuffs (R = 0.99; Sy.x = 

0. 5). 

Under range conditions, Cook and Child (1977) found that digestible 

protein was the most important nutrient determination because it was 

associated ,;ith energy, phosphorous, and carotene content of the forage 

and could be determined rather accurat ely from total protein and 

lignin when predicted values fell within ranges of 2 to 10 percent. 

Hm;ever, in range forages the digestibility of crude protein varies 

from as high as 80 percent in the early growth to as lm; as 20 percent 

in mature dormant plants (Cook and Child, 1977). Regression equations 

were of practical value in estimating digestible protein from total 

protein. The following regression equations were suggested for estima

ting digestible protein (DP) of hays from total protein (TP) : 

DP -3.48 + 0.93 TP (Holter and Reid, 1959). 

DP -2. 86 + 0.93 TP. 

DP - 3.51 + 92 TP (Stallcup et al. 1976) 
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Cook and Child (1977) tabulated linear regression equations devel

oped by various workers to predict digestible coefficients and quantity 

of digestible material in forages with varying degrees of success as 

measured by the magnitude of R2 values. 

Hmvever, in the short grass plains of Colorado, prediction formulae 

for digestible protein showed that total prot ein alone gave R2 values 

of 0.92 (Cook and Child, 1977) . By using total protein (TP) and digest-

ible energy (DE) as predictors as much as 0.96 of variability in 

digestible protein in diets of steers could be counted for as shown in 

R2 values (Table 13). 

In a study of animal response, Cook et al. (1977) found out that 

the analysis of 14 independent factors determined that only a relatively 

few nutrients, such as digestible protein and digestible energy 1vere 

even moderately associated 1vith animal gains on rangelands . Digestible 

protein alone was reported to be the best factor available to evaluate 

the nutritive quality of range forages. 

In all cases studied, it 1vas found that digestible protein (DP) 

was more closely related to animal response than digestible energy (DE). 

In most cases, the accounted animal variation in animal gain was in

creased only slightly (R2 = 0. 77 to 0. 83) 1vhen the influence of 

digestible energy was added to digestible protein. Digestible protein 

content of the forage reflected increased forage grmvth after summer 

precipitation and the decrease of nutrients associated with phenological 

advancement of forage plants. However, digestible energy, t<hich was 

also moderately associated with animal gain, did not show a marked 

response t o either precipitation or to the advancing grmvth stages of 

plants. The lines of predictive formula indicate that predicted gain 



TABLE 13 Nutrient s Shown in a Predictive Linear Equation for Deter
mining Digestible Protein in Range Plants for Three Seasonal Range 
Types for Sheep and Cattle 

Predictive factors (b's) 

Sheep , Spring (seeded foothills) 
- 4.10 + 0. 97 (TP%) 

19 .49 - 1. 97 (Lig%) 
84 . 80 - 0.64 (Lig2%) 
0.77 + 0.82 (TP%) - 0.51 (Lig%) 

108.60 - 0. 50 (Lig2%) - 0. 03 (Cellu. % x CHO %) 

Cattle , S~ring (seeded foothills) 
- 2. 7 + 0. 84 (TP%) 

21 . 63 - 2. 11 (Lig%) 
- 3. 45 + 0. 85 (TP%) + 0. 08 (Lig~) 
- 10. 42 + 10.17 (TP%) - 0. 35 (TP %) 

81.07 + 13.19 (TP%) + 1.52 (Cell . %) - 0.43 (TP2) 

Sheep, Summer (mt. range) 
- 3. 32 + 0. 69 (TP%) 

10.56 - 0.50 (Lig%) 
1.27 + 0. 60 (TP %) - 0. 32 (Lig%) 

Cat tle, Summer (mt . range) 
- 0.77 + 0.48 (TP%) 

6.56- 0. 27 (Lig%) 
1.93 + 0.40 (TP% - 0.20 (Lig%) 

Sheep, Winter (desert range) 
- 3.02 + 0.84 (TP%) 

3.64 - 0.01 (Lig%) 
- 1.59 + 0.87 (TP%) - 0.14 (Lig%) 

Cattle , S~ring-Summer (mixed grass) 
- 1.9 + 0.86 (TP%) 

7.32 + 0.21 (DDM%) 
9.61 - 0. 002 (GE kcal/lb) 

- 7.38 + 0.011 (DE kcal / l b) 
- 6.27 + 0.710 (TP%) - 0.094 (DDM%) 

Cattle , Spring-Summer (short grass) 
- 2.01 + 0.91 (TP%) 

16.84 - 0.006 (GE kcal/ lb) 
- 3. 54 + 0.16 (DIN%) 

4.99 + 0. 009 (DE kcal/lb) 
- 4. 55 + 0. 80 (TP%) - 0.003 (DE kcal/lb) 

.13 + 0. 76 (TP%) - 0. 003 (GE kcal/lb) 
+ 0.004 (DE kcal/lb) 

(Adapted from Cook and Child, 1977) 

R X 100 

92.9 
61.9 
72.0 
94.9 
82.0 

90.0 
44 . 7 
90 . 4 
90 .9 
93.4 

60.3 
31. 6 
72.0 

34 . 1 
25.5 
48.0 

84 . 0 
00 . 7 
87 . 6 

88 . 3 
52.7 
0.4 

54.6 
95 . 6 

91. 9 
3. 4 

24 . 5 
43.7 
94.9 

95 . 5 

161 
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followed actual gain more closely from the percentage of digestible 

protein in the ration than from digestible energy (Cook et al. 1977). 

These results were in agreement with t hose of Cook and Harris (1968a) 

who found that animal response appeared to follow digestible protein 

content of the forage more closely than any other nutrient combination 

of nutrients. 

Cook and Child (1977) pointed out that the diets used in calculations 

consis ted of changes in the proportion of the plants eaten and changes 

in species of plants and forage classes consumed as 1vell . The nutrient 

content of the grazing animal's diet was also influenced by maturity 

changes and weathering of mature plants. Thus, any predictive equation 

that accounted for 70 to 75 percent of the variation in the dependent 

variable was of practical significance in range livestock nutrition. 

Summative Equations . The digestibility of organic matter of feedstuffs 

could be predicted by the approach used by Lucas and Smart (1959) as 

expressed in terms of the follmving summative equation: 

001<1; Dec + Dew - MFCM where Dec ; digestible organic cell contents, 

Da; ; digestible organic cell walls, and MFCN ; metabolic fecal organic 

matter excretion. The values were expressed as percentage of dry matter. 

Van Soest (1963a) proposed his approach of the division of forage 

dry matter into cell 1valls and cell contents. A neutral detergent 

fiber (NDF) fraction (referred as cell wall constituents), an acid 

detergent fiber (ADF) fraction, and an acid detergent lignin (ADL) 

fraction resulted from this approach of analysis. ADF and ADL are 

usually used in the prediction of digestibility . NDF was best related 

to intake (Van Soest, 1965a; Van Soest and Mertens, 1977). Rohweder 
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et al. (1978) suggested the use of ADF and NDF sys tem in a proposed hay 

grading system. 

The cellular contents were 98 percent digestible and not affected 

by lignification (Van Soest and Moore , 196<5). The cell wall constituents 

\vere insoluble in neutral detergent and were partially available . 

Surnmative equations had been proposed for calculating digestibility of 

mixed forages considering all contents and cell walls were separate 

digestive entities (Georging and Van Soest, 1970; Sullivan, 1964; 

Van Soest, 1967). 

Van Soest (1967) developed a summative equation to estimate the 

true digestibility of the nutrients in feedstuffs using the cell \Vall 

and cell content partitioning of feed dry matter. Lucas test 

1vas also applied in this method. In the Lucas test, the digestible 

amount of the component to be tested (Y) \Vas regressed or percent of 

that component (X) in the dry matter of forage. The regression constant 

was an estimate of endogenous excretion of the component (~Yhich ~Vas 

assumed to be constant (a) for the tested forage, ~Vhile the slope of 

regression (b) estimated the average true digestibility . Hence, 

Y = a + bX ~ Sy.x. \Vhen the digestible amount of cellular contents 

(Y) was regressed against the total amount in the dry matter (X) 

(measured as dry matter soluble in neutral detergent) the follmving 

relationship \Vas given for grasses and legumes (Van Soest, 1967): 

Y = 0.98X- 12 . 9 (R = 0. 99). The relationship beuveen the digestible 

amount of cell walls (Y) and the total content in the dry matter ~Vas 

(Van Soest, 1967): 

Y = 12. 9 + 9.46X (R = 0. 46) for grasses 
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Y -6.1 + 0.60X (R ~ 0.60) for legumes 

Y -1.3 + 0. 6ZX (R ~ 0. 73) for total grasses and legumes. 

The true digestibility of dry matter (Y) of forages 1vas calculated 

from cell contents (CC), cell wall (W) and log of percent lignin in acid 

detergent fiber (X) (Van Soest , 1967): 

Y ~ 0.98 CC% + 11'(147.3 - 78.9X) 

This summative equation was an attempt to present a calcul ation procedure 

that recognized cause and effect relationships between chemical com

ponents and availability. If the endogenous and bacterial excretion 

as well as the true digesibilities of the cellular contents, cell wall 

and dry matter 1<ere all detennined experimentally in a total collection 

digestion trial (Van Soest , 1966a), it was possible to arrive at a portion 

of the apparent digestion coefficient into the portions arising from 

different sources. Such a partition might be related to animal kind 

and conditions of feeding (Van Soest, 1967). 

The summative equation concept should serve as the basic concept 

for rational prediction of the digestibility of organic matter values 

of hay. However, a limitation to ~~e routine use of summative equation 

was the lack of reliable and fast procedure of estimating the digestible 

cell wal l s (Barnes, 1975). Moreover, this method might work well with 

forage crop such as alfalfa but not with range shrubs. 

The correlations of acid detergent fiber, cell wall content, and 

acid detergent lignin with digestibility or intake were not much 

improvement over other chemical methods, however, (Oh et al. 1966 ; 

Sullivan, 1964; Van Soest, 1965a). A higher correlation was obtained 

ben;een dry matter digestibility and proposed availability index based 

on estimating the degree of lignification (Van Soest and Moore , 1965). 
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The dry matter disappearance of forages by purified enzymes and 

aqueous solutions was found to be highl y correlated lifith digestibility 

and nutritive value index (NVI) (Donefer et al. 1963) . The use of 

cellulase enzymes for the estimation of herbage qualit y was practical. 

High correlations were obtained with in vivo digestibility in published 

TDN values (R = 0.92) (Guggolz et al. 1971) and NVI (R = 0.92) (Donefer 

et al. 1963) . 

Enzymat ic hydrolysis of the carbohydrates of cell wall had been 

suggested for estimation of both the ext ent and rate of hydrolysis of 

total cell wall (Baileyet al. 1978) . This procedure did not 

develop because of the variation in cellulase activity among sources and 

batches of cellulase enzymes . However , as quality control manufacturing 

methods were developed for t he production of cellulase powders with 

uniform cellulase activity, the use of this technique might increase 

(Barnes, 19 73) . 

Plant species was r eport ed to affect correlation coefficients 

(Hartley et al . 1974) . Grasses gave highly significant correlations 

(R = 0. 96) between dry matter digestibilit y and percentage of cell wall 

digested by cellulos e enzyme , while l egumes gave lower correl ation 

coefficients. 

Another method was described for the prediction of the in vivo 

digestibility of dry matter and cell wall of grasses . The method 

involved incubating grass cell walls with a corrmercial cellulase for 

16 hours and measuring the optical density (OD) of the filtrate at 

324 ~m OD (Hartley et al. 1974) . The prediction equation was based 

on a highly significant correlation (R = 0.978) between OD and dry 
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matter digestibility using a total of 27 samples of three species of 

grass with dry matter digestibility ranging between 60 and 83. 

Cell wall digestibility= 39 . 84 + 48.91 OD R = 0.979, SD = 0.19, 

Dry matter digestibility= 48.30 + 35.57 OD R = 0. 978, SD = 1. 65. 

The method could not be used for the prediction of dry matter digesti

bility of red clover and sainfoin due to their filtrates having low 

optical density values. 

~bdified fungal enzyme procedures (including predigestion with 

acid pepsin or neutral detergent) could be used to predict relative 

differences in digestibility of most grasses and legumes (Jones and 

Ha~;ard, 1975; Roughan and Holland, 1977). 

The problem of estimating digestibility from chemical composition 

remains because there \vas no chemical method that would partition the 

carbohydrates of the cell wall of plants into available and non-available 

fractions (Van Soest, 1967). Regression equations utilizing summative 

calculations had disclosed a variety of factors that influence digesti

bility. The difficulty \vas that while such equations might estimate 

digestibility very satisfactorily provided the right measurements were 

made, the number of determinations and the laboratory \vork was large 

and expensive. 

The Energy Systems and ~~thematical ~dels to Predict Energy Utilization 

of Feedstuffs 

Crampton and Harris (1969), Harris et al. (1972) and Kromann (1971) 

reviewed the systems that described the energy values of feedstuffs 

as follmvs: 
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The Total Digestible Nutrients (The TDN System) . One of the most common 

methods employed to assess the nutritive value of feeds was to deter

mine their contents of the digestible nutrients (1--lorrison, 1956). Hence, 

the total digestible nutrients (TDN) system had been used for over 100 

years in many parts of the world (Australia, Latin .America, the Middle 

East, and the USA) as a measure of the energy content of feeds (Harris 

et al. 1972). 

The TDN is the sum of all digestible organic nutrients - protein, 

fiber , nitrogen free extract (NFE) and ether extract (EE) and fat (the 

latter being multiplied by 2.25 because its energy value of animals 

was approximately 2. 25 times that of protein or carbohydrates) 

("'brrison , 1956). The percents of TDN represent the approximate heat 

or energy value of the feed. TI1e digestible protein MlS included in 

this total since protein serves as a source of heat and energy when 

more \vas provided than was required to meet the protein needs of the 

body. The TDN system was based on the determination of the amounts of 

digestible nutrients which \vas deducted in the loss that occurs in the 

undigested materials in the feces . It was assumed that the remainder 

(the digested nutrients) \vas all assimilated and used in the body. 

However, this was not strictly true . Energy losses of three other 

types occur in digestion and utilization of foods. 

The TDN system did not give good measurements of nutritive energy 

because it did not agree 1vith basic scientific concepts and nutrition 

theory when compared 1vith other measures of nutritive energy (Harris 

et al. 19 72) . 

Ensminger and Olentine (1978) and Harris et al. (1972) described 

certain weaknesses of the Tl)>l system: 
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First, TDN was based on the proximate analysis of plant cell con

,;tituents whlch lacked unifonnity. The nitrogen free extract (which was 

supposed to be highl y digestible) contained the sugars, starch, and part 

of hemicellulose and lignin. While the crude fiber (supposed to be the 

least digestible) contained all the original cellulose, variable portion 

of hemicellulose, and a small (but variable) portion of l ignin. For 

some feeds, crude fiber was as digestible as NFE . 

Second, the TDN system overevaluated high fiber feeds in relation 

to l ow fiber feeds . TI1e reason for this overevaluation was the higher 

heat loss per pound of TDN in the case of the high fiber feeds . A 

comparison was made beb4een a high and low fiber ration feed to growing 

cattle in amount s to produce the same daily gain (Lofgreen , 1965a). In 

this case, the heat l ost from a pound of TDN from the high fibrous feed 

was 24 percent greater than that lost from a pound of TDN from the low 

fiber feed. Therefore , a pound of TDN from hay was not as nutritive as 

a pound of TTh~ from concentrates because of the heat loss. 

Third, crude protein was calculated by multiplying the nitrogen 

percent by 6.25 assuming that all proteins contain the same amount 

of nitrogen. Besides, it assumed that all nitrogen was of proteinous 

origin. 

Fourth, the TDN system was based on physiological fuel values for 

humans and dogs . These values did not apply well t o ruminants . Hence, 

the factor of 2.25 t o convert fat content t o energy was not always a 

constant. In addition, the ether extract of certain range forages '"ere 

high in non-nutritive fats such as waxes , resins and essential oils 

(Cook and Harris, 1968ij which overestimated the energy value of the 

ether extract frac t ion. 
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Fifth, it did not measure energy in energy units (it is expressed 

as a pnrcent or in pound or kilogram 1vhile energy was expressed in 

cal ories) . 

SLxth, the nitrogen free extract (NFE) fraction was calculated by 

difference, and hence, it was a pool of errors of other methods . 

Seventh , it did not consider important losses such as energy lost 

in urine, gasses and heat increment . 

In surnnary, the TDN system attempted to measure what feeds contain 

rather than what they accomplish or produce . H01;ever, the main advantage 

of the TDN system was that it 1<as simple, easy to understand and easy 

to apply to feeding practices. 

Harris et al . (1972) developed a series of multiple regression 

equations to calculate TDN directly from pmximate analysis of five 

classes of feedstuffs for cattle, horses, sheep, and swine . Data for 

these equations were selected from data files . 

Van Soest (1971) estimated values of TDN from digestible dry matter 

(DDI\1) by the follwing equaticn: 

TDN = DDI\l - total ash + silica + l. 25 ether extract + l. 9. 

The Calorie System. All animal functions and biochemical processes 

required a source of energy to derive the various processes to completion. 

This applies to all life processes and animal activities such as 

che1ving, diges tion, maintenance of body temperature, and production 

(Church and Pond , 1976.) . 

Harris (1966), Harris et al . (1968a); Harris et al (1972) and 

Crampton and Harris (1964) gave a complete glossary of energy terms 

and outline the conventional system of energy terminology (Figures 5,6). 
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~~~~~i~~) 

Fecal energy 
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enzymes 
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as gas 
Gaseous pro
ducts of di
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buwel~ or by 
be l ching 

Net energy 
(NEm+p) ------

Heat increment 
a. Heat of ferm
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metabolism* 

Product ion energy (NE,) 
a. Fetus and nutrient 
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b. Gam NEgain 
c. ~lilk NE;Oi lk 
d. Eggs NEeggs 
e . Noo 1 N£,,00 1 
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expended as heat) NEwark 

Maintenance energy (NE,) 
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d . Heat t o keep body warm• 
(necessary only when 
below critical t empera
ture and when roore 
heat is needed than i s 
~upplied by the heat 
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NasteJ heat w1less 
animal is below 
critical temperature 

I'IGURF. 5 Conventional biological partition of feed energy . (Adapted from Harris et al. 1972) 
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FIGURE 6 A conventi onal scheme of feedstuff ener gy utilization 
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Gross Energy. Gross energy \vas defined as the amount of heat, measured 

in calories, that is released when a substance is completely oxidized 

in a bomb calorimeter containing 25 to 30 atmospheres of Oxygen. It 

was referred also as "the heat of combustion" (Harris, 1966). The 

determination of energy values by the bomb calorimeter was one of the 

most accurate analyses carried in the laboratory and seems that a valuable 

and direct evaluation of the digestibility of feedstuffs has been over

looked (Swift , 1957). The food-intake gross energy (GEi) was however, 

the gross energy of the feed consumed: 

GEi = dry weight of food consumed X GE of food per unit dry weight 

(Harris, 1966) . 

Energy values of different feedstuffs or nutrients varied, but 

typical values are 4.10 (kcal/g), 5.65 (kcal /g), and 9. 45 (kcal/g) 

for carbohydrates , proteins, and fats, respectively. The differences 

reflected mainly the state of oxidation of the initial compound. A 

typical monosaccharide such as glucose had an empirical formula of 

c6H12o6, or one atom of oxygen per one atom of carbon. In a fat 

molecule, such as tristearin, there are 6 atoms of oxygen and 57 atoms 

of carbon. This fat required more oxygen for oxidation and gave 

off more heat in the process (Church and Pond, 1976). 

The gross energy values of feedstuffs 1vere of little practical 

value in evaluating feeds for animal usage. A poor quality feed such 

as oat strm; had the same GE value as corn grain (4. 4 kcal/g). 

A gross energy (GE determination on a feed had no relationship 

to its nutritive value because a large part of it cannot be digested, 

absorbed or metabolized by animals (Fonnesbeck et al . 1975). Gross 
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energy represented chemical composition of feedstuffs and did not pro

vide direct prediction of utilization and effect in animal production 

(Nehring and Haenlein, 1973). Moreover, the gross energy value did not 

give a clear cut idea about the energy utilization in the body. Hence, 

the digestible energy (DE) was used. 

Digestible Energy. The apparent digestible energy of feeds could be 

defined as the food intake gross energy minus fecal energy. Other terms 

were apparent absorbed energy or energy of apparently digested food. 

DE = (GE of food per Lmit dry weight X dry 1;eight of food) - fecal energy. 

Fecal energy (FE - GE of feces per Lmit dry weight X dry weight of feces. 

The final.evaluation of feeds by this method would be closely com

parable to TDN but would be a direct result of only one accurate analysis 

of the feed and one of the feces (Swift, 1959). DE is simple and easy 

to understand and to be determined. One pound of TTh~ is equal to 2,000 

kilocalories of DE. Hmvever, DE had the same characteristic of TDN 

of over-evaluation of high fibrous feeds (Lofgreen, 196Sa). 1-breover, 

digestible energy does not account for the gaseous loss of energy 

(Crampton and Harris, 1969). 

True digestible energy was determined by measuring the energy in 

fecal excretions (metabolic fecal energy) or an animal that was fasting 

or being fed a diet that was supposed to be completely digested (milk 

or eggs). This amount was then subtracted from total fecal excretion 

of the animal. This method was not feasible with most herbivores and 

is rarely practiced (Church and Pond, 1976) . 

Direct determination of digestible energy (DE) through digestion 

trials was costly and time consuning. Moreover, feed composition 
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tables gave average DE values for similar feedstuffs but the chemical 

composition of a specific lot of feed might not compare closely to those 

described in the table or it might be a mixed ration of unknown composi

tion (Fonnesbeck et al. 1975). 

Chemical analysis that separate organic matt er as it was selectively 

digested by animals could become a basis for calculating digestible 

energy. The application of a step1vise regression equation enabled 

Fonnesbeck et al . (1975) to estimate DE from the chemical analyses of 

feedstuffs for different kinds of animals. Sheep, swine, rabbits, and 

rats were fed diets formulated to contain 1 percent to 55 percent cell 

walls in digestion trials. The diets consisted of barley grain, soybean 

meal, \vheat flour, soyflour, alfalfa hay, and barley straw. DE was 

highly correlated to cell wall (CW), cell content (CC), soluble co.-.:bo~y

drates (SC) cell wall carbohycrates (ClvC), lignin, crude protein (CP), 

and non-nutritive matter (NNM) content of diets . CC, SC, and ClV \vere 

the most highly correlated to DE in simple regression equations and 

accounted for over 90 percent of the variation in DE. In multiple 

regression equations lignin and crude protein were selected to account 

for some additional variation (Table 14). However these equations 

should only be applied by species of animals over the range of nutrient 

content used in the experimental diets and could not be used with cell 

\vall analysis by other methods (Fonnesbeck et al. 1975) . 

Christiansen (1979) developed models to predict digestible energy 

(DE) of sheep diets from estimated values of digestible amounts of 

crude protein (Yep) ' available carbohydrates (Yac), total lipids (Yt1), 

cellulose (Yc1) , and hemicellulose (Yhc) : 



TABLE 14 Regression Equations for Calculating Digestible Ener gy from Various Chemical 
Components of the Diet for Various Species of Animals a 

Item b bl xl b2 0 x2 b3 x3 R2 Sy.x 

In general: 
DE ; 4.23 -.0444 01'% .919 .207 
DE ; 5.25 -. 0496 CW% -.0551 CP% .964 .138 
DE ; - . 077 +.0427 CC% . 964 . 138 
DE ; .709 +.050 SC% .956 .152 
DE ; .869 +. 047 SC% -.0098 li&Tflin% .964 .139 
DE ; .693 +.041 SC% -. 0228 lignin% +.0306 CP% . 966 .135 

For sheep: 
DE ; 4.46 -. 0466 01'% . 936 .119 
DE ; .646 +.0548 SC% . 938 . 117 
DE ; -. 716 +.0748 SC% +.134 lignin% .944 .113 
DE ; 4.55 -. 0584 OI'C% .938 .117 
DE ; 4.91 -.111 OI'C% +.214 NMM% .946 .111 

for rabbits: 
DE ; 4.34 -.0491 01'% . 696 . 318 
DE ; 5.17 - . 0478 CW% -.0565 CP% . 971 .100 
DE ; 4.04 -.251 NNH% . 796 .261 
DE ; 3.52 - . 315 NNM% +.029 OVC% . 970 .102 
DE ; 4. 60 -.213 NNM% -. 0456 CP% .971 .101 
DE ; 2.59 -.0314 lignin% .635 . 349 
DE ; 1.15 - .04 59 lignin% +.0294 OCC% . 971 .101 

For sNine: 
DE ; 4. 30 -.050 CWC% . 972 .090 
DE ; 4.43 - . 0466 OI'C% -.0273 ash% . 978 .083 

1-' 

" <.n 



TABLE 14 (CONfiNUED) 

Item b bl xl b2 x2 b3 x3 R2 Sy .x 
0 

For s 1~ine : 

DE = . 59 +.0391 OC:C% • 978 . 080 
DE = l. 89 +.0254 OC:C% -. 0177 OVC % . 980 .079 
DE = 1.135 +.0448 SC% .970 .093 
DE = .166 +.0391 SC% +. 0724 CP% . 982 .075 
DE = -4.54 +.0755 SC% +.183 CP% +.0443 OV% . 985 .073 
DE = 2.22 +.0292 SC% -.129 lignin% .983 .073 

For rats: 
DE = 4. 25 -.0495 OV% . 965 .lOS 
DE = 2.54 -. 0272 CW% +. 0241 SC% . 973 .094 
DE = -. 34 +.045 OCC% . 971 .095 
DE = .52 +.0522 SC% .962 .llO 

aDigestible energy is calcualted in kcal/g or Meal/kg. Abbreviations for chemical 
components of the diet are as sh01vn in T~ble 3. The regression equations are of the 
form Y = b0 + b1XJ:. + bt/z + b3Xi . . . . R is the multiple correlation coefficient; Sy.x 
is the standard e ror £ estima e . (Adapted from Fonnesbeck et al. 1975). 
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DE ; 4(Ycp + Yac + Ycl + Yhc) + 9(Ytl) IVhere the 4 and 9 IVere assigned 

physiological feul values (megacalories per kilogram) for feed carbohy

drates and lipids respectively. 

Christiansen (1979) also estimated DE from nutrient percent content 

of sheep diets . He used simple equations (Y ; b
0 

+ b1X1), IVhere Y 

equalled estimated DE and x1 equalled the diet percent content of avail

able carbohydrates, cellulose, cell ~Valls, neutral detergent fiber , acid 

detergent fiber or crude fiber. The precision of the simple model 1vas 

shmvn to be average to poor in estimat ing DE . R2 values ranged betiVeen 

0. SO to 0. 71 lvith residual standard deviations ranging from 0. 20 Meal /kg 

to 0.27 Meal/kg. 

Cellulose , cell ~Valls, neutral detergent fiber and acid detergent 

fiber appeared to be comparable as DE predictants, though the chemical 

composition betiVeen these separat e fractions ~Vas different. Neutral 

detergent fiber \Vas shmvn to be the most accurate as a predictant. 

Available carbohydrates, crude fiber, and A models ~Vere markedly lmver 

in precision for estimating DE than cellulose , cell \vall, neutral deter-

gent fiber, and acid detergent fiber models. 

The use of complex equation (multivariant models) for estimating 

DE directly using the diet percent content of cellulose, cell ~Valls, 

neutral detergent f i ber, acid detergent fiber, or crude fiber as the 

only quantitative independent variable in the equation, significantly 

improved the DE predictability than corresponding simple modes 

(Christiansen, 1979). This ~Vas sholvn by a distinct increase in R2 

values (cellulose, 0. 88 vs 0.69; cell \Valls, 0. 88 vs 0. 70; neutral 

detergent fiber, 0. 90 vs 0. 71; acid detergent fiber, 0.88 vs 0. 68; 

and crude fiber, 0.90 vs 0.56) and a decrease in the residual standard 
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deviation of regression. Moreover, the complex models significantly 

reducedtheunexplained variation (SSE) . The complex models estimated 

closer DE to observed DE val ues than in the case of simple models. 

Single predictive chemical constituents in range plants suitable 

for estimating digestible energy l<ere identified by the computer as 

being lignin, gross energy, and crude protein (Cook and Child, 1977). 

Lignin alone accounted for 60 to 77 percent variation occurring in 

DE determinations of seeded foothill range (cattle and sheep) and on 

mountain swnmer range (cattle) . Other range types shm;ed lower R2 values. 

Digestible dry matter in diets of steers or mixed grass ranges 

during spring and summer could be used to predict DE with a relatively 

high degree of accuracy (R
2/l00 = 79.8 percent). Using both digestible 

dry matter and gross energy, Cook and Child (1977) reported R2 of 0.85 

(Table 15). 

On short grass ranges during spring and summer, however, DE was 

not predictable to any high degree of accuracy by using a single 

chemical constituent as a predictor. When digestible dry matter, 

digestible protein and gross energy were used, R2 values were about 0. 70 

(Cook and Child, 1977). In the case of swine Drennan and Maguire (1970) 

examined the relationship between crude fiber and DE and ADF and DE 

values for 16 diets (contained 3 to 14 percent CF; 2 to 5 percent fat , 

and 15 to 21 percent crude protein) and found that crude fiber (CF) 

and acid detergent fiber (ADF) were closely related to DE: 

DE (kcal/kg D.\1) 

DE (kcal/kg D.\1) 

4068.7 

4102.9 

(103 . 4 X %CF); R 

(85 . 0 X %ADF); R 

- . 89 

. 92 

However, Morgan (1976) reported that when application was l imited to 



TABLE 15 Linear Equations and Predictive Factors from Proximate 
Analysis for Percent Digestible Energy for Sheep and Cattle on 
Various Seasonal Range Types 

Predictive Factors (b ' s) 

Sheep , Spring (seeded foothills) 
1584 - 72.6 (Li g%) 
- 39 + 0.62 (GE kcal/lb) 
152- 84.6 (Lig%) + 0.79 (GE kcal/lb) 

1210 = 2.59 (Cell%) 
1379 = 100 (Lig%) + 13.26 (Cell%) 
1298 - 71 (Lig%) + 7(0CH%) 

Cattle , Spring (seeded foothills) 
155~- 62.7 (Lig%) 
-616 + 0.84 (GE kcal/lb) 
1682 - 19 (Cell%) 
155 - 59.18 (Lig%) + 0.69 (GE kcal/lb) 

1734 - 17 (Lig%) - 16 (Cell %) 
1576 - 63 (Lig%) - 0.48 (OCH%) 

Sheep, Summer (mt . range) 
lll9 - 45 (Lig%) 
1893- 0.52 (GE kcal/lb) 
2298 - 44 (Lig%) - 0.49 (GE kcal/lb) 

779 + 3.47 (Cell%) 
1685 - 50 (Lig%) - 14 (Cel l %) 
642- 41 .8 (Lig%) + 16.1 (OC%) 

Cattle, Summer (mt. range) 
1541- 63.0 (Lig%) 
-540 + 0. 76 (GE kcal/ lb) 
-2 80 - 64 . 4 (Lig%) + 0. 93 (GE kcal/lb) 

288 + 23 (Cell%) 
1668 - 65.0 (Lig%) - 3. 7 (Cell %) 
1043 - 60.3 (Lig%) + 12.8 (OCH %) 

Sheep, Winter (desert range) 
1054 - 41.08 (Lig%) 

98 + 0.26 (GE kcal/lb) 
SO - 63.87 (Lig%) + 0.69 (GE kcal/lb) 

257 + 13 (Cell%) 
763 - 33 (Lig%) + 8.5 (Cell%) 

1080 - 41 (Lig%) - 0.64 (OCH%) 

Cattle, Spring-Summer (mixed grass) 
111.41 + 17.47 (DDM%) 
891 . 09 + 49.133 (DP%) 
994.73 + 0.088 (GE kcal/ lb) 
853 .18 + 35.72 (TP%) 

45 . 3 
24.1 
83.7 
00.8 
58.9 
47.4 

40.6 
15 . 3 
66.7 
71.4 
68.5 
40.6 

29.9 
27.3 
34. 1 
00.2 
33.1 
35.1 

72.2 
5.5 

80.6 
12.6 
72 .5 
75.3 

24.9 
4. 7 

51.5 
16 . 3 
30 . 6 
24.9 

79.8 
54.7 
0.2 

34.1 
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TABLE 15 (CONTINUED) 

Predictive Factors (b's) 

-949.44 + 18.4 (DDM%) + 0.52 (GE kcal/lb) 
-813.39 + 16. 22 (DDM%) + 10. 05 (DP%) + 0. 49 

(GE kcal/lb) 

Cattle, Spring-Summer (short grass) 
253.99 + 14. 83 (DDM%) 
838.07 + 34.35 (TP%) 
871.69 + 44.64 (DP%) 
113.25 + 0.55 (GE kcal/lb) 
358.07 + 10.06 (DDM%) + 29 . 42 (DP%) 

-912.68 + 8.52 (DIN%) + 35.99 (DP%) + 0. 71 
(GE kcal/lb) 

-646.53 + 6.81 (DIJ1.1%) + 52.7 (TP%) + 91.34 (DP%) 
+0.69 (GE kcal/lb) 

R2 
X 

85.0 

86.11 

45.0 
28.9 
43 . 7 

7.1 
59.3 

70.2 

75 . 0 

In the case of sheep on lvinter range the predictive factor is 
metabolizable energy instead of digestibile energy as above. 
(Adapted from Cook and Child, 1977) 

180 

100 
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cereals and cereal-based diets both measures of fiber gave the follm;ing 

reasonable predictions of energy value: 

DE (kcal/kg DM) 

DE (kcal/kg ~I) 

4228 

4179 

(140 X %CF); R = -.97 

( 86 X %ADF) ; R = - • 96 

Henry (1976) reported similar results. The apparent digestibility 

of energy (ADE) was also related to the different measures of dietary 

fiber (CF, ADF, AND NDF) by taking into account the source of fiber 

used (1vheat brain and dehydrated alfalfa meal) . In case of CF, the 

equations were as follows: 

Wheat bran: ADE = 96.29 = 3.04 (~ .25) CF% DM; R = -.938. 

Alfalfa meal: ADE = 93.02- 2.09 (~ .32) CF% DM; R = - . 988 . 

The equations for ADF were: 

Wheat bran : ADE = 95.35- 2. 23 (~ . 25) ADF% DM; R = -.941. 

Alfalfa meal: ADE = 93.83 - 1. 75 (~ .23) ADF% DH; R = - . 983 . 

When ADE coefficients were related to total cell l<all content (NDF) the 

follm;ing equations were reported: 

l'iheat brain: ADE = 96 . 34 - . 865 (~ . 081) NDF% DM; R = -. 958 . 

Alfalfa meal: ADE = 100.77- 1.19 (~ .26) NDF % DM; R = -.955. 

l'ihen data for both feeds were combined, the equation relating ADE to 

NDF was : 

ADE = 96 . 71- . 886 (~ .070) NDF% DM; R = -. 959. 

A value of 2.1 of the rate of decrease of ADE for one percent increase 

in CF was observed with dehydrated alfalfa meal compared to 3.0 l<ith 

wheat bran (Henry, 1976). This difference was due to a lower percentage 

of hemicellulose in the cell wall constituents , which was reflected 

in a higher ADF/NDF ratio. 
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\\Then the various classes of feedstuffs were considered, the rates 

of decrease in apparent digestibility of energy with increasing levels 

of crude fiber was determined. The correction factors for crude fiber 

1vere closely related to the composition of cell wall constituents (the 

ratio of cellulose to hemicellulose, which was itself in relation with 

the ADF/NDF ratio: the higher the ADF/NDF ratio, the lower the depressive 

effect of crude fiber on ADE). The greatest decrease in ADE was induced 

by wheat bran, and more generally by milling by-products, which contain 

a high hemicellulose content (corresponding to a low ADF/NDF ratio) 

(Henry, 1976) . 

Metabolizable Energy . Apparent DE was not a correct measure of the 

digestibility of a given ration or nutrient because the gastro-intestinal 

tract was considered to be an active site for excretion for various 

products that ended up in feces , and because there might be considerable 

sloughing of cellular debris from cells lining the gastrointes tinal 

tract. Undigested microbes and their by-products might account for a 

large portion of the feces of certain species (Church and Pond, 1976). 

~luch of the microbial grmvth occurred in the cecum and large intestine 

and pass with feces. Fibrous plant components such as cellulose and 

xylan, 1-1hich were foreign to the animal body, had true digestible energy 

values. 

However, true digestible energy could be determined by measuring 

the metabolic fecal energy of an animal that 1-1as fasting or fed a diet 

that was completely digested such as milk or eggs. 

Feed energy 1-1as further partitioned into metabolizable energy 

(~IE, which was defined as the food intake gross energy minus fecal 
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energy, minus energy in the gaseous prducts of digestion, minus urinary 

energy (Harris, 1966). ME = GE. - FE - GPD - UE where FE = fecal 
1 

energy and UE = urinary energy. 

Metabolizable energy of a feedstuff was influenced by the same 

factors affecting the digestibility of that feed. These factors were 

feed composition, processing and treatments, species of animal, level 

of feeding, and associative effects (McDonald et al. 1973). GPD was 

the gaseous products of digestion and that included the combustible 

gases produced in the digestive tract incident to the fermentation of 

the ration. The energy of these gases was measured by determining the 

gross energy content. Methane made up the major proportion of the 

combustible gases produced. Carbon dioxide (Co2), carbon monoxide, 

acetone, ethane, and hydrogen sulfide were also produced (Harris, 1966). 

A small amount of energy was lost in the combustible gases 

(especially methane) which 1vere produced in the fermentation of cellulose, 

pentosans, and other carbohydrates in the digestive tract, particularly 

in the . rumen of ruminants. 

Methane was derived from the reduction of carbon dioxide by hy-

drogen . Both gases were produced as a result of acetic acid formation. 

The production of propionic acid did not result in the formation of 

waste gases. A portion of the energy loss from the rumen was represented 

by gaseous carbon dioxide. The remaining portion was as methane. 

Methane usually ranged from 3 to 10 percent of gross energy in 

ruminants. TI1e amount produced depended on the nature of the diet and 

level of feed intake. Low quality diets resulted in larger proportions 

of methane and the percentage of GE loss as methane declined as feed 
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intake increased (Church and Pond, 1976). ~ethane losses were estimated 

by Blaxter (1961) as follows: 

CH4 4.28 + 0.059A for roughages, 

CH4 6.05 + 0.020A for pelleted rations, where CH4 ~kilocalories 

methane per hundred kilocalories of food GE, and A ~ the apparent 

digestiblity of GE at maintenance. 

Blaxter and Clapperton (1965) estimated gaseous energy loss by the 

following formula: 

Methane 1.30 + O.ll2 D-L (2 . 37 - 0.050 D) where methane was expressed 

as kcal per 100 kcal of GE of feed, D ~ digestibility of energy at 

maintenance level of feeding , and L ~ the level of feeding as a multiple 

of maintenance. 

Methane losses varied more than urinary losses with nutritional 

level. Arms trong (1964) summarized the combined effect of digestibility , 

methane, and urinary losses in the following equation: 

dQ ~ 9. 5 - O.ll Q\f 1vhere dQ ~ depression of ME of feed (kcal per 100 

kcal GE) on increased feed intake from maintenance to bvice maintenance, 

and qvi ~ ME of feed as a percent of its GE (determined at the maintenance 

level of feeding). Swift et al. (1948) es timated methane by the use of 

the follmving equation: 

Methane ~ 2. 41X + 9. 80, where methane was in grams and X represented 

hundreds of grams of carbohydrate digested. In general, methane 

production was about 8 percent of GE at maintenance and it falls to 6- 7 

percent at higher levels of feeding. 

The availability of hydrogen limited the amount of carbon dioxide 

converted to methane. The formation of acetic acid gave rise to the 

greatest relative production of methane due to the simultaneous 
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production of hydrogen. The formation of butyric acid utilizes hydrogen 

to reduce acetoatate and, therefore, limited the amount of carbon dioxide 

converted to methane. The formation of propionic acid also utilized 

hydrogen and, therefore, acted to limit the amount of carbon dioxide 

to methane. 

The ruminant animals meet their energy needs primarily by absorbing 

VFAs and simple sugars from the digestive tract . Approximately 70 percent 

of the animal's energy needs were obtained from VFAs. Of the remaining 

30 percent, 10 percent was derived from more fermented dietary ingre

dients digested in abomasum and small intestine and 20 percent 1vas derived 

from digestion of microbial cells which 1vere passed to the abomasum 

and small intestine from the rumen reticulum. 

Urinary energy (UE) was defined as the gross energy of urine. It 

included the energy content of nonutilized portions of the absorbed 

nutrients and the energy contained in the enodenous fraction of urine 

(Harris, 1966) . 

Energy was lost in urea and other nitrogenous waste products that 

are excreted in the urine. These compounds had energy which was lost 

to the animal. This loss was small with feeds which were low in protein, 

and was not very great even with feeds rich in protein . The energy 

lost by ruminants in urine should be considered in evaluating the 

metabolizable energy values of feeds for such animals (Harris, 1963). 

Measurements of such losses 1vere usually made by drying urine samples 

and determining its heat of combustion in a suitable carolimeter. 

However, Street et al . (1964) assumed t hat the heat of combustion of 

urine bears a direct relationship to the nitrogenous compounds present, 
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chiefly urea. Hence , urine energy values could be estimated from urine 

nitrogen. The correlation between urine nitrogen (UN) and urine energy 

(UE) values yielded an R2 of 0. 92. Equations for the estimate of UE 

were found as follows : 

UE (kcal/ gm) 0.022 + 0.118 (UN%) for cattle; 

UE (kcal /gm) - 0. 027 + 0.119 (UN%) for sheep; and 

UE (kcal/gm) + 0. 026 + 0.117 (UN%) for both kinds of animals. 

Above maintenance, there was no relationship benveen UE and UN 

(Blaxter et al. 1967) . The UE increased with urinary carbon (C grams 

per 24 hours) according to the following equation: UE = 9.66 C - 3. 0. 

The overall equation developed by Street et al . (1964) could be a 

useful method for estimating urine energy, and that it facilitates 

greater usage of the concept of metabolizable energy in research and 

practical feeding of cattle and sheep. 

At maintenance, Blaxter et al. (1966) found that heat of combustion 

of urine (UE = kcal/100 kcal of diet) was related to the crude protein 

(CP) percentage of the diet by the equation: UE = 1.6 + 0. 25 CP . 

Actual urinary losses were in the range of 3 to 5 percent of GE in 

ruminants, or 12 to 35 kcal per gram of nitrogen excreted (Church and 

Pond, 1976) . As level of feed intake doubled, the urinary energy losses 

increased from 0.6 to 0.8 kcal GE. Blaxt er (1961) reported increased 

UE as level of dietary increased for cattle fed various levels of 

roughages. The increase of UE was not uniformly influenced over all 

levels at dietary roughage for the caloric value was greater for 

steers fed higher than 100 roughage diets. 

The concept of urinary nitrogen used to determine t he nitrogen 

balance that was in tum used t o determine the nitrogen corrected 



187 

metabolizable energy (l-1En) to accm.mt for the nitrogen retained or lost 

from the body tissue (Harris , 1966). 

Nitrogen balance (NB) or nitrogen retention 1vas the nitrogen in 

the food intake minus the nitrogen in the feces (FN) , minus the nitrogen 

in urine (UN) . 

NB = NI - FN - UN. 

~~n = GEi- FE- GPD- UE ~ (NB X 7.45 kcal). 

Nitrogen-corrected metabolizable energy was defined as the food 

intake gross energy minus fecal energy, minus energy in gaseous products 

of digestion, minus urinary gaseous products of digestion, minus urinary 

energy. The total was then corrected for nitrogen retained or lost 

from the body. There was no need to consider the GPD for birds and 

monogastric mammals. 

The correction was made as follows for mammals for each gram of 

nitrogen lost from the body (equal to negative nitrogen balance) 7. 45 

kcal were added to the metabolizable energy; and for each gr am of nit

rogen retained in the body (equal to positive nitrogen balance) 7.45 Kcal 

were subtracted from the metabolizable energy. However, this value was 

obtained with dogs, and it might not be entirely correct for other 

animals. In case of producing animals (milk, eggs, etc.), no correction 

was made for nitrogen in their products (Crampton and Harris, 1969; 

Harris, 1966). The correction factor for poultry was 8.22 kilocalories 

because it represented the energy equivalent or uric acid per gram of 

nitrogen. The factor 8. 7 kilocalories was sometimes used because it 

gave approximately the average energy content of urine per unit of 

nitrogen (Harris , 1966). 
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The concept of metabolizable energy had the advantage of considering 

two energy losses which digestible energy did not. In most cases, 

however, these losses were small in comparison to the fecal lost (Church 

and Pond, 1976; Lofgreen, 1965a). Little was gained by the use of ME 

over DE or TDN. However, in cases of certain feedstuffs containing 

large amounts of essential oils, ~lli had a great advantage since these 

oils or detoxification products such as hippuric acid were absorbed but 

were excreted in the urine (Crampton and Harris, 1969; Church and Pond, 

1976). The TDN and DE of such feeds would be a more accurate measure 

since high urinary loss would be subtracted and the evaluation is more 

realistic (Lofgreen, 1965a). However, ~lli had the same disadvantage as 

DE and TDN in the case of heat loss per unit of intake. Thus, ME did 

not seem to be better than DE or TDN for most purposes. Crampton and 

Harris (1969) added the term heat of fermentation corrected metabolizable 

energy ~f) . ~ was defined as the gross energy food intake minus 

fecal energy, gaseous products of digestion, heat of fermentation (HF), 

and urinary energy: ~f = GEi - FE - GPD - HF - UE. 

The efficiency of utilization of ME for maintenance was about 

74 percent (ARC, 1965). However, there were variations among feed

stuffs depending on the ME value of dry matter. The ARC (1965) used 

the metabolizable energy systems to replace the starch system. The 

~lli was divided into: 

a. ME for maint enance. The end products of the digestion process 

in ruminants lvere used for maintenance with an efficiency ranging 

between 80 to 85 percent (mean - 82.7 percent) irrespective to type of 

diet given and the fermentation the diet provoked in the digestive 

tract of the animal . A wide variety of feedstuffs including pelleted 
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hays, artificially dried herbages, mixtures of roughages and cereals, 

and cereals given alone was used and analysis of variance shmved that 

there were no statistically significant differences beuveen the results 

for the different feeds. 

The mean values for efficiency of utilization of ME for maintenance 

(~) were very close to the value 74 percent. The errors attached to 

these means were standard deviations between feeds. The value ~ tended 

to increase with the percentage of the gross energy metabolized(~): 

~ = 54.6 + 0. 30 Qm. ~!ore metabolizable energy 1vas required for the 

maintenance when diets were of poor quality roughages than when they 

were of high quailty. That might be partially because methane losses 

and fermentation losses of heat were not a constant fraction of the 

metabolizable energy. 

b. ~!etabolizable energy for work. 

c . Metabolizable energy for fattening mature animals. The 

efficiency with which t4E was converted to fat (kf) could be calculated 

as follows: kf = 65.6- 0. 70F, where kf was the number of kilocalories 

of body fat retained for every 100 kilocalories ME ingested above 

maintenance, and F was the percentage of crude fiber in the diet. The 

efficiency with which ME above maintenance was used for inducing fat

tening varied over a range of 15 to 70 percent. This variation appeared 

to be associated with the variation in the chemical form in 1vhich energy 

as nutrients reached the tissues. 

d. l'!etabolizable energy for grmvth of young animals. The 

efficiency with which li'IE 1vas used for grmvth in young ruminants was 

probably higher than that for fattening, but a convergence occurred 
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at weight in cattle of about 300 kilograms. In calves, feed efficiency 

was 80 to 85 percent when milk was fed as a sole feed. 

e . Metabolizable energy for pregnancy. It was more simple to 

assume that the maternal maintenance cost which changed and that the 

energetic efficiency of the gains was the same as in normal growth. 

f . Metabolizable energy for lactation. The efficiency with which 

ME was used for lactation when body gain of energy 1vas zero was difficult 

to measure, but varied relatively little from 70 percent, decreasing 

slightly for diets high in fiber or starch. 

In ~vine nutrition, ~re was related to the crude fiber (CF) and acid 

detergent fiber (ADF) contents of cereal and cereal-based diets (Morgan, 

1976: 

rvre (kcal/kg 1»1) 

ME (kcal/kg DM) 

4096 (135 X %CF) ; R; - . 47 

4049 (83 X %ADF); R; - . 95 

Moreover, Morgan (1976) found that a combination of crude protein, 

acid ether extract and nitrogen free extract gave the best prediction 

of DE and ME , based on energy values and chemical analysis of a total 

of 37 feeds and mixed rations: 

DE (kcal/kg DM) (109.9 X %crude protein) + (149.3 X %acid ether extract) 

+ (90 .1 X %NFE) - 4030; R- .95 . 

ME (kcal /kg 1»1) (99. 5 X %crude protein) + (144. 7 X %acid ether extract) 

+ (87 . 8 X %NFE) - 4795; R; .94. 

The usefulness of these equations was tested by comparing ME 

values of 16 diets (determined experiment ally) IVith values summated from 

determined ingredient energy value and with predicted values (Morgan, 

1976). In general , summated values lo/ere more similar to the determined 

values than ~;ere the predicted values. Hence, for diets or feedstuffs 



191 

that were 1;idely varying in composition, dietary analysis alone did not 

give an accurate estimate of energy values. When digestibility co

efficients 1vere included, greater accuracy was obtained: 

ME (kcal/kg DM) (46.2 X %digestible crude protein) + (100 . 7 X 

%digestible ether extract) + (44.2 X %digestible crude fiber) + 

(40.7 X %digestible NFE); R = . 99 (Nehring, 1969). 

It would be necessary to use tabulated values for digestibility 

coefficients of the nutrients when applying such equations . Using 

tabulated coefficients would decrease the accuracy of predicted values 

derived from these equations . However, there was no real alternative 

that existed to use with such equations in cases where a rapid estimate 

of the energy value of a diet of unknown composition was required, or 

when considering a feedstuff for which no experimental determination 

of energy value had been made G-'lorgan, 1976). 

In the case of poultry, the gaseous products were usually negligible 

and ~1E was the feed intake gross energy minus the excreta gross energy. 

A correction for nitrogen retained in the body was frequently applied 

to yield an MEn value . This was the most common measure of available 

ener gy in poultry nutrition (NRC, 1977). True metabolizable energy 

(~~) for birds was the feed intake gross energy minus the excretal 

energy of feed origin: 

TME feed energy - [excreta energy - (FErn + UEe) ] or 

TME ~~ + FErn + UEe (Sibbald and Price, 1977). 

A correction for nitrogen retention could be applied to give TMEn. 

Sibbald (1976) developed a new method for estimating TME values of 

feedstuffs for poultry . These TME values were higher than I<~ values, 
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but they have an apparent advantage of being unaffected by variations 

of feed intake. 

ME for poultry was calculated as follows (Titus, 1961): 

~~ (kcal/g) =digestibility % X energy equivalents (kcal/g). 

Titus (1961) also suggested the following: The energy equivalents for 

poultry: 3. 84 for protein, ether extract (9.49 for meat and fish meals, 

9.33 for grain seeds, and 9.21 for milk products), carbohydrates or 

~FE (4.2 for grains , 4. 0 for legume seeds , 3.8 for legume leaves and 

stems and 3.7 for milk products) , and 2.1 for crude fiber. 

Carpent er and Clegg (1956) predicted~~ of poultry feedstuffs 

from their chemical composition: 

ME (kcal/kg) ~53+ 38 (% CP + 2.25 EE + 1.1 X% starch+ % sugar). 

This formula gave predicted figures for the ~~ of feeds t es t ed with a 

standard deviation of the ~ 190 kcal/kg from the determined f igures . 

The relations between the ~~ and two functions of the analytical 

results 1vere studies. Function A (% CP + 2.25 X % EE + % NFE) 1vas 

based on the results from standard proximate analysis 1vith the EE 

multiplied by 2.25: Y = 120 A = 7390 (with residual standard deviation 

~ 340 kcal/kg) , where Y = ~~ . In function B (% CP + 2. 25 % EE + 1. l X 

% starch + % sugar) , NFE was replaced by starch + sugar with 1.1 

correction of the starch to allow for difference in the gross energy 

of starch and glucose. 

Y = 38 B +53 (with a residual standard deviation~ 190 kcal/ kg). 

Furthermore , Carpenter and Clegg (1956) showed closer relationships 

between chemical and biological results of ~~ (Y) , as in the following 

equations: 
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Y 40 X(% starch)+ 25 X(% CP) + 70 X(% EE + 470); (SD ~ 140 kcal/kg) 

Y 34 X (% starch) + 1250; (SD ~ 180 kcal/kg) 

Sibbald et al. (1963) used function B (1 .1 X starch + sugar+ protein 

+ 2. 25 X EE) from the study of Carpenter and Clegg (1956) . Function B 

was divided by dry matter and used as the independent variable (X). 

The biologically derived NE (Cal/giM) 1vas employed as the dependent 

variable (Y) : 

Y = 0.828 ~ 2.677 X (r esidual SD ~ 0.285 Cal/g). This equation was 

different from that of Carpenter and Clegg (1956) . It also resulted 

in variation of biologically determined ~IE values. Hence, the follmving 

equation is derived: 

NE (Cal/g IM) = 4.1 X starch+ 3. 55 X sugar + 3. 52 X CP + 7. 85 X EE)/~1; 

which was capable of predicting classical ME values for most feedstuffs 

lvith sufficient precision for practical purposes where starch, sugar, 

crude protein, ether extract, and dry matter were expressed as gram 

per gram feedstuffs (Sibbald et al. 1963). Other combinations of 

variables including crude fiber, nitrogen free extract, gross energy, 

and ash failed to give better prediction equations (Table 16). 

~fore regression equations to predict ME of poultry feedstuffs 

were developed by Sibbald and Price (l976a ,b) . These regression 

equations were not found to perform significantl y better than equations 

found in the literature. \~ether any of the prediction equations 

were suitabl e for practical application IVould depend on the magnitude 

of error that could be tolerated. 

Since true metabolizable eneTgy 1vas not affected by variations of 

feed intake (Sibbald, 1976), the difference Th!E-J\1-'IE (!Vi thin grains) 

increased IVith increasing MIE values. There ~Vas evidence that this 
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TABLE 16 The R2 Values Obtained from Regression Analyses of Various 
Combinations of Independent Variables (N = 103) 

Independent variablesa 

Line xl Xz x3 x4 x5 x6 x7 x8 yl Yz 

1 + + + + + 0. 724 0. 788 
2 + + + + + 0. 722 0.723 
3 + + + + 0. 722 0. 732 
4 + + + + + 0. 718 0. 724 
5 + + + + + 0. 719 0. 729 
6 + + + + + 0. 728 0. 740 
7 + + + + 0. 718 0.728 
8 + + + + + 0.712 0.728 
9 + + + + + 0. 673 0.679 

10 + + + + + 0.593 0.584 
11 + + + + + 0.597 0.588 

*X~ starch, x2 sugar, X. gross nitrogen, x4 ether extract, ~ gross 
en r gy (Cal . /gm) , Xg nitrogen free extract , x7 crude fiber d x8 ash, all except X eing expressed as gm./gm. dry matter. 
**Yt and Y2 are cfassical and corrected~~ respectively, expressed 
as al . /gm. dry matter. (Adapted from Sibbald et al . 1963) 
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trend was associated with voluntary intake of A/>!E assay diets containing 

low energy grains. 

TME was predicted from AME as fol101vs (Sibbald and Price, 1977) : 

TME 2. 864 + 0. 303 AME or TME = #1E 2. 864 0. 697 AME, for wheat, and 

TME 2.020 + 0.538 AME or TME - AME 2.020 9. 462 AME, for oats. 

The bulk density of barley (kilogram per bushel) was highly 

correlated with TME (kcal/gDM) (Sibbald and Price, 1976b): 

Th1E (kcal /g air dry barley) = 2.169 + 0. 0145 bulk density (kg/bushel ); 

R = 0.911. This equation might be used to predict the Th'!E values of 

barleys within the range of 40.0 = 70 .2 kg/bushel. 

Harris et al. (1972) listed methods by which metabolizable energy 

was calculated for different kinds of animals: 

a. For cattle, horses, sheep and swine, ME was calculated from 

average metabolizable energy (1-·!E) expressed in Megacalories per 

kilogram. 

b. For poultry, calculated from the average nitrogen equilibrium 

metabolizable energy (1-!En) for chickens and turkeys. Value was 

expressed in kilocalories per kilogram. 

c. For sheep, horses, and finishing cattle, calculated from DE 

as follows: ME (meal/kg) = DE (Meal /kg) X 0. 82. However, this value 1vas 

only an approximation as the ME/DE ratio might vary considerably being 

affected by the nature of diet and level of feeding (}Ice and Flatt, 

1969). 

Harris and Asplund (1968) developed a regression equation for 

converting digestible energy to metabolizable energy for sheep fed 

various amounts of beet pulp and alfalfa hay: ME = 104DE - 674. 
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d. For lactating cattle, calculated from DE as follmvs (Moe and 

Flatt, 1969): ME(Mcal/kg) = 0.93 DE(Mcal/kg) = 0.30. 

e. For swine, calculated from DE as follows (Harris and Asplund, 

1968): ~~ (Kcal/kg) =DE (Kcal/kg) X 96- (0 . 202 X crude protein %)/100. 

Net energy. Since little was gained by changing from TON to DE or 

ME, it was proposed that an effort be made to adopt the net energy (NE) 

system of expressing energy values of feeds and energy requirements of 

animals . 

Harris (1963 , 1966) defined net energy (NE) as the difference bet

ween metabolizable energy (NE) and heat increment (HI), and included the 

amount of energy used either for maintenance only or for maintenance 

and production. Net energy might also be expressed as the gross energy 

of the gain in tissue or of the products synthesized plus the energy 

requirement for maintenance . 

Heat increment (HI) was defined as the increase in heat production 

follmving consumption of food when the animal is in a thermoneutral 

environment . It consisted of increased heats of fermentation and of 

nutrient metabolism. There was also a slight heat expenditure in 

musticating and di gesting of food . This heat Has Hasted except Hhen 

the environmental temperature was below critical temperature, and this 

heat was then used to keep the body warm. Hence, when heat was used 

in this manner, it was considered a part of the net energy requirement 

for maintenance (Harris, 1966). Heat increment was calculated as 

follows: HI of feed fed = heat production from animal on feed - heat 

production of animal while fasting. The heat increment of a specific 

nutrient could be determined. It Has referred to as the specific dynamic 

effect, then. 
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Other energy losses (included in heat increment) were the heat of 

fermentation (which is the heat produced in the digestive tract as a 

result of microbial action), and heat of nutrient metabolism (which is 

the heat produced as a result of the utilization of absorbed nutrients). 

The resulting heat was produced by oxidative reactions which were 

(a) not coupled with energy transfer mechanisms or (b) the result of 

incomplete transfer of energy; (c) partly due to heat production as a 

result of 1vork of excretion by the kidney, and (d) increased muscular 

activity of the gastrointestinal tract, respiratory, and circulatory 

systems resulting from nutrient metabolism (Church and Pond, 1976). 

80 percent of the heat increment might originate in the viscera (Brody, 

1945). 

Heat increment was not a constant for a given animal and a given 

feedstuff, but depended on hmv the nutrient was utilized. Armstrong 

and Blaxter (1957) gave values of heat increment of feeding different 

nutrients and diets to different kinds of animals (Table 17). Rumen 

TABLE 17 Heat Increment of Feeding (Kcal/100 Kcal l\'IE 
at Maintenance) 

Species 

Nutrient Rat Swine Sheep Cattle 

Fat 17 9 29 35 
Carbohydrate 23 17 32 37 
Protein 31 26 54 52 
Mixed rations 31 10-40 35- 70 35-70 

(Adapted from Armstrong and Blaxter, 1957) 

fermentation of fiber resulted in high production of acetic acid Hhich 

~Vas used less efficiently than other volatile fatty acids, resulting 

in a higher HI (Church and Pond, 1976) . The HI was estimated to be 5 
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to 10 percent of gross energy of feedstuffs in ruminant animals 

(Blaxter, 1962). In monogastric animals, some heat of fermentation 

originated from fermentation in the lower portion of the small intestine, 

cecum, and large intestine. 

Total heat production (HP) of an animal consuming feed in a thermo

neutral environment is composed of the heat increment (heat of 

fermentation and heat of nutrient metabolism) plus heat used for main-

terrance (basal metabolism and heat of voluntary activity) (BM + VA) 

HP ; HI + BM + VA, where basal metabolism was defined as the chemical 

change that occurs in the cells of an animal in fasting and a resting 

state when it uses just enough energy to maintain vital cellular activity, 

respiration, and circulation as measured by the basal metabolic rate. 

Sex might have an effect on energy expenditure. In man, basal metabolism 

of the male was about 6 to 7 percent higher than the female, a difference 

which showed up at 2 to 3 years of age. In domestic animals, castration 

resulted in a 5 to 10 percent depression in basal metabolism. Thyroid 

activity had a marked effect as hypothyroid individuals might have a 

very low basal metabolism. Nervous, hyperactive animals had a high 

heat production (Church and Pond, 1976). 

Moreover, species and breeds might differ in energy expenditure, 

too . Sheep tended to be about 15 percent below and cattle tended to be 

about 15 percent above the average basal metabolism value of metabolic 

body weight (Bw0· 73). The average metabolism value was 70 kilocalories 

Bw0· 73 . These differences between cattle and sheep could be due to the 

fact that cattle originated and evolved in cold northern climates lvhere 

heat production was a critical factor for survival, while sheep originated 
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in subtropical areas where low heat production had survival value 

(Blaxter, 1962). Ayrshire steers were about 100 kilocalories Bl'/0· 73 

and compared to 81 kilocalories for Angus steers. Similar differences 

have also been observed between breeds of sheep and dairy cows (Blaxter 

and Wainman, 1966). 

The energy of voluntary activity (VA) was defined as the amount of 

energy needed to an animal to provide the energy required in getting up, 

standing, moving about to obtain feed, grazing, drinking, and laying 

down (Harris, 1966). Heat production was measured directly by an 

animal calorimeter, or indirectly by the following formula: 

HP (kcal) = 3.866 (liters o2) + 1.200 (liters co2) - 0. 229 (gram urinary 

nitrogen X 6. 25) = 0.518 (liters methane). This formula might be applied 

to ruminants, nonruminants, and birds (Harris , 1966). Since in non

ruminants and birds methane was produced in a very little amotlllt, the 

methane component could be left out of the equation. 

Heat production was also determined by the comparative slaughter 

technique as follows (Lofgreen, 1965b): HE = ME - NEP . The portion 

of the total heat production for maintenance (NEm) might be estimated 

by feeding two or more levels and extraplating the data to zero energy 

intake . Carbon and nitrogen balance studies could also be used to 

estimate HI (Harri s , 1966). 

Under pasture and range conditions, the energy expenditure 1;as 

different from that measured under confinement conditions at maintenance 

levels. Blaxter (1962) reported that activity by grazing sheep and 

cattle at maintenance and in a thermoneutral environment would increase 

their total energy expenditure by 11 (sheep) and 16 (cattle) percent 

more than indoor conditions. 
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Such high maintenance requirements for sheep at pasture might be 

due to increased costs of body movement at pasture, the effect of outdoor 

environment, or errors due to the measurement of organic matter intake 

(Bl~~ter, 1962). This extra increased expenditure could be also due to 

increased overall costs associated with grazing, especially that of 

walking and harvesting the herbage, which depended on the availability 

of pasture and environmental stresses. The work of eating and the work 

of digestion done by the gut in handling bulky pasture materials might 

also account for the extra cost of energy expenditure under pasture 

conditions and could increase (with other factors) the maintenance 

energy requirements of animals on range by 25 to SO percent (Osuji, 

1974). 

Under the "conventional scheme" fecal metabolic energy and endogenous 

urine energy were considered part of the losses in digestion and 

metabolism. However , these fractions were considered part of the 

maintenance energy requirements (Harris, 1963, 1966). 

Fecal metabolic energy (fecal energy, metabolic = FSnl was defined 

as the amount of energy contained in the metabolic (body) fraction of 

feces that is not obtained from nonabsorbed ration residues (Harris, 

1963, 1966). Under production conditions, animals consumed more feed 

and F!1n fraction 1vas larger, providing the digestibility of the rations 

was the same (Harris, 1966) . 

Urinary endogenous energy (Urinary energy, endogenous= UEe) was 

also defined by Harris (1963 , 1966) as the amount of energy contained 

in the endogenous (body) fraction of the total urine. If hormonal 

control increased the basal metabolism in producing animals, this 

fraction might increase for those animals (Harris, 1966). 



Hence, true digestible energy (TDE) , true metabolizable energy 

(TI~) , N-corrected true metabolizable energy (TMEn), and true net 

energy (TNE) could be calculated as follows: 

TDE GEi - (FE - ~) - GPD - HF 

TME GEi (FE FErn) GPD HF - (UE - UEe) 
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~~n = GEi- (FE - FErn) - GPD- HF- (UE- UEe) ~ (NB X 7.45 calories), 

and TNE = GEi - (FE - FErn) - GPD - HF - (UE - UEe) - HNI-1, tvhere HNM 

was the heat of nutrient metabolism. The true net energy for maintenance 

(TNEm) was calculated as follows (Harris , 1966) : ~ = B~1 + VA + FErn + 

UEe. 

The net energy value of a feed might become a minus quantity if the 

metabolizable energy it supplies was l ess than the expenditure involved 

in its utilization. Straw had very little val ue for ruminants, and for 

horses it was worse than useless, since the horse expended more energy 

in eating and digesting it than the straw yielded in metabolizable form 

(Cuthbertson, 1969). 

Therefore, net energy of feedstuffs represented that portion of the 

feed which was availabl e to the animal for maintenance and production 

purposes after accounting for losses in the feces, urine, digestive 

gases , and heat increment . Hence , the disadvantage of TDN , DE, and 

ME relative to over evaluating high fibrous feeds was overcome 

(Lofgreen, 1965a) . 

Harris (1966) insisted that it should be clearly stated which 

functions were included when reporting net energy values. There might 

be values for net energy for maintenance and production (NEm+p), net 

energy for maintenance alone (~) , or net energy for production alone 
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(NEP). Hence, the concept of net energy could be fractionated into two 

fractions. Fi rst was the net energy for maintenance (NEm) which is the 

portion of net energy expended to keep the animal in energy equilibrium 

(stable body weight) . The NEm for a producing animal might be different 

from a non-producing animal of the same species and weight . This dif

ference occured due to change in amount of hormones produced and to dif

ferences in voluntary activity. The NEm is a tax that an animal pays 

whether it produces or not. The increased NEm due to production states 

could be related to maintenance . However, in practice this increase 1-'as 

related to the production requirement . 

The second fraction of the NE 1•as that for production (NEP) which 

is the fraction of net energy required in addition to that needed for 

body maintenance that is used for work or tissue gain (grm.th and/or fat 

production), or for the synthesis of a fetus, milk, eggs, wool, fur, ·or 

feathers. 

Most nutritionists agreed that in theory, the net energy system was 

superior to other systems since all losses were considered in its measure-

ment. The NE system had not been 1•idely adopted, however. That might 

be due to two main reasons. First, NE values varied with variations in 

balance in other nutrients, level of feeding, and the production function 

involved. Second, NE values had been exceedingly difficult, slow, and 

expensive to determine because of equipment and facilities required 

(Lofgreen, 1965a). 

There 1;ere two systems of net energy in use in the United States 

(Harris et al . 1972). First, the California system for finishing beef 

cattle. This system expressed the requirements for certain physiological 

functions in terms of net energy (net energy for maintenance = NEm; net 
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energy for gain= NEg) . Net energy values for some cattle feeds includ

ing NEm and NEg might be computed from the following formulae (Lofgreen 

and Garrett, 1968) : Log F = 2. 2577, NEm = 77/F, NEg= 2.54- 0.0314F, 

where F was the grams of dry matter per unit of metabolic body weight 

o.P· 75) required to maintain energy equilibrium. 

The theoretical basis of the California net energy sy~tem was 

examined in the context of the following assumptions (Knox and Handley, 

1973) : 

1. The net energy for maintenance (~) was equal to fasting heat 

production, and could be estimated from heat production data obtained 

at or above maintenance . Fasting heat production was estimated by plot-

ting the logarithm of heat produced versus the ~~ intake and extrapolating 

the zero ~re intake (Lofgreen and Garrett , 1968) . The equation derived 

was LogH = 1. 8851 + 0. 00166 ~. where H and~ were in kcal/kg0· 75 , with 

no significant difference beuveen steers and heifers. 

The use of the logarithm of H t o obtain linearity was questioned 

(Reid and Robb, 1971). The l inear plot of the data of Lofgreen and 

Garrett (1968) indicated a fasting heat production of 38 kcal/kg 0· 75 . 

This value \vas about 50 percent of fasting heat production rates in 

steers as reported by other workers (Knox and Handley, 1973) . 

2. Net energy for maintenance was constant irrespective of the 

level of production. ~~intenance energy requirements might vary when 

animals have great variation in energy deposition. ~intenance require

ments c~re/kg0 · 75) varied with the physiological processes occuring in 

dairy cows (~oe et al. 1971). 

3. There was a linear relationship beuveen ~ intake and energy for 

production (P) , provided all measurements were made above energy 
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for production (P) , provided all measurements 1vere made above energy 

equilibrium. 

4. The caloric content of body Height gain (NEg) could be estimated 

by specific gravit y teclmiques. 

5. The ME content of a ration Has constant and could be used to 

predict NEm and NEg. Hence, the California net energy system 

did not account for the factors that may affect the ME values of 

feedstuffs . 

6. It 1vas possible to predict daily gain by knoHing the NEm and 

NEg of a ration and the caloric value of the neH tissue deposited. 

Conversely, that it ~Vas possible to estimate the amount of a given diet 

required for a specific rate of gain. 

~loreover, the California system tended to over predict final Heights 

in lighter animals, but Has precise Hith heavier animals (Knox and 

Handley , 1973) . 

The system's largest handicap, hoHever, Has that most of the net 

energy values for feedstuffs had been estimated from TTh~ values rather 

than accurately measured in controlled feeding trials (Shirley, 1980). 

Second, the net energy system for dairy cattle that Has developed 

by Moe and Flatt (1969). This system adjusted the requirements of net 

energy for various physiological functions in terms of the utilization 

of net energy for production. It was concluded that cost of energy for 

milk production \Vas independent of level of milk production . Decrease 

in digestibility because of high feed intake was compensated by decrease 

of methane production. 

Net energy for lactation (NEmilk) was defined as the caloric content 

of the total milk pr oduced by the lactating dairy crnv ~loe and Flatt , 



1969). The total NEmilk requirement Nas the caloric content of the 

milk plus the net energy required for maint enance . Net energy for 

milk was computed as follows : 

NEmilk (meal/kg dry matter) -0.44 + 0.84 + 0.2 ~re (Meal/kg DM) 

NEmilk = -0.77 + 0. 84 ~ 0.2 DE (Meal /kg DM) 

NEmilk = -0.46 + 0.0369 + . 0009 %ME 

NEmilk= -0.80 + 0. 0373 + 0.0010 DE 

NEmilk = -0.62 + 0. 0352 + 0. 0010 % TDN 

NEmilk = +0. 25 + 1. 15 ~ 0. 03 ENE (Mcal/kg ~I) , where ENE was the 

estimated net energy (Moe and Flatt, 1969). 

The amount of energy required for maintenance of nonpregnant, 
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lactating cm;s in body energy equilibrium and ingesting a diet of optimum 

protein content under conditions of limited physical activity was 73 

k.l . k 0· 75 bod . h Th f 1 ocalones NEmilk per g y we1g t. e amount o net energy 

required for milk production 1vas 0. 74 ~tal NEmilk per kilogram 4 percent 

corrected milk (Moe et al. 1972). l·loreover, the NEmilk of individual 

diets was related to the concentration of diges tible energy in the diet: 

NEmilk (Meal per kg DM) = 0. 68 DE (meal per kg D.~l) = 0. 36. 

Moe and Tyrrell (1976) introduced more prediction equations to 

estimate NEmilk when the digestibility of the total diet was knmm: 

NEmilk (Meal/kg 11,1) = -0. 36 + 0. 6 77 DE (Meal /kg OM) , 

NEmilk (Meal /kg OM) -0.12 + 0.0266% TON or 

NEmilk (Meal/kg IN) - 0.19 + 0.703 ~1£ (Meal /kg IN) . 

\'/hen using the first and the third equations, it should be pointed 

out that the DE and ME value Nhich Nas appropriate for the producing 

animal and not a value measured at the maintenance l evel or l<ith a 

different species of animal . If only maintenance values were available, 
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NEmilk value at an average production level could be estimated from the 

following equations (Moe and Tyrrell, 1976): 

NEmilk (ii'Ical/kg D.\1) 

NEmilk (Meal /kg D.\1) 

-0 . 36 + 0. 623 DE (ii'Ical/kg !lv!} 

-0 . 12 + .0245 TDN (% of DM) 

Harris et al. (1972) compared the terminology for the two systems 

of net energy and TDN (Figure 7) . The term NElact at ing cows was used 

to represent NE required for maintenance, pregnancy, and milk production 

in the il'be and Flatt system. 

~-----Digestible energy (D E)----.:;. 

~------- TON ------?; 

I( Metabolizable ene<gy IMEl--i>l 

k'-- Net energy (N Emtp) ~ 

JE- NE m ----*- NE p ~ 

i<E- NEm -'*" NEm il k ~ 

~ NEiac tating cows ~ 

~'IGURIO 7 Comparison of terminology for TDN, the Lofgreen system and 
the Moe and Flatt sys.tem. a. NE lactating CO\vs is designated instead 
of NE . since the latter term could be used for maintenance, 
pregnWht~ and milk pr oduction. (Adapted from Harris et al. 1972) 

In Lofgreen's system, the metabolizable energy for gain or the 

heifer t-"'S not utilized as efficiently as that for maintenance (Figure 

10). The lactating c01; , hotvever, was utilizing ME for maintenance has 

been adjusted to the same utilization as that for milk production 

(Figure 8)(Moe and Flatt, 1969) . 
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FIGURE 8. A comparison of two methods of expressing energy requirements. 
The solid line represents the system of Lofgreen (Lofgreen and Garrett, 
1968) and the dotted line represents the system of Moe and Flatt (1969) . 
(Adapted from Harris et al. 1972) 

The NEmilk val ues 1-1ere used for both body tissue storage and the 

estimation of maintenance for dairy cattle . The California system 

recognized the differences for maintenance and gain. The ~'foe and Flatt 

(1969) system did nor ignore this difference but expressed the values 

of maintenance and gain in units of NEmilk. Hence, it was simpler and 

l ess confusing (Kromann, 1973; ~beet al. 1972). Besides, the efficiency 

of milk production was greater than that of tissue deposition . Con-

sequently , the values of ~ilk were greater than that of ~1orrison ENE 

(Van Soest, 1973b). 

Inter-Conversion Among Systems . The USA National Research Council, 

Committee of Animal Nut rition passed a resol ution to start using the 

calorie system along 1vith the TDN system to describe the energy values 

of feeds, rations , and nutrient requirements of the animals (Crampton 
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and Harris, 1969). Hence, there was a need to shift from the TDN system 

to a more accurate one such as the energy system. However, the great 

amount of compiled TDN data were available and could not be simply 

thrown aNay. Instead, the conversion of one system to another was 

practiced. 

Hathematical models l<ere developed to convert from one system of 

describing energy utilization of another . Swift (1957) obtained a total 

of 312 TTh~ and digestible energy (DE) values of mixed and roughage 

rations for cattle and roughage rations for sheep. The average or mean 

value of the 312 determinations was 1999.4 calories per pound of TDN 

(or 4.41 calories per gram TDN). The caloric values of one pound of 

TDN 1;ere, 1996, 1982, and 2007 for the roughage rations for cattle, 

mLxed rations for cattle, and roughage rations for sheep, respectively . 

The difference between any n;o of the three means did not show signifi

cance. For practical purposes , to convert TDN to DE one might simply 

multiply the weight of TDN in pound by the factor 2000 to obtain its 

equivalent in calories (Swift, 1957) . The results l<ere in close agree

ment with these conversion factors obtained by Crampton et al. (1957). 

Errors existed in the use of 4 calories per gram of TDN as caloric 

value of digested protein, of 9 calories per gram for digested ether 

extract, and 4 calories per gram for digested carbohydrated (Crampton 

et al. 1957). Since these errors were systematic , they could be 

statistically corrected . 

Barth et al. (1959) determined the caloric value of TDN from the 

digestible protein content of roughage. Calories per gram TDN = 4.343 

+ 0. 0199 X% digestible protein. All the appropriate TDN and DE data 

from forages in 1vhich both determinations were calculated from one and 
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the same conventional digestion trial 1vith cattle and sheep assembled 

and separated into hay and silage values, and the ratio of TDN and DE 

(calories per gram of TDN) was calculated for each individual pair of 

observations. Because no essential difference in the TDN-DE ratio of a 

specific protein content was observed between hays and silages, they 

were grouped together. The correlation coefficient of caloric value of 

TDN and digestible protein in the roughages 1vas 9.64. The inclusion of 

digestible protein in the prediction of DE values seemed to eliminate 

much of the variability remaining from an average TDN- DE conversion 

factor which considers TDN only (Barth et al . 1959). 

The Animal Nutrition National Research Council, Feed Composition 

Committee had adopted the following conversion factors on the basis of 

the work of Crampton et al . (1957) and Swift (1957) : 

TDN% DE (kcal/kg) = lOO X 4409, or DE = 44 .09 TDN%. 

NE (kcal/kg) = 82% DE, or ME = • 82 DE. 

TI1ese values had proven useful and permitted the estimation of caloric 

values from TU~ data (Harris and Asplund, 1968). 

Factors affecting relationships benveen digestible energy (DE), 

metabolizable energy (ME) and total digestible nutrients (TDN) were 

studies by Harris and Asplund (1968) . Thirty-five mat ure wetlr!er 

sheep were used t o determine DE and TDN by the convent ional methods. 

Metabolizable energy was also calculated for rations varying in DE 

from 2342 to 3487 kilocalories per kilogram and at energy intakes from 

9. 9 to 18.3 kilocalories of ME per kilogram metabolic body weight 

(Wkg 0· 75) . There 1vere highly significant correlations between ME, DE, 

and TDN (R2 
= .98 or higher). The following regression equations were 

derived: 



DE= 36.13 TDN% + 518 

TTh~% = 0.027 DE - 12.4 

~IE 1. 04 DE 674 

DE 0. 96 r .. IE + 653 

~ = 37.5 TDN% - 130 

TDN% = 0. 026 ~IE + 5. 0 
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The mean values of DE/TDN was 44. 20 . Standard errors of the mean 

was + 0. 27. Highly significant negative coefficients of correlation 

between DE/TTh~ and DE (-0.829) and TDN (-0.881) were observed while I-1E/ 

DE was highly significantly positively correlated with DE (0.940) and 

TIN (0. 943). There was no significant correlation bet1;een DE/TDN and 

energy intake and ~IE/DE . Level of energy intake was found to have little 

influence on the conversion factors (Harris and Asplund, 1968). The 

regression equations presented above were not intended to be definitive, 

since the experiment involved only a very restricted variety of feedstuffs. 

In swine, the effect of crude protein content on ME/DE ratio was 

highly significant (Morgan, 1976): 

(~·IE/DE) X 100 = 99.7- ( .189 X % crude protein); R = 0.94. 

The decrease in ME/DE ratio with increasing crude protein percent in 

the feeds was due to increased excretion of nitrogenous compounds 

(principally urea) by urine. These products represented additional 

losses of energy to the animal since they did not represent the 

complete oxidation of dietary proteins. At a constant level of dietary 

protein ME to DE ratio would be influenced by the biological value of 

the protein. A poorer quality protein induced more urea excretion . 

Hence, the use of DE to describe energy values tended to exaggerate the 
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value of protein-rich feeds compared with cereal s (since DE does not 

consider urinary energy losses) (Norgan, 1976). 

Van Soest (1973b)pointed out that the basic difference beuveen the 

TDN and the NE systems was that NE placed a lmver value on less digestible 

and high fiber feeds. Net energy trials are expensive and t echnically 

tedious to perfonn. Consequently , measurements of NE would be behind 

those of ordinary digestion trials, and NE 1vill have to be estimated for 

many feedstuffs . The problem then 1vas to improve the methods of TDN-NE 

conversion. Digestibility and fiber fractions should be considered. 

l~reover, the reliability of the original TDN figures should be examined. 

Van Soest Q973b) summarized various equations for TTh~-NE conversion 

(Table 18). Three different net energy systems were considered in this 

summary . The Morrison system was giving way to the use of gain and 

maintenance values for beef cattle and lactation values (milk production) 

for dairy cattle. Furthennore, Van Soest (1973b) summarized the inter

conversion between t he various energy systems as it is shown in Table 19. 

In sNine, the relationships between TDN, DE , and ME Nere reported 

by ~rgan (1976) to be as follmvs: 

DE (kcal/ kg IA\1) ( 45 X TDN) + 156; R = . 92 

~1E (kcal/kg lA\1) 

MEn (kcal/kgDM) 

(43 X TDN) + 71; R = . 98 

(42 X TDN) 27; R = .99 

TDN was closely related to !VIE especially when ME was correlated to zero 

nitrogen retention. The relationship beuveen ~1E and DE was: 

~1E (kcal/kg IA\'l) = .876 DE (kcal/kg DM) + 217.6; R = .97 

The problem of converting TDN to NE was being complicated by the 

inconsistancy cE the ID~ value of feedstuff (Van Soest , 1973b) . Variation 

in TDN value arised from two sources : The first was the variation in 
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TABLE 18 Equations for Conversion of TDN to Net Energya 

Equation Source 

NE = 0.0306 TDN- 0. 76 
b NEmilk = 0.037 Tn~ - 0. 77 

NEmaintenance = 0.029 TDN- 0.29 
NE gain = 0.029 TDN - 1.01 
NE milk = -0.01 TDN (2.86 - 35.5/s) 

Hoe et al. (1953) 

Moe and Flatt (1969) 

Van Soest (197l)c 

Van Soest ( 1971)~ 
Van Soest (1971) 

aAll NE values were adjusted to metric system Meal/kg. TDN was 
expressed as units 100 lb. 

bNE .1k was identical with NE lactating cows as used in NRC 
pu§ilcations (1971). 

~hese equations were based on linear conversions of Van Soest (1971). 
The logametric equations of Lofgreen and Parrett (1968) were omitted 
and were cumbersome and do not increase accuracy of estimation. 

~he value of s \vas the non-cell wall (100 - % NDF) . (Adapted from 
Van Soest, 1973 b) . 

TABLE 19 Interconversion of Net Energy Values 

Equation Source 

NEmilk = 1. 21 ENEa Moe and Tyrrell 

NEmaintenance = 0· 78 NElactation + 0· 31 

NEgain = 0· 78 NElactation- 0·41 

NEmaintenance 0· 99 NEgain + 0·69 

NEmaintenance 0· 79 NElactation 

Van Soest 

Van Soest 

Van Soest 

Van Soest 

(1971) 

(1971) 

(1971) 

(1971) 

~ Estimated Net Energy. (Adapted from Van Soest, 1973b). 

(1972) 



quality of the feedstuff according to source. The second was the 

decline in digestibility with increasing levels of intake. 
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European Systems. Other systems of energy evaluation of feedstuffs were 

being used in other parts of the world. Van Es et al. (1978) introduced 

three new systems for energy evaluation in the Netherlands, France, and 

S1vitzerland. 

a . The energy systems in the Netherlands (Van Es, 1978) for dairy 

and beef cattle: The r elationship beuveen metabolizable energy (ME) con

tent and digestible nutrients in sheep and cattle fed at, or slightly 

above the maintenance level 1vas studied. Non-lactating cmvs fed at 0. 5 

to 1. 7 times maintenance the following equation for ME was given: ME/T 

3.86 D X P/T + ll.03 D X L/T + 3.26 D X F/T + 3. 42 D X X/T (1), where 

T =dry matter (kg); D X P =digestible crude protein; D XL= digestible 

crude fat; D X F = digestible crude fiber; and D X X = digestible 

nitrogen-free extract. 

1Vhen only the contents of digestible organic matter (DO/T, g/kg) 

and of digestible crude protein (D X P/T) 1vere available, ~IE for cattle 

could be predicted from the following equation : 

~IE/T = 3. 35 DO/T + 1.76 D X P/T (2) 

For forages with a l ow protein content (00/DXF >7) , 1-'IE/T could be 

predicted by the following equation: 

~IE/T = 3. 6 00/T (3) 

However, for forages 1vith a low protein content but higher fat 

content (corn silage), equation (3) gave low results. Hence, for corn 

silage, ~~/T could be predicted from equation (4) : 

~IE/T = 3.7 00/T (4) 
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For feedstuffs 1vith 00/DXP ratio belmv 7, the following equation 

(5) was used. The lower value of the coefficient of DXP was to be used 

again when values of ME/T for cattle were to be predicted from 00/T and 

DXP/T values obtained with sheep : 

ME/T = 3. 4 DO/T + 1. 7 (or 1.4) DXP/T ( 5) 

When the sugar content of feedstuffs ("sugar"/T) was included; 

ME/T could be predict ed from equation (6): 

ME/T 4.1 (or 3.8) DXP/T + 9. 0 DXL/T + 3.3 DXF/T + 3. 5 DXX/T + 

(-0.15 'sugar' /T) (6) 

The regression coefficient of DXP/T was reduced to 3. 8 if ~1E/T for cattle 

was to be predicted from sheep digestion data because the digestibility 

coefficient of crude protein 1vas found to be about 7 percent higher than 

that with cattle. Forages used 1vere green fodders, conserved green 

fodders, but not roots, tubers, straw, or chaff. 

For concentrate feedstuffs Van Es (1978) adapt ed the following 

equation to predict gross energy (GE): 

GE/T = 5.77 X P/T + 8. 74 X 1/T + 5.00 X F/T + 4.06 XX/T + (-0.15 

'sugar' /T) (7) 

The ' sugar ' correction was to be included for feedstuffs that contain 

more than 8 percent ' sugar'. GE/T for forages was calculated from 

equation (8): 

GE/T = 4400 (8) 

since most forages had a GE/T content close to 4400. Higher values 

1vere rarely found . Lower values were found especially after contamina

cion 1vich soil particles. Hence, !VIE as a percentage of GE (g) could be 

predicted for all feedstuffs from the follmving equation: 

g : 100 (ME/T) I (GE/T) (9) 
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The prediction of the ME content of feeding levels above maintenance 

was done by decreasing the ~IE content by 1. 8 percent per multiple of 

the maintenance feeding level. 

The net energy content for lactation (NE1) was predicted by the 

following equation : 

NE1/T (kcal /kg T) = 0. 60 [1 + 0. 004 (q - 57)] HE/T (10) 

Because the feeding level had an influence on the ~~ content, the 

NE/T values would vary with the feeding level. Hence, it was proposed 

to have only one net energy-lactation value for each feedstuffs. This 

value should apply to the average feeding level of lactating cows in the 

Netherlands . This level 1-ms 2. 38 times maintenance (maintenance at 550 

kg+ a production of 15 kg 4%-fat-corrected milk) . Therefore, the 

result of equation (1) had to be nultiplied by 1-(2.38-1) 0.018 = 0.9752, 

if the values of ME/T used in equation (1) applied to the maintenance 

feeding level. 

For practical purposes, it ~<as proposed to 1-rork 1vith a feed unit 

rather than ~<ith net energy calories or Joules. An arbitrary feed-unit

lactation 1vas chosen. One feed-unit-lactation (VEM) containing 1. 650 

kcal net energy lactation value of one gram barley. The VEM could be 

predicted from equation (11): 

VEM/T = 0. 6 U + 0. 004 (g - 57) ] 0. 9752 i. 650 ME/T. (11) 

The resulting value applies to a feeding level of 2.38 (maintenance 

+ 15 kg 4% fat-corrected milk). 

In case of beef cattle the feed unit for grmvth (VEVI) ~<as derived 

from the ME content and the value of (q) of feedstuffs and rations 

predicted in the same ~<ay as in the system for dairy cattle. A 
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correction for feeding level was not applied to the HE value because in 

growing cattle the feeding level sel dom exceeded twice maintenance. 

The efficiency of the utilization of HE for maintenance (km) and 

for grmvth (kg) differ. Morecver , the influence of g on kg was greater 

than on km. Equation (12) predicts km using the average value for km 

of 0. 717 by ARC (1965), and the knowledge of 90 . 4 percent increase of 

km for each unit increase of g used also for t he VEI-l system: 

The daily energy gain (RE) was estimated by the following equa tion 

(for Friesian ·bulls): 

RE (kcal) ; (500 + 6W) Xl'l WI (c- O. 3 t>W) (13) where W 1vas body 

weight (kg), and t> ll' was daily live weight gain. Both W and l'l ll' lvere 

related to energy retention in equation (13). kf was predicted by the 

equation of Blaxter (1974) : 

kg ; 0. 0078g + 0.006 (14) 

Thus, total net energy used for maintenance and grmvth ; 78.87 1v-'l4 
+ RE 

(15) . Therefore, the concept of animal production level (APL) which was 

equal to the ratio of total net energy to net energy for maintenance 

could be estimated as follows : 

APL ; (78 . 87 w314 + RE) I (78 . 87 w314) (16) 

It was possible, then , to compute ~ f as follows: 

km,f (78. 87 w314 
X APL) I HEm + ME~) 

78. 87 w314 
X APL I (78. 87 lv-'14) I ~ + 78 . 87 314 (APL - 1) I kf 

0.0078 g + 0. 006 
-0.548 + 0.00493 g + l 
(0 . 554 + 0.00287 g) APL 

(17) 

The total net energy content of feedstuffs (separate or mixed in 

rations) was equal t o: km, f X 1\IE . For practical purposes, a grmvth net 
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energy quantity of 1.650 was chosen as the unit of the system (about that 

contained by one gram of barley) . Hence, 

0. 0078 + 0.006 ME 
-0 .548 + 0.00493 g X I:64Q 

VEV=·co.554 + 0.00287 g} APL ... 1 (18) 

This meant that a feedstuff had several feeding values depending on the 

APL of the animal consuming it. However, to make uniform and easy to 

apply, only VEV values for an APL of 1 . 5 as feed units for intensive 

gr01vth (VEVI) were tabula ted: 

VEVI - VEV with APL equal to l. 5 (19) 

Van Es (1978) pointed out several weaknesses in the sy~tem for 

growing cattle. The equation to predict energy retained in the body 

(RE = kcal/day) from live weight and daily gain was based on a limited 

number of data. The equation used yo calculat ed efficiency of the 

utilization of ~lli for growth and fattening (kf) had a fairly high error 

of prediction. !'!ore information on these points were needed to improve 

the system by changing some coefficients . 

The values of feed unit lactation (VEM) and feed unit growth (VEVI) 

of the various feedstuffs did not differ much on aver age . In the VEVI 

system 2/3 of the net energy of the ration was used for maintenance, 

with an average km (efficiency of utilization of 1-lli for maintenance) 

near 0. 70, the other third for production with an average kf near 0.50. 

Therefore, the km,f values averaged 0.63, a value close to the k value 

of 0. 60 for maintenance and milk production in the VEM system. The 

variation of the VEVI values of the various feedstuffs 1vas great er than 

of VB1 values, because the influence of g (1-lli as a percentage of GE) 

was greater than on k1 and km: 
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Tables were given to calculate the requirements for maintenance, 

at different milk production levels, for young cattle to become dairy 

cmvs, and for beef cattle (Van Es, 1978). 

b. TI1e French energy systems for ruminants (cattle, sheep and 

goats) was introduced by Vermorel (1978): The feed unit system was the 

basic system that expressed the energy value of feedstuffs in France . 

One feed unit (RJ) was the net energy value of one kilogram of barley 

for maintenance or production. In the new system, proposed by Vermorel 

(1978), the net energy values of feedstuffs were estimated from their 

~~ content and from partial efficiencies of 11E for maintenance, fattening, 

or lactation (Table 20). This system was different from the other energy 

systems by three points: 

i. ~ffi content of a feedstuff was estimated from its gross energy 

content (GE , the apparent digestibility of energy (DE), and t he ratio 

of ~ffi and DE (~IE = GE X DE X 11'~/DE). 

ii. The net energy value of feedstuffs was expressed in feed units 

(RJ) (UFL for lactation and UFV for maintenance and meat production 1vith 

an animal production level of 1. 5). 

iii. Energy allowances for slmvly and rapidly growing animals had 

been determined using the results of feeding trials, due to lack of 

information on both maintenance requirement and energy retention of 

animals of the different breeds in France, and on the efficiency of~ 

utilization for grmvth. 

A relationship was established between DE and ~~, according to the 

chemical composition of the diet and the level of feeding. The ratio 

benveen ~~ and DE (~/DE) depended upon the levels of crude fiber 



TABLE 20 Scheme Showing the Different Steps for the Estimation of 
Energy Value for Feedstuffs in the UFL and UFV Systems 

NE ; GE X dE X ME/DE x k 

Gross energy: GE 
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Green forages, grass silages and hays: a function of the crude 
protein level 
Other forages: mean values (kcal/kg CN) depending on variety 
and stage of gro~-~t:h 
Concentrates : a function of the chemical composition 
+ corrections 

Digestible energy: DE = GE X dE 
Energy digestibility (De): a function of Q~ digestibility (dO) 
dO: - forages: a function of crude protein and crude fiber 

contents 
- concentrates: values as in feeding tables 

Metabolizable energy 
Forages and concentrates: ME = DE X ME/DE 
ME/DE: a function of crude protein and crude fiber contents and 
of level of feeding 
Mi.xed concentrates: directly estimated from chemical composition 

Net energy for lacatation (UFL) 

NE1 =ME X k 
kl = 0.60 + 0.24 (q - 0.57) 

(where q = ME/GE) 

ME X k. 
Energy value (UFL) = 1. 730 

(Adapted from Vermorel, 1978) 

(Net energy for meat production(UFV) 

NE=MEXk 
~ = 0. 287\IF+ 0.554 

kf = 0.78 q + 0.006 

k ~X kf X l. 5 
mf = kf + (km X 0. 5) 

ME X~ 
Energy value = l. 855 
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(XF, g/kg, IN) , crude prate in (Xp , g/kg Ill<O and the leve 1 of feeding 

(1 = l for maintenance). The relationship for sheep was: 

ME/DE= 0.826- 8.77 X 10- 5 XF - 1. 74 X 10-4 XP + 0.0243i (~ 0.0093): 

R = 0. 90 

For dairy cows, t he r el at ionship differed in the constant being 0. 8240 

instead of 0.8286 . 

ME values of commercial concentrates were directly estimated from their 

chemical composition: 

iviE (kcal/kg CM) - 3260 + 0. 455 XP + 3.517 XL= 4.037 XF; (R = 0.942) 

where OM = organic matter; XP, XL, and XF = crude protein, crude fat, 

and crude fiber, respectively. 

The next energy value for l actation was expressed in feed units 

'mil~ (unite Fourragere Lait ' = UFL). One UFL was equivalent to !h~ 

energy value of one kilogram of standard barley (86% DM , 3.800 McalKGE/kg, 

organic matter digestibility= do= 0.86, energy digestibility= DE 

0. 847, iviE/DE = 0. 845 and ~1E utilization for l acation = kl = 0.636). 

1 UFl = 3. 800 X 0.847 X 0.845 X 0.636 = 1.730 McalNE1 
Energy value (UFl) of feedstuffs =ME X 0· 60 [i. ;3~ · 4 (q - 0· S?)] where 

q = Metabolizable energy as a percentage of gross energy . 

The maintenance requirement for housed dairy cows could be estimated 

f rom the following equation: 

~·!aintenance requi rement (UFL) = 1. 4 + 0. 6 11'/100 where IV = body weight . 

The net energy required for milk production corresponded to the energy 

cont ent of the milk produced: 0.750 Mcak/kg fat = corrected (4%) milk 

(FLM) . The relationship between FCM production and NEl requirement 

was constant and amotmts to 0. 750 McalNE1 or 0.43 UF1 per kg FGL 
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The net energy for lactation (UFL) 1vas used for dairy females ( cm;s, 

goats, eNes) during lactation, pregnancy or dry; for dairy heifers, ewes, 

lambs, kids, and for wintering animals or slowly-growing animals when the 

animal production level (APL) lied between 1. 0 and 1. 35 and for breeding 

animals Nhere APL was about 1. 

The energy value of a feedstuff for meat product ion corresponded 

to its net energy for maintenance and production for an APL of 1. 5. Its 

expressed in UFV (feed units 'meat'= unites Fourrageres 'viande ). One 

URJ Nas defined as the net energy value of one kilogram of standard 

barley. Net energy value of barley: 

q = 0.716; km = 0. 760; kf = 0.565; ~ = 0.681 

NE = 3.800 X 0.847 X 0.845 X 0.681 = 1.855 Meal. 

Energy value (URJ) of a feedstuff = ME X kmf 
1. 855 

UFU was used for all rapidly-growing animals for slaughter (steers, 

bulls, beef heifers, and fattening lamb~:) 1;hen APL was above 1. 35). 

There were certain weaknesses in the ne~; French system (UFL and 

UFU) for energy values of feedstuffs (Vermorel, 1978). The assumption 

in the NE system for lactation was made that the relationship beuveen 

q and k1 established for good quality diets was also applicable to poor 

or medium quality hays when given to suckling coNs or ewes. The UFU 

system for rapidly growing animals used the kf determined on mature 

fattening ruminants due to lack of information on efficiency of ME 

utilization for growth. There were also weak points in the systems 

in the corrections both for associative effects and influence of feeding 

level. Hmvever, the system 1;as flexible enough to allm; incorporation 

of new information for improvement. 
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c . The energy system in Switzer land proposed by Bickel and Landis 

(1978): This system was similar to that of the energy system of the 

Netherlands proposed by Van Es (1978) except that the energy unit mega-

joules was used instead of feed units in determining energy values of 

feeds and energy requirements of animals. 

ME was calculated from the content of digestible nutrients which 

in turn were determined on adult sheep at the maintenance level of 

feeding. ~E/T 1vas determined for di fferent classes of feeds by the same 

way that Van Es (1978) used. Equations were expressed in MJ instead 

of calories: 

ME/T = 15.9 DXP/T + 37.7 DXL/T + 13. 8 DXF/T + 14.7 XX/T (-0 . 63 sugar/T) 

for concentrates. 

Sugar correction was applied when they exceeded 8 percent of dry 

matter . For forages (except maize silage): 

I'E/T = 15.1 00/T if 00/DXP > 7 

ME/T = 14. 2 00/T + 5. 9 DXP/T if 00/ DXP < 7. 

For maize silage : 

~E/T = 15.5 00/T. 

For the estimation of net energy values of feedstuffs the S1;iss 

syst em applied the same formula used by VanEs (1978): 

NEL/T = 0.09752 X ~E/T (0 . 463 + 0. 24q) or NEW/T = ME/T X ~,f' where 

].- _ km X kf X APL and kf 0. 006 + 0. 78q and km = 0. 554 + 0. 278q . 
'm,f - ~ (APL - 1) + kf 

NEL refered to the energy value of feed for dairy cmvs (~1J) , and NEW 

referred to the energy value of feed for beef cattle ~!J). The NEL 

values referred t o a feeding level of i = 2.38 and the NBV values 
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referred to an APL = 1. 5. Both values Nere used by Van Es (1978) . 

The energy requirements for dairy cows Nere estimated by the 

folloNing equation: 

NEL/day = 9.293 w314 
+ 3.14 FCWday 

The factor 3. 14 was different from that 3.06 proposed by VanEs (1978). 

The same equation could be rearr.anged as fol l ows : 

NEL/day = W/20 + 5 + 3.14 FCN/day 

The NEL requirement for pregnancy 3REP; assuming that three units NEL 

were needed to produce one unit NEP (that \Vas due to the loNer value of 

\ compared to kf) . REP stood for the energy retained in the body for 

pregnancy (MJ). 

The estimation of the energy needs for growing cattle depended on 

the accuracy of estimating the energy value of body gain. The daily 

requirements of beef cattle, fattened at APL = 1.5 could be calculated 

from the folloNing equation: 

NEW/day = NEWm + REtfday, Nhere REf = the energy retained in the body for 

fattening (MJ) . For different daily body gains and body Neights 

(different APL), the total requirement could be calculated as follm;s : 

k 
NEW/day = 1. 5 NEWm + m,f (REf/day - 0. 5 NEWm), Nhere the actual REf/day 

was converted into ~7day. If q = 0. 57 and NEW = 0. 330 X 1v3/ 4 , the m 

above equation could be re1vritten: NEW/day = 0.495 \~/4 + 1.33 

"/4 (REf/day - 0. 165 w.) ) . 

The energy requirements of replacement heifers Nere expressed in 

NEL instead of NBV for practical reasons: 

NEL/day = ~1'/day X 0.972Sk
1 n,f 

In Switzerland, heifers Nere usually reared on a feed with mean 
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g = 0.53 (00- 0.7). Hence, NEL/day was nearly equal to NEll'/day. The 

requirement of dairy heifers could be calculated as follows, then: 

NEL/day = NELm + REf/day 

Energy values of feedstuffs and animal requirements were inter

convertable among the new European (The Netherlands, French and Swiss) 

energy systems since they were based on the same scientific principles 

(Vermorel, 1978). 

France 

For l actation and slow grmvth 1 UFL 

For rapid growth 1 UFV 

Netherlands 

1000 UFM 

1060 VEVI 

Switzerland 

6. 9 NEL 

7.3 NEW 

However, small variations might persist for some feedstuffs due to 

different methods of predicting ME in France and for forages, and due 

to differences in composition and digestibility resulting from climatic 

differences (Vermorel, 1978) . 

Nehring and Haenlein (1973) introduced a system for feed evaluation 

and ration calculation based on net energy for fattening. Contents of 

the net energy (NEF = the efficiency of utilization of feed nutrients for 

fat deposition) in purified nutrients and feeds from different classes 

had been determined in several hundred respiration brials by different 

methods. Results showed that NEF could be estimated from contents 

of digestible nutrients with the same degree of accuracy as by direct 

determination in respiration experiments. The regression equations· 

could be used without restrictions in monogastric animals. For ruminants, 

however, due to interactions between the basal ration and suppl ements in 

rumen, the difference method was replaced by an evaluation of 1vhole 

r ations (92 rations with cattle and 81 with sheep) . 
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Regression equations were developed to predict gross energy (Y
3
) 

from crude protein (Z1), crude fat (Z 2), crude fiber (Z3), and nitrogen

free extract (Z4) as follows: 

Y3 = 5.72Z1 + 9.50 z2 + 4. 79 z3 + 4.03Z4 ~ 9.90% 

The digestible energy (Y2) and metabolizable energy (Y
4
) were also pre

dicted from the nutrient components of feedstuffs for different kinds of 

animals as shown in Table 21. 

Moreover, regression equations 1vere developed to estimate NEF in 

concentrates for different kinds of animals as shoiVn in Table 22 . The 

small standard deviations of the regression equations indicated that for 

different kinds of animals generally valid and reliable estimates of 

NEF values could be estimated from the contents of digestible nutrients . 

Final regression equations for NEF values of all feedstuffs and all 

farm animals were given in Table 22 for the determination of NEf as a 

feeding system. 

However, the application of such a system seemed to be complicated 

for practical feeding . An alternative concept was developed t o proceed 

from the common production of all nutrients, at which they can be 

replaced according to their energy potential (fat production in adult 

animals). 

The new energy feed unit (NEf = net energy fat) equals the energy 

value of one kilo calorie net energy produced in adult animals under 

standardized conditions. NEf units 1vere subdivided into NEFr for cattle 

(Rind) , NEF s for pigs (Sch1vein) and NEFh for poultry (Huhn) . For 

practical calculations , the energy feed unit (EF) \vas introduced. EF 

was a multiple of 1 kcal NEF. The EFr for cattle = 2. 5 kcal NEF; the 

EFs and EFu, for swine and poultry, respectively equals 3.5 kcal NEF. 
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TABLE 21 Regression Equations for the Calculation of Contents of 
Digestible Ener~ and Metabolizable Energya 

cattle 
sheep 
pig 
rat 

cattle 
sheep 
pig 
rat 
chiden= 

5.79X1 + 8.1SX2 + 4.42X3 + 4.06X4 ~ 1.0% (ration trials) 
5.72X1 + 9. 0SX2 + 4.38X3 + 4. 06X4 ~ 0.9% (ration trials) 
5. 78X1 + 9.42X2 + 4.40X3 + 4.07X4 ~ 1.0% (ration trials) 
5.51X1 + 9.37X2 + 4. 0SX3 + 4.osx4 ~ 2.1% (difference method) 

4. 32X1 + 7.73X2 4. 49X1 + 9.0SX2 5. 01X1 + 8.93X2 4.73X1 + 9.4SX2 4.26X1 + 9. SOX2 

+ 3. 59X3 + 3.63X4 ~ 1.3% (ration trials) 
+ 3.61X3 + 3.66X4 ~ 1.8% (ration trials) 
+ 3. 44X3 + 4.08X4 ~ 1.3% (ration trials) 
+ 4.13X. + 4.13X4 ~ 2.6% (difference method) 
+ 4. 23X~ + 4. 23X4 ~ 3. 21 % (difference method) 

ay = digestible energy; Y metabolizable energy; X - x4 = diges tible 
ptotein, digestible fat, digestible fiber and dige~tible nitrogen-free 
extract, respectively = figures are standard deviations. (Adapted 
from Nehring and Haenlein, 1973) 

T.ABLE 22 Equat.ions for the Calculations of NEF* in Concentrates 

Digestible 
Digestible Digestible Digestible Nitrogen- Standard 

Species Crude Protein Crude Fat Crude Fiber Free Extract Deviaticn 
(Xl) (X2J (X3) (X4) 

Cattle Y • 1. 78X
1 

. 7. o4x2 
. 2. 37X

3 
. 2. 13X

4 .: 68(_:3 . 71) 

Sheep y. 1.85~ . 8. o9x
2 

. 0.09X
3 

. 2. 39X
4 .: 81(_:4. 41) 

Rabbit Y • 2.3L'<:t . 7. 94X2 
. 3. 16X3 

. 2. 62X4 .: 63(_:2. 7%) 

Pig y : 2 . 40~ . 7. 71X2 • (0. 01X3) . 3. 27JC4 .: 127(_:5 .8%) 

Rat y = 2.52Xl . 8. 82x2 
+ (1. 88X

3
) . 3. 26X4 .: 87(_:3 . 3%) 

ay = kcal NEF . (Adapted from Nehring and Haenlein , 1973) 
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The tenn "protein-energy quotient" (PEQ) was introduced to 

characterize relationships between energy feed values and contents at 

digestible crude protein. PEQ = diges t ible ~~e protein X 100 = gram 

digestible crude protein in 1,000 EF (or 1 kEF) . 

It was shown that not all feedstuffs (separate or mixed) needed to 

be detennined directly in respiration trials . NEF values of such feed-

stuffs or mixtures could be detennined from content of digestible 

nutrients with high degrees of accuracy (Table 23) . 

TABLE 23 Final Regression Equations for the Calculation of NEF 

Basis : Ration Evaluation 

YcattleNEFr = 1.71X1 + 7.52X2 + 2.01 (X3+ x4) - 59.~V + 3.5%b 

YsheepNEFr = 1.82X1 + 8.39X2 + 1.90 (X3 + X4) - 40 . 8\V + S.l%b 

Yp
1

gNEFs =2.56X1 + 8. 54X
2 

+ 2. 96 (X3 + X4) - 66.7W + 3.9%c 

Basis : Difference Method 

YchickenNEFh = 2.58X1 + 7.99X2 + 3.19 cx3 + x4) ~ 5.2%c 

Yrat NEFs = 2.51X1 + 8.59X2 + 3.04 (X3 + x4) ~ 5.8%c 

ay = kcal NEF; x1, X , X and x4 are digestible crude protein, digest
ible crude fat, dig~stirlle n~~rogen free extract and digestible crude 
fiber and W = (body weight)· . 

bFor green forages , silages from green forages and artificially dried 
green forages a deduction of 10% from the NEF values. 

ern the monograstric animals, pigs and poultry, the following corrections 
are necessary for feeds high in sugar, or for milk and milk products. 
1 g disaccaride - .15 kcal 
1 g monosaccaride - .30 kcal 
1 g milk protein : +1.0 kcal 
1 g milk fat : -1.0 kcal 
(Adapted from Nehring and Haenlein, 1973). 
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Net energy systems (NE) were not the ultimat e in feed evaluation 

(Moe and Tyrrell, 1973). However, they were ideal systems of practical 

expressing the energy value of feedstuffs, the energy requirement of an 

animal for a specific physiological function (Kromann, 1973), feed 

selection, ration balancing and perfonnance prediction (Moe and Tyrrell, 

1973) . 

The difference among the several net energy systems were largely 

differences in interpretation rather than differences in scientific 

validit y (Moe and Tyrrell, 1973) . Because these sys tems were developed 

by independent laboratories, there was a question whether individual 

values used in each system 1;ere comparable. Different assumptions and 

different terminology in developing the net energy systems l ed to a kind 

of confusion (Moe and Tyrrell, 1973) . 

The California , Germany, and British systems of determining NE 

were evaluat ed on the basis of the number of metabolic factors which 

they consider as variables in NE estimati on. The European NE systems 

considered more variables than t he California system, which regarded 

all of the factors to be constant under different environmental conditions 

(Kromann, 1973). 

Moe and Tyrrell (1973) considered that there were two schools of 

thought concerning maintenance. The first (California, British) assumed 

that the appropriate expression of the net energy requirement of 

maintenance was equal t o fasting metabolism and t hat variation in 

efficiency of energy used for maintenance was less than for production. 

The second (Beltsvill, German) described maintenance in t erms of the 

energy value for production. "The difference 1.as one of application 

rather than principle ." 
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The differences among energy systems were illustrated graphically 

in Figure 9 by Moe and Tyrrell (1973) . In each diagram, the portion of 

the figure below energy balance indicated the use of energy for main

tenance. The portion above energy balance showed the use of energy for 

production. In part A, a single line represented the relationship between 

ME intake and energy balance below maintenance and another line represents 

the energy use above maintenance . Thus, it 1vas concluded that the use 

of ~IE for either maintenance or production 1vas constant and 1vas indepen

dent of the nature of the diet. This was the assumption made in TDN, 

DE, or f,IE systems . 

In part B, the efficiency of energy used for maintenance was con

stant, but the productive efficiency was not. The total amount of 

variation in the amount of ME required to achieve a certain level of 

production was related to variation in efficiency of production rather 

than maintenance . 

In part C, both maintenance and production efficiency vary but one 

was a function of the other. The California and the British systems 

were of this type. 

In part D, maintenance was shown to be a function of NEP. The amount 

of energy needed for maintenance was expressed in tenns of production 

units. The Beltsvill NEmilk' German, the s tarch equivalent, and the 

Scandinavian feed unit syst ems are of this type. 

At ad libitum level of intake, the differences among all systems 

in C and D were minimal . 

Energy metabolism was affected by many factors. Kromann (1973) 

discussed t hese factors as follows : 
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Energy Balance 

MF. Intake ME Intake 

Ener gy Balance 
+ 
0 

D 

ME Intake ME Intake 

FIGURE 9 Four methods of describing variation in energy use . In A, 
B and C the net energy required for maintenance is set equal to the 
fasting met abolism. In D, it is computed by regression. Nearly all 
net energy syst ems are described by C or D. Above maintenance and 
particularly ad libitum intake the differences betlveen these two 
systems are minimal . (Adapted from Moe and Tyrrell, 1973) 
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a. Chemical composition of diet: Fecal energy loss was considered 

to be the greatest loss of energy (20 to 60 percent of gross energy 

intake) and was a function of digestibility. Digestibility was affected 

by chemical composition of feedstuffs. Lignin exerted a great effect on 

digestibility of feeds, for example (Van Soest, 1970). Assuming that an 

adequate supply of all nutrients, the chemical composition of a diet was 

the main factor influencing digestibi.li ty . 

b. Associative effects: The influence of cell wall was related 

to the chemical composition of the ration consumed and not of its 

individual ingredients (Van Soest, 1973 b). The cell wall was partly 

responsible for interactions among feedstuffs. This interaction (or 

associative effect) 1vas small for high quality feeds but increases in 

case of low-quality feeds. I'iber size also had an effect. These inter

actions of efficiency as a result of fiber were the primary reasons for 

the shift to net energy systems rather than systems based on metabolizable 

energy (Van Soest, 1973b) . 

Vermorel (1978) found that ME was influenced by the associative 

effect between roughages and concentrates. Hence, corrections for !1!E 

contents of rations were introduced for the interaction effects and 

for the feeding level (Table 24) . The corrections were important for 

dairy cows (Table 25) . For grmving and fatt ening ruminants average 

corrections were directly introduced in the recommended allowances. 

Kromann (1973) considered the associative effects of feeds to be 

a "t,,u-1vay'' dependency when there were two ingredients in a r ation, 

and an "N-way" dependency if there were 'n' ingredients. The digesti

bility of the mixed ingredients might not be addictive . Hence, the 

net digestibility mi ght not be the sum of the diges t ibilities of the 



TABLE 24 Reduction (%) of ME Content of Rations Due to Associative 
Effects and Level of Feeding 

% Concentrate 

Forage Quality 20 40 60 

Associative effects: 
good qual i t y forages 1.0 2.5 4.0 
poor quality forages 2.0 4.0 6.0 

Effect for one unit increase in feeding level 0.5 1.0 1.5 
(for all forages) 

(Adapted from Vermorel, 1978) 

TABLE 25 Reduction in the Net Energy (UFL) Content of Rations for 
Dairy Cows Due to Associative Effects and Increases in the Level of 
Feeding (Influence of Forage Quality , Concentrate Level and Milk 
Production) 

Forage Quality Good Quality Foragea Poor Quality Forage 

% Concentrate 20 40 60 20 40 60 

Milk production 
(kg FCM/day) 
10 0.1 0.3 0.4 0.2 0.4 0.6 
15 0.1 0.4 0.6 0.3 0.5 0. 8 
20 0.2 0.5 0.8 0.3 0.7 1.0 
25 0.3 0.6 1.0 0.4 0.9 1.3 
30 0. 3 0.8 1.2 0.5 1.1 1.6 
35 0. 4 1.0 1.5 0. 6 1.3 1.9 
40 0.5 1.2 1.8 0. 7 1.5 2.2 
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aGood quality forages: green forages, grass silages and maize silages 
when dO >0. 70 and hays when dO >0. 65. (Adapted from Vermorel, 1978) 
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individual ingredients at all levels. In a ration 1vith associative 

effects, the digestibility of each ingredient could be determined 

by equations for 'n' constituents varied in 'n' different rations as 

follmvs (Kromarm, 1967): 

all X 1 + al2 X 2 + 

a21 X 1 + a22 X 2 + 

anl X 1 + an2 X 2 + 

aln X n k1 
a2n X n k2 

+ 2nn X n = kn where 

aij = fraction of each ingredient in the ration; 

x digestibility of the ingredient in the ration, and 
j 

kj digestibility of the total ration j. 

These equations could be solved for kj simultaneously by determinates. 

This method could be used to determine the "international" NEm+p' 

~~.and DE values of ration ingredients (Kromann, 1973). First, the 

NEm+p' ~~ . and DE of rations should be determined experimentally by the 

conventional methods. Then, NEm+p' ~~ . and DE values of the ingredients 

were determined by these simultaneous equations. 

Because of the interaction beuveen variation in efficiency due to 

diet and variation due to physiological function, it was not clear how to 

best describe the energy value of feedstuffs for producing animals (~1oe 

and Tyrrell, 1973). 

c. Level of intake: Moe and Tyrrell (1972) and l>loe et al. (1965) 

reported that the greatest error in net energy estimation was the 

decline in digestibility with level of intake. Since most TDN values 

were based on digestion trials conducted at near maintenance -levels, 

the application of such results to a higher level of feeding at which 

NE values must be applied resulted in an error to the extent that TDN 
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value had declined. Hence, predicted NE values could be higher than 

normal especially in the case of dairy cattle 1'hich consume large 

amounts of feedstuffs. 

Furthermore, Moe and Tyrrell (1973, 1976) recognized that the gross 

efficiency in energy utilization was influenced by level of production 

and body size. These bvo criteria have the greatest effect on gross 

energetic efficiency. At zero production, the gross efficiency was zero . 

Hence, total requirement of animals 1-as divided into needs for maintenance 

and for production. ~!oreover, the dietary energy was not utilized 1vith 

equal efficiency for all physiological functions . The proximate ranges 

for the efficiency of use of ME were as follows (Moe and Tyrrell , 1973): 

cold stress 100% 

maintenance 70 to 80% 

lactation 60 to 70% 

growth 40 to 60% 

pregnancy 10 to 40% 

The relationship beuveen energy output and l-IE intake as ME 1-as 

increased from zero to ad libitum was studied ~1oe and Tyrrell, 1973) . 

Figure 10 shm,•s that at zero l-IE intake (fasting), body tissue was 

mobil ized to meet the energy requirements of maintenance . Therefore, 

the fasting metabolism for fasting heat production was sometimes used 

as an expression of the net energy r equirement of maintenance (NEm) . 

1Vhen feed intake increased, heat production al so increases until at 

maintenance the total heat production equalled ME intake. The change 

in heat production between fasting and maintenance was a measure of 

the relative value of body tissue and dietary energy in meeting the 

energy requirements for maintenance . 
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FIGl.l"ll.B 10 Relat ionship betlveen ME intake and heat output showing 
a greater change in heat production per unit increase in "IE intake 
above maintenance. The point where the lines cross is maintenance. 
(Adapted from Moe and Tyrrell, 1973) 
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Increasing ME intake above maintenance resulted in a positive 

energy balance and heat production increased (heat increment). The 

change in energy balance above maintenance 1vas called net energy for 

production ('lEP). When a net energy value was calculated as the dif

ference beuvoen fasting and energy balance at greater intakes than 

maintenance, the term NEm+p was used to mean net energy for maintenance 

and production . If the measurement of NEm+p value was made at 

successively lower and lower levels of intake, the resulting value would 

approach the NEm value (Figure 11). Therefore, NEm+p 1vas affected by 

the level of intake. Hence, the use of separate terms for maintenance 

was weakness in the California and the British systems of energy (Hoe 

and Tyrrell, 1973). 

Adjustments were suggested for feeds fed in energy balance trials 

(Moe and Tyrrell, 1973). The TDN value obtained at the production level 

of feeding was applied to the net energy estimation. Rations that mainly 

contained corn silage and corn grain declined about four units TDN per 

unit of maintenance intake (Moe et al. 1965). Moe and Tyrrell (1973) 

suggested a revision of the corn value (NEmilk) dowmvard for 2. 42 to l. 98 

for a dairy cow consuming three times maintenance . Balance studies in-

dicat ed a TO~ of 87 for corn equivalent to an NEmilk of 2.13 to 2.27. 

The average drop for 8 feeds observed in TON per maintenance unit was 

4. 6 percent as compared with decline of 5. 4 percent for NEmilk. This 

decline in NE was mainly due to the drop in digestibility of TON. 

The energy systems had certain limitations (Moe and Tyrrell, 1973). 

First, a net energy system was a compromise if a fixed energy value was 

assigned to a particular feedstuff or ration. There was no single 

net energy value for a particular feed since there was variation in 
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FIGUPE 11 Relationship between energy balance and net energy 
terminology. As dry matter intake i s reduced from ad libitum to 
maintenance NE + approaches NE . It is , therefore, of limited 
use as an exprWsRion of the ene~gy value of feedstuffs. (Adapted 
from Moe and Tyrrell, 1973) 
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chemical and physical properties of individual feedstuff. Corn grain, 

for example did not have a single NEg value (which h'as more correct 

than other values). There was variation in corn grain of different 

varieties grown in different areas under different environments and 

processed differently. Hence, there were specific characteristics of 

corn grain which determine its NEg value through the nature of the 

fermentation process and digestion which it undergoes . There Has a 

relationship between the physiology of the animal and the nature of 

digested end products (VFAs, glucose, amino acids, etc . ) . The absolute 

amount of each of these metabolites absorbed determined the actual 

energy values of any feedstuff or a mixture of feedstuffs . 

Second, limitation of energy systems Has that the composition of 

product fo rmed 1;as not described. The NEmilk did not consider the 

variation in the ratio of milk fat to protein resulting from decline 

in milk fat percentage, for exampl e . The NEg did not distinguish bet

ween fat and protein gain either. Hence, if the partial efficiency of 

energy use for fat and protein synthesis was different, this presents 

a limitation in the use of both t he net energy concepts . Tyrrell et al . 

(1971) found that the ratio of fat and protein gain changed markedly 

as level of feed int ake Has changed. As feed l evel increased f r om 

maintenance tm;ards ad libitum, there 1vas a little change in the total 

protein deposited. Most of the increased energy retained at the ad 

libitum l evel was in the form of fat deposition . 

Third l imitation of most feeding systems 1;as the decreased 

availability of nutrients at higher levels of intake. ~tiny of the net 

energy systems generate NE values for feeds f r om digestibility data 

taken f rom tables of feed composition. Many of these values were 
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determined at maintenance level of feeding. If a diet decreased in the 

nutritive value at higher intakes, then the NE value as 1vell as the DE 

or TDN value lvill be overestimated. 

Mathematical models could also be used in many other areas of animal 

nutrition. Kearl et al. (1976) described the use of models that incor

porated various factors such as utilization of nutrients by the animal 

at different levels of intake, specific animal requirements for different 

levels of production, environmental influences, inherent variations in 

nutrient composition of a feed and its utilization by animals, differences 

in animal response to feeding regimes, prices paid for feeds, availability 

of feeds, non-feed expenses, the prices for the animals and returns from 

marketed products. 

Other Systems Used to Describe the Energy Value of Feedstuffs 

The starch equivalent (SE): This system was widely used in Europe 

to denote energy values (Harris et al. 1972). The starch equivalent 

was defined as the amount of pure starch, perfectly digested, which had 

the same fat-producing power as 100 pounds of the feedstuffs (Cuthbertson, 

1969). Kellner (1905) established a series of factors for the fat

producing pmvers in bullocks of the energy-producing nutrients. One 

kilogram of starch was calculated to produce 0. 250 kilogram fat in the 

animal bcdy and this was equivalent to 2380 kilocalories of chemical 

energy. Furthermore, Kellner (1905) calculated the theoretical fat

producing powers of feed stuffs from their content of digestible nut

rients and then detennined the actual fat-producing p01ver experimentally. 

There was good agreement in both calculations except where the feed-

s tuffs were high in crude fiber. 
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Starch equivalent could be converted to net energy by multiplying 

by 1071/100. The net energy value of starch being 1071 kilocal ories 

per pound. The division by 100 takes into account that starch equiva

l ent was expressed per 100 kilograms (pounds) of feeds , while net energy 

values were expressed per kilogram (or pound) . 

Russian oat unit (OU) which was based on the amount of oats required 

to produce as much as 100 kilograms of feed being used. 

Scandinavian feed unit (FE, from the tenn Foderenhet). This syst em 

used barley as the reference feed and referred to milk production 

instead of fattening. 

~bdified feed unit or French feed unit (FEe or UF) . 

These systems used true prot ein value, while the TDN system used 

crude protein (Ensminger and Olentine, 1278? . Table 26 shows how 

these energy systems relate to the TDN system. 

The tenn Joule 1vas suggested t o replace the tenn calorie to express 

energy terms. A calorie was defined as the amount of heat required to 

increase the temperature of one gram of lvater from 14. S0 to lS. S° C, 

the specific heat of water at 1S° C at constant pressur e being defined 

as unity. A cal orie could more precisely be defined as the thenno

chemical calorie since the standard used in calorimetric work in 

nutrition was the heat combustion of benzoic acid . This was mainly 

expressed as Jules per gram mole and secondarily as thennochemical 

calories per mole (Harris et al . 1972). The joule was defined as the 

work done when the point of application of a force of one newton (N) 

1vas displaced through a distance of one meter (M) in the direction of 

the force . One calorie 4.184 joules . 



TABLE 26 Detennination of Energy Units 

Digestible 

N-
Unit Ether CIVde Free 
of the Protein Extract Fiber Extract 

~~~~~ Digestible 
Nutrient ~I.Jltiply by Further Procedure 

TDN 1 2. 25 Sum up 
(crude 
protein) 

SE . . .. Weight D. 94 2. 41 Sum up and 
units (true 2.12 n~1ltiply by the 
or % protein) 

~~912 
"availabili ty11 

FEe"" g/kg 0. 94 2. 41 SIUn up, multiply 
(true 2. 12 by the "avail -
protein) 

~~ 91 2 ability, " nnd 
divide by 700 

ou .... k/kg 0. 94 2. 41 Sum up, multiply 
(tme 2.12 by the "availa-
protein) 

~~912 bility," and 
divide by 600 

FE •••• k/kg 1. 43 2. 41 Sum up, multiply 
(true) 2.12 by the "avail-
protein) 

~~912 ability, .. and 
divide by 750 

aTDN =total digestible nutrients; SE = starch equivalent; FF~ = ~odified or French 
feed unit; Oil= R11ssian oat unit; FE= Scanclinavian feed unit. 

bDigestible ether extract of oily seeds, cakes, and feeds of animals origin should 
be multiplied by 2.41; that of leguminous seeds, cereal grains, and their by-products 
by 2.12; and that of hays, straws, chaffs, green fodders, silages, roots, and tubers 
by 1. 91. (Adapted from Ensminger and Olen tine, 1978). 
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Protein Utilization 

The concept of "net nutrient" \vas first proposed to be applied to 

nitrogen nutrition and other nutrients (Harris and Asplund, 1968). The 

concept of "net nitrogen" could be of great importance in studying the 

nitrogen contribution to a certain ration (Figures 12 and 13). 

The first step in applying the concept of net nitrogen was to deter

mine the digestible protein of the diet . Regression equations for each 

class of feed and animal kind wer e developed (Knight and Harris, 1966) 

may be used (Tables 27 and 28). The regression equation: Y(Digestible 

protein) = . 866 X (crude protein) - 3.06 (developed by Knight and 

Harris, 1966) was used by the NRC (1971). I t was similar to that of 

Holter and Reid (1959) that worked on Morrison' s (1956) data: 

Y = 0.883 X -3 . 07 . However, it was different from the equat ion resulted 

f rom Cornell data (Y = 0.929 X -4.48) (Holter and Reid, 1959). Similar 

equations for predicting digestible true protein were needed (Harris 

et al. 1968a). The second step Has to predict true digestible nitrogen 

or true absorbed nitrogen (TAN) which could be comput ed from the nitrogen 

content of forages (Harris et al . 1972). In classical methods of es

timating true digestible nitrogen it was necessary to have an estimate 

of the metabo lic nitrogen. Mitchell (1924) determined the value of 

metabolic nitrogen by feeding a nitrogen-lrnv or nitrogen-free diet . 

It was practically difficult to apply the method of Mitchell (1924) 

because animals might refuse to eat diets low in nitrogen. Hence , 

Harris et al. (1972) proposed that metabolic nitrogen values might be 

obtained from metabolism data from animals fed nitrogen levels both 
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FIGURE 12 Biological partition of dietyary nitrogen (N). (Adapted f rom Harris et al. 1972) 
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TABLE 27 Equations Used to Estimate Digestible Protein (Y) from Cn1de Protein (X) for 
Five Animal Kinds and Four Feed Classes 

Standard 
Animal Feed Sample Con-elation Regression Deviation From 
Kind Class Size Coefficient Equation Regression 

ca Db 210 0 970 Y ~ 0.866X - 3.06 0.75 
s D 521 0 971 Y ~ 0.897X- 3.43 0. 77 
c p 84 . 976 Y ~ 0. 850X - 2. 11 0.61 
s p 251 0 979 Y ~ 0.932X- 3.01 0.69 
c E 85 0 972 Y ~ 0.918X- 3.98 0.89 
CSIIG s 235 .969 Y ~ 0. 908X- 3. 77 0. 58 
G DP 20 .986 Y ~ 0.933X- 3.44 0. 50 
II DP 33 0 967 Y ~ 0.849X - 2. 47 0. 87 
Q-IS E 237 0 975 Y ~ 0.916X- 2. 76 0.51 
R DP 35 . 951 Y ~ 0.772X- 1. 33 0.82 

aAnimal kind symbols are as follows: C ~ cattle, G ~ goats, 1-1 ~ horses , 
R ~ rabbits, S ~ sheep. 

bFeed class symbols are as follows: D ~ dry roughages, P ~ pasture and range 
plants, S ~ silages, E ~ energy feeds. (Adapted from Knight and 1-faTTis, 1966) 

N .... 
c.n 



TABLE 28 The Relationship Between the Percentages of Crude Protein (X) 
and Digestible Protein (Y) in Dry Forages, Pasture and Green Soiling 
Crops, Silages, and Energy Feeds by Swine 

Feed Sample Correlation 
Class Size Coefficient 

DPa 12 .995 
s 6 . 963 
E 109 .967 

Regression 
Equation 

y 0.846X 
y 0.954X 
y 0.909X 

4. 50 
2. 76 
2. 31 

Standard 
Deviation 
From Regression 

1. 50 
1.40 
2. 42 

aFeed class symbols are as follmvs: D = dry roughages, P = pasture and 
green soiling crops, S = silages, and E = energy feeds. (Adapted from 
Knight and Harris, 1966) 
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below and above the maintenance requirement and calculating the intercept 

of the following regression equation (R ; . 79): 

Apparent digestible nitrogen (%) ; -0.40 + 0. 74N, 1;here N ; the nitrogen 

content of forages . 

For the calculation of the biological value for maintenance and 

production (BVm+p) the urinary ni trogen needed to be used as in the 

following equation (Hitchell, 1924): 

BVm+p 
NI - (FN - FNm) - UN - UNe) X 100, 
NI - (FN - FNm) 

NI ; nitrogen intake, fN ; fecal nitrogen, 

UN; urinary nitrogen, and UNe ; endogenous 

This formula could be rearranged as follows 

(NI FN - UN) + ~ + UNe X 100 • 
NI FN + FNm 

where 

FN m ; metabolic fecal nitrogen, 

urinary nitrogen. 

(Harris et al. 1972): 

The term (NI - FN - UN) was nitrogen balance or production nitrogen. 

The term (FNm + UNe) 1;as the amount of nitrogen needed for maintenance . 

The term NI - FN + FNm 1vas true absorbed nitrogen. Thus, the formula 

could be l«itten: 

BV ; maintenance N + pr oduction N X 100. 
m+p true absorbed nitrogen 

Therefore, the biological value for maintenance (BVm) was the 

percentage of true absorbed nitrogen that 1;as utilized for maintenance: 

FN +UN BV ; m e X 100 and, the biological value for production 
m NI - FN + FNm 

(BVP) was percentage of the true absorbed nitrogen that was utilized 

for production: 



NI - FN - UN X 100 
NI - ~ + FNm 
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The value of UNe was estimated from the int ercept of t he r egression 

equat ion: urine nitrogen = 0. 102 g + 0. 91 apparent absorbed nitrogen 

(R = 0. 87). The aver age weight of horses (423 kilogr ams) UNe (mil ligram 

per kilogram body weight) was 9. 4 grams per day (Harris et al. 1972) . 

Net nitrogen (Net Nm+p) was the percentage of the intake nitrogen 

that 1vas utilized for maintenance and production: 

Net Nm+p 

Net Nm+p 

FNm + UNe + (NI - FN - UN) X 100 or 
NI 

Net Nm + Net Np X l OO 
NI 

or 

Net Nm+p was t he product of BVm+p times the tur e digestibility coefficient: 

Net Nm+p : TAN % X BVm+p· The results obtained with regression equations, 

from horses fed on alfalfa and oats diet, 1vere similar to those 

obtained from the conventional methods (Harris et al . 1972). 

However , the concentration of crude protein in a feedstuff in-

fluenced its digestibility. Mitchell (1942) used data tabulated by 

Morrison (1936) found that the following equation expressed curvilinear 

relationship between the apparent digestibility (Y) of protein and 

the protein percent (X) in the forages : 

Y = 42 . 64 (X - 5) 0 · 215, fo r cat tle and sheep . 

Forbes (1950)used the same method on dat a from Schneider (1947) 

and got the following equations: 

y = 40.31 (X - 5)0.218; for cattle and sheep 

y 35.31 (X 5) 0. 272; for cattle (R = . 99) 

y - 42.13 (X - 5)0 . 200; for sheep (R = . 90) · 
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It was concluded that t he protein in low prot ein forages \vas more 

efficiently di gested by sheep than by cattle. This \vas in agreement 

with results of Holter and Reid (1959) who concluded t hat under the 

usual condit ions of di ges t ion t rials , sheep might consume less feed 

(especially of l ow-protein, high fiber feeds) per unit of body wei ght 

and , therefore , excr et e l ess met abolic ni t rogen than cattle . The effect 

of a lower metabolic excret ion of nitrogen in contribut ing to a higher 

apparent digestibilit y of protein would be pronounced at low levels of 

protein intake because under this condition metabolic nitrogen constitutes 

most of the total nitrogen in feces. 

Holter and Reid (1959) employed data from t 1v0 sources (Cornell data 

and ~brrison ' s 1956 dat a) . The intra-forage (inter- animal) coeffici ent 

of variation in diges t ibility of protein for the Cornell data was 2. 4 

percent . The apparent digesibility of protein \vas found to be highly 

significantly correlated with the concentration of crude protein of 

forages. The relationships between the two variables for green and dry 

forages were fOlllld to deviate highly significantl y f r om linearity. 

However , the regression for silages was essentially linear. For green 

and dry forages , the curvilinearity of the relationship ~Vas the result 

of the decrease as in the relative contribution of metabol ic ni t rogen 

to the total fecal nitrogen as t he crude prot ein concentration of forages 

increases. 

The follo~Ying regression equation result ed f r om fitting the method 

of Mitchell (1942) to the data of the Cornell green forages fed to 

cattle: 

Y = 34. 90 (X - 5) 0· 297 
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MATERIALS AND ME'lliODS 

Source of Data 

Data used in this study were obtained from the International Data

bank System (International Feedstuffs Institute, Utah State University). 

This system is an international sys tem for collection, calculation, 

and retrieval of data on the compos ition of animal feeds (Harris et al. 

1968a). 

Data had been collected from three major sources. First source 

was the collaborating laboratories, second was published data in 

literature and third l<as data from the centers related to the Interna

tional· Network of Feed Infonnation Centers (INFIC). INFIC has been 

organized to standardize the naming of feed methods for analyzing and 

reporting feed composition data throughout much of the I<Orld. However, 

included in this study 1vere the data of Canada and the U.S.A. 

INFIC developed an "International System" to name feeds, record 

chemical and biological data about feeds, and to make it possible to 

code the data so it can be summarized, retrieved, and printed in flexible 

formats. On-line data are available for using a remote terminal for 

calculatin~ diets to obtain maximum profit (INFIC , 1978). 

The "International Feed Vocabulary'' system had also been devised 

to make it possible to know the contents and other characteristics of 

a feed from its name (INFIC, 1978; Harris et al. 1965). 
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An "International Feed Name" was made up by combining descriptors 

of six facets: 

1. Origin including scientific name (genus, species , variety), 

common name (generic, breed or kind, strain) and chemical formula. 

2. Part fed to animal and as affected by processes. 

3. Proccess(es) and treatment (s) t o which the part eaten was 

subjected prior to feeding. 

4. Stage of maturity or developme~t (applicable to forages and 

animals) . 

5. Cutting (primarily applicable to forages). 

6. Grade. 

These six facets give qualitative description of the feed. 

The International Feed Vocabulary is a system used in naming feed

stuffs. Tlris system is a modification of the international system 

proposed by Harris (1963) and Harris et al . (1968a) . Thousands of 

feedstuffs were recorded and given "International Names" in English, 

German and French (INFIC, 1978), arld in Arabic and Turkish (Kearl et 

al. 1979). The Port uguese and Spanish versions are being prepared. 

These International Names are in wide use throughout the 1vorld. 

The Int ernational Feed Vocabulary i s designed to give a compre

hensive name of each feed as concisely as possibl e . Each feed is 

coined by using descriptors within one or more of the six mentioned 

facets. 

Classification of Feedstuffs 

Feedstuffs were divided into the following eight classes: 
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1. Dry forages and roughages. This class included all forages 

and roughages that are cut and cured. Forages and roughages are law in 

net energy per unit weight, usually because of their high fiber content 

though sometimes because of their high water content. When products 

contain more than 18 percent crude fiber on dry matter basis, they are 

classif~ed forages (legumes, grasses) or roughages (straw, fodder, stover, 

hulls, shells) . 

2. Pasture, range plants and forages fed green. Included in this 

class are all forage feeds not cut or cured. They may be dry or weathered 

(subjected to weather conditions such as rain, frost, stem dry or grazed 

after the growing season) when consumed. 

3. Silages. Silages are defined as fermented forage plants by 

ensiling. Ensiling is a method to preserve feedstuffs. It is a process 

that includes the changes which takes place when forage or feed 1ath 

sufficient moisture to cause fermentation is started in a silo in the 

absence of air (Ensminger and Olentine, 1978). 

4 . Energy feeds. These were products that have less than 20 

percent crude protein and less than 18 percent crude fiber. Examples 

were: cereal grains, mill by-products, roots, fruits, and nuts. 

However, certain roots, fruits, nuts and their by-products are classified 

as roughages. 

5. Protein supplements. They 1vere products which contain 20 

percent or more crude protein (Nitrogen x 6.25). These supplements 

could be from animal origins (livestock, fish, marine, milk and poultry) 

or plant origin (seeds and seed meals). 

6. Mineral supplements. 



253 

7. Vitamin supplements. 

8. Additives (antibiotics , coloring material, flavores, hormones, 

medicants) . 

H01vever, onl y the first five classes were included in this study. 

The SL~-digit international feed number (IFN) given after each name 

is used for control purposes to identify each feed for summarization and 

retrieval of data . This number may be also used as the "numerical name" 

of a feed when using a computer to calculate diets to obtain maximum 

profit. The first digit of the IFN is always its class designation 

(INFIC, 1978) . 

IFN could be long or short. A complete international long name 

consists of all descript ors applicable to that feed (INFIC, 1978) . The 

long international feed name would be used for comprehensive feed t ables 

such as an atlas of feed composition data (NRC, 1972). The international 

short feed name (Harris , 1976) are coined by leaving out certain 

descriptors which are understood (aerial parts for forage) or by using 

descriptors which are used in commerce (meal is used in place of 

dehydrated ground for those feeds which are processed) . 

It was proposed that international short feed names for a given 

language be used as a legal name in a country for feed control purposes, 

commerce, and for feed composition tables for every day use (INFIC, 

1978). Short names have been used by the NRC (1977) . 

The Systematic Collection and Recording of Data on Feed Composition. 

Harris et al. (1968a) and Harris (1970) devised an international source 

form for recording data. This form had been revised so that data on 
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additional attributes such as toxic constituents , fertilizer, and 

pollution could be recorded (INFIC, 1978). This form was divi<.led into 

cards, and a description of information to be filled in for each area 

of the source follows. These cards were: 

1. Card 10: Describes origin of dat a, origin of sample and 

description of feed. 

2. Card 21 : Describes quality of feed, soil and fertilization. 

3. Card 22: Describes storage of silage. 

4. Card 24: Describes pollution and plant protection. 

5. Card 30: Describes digestibility trial data whm a digesti-

bility trial has been conducted on the feed sample. 

6. Card 40: Describes chemical and biol ogical data on the feed 

sample. 

The source forms are designed so information may be punched 

directly into 80-column computer cards or onto magnetic tape (INFIC , 1978). 

Classification of Animal Kinds 

Biological data were sorted by kind of animals 1vithin each class 

of feedstuffs because different species of animals may greatly differ 

in feed utilization. Moreover, animal species have different nutrient 

requirements . Hence, animals were divided into the following kinds. 

1. Cattle 

2. Horses 

3. Rabbits 

4. Sheep 

5. Swine 

6. Poultry 



In vitro results were also included in this study whenever data 

were available. 

Mathematical Models 
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A significant regression or change of one variable in relation to 

another indicated a strong possibility of predicting an unknown value 

from one that \vas lmown (Harris et al. 1972). 

By usual statistical convention the dependent variable was desig 

nated as Y, and the independent variables were designated as X' s. Each 

independent variable (X) included in the equation will fluctuate 1vith 

Y in its OIVll way. 

Linear regression equations might be 1vri tten as follows: Y = b0 + 

b1X1 + b2X2 + b3~ .. : etc. where b0 is the Y intercept when X = 0 

(regression constant) and b1 , b2, b3 ... etc . are the respective 

changes in Y per unit change (regression coefficient) of independent 

variables x1, x2, x3 ... etc. With only one independent variable 

(X1) it is called simple linear regression and with more than one 

(X1, x2, x3 ... etc.) multiple linear regression. Usually multiply 

linear regression methods give more accurate estimates of the dependent 

variables . 

TDN Studies . Simple linear regression models were developed for TDN: 

Y b0 + b/
1 

where Y = 1DN%, b0 = constant (intercept of Y when 

X 0), b1 =regression coefficient (slope of line that indicates the 

rate of change in Y), and x1 =the percentage of any of the proximate 

analysis components (crude fiber, ether extract, nitrogen-free extract, 

or crude protein). Meyer and Lofgreen (1956) used the same approach 
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to predict TDN from crude fiber, lignin or nitrogen content of 

alfalfa. 

However, since TDN value was a result of the digestibility of more 

than one entity, multiple regression equations were used as fol101vs: 

TDN% (Y) = b0 + b1X1 + bzX2 + b3x3 + b4X4 ~<here 

b0 is a constant (the intercept of Y when X = 0). 

b1, b2, b3, b4 are the regression coefficients of X' s, and x1 ! x2, x3, 

and x4 are the percentages of digestible or proximate crude fiber, 

ether extract, nitrogen-free extract and crude protein, respectively 

for a certain feedstuff. 

In order to show the interactions among the nutrient components of 

feeds, the following model (developed by Harris et al. 1972) was used: 

2 2 TDN% = b0 + b
1
X

1 
+ b2X2 + b3X3 + b4X4 + b5X2 + b6x3 + b7X

1
X2 + b8X

1
X3 + 

b9x2x3, where b0 1;as a constant (the intercept of Y where X=O), 

b
1

, b2, b3, b4, b5, b6, b7, b8 and b9 ~;ere the regression coefficients 

of the X' s and Xr, x2, x3 and x4 1vere the percentages of crude fiber, 

ether extract, nitrogen free extract and crude protein, respectively 

for a certain feedstuff. 

Another approach was followed to estimate TDN. This approach 

consisted of: first predicting the digestible nutrients (digestible 

crude fiber, digestible ether extract, digestible nitrogen-free extract 

and digestible crude protein) from the actual percentages of nutrients 

in a feed. 1\vo models ~;ere used to predict the digestibility of 

nutrients from their actual percentages: the simple regression model: 

1;here Y was the digestible nutrient, b0 is the inter-

cept of Y when X=O, and X was the percentage of the nutrient in the feed. 
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The following multiple regression was also used to predict the 

digestibility of a certain nutrient: 

Y = b
0 

+ b1X1 + b2x2 + b3x3 + b4X4 where Y was the digestible nutrient, 

b0 was a constant; b1 , b2, b3 and b4 were regression coefficients of the 

X's and x1, x2, x3 and x4 were the percentages of crude fiber, ether 

extract, nitrogen- free extract and crude protein, respectively. 

The second step was to calculate IDN from the digestible nutrients 

according to the conventional way of calculating TDN: 

TDN =digestible crude fiber x1 +digestible ether extract X 2.5 + 

digestible nitrogen-free extract x1 +digestible crude protein x1. 

Classes of feedstuffs were subdivided into more related subdivisions, 

as follm;s : 

Subclass Class 1 Class Class 3 Class 4 Class 5 

Legumes 11 21 31 

Grasses 12 22 32 

Legumeous roughages 13 23 33 

Non-legumeous 
roughages 14 24 34 

~!ixture (legumes 
& grasses) 15 25 35 

Animal origin 41 51 

Avian origin 52 

Marine origin 53 

Milk origin 54 

Plant origin 42 55 



Then data from classes 1, 2, and 3 were pooled together and 

subgrouped into 5 subgroups while data from each of classes 4 and 

were subgrouped into 2 subgroups as follows: 

Subgroups Class 1 + Class 2 + Class 3 Class 4 Class 

Legumes ll 

Grasses 12 

Legumeous roughages 13 

Non-legumeous 
roughages 14 

Mixture (legumes 
& grasses) 15 

Plant origin 41 

Animal origin 42 

Animal origin 51 

Plant origin 52 

Subgroups of classes of feedstuffs. 
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TDN was calculated for each animal kind within each subclass and 

subgroup of feedstuffs . 

A third approach was used to predict TDN values using the quali-

tative factors that may affect the value of TON, besides the chemical 

composition (Christiansen, 1979; Fonnesbeck et al . 1981 a,b). 

Data was classified as fo llows: 

a. Classes of feedstuffs were subdivided into groups of feeds 

that were from the same family: 
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Class Code 

1 2 3 4 5 Subclass Sub-subclass 

11 21 31 legumes 
12 22 32 grasses 
13 23 33 legumous roughages 
14 24 34 non-legumous roughages 
15 25 35 mixture (legumes + grasses) 

41 plant origin 
13 fruits 
15 cer eal grains 
20 mill by-product nad 

residue, bakery by-
products 

21 carbohydrate supplements 
(molasses, starches, 
sugars, flours, ... ) 

22 nuts 
24 oils 
27 roots and tubers 
42 animal origin 
11 fats (fat, tallow, lard, 

grease, .) 
37 whey and whey by-products 

51 animal origin 
04 ·carcasses (carcass meat 

trims, carcass residues, 
meat and bones) 

19 meats 
35 tankage 
37 viscera 
52 avian origin 
04 carcasses (carcass 

residues) 
10 egg contents (yolk, 

white .. . ) 
14 gizzard 
16 hatchary by-products 
36 viscera 
40 litter and wastes 
53 marine origin 
54 milk origin 
OS casein and milk by-

products (cheeses ... ) 
55 plant origin 
29 seeds 
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b. Stages of maturity were divided as follows : 

Code Stage 

0 unkno\\'11 
l early and late vegetative + regrowth early vegetative 
2 early bloom + mid-bloom 
3 full bloom + late bloom 
4 milk stage + doughstage 
5 mature 
6 postripe + stem cured 

c. Parts-eaten: 

Code Part 

01 aerial parts 
02 brain 
03 br01vse 
04 carcasses (car cass meat trim, carcass residues, meat and bones ... ) 
OS casein and milk by-products (cheeses ... ) 
06 chaff 
07 cobs 
08 cones 
09 ears 
10 egg contents (yolk and white) 
ll fat (grease, lard, tall01v ... ) 
12 fodder 
13 fruits 
14 gizzard 
15 grains (cereal grains) 
16 hatchary by-products 
17 hulls 
18 leaves 
19 meat (plant nuts) 
20 mill residues , mill by-products, bakery by-products .. . 
21 carbohydrat e supplements (molasses, starches, sugars . .. ) 
22 nuts 
23 nuts with shells 
24 oils 
25 pods 
26 pulp 
27 roots and tubers 
28 screenings and mixed screenings 
29 seeds 
30 shells 
31 stems and twigs 
32 stillage 
33 stover 
34 straw 
35 tankage 
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Code Part 

36 viscera 
37 whey and whey by-products 
38 whole plants and mixed plants 

TDN was predi cted, then the estimated values were compared with the 

actual TDN values using the MDCF computer program (Hurst, 1979) . 

Digestible Energy Studies. Simple linear regression models were devel

oped to predict digestible energy of feedstuffs from their proximate 

analysis (Cook and Child, 1977; Christiansen, 1979). 

Y ; b0 + b1X1 where Y ; De in Mega calories (in kilocalories for 

swine), b0 ; constant (intercept of Y when X ; 0), b1 ; regression 

coefficient (the slope of line that indicates the rate of change in Y), 

and x1 ; the percentage of any of the proximate analysis components 

(crude fiber, ether extract, nitrogen-free extract or crude protein) . · 

DE was calculated from predicted digestible nutrient values. 

Multiple linear regression equations were also used to predict DE 

of feedstuffs from their proximate analysis as follol~ (Nehring and 

Haenlein, 1973); Y ; b0 + b1X1 + b2x2 + b3x3 + b4X4 '"here Y ; DE in 

Mega calories (in kilocalories for swine), b0 constant (the intercept 

of Y when X; 0), b1, b2, b3 and b4 were r egression coefficients of the 

X's, and Xl.' x2, x3 and x4 were the digestible or proximate content of 

crude fiber, ether extract, nitrogen- free extract and crude protein of 

a particular feedstuff, respectively. 

Digestible energy was also predicted from TDN% by a simple linear 

regression equation (Crampton et al. 1957; Harris and Asplund, 1968; 

Swift, 1957; Van Soest, 1971) . (Y) DE (~!ega calor ies) ; b0 + b1 TDN%, 

where b0 was a constant (the intercept of Y when X ; 0), and b1 was 



the regression coefficient (the slope of the line that indicated the 

rate of change in DE (Y) value). 
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Feedstuffs were classified into five classes (dry forages and 

roughages, pasture, range plants, and forages fed green, silages, energy 

feeds and protein supplements) . 

Animal kinds were also considered as in the case of TDN studies. 

Hence, DE was predicted for each kind of animal within each class of 

feedstuffs (whenever data >vere available). 

Metabolizable Energy Studies . The same approach of predicting DE from 

proximate analysis was used to predict metabolizable energy (ME) for 

each kind of animals within each class of feedstuffs (whenever data 

were available): Y = b0 + b
1
X

1 
where , Y =ME in Megacalories (kilo

calories for swine), b0 =the intercept of Y 1vhen X= 0 (a constant), 

b
1 

the regression coefficient of X (the rate of change in Y) , and 

x1 any of the four components of proximate analysis (crude fiber, 

ether extract, nitrogen-free extract or crude protein). 

A multiple regression equation \Vas also used to predict ME from 

proximate analysis as follmved: Y - b0 + bl1 + b2X2 + b3X3 + b4X4 

IVhere Y =ME in Megacalories (in kilocalories for swine), b0 constant, 

b
1

, b2, b3 and b4 were regression coefficients of the X's, and 

~' x2, x3 and x4 were the percentages of digestible or proximate 

nutrients (crude fiber, ether extract, nitrogen-free extract and 

crude protein). 

This approach was used by many researchers (Bickel and Landis, 

1978; Nehring and Haenlein, 1973; VanEs, 1978; Vermorel, 1978). 
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ME was also predicted from TDN value: Y = b0 + b
1 

(TD:q%) where 

Y = ME in Megacalories (in kilocalories for swine), b0 = constant, and 

b1 = regression coefficient . 

Moreover, !'IE 1;as predicted from the DE values of feedstuffs as 

follows: Y = b0 + b
1 

(DE) where Y =ME in Megacalories (kilocalories 

for swine), b0 = constant, and b1 =regression coefficient. 

A similar method was used for sheep by Harris and Asplund (1968) 

and for s1nne by Morgan (1976) . 

~~ was also predicted from TDN values for each kind of animal 

within each class of feedstuffs as follm;s: Y = b0 + b1 (TDN%) where 

Y = ~~ in Megacalories (kilocalories for swine), b0 constant and 

b1 =regression coefficient of X (TDN~) . 

Harris and Asplund (1968) and Morgan (1976) used the same approach 

for sheep and ~;ine, respectively. 

Protein Utilization. Knight and Harris (1966) found out a linear 

relationships between digestible protein and the protein concentration 

in feedstuffs . 

Simple regression equations were developed to predict digestible 

crude protein (DCP) from crude protein (CP) concentration for each 

kind of animal within each class of feedstuffs mentioned: 

Y (DCP%) = b0 + b1X1 where b0 was a constant, ~1 was the regression 

coefficient of x1 , and x1 was the crude protein percentage of the feed. 

However, the digestibility of a certain nutrient could be affected 

by the presence of other nutrients. Hence, a multiple regression 

equation was developed to predict DCP from the proximate analysis, 

as follows : DCP% = b0 + b1 x1 + b2x2 + b3x3 + b 4 x4 where b0 l<as a constant, 
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b
1

, b2, b3 and b4 were the regression coefficients of the X's, and 

x
1

, x2, x3 and x4 were the percentages of crude protein, crude fiber, 

ether extract and nitrogen-free extract, respectively. 

Nitrogen-Corrected Metabolizable Energy CMEnl for Poultry. MEn was 

estimated from each proximate nutrient contents of different classes of 

feedstuffs by the use of simple regression as follows: 

Y (MEn) = b0 + b1 x1 1vhen b0 was the intercept of Y when X = 0 ( a constant) , 

b
1 

=the regression coefficient of X (the rate of change in Y) , and x1 

any of the four components of proximate analysis (crude fiber, ether 

extract, nitrogen free extract or crude protein). 

Multiple regression was also employed to estimate MEn: 

Y(I-!En) = b0 + b1x1 + b2x2 + b3x3 + b4X4, 111here b
0 

=constant, b1, b2, 

b3 and b4 were the regression coefficients of the X's, and x1 , x2, x3, 

and x4 were the percentages of crude fiber, ether extract , nitrogen 

free extract and crude protein, respectively. 

Net Energy for Production (NEp) for Poultry. NEp was estimated by 

the use of the simple and multiple regression equations, as it was the 

case in predicting MEn. Moreover, NEP was estimated from NEn by simple 

regression: Y(NEP) = b
0 

+ b1 (MEn)' 111here b0 =constant and b1 =the 

rate of change in Y. 

Computer Programs 

(SPSS) Statistical Package for the Social Sciences (Nie et al . 1975) 

1vas used. SPSS is an integrated system of computer programs designed 

for the analysis of social science data . The system provided a unified 
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and comprehensive package that enables the user to perform many different 

types of data analysis in a simple convenient manner. SPSS allowed a 

great deal of flexibility in the format of data. It provided the user 

with a comprehensive set of procedures for data transformation and file 

manipulation, and it offered the research a large number of statistical 

routines. 

In addition to the usual descriptive statistics, simple frequency 

distributions, and cross-tabulation SPSS contained procedures for simple 

correlation, partial correlation, means of variances for stratified sub

populations, one-way and N-way analysis of variances, multiple regression, 

discriminant analysis, scatter diagrams, factor analysis, canonical 

correlations, and Guttman scaling. The data-management facilities could 

be used to modify a file of data permanently and can also be used in 

conjunction with any of the statistical procedures. These facilities 

enabled the user to generate ne1v variables Nhich are mathematical and/or 

logical combinations of existing variables, to record variables, and to 

sample, select, or Neight specified cases. 

This program 1;as used in all mathematical models developed to 

predict TON , digestible energy, metabolizable energy, and digestible 

protein. 

~IDCR (~~ltivariate Data Collection Regression). This program performs 

a 1vide variety of transformations, generates dummy variables for a 

1vide variety of factorial type and nested experimental designs , and 

computes means, standard deviations, a complete correlation matrix 

and the corrected sums of squares and products matrLx. It stores 



arrays on disks which are used as input together programs in the 

series (Hurst, 1979). 
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SMRU (Stepwise Multiple Regression Upward). Is a stepwise addition 

program which has the capability of making grcups of variables act as 

single variable (Hurst, 1979) variables may be added singly or groups 

of variables may be defined as subsets wherein a group of variables are 

evaluated and added as a single unit. 

The last two programs (MDCR and SMRU) were used to predict TDN 

from proximate analysis of feedstuffs and other qualitative factors . 
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RESULTS AND DISaJSSION 

Predicting Digestibl e Nutrients 

Predicting Digestible Crude Protein (DCP) 

Digestible Crude Protein from Crude Protein (CP) . Digestible 

crude protein was found to be highly correlated (R2 ~ .78 to .97) with 

CP contents (Appendix Figures 14 to 32) of all classes of feedstuffs 

for all kinds of animals (Table 29). These results were in agreement 

1-dth those of Knight and Harris (1966). 

DCP was found to be linearly related to the concentration of crude 

protein in all classes of feeds. Holter and Reid (1959) reported simi

lar relationships for dry and green forages fed to sheep and cattle. 

Classes of feedstuffs were subdivided into more related subclasses 

in an attempt to find out if the subdivision of classes of feeds could 

have an effect on predictability of nutrients from their crude concen

trations in the feeds. Table 30 shows the results of predicting DCP 

from CP of the subdivided classes of feeds for various kinds of 

animals. In general, the correlation between DCP and CP was high 

(R2 ~ . 74 to .99) except in the case of the non-legumeous roughages 

in dry forages and roughage for horses. 

Crude protein content of the non-legumeous roughages is very low 

that the digestibil ity of protein could be negative due to more meta

bolic nitrogen excretion than the feed could furnish to the body . 

However, animals differ in utilization of crude proteins from such feeds. 
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TABL13 29 Simple Regression Equations to Predict Digestible Crude 
Protein (DCP%) from Crude Protein Contents (CP%) of Different 
Classes of Feedstuffs for Various Kinds of Animals 

Animal Feed 
R2 ~ Kind Class Equation SEa 

Cattle l DCP% = -2.8749 + . 8648 (CP%) .9606 .97 312 
2 DCP% = -3.3744 + .9150 (CP%) .9430 1.12 160 
3 DCP% = -3.4762 + .8873 (CP%) .9687 . 70 229 
4 DCP% = -3.4401 + .8926 (CP%) .8225 1.65 66 
5 DCP% = -6.8888 + 1.0000 (CP%) .9302 3.82 so 

'-lorses l D:::P% = -1.7852+ . 7712 (CP%) .9250 1.19 36 
4 DCP% = - . 8801 + . 7862 (CP%) .8523 1.48 13 
5 DCP% = -9.2733 + 1.1302 (CP%) . 7792 l. 80 5 

Rabbits l DCP% = -4.9740 + .9643 (CP%) .9208 l. 83 25 
4 DCP% = -2 .4118 + 1.0102 (CP%) .9195 1.19 14 
5 DCP% = 2. 2786 + . 8333 (CP%) .9532 1.62 8 

Sheep l DCP% = -3.2001 + .8870 (CP%) .9407 l. 28 511 
2 DCP% = -2.4322 + .8996 (CP%) .9302 1.49 298 
3 DCP% = -3 . 2082 + .8746 (CP%) .9293 1.16 95 
4 DCP% = -2 .6026 + . 8945 (CP%) .8516 l. 74 119 
5 DCP% = -2 .3153 + .9054 (CP%) .9471 3.58 107 

Swine l DCP% = -3.8603 + . 8786 (CP%) .8926 2. 52 14 
2 DCP% = -l. 7250 + . 8030 (CP%) .9738 .82 25 
4 DCP% = -1.8522 + .9005 (CP%) .8955 1.60 89 
5 DCP% = -1.2506 + .9926 (CP%) .9710 4. 30 58 

aN= number of observations. 

bSE = standard error estimate . 
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Data for sheep showed higher correlations (R2 = . 80) between DCP and CP 

in dry non-leguneous roughages than cattle (R2 = .64). This was in 

agreement with Forbes (1950) who reported better digestibility of crude 

protein in lOIV-protein forages by sheep than by cattle. This higher 

efficiency was related to less metabolic nitrogen excretion by sheep 

due to less consumption of low-protein feeds per unit of body weight 

(Holter and Reid, 1959). 

Fresh non-legumeous roughages showed high association (R2 = .99 

and . 87) bet\,oeen DCP and their CP contents by both cattle and sheep, 

respectively. The difference bet\\leen dry and green feeds could be 

related to chemical changes in protein due to preservation treatment, 

the physical nature of forages and its effect upon the excretion of 

nitrogen. In case of hays, leaf loss would result in less protein and 

more fiber contents (Glover et al. 1956). 

Protein supplements of milk origin shOIVed very high predictability 

of DCP from their contents of CP (R2 = .99) by both cattle and sheep. 

Data for rabbits generally showed high relationship (R2 = .92 to 

.99) bet\\leen DCP and CP contents of dry forage and roughage subdivisions 

and energy and protein supplement feeds (Table 30). These results were 

in agreement with those of Cheeke (1980) who found that rabbits digest 

alfalfa and other forage protein more efficiently than poultry, swine 

and even ruminants . 

Data from the first three classes of feedstuffs (dry forages and 

roughages, green feeds and pasture plants and silages) were pooled 

together then subgrouped into five subgroups (legumes, grasses, 

legumeous roughages , non-leguneous roughages and mixtures of legumes 



TABLE 30 Simple Regression Equations to Predict Digestible Crude Fiber (DCJ>%) from Crude Protein 
Contents (CP%) of Subclasses of Different Classes of Feedstuffs for Various Kinds of k1imals 

Animal Feed Feed 
Kind Class Subclass Equation R2 SE N 

Cattle l Legwnes DCJ>% ; -2.3183 + .8456 (CJ>%) .8904 .88 141 
l Grasses DCJ>% ; -2 .4567 + . 8036 (CP%) .9679 .41 114 
l Legumeous roughages DCJ>% ; -2.7261 + . 8242 (CP%) .8793 l. 32 13 
l Non-legumeous DCJ>% ; -l. 7293 + .6670 (CP%) . 6406 2.42 30 

roughages 
l Mixture (legumes & DCJ>% ; -4 .0905 + .9145 (CP%) .9683 .48 14 

grasses) 
2 Legumes DCJ>% ; -2.2831 + .8708 (CP%) .9214 .91 ll 
2 Grasses DCJ>% ; -4.1213 + .9604 (CP%) .9494 1.09 127 
2 Legumeous roughages DCP% ; - . 34 72 + .6774 (CP%) .9 328 l. 37 10 
2 Non-legumeous DCJ>% ; -2.2967 + . 8794 (CP%) . 9922 .33 10 

roughages 
3 Legumes DCJ>% ; -4.8791 + .9601 (CJ>%) . 9555 .44 56 
3 Grasses DCP% ; -3 .1317 + . 8607 (CP%) .9074 .43 118 
3 Non-legumeous DCJ>% ; -2.0199 + .6917 (CP%) .6851 .82 10 

roughages 
3 Mixture (legumes & DCP% ; -4.8142 + .9759 (CP%) .9502 . 48 45 

grasses) 
4 Plant origin DCP% ; -3.4432 + . 8929 (CP%) .8185 2. 75 65 
5 Milk origin DCJ>% ; -2.0127 + .9936 (CP%) .9932 .93 6 
5 Plant origin DCP%; -8.4512 + 1.0294 (CP%) .9326 12.30 40 

Horses l Legwnes DCJ>% ; -3.9330 + .9291 (CJ>%) .8288 .82 9 
l Grasses DCJ>% ; -1.8398 + . 7200 (CP%) . 8305 1.26 15 
l Non-legumeous DCJ>% ; . 984 7 + .1725 (CP%) .0222 l. 46 8 

roughages 
DCJ>% ; 4 Plant origin - . 8801 + .7862 (CP%) . 8523 2.20 13 N __, 

0 



TABLE 30 Continued. 

Animal Feed Feed 
Kind Class Subclass B::juation R2 SE N 

Horses Plant origin DCP% = -9.2733 + 1.1302 (CP%) • 7792 3.23 

Rabbits 1 Legwnes DCP% = -4 . 3993 + .9731 (CP%) .9906 .26 14 
1 Grasses DCP% = -2.1160 + . 8370 (CP%) .9900 .83 6 
1 legwneous roughages DCP% = -3.5026 + . 6051 (CP%) .9549 .23 4 
4 Plant origin OCP% = -2.4118 + 1.0102 (CP%) . 9195 l. 42 14 
5 Plant origin DCP% = -4.3965 + . 9848 (CP%) . 9702 1. 29 7 

Sheep 1 Legwnes DCP% = -3 .9735 + . 9359 (CP%) .9195 1.17 158 
1 Grasses DCP% = -3 . 0070 + .8915 (CP %) .9789 . 41 219 
1 Legwneous roughages DCP% = -2 .0608 + . 6756 (CP%) . 7177 2 . 29 24 
1 Non-1egwneous DCP% = -2.6622 + .7741 (CP%) . 8037 3.88 108 

roughages 
2 Legumes DCP% = -2.5857 + ,9030 (CP%) .9078 1.30 93 
2 Grasses DCP% = -3.9623 + l. 0338 (CP%) ,9936 .15 4 
2 Non-legwneous DCP% = -3,6936 + .9661 (CP%) .8738 3.59 79 

roughages 
3 Legumes DCP% = -3.9461 + . 9015 (CP%) . 8389 1.61 28 
3 Grasses DCP% = -3.5236 + . 9079 (CP%) .9537 .76 39 
3 Non -le gumeous DCP% = -3,2636 + .9143 (CP%) .8226 l. 82 24 

roughages 
4 Plant origin DCP% = -2.6026 + .8945 (CP%) . 8516 3.02 119 
5 Marine origin OCP% = -15 . 4998 + 1.0966 (CP%) .7429 25.57 14 
5 Milk origin DCP% = -3.4396 + 1.0087 (CP %) .9994 . 56 4 
5 Plant origin DCP% = -4.8322 + .9863 (CP%) .9113 7 . 26 87 

S1-line 1 Non-legwneous DCP% = -3.5925 + . 7207 (CP%) • 7751 3.43 
roughages '" "' >-' 



TABLE 30 Continued. 

Animal Feed Feed 
Kind Class Subclass Equation 

Swine 2 legumes DCP% = -2.7276 + 
2 Grases DCP% = -2.0599 + 
2 Non -legumeous DCP% = - .0936 + 
4 Plant origin DCP% = -1.8728 + 
5 Animal origin DCP% = 12.6806 + 
5 Mar:ine origin DCP% = -17.5563 + 
5 Milk origin DCP % = 4.6062 + 
5 Plant origin DCP% = -4.7171 + 

R2 

. 8731 (CP%) .94 32 

.7991 (CP%) .9738 

.6744 (CP%) , 9912 

. 8993 (CP%) . 8991 

.6038 (CP%) . 8492 
1.1403 (CP%) . 9626 

. 8139 (CP%) .9268 

. 9727 (CP%) .9446 

SE 

. 73 

.23 

. 32 
2.50 

26.73 
7 . 55 
1.06 
6.73 

N 

7 
ll 

4 
88 

7 
10 

9 
31 

N 

" N 
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and g.-asses). St·.bgrouping of feeds was an attempt to have minimal 

differences in chemical composition among feeds regardless of treatment . 

Table 31 shows the results of predicting DO' from 0' contents of 

sub grouped feedstuffs for various kinds of animals. Comparison of 

Tables 2 and 3 showed that predictability of DO' for CP content was 

better upon sub grouping of feeds by cattle in cases of legumes, 

legumeous roughages, and especially non-legumeous roughages (R2 = .87) 

than the same subdivisions in both Class l and Oass 3 (Table 30). 

Data for sheep also sho1-.oed higher predicting values for subgrouped 

legumeous and non-legumeous roughages (Table 30) than the same suD

division of dry forages and roughages and silages. Swine also showed 

higher correlation between DCP and CP upon subgrouping non-legumeous 

roughages in dry forages and roughages and green forages and pasture 

plants. 

Since correlations betl-reen DO' and CP of the undivided or sub-

grouped classes of feedstuffs for various kinds of animals (Table 29) 

were high, and the subdivision (Table 30) and subgrouping of feeds 

(Table 31) did not shmv superior results, it would be better and 

cheaper to follow the classification of feedstuffs as shown in Table 29. 

Digestible Crude Protein From Proximate Analysis. Multiple 

regression equations were developed to predict digestible crude protein 

from the chemical proximate nutrients of different classes of feed

stuffs for various kinds of animals (Table 32). 

Correlations between DCP and proximate analysis were high 

(R2 = • 86 to . 99). There was improvement in predictability of DCP 

from proximate analysis over that of DCP from CP in many cases. 

However, R2 dropped from . 97 to . 95 in protein supplements for sheep. 



TABLE 31 Simple Regression Equations to Predict Digestible Crude Proteins (DCP%) from Crude Protein Contents (CP%) of Subgrotvs of Feedstuffs for Different Kinds of Animals 

Animal Feed Feed 
Kind Class Subgroup Equation R2 SE N 

Cattle 1+2+3 Legumes DCP% = -~.9198 + . 8729 (CP%) .8997 . 86 208 1+2+3 Grasses DCP% = -3.3560 + .9762 (CP%) .9530 . 75 359 1+2+3 Legumeous roughages DCP% = -1.0634 + . 7098 (CP%) .8928 1. 46 23 1+2+3 Non -legumeous DCP% = -2.6028 + .93 36 (CP%) .8716 2.05 so roughages 
1+2+3 Mixture (legwnes DCP% = -4.2838 + . 9413 (CP%) .9534 .52 61 & grasses) 

Sheep 1+2+3 Legumes DCP% = -3.7691 + .9356 (CP%) .9014 l. 44 279 1+2+3 Grasses DCP% = -2.5939 + .8773 (CP%) .9370 1.14 381 1+2+3 Legumeous roughages DCP% = -4.0502 + .9352 (CP%) . 8616 3. 20 29 1+2+3 Non -legtuneous DCP% = -3.2615 + . 8906 (CP%) . 8471 3.93 2ll 
roughages 

1+2+3 Mixture (legumes DCP% = -5.7640 + 1.1063 (CP%) .8352 

S1vine 1+2 Legwnes DCP% = - .5026 + . 7381 (CP%) .8424 1.56 10 1+2 Grasses DCP% = -2.0508 + . 7954 (CP%) .9479 .43 15 1+2 Legtuneous roughages DCP% = -2.4631 + .9756 (CP%) .9775 2.77 4 1+2 Non - legtuneous DCP% = -2.0497 + .6961 (CP%) . 7974 .69 14 
roughages 



TABLE 32 Multiple Regression F.quations to Predict Digestible Crude Protein (DCP%) from Proximate 
Analysis of Different Feedstuffs for Various Kinds of Animals 

Animal Feed a 
Kind Class E.quation 

Cattle 1 
2 
3 
4 
5 

Horses 1 
4 
5 

Rabbits l 
4 
5 

Sheep l 
2 
3 
4 
5 

S1vine 1 
4 
5 

DCP% = 2. 3539 + . 8075 (CP%) - . 2179(EE%) .0603(NFE%) - .0399(CF%) 
DCP% = 1.2312 + . 8244(CP%) - .0618(CF%) - ,0304(NFE%) - .Ol59(EE%) 
DCP% = -5.4585 + .9150(CP%) + .0062(CF%) + .0896(EE%) + .0236 (NFE%) 
DCP% = -18 . 3253 +1.245l(CP %) - .0522(EE%) + .l395(NPE%) + .0995(CF) 
DCP% = -59 .2500 + l.6259(CP%) + .5398(NFE%) + .4232(EE%) + .S30S(CF) 

DCP% = -8.8359 + . 9004(CP%) - .8730(EE%) + .l287(NPE%) + . 0583(CF%) 
DCP% = 2.3409 + .9089(CP%) - .7553(NFR%) + .58ll(EE%) + .3127(Cr) 
DCP% = 6.1423 + .9ll7(CP%) - .4138(CF%) - .0899(NFE%) 

DCP% = 22.1665 + .6098(CP%) -.3655(NFE%)--.l909(CF%) - .0697(EE%) 
DCP% = 29 .2934 + .6050(CP%) - .4 237(CF%) -3ll6(NFE%) - ,3055(EE%) 
DrP% = 13.2568 + .7207(CP%)- ,36ll(CF%)- .ll49(EE%) -.068l(NFE%) 

DCP% = -.8186 + .8584(Cr%) - .1793(EE%) -,0224(CF) - .0203(NFE%) 
ncr%= 1.5938 + .8453(Cr%) - .0602(NFE%) - ,0222(C>-%) - .0306(RE%) 
ncr%= -.9044 + .8729(CP%) - . 0522(CF%) - ,Ol75(NFE%) - -.0199(EE%) 
DCP% = -.9636 + .9047(CP%) - .ll02(CF%) - ,0517(ER%) - ,0070(NrE%) 
DCP% = 13.9875 + .7032(CP%) - .2783(CF%)- .l354(NFR%)- .l090(EE% ) 

DCP% = -23.4490 + l.0533(CP%) + .2960(NFE%) + .3318(EE%) + , 0834(CF%) 
OCr% = -6.0699 + l.0543(CP %) - .l392(CF%) + ,0593(EE%) + .039l(~WE%) 
DCP% = -164.1639 + 2.6879*CP%) + l,7524(NFE%) + l,6275(EE %) + 1. 3106 

(CF%) 

.9606 

. 9779 

.9728 

. 0609 

.9564 

.9468 

.8580 
,8507 

.9625 

.9683 

.9899 

.9450 
,9233 
.9334 
.8689 
.9056 

.9781 

.9231 

.9691 

SE N 

. 96 231 
,65 142 
.66 178 

1. 74 29 
2.87 18 

1.05 32 
1. 67 13 
2.56 6 

1. 69 18 
.85 13 

1. 04 _8 

1.18 452 
1.43 218 
1.13 85 
1.62 l15 
3.15 80 

l. 64 10 
l. 33 41 
3.45 13 

aln equation, CF%, EE%, NFE% and CP% are the percentages of crude fiber, ether extract, nitrogen free 
extract and crude protein , respectively . 
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Schneider et al. (1952) used the same model to predict the 

digestibility coefficients of nutrient components of proximate 

analysis. Models wer e developed to predict the digestion coefficients 

for these nutrient s in different classes of feeds for cattle and 

sheep (Schneider et al. 1952) . 

Predicting Di gestibl e Ether Extract (DEE) 

Digestible Ether Extract From Ether Extract (EE). Table 33 sho16 

the results of regress i ng digestible ether extract cont ents within 

different classes of feeds tuffs for various kinds of animals . All 

correlation coefficients were high (R2 = .47 to .99) for all classes 

of feeds by all kinds of animals (Appendix Figures 33 to 47) except 

that of dry forages and roughages by horses (RZ = .10) . 

Highest corre l at ions existed between DEE and EE contents of energy 

feeds and protein supplements followed by silages. Hence, type of feeds 

had an effect on the predictability of digestible ether extract from 

their ether extract concentrations. 

Data for cattle and sheep had high association between DEE% and 

EE%. However, sheep had higher association than cattle in cases of dry 

and fresh forages and roughages and protein suppl ements, while cattl e 

had higher associati on in case of silages and ener gy feeds than sheep. 

Rabbits had higher correlations between DEE and EE of all cl asses 

of feeds (R2 
= .82 to .99) than those of horses CR2 = .10 to .47). 

Swine also showed high relationship bet1~en DEE and EE in al l 

classes of feeds (R2 = .70 to .99). 

It seemed that horses digest ether extract to a less predict able 

extent than other animals , while sheep and cat tle had the highest 
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tendency to digest this nutrient. ]Qis was in agreement with results 

reported by Vandernoot and Gilbreath (1970). This difference between 

horses and ruminants could be due to variation in the ingesta entering 

the cecum of the horse and rumen of the steer. Moreover, the digestive 

power of bacterial enzymes could be more than that of enzymes secreted 

by the digestive system itself (Fonnesbeck et al. 1974). 

Table 34 shows the results of predicting digestible ether extract 

from ether extract content of the subdivisions of different classes 

of feedstuffs for various classes of animals . 

All subdivisions of dry forages and roughages (except legumeous 

roughages for cattle and horses and non-legumeous roughages. for horses) 

showed high correlation between DEE and their contents of EE for all 

kinds of animals. Subdivisions of green forages and pasture plants 

followed the same trend. However, non-legumeous roughages had a low 

correlation by cattle . 

Both dry legumes and grasses showed low predictability of DEE 

from their contents of EE by horses. Legumes had slightly lower 

correlation coefficients than grasses (R2 = .13 and .28, respectively 

for legumes and grasses). These results were in agreement with those 

of Fonnesbeck et al. (1967) who reported lower digestibility of EE in 

alfalfa than other feeds for horses. 

All subdivisions of sil ages had a high predictability of DEE from 

their content of EE for cattle (R2 = .70 to .96) and sheep (R2 = .83 

to .86). 

Predictability of DEE from EE contents of energy feeds did not 

change because the same data (energy feeds of plant origin) were used 

in both tables (33 and 34). 
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TABLE 33 Simple Regression Equations to Predict Digestible Ether 
Extract (DEE%) from Ether Extract Contents (EE%) of Different 
Classes of Feedstuffs for Various Kinds of Animals 

Animal feed Rz Kind Class Equation SE N 

Cattle 1 DEE% ~ - .4423 + .6261 (EE%) .6014 .49 233 
2 DEE% ~ .0704 + .4486 (EE%) .6932 1. 48 141 
3 DEE% ~ - 0 7376 + .8499 (EE%) .9008 .so 179 
4 DEE% ~ - 0 7676 + .9740 (EE%) .9858 .52 36 
5 DEE% = - 0 9534 + .9790 (EE%) .9793 1. 51 25 

Horses 1 DEE% ~ - 0 0725 + 0 3118 (EE%) .1054 .61 35 
4 DEE% ~ - . 3767 + . 6845 (EE%) .6770 1.02 12 
5 DEE% ~ 0 0953 + 0 5032 (EE%) .4661 2.00 5 

Rabbits 1 DEE% ~ - .3086 + .5419 (EE%) . 8207 .630 22 
4 DEE% ~ - .0520 + 0 9287 (EE%) .9738 . 25 14 
5 DEE% ~ 0 1024 + .9506 (EE%) . 9974 . 49 8 

Sheep 1 DEE% ~ - 0 7630 + 0 7790 (EE%) .8455 .72 460 
2 DEE% ~ - .14 22 + . 6143 (EE%) 0 8505 1.05 267 
3 DEE% ~ - 0 4880 + .7689 (EE%) .8165 .55 85 
4 DEE% ~ - 0 3978 + .8725 (EE%) .9376 0 79 118 
5 DEE% ~ - .0560 + .9190 (EE%) .9894 .8S 105 

Swine 1 DEE% ~ - .3918 + .8764 (EE%) . 8051 1.40 9 
2 DEE% ~ -3.4223 + 1. 3661 (EE%) 0 7038 .76 4 
4 DEE% ~ -1. 2470 + . 9834 (EE%) .9972 .88 42 
5 DEE% ~ -1.2506 + . 9926 (EE%) .9710 1.18 22 



TABLE 34 Snn)l e Regression Equations to Predict Digestible Ether Fxtract (DEE%) from Ether Extract 
Contents (EE% Subcl asses of Different Feedstuffs for Various Kinds of Animals 

Annual Feed Feed 
R2 Kind Cl ass Subclass Equation SE N 

Cattle 1 Legumes DEE% = -. 8120 + . 7372 (EE%) ,6535 45. 76 110 
1 Grasses DEE% = -.2186 + ,5656 (EE%) .6263 38,68 83 
1 Legumeous roughages DEE% = . 7489 + . 0480 (EE%) ,0070 46. 54 7 
1 Non- l egtnneous DEE% = -.1 234 + . 5977 (EE%) .6921 47 . 27 22 

roughages 
1 Mixture (l egumes DEE% = -2 . 1644 of- .1496 (EE%) .9181 30 ,82 11 

+ grasses) 
2 Legtnnes DEE% = -,5476 + ,8073 (EE%) ,9337 38 .88 11 
2 Grasses DEE% = ,0924 + ,4441 (EE%) .7086 46 . 28 108 
2 Legumeous roughages DEE% = -, 2314 + . 4397 (EE%) . 2011 42 . 48 10 
2 Non-1egumeous DEE% = . 2695 + .3134 (EE%) , 0435 49,02 10 

roughages 
3 Legumes DEF.% = - .8486 + .8745 (EE%) , 964 1 35 , 39 51 
3 Grasses DF.E% = -. 3047 + . 7497 (EE%) . 7546 59 . 52 75 
3 Non-legumeous DEF.% .1932 + . 6124 (EE%) ,7 041 34.99 10 

roughages 
3 Mixture (legLDnes DE F.% -1.5576 + 

+ grasses) 
.9995 (EE%) . 9528 44 .00 43 

4 Plant origin DEE% = - . 7676 + . 9740 (EE%) .9858 95 .33 36 
5 Milk ori gin DEE% = - .1512 + . 9901 (EE%) . 9996 54 .30 6 

Horses 1 Legumes DEE% = -. 7870 + .4307 (EE%) .1282 33 ,78 9 
1 Grasses DEE% = -.5323 + , 5251 (EE%) . 2781 33 .16 17 
1 Non-legumeous DEE% = -.9568 + 

roughages 
. 0277 (EE%) ,0013 28 .93 8 

4 Plant origin DEE% = -.3767 + . 6845 (EE%) .6770 79 .72 12 
5 Plant origin DEE% = .0953 + .5032 (EE %) . 4661 55.93 5 N ._, 

<D 



TARLE 34 (Continued) 

Animal Feed Feed 
R2 Kind Class Subclass Equation SE N 

Rabbits 1 Legumes DEE% = -. 9897 + . 7380 (EE%) .8389 34.23 10 
1 Grasses DEE% = .19·11 + . 4254 (EE%) .8960 29.12 6 
1 Legumeous grasses DEE% = .1930 + :4172 (EE%) . 7864 27 . 20 4 
4 Plant origin DEE% = -.0520 + .9287 (EE%) . 9738 88.31 14 
5 Plant origin DEE% = -.0514 + . 9711 (EE%) .9900 35.91 7 

Sheep 1 Legumes DEE% = -.8360 + . 7396 (EE%) .6816 46.40 142 
1 Grasses DEE% = -.2231 + . 5753 (EE%) . 7637 49.05 183 
1 Legumeous roughage DEE% = -.4803 + . 9036 (EE%) .9586 47 .42 22 
1 Non-legumeous DEE% = -. 7716 + .8194 (EE%) .8868 52.47 111 

roughages 
2 Legumes DEE% .2198 + .4908 (EE%) .9316 42 .86 72 
2 Grasses DEE% -.2258 + .6365 (EE%) .7651 53.67 113 
2 Legumeous roughages DEE% .2467 + .4513 (EE%) . 8664 51.89 4 
2 Non-legumeous DEE% -.8159 + .8346 (EE%) .9195 64.06 79 

roughages 
3 Legumes DEE% = -1.0302 + .8577 (EE%) .8588 39.67 26 
3 ~rasses DEE% = - . 2301. + . 7133 (EE%) .8365 48 . 74 31 
3 Non-legumeous nF.F.% = - . 5683 + . 8261 (EE%) .8305 65 . 27 24 

roughages 
4 Plant origin DFO!O % = - . 3978 + .8725 (EE%) . 9376 90 .05 118 
5 Marine origin DEE% = .1094 + . 9464 (EE%) .9787 0.00 15 
5 Milk origin DEE% = -.1449 + 1.0029 (EE%) .9851 1.00 4 
5 Plant origin DF.E% - .1387 + . 9203 (EE%) .9898 63.40 84 

S1vine 1 Non-legumeous DEE% = -.1753 + .8558 (EE%) . 7786 44.06 6 
roughages 

N 
co 
C> 



TABLE 34 (Continued) 

Animal Feed Feed 
Kind Class Subclass F:quation 

Swine 2 Legumes DEE% = - .3056 + 
4 Plant origin DEE% = -1. 2470 + 
5 Marine origin DEE% = -2,151.8 + 
5 Milk origin DEE% = - ,4959 + 
5 Plant origin DEE% = •1.1346 + 

Rz 

. 8564 (EE%) . 7334 
,9834 (EE%) ,9972 

1.1911 (EE%) . 9807 
,9756 (EE%) .9874 
.8894 (EE%) .9825 

SE 

33.23 
98.90 
0. 00 

65.18 
57,76 

N 

3 
42 

5 
4 

10 

N 
00 .... 



Protein supplements of marine ori,gin s!iowed high (RZ ~ .98) 

correlations between DEE and their EE contents for sheep and swine. 

Feeds from milk origin followed the same trend (R2 ~ .99). 

Protein supplements of plant origin did not change for horses 

and rabbits because the same data was used in Tables 33 and 34. How-
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ever, correlation between DEE and EE content of protein supplement of 

plant origin (R2 ~ .95) when compared to that of the undivided class of 

protein supplement in Table 38 (R2 ~ .98). Sheep, on the other hand, 

did not have a change in correlation coefficients for this subclass of 

feeds (R2 ~ . 99), while swine had a slight increase (R2 ~ . 98) compared 

with (R2 ~ .97) the undivided class. 

Data from the first three classes of feedstuffs (dry forage and 

roughages, green feeds and pasture plants and silages) were pooled 

together and then subgrouped into five subgroups (legumes, grasses, 

legumeous roughages, non-legumeous roughages and mixtures of legumes 

and grasses). Then digestible ether extract (DEE) was predicted from 

the ether extract content (EE) of these subgroups of feedstuffs (Table 

35). 

Comparison of Tables 34 and 35 showed that predictability of DEE 

from EE content was better upon subgrouping of feeds for cattle in cases 

of legumes (R2 ~ .92), grasses (R2 ~ .71), legumeous roughages (R2 ~ 

.16) and mixtures of grasses and legumes (R2 ~ .95), but not in the 

case of non-legumeous roughages (R2 ~ . 46) than the same divisions of 

Class 1. However, correlations were lOI<er than those of the same sub-

divisions of silages in Table 34. 

Green legumes and legumeous roughages (Table 34) showed higher 

correlation between DEE and their content of EE for cattle than 



TABLE 35 Simple Regression Equations to Perdict Digestible Ether Extract 
Contents (EE%) of Subgroups of ·Feedstuffs for Various Kinds of Animals 

Animal Feed Feed 
Kind Class Subgrol~1 Equation 

Cattle 1+2+3 Legumes DEE% = -1.0978 + .9032 (EE%) 
1+2+3 Grasses DEE% = .2704 + .4457 (EE%) 
1+2+3 Legumeous roughages DEE% = .2791 + . 2800 (EE%) 
1+2+3 Non -le gumeous DEE% = -.1434 + .6069 (EE%) 

roughages 
1+2+3 Mixture (legumes DEE% = -1.2594 + .9750 (EE%) 

& grasses) 

Sheep 1+2+3 Legumes DEE% = - '2009 + .5487 (EE%) 
1+2+3 Grasses DEE% = - . 2989 + . 6401 (EE%) 
1+2+3 Legumeous roughages DEE% = - '4287 + .8042 (EE%) 
1+2+3 Non -legumeous DEE% = - .7627 + .8260 (EE%) 

roughages 

S1<ine 1+2 Non-legumeous DEE% = - .1693 + .8562 (EE%) 
roughages 

(DEE%) from Ether Extract 

R2 SE N 

.9158 45 . 76 172 

. 7133 59 . 52 266 
.1650 46.35 17 
.4631 49.02 42 

. 9506 .95 56 

.8556 45.89 240 

. 7742 53 . 67 327 

.9114 51.89 27 

. 8976 65 . 27 214 

. 7793 33.21 

N 
00 

"' 
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subgrouping of feeds in Table 35 . However , the opposite was true for 

grasses and non-legumeous r oughages. 

Data for sheep had higher predictability of DEE from EE contents of 

subgrouped legumes (R2 = • 86) , grasses (RZ = • 77) and non-legumeous 

roughages (RZ = .90), but not in the case of legumeous roughages than 

the same subdivisions of dry forages and roughages in Table 34 . 

Moreover, subgrouped grasses and legumeous roughages showed higher 

correlation coefficients (R2 = . 77 and .91, respectively) than the same 

subdivisions of green forages and pasture plants (Table 34) by sheep . 

The opposite was true in case of legumes and non-legumeous roughages. 

However, only subgrouped non-legumeous roughages showed higher pre

dictability (R2 = .90) of DEE from their contents of EE than the same 

subdivision of silages (Table 34) by sheep. 

Digestible Ether Extract From Proximate Analysis . Multiple 

regression equations were developed to predict digestible ether extract 

from proximate nutrients of different classes of feedstuffs for various 

kinds of animals (Table 36). 

Correlations between DEE and proximate analysis were high (R2 = .54 

to .99). Generally , predicting DEE from proximate analysis improved 

over that of DEE from EE. However, predictability decreased in cases of 

protein suppl ements for cattle and dry forages and roughages by sheep. 

Table 36 also shows differences among kinds of animals in DEE 

predictability from proximate analysis. Cipolloni et al . (1951) found 

that cattle and sheep differed in digestibility of ether extract . 



TARLE 36 ~1ultiple Regression F.quations to Predict Digestible Ether Extract (DEE%) from Proximate 
Analysis of Different Classes of feedstuffs for Various Kinds of Animals 

Animal l'eerl 
R2 Kind Class r-:quation SE 

Cattl e DEE% = -2 , 6367 + , 682l(l'fi%) + . 0036(CP% ) + .0303(NFE%) + , 0206(CF%) .6639 . 37 
DEE% = 04 . 4305 + .5852(EE%) + .0827(NFE%) + ,0266(CP%) + . 0059 (CF%) . 7461 .73 

3 DEE%= 1.2178 + . 8714 (EF.%) - . 0061 (NFE%) - .0482(CP%) - ,0374 (CF%) . 9134 . 39 
4 DEF.% = . 4954 + .9587(f:E%) - .Olll(NFE%) - , 0268 (CP%) - • 0207 (CF%) . 9885 .53 
5 DEF.% = 18 . 7033 + .6627(EE%) - .195S(NFE%) - . 2062 (CP%) - . 2238 (CF%) .9588 1. 25 

Horses 1 DEE%= 7.9296 - . 1596(CP%) + .300l(EE%) - • 0924 (CF%) - ,0679(NFE%) .5390 . 45 
4 DEE%= 35,8419 + 1.2172(EE%) + .3348(CP%) + ,4447(CF %) + . 3562(NFE%) .7947 . 81 
5 DEE%= - . 8287 + . 4783(CF%) - .1602(EE%) - . 0810(CP%) .9818 .47 

Rabbits 1 DEE% = -3.1157 + .6394(EE%) + . 0387 (NFE%) + . 0231 (CF%) + .0127(CP%) . 8571 .41 
4 DEE%= -1.7463 + .9618(EF%) + .004l(CP%) + .0189(NFE%) + . 0200 (CP%) .9780 .28 
5 DEE% = 5. 5481 + .8849(EE%) - . 0755 (NFE%} - . 0842 (CF%) - .0379(CP%) . 9980 . 35 

Sheep 1 DEE% = . 9113 + . 6353(EF%) - . 0309 (CP%) . 0138 (NFE%} - . 0106(CF%) . 7296 . 51 
2 DEE% = . 6916 + . 516l(EE%) - . 0094 (CF%) ,0066(CP %) - • 033 (NFE%) . 8794 .49 
3 DEE% = -1.0448 + .8275(F:E%) + . 0149(NFE%) - . 0184 (CP%} - . 0019 (CF%} . 8430 .44 
4 DEE% = -2 . 1910 + . 8987 (EE%) - .0173(CF%} + • 0402 (CP%) + .Ol95(NI'E% ) • 9470 .68 
5 DEE%= 4 . 0469 + . 8837 (EE%} • 0483 (NFE%} - .0445(CP%) - . 0354 (CF%) .9938 . 67 

S1~ine DEE% = 3 . 1105 + . 7199 (EE%) - . 0892 (CP%) • 0397 (NI'E%) .8585 1.38 
DEE% = 1. 4864 + . 9638 (EE%} - .1194 (CP%) - .0456(CF%) . 0119 (NFE%) .9924 .71 
DEE%= 8.0116 + . 7522(EE%) . 0719 (CP%) - .1689(CF %) - . 0985 (NFE%) . 9873 .67 

aln equation , CF%, EF.%, NFE% , and CP% are crude fiber, ether extract, nitrogen free extract and crude 
protein , respectively. 

N 

231 
)72 
178 

29 
18 

32 
13 

6 

18 
13 

8 

452 
218 

85 
us 

80 

10 
41 
13 

N 
00 

"' 
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Predicting Digestible Crude Fiber (DCF) 

Digestible Crude Fiber From CF . Crude fiber content of feedstuffs 

was not a very good predictor of digestible crude fiber in certain 

cases by various kinds of animals (Table 37). 

Dry forages and roughages showed low association (RZ = .001 to .47) 

between DCF and their contents of CF for all kinds of animals (Appendix 

Figures 48 and 49). These results were in agreement with those reported 

by Axellson (1938) , Schneider (1947) and Van Soest (1978a) . 

The low correlations between DCF% and CF% in the dry forages and 

roughages could be related in most cases to the high fiber-low protein 

contents of these feeds . High levels of lignin in such feeds could be 

an important factor that added to the low association. Sullivan (1966) 

reported that the digestibility coefficient of cellulose was negatively 

correlated with the quantity of lignin in feeds. Moreover, lignin 

could exert more effect on the digestibility of hemicellulos.e. .This 

seemed to be the case of alfalfa where correlation coefficients between 

lignin and digestibili ty of hemicellulose was greater than that between 

lignin and the diges tibility of cellulose (-.83 and -. 57 , respectively). 

Lignin was not found to be digestible (Cook and Harris, 196Sa; 

Fonnesbeck et al . 1974) . Lignin might not be attacked by microorganisms 

in the rumen and there is no secreted digestive juice which attacks it 

(Cuthbertson,l969). The process of lignification makes the plant less 

nutritious as the cellulose and cell constituents are protected from 

the action of bacteria by the coating of lignin . This process accounts 

for the decline in the digestibility of hays when cutting is delayed. 



287 

Fresh legumes and grasses also showed lower (RZ ~ . 49 and .30, 

respectively) correlations between DCF and their contents of CF by 

cattle than that of t he Class 2 (R2 ~ . 52) in Table 37 . However , 

legumeous and non- legumeous roughages showed higher correl ation values 

(RZ ~ .71 and .83, respectively) . 

Data for sheep had higher correlations ben;een DCF and CF contents 

of fresh legumes (R2 ~ . 50), grasses (R2 ~ .50) and non-legumeous 

forages (RZ ~ .53) than the undivided class of green forages and pas

ture plants (RZ ~ .46). 

All subdivisions of silage class (Table 38) showed higher correla

tions (R2 ~ .71, . 76, .62 and .79 respectively for legumes, grasses, 

non-legumeous roughages and mixtures of legumes and grasses) than the 

Lmdivided class of silages (RZ ~ .53) by cattle, while only grass 

silages showed high (RZ ~ .76) correlations for sheep . 

Even though correlation coefficients ben;een DCF and CF contents 

of protein supplements of plant origin (Table 43) were higher by sheep 

and swine upon subdivision of the protein supplement class, these 

correlation coefficients 1~re still very low (RZ ~ .19 by sheep and . 24 

for swine) . 

Data of the dry feeds, green feeds and silages 1;ere combined 

together and then subgr ouped into legumes, grasses , legumeous roughages, 

non-legumeous roughages and mixture of legumes and grasses. Predict

ability of digestible crude fiber from crude fiber contents of the sub

groups of feedstuffs (Table 39) was higher only in case of the legumeous 

and non-legumeous roughages and the mixture of grasses and legumes for 

cattle (R2 ~ .71, . 69, and .57, respectively) than the same subclasses 

in Table 38. 
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TABLE 37 Simple Regression Equations to Predict Digestible Crude 
Fiber (DCF%) from Crude Fiber Contents (CF%) of Different Cl asses 
of Feedstuffs for Various Kinds of Animals 

Animal Feed 
R2 Kind Class Equation SE N 

Cattle l DCF% = -4.2516 + .6696 (CF%) .4706 3.86 257 
2 DCF% = -4.3703 + . 7739 (CF%) .5184 3.67 161 
3 DCF% = -2 .9557 + . 7009 (CF%) .5269 3. 22 202 
4 OCF% = -1.3696 + .6512 (CF%) .8457 2.05 33 
5 DCF% = -1.3151 + .4641 (CF%) . 3515 4. 50 17 

Horses l DCF% = -4 .0307 + .5197. (CF%) .2812 4.34 33 
4 DCF% = -2.8409 + .8216 (CF%) . 4211 3. 79 13 
5 DCF% = -3.8004 + .29 34 (CF%) .0662 5.07 5 

Rabbits l DCF% = -5.4769 + .0093 (CF%) .0010 2.31 29 
4 DCF% = - .1874 + .5532 (CF%) .5441 3.57 13 
5 OCF% = -3.2399 + . 0402 (CF%) .0201 1.48 7 

Sheep l DCFt = -2.1653 + .6084 (CF%) .4558 5.11 SOl 
2 DCF% = - .1111 + .6166 (CF%) . 5734 3. 89 229 
3 OCF% = -2.9208 + . 5017 (CF%) .5488 3.70 93 
4 DCF% = -l. 2641 + . 6552 (CF%) .6672 3. 28 115 
5 DCF% = -2.9526 + .2932 (CF%) .2078 4.10 82 

Swine l DCF% = -3. 7021 + .4834 (CF%) .20 74 9. 43 10 
4 OCF% = - .7040 + .5822 (CF%) .5401. 2.60 so 
5 DCF% = -2.4442 + .0984 (CF%) .0433 2.32 12 



TARLE 38 Simple Regression f~uations to Predict Digestible Crude Fiher (DC:F~) from Cn1de Fiber 
Contents (C!O%) of Subclasses of Different Classes of Feedstuffs for Various Kinds of Animals 

Animal Feed Feed 
R2 Kind Class Subclass Equation SE N 

Cattle 1 Legumes DCF% = -4.3224 + .5987 (CF%) .4093 8 . 27 117 
l Grasses DCF% = 2.1303 + . 5415 (CF%) .4063 8.26 97 
1 Legumeous r oughages DCF% = 20.1348 + 1.1254 (CP%) .5983 38.93 9 
1 Non-legumeous DCF% -3,0484 + .6512 (CF%) .6974 24.01 22 

roughages 
1 Mixture (legumes DCF% 16.3938 + .0647 (CP%) .0187 2.17 12 

+ grasses) 
2 Legumes DCl'% = -4.7578 + . 7291 (CF%) .4917 9.71 11 
2 Grasses DCF% = -.9528 + .6762 (CF%) . 2957 12.93 128 
2 Legumeous roughages DCF% = -2.1226 + . 5811 (CF%) . 7064 11.63 10 
2 Non -legtuneous DCF% = -4.6741 + . 7071 (CI'%) .8317 8.96 10 

roughages 
3 Legumes TlCF% = -3.0903 + . 6110 (CF%) . 7120 3.45 51 
3 Grasses TlCF% = -2.5336 + . 7224 (CF%) . 7611 4 ,23 98 
3 Non-legumeous TlCF% = -2.1885 + . 4668 (CF%) .6172 1. 92 10 

roughages 
3 Mixture legumes DCF% -6.7480 + ,9024 (CF%) . 7908 3.61 43 

+ grasses) 
4 Plant origin DCF% -1.3693 + ,6521 (CF%) . 8457 4.22 33 
5 Plant origin DCF% 1.3151 + . 4641 (CF%) .3515 20.22 17 

Sheep 1 Legumes DCF% = 1 ,3488 + , 4336 (CF%) . 3868 8,32 150 
1 Grasses OCF% = 5,4343 + ,4315 (CF%) .2501 11.95 210 
1 Legumeous roughages TlCF% = -,4218 + . 5551 (CF%) . 4114 71.09 25 
1 Non-legumeous DCF% = -7, 1306 + . 7171 (CF%) .5803 50.62 114 

roughages 
N 
00 
<D 



TABLE 38 (Continued) 

Animal Feed Feed 
Kind Class Subclass Equation 

Sheep 2 Legumes DCF% = -1.2513 + 
2 Grasses DCF% = 1. 4607 + 
2 Non -1 egumeous OCF% = 2 ,] 000 + 

roughages 
3 Lep,l.Dlles DCF% = -,1530 + 
3 Grasses DCF% = 1. 0335 + 
3 Non-legumeous DCF% = 8.'5636 + 

roughages 
4 Plant origin DCF% = -1.2641 + 
5 Plant origin DCF% = 3.0990 + 

Swine 1 Non-legumeous DCF% = -13.3042 + 
roughages 

4 Plant origin DCF% = - '7040 + 
5 Plant origin DCF% = 2.0750 + 

R2 

.58:n (CF%) . 5037 

.6165 (CP%) ,5010 

.4711 (CF %) , 5303 

,5208 (CF%) . 4994 
. 6458 (CF %) . 7604 
. 2093 (CF%) . 3512 

.6552 (CF%) ,6672 
,2844 (CF%) .1940 

. 7214 (CF%) . 3830 

. 5822 (CF%) . 5401 
,2363 (CF%) . 2371 

SE 

11.93 
11 .60 
15.23 

9.10 
7 . 91 
5.19 

10 . 79 
16 . 87 

115.50 

6. 78 
3,03 

N 

73 
109 

44 

28 
37 
24 

115 
81 

7 

50 
10 

N 

"' 0 



Green forages and pasture plants showed close correlations 

(R2 = .52 and .57) between DCF and their CF contents for cattle and 

sheep, respectively (Table 34) . Silages followed the same trend 

(RZ = .53 and .55 for cattle and sheep respectively). These high 

correlations could exist because nutrients are not lost in green 

forages and pasture plants as the case would be in dry forages and 

roughages. The lowered protein content of hays due to loss of leaves 

usually leads to higher fiber content and hence lower digestibility. 

DCF showed high correlations with CF contents of energy feeds 

(R2 = . 54 to .85) for various kinds of animals (Appendix Figures 50 

and 51) except that for horses (R2 = . 42). This high relationship 

could exist because of the low fiber contents of energy feeds which , 

by definition, do not have more than 18 percent crude fiber. 

Correlations between DCF and CF contents of protein supplements 

were lmv for all kinds of animals (RZ = • 02 to . 35) . 
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Classes of feedstuffs were subdivided into more related sub

classes. Table 38 shows the results of regressing DCF with CF contents 

of subdivisions of different classes of feedstuffs for various kinds of 

animals . 

Dry legumes, grasses and mixtures of legumes and grasses showed 

lower correlations for cattle and sheep than the undivided class of dry 

forages and roughages in Table 42 . Dry legumeous roughages sho1~d 

higher (RZ = .60) for cattle and low~r (R2 = .41) correlations for 

sheep, while dry non-legumeous roughages showed higher correlations 

(RZ = . 70 , .56 and .38 respectively) for cattle, sheep and swine than 

the tmdivided class of dry roughages and forages. 



TABLE 39 Simple Regression Equations to Predict Digestible Crude l'iber (DCF%) from Crude f.iber 
Contents (CF%) of Subgroups of f-eedstuffs for Different Kinds of Animals 

Animal Feed Feed 
R2 Kind Class Subgroup Equation SE N 

Cattle 1+2+3 Legumes DCF% = -2 .4183 + . 5565 (CF%) .4295 7.70 179 
1+2+3 Grasses DCF% = - . 0903 + . 6342 (CF%) .4520 9.12 323 
1+2+3 Legurneous roughages DCF% = - 5.4648 + .7259 (CF%) .7079 25.39 19 
1+2+3 Non-legumeous DCF% = -4.3428 + .6499 (CF%) .6921 19.86 42 

roughages 
1+2+3 ~1ixture (legumes DCF% = -5.5876 + .8370 (CF%) .5700 7.79 57 

+ grasses) 

Horses 1+2 LegLDnes DCF% = - .5327 + .3955 (CF%) . 4318 1. 94 9 
1+2 Grasses DCF% 4.1429 + . 3129 (CF%) .0820 14.26 16 
1+2 Non-legLDneous DCF% = -13.3042 + . 7214 (CF%) .3930 52.71 8 

roughages 

Rabbits 1+1 Legumes DCF% = 3.3997 + . 0692 (CF%) .0495 5. 70 17 
1+2 Grasses DCF% = 8.1381 - .1013 (CF%) .1195 4.47 7 
1+2 Legumeous roughages DCF% 3. 7292 .0305 (CF%) .1645 .36 3 

Sheep 1+2+3 Legumes DCF% . 9108 + .4676 (CF%) .4114 9.99 251 
1+2+3 Grasses DCF% = 3.6053 + .5129 (CF%) . 3770 12.38 356 
1+2+3 LegLDneous roughages DCF% = 2.1551 + .5050 (CF%) .4500 60.94 30 
1+2+3 Non-legurneous DCF% = -1.4696 + . 5748 (CF%) . 5408 40.32 182 

roughages 

S1-1ine 1+2 Legumes DC!'% -10 .8875 + .8521 (CF%) .7468 16.05 4 
1+2 Non-legumeous DCF% -10 .4312 + .7540 (CF%) .3140 115. so 7 

roughages 
N 
<0 
N 
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Dry forages and roughages and green forages and pasture plants 

had lrn~ correlations between DNFE and their NFE contents (R2 = .004 to 

.46). However, silages had higher correlations (R2 = .53 and . 79, 

respectively) by both cattle and sheep than the firs t two classes of 

feeds (Table 41). 

Energy feeds and protein supplements sh~ed high predictability 

of DNFE from their contents of NFE (R2 = .50 to .99) for various kinds 

of animals (Appendix Figures 52 to 63) except that of protein supple

ments (R2 = .17) by rabbits . 

Asplund and Harris (1971) and Clemens (1968) also observed that 

NFE digestibility increased in mixed rations than that of individual 

feeds. Schnieder (1947) observed that, with low quality roughages fed 

to sheep, the effect of crude fiber and NFE on digestlbillty differed 

from that of forages of better quality. The digestibility of organic 

matter of such poor feeds declined as the content of NFE increased. 

that decline could be due to larger quantity of lignin that the usual 

proximate analysis method did not include in the fiber fraction and 

becomes a part of the NFE as it was calculated by subtraction. 

Data for cattle, in general, had lower correlations between DNFE 

and NFE contents of different classes of feedstuffs than that of sheep. 

These results were in agreement with those reported by Cipolloni et al. 

(1951) and Fonnesbeck et al . (1974). 

The relationship between DNFE and NFE in dry forages and roughages 

was negative by horses (R2 = . 004). Darlington and Hershberger (1968) 

observed that the apparent digestibility of NFE was inversely related 

to the percentage of crude fiber in the diet. However , Vanderroot and 
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Hence, it could be concluded that subdividing or subgrouping 

classes of feedstuffs could not result in much higher predictability of 

DCF from CF contents of the undivided classes of feedstuffs . 

Digestible Crude Fiber From Proximate Analysis . Multiple regres

sion equations were developed to predict digestible crude fiber from 

proximate analysis of different classes of feedstuffs for various 

kinds of animals (Table 40). 

It was found that DCF could be predicted from proximate analysis 

with higher precision than from CF contents of the different classes of 

feedstuffs for various kinds of animals. One exception '"as that of 

energy feeds by sheep where correlation coefficient dropped from .67 

to .61. 

The increase in correlation coefficients of DCF predictability 

from proximate analysis was high by horses and rabbits in all classes 

of feedstuffs . 

The higher precision in predictability of DCF from proximate 

analysis than from CF contents of feeds showed that the digestibility 

of one nutrient is not a result of the concentration of that nutrient 

alone, but also a result of the presence of other nutrients in the 

feeds. 

Predicting Digestible Nitrogen Free Extract (DNFE) 

Digestible Nitrogen Free Extract From NFE. Table 41 shows the 

results of regressing digestible nitrogen free extract from nitrogen 

free extract content of different classes of feedstuffs for various 

kinds of animals. 



TABLE 40 Multiple Regresstion Equations to Predict Digestible Crude T'iber (DCF%) from Proximate 
Analysis of Different Classes of Feedstuffs for Different Kinds of Animals 

Animal Feed 
R2 Kind Class r:quation a SE 

Cattle 1 DCF% = -6.8893 + . 6230 (CF%) - .1804(CP% ) + l.l 2n6(EF.%) + . 0838 (NFE%) :5423 3.67 
2 DCF% = -11.2689 + . 7804 (CF%) + . 7200(F.F.%) + ,0766(NFE%) + . 038 9 (CP%) .6870 2.83 
3 DCF% = - 27 ,47 37 + . 9718 (CF%) + . 7742 (EE%) + .2410(NFE%) + .1906 (CP%) . 5562 3. 21 
4 DCF% = -19.3683 + .8880(CF%) + .1984 (NFE%) + .130S(EE%) + .1 236 (CP%) . 9034 1.83 
5 DCF% = 18 . 21 50 + ,0570(CF%) + ,1370(EE% ) + -, 7.495(CP%) - .11(,5 (NFE%) . 4I60 4. 77 

Horses l DCF% = 47 .0784 - . 0870(CF%) + 2.352l(EE%) - .7984(CP%) - , 5925 (NFE%) . 5412 3. 22 
4 DCF% = -185.4977 + 3,1 968(CF%) + 1 .8570(NFE%) + 1. 9098(CP% ) + 1.4290(EE%) .7844 2.90 
5 DCF% = 61 . 4298 - . 6428 (CP%) - 1. 9282(EE%) - . 5910 (NFE%) .9906 .88 

Rabbits 1 DCF% = 25 .5253- . 3409 (NFE%) - .1787(CP%) - .1034 (CF%) + .0814 (EE%) .301 2 2.43 
4 DCF% = 8.7037 + .426l(CF%) - .16687 (EE %) - .0514 (NFE%) .7461 5.05 
5 DCF% = 19 .2732 - . 2526 (NFE%) - .1739)CP%) + .OlOl(CF%) .9142 .. S6 

Sheep DCF% = -6.4535 + . 6576(CF%) + .0874(EE%) + . 0429 (NFE%) + . 0470 (CP%) .4679 5.16 
DCF% = 12. 5135 + .4946(CF%) - . 2716(CP%) - .1227 (NFE%) - .1078 (EE%) .6216 3.69 

3 DCF% = 8.8076 + .452l(CF%) - . 2728 (CP%) + . 2671 (EE%) - . 0457 (NFE%) . 5720 3. 70 
4 DCF% = 3. 7906 + . 5587 (CF%) - .2935(EE%) - .1298 (CP%) + . 0222 (NFE%) . 6127 2. 92 
5 DCF% = -17.9255 + . 5359(CF%) + . 2454 (NFE%) + . 2166(CP%) + .1200 (EE%) .2985 3.99 

SIVine 1 DCF% = -49 .8271 + 1.5645(EE%) + .4822("1FE%) + . 7138(CP%) + .8285(CF%) . 4587 11. 02 
4 DCF% = 27 .0344 + .3165(CF%) - . 5191 (CP %) - . 2591 (NFE%) - . 2378 (EE%) .5962 2.75 
5 DCF% = -64.8890 + . 7337 (NFE%) + . 8426(CF%) + . 7018(CP%) + . 6273(EE%) .5375 1.93 

arn equat ion, CF%, FE%, NFE% and CP% are the percentages of crude fiber , ether extract, nitrogen free 
extr act and crude protein, respectively. 

N 

231 
142 
178 

29 
18 

32 
13 

6 

18 
13 

8 

452 
218 

85 
ll5 

80 

10 
41 
13 

N 

"' <.n 



296 

Dry forages and roughages and green forages and pasture plants 

had low correlations between DNFE and their NFE contents (R2 ~ ,004 to 

.46). However, silages had higher correlations (R2 ~ .53 and ,79 , 

respectively) by both cattle and sheep than the first two classes of 

feeds (Table 41). 

Energy feeds and protein supplements showed high predictability 

of DNFE from their contents of NFE (R2 ~ .SO to ,99) for various kinds 

of animals (Appendix Figures 52 to 63) except that of protein supple

ments (R2 ~ .17) by rabbits . 

Asplund and Harris (1971) and Clemens (1968) also observed that 

NFF. digestibility increased in mixed rations than that of individual 

feeds. Schnieder (1947) observed that, with low quality roughages fed 

to sheep , the effect of crude fiber and NFE on digestibility differed 

from that of forages of better quality. The digestibility of organic 

matter of such poor feeds declined as the content of NFE increased. 

That decline could be due to larger quantity of lignin that the usual 

proximate analysis method did not include in the fiber fraction and 

becomes a part of the NFE as it was calculated by subtraction. 

Data for cattle, in general, had lower correlations between DNFE 

and NFE contents of different classes of feedstuffs than that of 

sheep. These results were in agreement with those reported by 

Cipolloni et al. (1951) and Fonnesbeck et al. (1974) . 

The relationship between DNFE and ~~E in dry forages and rougha~es 

was negative by horses (R2 = .004) . Darlington nad Hershberger (1968) 

observed that the apparent digestibility of NFE was inversely related 

to the percentage of crude fiber in the diet. However , Vandernott and 
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TABLE 41 Simpl e Regression Equations to Predict Di gestible Nitrogen 
Free Extract (DNFE%) from Nitrogen Free Extract Conten ts (NFE%) of 
Different Classes of Feedstuffs for Various Kinds of Animals 

Animal Feed 
Rz Kind Class frluation SE N 

Cattle l DNFE% = 13 . 486 7 + . 3476 (NFE%) .1443 4 . 81 258 
2 DNFE% = 12.4175 + . 3513 (NFE%) .1684 5.496 161 
3 DNFE% = - 2 . 9557 + . 7009 (NFE%) . 5269 3. 53 211 
4 DNFE% = -12.9801 + 1.0143 (NFE%) .6967 9 .10 41 
5 DNFE% = - 1.1514 + . 8010 (NFE%) . 5782 7 .99 24 

Horses l DNFE% = 26.9449 - . 0621 (NFE%) .0037 6 . 65 37 
4 INFE% = -39.5597 + 1.3530 (NFE%) . 7776 7. 13 13 
5 DNFE% = -27 .0507 + 1.3838 (NFE%) . 5031 11.68 5 

Rabbits 1 DNFE% = 5 . 4590 + . 4767 (NFE%) .1848 5 . 45 27 
4 DNFE% = - 22 . 8619 + 1 . 2291 (NFE%) . 8372 5.40 15 
5 DNFE% = 10 . 1879 + . 5148 (NFE%) .1723 7.28 8 

Sheep l DNFE% = - 2 .1653 + .6084 (NFE%) . 4558 5 . 21 494 
2 DNFE% = . 6533 + .6886 (NFE%) .4435 5 . 84 229 
3 DNFE% = -11.2644 + .9536 (NFE%) . 7925 4 . 34 93 
4 DNFE% = - 23 . 0740 + 1.1809 (NFE%) . 8580 5 .90 120 
5 DNFE% = - 8 .6021 + 1.0261 (NFE%) .8993 5 .31 92 

Swine l DNFE% = -13.6636 + . 9233 (NFE%) .3333 13 . 74 10 
2 DNFE% = 20 . 1553 + . 2370 (NFE%) . 3953 3 . 58 4 
4 DNFE% = -15.3319 + 1 . 1085 (NFE%) . 8584 6 . 40 52 
5 DNFE% = - 1.8361 + . 9702 (NFE%) .9860 2.70 19 
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Gilbreath (1970) reported that geldings digest NFE better than steers 

fed grass hays. 

The differences in digestibility of cell wall carbohydrates among 

species of animals could be due to conditions favoring or reducing 

anaerobic bacterial fermentation (Fonnesbeck et al . 1974). Sheep 

seemed to have better digestibility of NFE than cattle. Cippoloni 

et al. (1951) also observed differences in NFE digestibility among 

sheep and cattle fed roughages. 

ll'hen classes of feedstuffs were subdivided into more related 

feeds, correlations between DNFE and their NFE contents increased in 

most cases (Table 42) over those reported in Table 4.J. Dry, fresh 

and ensiled legumes showed higher correlations for all animals 

involved. 

Grass hays , however, showed lmv correlations between DNFE and 

NFE for cattle, horses and sheep. The same trend existed in grasses 

fed green to cattle, while fresh grasses had high correlations by 

rabbits and sheep (R2 = .67 and . 56, respectively}. 

Differences IVere observed to exist between the digestibilities of 

(NDF) neutral detergent fiber fraction (which IVas supposed to contain 

the NFE fraction) of grasses and l egumes (Donker et al. 1976; Van 

Soest 1964). However, Christiansen (1979} found that NDF was more 

digestible in grasses than in alfalfa for sheep. 

Grass silages also had higher predictability of DNFE from their 

NFE contents for cattle (R2 = .87) and sheep (R2 = .81). 

Dry legumeous roughages had higher association bet,~en DNFE and 

their NFE content by cattle (R2 
= .60) , rabbits (R2 

= .66) and sheep 
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(R2 = .67) than dry forages and roughages in Table 41. Fresh legumeous 

roughages by cattle followed the same trend (R2 = .80). 

Dry non-legumeous roughages had higher correlations between DNFE 

and their NFE contents than Class 1 feeds in Table 41 for all kinds 

of animals. This increase was very little in the case of horses. 

Green non-legumeous roughages followed the same trend in cattle and 

sheep . Ensiled non-legumeous roughages al so showed high correlations 

by cattle (R2 
= • 79) and sheep (R2 = • 83) . 

Dry mixtures of legumes and grasses had a c lose rel ationship 

between DNFE and their NFE contents (R2 = . 92) by cattle. This 

relationship was l ow in case of horses (R2 = .33) . 

Data for all animals had the same corr elation coefficient values 

for energy feeds as in Table 42. Since data were not subdivided for 

this class of feeds because there was only data for plant origin feeds. 

Protein supplements were subdivided into different subclasses. 

Data were avai lable for feeds of milk origin and plant origin (Tabl e 

43) . DNFE was better predict ed from NFE content of feeds of mil k origin 

by cattle , sheep and st;ine (R 2 = • 99) . 

Protein supplements of plant origin sho•~d slight increase in 

predictabil ity of DNFE from their NFE contents than those of undivided 

protein supplements (Tabl e 41). However, predictability for rabbits, 

sheep , and swine decreased slightly. 

Hence , for age type seemed to affect the relationship bet•~en 

digestible nitrogen free extr act and their nitrogen free extract con

t ent . This effect could be related to similarity in chemical composi

tion (Schneider et al. 1950). 



TABLE 42 Sin~le Regression Equations to Predict Digestible Nitrogen Free Extract (miFE%) from 
Nitrogen Free Extract Contents (NFE%) of Subclasses of Different Classes of Feedstuffs for 
Various Kinds of Animals 

Animal Feed Feed 
R2 Kind Class Subclass Equation SE N 

Cattle l Legumes 11NFF.% = -4.1709 + .8244 ("'rE%) .6600 3.59 120 
l Grasses DNFE% = 11,0832 + . 3608 (NFE%) .0743 25,44 95 
l Legumeous roughages mwr.% = -8.8984 + .8971 ("'rE%) .6002 37.73 9 
1 Non-legumeous DNI'E% = -13.2725 + .8383 (NFF.%) ,5931 40.72 22 

roughages 
1 Mixture (legumeous DNFE% = -17.9388 + l. 0434 (NFF.%) .9206 .33 12 

+ grasses) 
2 Legumes DNFE% = -9.0871 + . 9547 (~IFE%) .4412 14 .39 11 
2 Grasses mwr:% = 16.1245 + . 2412 (NFE%) .0916 29 .14 128 
2 Legumeous roughages DNFE% -5.2298 + .8358 (NFE%) .8034 7,29 10 
2 Non -legtuneous DNFE% -1.9476 + . 7139 (NFE%) .3588 38.58 10 

roughages 
3 Legumes DNFE% -6.0482 + ,8252 (NFE%) .6469 5.93 51 
3 Grasses mwr:% -21.3989 + l. 0687 (NFE%) .8753 9.01 107 
3 Non-legtuneous DNFE% -22.1956 + 1.1200 (NFE%) .7907 9 .46 10 

roughages 
3 Mixture (legtunes DNFE% -1.7764+ 

+ grasses) 
. 6429 (NT'E%) . 5547 12.77 43 

4 Plant origin DNT'E% -12.9801 + l. 0143 (NFE%) .6979 82.85 41 
5 Milk origin DNFE% - .7486 + . 0101 (NFE%) .9996 .71 6 
5 Plant origin DNFE% -7.5501 + .8944 (NT'E%) .6483 56.49 18 

llorses l Legumes DNFE% -7,5637 + .8723 (NFE%) . 5469 6.48 9 
l Grasses DNFE% 20.8469 + . 0854 (NFE%) .0116 21.07 17 
1 Non-legtuneous DNFE% - , 0607 + .3401 (NFE%) .1543 61.80 8 

roughages 
"' "" 0 



TARLE 42 (~ontinued) 

Animal Feed Feed 
R2 Kind Class Suhcl ass Equation SE N 

llorses 1 ~1ixture (legumes DNFE% ~ -37,9411 + .1589 (NFE%) . 3265 11 .67 3 
+ grasses) 

4 Plant origin DNFE% ~ -39 . 5597 + . 1353 (NFE%) . 7776 50.80 13 
5 Plant origin DNFE% ~ - 27 , 0507 + 1. 3838 (NFE%) . 5031 135 . 70 5 

Rabbits 1 Legumes DNFE% ~ -10.1217 + . 9363 (NFE%) . 5472 8 ,33 15 
1 Grasses DNFE% ~ -9 .8614 + . 7307 (NFE%) . 6754 15 . 27 7 
1 Legumeous roughages DNFE% ~ -5.1003 + . 5920 (NFE%) ,6610 2. 70 4 
4 Plant origin DNFE% ~ -22 .8619 + 1 . 2291 (NFE%) ,8372 29 .12 15 
5 Plant origin DNFE% ~ 13.0202 + . 4047 (NFE%) .1215 55.17 7 

Sheep 1 Legumes DNFE% ~ -4.4867 + . 8002 (NFE%) . 7379 6.32 150 
1 Grasses DNFF.% ~ -4, 2166 + ,6968 (NFE%) . 3909 20.96 202 
1 Legumeous roughages NDFF.% ~ -4,7584 + .7483 (NFE%) . 6727 29.52 25 
1 Non-legumeous DNT'E% ~ -16, 4061 + .9366 (NFE%) .5628 44.15 ll5 

roughages 
2 Legumes DNFF.% ~ 4,7382 + . 6251 ("!FE%) .5900 7 .92 73 
2 Gr asses DNFE% ~ -11.3521 + ,8847 (NFF.%) . 5624 22 , 53 109 
2 Non-legumeous DNFE ~ -3.1798 + .8349 (NFF.%) . 4694 67 . 72 44 

roughages 
3 Legumes DNFE% -10. 1032 + , 9503 (NFF.%) .8ll6 6.01 28 
3 Grasses DNFE% -11 .3087 + , 9138 (NFE%) .8077 16,56 37 
3 Non- legumeous DNFF.% -15 .6676 + 1.1076 (NFE%) .8317 23 . 25 24 

roughages 
4 Plant origin DNFE% - 23 ,0740 + 1 .1809 (NFE%) .8580 34 .82 120 
5 Milk origin DNFE% 1. 0559 + .9405 (NFF.%) . 9924 5.41 4 
5 Plant origin DNFE% ~ -10. 5969 + 1. 0645 (NFE%) .8961 26.56 86 

"' 0 ..... 



TABLE 42 (Continued) 

Animal Feed Feed 
Kind Class Subclass Equation 

Swine l Non-legumeous DNFE% = 
roughages 

4 Plant origin DNFE% = 
5 ~1ilk origin DNFE% = 
5 Plant origin DNFE% = 

Rz 

-19.2616 + l. 0416 (NFE%) .3642 

-15.3319 + 1.108 5 (NFF.%) .8584 
-4.1873 + 1.0683 (NFE%) .9928 
-.1716 + . 9048 (NFE%) .9657 

SE N 

135, 3 

40 ,93 
1,63 
6.60 

7 

52 
4 

10 

"' 0 
N 



TABLE 43 Simple Regression Equations to Predict Digestible Nitrogen Free Extract (DNFE%) from 
Nitrogen Free Extract Contents (NFE%) of Subgroups of Feedstuffs for Various Kinds of Animals 

Animal Feed Feed 
R2 Kind Class Subgroup Equation SE N 

Cattle 1+2+3 Legumes DNl'E% = -6.6669 + .8735 (NFE%) .6293 5.42 182 
1+2+3 Grasses DNFE% = 1. 9184 + .5852 (NFE%) .4305 29.50 330 
1+2+3 Legumeous roughages DNFE% -6.0709 + . 8451 (NFE%) .6717 19.32 19 
1+2+3 Non-legumeous DNFE% -12.2061 + .863] (NFF.%) . 5675 35.58 42 

roughages 
1+2+3 Mixture (legtunes DNFE% -3.3155 + .6896 (NFE%) .6084 10.51 57 

+ grasses) 

Sheep 1+2+3 Legtunes DNFE% = -1.7563 + .7491 (NFE%) .6693 8.01 251 
1+2+3 Grasses DNFE% = -8.9056 + 81.56 (NFE%) .5188 22.30 348 
1+2+3 Legumeous roughages DNFE% = -9 .0103 + .8733 (NFE~) .6320 46.23 30 
1+2+3 Non-legumeous DNFE% = -12.9492 + . 9296 (NFE%) .4953 63 . 51 183 

roughages 

Swine 1+2 Legumes DNFE% = -7.0510 + .9012 (NFE%) .9057 3.69 4 
1+2 Non-1egumeous DNFE% = -8.1783 + . 7774 (NFE%) . 3252 123.30 8 

roughages 
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Data of classes of dry forages and roughages, green feeds and 

pasture plants and silages were pooled together then subgrouped into 

legumes, grasses, legumeous roughages, non-legumeous roughages and 

mixtures of legumes and grasses . Results of predicting DNFE from NFE 

contents of the subgrouped feeds were shown in Table 43. Correlations 

between DNFE and NFE contents of subgrouped feeds Here generally higher 

than those reported in Table 41. 

Subgrouped legumes sh01ved high correlation (R
2 

= • 91) between 

DNFE and their NFE content for s1vine, Hhile the subgrouped non

legumeous roughages had lower (R2 = .32) correlation than that of dry 

and fresh feeds in Table 4<1. This decline in correlation could be 

related to the separation of the legumeous feeds that had higher pro-

tein and lower crude. fiber contents than that of the non-legumeous 

roughages. Hence, digestibility of NFE was affected. 

Digestible Nitrogen Free Extract From Proximate Analysis . Mul

tiple regression equations were developed to predict digestible 

nitrogen free extract from the chemical analysis of different classes 

of feedstuffs for various kinds of animals (Table 44). 

Except that of energy feeds for cattl e , all corr elation coeffi-

cients of predicting DNFE from proximate analysis of different classes 

of feeds for all kinds of animals involved were higher than those 

found in Table 46. R2 ranged from .46 to .99. 

Data for sheep had higher correlation between DNFE and proximate 

analysis in all cases except in fresh feeds than that of cattle. 

These results indicated that the predictability of digestible 

nitrogen free extract was greatly affected by the chemical composition 



TABLE 44 Multiple Regression Equations to Predict Digestible Nitrogen Free F.xtract (DNFE%) from 
Proximate Analysis of Different Classes of Feedstuffs for Various Kinds of Animals 

Animal Feed 
Kind Class Equationa 

Cattle 

Horses 

l 
2 
3 
4 
5 

l 
4 
5 

Rahhits l 
4 
5 

Sheep 

Swine 

1 
2 
3 
4 
5 

l 
4 
5 

DNFE% = -4.0631 - .1094(CF%) + . 6693(NFE%) + .5366(CP%) 
DNFE% = -6.7674 + . 8442(NFE%) + .469l(CP%) - .2102(CF%) + .1068(EI'%) 
DNFE% = -5.5357 + .82 21(NFE%) - .3430(CF%) + .1648 (CP%) + .2056(EE%) 
DNFE% = 74.1671 + .1393(NFR%) - 1.0516(CTI%) - 1,0908(CP%) - . 9979(EE%) 
DNFE% = 37 .5804 + .477l(NFE%) - .3518 (CP%) - .6103(EE%) - . 7675(CF%) 

nNFE% = 5.9180 + . 7157(CP%) + 4. 2482(Ef.%) - .2531(CF%) - .1950(NFE%) 
DNFE% = -116.1260 + 2. 0766UJT'F.%) + 2. 2062(CP%) - .3824(Ef.%) - . 2378(CF%) 
DNFE% = 53.4750 - 5.3545(Ef.%) + .3437(NFI'%) - .4198(CP%) 

DNFE% = 44.3427 + .l333(NFE%) - . 5473(CF%) - 2.9537(Ef.%) 
DNFE% = 14.6281 + .8798(NFE%) - 3.1303(EE%) - .34 50(CF%) - .1836(CP%) 
DNFE% = -1 .5714 - 1.3284(CF%) + .9424(NFE%) + .225l(CP%) - .0930(EE%) 

DNFE% = -14.0983 + . 8507(NFE%) + . 5463(CP%) - .2634(EE%) - .0539(CF%) 
DNFE% = -12.3235 + .8984(NFE%) + .5449(CP%) - .14 28(CF%) + .1063(EE%) 
DNFE% = -4.2472 + .9408(~WE%) - .3055(CF%) + .3828(CP%) - .7518(EE% ) 
DNFE% = 3.9774 + .9125(NFE%) - .5022(CF%) - .4106(EE%) - .17l3(CP%) 
DNFE% = 21.6608 + l.l592(NFE%) + . 2693(CP%) - .l287(CF %) + .0389(EE%) 

DNFE% = -16.8197 - .6160(CF%) + 2.0209(EE%) + .8790(NFE%) + 1.0589(CP%) 
DNFE% = 104.6490- .0704(NFE%) - .9568 (EE%) - 1.7018(CP%) - l.5865(CF%) 
DNFE% = -44. 7077 + 1.381S(NFE%) + .3237(CF%) + .6131(EE%) + .~ 6~7(CP%) 

.4593 

.6644 

.8857 

.6696 

.8461 

.6269 

.8339 

.9933 

.4931 

.9442 

.9526 

,6684 
.6363 
.8927 
.8679 
. 9250 

SE 

3.86 
3.17 
2.78 

10 .64 
5. 56 

4.37 
7. 27 
2. 35 

4.79 
4.17 
2.73 

N 

231 
142 
178 

29 
18 

32 
13 

6 

18 
J3 

8 

4 . 02 452 
4 . 78 218 
3.18 85 
5. 71 115 
4. 64 80 

.7660 11.27 

.8627 6.23 

.9899 2.34 

10 
41 
13 

ain equation , CF%, EE% , ~WE% and CP% are percentages of crude fiber, ether extract, nitrogen free extract 
and crude protein, respectively. 



of feedstuffs. Thpse results were in agreement with those of Asplund 

and Harris (1969) and Clemens (1968). 

Predicting Total Digestible Nutrients (TDN) 

Estimating the TDN value of feedstuffs from their pr oximate 

analysis was approached by four met hods. First was to predict the 

digestibility of the comoonents of proximate analysis (CF, EE, ~WE 

and CP) from their proximate contents in feedstuffs. Then TDN was 

calculated by the conventional way. 

The second method was to estimate TDN from the digestible nutri

ents by multiple regression equations. 

The third method «as to predict TDN from each nutrient of proxi 

mate analysis by simple regression equation. 

The fourth method was to predict TDN from proximate analysis of 

feedstuffs by a multiple regression equation. Another , more compli 

cated, multiple regression equation that involved interactions among 

proximate nutrient 1vas also used. 

rn~ From nigestihle Nutrients. TDN was calculated from digestible 

nutrients by the conventional way: 

TT\N = DCF + TlJ:E x 2. 25 + TlNFE + DCP 

The predicted values of digestible nutrients reported in Tables 

29 to 44 could be used for the calculation of TDN. 
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In the seond approach, TDN val ues were regressed 1vith the digest

ible values of CP, CF , EE , and NFE (Table 45) . TDN was highly corre

lated with the digestibl e nutrients (R2 
= .90 to .99) contents of the 

different classes of feedstuffs for various kinds of animals . Data 



TABLE 45 Multiple Regression Equations to Predict Total Digestible Nutrients (11lN%) from Digestible 
Nutrient \.omponents of Proximate Analysis of Differ ent Classes of Feedstuffs for Various Kinds of 
Animals · 

Animal Feed , 
1(2 Kind Class Equation a SE 

Cattle 1 TDN% = 1.8310 + 1. 0222 (DNFE%) + • 8760 (OCF%) + .9202(DCP%) + 2.3343(DEF.%) .9464 1.67 
2 TDN% = - .2612 + .9242 (DCFE%) + 1.0898(DNFE%) + .9258(DCP) + 1.325l (DEE%) .9639 1.67 
3 TDN% = -1.4976 + 1.003l(DNFE%) + 2.3598(DEE) + 1.0479(DCF + 1. 0370 (DCP%) . 9764 1.16 
4 TDN% = .1251 + . 9957(DNFE%) + 2.2392(DEE%) + , 9986(DCF%) + 1 .0097(DCP%) .9984 .58 
5 TON% = .1968 + 1.0023(DCF%) + .9969(DCP%) + ,9983(DNFE%) + 2.240S(DEE%) .9999 .12 

Horses 1 TDN% = -.1432 + .9714(DNFE%) + .10033(DCF%) + 1. 0522(DCP%) + 3.061S(DEE%) .9834 1. 30 
4 'ffiN% = - .6356 + l.OlSO(DNFE%) + .9600(DCF%) + 1.1134(DCP%) + 1. 3792(DEE%) . 9728 2.61 
s 'ffiN% = 12.S295 + . 7620(DNFE%) + l.S67l(DCF%) + .8902(DCP%) .9985 1.17 

Rabbits 1 TDN% = ,3324 + .9948(DCP%) + . 9974 (DNFE%) + ,9617(DCF%) + 2.2794(DEE%) .9998 . 21 
4 TDN% = 4. 0052 + .9S94(DNFF.%) + . 9956 (DCP%) + ,8727 (DCF%) + 1.7778(DF.E%) ,998S .46 
5 TDN% = -1 . 3260 + 1.1149(DCP%) + ,8S72(DNFE%) + ,997l(DCF%) .9962 1. 63 

Sheep l 11lN% = ,9987 + .9820(DNFF.%) + .98ll(DCF%) + .9954(DCP%) + 2,1319(DEP.%) .9868 1.06 
2 TnN% = 2.5237 + 1 .0089(DNFP.%) + 1.0246(DCF%) + 1.1936(DCP% + .7769 (DEE%) .8426 4.05 
3 TDN% = -.1948 + 1.0042(DNFE% ) + 1.0262(DCP%) + . 9RS7(DCF%) + 2,2632(DEE%) . 9971 . SO 
4 TDN% = -.1626 + 1.001S(DNFF.%) + 2,2054(DF.E%) + 1 .0127(DCP%) + 1.0106 .9879 1. 38 

(DCF%) 
s TDN% = 1. 7049 + 2.1029(DF.F.%) + .967l(D'JFF.%) + • 9705 (DCP%) + 1.0323(DCF%) /9046 4.74 

Swine TON%= .0140 + 2.2447(DEE%) + 1.0002(D'JFE%) + ,9953(DCF%) + 1. 00158 .9999 . OS 
· DCF%) 

aln equation, DCF, DEE, DNFE, and DCP were t he digestible percentages of crude fiber , 
nitrogen free extract and crude protein, respectively. 

ether extract, 

N 
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29 
18 

32 
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6 

18 
13 
8 
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85 
us 

80 

41 
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for sheep, however, had a slightly lower correlation (R2 

case of green forages ru1d pasture plants. 

. 84) in 
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Digestible nitr ogen free ext ract contributed more to predictabil -

ity of TDN than other nutrients in cases of dry forages and roughages 

by cattle, horses, sheep and swine. NFE had the same kind in case of 

silages for sheep and cattle, green forages and pasture plants for 

sheep, energy feeds by cattle, horses, rabbits and sheep and protein 

supplements for horses. 

Digestible ether extract contributed more to predictability of 

TDN than other digestible nutrient contents of protein supplements for 

sheep and swine and energy feeds by swine. Digestible crude fiber 

contributed better fo~ TDN estimation in green forages and pasture 

plants and protein supplements by cattle. H01;ever, DCP contributed 

more in cases of dry forages and roughages and protein supplements by 

rabbits. 

Hence, digestible nutrients behaved differently in contributing 

to predictability of TDN values depending on the kind of animals and 

the class of feedstuffs they were fed. 

Predicting Total Digestible Nutrients From Each Proximate Nutrient 

Content. 

TDN From Crude Fiber. TDN values were regressed with crude fiber 

contents of different classes of feedstuffs for various classes of 

animals (Table 46). As expected, TDN was negatively correlated with 

crude fiber. Correlations of TDN and CF contents of dry roughages 

and forages , green forages and pasture plants and silages were 101< for 

all kinds of animals (R2 ; .001 to .44) . ~vo exceptions were those of 
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TABLE 46 Simp le Regression Equations to Predict Total Digestible 
Nutrients (IDN%) from Crude Fiber Contents (CF%) of Different 
Classes of Feedstuffs for Various Kinds of Animals 

Mimal Feed 
Kind Oass Equation R2 SE N 

Catt le 1 TDN% = 75.2671 - .6114 (CF%) . 1800 7 . 75 420 
2 TDN% = 55 . 3657 + . 0778 (CF%) .0012 10.33 212 
3 TDN% = 81.4570 - . 7028 (CF%) .2323 6.48 269 
4 TDN% = 87 . 4555 - .8741 (CF%) .2959 8.18 176 
5 TDN% = 84.5827 - . 6220 (CF%) . 1862 9.62 124 

Horses 1 TDN% = 69.0273 - .6291 (CF%) .1016 9.59 37 
4 IDN% = 91.1190 - 1.9582 (CF%) . 3582 8.60 12 
5 TDN% = 103 . 4529 - 2. 3640 (CF%) . 3931 13.51 5 

Rabbits 1 TDN% = 72.5824 - .9053 (CF%) . 4378 7.95 30 
4 TDN% ::: 93.6811 - . 8929 (CF%) .4012 7.75 14 
5 TDN% = 110.7313.- 2. 8711 (CF%) .8156 2.58 6 

Sheep 1 TDN% = 68 . 1937 - . 7455 (CF%) .1226 8.58 546 
2 TDN% = 62 . 3987 - . 1588 (CF%) .0439 8.91 229 
3 1DN% = 203 . 2016 - 5.1503 (CF%) .5433 8 . 57 93 
4 TDN% = 93 . 8608 - 1.4540 (CF%) .2764 10 . 67 120 
5 TDN% = 81.9327 - .2855 (CF%) .02 37 9.26 79 

Swine 1 TDN% = 68 . 1937 - . 7455 (CF%) .1226 21.31 17 
2 TDN% = 62.3987 - .1588 (CF%) .0439 7 .92 28 
4 TDN% = 93. 8608 - 1. 4540 (CF%) .2 764 9.90 81 
5 TDN% = 81.932 7 - .2855 (CF%) .0237 10.09 46 

in vitro TDN% = 86.3382 .9201 (CF%) . 7290 2.83 32 
3 TDN% = 74. 7393 . 4906 (CF%) .3016 3.51 92 



green forages (R2 

by swine. 

.73) for in vitro studies and silages (R2 
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. 54) 

Since high contents of crude fiber in feedstuffs depresses digest

ibility, it was expected to have negative relationship between CR and 

TDN. This was in agreement ~;ith Meyer and Lofgreen (1956) and Stall

cum et al. (1976) who reported negative correlation between TDN and CF 

in alfalfa hay and forages. 

Stallcup et al. (1976) found that TDN was negatively correlated 

with CF content of sorghum-sudan forage (R2 

correlation dropped in cases of sor ghum (R2 

.66). However, this 

. 21) and corn (R2 = .002) 

silages. \'/hen data of ·an experiments were pooled together, TDN was 

not related to crude fiber content of these feeds (R2 
= .10). 

Energy feeds and protein supplements also showed low, negative 

correlations between TDN and their CF contents (R2 = .02 to .40) except 

that of protein supplements (R2 = .82) by rabbits. 

Classes of feedstuffs were subdivided into more related subclasses. 

Table 47 shows the results of regressing TDN values with CF contents of 

subclasses of different feedstuffs for various kinds of animals. 

Correlations between TDN and CF contents of the subdivisions of 

dry forages and roughages did not show appreciable improvement over 

that of the undivided class except in the case of legume and grass hays 

(R2 = . 83 and .79, respectively) by rabbits . 

Subdivisions of green forages and pasture plants did not have 

improved correlations between TDN and their CF contents over the un 

divided class except that of legumeous roughages by sheep (R2 = .93). 



TARLE 47 Sim)le Regression Equations to Predjct Total Digestible Nutrients (TDN%) from Crude Fiber 
Contents (CF% of Subclasses of Different Classes of Feedstuffs 

Animal Feed Feed 
R2 Kind Class Subclass Equation SE N 

Cattle 1 Legumes TDN% = 72 . 7304 - • 4954 (CF%) .1945 16 . 78 175 
1 Gr asses TDN% = 89.9890 - 1.1216 (Cf%) .2379 75 . 55 159 
1 Legwneous roughages TON% = 99 .0743 - 1 . 0297 (CF%) .2747 269 .40 15 
1 Non- legwneous mN% = 60 . 2597 - . 2498 (CF%) .0728 66 . 31 55 

roughages 
l Mixture (legumes TD'I% = ?0.5105 - . 4411 (cr%) .1869 6.76 16 

+ grasses) 
2 Legumes TDN% 83 . 0158 .8022 (CF%) . 3816 39.90 16 
2 r.rasses TDN% 64 . 9693 .2431 (CF%) .0068 103.60 174 
2 Legumeous roughages TDN% 26 .0216 + .9R76 (CF%) . 4319 106. 30 10 
2 Non-legumeous TDN% 58 .4065 - .0782 (CF%) .0044 418 . 20 10 

roughages 
2 Hixture (legwnes TDN% = 16 .8147 + 1. 4162 (CF%) . 1644 232 . 30 3 

+ grasses) 
3 Legumes TDN% = 74.6304 - . 5377 (Cf%) . 2261 20 . 95 67 
3 Grasses TDN% = 88.2279 - .8918 (Cr%) .4172 63.14 140 
3 Non-legumeous TDN% = 63 .6742 . 4757 (CF%) . 2955 39.30 12 

roughages 
3 Mixtures (legwnes 'ffiN% = 63.4438 

+ grasses) 
.0770 ccr:%) . 0015 55.65 51 

4 Plant origin TDN% = 88.1419 - . 9292 (CF%) .3378 61.92 173 
5 Animal origin TON% = 67 .9869 + . 5856 (CF%) .0350 20.26 9 
5 Marine origin TON% = 79 .0405 - 4.2010 (Cr%) . 0178 49.17 10 
5 Plant origin TDN% = 90.5130 - .9580 (CF%) .3716 149.10 99 

llorses 1 Legumes TDN% = 69 .8210 - .5462 (CF%) . 1959 11.56 9 
1 Grasses TON% = 39.7650 + . 2331 (CF%) .0167 40 . 41 17 "' ..... ..... 



TABLE 47 (Continued) 

Animal Feed Feed 
R2 Kind Class Subclass Equation SE N 

Hor ses 1 Non-legumeous TON%= 26 .9008 + 
roughages 

. 2060 (Cf.%) .0150 175.30 R 

Rabbits 1 Legumes TON%= 83.5378 - l . 0964 (Cr:%) .8350 14.74 17 
1 Grasses TON% = 74.7556 - 1.1444 (CF%) . 7948 19.97 7 
1 Legumeous roughages TON% = 45.3199 .3948 (Cf.%) . 5072 11 .03 4 

Sheep 1 Legumes TON%= 70 .2834 - . 4 542 (CF%) . 2453 17 .62 184 
1 ~rasses TflN% = 85.6315 - . 9169 (CF%) .2369 57 .14 219 
1 Legumeous roughages TON%= 60 .0854 - .1236 (CF%) . 0128 190.00 25 
1 !on- legumeous Tn~i% = 56.5164 . 1483 cr.r:%) . 0417 126.2 116 

roughages 
2 Legumes TON%= 51.8573 + . 3297 (CF%) . 0457 81.33 73 
2 Grasses TDN%- 69.3943 - . 2916 (CF%) .0352 71.48 125 
2 Legumeous roughages TON%= 89 .1674 - . 7356 (Cf.%) . 9345 5.07 4 
2 Non- l egumeous TDN% = 71.7364 - .454 7 (Cf.%) . 0871 165.20 45 

roughages 
3 Legumes TON%= 69 . 2724 - . 3430 (Cr:%) .1116 31.35 28 
3 Grasses TON%= 80. 1661 . 5929 (CI'%) .3361 41. 84 37 
3 Non- legumeous TON%= ti5 .6603 .2751 (CF%) .0890 163 . 00 24 

roughages 
4 Plant origin TON% = 87.8860- 1 .0092 (CF%) . 3071 173.00 121 
5 Plant origin TDN% = 95.8459 - 1. 1155 (CF%) .2855 535.16 84 

Swine l Non-legumeous TDN% = 53 .3647 . 3795 (CF%) . 0214 648 .60 8 
roughages 

2 Legumes lDN% = 83.1737 - . 7856 (Cr:%) .4070 5.94 7 
2 Grasses TDN% = 83.1737 - .7856 (CF%) .4070 37 .95 12 "' .... 

N 



TARLE 47 (Continued) 

Animal Feed Feed 
R2 Kind r.lass Suhclass Equation SE ~: 

S1~ine Non-legumeous TnN% = 4508097 + 0 7237 (CF%) 03671 76 059 
roughages 

4 Plant origin mN% = 9308608 - 1. 4 540 (CI'%) 0 2764 33093 84 
5 Animal origin TDN% 6500595 03777 (CF %) 02052 21.13 6 
5 Marine origin TnN% 9903415 21.5175 (CF%) 05052 91 029 6 
5 Plant origin mN% 91.6315 09834 ern J 03231 37 0 39 31 
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Correlations between TDN and crude fiber contents of the subdivi-

sions of energy feeds did not show higher increases over the undivided 

class of energy feeds for all kinds of animals. 

Only protein supplements of plant origin (Table 47) showed slight 

increase CR2 
= .37) for cattle over the undivided class of protein 

supplements. Protein supplements of animal, marine and plant origin 

showed higher correlations over the undivided cl ass of protein supple

ments by swine , ho;vever . 

TDN From Ether Extract . Table 48 sho;vs the results of predicting 

TDN from ether extract contents of different kinds of feedstuffs for 

various kinds of animals. There was no relationship between TDN and 

ether extract content of dry forages and roughages, green forages and 

pasture plants and silages for various kinds of animals. Correlation 

was high (R2 = .88) in green forages and pasture plants for in vitro 

studies, however. 

Correlations between TON and EE contents of energy feeds were 

high by cattle (R2 = .71) and swine (R2 
= .80). The correlations by 

horses, rabbits and sheep were negative, however . 

Protein supplements also showed variations in correlation between 

TDN and their EE contents for various kinds of animals . Rabbi t s had a 

high correl ation (R2 
= .73) while sheep and swine had law correlation 

(R2 = .21). The correlation coefficient was .41 for cattle . 

Increased ether extract (addition of fat) decreased digestibility 

of ration in sheep (Swift et al . 1948) and cellulose digestibility 

(Summers et al . 1957) . Moreover, the presence of non-digestible lipids 

in browse plant s tend to decrease digest ibility (Cook and Harris, 1968a. 
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TABLE 48 Simple Regress i on Equat ions to Predict Total Digestible 
l\'utrient s (TDN%) f rom Et her Extract Contents (EE%) of Different 
Cl asses of Feedstuf fs for Various Kinds of Animal s 

Animal Feed 
Kind Cl ass Equat i on Rz SE N 

Cattle 1 TDN% = 50 . 6263 + 2 .0873 (EE%) .0647 8. 26 407 
2 TDN% = 50. 1459 + 1.5528 (EE%) . 1299 9.92 197 
3 TDN% = 54 . 7150 + 1.6481 (EE%) . 0987 6. 84 251 
4 TTh'J% = 76 . 4605 + 1.0995 (EE%) . 7077 9. 76 173 
5 mN% = 69 . 7135 + 1. 2746 (EE%) . 4081 10 . 08 130 

Horses 1 TDN% = 26.4729 + 8.4551 (EE%) . 3570 7.90 36 
4 TDN% = 83 . 8520 - 2.4447 (EE%) .1357 12 . 29 12 

Rabbits 1 TDN% = 40 .3828 + 2 .0168 (EE%) .0771 10 . 49 28 
4 TDN% = 92 .8724 - 2 .8604 (EE%) .1938 8.99 14 
5 TDN% = 68 . 2649 + 1 .9379 (EE%) . 7329 13 .66 6 

Sheep 1 TDN% = 52 .7071 + 1. 0413 (EE%) ·. 0401 9. 07 514 
2 TDN% = 60 . 8814 - .6223 (EE%) . 0156 12. 74 286 
3 TDN% = 57.7079 + .9049 (EE%) .0074 8. 87 94 
4 TDN% = 79.0604- . 2590 (EE%) .0041 12. 77 120 
5 TDN% = 74.3145 + . 7930 (EE%) .2092 11. so 101 

Swine 1 IDN% = 41. 5084 + 2.0070 (EE%) .0500 22. 17 17 
2 TDN% = 52 .7616 + 2.0019 (EE%) .0719 7.80 28 
4 TDN% = 76 . 8297 + 1. 2169 (EE%) . 7957 11 .91 85 
5 TDN% = 75 . 7205 + .9238 (EE%) .2090 10.43 58 

in vitro 2 TDN% 48 . 7562 + .2225 (EE%) . 8787 1.91 30 
3 TDN% = 45.4236 + 4 .3771 (EE%) .2812 3.56 91 
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Hence, it is sugges ted that nutritive lipids should be analyzed for 

and reported separately from non-nutritive lipids (Harris, 1970 ) , 

The variation in predictability of TDN from EE within classes of 

feedstuffs suggested that kind of animals had an effect on this 

predictability. However, it could be also suggested that there was 

lack of agreement among workers that contributed to the data. More-

over, these fluctuations could be due to the nature of the mixture 

and species of feedstuffs studied (Barnes, 1973) . 

Table 49 shows t he results of regressing TDN with ether extract 

contents of subdivisions of different classes of feedstuffs for various 

kinds of animals . 

TDN had a low correl ation with EE contents of subdivisions of dry 

forages and roughages by cattle and sheep. Dry mixtures of legumes 

and grasses, however, had a negative. correlation [R2 = .42) by cattle, 

Legume hays had higher correlations between TDN and their EE 

contents than the ~divided dry forages and roughages for horses (R2 

.56), rabbits (R2 = .49) and swine (R2 = .76), Correlation was high in 

grass hays for rabbits (R2 = .60) . 

Subdivisions of silages had low correlations between TDN and their 

EE contents by cattle and sheep. However, ensiled mixtures of legumes 

and grasses had a high correlation (R2 
= .53) by cattle. 

Energy feeds of plant origin had lower correlation between TDN 

and their contents of EE than undivided energy feeds for cattle [R2 = 

.39) and swine (R2 = .74). l~ile energy feeds of animal origin had 

higher correlations (R2 = .97) by cattle. 



TABLE 49 Simple Regression Equations to Predict Total Digestible Nutrients (TON~) from Ether Extract 
Contents (EE%) of Subclasses of Different Classes of Feedstuffs for Various Kinds of Animals 

Animal Feed Feed 
R2 Kind Class Subclass f:quation SE N 

Catt le 1 Legumes TON% = 51i o1917 + 07485 (EE%) 00255 87020 173 
1 Grasses mN% = 42 03090 + 4 0 6214 (EE%) o1684 710 90 149 
1 Legumeous roughages TnN% 4500728 + 702223 (EE%) 00881 78 0 96 14 
1 Non - l egumeous TON% 4804778 + 1. 204 2 (Ef'%) 00565 720 96 55 

roughages 
1 Mixture (legumes TON% 61.7847 + 

+ grasses) 
2o4414 (EE%) 04212 59 040 16 

2 Legumes TDN% 49 07095 + 4 0 3418 (EE%) 06211 73070 14 
2 Grasses TON% 49 04228 + 106230 (EE%) 01537 77 oOO 161 
2 Legumeous roughages TON% = 45 0 9066 + o4460 (EE~) 0 0008 74 000 10 
2 Non-1egumeous TON% = 5003491 + 203010 (EE%) 0 0454 79080 10 

2 
roughages 

Mixtures (legumes TON% = 
+ grasses) 

-27 08663 + 2600102 (EE%) 07987 0000 3 

3 Legwnes TON% 5007361 + 2o1030 (EE%) 03832 72 0 90 63 
3 Grasses TON% ti0 o3004 + 0 7346 (EE%) 00148 82 090 126 
3 Non-legumeous TON% 55 09023 202054 (EE%) ol652 57 0 so 12 

r oughages 
3 Mixtures (l egumes TON% 4602346 + 

+ grasses) 
3o4440 (EE%) 05284 76000 51 

4 Pl ant origin TON% 7609097 + l. 0073 (EE%) 03858 96080 168 
4 Animal origin TON% 74 03176 + 1.1575 (EE%) 0 9726 0000 9 
5 Animal origin TON% = 6409527 + 0 5664 (EE%) 03777 0000 11 
5 ~1arine origin TON~ = 60 07991 + 105305 (EE%) 03366 OoOO 10 
5 Milk origin TON% = 800 7738 + l o5339 (EE%) 09612 90030 10 
5 Plant origin TON% = 7300580 + 0 7734 (EE%) 01804 95006 100 

"' ..... 
" 



TABLE 49 (Continued) 

Animal reed Feed 
rt2 Kind Class Suhclass Equation SE N 

Horses l Legumes TDN% 38.2589 + 6.1296 (EE%) . 5636 56.70 9 
l Grasses TDN% 37.4168 + 3. 8351 (EE%) .1136 63.20 17 
4 Plant origin TDN % 83.8520 2.4447 (EE%) .1357 99 . 58 13 

Rabbits 1 Legumes TDN% = 35 . 9395 + 6.2642 (EE%) . 4864 75.40 16 
1 Grasses TON% = 24.5191 + 3.8564 (EE%) .6040 52.02 6 
l Legumeous roughages TDN% = 23.2224 + 4.0280 (EE%) .6408 39.20 4 
l Non-legumeous TDN% = 13.6571 + 12.5546 (EE%) . 5402 86.30 25 

roughages 
4 Plant origin TDN% = 92.8724 - 2.8605 (EE%) .1938 98.33 14 
5 Plant origin TDN% = 66.2454 + 2. 2073 (EE%) .4644 95.64 7 

Sheep l Legumes TDN% = 52. 5894 + l. 7 594 (EE%) .l.Oll 70.50 150 
l Grasses TDN% = 47 .0837 + 3.7962 (EE%) .2370 77.60 221 
l Legumeous roughages TON% = 54.5607 + . 4348 (EE%) .0024 86.30 25 
1 Non-legumeous TDN% = 48.6408 + .4943 (EE%) .0186 78 . 00 116 

roughages 
2 Legumes TON% = 67.2435- l. 6210 (EE%) .5068 76.23 79 
2 Grasses TDN% = 55.4537 + l. 5788 (EE%) . 0265 80.30 125 
2 Legumeous roughages TnN% 37.6188 + 20.5612 (EE%) .9262 81.79 4 
2 Non-legumeous TDN% 51.7942 + . 5632 (EE%) .0095 91.70 80 

roughages 
3 Legumes TDN% 55.1822 + .9474 (EE%) .0003 69.50 28 
3 Grasses TON% 59 . 5856 + 1.3525 (EE%) .0121 75.00 39 
3 Non-1egumeous TON% = 56.9051 .7552 (EE%) .0081 86.33 24 

roughages 
Plant origin TON% = 79.0604 . 2590 (EE%) .0041 99.30 121 

"' .... 
co 



TABLE 49 (Continued) 

Animal Feed Feed 
R2 Kind Class Subclass Equation SE N 

Sheep Marine origin TDN% = 68.1353 + .5277 (EE%) .0281 0.00 15 
Plant origin TDN% = 75 .0366 + .8023 (EE%) .2361 99.90 86 

S1-1ine 1 Legumes TON% = 29.5041 + 5. 2493 (EE%) . 7595 0.00 4 
1 Legumeous roughages TDN% = 74 .0767 + .3205 (EE%) .0026 91.16 3 
1 Non-1egumeous TDN% = 32.4304 + 2.9966 (EE%) .1700 83.00 8 

roughages 
2 Legumes TDN% 53 .5925 + 1.7683 (EE%) .4456 62.64 7 
2 Grasses TDN% 39.7223 + 7.6214 (EE%) .6322 68.73 12 
2 Non-leg\Uneous TDN% 75 .8988 6.4410 (EE%) . 5854 74 .44 7 

roughages 
4 Plant origin TDN% 76.9096 + 1.1795 (EE%) . 7443 110. 00 89 
5 Animal origin TDN% = 61.9892 + .7934 (EE%) .1967 87.20 8 
5 Marine origin TDN% = 79 .1568 - . 0082 (EE%) . 0000 104.40 10 
5 Hilk origin T11N% = 87 . 2977 + . 9723 (EE%) .5784 110.40 10 
5 Plant origin TDN% = 78 .6620 - .6125 (EE%) .1246 100 .90 31 
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Predictability of TDN from EE concentration in protein supplements 

of marine origin was lower than that of undivided protein supplements 

(Table 48) for cattle (R2 = .34), sheep (R2 
= .03) and swine (Rz = .00). 

However, higher correlations were obtained from protein supplements of 

milk origin by cattle (R2 = .96) and swine (R2 = .58). 

Protein supplements of plant origin had lower correlations between 

TDN and their EE contents than undivided protein supplements for cattle, 

rabbits and swine (R2 = .18, .46 and .12, respectively). This relation

ship was slightly higher for sheep (R2 
= .24). 

TDN From Crude Protein. Results of predicting TDN from crude 

protein contents of different classes of feedstuffs for various kinds 

of animals are presented in Table SO. Crude protein was not a good 

predictant of TDN in most cases. However, dry forages and roughages 

had high correlation (R2 
= .56) for rabbits (Appendix Figure 64). 

CP concentration in green forages and pasture plants was also a good 

predictant of TDN (R2 = . 88) for in vitro studies. 

Si lages had low negative correlations between TDN and their CP 

contents by cattle and sheep. This correlation was low but positive 

for in vitro studies (Table SO). 

Low negative correlations were obtained from regressing TDN with 

EE contents of energy feeds and protein supplements for various kinds 

of animals except by sheep which had a low but positive correlation. 

Table 51 shows the results of predicting TDN from CP contents of 

subdivided classes of feedstuffs for various kinds of animals. 

TDN predictability from CP did not improve upon subdividing 

classes of feedstuffs into more related feeds . There were few cases 
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TABLE SO Simple Regr ession Equations to Predict Total Digestible 
Nutrients (TDN%) from Crude Protein Contents (CP%) of Different 
Classes of Feedstuffs for Various Kinds of Animals 

Animal Feed 
Kind Class Equation R2 SE N 

Cattle 1 TIN% = 47.2737 + . 6615 (CP%) . 2012 7.58 431 
2 TDN% = 43.4815 + 1. 0607 (CP%) . 2432 8 . 76 213 
3 TDN% = 61.3886 - . 0532 (CP%) .0010 7.41 284 
4 TDN% = 82.8744 - . 1533 (CP%) . 0052 9.41 191 
5 TDN% = 84 . 3363 - .0796 (CP%) .0064 10.59 126 

Horses 1 TDN% = 34 . 3634 + 1.1138 (CP%) .3825 7.67 32 
4 TON% = 89 . 6809 - 1.1909 (CP%) .1758 11.25 12 
5 TDN% = 80 .4225 - . 0728 (CP%) .0002 

Rabbit s 1 TDN% = 22 . 9636 + 1. 3074 (CP%) .5625 7.34 26 
4 TDN% = 97.9768 - 1.0344 (CP%) . 1689 9.14 14 
5 TDN% = 107 .6627- . 4456 (CP%) .0324 7 . 89 6 

Sheep 1 TON%= 47.1748 + . 6622 (CP%) . 1708 8 .64 536 
2 TDN% = 50.4548 + . 6577 (CP%) .0960 11.76 299 
3 TDN% = 62.6533 - .1252 (CP%) . 0022 9.08 94 
4 TDN% = 81 . 0968 - .2697 (CP%) .0096 12.77 122 
5 TDN% = 85.0961 - . 1074 (CP%) . 0159 11 . 50 101 

Swine 1 TDN% = 29.3163 + 1. 3519 (CP%) . 2588 19.58 17 
2 TDN% = 52.3900 + .4659 (CP%) .1269 7 .56 28 
4 TDN% = 87 .9718 - . 3022 (CP%) .0107 12.97 91 
5 TDN% = 91 . 1507 - .1954 (CP%) . 0838 10.21 58 

in vitro 1 ID~% = 49.0817 + .4488 (CP%) . 0635 2 . 35 82 
2 TDN% = 51.6564 + 2.4140 (CP%) . 8830 1.86 31 
3 TDN% = 53. 7990 + 1.2639 (CP%) .3752 3 . 32 92 



where predictability of TDN from CP was higher than that reported in 

Table 49 for the undivided classes. Correlation of 1DN with CP con

tents of legume hays for rabbits (R2 ; . 77) , protein supplements of 

marine origin for sheep (R2; .60) and swine (R2; .53). 

In vitro studies had a high (R2 ; .88) correlation between TON 

and CP contents of gr een grasses. 
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These results were in agreement with those of Sullivan (1964) who 

predicted TDN from CP contents of 101 grass hay samples (R2 ; .44) and 

54 samples of alfalfa hay sampl es (R2; .31). However, Meyer and 

Lofgreen (1956) reported high correlation (R2 ; .59) between CP con

tent of alfalfa hay (31 samples and 152 digestibility trials) and TON. 

It was expected that CP was not a good predictant of TDN values of 

feedstuffs . Digestible crude protein was included in the calculations 

of TON because protein served as a source of heat and ener gy when more 

is provided t han required to meet protein needs of t he body. However, 

not all determined proteins were true proteins but could come from non

protein nitrogen sources . 

The potential energy in protein (measured by their complete 

combustion in a bombcalorimeter) was considerably greater than that in 

carbohydrates. This is true because with protein, oxygen is required 

to oxidize the carbon and some of the hydrogen atoms (which is not the 

case in carbohydrate oxidation) . The heat of water formation is much 

higher in protein oxidation than in that of carbohydrates. Thus, 

typical pure protein yields 5.25 to 5. 75 kilocalories of gross energy 

per gram (Lloyd et al . 1978) . 



TABLE 51 Simpl e Regression Equations to Predict Total Digestible Nutrients (TDN%) from Crude Protein 
(CP%) of Subclasses of Different Classes of Feedstuffs for Various Kinds of Anima ls 

Animal Feed Feed 
R2 Kind Class Subclass Equation SE N 

Cattle 1 Legumes TDN% = 4 7. 9101 + . 5653 (CP%) .1491 17.31 182 
1 Grasses TDN % = 43 .9073 + 1.1156 (CP%) .2032 78.26 162 
1 Leg~neous roughages TDN% 25 . 8942 + 2.8522 (CP%) .3035 258.70 15 
1 Non-legumeous TDN% 46.4038 + .8083 (CP% ) . 0820 65.54 55 

roughages 
Mixtures (legumes TDN% 55 . 2303 + .1031 (CP%) . 0176 9.20 17 

+ grasses) 
2 Leg~nes TIW% = 43.3524 + 1. 0709 (CP%) .3493 39 . 42 17 
2 Grasses TDN% = 42.5101 + 1. 1615 (CP%) . 2614 77 .01 174 
2 Legumeous roughages TON% = 38 .4031 + . 8848 (CP%) .1736 154.61 10 
2 Non -legumeous TDN% = 58.1582 - . 1572 (CP%) . 0107 369.00 10 

roughages 
3 Legumes TDN% = 44.3719 + .8337 (CP%) . 2339 20 .54 68 
3 Grasses TDN% = 63.3617 - .1018 (CP%) .0010 79.32 153 
3 Non-leg~eous TDN% = 52.7394 - .3988 (CP%) .01 25 55.09 12 

roughages 
3 Mixtures (legumes TDN% = 51. 5992 + . 6104 (CP %) .0580 51.47 52 

+ grasses ) 
4 Plant origin TDN% 82.6616 .1265 (CP%) .0035 89.50 183 
4 Animal origin TON% 68.2114 + .5579 (CP%) .0047 81.92 8 
5 Animal origin TON% 76.0278 . 1059 (CP%) .18 29 13. 69 10 
5 Marine origin TDN% 37.3171 + . 5690 (CP%) .1829 40.46 10 
5 Plant origin TDN% 68 . 8506 + .2860 (CP%) .0736 179 . 40 98 

Horses 1 Legumes TDN% 54.8736 - .1573 (CP%) . 0080 14. 26 9 
1 Grasses TON% = 44.3671 + . 2688 (CP%) . 0307 27 . 28 15 
1 Non- 1egumeous TON% = 8.9006 + 6.8683 (CP%) .2951 125 . 50 8 "' roughages N 

"' 



TABLE 51 (Continued) 

Animal Feed Feed 
R2 Kind Class Subclass Equation SE N 

Rabbits 1 Legumes TDN% = 19.2568 + 1.6968 (CP%) . 7749 21.96 15 
1 Grasses TDN% = 29.0887 + .7308 (CP%) .5368 54.52 6 
1 Legumeous roughages TDN% = 22.3055 + .8405 (CP %) .4251 12.87 4 

Sheep 1 Legumes TDN% = 46.2041 + .6183 (CP%) . 2372 18.41 159 
1 Grasses TDN% = 46.4600 + .9391 (CP%) . 2872 62.33 234 
1 Legumeous roughages TDN% = 43.7464 + 1. 3256 (CP%) .1205 169.30 25 
1 Non-1egumeous TDN% = 47.1605+ .3335 (CP%) .0222 128.80 116 

roughages 
2 Legumes TDN% = 51 .5589 + .5081 (CP%) .0618 64 . 75 93 
2 Grasses TDN% = 51.0783 + .9929 (CP%) . 1011 149. 70 125 
2 Legumeous roughages TDN% = 68.0053 + .4083 (CP%) .0465 73 . 91 4 
2 Non -1egumeous TDN% = 34.7991 + 1. 5531 (CP%) . 2579 185 .00 79 

roughages 
3 Legumes TDN% = 49.9539 + .4968 (CP%) .0720 32.75 28 
3 Grasses TON% = 63 .6740 + .0651 (CP%) .0003 128 .60 39 
3 Non-1egumeous TON% = 56.8963 + .2289 (CP%) .0031 167.40 24 

roughages 
4 Plant origin TON% = 81 . 0968 - .2697 (CP %) .0096 212.50 123 
5 Marine origin TON% = 11 .8790 + .8809 (CP%) . 3674 31.53 14 
5 ~1i1k origin TDN% = 87.0283 + .0959 (CP%) . 3674 16.93 4 
5 Plant origin TDN% = 78.4717 + .1158 (CP%) . 0047 538.10 87 

Swine 1 Non-1egumeous TDN% = 24.7611 + 1. 9146 (CP%) .1306 576.30 8 
roughages 

2 Legtunes TDN% = 59 .9607 - .0404 (CP%) . 0029 8.95 7 
2 Grasses TDN% = 45.5744 + 1.1299 (CP%) .3571 41.15 12 

"' N 
-<> 



TABLE 51 (Continued) 

Animal Feed reed 
Kind Class Subclass Equation 

Swine 2 Non-legumeous TDN% = 55.3667 + . 3565 
roughages 

4 Plant origin TDN% = 87.9619- .3032 
5 Animal origin TDN% = 63.6170 + . 0517 
5 Marine origin TDN% = 24.3148 + . 7765 
5 Plant origin TDN% 75.5544 + .1649 

In vitro 1 Mixtures (legumes TDN% 49.0817 + .4488 
+ grasses) 

2 Grasses TDN% = 51.6564 - 2.4140 
3 Grasses mN% = 53.7990 + 1.2639 

R2 

(CP%) .0552 

(CP%) . 0108 
(CP%) .0102 
(CP%) .5262 
(CP%) . 0597 

(CP%) .0635 

(CP%) .8830 
(CP%) .3752 

SE 

114. 30 

383.40 
98.59 
80.99 
51. 94 

5.54 

3.47 
11.01 

N 

93 
8 

10 
31 

82 

31 
92 

"' N 

"' 
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Nevertheless, the amount of nutritionally useful energy of protein 

was not greatly different from that of carbohydrates. This was so 

because amino group that was split off in the deaminization of each 

amino acid forms urea, which was eliminated in urine . Urea contains 

combustible carbon and hydrogen and this part of the potential energy 

fran protein is lost from the body. In hlUllalls, it amounted to about 

1.5 kilocalories per gram of protein . Hence, the maximum usable energy 

from typical protein does not exceed 5.50 ~ 1.25 kilocalories per gram. 

This amount was more reduced by the incomplete digestion to about 4 

kilocalories per gram (Lloyd et al. 1978). 

Carbohydrates usually yield to the body about 95 percent of its 

potential energy as compared only to about 70 percent in the case of 

protein. Therefore, protein was usually not the preferred source of 

energy in nutrition (Lloyd et al. 1978) . 

IDN From Nitrogen Free Extract. As expected , NFE was not a good 

predictant of TON values. Table 52 shows the results of regressing 

IDN with NFE contents of different classes of feedstuffs for various 

kinds of animals. All correlation values were low except that of green 

forages and pasture plants for in vitro studies (R2 
= • 62) and energy 

feeds for rabbits (R2 
= .53). Moreover, NFE had negative relationship 

with TON in dry forages and roughages by cattle, horses and rabbits and 

by cattle in green forages and pasture plants. 

IDN showed a negative correlation with NFE content of energy feeds 

for swine, while negative correlation existed in protein supplements 

by cattle and rabbits . 
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TABLE 52 Simple Regression Equations to Predict Total Digestible 
i'Ltrients (TIJN%) from Nitrogen Free Extract Contents (NFE%) of 
Different Classes of Feedstuffs for Various Kinds of Animals 

Animal Feed 
Rz Kind Class Equation SE N 

Cattle 1 IDN% = 63.6572 - .1623 (NFE%) . 0201 7. 04 300 
2 TIJN% = 72 .5979 - .3773 (NFE%) .0552 10.36 185 
3 TIJN% = 47.7941 + . 2929 (NFE%) .1122 7.09 218 
4 IDN% = 59.1645 + .2943 (NFE%) .0933 11.31 55 
5 TDN% = 100.3740 - . 3949 (NFE%) .0535 12.68 28 

Horses 1 TIJN% = 76 .2283 - .6483 (NFE%) .1739 9.20 37 
4 TDN% = 14.9152 + . 8249 (NFE%) . 3984 7.31 12 
5 TIJN% = 35.0380 + . 8374 (NFE%) .1674 15.82 5 

Rabbits 1 TDN% = 71.3809 - .6113 (NFE%) .1017 9.89 27 
4 TDN% = 33.1642 + . 7113 (NFE%) .5348 6.60 15 
5 TDN% = 117.1816 - . 8090 (NFE%) .0574 12.65 6 

Sheep 1 TDN% = 53.2130 + . 0445 (NFE%) .0011 9.22 505 
2 TIJN% = 55.2286 + .1368 (NFE%) .0109 9.11 229 
3 TDN% = 36.4313 + . 5546 (NFE%) .2996 7.62 93 
4 TDN% = 35.0107 + .6213 (NFE%) .3563 10.29 122 
5 TIJN% = 80.6600 + . 0498 (NFE%) .0032 11 .08 88 

Swine 1 TDN% = 29.9188 + .4983 (NFE%) . 0413 22.88 12 
2 TIN% = 51.6878 + .1304 (NFE%) .0175 8.02 28 
4 TIJN% = 109.3016 - .3284 (NFE%) .1368 11.90 74 
5 TIJN% = 79.2383 + .1577 (NFE%) .0534 10.13 35 

in vitro 2 TIJN% = - 2. 2911 + 1. 0972 (NFE%) .61 75 3.36 32 
3 TDN% = 30 .7473 + .5660 (NFE%) . 3393 3.41 92 
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TDN predictability from NFE did not improve upon subdividing 

classes of feedstuffs (Table 53) . However, there were cases where 

correlation increased. Green legumeous roughages had high correl ation 

(R2 = .65) between TDN and their NFE content by cattle. Correlations 

for ensiled non-legumeous roughages by cattle and sheep (R2 = .78 and 

.63, respectively) were also high. 

Fresh legumes had a high negative (R2 = . 57) correlation between 

TDN and their NFE contents by swine . Negative correlations were also 

observed in many of the subdivisions for various kinds of animals 

(Table 53). 

In vitro studies had a high correlation (R2 

and NFE for fresh grasses. 

.62) between TDN 

Nitrogen free extract was calculated by difference . That was the 

subtraction of crude fiber, crude protein, ether extract and ash per

centages from one hundred on dry matter basis. Hence , an error in 

determining the other nutrients would be pooled in NFE value . 

Besides data being collected from many sources, variations in the 

relationship between NFE and TDN could be due to the nature of NFE. 

It was found that NFE was l ess digestible than crude fiber in many 

cases (Crampton and Maynard 1938; Morrison, 1956) and scmetimes NFE was 

a negative value because of the way it was calculated. 

Lignin was partially soluble in alkali and cellulose was partially 

soluble in acid (Cuthbertson,l969) . Hence, soluble portions of lignin 

and cellulose would be calculated in the NFE content of feeds and not 

in their crude fiber content . This effect would be more pronounced as 

plants advance in maturity (Cook and Harris,l968a) . Thus, NFE would 



TAJlT.E 53 Simple Regression Equations to Predict Total Di gestible tutrients (TDN%) f r om Nitrogen Free 
·~tract rnntents (NFE%) of Subclasses of Different Classes of feedstuffs for Various Kinds of Animals 

Animal Feed Feed 
Kind Class Subclass F4uation R2 SE N 

C:attl e l Legumes TDN% = 47.5066 + . 2471 (NFE%) .0359 18 .55 135 
1 Grasses 'ffiN% = 87.8131 + . 6557 (NFE%) . lfl09 55.82 113 
1 T.egumeous roughages TDN% = 58.9908 + . 0279 (NFE%) .0002 178.50 12 
1 Non-legumeous ·mN% = 49.5336 + .0508 (NFF.%) ,0033 103,80 28 

roughages 
1 Mixtures (legumes TDN% = 43.9356 + .2948 (NFE%) .0470 6 . 31 12 

+ grasses) 
2 Legumes TDN% = 63.0594 - . 0278 (NFE%) . 0002 61.60 11 
2 Grasses TD\1% = 81.8449 - ,5990 (NFE%) .1466 95.82 153 
2 Legumeous roughages TDN% = -17.4807 + 1. 6848 (NFE%) ,64 64 66,16 10 
2 Non-legumeous TDN% = 8, 5215 + . 9892 (NFE%) ,3369 193.70 10 

r oughages 
3 Legumes TDN% = 51.7254 + .1923 (NFE%) .0195 30,09 52 
3 Grasses TDN% = 38 . 2078 + .4821 (NFE%) . 2842 30.06 113 
3 Non-legumeous TDN% = -2.7914 + 1. 2155 (NFE%) . 7830 11.66 10 

roughages 
3 Mixtures (legumes TDN% = 82.0419 -

+ grasses ) 
,5001 (NFE%) .1712 46.61 43 

4 Plant origin TDN% = 59.1645 + , 2943 (NFE%) ,0933 127.90 55 
5 Hi1k origin TDN% = 152 .8751 .9257 (NFE%) .4608 4 77 .80 6 
5 Plant origin TDN% = 81. 5324 + . 0229 (NFE%) . 0005 147,20 26 

llorses 1 Legumes TDN% 33.3395 + .4627 (NFE%) . 1531 12.17 9 
1 Grasses TDN% 58 . 5792 ,2300 (NFE%) . 0438 39.29 17 
1 Non-legumeous TDN% 56 , 5303 , 4419 (NFE%) .1069 158.90 8 

roughages 
Plant origin TDN% = 14,9152 + .8249 (NFF.%) . 3984 186 ,60 13 "' N 

'!) 



TABLE 53 (Continued) 

Animal Feed Feed 
Kind Class Subclass Equation R2 SE N 

llorses Plant origin TDN% = 35,0380 + ,8374 (NFE%) .1674 250 .30 

Rahbits 1 Legumes 'ffiN% = 21.9140 + ,6632 (NFE %) . 0591 80.29 15 
1 Grasses TON% = 63,8166 - . 5134 (NFE%) .1611 81.66 7 
1 Non-1egumeous TDN% = -14,8646 + , 9981 (NFE%) .6701 7,38 4 

roughages 
4 Plant origin TON% = 33.1642 + . 7113 (NFE%) ,5348 43.63 15 
5 Plant origin TDN% = 135,9467 - 1,5383 (NFE%) ,3949 1154.70 7 

Sheep 1 Legumes TD~I% = 53,5862 + ,0816 (NFE% .0075 24.52 150 
1 Grasses TnN% = 65 . 5047 - .1872 (!WE%) ,0129 73.49 212 
1 Legumeous roughap,es TnN% = 48.7298 + .1477 (NFE%) . 0123 190.10 25 
1 Non-1egumeous TDN% = 35.5953 + .3163 (NFE%) . 0488 125 .30 116 

roughages 
Legumes TDN% = 63.9355 - .0781 (NFE%) ,0022 85.37 73 
Grasses TDN% = 51,8236 + .1855 (NFE%) ,0172 72.82 109 
Non-legumeous TDN% = 50,0915 + .2655 

roughages 
(NFE%) ,0328 175,00 45 

3 Legumes TON% = 41.8006 + ,4507 (NFE %) .1650 29.46 28 
3 Grasses TDN% = 51.7522 + ,2324 (NFE%) . 0714 58 . 51 37 
3 Non-1egumeous TON% = 12.7155 - 1.0639 (NFE%) ,6315 61.86 24 

roughages 
4 Plant origin TON% = 35.0107 + .6213 (NFE%) .3563 173 .80 123 
5 Plant origin TON% = 81.5324 + .0229 (NFE%) .0005 468.70 86 

S1o~ine 1 Non -1egumeous TDN% = 
roughages 

29.5559 + .4015 (NFE%) ,0223 505 . 00 

Legumes TON% = 86,8120 - .6650 (NFE%) .1169 3.88 7 "' "' 0 



TARLF. 53 (Continued) 

Animal Feed Feed 
R2 Kind Class Subclass Equation SE N 

Swine 2 Grasses TDN% = 17,1383 + . 8505 (NFF.%) .ll69 56 . 52 12 
2 Non-legtuneous TON% = 89.2969 + . 5248 (NFE%) .1405 104 .00 7 

roughages 
4 Plant origin TON% = 109.3016 - .3284 (NFE%) .1368 303,70 77 
5 Animal origin TON% = 75,7226- 1. 7 4ll (NFE%) , 0870 123.30 5 
5 Milk origin TON% = 141.4413 - .8605 (NFE%) .2775 4 52.90 8 
5 Plant origin TON% = 85,0931 - .0601 (NFE%) ,0088 68 .92 21 

in vitro 2 Grasses TON% = -2.29ll 1. 0972 (NFE%) . 6175 ll . 28 32 
3 Grasses TDN% = 30.7473 + . 5660 (NFE%) , 3393 11.64 92 



vary much in value and would appear less digestible than crude fiber 

in many feedstuffs. 
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Predicting TDN From Proximate Analysis . The numerical value of total 

digestible nutrients of feedstuffs was a function of the digestibility 

of the nutrient components of the proximate analysis of these feeds. 

A multiple regression model was developed to predict TON from the 

crude fiber, ether extract, nitrogen free extract and crude protein 

contents of different classes of feeds t uffs for various kinds of 

animals (Table 54) . 

In general, predictability of TDN from proximate analysis of feed-

stuffs was higher than that from each of the proximate nutrients alone. 

TON was highly correlated with the proximate analysis of protein 

supplements Qt2 ~ .60 to .99) and energy feeds (R2 = .51 to . 72) for 

various kinds of animals except that of cattle in both classes of feeds 

(R2 = . 31 and .18, respectively) . TON of silages was also highly 

correlated with proximate analysis by sheep (R2 = .56 and in vitro 

studies (R2 = . 78), but the correlation was less by cattle (R2 = .46) . 

TON was also closely predictable from the proximate analysis of 

dry forages and roughages for horses (R2 = .58), rabbits (R2 = .66) and 

swine (R2 .65). However, the correlations by cattle and sheep were 

low (R2 = .27 and .26, respectively). 

In vitro studies showed high correlation between TON and proximate 

analysis of green forages and pasture plants (R2 
= .99) followed by 

cattle (R2 - .48) than sheep (R2 = . 26) . 

Stallcup et al . (1976) predicted TDN from crude fiber and crude 

protein contents of sorghum-sudan forages, sorghum and corn silages fed 



TABLE 54 Multiple Regression f..quations to Predict Total Digestible Nutrients (TDN%) from Proximate 
Analysis of Different Classes of Feedstuffs for Various Kinds of Animals 

Animal 
Kind 

~attle 

Feed 
Class r...quationa 

1 TDN%; -17. 2649 + l.2120(CP%) + .8352(N"F.%) + 2,4637(F.F.%) + ,4475(CF%) 
2 TDN%; -21.7656 + l,4284(CP%) + 1,0277(NFF.%) + ,4867(CF%) + 1,232l(EE%) 
3 TD'l%; -21.9391 + .4590(CF%) + 3,0016(F.E% ) + ,9736(NFF.%) + 1.0538(CP%) 
4 TnN%; 40.2625 - .1379(CF%) + 1.1903(EF.%) + .4 228(NFF.%) + .1969(CP%) 
5 'mN%; 40.3227 .7007(CF%) + 1.4218(EF.%) + . 4448(NFE%) + .5398(CP%) 

. 2666 

.4846 

.4638 

.1794 

.3086 

SF. 

6.18 
6.55 
5.52 

13 .41 
12.30 

N 

231 
142 
178 

29 
18 

Horses 1 TDN%; 75.2547 + . 288l(CP%) + 6,4262(EE%) - .6399(CF%) - ,5582(NFE%) .5809 6.52 32 
4 
5 

Rabbits 1 

Sheep 

Swine 

4 
5 

1 
2 
3 
4 
5 

l 
4 
5 

lTIN%; -377.5763 + 4.6775(NFE%) + 6.267l(CP%) + 3.4433(CF%) + 2.2294(EE%) .6073 9.93 13 
TDN%; 141.7459 - 7.1150(EE%)- ,5464(NFE%)- ,5445(CP%) . 9528 6.52 6 

TDN%; 82.9403 + . 4865(CP%) - .7720(CF%) - 1.497l(EE%) - . 4589(NFE%) 
TDN% ; . 45.9509 + .5799(NFE%) - 3.0546(EE%) + .5228(CP%) - . 2851(CF%) 
TDN%; 44,7854 - 1.8044(CF%) + 1,8273(EE%) + .605(CP %) + .3556(NFE%) 

TDN% ; -14.8356 + 1.3310(CP%) + .7923(NFE%) + . 5133(CF%) + .9787(EE%) 
TDN%; 1,6899 + 1.3844(CP%) + ,7526(NFE%) - , 8279(EF.%) + .3673(CF%) 
TDN% ; 1.0340 + ,9150(NFF. %) + ,9702(CP%) + 1 , 3513(EF.%) + .0798(CF%) 
TDN%; 2 .6407 - .l043(CF%) + . 9194(NFF.%) + 1. 2159(EE%) + .6964(CP%) 
TDN%; -37.3039 + . 3618(CF%) + 2.1302(F.E%) + 1.3630(NFE%) + 1.3048(CP%) 

.6601 8.20 18 

. 7160 6.49 13 

. 9996 . 51 8 

.2649 

. 2623 
,5566 
.5074 
,6036 

7.90 452 
8.78 218 
6.25 85 
8 . 83 ll5 
9.67 80 

TDN%; - 83.6226 + 2.6329(CP%) + 5.5166(EE%) + l.5715(~W.E%) + , 3089(CF%) . 6475 20 . 77 10 
TDN%; 128 . 7149 + 1.0303(EE%) - . 3148(Nl'F.%) - 1.5125(CF%) - 1.4292(CP%) .6863 8,68 41 
TD~%; - 256 . 2451 + 2 . 1029(CF%) + 4 , 5654(F.E%) + 3 . 65l8(NFE%) + 3.6976(CP%) , 9458 3 . 36 13 



TABLE 54 (Continued) 

Animal Feed 
Kind Class Equation 

in vitro 2 

3 

TON% -112.8198 + 2.8853(EE%) + 2.3409(CP%) + 1.7986(NFE%) + 
l. 9004 (CF%) 

TON% -41.7373 + l.8600(CP%) + 3.483l(EE%) + ,9790(NFE%) + 
. 9498 (CF%) 

SE N 

. 9878 .64 30 

.7793 2.01 92 

ain equation, CF, EE, NFE, and CP were percentages of crude fiber, ether extract , nitrogen free extract 
and crude protein, respectively. 
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to steers. TDN ·•as highly (R2 
= .90) predictable from crude fiber 

and crude protein contents of sorghum-sudan forages but not of corn 

(R2 = • 47) or sorghum (R2 = . 33) silages. l'lhen data of all feeds were 

pooled, correlation betwee~ TON and crude fiber and crude protein 

dropped (R2 
= .16). 

TON predicatbility from proximate analysis was lower for cattle 

than for other kinds of animals , compared in this study among the 

different classes of feedstuffs. In vitro studies, rabbits, swin~ 

and horses showed high predictability for TON from proximate analysis. 

Data for sheep had high predictability for protein supplements, silages, 

and energy feeds but low predictability for dry forages and roughages 

and green forages and pasture plants (Table 54) . 

~rultiple regression equations developed \O ~redict TON from 

proximate analysis (Table 54) also showed that certain nutrients con

tributed more TON predictability. These same nutrients were not good 

preiictants of TON when they were used alone in simple regression 

equations. 

Cruje protein was found to contribut e the highest for TON 

predictability than other independent variables in equations of dry and 

green feeds for various kinds of animals. However, CP was the least 

contributing variable in cases of energy feeds and protein supplements 

by cattle , sheep and swine and silages for cattle. 

Crude fiber behaved almost the opposite of CP. CF was contributed 

least than other independent variables in predicting TON values of dry 

forages and roughages for cattle and swine and green forages and pas

tures and silages for sheep. However, it contributed best i n cases of 



energy feeds for cattle and sheep, protein supplements by cattle, 

rabbits, sheep and swine and silages by cattle. 
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Ether extract contributed better than other nutrients in pre

dicting TDN values of protein supplements for horses, energy feeds for 

swine and green forages and pasture plants for in vitro studies, while 

nitrogen free extract was best in cases of energy feeds by horses and 

rabbits and silages by sheep. 

There were many associative effects that might affect TDN value of 

feedstuffs. The level of one component of the proximate analysis could 

exert a great effect on the digestibility of the others and hence, the 

value of TDN would fluctuate. 

Harris et al. (1972) developed mathematical model to predict TDN% 

from proximate analysis showing the interactions among four components 

of the proximate analysis (namely, crude fiber, ether extract, nitrogen

free extract and crude protein) of five classes of feedstuffs for 

various kinds of animals (Table 55). This model (Harris et al. 1972) 

was modified and used for the new data. Results (Table 55) showed 

improved predictability of TON from proximate nutrients and their 

interaction over that shown in Table 54. 

The variability in the correlation coefficients in class 1 for the 

different kinds of animals could be related to: 

a. large number of data involved in case of cattle and sheep. 

Hence, the many sources of data would add to variability. en the other 

hand, less data were used in case of horses, rabbits and swine. Hence, 

limited number of source of data might give better results. 

b. animals such as cattle and sheep could had been fed various 

roughages and forages that could greatly vary in chemical composition. 



TAili.F. 55 Regression Fquations to Predict Total Digestible Nutrients (TTlN%) from Proximate Analysis and 
their interactions in "ive Gasses of Feedstuffs for Various Kinds of Animals and In Vitro Studies 

Kind 
Ki nd 

Cattle 

Horses 

Feed 
Class Equationa SE N 

TnN = -43.9321 - 3. 599S(CP%) - .1817(CF%) + 52,2729(EE%) + 1,671S(NFE%) .3061 6.07 294 
-.6388(CPF.E%) + . 0583(NFE·CP%) + .0634(CP2%) + .0176(CF2%) -
. 4SSO(EE·NFE%) -.6979(EE·CP%) - .1852(EF.2) - .0076(EE·NFE%) + 
.6300(CP·CP%) 

'fDN = 263.1763 + 3.3836(CP%) - 16.778l(EE%) - 8,4772(NFE%) - 5.4756 
(CF%) - .1188(CPZ%) + ,0684(NFE2%) + .3334(EF. · CP%) + . 3299 
(EE·NFE%) + .0859 (CF ·NFE%) + .0162(CF·CP%) + .0149(NFE· CP%) 

TDN = 115.8144 + .0925(CF%) + 37.024l(EE%) - 3.995l(NFE%) - 16.0341 
(CP%) + .0388(NFE2 %) - . 0363(CF2~) + .1846(NFE·CP%) + .2029 (CF· 
(CP~) - .4531(CF·EF.%) - .2903(EF. %) - . 3639(EE·NFE%) + .1460 
(CP %) - . 0211 (CF·NFE%) 

TDN = 318.0640- 4.3952(CF%) - 17.9332(EE%) - 2. 4859(NFE%) + .0872 
(CF2%) + .0120(CF·CP%) + .0954(EE%) + .4699(EE· CP%) + . 2004 (CF· 
EE%) - 13.4 243(CP%) + .1544(EE·NFE%) + .1175(CP2%) + .122l(NFE ·CP%) 

TTlN = ~20.0851 - .2610fEE·NPP.%) - 1.97S(CF%) - l3 . 2412(CP%) + 15.1398 
(EE%) - . 2758(EE %) + .1157 (CP2%) + .1235(NFE·CP%) + .0277 (CF· 
EF.%) - .0474(CF2) - 2. 4193(NFF.%) + . 0158(CF·NFE%) 

TTlN= -10 . 97~6 + 53.5961(EE%) - 2.1873(NFE%) + .1372(CF ·NFE%) - 4 .0890 
(CF%) -5.5422(F.E2%) - .3610(EE·NFE%) + .0103NFE·CP%) + 7. 0904 
(CP%) - .689S(EE·CP%) - .0700(CP2%) - .0627 (CF·CP%) 

TnN = -1602 . 0550 + 62.3350(CF%) - 31.372l(EE%) + 29.7356(CD%) + 
17.6142(NFF.%) + .0859(CF'EE%) + 5.6659(EE2%) - .5813(CF·NFE%) -
.4418(CF2%)- . 5259(CP2%) 

.4943 7.83 186 

.5826 4. 86 205 

.3230 11.64 47 

.7996 7.69 27 

.7840 5.56 33 

.9522 6.57 13 "' "' __, 



TABLE 55 (Continued) 

Animal Feed 
Kind Class Equation 

Rabbits 1 

4 

Sheep 

3 

TDN; - 1 02.896~- 6.7781(Cl'%) + 10 .448(NFE%)- .l32HNFF:2%)- . 2042 .7617 
(CF·EE%) + .3952(CP%) + .8215(EE2%) + . 0662(CF2%) + . 0539(CF · 
NFE%) - 6. 4S83(EE%) + .0389(CF ·CP%) . 

TDN ; 153. 9993 + 3. 2822(Cf.%) + 22.157S("E%) - .l854(EE·~WE%) - 2.3957 .9635 
(CP%) - .266l(CF ·CP%) - . 7698(~WE%) + . 023?.(NFE·CP%) - .0578 
(CF2%) - l . 0317(F.F.2%) - . 5705(CF·EE%). 

TnN; -1 5.0300 + ~6022(CP%) - l,Ol76(rp%) + . Ol98(CF2%) - 1 , 2309 (EE%) . 2996 
- . Ol 70(NFE %) - . 0665(EF.L%) - ,0052(CF · EF.%) + 2.229l(NFF.%) + 
. l 227(EF. . CP%) + .Ol67(CF ·CP%) + .0380(F.E ·NFE%) - .0059(CP2%) 

TDN = 119.6182 + 5.5596(CP%)- l .9423(EE%) + 7. 7037(CF%) - .0645(CF· ,3706 
NFE%) - .0534(CF2%) - .0794(CP2%) - . l305(Cf' .CP%) + . 2033(EF. · 
CP%) + l.Ol57(NFE%) + .Oll9(NFE2%) + .0096(NFE ·CP%) + .0341(EE2%) 

TDN = 02 . 5691 + .7719(NFE%) + ,8916(CP%) - .7376(CF%) + 8.3607(EE%) + 
. 0204(CF2%) - . 0323(CP2%) + .2418(EE ·CP%) - .3449(EE2) + .0236 
(NFE· CP%) - .0037(CF·NFE%) - . 0733(EF. ·NFE%) - . 0274(Cf' ·EE%) -
. 0033 (NFE2%) 

TDN = 0316. 0256 - .3ll2(Cf'%) + 3. 4869(NFE%) - . 0807(CF·EE%) + 9.5770 
(CP~) + 0. 266(EF. %) + .1218(EE .CP%) - .0740(CF·CP%) - .1466 
(CPL%) - .0693(NFE·CP%) - .Ol30(NFE2%) - . 0429(Ef:·NFF.%) + . 0245 
(CF2%) + 2. 3885(EE%) + .0127 (CF·NFE%) 

.6015 

. 6233 

TDN; 252 7714 - 4.1815(CF%) - l0 . 258l (CP%) - l.8358(NFF.%) + ,0863 .6071 
(CP2%) + 5.1145(EE%) + . 095(~WE · CP%) - . 0755(F.E·NFE%) + .0185(CF · 

SE N 

6. 97 25 

4.66 14 

7.83 499 

7. 41 230 

6.15 94 

8.32 121 

7 . 78 79 



TARLE 55 (rontinued) 

Animal Feed 
Kind Class Equation 

Sheep (cont.) EE%) + ,0505(CF.NFE%) + .1443(CF· CP%) - .1124(EE2%) + . 0445 
(EE·CP%) + . 0307(CF2%) 

Swine 1 TDN = ,0424 + 4. 7207(CP%) + .155S(CF~%) - .0646 (NFE2%) + .4392(CF · .9996 

In vitro 2 

3 

EE%) - 10.4687(CF%) + 7. 1102(NFE%) - 9.5318(EE%) - .1023 (NFE• 
CP) + .032l(CP2%) - .1609(EE2%) 

TDN = 201.5302 + 1 .179l(CF•EE%) - 8.5106(CP%) - 1,0688 (CF %) - 67.2139 
(EE%) + 4.122S(EE2%) - ,0224(Cf2 %) + .1146 (NFE ·CP%) + . 3823(EE · 
NFE% ) + . 1456(CP2% + .0340(CF• CP%) - 1. 9604(NFE%) + .0096 (NFE2%) -
- .152l(EE·CP%) 

TON= 0129.214 + . 586S (EE%) + .S222(CF%) + .1 260(CF2%) + 1 .172S(NFE%) 
- . 2231 (NFE· CP%) - ,3747 (CF ·CP%) - .3445(cr2%) - .0332(EF.2%) - ,0597 
(rF·EE%) + 26 . 3066 (CP%) 

. 7611 

.6739 

TON= 0293.3780 - 26.2819(rF%) + 13. 2892(NFE%1 + 37 ,3087(EE%) + 3,7791 .8617 
(CP%) - .0988 (NFF.2%) - ,3106(E>:·CP%) + .3090(CF ·rP%) - .3694(EE2%) 
+ .2154(CI'· NFF.%)- .0692(CF·EE%) + . 3244(CF2%)- . 4557(EE·NFE%) -
. 0921 (NFE· CP%) 

TflN = -118. 9516 + 1. 8868(CF%) + 2.4639(EE%) + 2.6049(CP%) + l.8917(NFE%) . 9929 
+ .028l (CF ·CP%) + .122l(EF.2%) - .1004(CP2%) 

TDN = 205.0618 - 8.5977(CP%) + 7, 3467(CF%) - ,0539(CF2%) + l8. 7139(EE%) .8698 
- . 0673(CF ·NFE%) + 3, 4836(NFE%) - .2538 (EE ·NFE%) + ,682S(EE·CP%) 
- .8150(EE2%) + . 0867(~~E :CP%) + ,0749(CP2%) + ,095l(CF ·CP%) 

SF. N 

1. 37 13 

5,39 29 

7 . 41 65 

5 . 56 27 

,54 30 

l. 62 92 

arn equation , CF, EE, NFE and CP are the percentages of crude fiber, ether extract , nitrogen free extract 
and crude prot ein, respectively. 



While horses , rabbits, and swine could have been fed more refined 

forages. 
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Better correlations were found in classes 2 and 3 (green feeds and 

silages) than in class 1. However, these correlations were still 

lower for cattle and sheep than those of swine and in vitro studies. 

The same discussion could be followed in this case, too. 

TON values had high correlations with proximate analysis of class 

4 (energy feeds) for all animals except cattle. 

Besides variations among workers and feeds used in their research, 

higher levels of carbohydrates (molasses, sugar, corn) could alter the 

digestibility of other components of feeds suchas crude fiber and 

nitrogen (Cook and Harris, 1968b; Ewing, 1915; Slyter et al. 1971). 

However, sheep should have followed the same trend. It could be 

possible that significant differences existed between data from cattle 

and sheep digestion trials. However, the di rection and magnitude of 

these differences may be functions of the feed and of the nutrients 

involved (Cipolloni et al. 1951). Moreover, Cipolloni et al . (1951) 

found that individual nutrient species-by-feed interaction. This inter

action means that cattle digest a certain nutrient significantly better 

than sheep with certain feeds and the reverse is true with other feeds 

(Cipolloni et al . 1951; Keating et al. 1965; Barnes, 1977) . 

TON From Proximate Analysis and ~li tative Factors. Table 56 shows 

the coefficients of the proximate nutrients (CF , EE, NFE, and CP) and 

the qualitative factors involved in this study (Animal kind, sub

classes of feedstuffs, stage of maturity and parts eaten) . Correlation 



TABLE 56 Regression Coefficients of Proximate Nutrients and 
Regression Adjustments of Qualitative Factors to Predict Total 
Digestible ~utrients (TON%) 
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Factor 
Regression Coefficients and 
Adj ustments 

Proximate Nutrients: 

Regression Constant 

Regression Coefficient of 
Crude fiber 
Ether extract 
Nitrogen free extract 
Crude protein 

Animal Kind 

Cattle 
Horses 
Rabbits 
Sheep 
Swine 
In vitro studies 

Classes of ~eedstuffs: 

nry forages and roughages 

Legumes 
Grasses 
Legumeous roughages 
Non-legumeous roughages 
Mixture (legumes + grasses) 

Green ~orages and Pasture Plants: 

Legumes 
Grasses 
Legumeous roughages 
Non-legumeous roughages 
Mixture (legumes + grasses) 

Silages: 

Legumes 
Grasses 
Legumeous roughages 
Non-legumeous roughages 
Mixture (legumes + grasses) 

Regression Coeffi cients 

57 0 9877 

-02803 
+ 0 6400 
+00511 
+.2324 

Regression Adjustments 
+202755 
- 307272 
-303601 
+1.7576 
+202009 
+07898 

+609449 
+602908 

+lO o 9Zii8 
+50 5511 
+2. 5859 

+706866 
+801098 
-+7 0 0297 

+10.2948 
+~04451 

+609527 
+ 11.8330 
+300057 
+504200 
+9.1871 
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TABLE 56 (Continued) 

Regression Coefficients and 
Factor Adjust ments 

Energy Feeds : 

Plant origin 
Animal origin 

Protein Suppl ements : 

Animal origin 
Avian origin 
Marine origin 
Milk origin 
Plant origin 

Stage of maturity : 

tlnknown 
Early and late veget ative and 
_ regrowth-early vegetative 
Early bl oom and mid-bloom 
Full and late bloom 
Milk and dough stages 
r.fature 
Post-ripe and stem cured 

Parts: 

Aerial parts 
Bran 
Browse 
Carcasses (carcass meat trim, 

carcass residues, meat and 
bones ... ) 

Casein and milk by-products 
Chaff 
Cobs 
Cones 
Fat s (grease , l ard , t all01V) 
Fodder 
Fruits 
Grains 
Hatchery by-products 
Hulls 
Leaves 
Meat (plant nuts) 
Mill residues , mill by

products, baker by-products 

+23. 1111 
+13 . 5176 

+5.3303 
-7.0512 

+11 . 4391 
-171.4902 

-16 .8792 

+.4909 
+3.6824 

+1. 2136 
+.2308 

+1. 5960 
+. 0183 

-6.2321 

-9 .1517 
-12 .1556 
-24. 3061 
-18 . 7441 

178 .1841 
-26 . 6555 
-17.1238 
-10. 631 2 

7 . 5418 
-8.5077 
-9 . 2794 
-5 . 8022 

-15 .1397 
-12 . 0141 
-11.6540 
-12 . 2050 

-5 . 0804 
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TABLE 56 (Continued) 

Regression Coefficients and 
Factor Adjustments 

Carbohydrate supplements 
(molasses , starch, sugars . . ) 

Nuts 
Nuts with shells 
Oils 
Pods 
Pulp 
Roots and tubers 
Screenings and mixed screenings 
Seeds 
Shells 
Stems and twigs 
Stillage 
Stover 
Straw 
Viscera 
Whole plants and mixed oarts 

-6.6851 

- 35 .1210 
0 
. - 6.0256 
-6.7400 
-4.7130 

-25 .8973 
- 9.3190 

-16.5581 
-14,8261 
-ll. 6219 
-10.4520 
-9 ,9234 

-17.7732 
0 

-189.3800 



344 

between TDN values and proximate analysis plus qualitative factors was 

high CR2 = .64) for such kind of data. 

TDN values were calculated as follows: 

TDN% .2324 (CP%) + . 0511 (NFE%) + .6400 (EE%) - .2803 (CF%) + 

(57.9877 ~ coefficient (s) of qualitative factor(s)) . 

Hence, the equation for predicting TDN is modified according to 

the covariance of the animal kind, forage type, stage of maturity and 

parts consumed. 

Christiansen (1979) and Fonnesbeck et al . (198lb) used chemical 

analysis and feed descriptive factors to predict DE for sheep. The 

addition of indicator variables to regression equations increased R2 

from .099 to .81 for crude protein and .56 to .80 for crude fiber. 

The technique of using quantitative and qualitative factors was 

suggested to be used for feed evaluation since it permits a physical 

description to be translated into numerical values (Fonnesbeck et al. 

198lb). The international feed vocabulary of feedstuffs that was 

suggested by Harris (1976) on an international feed description basis 

could be satisfactorily used for this purpose. 

Predicting Digestible Energy (DEl 

Estimation of DE was compared with five different equation models 

as follows: 

l. DE was calculated as the surrmation of digestible proximate nutrients 

(percent digested). 

2. From digestible proximate nutrients by the use of llllltiple regres

sion equations. 

3. From each proximate nutrient by simple regression equations. 
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4. From proximate analysis by multiple regression equations. 

5. From the values of TON by simple regression equations. 

Digestible Energy From Digestible Nutrients. Predicted values of the 

digestible nutrients (%) (Tables 29 to 45) were used to calculate DE 

(kilocalories per kilogram of dry matter) of each class of feedstuffs 

for various kinds of animals as follows: 

DF. = 5.72 (DCP) + 9.5 (DEE)+ 4.79 (pCF) + 4.03 (DNFE) 
100 

where 5.72, 9.5, 4.79, and 4.03 are the conventional caloric values 

(kilocalories per gram or megacalories per kilogram) of protein, ether 

extract, crude fiber and nitrogen free extract, respectively. 

This method can provide an estimate of DE when a calorimeter is 

not available in the laboratory to estimate gross energy (GE) of feed 

and feces as follows: 

GE = 5. 72 (CP) + 9.50 (EE) + 4.79 (CF) + 4.03 (NFE) 

Then, 100 

DE = GE x GE Digestibility Coefficient 
100 

Lofgreen (1951) calculated DE from the following equation: 

DE (% ) = Energy in DCP + Energy in DCF + Energy in DNFE + 
Energy in CP + Energy in CF + Energy in NFE + 

Energy in DEE X lOO 
Energy in EE 

The value of DE resulted from this equation was multipled by the 

percentage of organic matter of a certain feed (since DE was found to 

be affected only by organic matter content of the feed) . That was to 

express DE on the same basis of TDN. 
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Recently, Christiansen (1979) developed the following equation to 

estimate DE from estimated digestible protein (YCP) , available 

carbohydrates (YAC), total lipids (YTL), cellulose (YCL) and hemi

cellulose (YHC) : 

DE = 4(YCP + YAC + YCL + YHC) + 9(YTL) 

DE values estimated by this equation were found to be nearly the 

same as values estimated directly by regression equations from nutri

ent contents of feedstuffs for sheep (Christiansen, 1979; Fonnesbeck 

et al. l98la). 

Digestible Energy From Digestible Proximate Nutrients. Multiple 

regression equations were developed to estimate DE from the digestible 

nutrients (DCP, DCF, DEE, and DNFE) of different classes of feedstuffs 

for various kinds of animals (Table 57) . These equations showed that 

DE was highly predictable from digestible proximate nutrients (R2 = 

.79 to .99) . 

DNFE was observed to contribute more for DE estimation than other 

digestible nutrients in cases of dry forages and roughages by cattle, 

green forages and pasture plants by cattle and energy feeds by cattle 

and rabbits . While DCP contributed more to the estimation of DE in 

cases of dry forages and roughages for horses and rabbits and silages 

for sheep. 

DEE contributed more for DE prediction than other digestible 

nutrients in cases of silages by cattle and dry forages and roughages 

and green forages and pasture plants by sheep. DCF was observed to be 

the second best predictant for DE with dry forages and roughages by 



TABLE 57 ~1ultiple Regression Equations to Predict Digestible Fnergy (DE) from Digestible Proximate 
Nutrients of Different Classes of Feedstuffs for Various Kinds of Animals 

Animal Feed 
R2 Kind Class Equation a SE 

Cattle 1 DE = .4519 + . 0384(DNFE) + 027l(DCF) + . 0504(DCP) + .0746(DEE) . 7863 .09 
2 DE = - . 5164 + .0576(DNFE) + .0422(DCF) + .1386(DEE) + .0287(DCP) . 9571 .07 
3 DE= .1430 + .0137(DEE) + .0677(DCP) + .0505(DCF) + .0365(DNFE) .8389 .12 
4 DE = - . 1422 + . 0384(DNFE) + .1658(DCP) + .0508(DCF) ,9897 . 07 

Horses 1 DE= . 2030 + . 0800(DCP) + .268l(DEE) + , 0245(DNFE) + ,0206(DCF) . 7918 . 32 

Rabbits 1 DE = . 3421 + . 0487(DCP) + . 038l(DNFE) + . 0202(DCF) + . 0277 (DEE) , 9670 .09 
4 DE = .1012 + . 0395(DNFE) + .0425(DCF) + . 0456(DCP) + .1479(DEE) . 9446 .11 

Sheep 1 DE = .4304 + . 0745(DEE) - .0339(DNFF.) + .0360(DCF) + . 0555(DCP) ,9303 .09 
2 DE= .6893 + .0603(DEF.) - .0737(DCP) + .0905(DCF) + ,0175(DNFF.) . 8650 .11 
3 DE= -1. 0032 + .0947(DCP) + .0434(DNFE) + .0635(DCF) + .J.484(DF.E) . 8714 .08 

N 

52 
14 
52 
6 

13 
12 

79 
14 
13 

aln equat ion, DE= Megacalories per kilogram of dry matter , DCF , DEE, DNFE and DCP ar e the percentages 
of digestible crude fiber , ether extract, nitrogen free extract and crude protein, r espectively . 
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cattle, green forages and pasture plants for cattle and energy feeds 

for rabbits (Table 57). 

Digestible Energy From Each Proximate Nutrient 

Digestible Energy From Crude Fiber . DE was regressed wi th CF 

contents of different classes of feedstuffs for various kinds of 

animals (Table 58). CF was not a good predictant of DE (R2 = .003 to 

.45) except in cases of protein supplements (Appendix Figure 65) and 

dry forages and roughages for rabbits (R2 
= .80 and .51, respectively). 

Correlations between DE and CF were negative except in cases of 

energy feeds for cattle, silages for sheep and protein supplements for 

swine. 

Stallcup et al. (1976) found similar results with steers fed 

forages and sil ages. Low negative correlations existed between DE and 

CF cont ents of sor ghum-sudan forages (R2 = .SO), sorghum silages (R2 

.25) and corn silages (R2 = .001). When data f or all forages pooled 

together, correlation between DE and CF did not improve (R2 = .18). 

Crude fiber influences the digestibility of all nutrients because 

undigested CF hinders the action of digestive enzymes on the other 

nutrients especially in plant parts such as stems, seeds and seed coats, 

and also for cells with fibrous membranes . (Schneider, 1947) . CF was 

considered a poor predictant of DE for sheep (Christiansen, 1979; 

Fonnesbeck et al. l98la). 

However, Drennan and Maguire (1970) and Morgan (1976) reported DE 

to be highly negatively correlated with CF and ADF contents of swine 

feeds. Henry (1976) also found apparent digestible energy to be highly 

estimated from CF contents of swine diets. 
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TABLE 58 Simple Regression Equations to Predict Digestible Energy 
(DE) from Crude Fiber (CF%) Contents of Different Classes of Feed-
stuffs for Various Kinds of Animal s 

Animal Feed 
R2 Kind Cl ass Equat i on a SE N 

Cattle 1 DE = 3.0150 - .0135 (CF%) .0540 . 20 118 
2 DE= 3. 8673 - .0309 (CF%) .1547 .26 15 
3 DE = 2. 7243 - .0039 (CF%) .0039 . 29 129 
4 DE = -. 3070 + 1. 7308 (CF%) .2490 .33 12 

Horses 1 DE = 2. 9830 - .0285 (CF%) . 2395 .21 43 

Rabbits 1 DE= 3.2326 - .0401 (CF%) .5104 .34 19 
4 DE = 4.0580 - .0394 (CF%) . 4532 .31 14 
5 DE = 5.1232 - . 1201 (CF%) .7969 . 32 7 

Sheep 1 DE = 4.2334 - .0512 (CF%) .4525 .30 253 
2 DE = 2 .8651 - .0092 (CF%) .0160 .26 14 
3 DE = 2.7132 + .0021 (CF%) .0031 .19 15 

Swine 4 DE = 4.0113 - .0656 (CF%) .4345 . 34 41 
5 DE = 3. 3700 + .0142 (CF%) .0157 . 58 48 

ain equation, DE = Megaca1ories per kilogram of dry matter . 
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Cell wall content was fm.md to be a good single predictant of DE 

for various kinds of animals (Fonnesbeck et al. 1975) . 

Digestible Energy From Ether Extract. DE did not have a close 

relationship (Table 59) with EE contents of different classes of feed

stuffs for various kinds of animals (R2 = .001 to .28) except in case 

of protein supplements (R2 = .63) for rabbit s. 

Stallcup et al. (1976) reported high correlations bet1veen DE and 

EE contents of 14 silage samples (R2 
= .79). However, the number of 

samples was small. EE was not a major component of silages and may 

not be a reliable predictant of DE for wilages (Stallcup et a l . 1976) . 

Fat content of a diet could increase or decrease the di gestibility 

of all nutrients in a diet, depending on its fat content. Swift 

(1947) found that the apparent digestibility of all nutrients in sheep 

rations increased upon increasing the level of fat 6. 4 per cent . How

ever , this digestibility decreased when ether extract level increased 

up to 9.7 percent. 

EE concentration in feedstuffs used in this study ranged from less 

than one percent to as much as 28 percent. Hence , predictability of 

DE coul d be greated affected by such variations in EE contents. 

Digestible Energy From Crude Protein. Table 60 presents the re

sults of predicting DE from CP contents of different classes of feed-

s tuffs for various kinds of animals . All correlations were l ow 

(R2 .005 t o .40) except that of dry forages and roughages for rabbits 

(R2 
. 58) . Rabbit s reported to have higher efficiency of prot ein 

utilization t han other animals (Cheeke, 1980) . Low negative correla

tions between DE and CP contents of energy feeds and protein supplements 
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TABLE 59 Simple Regression Equations to Predict Digestible Energy 
(DE) from Ether Extract Contents (EE%) of Different Classes of Feed-
stuffs for Various Kinds of Animals 

Animal Feed 
R2 Kind Class Equationa SE N 

Cattle 1 DE= 2.5046 + .0317 (EE%) . 0134 .20 118 
2 DE = 2.9147 - .0241 (EE%) .0130 .28 15 
3 DE = 2.2977 + .0878 (EE%) .2139 . 25 126 
4 DE = 2.9044 + .1407 (EE%) .0054 .40 13 

Horses 1 DE = 1. 7837 + .0705 (EE%) . 0321 . . 24 43 

Rabbits 1 DE = 1. 5477 + . 1531 (EE%) .1006 .48 17 
4 DE = 3.8729 - . 0564 (EE%) . 0436 .41 14 
5 DE = 3.4486 + . 0678 (EE%) .6288 .so 8 

Sheep 1 DE = 2. 2176 + .1454 (EE%) .2830 .34 246 
2 DE = 1. 8598 + .0503 (EE%) .1136 . so 64 
3 DE = 2. 8163 - .0100 (EE%) .0012 . 19 15 

Swine 4 DE = 3.5557 + .0182 (EE%) .0206 .45 43 
5 DE = 3.4712 + .0092 (EE%) .0054 .64 53 

ain equation, DE = Megacalories per kilogram of dry matter. 
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TABLE 60 Simple Regression Equations to Prec~ct Digestible Energy 
(DE) from Crude Protein Contents (CP%) of Different Classes of Feed-
~tuffs for Various Kinds of Animals 

Animal Feed 
R2 Kind Class Equat iona SE N 

Cattle 1 DE = 2.4153 + .0121 (CP%) . 0900 . 19 119 
2 DE = 2.2242 + .0571 (CP%) . 2250 . 25 15 
3 DE = 2.3157 + . 0301 (CP%) .1804 .26 137 
4 DE = 2.6950 + .0846 (CP%) .0046 . 38 14 

Horses 1 DE = 1. 4381 + .0501 (CP%) .3988 .19 43 

Rabbits 1 DE = 1.059 7 + .0556 (CP%) .58ll . 32 15 
4 DE = 3.9515 - .0199 (CP%) .0387 . 39 14 
5 DE= 4.4632 - .0065 (CP%) .0049 .82 8 

Sheep 1 DE = 2.1387 + .0395 (CP%) . 3291 .33 267 
2 DE = 1. 7894 + .0363 (CP%) .0717 .51 63 
3 DE + 2.6199 + . 0094 (CP%) .0347 .18 15 

Swine 4 DE = 4.4591 - .0061 (CP%) .1631 . 42 42 
5 DE= 3.8681 - .0064 (CP%) .0392 .60 49 

ain equation, DE= Megacalories per kilogram of dry matter. 
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for rabbits and swine were observed (Table 59) silages fed to steers 

were founu to have negative correlations (R2 .58) between DE and 

their CP contents (Stallcup et al . 1976) . 

Cook and Child (1977) reported l ow correlations between DE and 

total protein contents of spring-summer (mixed grass and short grass) 

ranges for cattle (Tabl e 15). However, DCP showed higher correlation 

with DE in both types of ranges (R2 =.55 and .44, respectively). 

Christiansen (1979) and Fonnesbeck et al. (198lb) found that CP was 

not a good predictant of DE when used as the single independent 

variable. 

Digestibl e Energy From Nitrogen Free Extract. DE was poorly 

correlat ed with NFE contents of different classes of feedstuffs for 

various kinds of animals (Table 61). However, energy feeds had a rela-

tively high negative correlation (R2 .52) by cattle. All correla-

tions between DE and NFE were negative except those of energy feeds 

and protein supplements for swine . 

By a new system of feed analysis Fonnesbeck et al. (1975) deter

mined the soluble carbohydrates (readily available carbohydrates) and 

found that DE was highly predictable from soluble carbohydrate contents 

of feeds by sheep, swine and rats (Table 14). When data were pooled, 

predictability of DE did not drop. It was also found that NFE was less 

digestible than crude fiber in many cases (Crampton and Maynard, 1938; 

Morrison, 1956) and sometimes NFE was a negative value due to the way 

it is calculated. 
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TABLE 61 Simple Regression B:[uations to Predict Digestible Energy 
(DE) from Nitrogen Free Extract Contents (NFE%) of Different Cl asses 
of Feedstuffs for Various Kinds of Animals 

Animal Feed 
R2 Kind Class B:[uat iona SE N 

Cattl e 1 DE = 2.8107 - .2422 (NFE%) .0173 . 20 116 
2 DE = 3.0501 - .0054 (NFE%) .0061 . 28 15 
3 DE = 3.0054 - .0077 (NFE%) .0506 .28 137 
4 DE = 105 .0335 - 1. 2422 (NFE%) .5200 . 28 13 

Horses 1 DE = 2.1965 - .0050 (NFE%) .0082 .24 43 

Rabbits 1 DE = 3. 3461 - .0348 (NFE%) .1755 . 39 16 
4 DE = 1. 7545 - .0266 (NFE%) .4397 .30 15 
5 DE = 5. 3408 - .0336 (NFE%) .0690 .79 8 

Sheep 1 DE = 3. 3900 - .0150 (NFE%) .0312 . 40 229 
2 DE = 3.0424 - .0107 (NFE%) .0703 .25 14 
3 DE = 3.1621 - .0094 (NFE%) .0704 .18 15 

Swine 4 DE = 2.4690 + .0162 (NFE%) .1752 .41 24 
5 DE = 3.2947 + . 0120 (NFE%) .0972 .62 27 

ain equation, DE = Megacalories per kilogram of dry matter. 
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Digestible Energy From Proximate Analysis. Multiple regression 

equations were developed to predict DE from the proximate chemical 

components (CP, CF, EE and NFE) of different classes of feedstuffs 

for various kinds of animals (Table 62). Correlations between DE and 

proximate analysis were fairly high (R2 = .49 to .79) except in cases 

of dry forages and roughages by cattle (R2 = .09) and sheep (R2 = .13) 

and silages for cattle (R2 = .30). 

CP was observed to be the primary independent variable in predict

ing .DE of dry forages and roughages for tattle, horses and. rabbits, 

green forages and pasture plants for cattle and protein supplements for 

swine . While NFE was the primary independent variable in cases of 

green forages and pasture plants for sheep, silages for sheep and 

energy foods for cattle . 

CF was the primary independent variable when predicting DE of dry 

forages and roughages for sheep and energy feeds for rabbits and swine. 

While EE was the primary independent variable in case of silages for 

cattle. 

Stallcup et al. (1976) developed multiple regression equations to 

predict DE from proximate analysis for steers . DE was highly corre

lated (RZ = .95) with CF and CP contents of sorghum-sudan forages . 

However, the correlation dropped (R2 
= • 46 and . 25) in cases of c'orn . 

and sorghum silages, respectively . When data on all forages were 

pooled, the relationships between DE and CF and CP contents dropped 

further (R2 = .01). 



TABLE 62 ~·lultiple Regression Equations to Predict Digestible Energy (DE) from Proximate Analysis of 
Different Classes of Feedstuffs for Various Kinds of Animals 

Animal Feed 
R2 Kind Class Equation a SE 

Cattle l DE ; 2.0789 + .0152(CP) + .0053(NFE) + . 0235(EE) , 0951 .19 
2 DE; 22.2196 - . 2012 (CP) - .1722(CF) - . 2272(NFE) - . 3604 .5205 .22 
3 DE ; -,2875 + ,0707(EE) + ,0279(CF) + , 0262(NFE) + .0522(CP) .2991 .24 
4 DE ; -498,9298 + 5.763l (NFE) + 22,3768(CF) - 4.0007(EE) .7944 .20 

llorses 1 DE ; -3 ,5789 + .114l(CP) + .0597(NFE) + ,0422(CF) + ,0839(F.E) ,4926 .18 

Rabbits 1 DE ; 3. 3752 + . 0218(CP) - .0916(EE) - . 0196 (NI'E) - ,0246(CF) .6483 .30 
4 DF. ; .0306 + .002l(CF) - .0949(EF.) + ,0415(NFF.) + .07ll(CP) . 5788 .32 

Sheep 1 DF. + -.0183 - .0033(CF) + . 40ll(NFF.) + .0944(EE) + . 0485 (CP) 0 5180 . 29 
2 DE; 3. 6155 - .0652(NFE) + ,0276(CP) + , 0638(CF) - .1289(EE) .6713 .17 
3 OF. ; 6.4266 - . 04 24 (NFE) - .0543(EE) - , 0389(CP) - . 034 2 (CF) .1309 . 20 

S1-1ine 4 OF.; 2.6707 - .0794(CF) + , 070l (EE) + ,0173(NFF.) ,7474 ,27 
5 DE ; 1. 5744 + .0570(CP) +,1168(EE) + ,062l(NFF.) ,5995 . 36 

N 

115 
15 

124 
11 

43 

13 
13 

226 
14 
15 

18 
23 

ain equation, DE; Megacalories per kilogram of dry matter. CF , F.E , NFE and CP are the percentages of crude 
fiber , ether extract , nitrogen free extract and crude protein , respectively. 
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However, Stallcup et al. (1976) estimated DE of silages from 

various chemical components and found that DE was predicted from CP and 

CF (R2 
= .67) and from EE and CP (R2 = .81). 

Morgan (1976) found that DE was highly relatei (R2 = .88) to CP, 

acid ether extract and NFE contents of energy feeds for swine. More-

over, Fonnesbe~k et al. (1975) also found high correlations between 

the chemical analysis of 11 diets (1 to 55 percent cell wall contents) 

fed to various kinds of animals (rabbits, rats, sheep and swine). 

However, chemical analysis used were those preposed by Fonnesbeck and 

Harris (1973) . Christiansen (1979) used the same system of chemical 

analysis plus the proximate analysis and found that DE \vas highly 

related to chemical compo~ents of feeds for sheep. 

Upon comparing !ables 57 and 62, it seemed that the use of 

digestible proximate nutrients (DC!', DCF, DEE and DNFE) of different 

classes of feedstuffs would give better prediction results of DE than 

proximate analysis for various kinds of animals. 

Digestible Energy From TDN. DE was highly correlated (R2 = .53 to .97) 

with TON values of different feedstuffs for various kinds of animals 

(Table 63). 

Predictability of DE from TON values of dry forages and roughages 

was highest for rabbits (R2 
= .94) followed by sheep (R2 

= .90), cattle 

(R2 
= .69) as shown in Appendix Figures 66, 67 and 68, respectively, 

then horses (R2 = .62) . However, data for cattle had higher correla

tions (R2 
= .94 and .74 , respectively) for green forages and pasture 
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TABLE 63 Sinple Regression Equations to Predict Digestible Energy 
(DE) from Total Digestible Nutrients (TDN%) of Different Classes 
of Feedstuffs for Various Kinds of Animals 

Animal Feed 
R2 Kind Class Equationa SE N 

Cattle 1 DE = . 6383 + .0337 (TDN%) .6931 .12 79 
2 DE = -. 1990 + .0448 (TDN%) .9419 .07 14 
3 DE = .4322 + .0354 (TDN%) .7441 .15 82 
4 DE = -.0728 + .0430 (TDN%) .9555 .07 13 

Horses 1 DE = - .9411 + .0601 (TDN%) .6178 .28 7 

Rabbits 1 DE = .0247 + . 0445 (TDN%) .9442 .12 19 
4 DE = . 4550 + . 0381 (TDN%) .8529 .15 15 
5 DE = .8565 + . 0373 (TDN%) .9732 .13 8 

Sheep 1 DE = - .0278 + . 0452 (TDN%) .8974 .13 119 
2 DE = .0196 + .0429 (TDN%) .9019 . 17 64 
3 DE= .9759 + . 0284 (TDN%) .5319 .14 17 

Swine 4 DE = - .0060 + . 0435 (TDN%) .9216 .13 39 
5 DE = -.2664 + .0480 (TDN%) .8989 .20 43 

ain equation, DE = Megacalories per kilogram of dry matter. 



plants and silages (Appendix Figures 69 and 70) than did sheep 

(R2 
= .90 and .53; Appendix Figures 71 and 72 , respectively). DE 

of energy feens showed high correlations (Appendix Figures 73, 74 and 

75) with their TON values by cattle (R2 = .95) , swine (R2 = .92) and 

rabbits (R2 
= .85). 

DE was also highly predicted from TDN values of protein supple

ments (R2 
= ,97 and .90, respectively) by swine (Appendix Figure 76) 

and rabbits (Appendix Figure 77). 

Cl ose relationship between DE and TON were also found by Harris 

and Asplund (1968) for sheep and ~1organ (1976) for swine. Moreover, 

level of energy intake did not appear to affect the estimation of DE 

fr om TON (Harris and .~plund, 1968) . Appendix Figures 66 to 77 show 
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that t heir r egression coefficients (intercepts) were not equal to zero. 

Under such conditions, Harris and Asplund (1968) suggested that the 

use of a regression equation to predict the dependent variahle (Y) was 

more accurate than the use of a conversion factor . 

Predicting Metabolizable Energy ~) 

Metaboli zable energy values of different classes of feedstuffs 

were uredicted by five approaches. First, W: was estimated from digest

ible proximate nutrients by the use of multiple regression equations. 

The second method involved the use of simple regression to predict ME 

from each of the proximate nutrients . The third method was to predict 

).fE from the proximate analysis by multiple regression equations. The 

fourth and fifth approaches involved the use of simpl e regression to 

estimat e HE from TDN and !JE values of feedstuffs . 
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Metabolizable Energy From Digestible Proximate Nutrients. ME was 

estimated from the digestible proximate nutrients of different classes 

of feedstuffs for only cattle and sheep (Table 64) because there were 

not enough data for the other kinds of animals. Predictability of ME 

from digestible proximate nutrients was high (R2 = .73 to .99) . 

DNFE was the primary independent variable in predicting ME of 

silages and energy feeds by cattle and second variable in cases of 

silages for sheep. While DCP was the primary independent variable in 

estimating ~ffi of dry forages and roughages for both cattle and sheep . 

DCF however, was the primary variable affecting predictability of ME 

of silages by sheep, and the second variable in cases of dry forages 

and roughages by cattle and sheep and energy feeds by cattle . 

These results were in agreement with those of Nehring and Haenlein 

(1973) who reported high correlations (RZ =· .99) between ME .and digest

ible nutrients. VanEs (1978) also predicted ME for cattle and sheep 

from digestible nutrients and from digestible dry matter and DCP by 

the use of multiple regression equation. Sugar content of dry matter 

of feeds was also introduced in .such equations. 

Metabolizable Energy From Each Proximate Nutrient 

Metabolizable Energy From Crude Fiber. ME was poorly correlated 

with CF contents of the different classes of feedstuffs for various 

kinds of animals (Table 65). Correlations were negative between ME 

and CF contents of dry forages and roughages by cattle and sheep, 

silages by sheep and energy feeds by swine . Morgan (1976) found, how

ever, that ME was closely related (R2 = - .97 and -.95 , respectively) 

to CF and ADF contents of energy feeds for swine. 



TAilLF. 64 ~1ultiple Regression Equations to Predict ~1etabolizahle Fnergy {1-IE) from Digestible Proximate 
Nutrients of Different ~lasses of Feedstuffs for Cattle and Sheep 

Animal Feed 
R2 Kind Cl ass F.quationa SE 

Cattle 1 ME= .2148 + .0377(DCP) + .0193(DCF) + . 0369(D~W.E) + .0304 (DER) . 7284 . 04 
3 ME= -. 3129 + .0405(DNFR) + .056l(DCP) + .0508(DCF) .9446 .OS 
4 HE = .1091 + .0392(DNFE) + .069l(DCF) + .0456(DCP) .9859 . 07 

Sheep 1 ME= -.0189 + .0462(DCP) + . 0370 (DCF) + .0338(DNFE) + . 0683 (DEE) .9592 .OS 
3 ME= -.3801 + . 0342(DCF) + , 0348(DNFE) + .167l(DEE) + . 5434 (DCF) .8559 .06 

N 

32 
7 
6 

30 
9 

ain equation, ME= Megacalories per kil ogram of dry matter , DCF , DEE, DNFE and DCP are the percentages of 
digestible crude fiber, ehter extract, nitrogen free extract and crude protein , respectively. 
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TABLE 65 Simple Regression Equations to Predict ~~tabolizable Energy 
QME) from Crude Fiber Contents (CF%) of Different Classes of Feed
s tuffs for Various Kinds of Animals 

Animal Feed 
R2 Kind Class Equation a SE 

Cattle 1 ME = 2.8511 - .0251 (CF%) . 3833 .11 
3 ME = 2.3647 + .0010 (CF%) .0003 .15 
4 ME = - .2917 + 1. 5075 (CF%) .2681 . 27 

Sheep 1 ME = 3 .4225 - .0353 (CF%) 0 4034 .17 
3 ME = 2.5325 - .0109 (CF%) .2062 .11 

Swine 4 ME= 3.7678 - .0622 (CF%) . 4787 .31 
5 ME = 2. 8142 - .0277 (CF%) .0393 .64 

a ln equation, ME = ~gacalories per kilogram of dry matter of feed
s tuffs. 

N 

39 
11 
12 

49 
9 

26 
32 

~tabolizable !nergy From Ether Extract . Tabl e 66 presents the 

results of regressing ME with EE contents of different classes of feed-

stuffs for various kinds of animals. Correlations between ME and EE 

were l ow (R2 = .01 to . 12) except in case of s ilages for cattle (R2 

-.54) . Negative correlations existed between ME and EE contents of 

silages by cattle and sheep, green forages and pasture plants by 

sheep, energy feeds and protein supplements by swine . 

~tabolizable Energy From Crude Protein. ME had l ow correlations 

with CP contents of different classes of feedstuffs for var ious kinds 

of animals (Table 67). Correlations were negative between ME and CP 

contents of s ilages by cat tle and sheep , green forages and pasture 

plants by sheep , energy feeds and pr otein suppl ements by swine. 

Metabolizable Energy From Nitrogen Free Extract. ME was not 

related to NFE content s of the different classes of feedstuffs for 
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TABLE 66 Simple Regression Equations to Predict Metabolizable Energy 
OMEl from Ether Extr act Contents (EE%) of Different Classes of Feed
stuffs for Various Kinds of Animals 

Animal Feed 
Kind Class Equation a R2 SE N 

Cattle 1 ME= 1. 9558 + .0379 (EE%) .0112 .14 39 
3 ME= 2.6821 - .0537 (EE%) .541 7 .10 10 
4 ME= .6610 + . 5082 (EE%) .1125 .30 13 

Sheep 1 ME = 1.9864 + .1122 (EE%) .1794 .19 38 
2 ME= 1.5700 - . 0162 (EE%) .0088 .43 43 
3 ME= 2.3144 - . 0291 (EE%) .0130 .13 9 

Swine 4 ME = 3.2124 + .0530 (EE%) .1144 . 40 29 
5 ME = 3.3338- . 0603 (EE%) .1247 .62 34 

arn equation , ME= Megacalories per kilogram of dry matter . 

TABLE 67 Simple Regression Equations to Predict Metabolizable Pnergy 
OMEl from Crude Protein Contents (CP%) of Different Classes of Feed
stuffs for Various Kinds of Animals 

Animal Feed 
R2 Kind Class Equationa SE N 

Cattle 1 ME = 1. 8281 + .0143 (CP%) .3348 .11 40 
3 ME= 2.5816 - .0125 (CP%) .4186 .11 11 
4 ME= . 7535 + .2226 (CP%) .0507 • 30 14 

Sheep 1 ME = 2.02 72 + . 0231 (CP%) .2448 . 20 49 
2 ME = 1.6283 - .0176 (CP%) .0212 .43 43 
3 ME = 2. 3196 - . 0083 (CP%) .0418 .13 9 

Swine 4 ME = 4.489 - .0812 (CP%) . 2892 .35 26 
5 ME = 3.168 - . 0028 (CP%) .0076 .63 30 

ain equation, ME= Megacalories per kilogram of dry matter . 



various kinds of animals (Table 68). ME had low negative correla

tions with NFE contents of dry forages and roughages by cattle and 

sheep, and energy feeds by cattle. 
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Metabolizable Energy From Proximate Analysis. Multiple regression 

equations were developed to predict ME values of different classes of 

feedstuffs from their proximate analysis for various kinds of animals 

(Tab le 69). Correlations ben;een ME and proximate analysis were found 

to be high (R2 
= .52 to .96). 

NFE was the primary independent variable in predicting ME of 

silages by sheep, energy feeds by cattle and protein supplements by 

• swine. While NFE was the second variable in cases of dry forages and 

roughages and silages by cattle. 

TABLE 68 Simple Regression Equations to Predict Metabolizable Energy 
(ME) from Nitrogen Free Extract Contents (NFE%) of Different Classes 
of Feedstuffs for Various Kinds of Animals 

Animal Feed 
R2 Kind Class Equationa SE N 

Cattle 1 ME= 2.1611 - .0035 (NFE%) .0327 .11 37 
3 ME= 2.0398 + .0069 (NFE%) .3726 .12 11 
4 ME= 50.3868 - . 5802 (NFE%) .1821 . 29 13 

Sheep 1 ME = 3.2922 - .0194 (NFE%) .1150 .21 32 
3 ME= 1.6116 + .0134 (NFE%) .3201 .11 9 

Swine 4 ME= 3.0648 + .0057 (NFE%) .0523 .25 8 
5 ME= 3. 2486 + .0070 (NFE%) .0239 . 77 9 

ain equation, ME= Megacalories per kilogram of dry matter. 



CF was the primary i ndependent variabl e in predict ing ME of dry 

forages and roughages by cattle and energy feeds by swine. While CP 

was the primary i ndependent variabl e in cases of dry forages and 

roughages by sheep, and second in cases of energy feeds and protein 

supplement s by swine . 
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EE was observed to be the main independent var iable i n estimating 

ME of silages by cat tle, and second in cases of dry forages and 

roughages and silages by sheep. 

These results were in agreement with those of Morgan (1976) who 

reported high correlations (R2 =.94) between ME and proximate analysis 

of mixed diets for swine . Vermorel (1978) also used the same approach 

to estimate ME of commercial concentrates for cattl e in France . More-

over, Nehring and Haenlein (1973) developed multiple regression equa-

tions to predict ME from proximate analysis for various kinds of 

animals . 

Metabolizable Energy From TDN . ME was highly correlated (R2 
= . 71 to 

.950) with TON values of different classes of feedstuffs for various 

kinds of animals (Table 70). However, ME had a poor relationship with 

TON contents of dry forages and roughages by cattle (R2 = . 29) . While 

ME was highly predict ab le (R
2 

.95) from 1DN of the same class of 

feedstuffs by sheep and swine (Appendix Figure 78) . 

Green forages and pasture plants showed high correlat ions (R2 
= 

.71) between ME and their 1DN values by sheep (Appendix Figure 79). 

Data for cattle and sheep (Appendix Figur e 86) had high correl a

tions (R2 
= . 78 and . 90 , respectively) between ~1E and TON content of 

silages. 



TABLE 69 Multiple Regression Equations to Predict ~letabolizahle Energy (ME) from Proximate Analysis of 
nifferent Classes of Feedstuffs for Various Kinds of Animals 

Animal Feed 
R2 Kind Class Equation a SE N 

Cattle 1 ME; - .1532 + . 0018 (CF) + . 0299(NFE) + .0462(CP) + , 0958 (EE) . 7068 .08 36 
3 ME; .1018 - . 0986(EE) + . 0236(NFE) + .0482(CP) + , 0417(CF) .6891 .11 10 
4 ME ; -449.8459 + 5,1898(NFE) -3,1324(EE) + 19,3652(CF) . 7656 .18 11 

Sheep 1 ME; -1.6625 + .064l(CP) + ,0873(EE) + .0513(NFE) + . 017 5 (CF) . 5163 .17 30 
3 HE ; 7 . 9872 - . 0529(NFE) + . 0730(EE) - . 0823 (0:) - . 0852 (CP) .6898 .09 9 

S1-1ine 4 ME; 5.8057 - .1396(CF) + ,0398(CP) - ,028l(NFE) .8392 .22 5 
5 ~lli ; -2.8003 + .0665(NFE) + .0812(CP) + . 0887 (EE) - .0207 (CF) .9627 . 22 8 

aln equation , ME ; Megacalories per kilogram of dry matter, CF, EE , NFE and CP are the percentages of 
crude fiber, ether extract, nitrogen free extract and crude protein , respectively. 
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TABLE 70 Simple Regression 5:!.uations to Predict Metabolizable Energy 
~) from Total Digestible Nutrients Values (TDN%) of Different 
Oasses of Feedstuffs for Various Kinds of Animals 

Animal Feed 
R2 Kind Class 5:!.uationa SE N 

Cattle 1 ME= .4912 + .0270 (TDN%) .2870 .11 40 
3 ME= -.8350 + .0467 (TDN%) • 7790 .07 11 
4 ME= .1132 + .0347 (TDN%) .8019 .14 13 

Sheep 1 ME= -.0293 + .0367 (TDN%) .9014 .07 34 
2 ME = -.1682 + .0375 (TDN%) .7116 .23 43 
3 ME= - .1391 + .0374 (TDN%) .9038 .07 13 

Swine 1 ME= 8.0476 + 38.5059 (TilN%) .9465 .12 5 
4 ME= -.2313 + .0430 (TilN%) .9183 .13 25 
5 ME= -.5798 + .0456 (TilN%) . 7894 . 25 28 

a 
In equation, ME= Megacalories per kilogram of dry matter. 

ME was also highly predictable from TDN contents of energy feeds 

(R2 
= .80 and .92, respectively) by cattle and swine (Appendix Figures 

81 and 82) . Protein supplements showed that ME was highly predicted 

(R2 = .79) from their TDN values for swine (Appendix Figure 83). 

These results were in agreement with the findings of Harris and 

Asplund (1968) for sheep and Morgan (1976) for swine. However, the 

low correlations between ME and TDN contents of dry forages and 

roughages could be due to the wide variations in the data. This varia-

tion could be due to combining observations of dairy and beef cattle, 

and also variations among contributors for the data. 

Appendix Figures 78 to 83 show that the regression coefficients 

of the regression equation Y = bo + b1x1, was not zero . Hence, the use 

of the regression equation to predict the dependent variable (ME in 
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this case) is more accurate than the use of a conversion factor (Harris 

and Asplund, 1968) . 

Metabolizable Energy From DE. ME was closely predictable (R2 = .77 to 

.97) from DE values of different classes of feedstuffs for various 

kinds of animals (Table 71). However, correlation between ME and DE 

values of energy feeds was lower by cattle (R2 = .66) than other 

correlations reported in Table 71. 

High correlations exist ed between ME and DE values of dry forages 

and roughages by cattle (R2 = . 87 ; Appendix Figure 84) , sheep (R2 = .93; 

Appendix Figure 85) and swine (R2 = .96) . Silages had the same trend 

for cattl e (R2 = .92; Appendix Figure 86) and sheep (R2 = .94; Appendix 

Figure 87) . 

TABlE 71 Simple Regression Equations to Predict Metabolizable Energy 
~~) from Digestible Energy (DE) of Different Classes of Feedstuffs 
for Various Kinds of Animals 

Animal Feed 
Kind Class &juationa Rz SE N 

Cattle 1 ME= -. 5199 + .9990 (DE) . 8739 .05 40 
3 ME= -.3958 + . 9607 (DE) .9176 . 04 11 
4 ME= .7066 + .6454 (DE) .6605 .18 14 

Sheep 1 ME = .0268 + . 8041 (DE) .9337> .06 52 
2 ME= -.1964 + .8846 (DE) . 7705 .21 43 
3 ME = -. 5120 + 1. 0188 (DE) .9413 .06 13 

Swine 1 ME = 35.9620 + . 8605 (DE) .9628 . 08 8 
4 ME= - . 1332 + . 0010 (DE) .9716 . 18 54 
5 ME = -.1906 + . 0009 (DE) .9050 . 20 45 

aln equation , ME= ~egacalories per kilogram of dry matter . 
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Only sheep had enough data to predict ME from DE contents of 

green forages and pasture plants (Appendix Figure 88). The correla

tion existed between the two energy measures was also high (R2 ~ . 77). 

Energy feeds and protein supplements showed close relations (R2 

.97 and .90, respectively) between ME and their DE values for swine 

(Appendix Figures 89 and 90). ME was also highly correlated (RZ ~ .66) 

with DE contents of energy feeds for cattle. 

These results were in agreement with the finding of Harris and 

Asplund (1968) for sheep and Morgan (1976) for swine. Harris and 

Asplund (1968) observed a slight effect on the estimation of ~ffi from 

DE upon the increase of level of energy intake by sheep. Appendix 

Figures 84 to 90 indicated that bo in the equation Y ~·bo + b1x1, was 

not equal to zero in any case. Hence, the use of a regression equa-

tion to estimate ME from DE contents of feedstuffs could be more 

accurate than the use of a conversion factor such as that used by 

NRC publications. Harris and Asplund (1968) arrived to the same 

conclusion. 

Predicting Nitrogen-Corrected Metaboli zable Energy MEn and Net Energy 

of Production Nip for Poultry 

Nitrogen-Corrected Metabolizable Energy and NEp From Each Proximate 

Nutrient. Cl1ly crude protein contents of class 1 of feedstuffs was a 

good predictor of MEu by poultry (R2 . 51). Other chemical entities 

showed low correlations (RZ ~ .01 to .47) with Mffiu (Table 72). How

ever, Nip was highly correlated withEE contents of dry forages 

(R2 ~.75) and energy feeds (R2 = .58), CP contents of dry forages 



(R2 ~ .59) and NFE contents of energy feeds (R2 ~ .74) (Table 73). 
7 

Other chemical entities were not good predictors of NEP (R- ~ .03 yo 

0 47) 0 
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"litro~;en-r:orrecten "etaholizable Energy and NF1J From Proximate Analysis. 

Both MF.n and NEP were highly correlated lath proximate analysis of the 

nifferent classes bf ffedstuffs (Tables 72 and 73) . ~~n was highly 

correlated (R2 ~ . 99) with proximate analysis of dry forages. ~~n and 

'~p were highly correlated (R2 ~ .99 and . 95, respectively for MEn and 

~·llv. 

IWE was found to contribute the highest for MEn and NEP predict

ability than other independent variables in equations for energy ~eeds. 

The same trend was observed for CF in protein supplements. CF was also 

observed to contribute the highest for ~ predictability than other 

independent variables in equations for dry forages (mainly alfalfa meal 

and oat by-products). 

EE was observed to contribute the second highest for both ~n and 

NED predictability than other independent variables in equations for 

energy feeds and protein suoplements for poultry (Table 72 and 73). 

These results were in agreement with those of Carpenter and Clegg 

(1956) who observed a close relationship hetween ~!(F. of poultry feeds 

with their cu , ~E , starch and sugar contents when these components were 

used in predictive equations. Sibbald et al. (1963) also developed 

equat ions to predict ME and MEn of poultry feeds equat ions from their 

chemical composit ion (Table 16) . These equations had sufficient pre-

cis ion for pratical purposes. ~~n \vas calculated from ~~ as follows : 



TABlE 72 Simpl e and Multiple Regression F4uations to Predict Nitrogen-Corrected Metabolizable Energy 
CMEr,) from Each Proximate Nutrient and Proximate Analysis of Different Classes of Feedstuffs for 
Poultry3 

r::J.ass Type RegTession Coefficient of 
of of Regression 

R2 Feeds Equation Constant CF% EF:% NFE% CP% SE N 

1 Simple 2877,8888 -54.1202 .3520 479.92 49 
593 .4239 240 .7798 .4407 445.88 48 

1159. 9293 8 ,4544 .0240 403 .89 8 
382. 5811 59 .6928 .5105 420 .35 49 

Multiple -17119.6500 148,3062. - 58 ,6034 219.7269 310.6656 .9923 50.88 8 

4 Simpl e 3652.8547 -88.3714 . .4619 710.71 219 
2658.5056 53 ,7982 .4758 922.09 246 
1019. 4234 27.9971 .2628 813.51 8 
3140.5896 -23,8509 . 01 24 933.01 250 

Multiple -2487.8410 -53 . 5281 89.4545 74 .1416 .9997 33.34 5 

5 Simple 2973.2312 -57.6640 . 4145 474.25 322 
2356 . 8593 62.8031 .1320 655 .33 386 
2817. 9503 -14.4411 .1658 655 .96 15 
1543.4111 21 .3901 .3704 555 .64 398 

Multipl e 165.6395 -12.5731 22 .3950 18 .8966 38.8508 . 7848 4 28.69 12 

~iBn = Kilocalories per kilogram dry matter . CF% , EE%, NFE% and CP% were the percentages of crude fiber, 
ether, extract, nitrogen free extract and crude protein, respectively , in feedstuffs (dry matter basis). 

"" __, 
>--" 



TABLE 73 Simple and Multiple Equations to Predict Net Energy for Production (~l) from Each Proximate 
Nutrient and From Proximate Analysis of Different Classes of Feedstuffs for Paul rya 

Class Type Regression Coefficient of 
of of Regression 

R2 Feeds Equation Constant CF% EE% NFE% CP% SE N 

1 Simple 1698,2853 -34,3972 ,4730 228 .94 21 
90,9689 243 .4182 0 7537 156 . 51 21 

143.8642 33.8399 ,5939 200,97 21 

Simple 2671.0383 -77 0 9360 ,5141 412 0 96 125 
1896, 7830 41.1791 ,5848 560.84 145 

-2186 0 7146 54,4002 , 7443 259.78 16 
2428.7467 -30,4187 ,0368 553.26 146 

Hultiple -1300,0400 - 78 .1232 89 0 7994 36 0 7648 32.1155 ,9547 123,38 16 

5 Simple 2094.3971 -37.34 23 ,3064 386.24 176 
1629,4113 38 , 2162 .1034 438.65 173 

311. 6020 24 0 2705 .4531 385 .25 6 
1250.2493 11.6819 .2247 401.41 174 

Multiple 1390 . 5150 -21.8482 31.3552 50 9682 ,9996 14.19 6 

aNf':lp =Kilocalories per kilogram dry matter/ CF% , (:E% , NFE% and CP% 1o1ere percentages of crude fiber, ether 
extract, nitrogen free extract and crude protein, respectively, in feedstuffs (dry matter basis). 

"' __, 
N 



ME = ~4£ ~ (NB x 8.22 kilocalories) when NE =nitrogen balance and 
n 

8. 22 =energy equivalent in uric acid. The factor 8.7 was sometimes 

used (Harris, 1966). 

Net Fnergy >=or Production (NEcp) From fv!Eu. Table 74 shows the results 

of regression 'T'Cp with I··!En of poultry feedstuffs. .High correl ations 
.2 

were observed betHeen ~and MEn of dry forages (R = .67) , energy 
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feeds (R2 = .84) and protein supplements (R2 = , 76) as shmvn in Appen-

dix Figur es 92 , 92 and 93, respectively. These figures demonstrated 

that there would be more precision Hhen estimating NEP from ~lEn for 

poultry by using a regression model than by using a r egression model 

than by a conversion factor. Sibbald and Price (1977) developed simi -

lar models to estimate true metabolizabl e energy (~) from apparent 

metabolizable energy (AME) for wheat and oats. 

The difference 11'·1E - Al\IE (1vi thin grains) increased with increasing 

value of AME. This trend Has associat ed with voluntary intake of AME 

assay diets of low energy grains (Sibbald, 1976). Sibbald and Price 

(1975 a, b ) also found that the bulk density of barley (kg/bushel) 

Has highlv correlated with '!ME (kcal/g dry matter) . 



TABLE 74 Simple Regression F4uations to Predict Net Fnergy for 
Production (~W~) from Nitrogen-Corrected Metabolizable Energy 
01Fnl of Oifferent Classes of Feedstuffs for Poultrya 

Class of 
R2 Feeds Equation SF. N 

1 ~ = 173.5088 + . 4337 CMEnl .6664 181.41 28 

4 NEP 164 .1448 + . 6728 (MEn) .8362 422.28 212 

NE 229.6481 + . 6243(MEn) .7620 221.35 265 p 

at--'P 
p and MEh were measured Kilocalories per Kilogram dry matter 
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S~MARY AND CONCLUSIONS 

Data on the proximate nutrient content, digestibility and energy 

utilization available from tl1e International Feedstuffs Institute 

(Utah State University) were used to develop mathematical models for 

estimating energy and protein utilization of five classes of feedstuffs 

for various kinds of animals. 

The International Databank System is a system for collection, 

calculation and retrieval of data on the composition of animal feeds 

(Harris et al. l968a). 

Data are usually collected from three major sources. First source 

is the collaborating laboratories; second is published data in 

literature and the third source is data from centers related to the 

International Network of Feed Information Centers (INFIC). 

Feedstuffs were divided into eight classes. However, only the 

following five classes were used in this study: dry forages and 

roughages; pasture, range plants, and forages fed green; silages; 

energy feeds ; and protein supplements. 

Classes of feeds tuffs were subdivided into more related subclasses 

(legumes, grasses , legumeous roughages, non-legumeous roughages, and 

mL~tures of legumes and grasses for the first three classes of feed

stuffs; feeds of animal or plant origins for energy feeds; and feeds 

of animal, avian, marine, milk or plant origins for protein supplements). 
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Furthermore, the first three classes of feedstuffs 1vere combined 

together then subgrouped into five subgroups; legumes, grasses, 

legumeous roughages, non-legumeous roughages and mixture of legumes and 

grasses. Energy feeds were subgrouped into feeds of plant or animal 

origins . Protein supplements were also subgrouped into feeds of plant 

or animal origins. 

Biological and chemical data were sorted by kind of animal within 

each class, subclass or subgroup of feedstuffs into the following animal 

kinds: cattle, horses, poultry, rabbits, sheep, ~vine and in vitro 

studies whenever data were available. 

~~thematical models (simple and multiple regression equations) 

were developed to estimate digestible crude protein, total digestible 

nutrients, digestible energy and metabolizable energy from chemical 

analysis of the different classes of feedstuffs for various kinds of 

animals. Digestible energy was estimated from total digestible nutrients. 

1·1etabolizable energy was also estimated from total digestible nutrients 

and digestible energy. ~breover, qualitative factors or physical 

descriptions of feedstuffs (Harris, 19 76) were included in a model 

along with chemical composition (quantitative factors) of feeds. 

Digestible crude protein (DCP) was found to be highly correlated 

with crude protein concentration in the different classes (R2 ; . 74 

to .97) , subdivisions of classes (R2 ; .64 to .99) , subgroups 

(R2 ; . 83 to . 98) and proximate analysis (R2 ; .86 to .99) of feedstuffs 

for various kinds of animals. An exception was that of the (sub

division) dry, non-legumeous roughages for horses . 

Diges tible ether extract (DEE) was also highly correlated with 

ether extract concentration of classes (R2 ; . 47 to .99), subdivisions 
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of classes (R2 = .46 to .99), subgroups (R2 = . 46 to .95) and proximate 

analysis (R2 =.53 to . 99) of feedstuffs for various kinds of animals . 

However, there 1vere a few exceptions where DEE was not highly predicted 

from ether extract content. 

Digestible crude fiber (DCF) was found to be highly correlated 

wi t h crude fiber contents of green forages and pasture plants, sil ages 

and energy feeds in most cases. Subdividing and subgrouping of feedstuffs 

improved, in many cases, predictability of DCF from their crude fiber 

contents. However, DCF was highly predictable from proximate analysis 

of the different classes of feedstuffs for various kinds of animals 

with few exceptions . 

Digestible nitrogen free extract (DNFE) was highly correlated with 

nitrogen free extract contents of silages for cattle and sheep (R2 
= 

.53 and . 79, respectively); energy feeds for cattle (R2 
= .70), horses 

(R2 = .77), rabbits (RZ = . 84) , sheep (R2 = . 86) and swine (R2 = . 86); 

and protein supplements for cattle (R2 =.58), horses (R2 =.SO), 

sheep (R2 = .90) and swine (R2 = .99). Subdivision and subgrouping of 

feedstuffs resulted in an improved predictability of DNFE in certain 

cases . Proximate analysis, however, resulted in high correlations with 

DNFE (R2 
= .63 to . 99) for various kinds of animals with exceptions 

of dry forages and roughages for cattle and rabbits. 

Total digestible nutrients (TDN) was accurately predictable from 

digestible values of four components of proximate analysis (DCP , 

DEE, DCF and DNFE) of the different classes of feeds for various kinds 

of animals (R2 
= • 84 to . 99) . However, TDN was poorly predicted 

when each proximate nutrient was used as a single independent variable 

in a simple regression equation. There were few exceptions, however . 
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TTh~ was highly negat ively correlat ed (R2 
= .93) with CF content of 

green legumeous roughages for sheep and of l egumes and grass hays for 

rabbits (R2 
= . 83 and . 79 , respect ively) . In vit ro s t udies showed high 

negative correlations (R2 
= . 73) between TDN and green feeds and pasture 

plants . 

TDN was also highly corr elated wit h EE cont ents of energy feeds 

for cattle (R2 
= . 71) and swine (R2 

= .80), energy feeds of animal 

origin for cattle (R2 
= .97), protein supplements of marine or igin for 

cattle (R2 = . 96) and green legumeous roughages for sheep (R2 = .93). 

TDN was al so highly est imat ed from EE cont ents of l egume hays (R2 = . 76), 

fresh grasses (R2 = . 63), energy feeds of plant origin (R2 
= . 74) 

and prot ein supplement s of milk origin (R2 
= . 58) for swine . In vitro 

studies al so showed high correlation benveen TDN and EE concent ration 

in green feeds and pasture plants . 

TDN was highly predictable from CP content of dry forages and 

roughages for rabbits (R2 
= . 56) and green feeds and pasture plants for 

in vitro st udies (R2 
= . 88) . Subdividing classes of feedstuffs result ed 

in improved predictability of TDN from CP contents of legume hays 

(R2 . 77) and prot ein supplements of marine origin for swine 

(R2 . 53) . 

TDN was only hi ghly es t imat ed from NFE content of green feeds 

and pasture plants for in vit ro studies . However, subdividing classes 

of feedstuffs result ed in impr oved TDN est imat ion from NFE contents 

of fresh grasses (R2 . 65) for cattle and ensiled nonlegumeous 

roughages for cattle (R2 
= . 78) and sheep (R2 

= .63) , dry non

legumeous roughages (R2 
= . 67) and energy feeds of plant origin 

(R2 
= . 53) for r abbits . 



The use of the four proximate nutrients in multiple regression 

models improved, in most cases, estimation of TON over that from a 

single independent variable. TDN was well predicted from proximate 

analysis of dry forages and roughages for horses (R2 =.58), rabbits 

(R2 = .66) and swine (R2 = .65); silages for sheep (R2 =. 56); 

energy feeds for horses (R2 = .61), rabbits (R2 = .72), sheep 

(R2 
= .51) and swine (R2 

= .95). 
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In vitro studies showed high correlations between TON and proximate 

analysis of green feeds and pasture plants (R2 
= . 99) and silages 

(R2 
= . 78). 

The use of a more complicated model to show interactions among 

proximate nutrients resulted in a general improvement in predictability 

of TON. 

Including physical descriptions (qualitative factors) of feed-

stuffs (forage type, stage of maturity and parts eaten) along with 

chemical analysis (quantitative factors) in a complex model, showed 

a promising way to predict TDN (R2 = . 64). 

Digestible energy (DE) was calculated from predicted values of 

the four proximate nutrients by the following equation: 

DE = 5. 7 (DCP) + 9. 5 (DEE) + 4. 79 (DCF) + 4. 03 (NFE) 
100 

Moreover, DE was found to be highly predicted from digestible 

proximate nutrients by the use of multiple regression equation 

(R2 
= . 79 to . 99) for various kinds of animals. However, DE was not 

highly correlated with each proximate nutrient when used as a single 

variable in simple regression models. There 1vere fe1v exceptions, 

however. DE was highly negatively correlated with crude fiber 
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contents of dry forages and roughages (R2 

(R2 = . 80) for rabbits . 

. 51) and protein supplements 

DE was also higluy related to EE contents of protein supplements 

for rabbits (R2 
= .63), and with CP content of dry forages and roughages 

for rabbits. 

DE was negatively correlated (R2 .52) with NFE content of energy 

feeds for cattle . 

DE was highly predicted from proximate analysis (R2 =.SO to .79) 

of different classes of feedstuffs for various kinds of animals except 

in cases of dry forages and roughages for cattle and silages for cattle 

and sheep. 

DE was highly correlated with TDN values of different classes of 

feedstuffs for various kinds of animals (R2 
= . 53 to . 97) . 

~1etabolizable energy (~IE) was highly estimated from digestible 

proximate nutrients (R2 = . 73 to .99) of different classes of 

feedstuffs for cattle and sheep. 

The use ·of each proximate nutrient as a single independent variable 

to predict ~IE by simple regression models did not result in precise 

correlations in most cases. H01vever, ~IE was highly negatively correlated 

1vith EE content of silages for cattle (R2 
= • 54). 

When the four proximate nutrients were used in multiple regression 

models, high ME estimation was obtained (R2 
= . 52 to . 96). ~breover , 

ME was highly predicted from TDN (R2 
= • 71 to . 95) and DE (R2 

= . 66 

to .97) values of different classes of feedstuffs for various kinds 

of animals. An exception was estimating !.-IE from TDN value of dry 

forages and roughages for cattle . 
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In general, the use of digestible proximate nutrients as indepen-

dent variables in multiple regression equations resulted in high pre-

cision in estimating TDN, DE and 1·1E. 

TDN, DE and HE were also highly predicted from proximate analysis 

in most cases. However, the use of each proximate nutrient as a single 

independent variable did not give promising results , with few excep-

tions. 

Subdividing and subgrouping could be useful in predicting TDN 

from a single nutrient in limited cases. 

The inclusion of physical descriptions of feedstuffs with proxi-

mate analysis could be a promising way to estimate the nutritive value 

o+ feedstuffs . It is suggested that processing or treatment be in

cluded and method could he applied to predict n~ and ~1E . It is also 

recommended that workers report feed descriptions according to the 

International Feed vocabulary (Harris, 1976). 

~~n was highly correlated with proximate analysis (R2 = . 78 to 

. 99), but not with each proximate nutrient content of poultry feed

stuffs . ~ for poultry followed the same trend lflth proximate analy

sis (RZ = . 95 to . 99). However , NF'P was closely correlated with EE 

(RZ = .75) and CP (RZ = .59) contents of dry forages and EE (RZ =.58) 

and ~~E (RZ = .74) contents of energy feeds. ~breover, ~~was closely 

predictable from~~ values of poultry feeds (R2 
= .67 to .84). 

rue to the nature of data, it '"as difficult to give certain inter

pretations about the results reported . 

The use of simple regression methods to estimate nE from TfJN and 

1"1: from TrJN and TJF. is a useful method especially 1men TDN data are 
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available. It is recommended that simple regression equations be used 

i~stead of conversion factors when shifting from one energy system to 

another . 

ll'hether any of the prediction equations would be suitable for 

practical application would depend upon the magnitude of error that 

could be tolerated. 

It is recommended that data available from the International nata

bank System at the International Feedstuffs Institute (Utah State Uni

versity) be plotted and checked for wild values every 6 to 12 months. 
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FIQJRE 25 Predicting digestible cmde protein (OCP%) from 
crude protein content (CP%) of energy feeds for horses. 
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FIQJRE 26 Predicting digestible crude protein (OCP%) from crude 
protein content (CP%) of dry forages and roughages for rabbits . 
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FIGURE 27 Predicting digestible crude protein (DCP%) from crude 
protein content (CP%) of energy feeds for rabbits. 
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FIGURE 28 Predict ing diges t ible crude protein (OCP%) f rom crude 
protein content (CP%) of protein supplements for rabbits . 
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FI GURE 29 Predicting di gestible crude protein (OCP%) from crude 
prot ein content (CP%) of dry forages and roughages for swine. 
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FIQJRE 30 Predicting digestible crude protein (OCP%) from crude 
protein content (CP%) of pasture , range plants m1d fo rages fed green 
for swine. 
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FIGURE 31 Predicting digestible crude protein (DCP%) from crude 
protein cont ent (CP%) of energy feeds for swine . 
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FIGURE 32 Predicting digestible crude protein (DCP%) from crude 
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FIGURE 36 Predicting digestible ether extract (DEE%) from ether 
extract content (EE%) of energy feeds for cattle. 
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FIGURE 37 Predicting digestible ether extract (DEE%) from ether 
extract content (EE%) of protein supplements for cattle. 
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FIGURE 38 Predicting digestible ether extract (DEE%) from ether 
extract content (EE%) of dry forages and roughages for sheep. 
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FIGURE 39 Predicting digestible ether extract (DEE%) from ether 
extract content (EE%) of pasture, range plants and forages fed 
green for sheep. 
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FIGURE 40 Predicting digestible ether extract (DEE%) from ether 
extract content (EE%) of silages for sheep. 
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extract content (EE%) of energy feeds for sheep. 
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FIGURE 51 Predicting digestible crude f iber (DCF%) f rom crude 
fiber content (CF%) of energy feeds for sheep. 
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FIGURE 52 Predicting digestible nitrogen free extract (DNFE%) 
from nitrogen free extract content (NFE%) of dry fo r ages and 
roughages for cattle . 
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cattle. 
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from nitrogen free extract content (NFE%) of protein supplements 
for cattle. 
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nitrogen free extract content (NFE%) of silages for sheep. 
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FIQJRE 71 Predicting digestible energy (DE = Meal/kg) f rom TDN% 
of pasture, range and forages fed gr een for sheep. 
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of feed energy for cattle. 



DE 

'' l~ . o~ 

nu,co 

7019,00 

l'.o, 11 .. 7 1,~>) 1J , 01G o 1 , CJ o9 ,(1~ .,., , CJ \01 , 0·1 1117, 01) : \l, •lO I\ '< , lg ·----·---··---··---··---· ··--· --····----···-··----·----·----·-·--·-·--·----·----·----·--······-······. 

1 1 1··------------------------------------------------------------------------- --------------------------! 
1 1 
1 1 

' ! ' l------------------------------·······------------------------------·-··----------------------------·-1 

59~3 . -J .. 

I ! J I 
11l9q, ')D 1 I • •in , ~{1 

1 1 
1 ! 
1 

' 1751, 0~ 1 P!>l, OC. 
" I • 

•• 1 
• 1 

1 
lNl,OO l llH,II~ 

1 1 
1 1 
1 ! 
I • I l 

lo55 ,~0 1 1 lh~. Jt .. l: ;~--·-· ~; :~ o· · · --; ~: ;~-· · · ·;~: o~--·-·;;: ~;--· --;;: ;~--· ··;;: ~;--· ·; e: :o~--· ·; ;; :;~-· · -~ ;; : ~;-· ··; l~ : o o 

TON 

FIGURE 74 Predicting digest ible energy (DE 
of energy feeds for swine. 
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FIGURE 75 Predicting digestible energy (DE 
of energy feeds for rabbits. 
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FIGURE 76 Predicting digestible energy (DE Meal/kg) from TDN% 
of protein supplements for swine. 
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FIGURE 77 Predicting digestible energy (DE 
of protein supplements for rabbits. 
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FIGURE 78 Predicting metabolizable energy (~ffi 
TON% of dry forages and roughages for sheep. 
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FIGURE 79 Predicting metabolizable energy (ME = ~tal/kg) from 
TDN% of pasture , range and forages fed green for sheep. 
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FIGURE 81 Predicting metabolizable energy ~ffi 
TDN% of energy feeds for cattle. 
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FIGURE 83 Predicting metabolizable energy (ME =Meal/kg) from TDN% 
of protein supplements for sHine. 
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FIGURE 84 Predicting met aboli zabl e ener gy (ME ; Meal /kg) from 
digestible energy (DE ; ~leal/kg) cont ent of dry forages and 
roughages for cattle. 
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FIGURE 85 Predicting metabol izable energy (HE = Meal/kg) from 
digestibl e ene rgy (DE = ~tal/kg) content of dry forages and roughages 
fo r cattl e . 
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FIGURE 86 Predicting metabolizable energy (~1E = Meal/kg) from 
digestible energy (DE = Meal/kg) content of silages for cattl e . 
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FIGURE 87 Predicting metabolizable energy (ME ~ ~tal/kg) from 
digestible energy (DE ~ ~tal/kg) content of s ilages for sheep. 
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FIGURE 88 Predicting met abolizable energy (ME ; ~kal/kg) f rom 
digestible energy (DE ; Meal/kg) content of pas ture, range plants 
and forages fed green for sheep. 
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FIGURE 89 Predicting met aboli zable energy (ME = ~leal/kg) from 
digestibl e energy (DE = Meal/kg) content of energy feeds for Slvine . 
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