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Abstract

Evaluation of Tracking Regimes for, and Security of, PLI Systems

by

Shayan Taheri, Master of Science

Utah State University, 2015

Major Professor: Dr. Ryan Gerdes
Department: Electrical and Computer Engineering

In the area of computer and network security, due to the insufficiency, high costs, and

user-unfriendliness of existing defending methods against a number of cyber attacks, focus

for developing new security improvement methods has shifted from the digital to analog

domain. In the analog domain, devices are distinguished based on the present variations

and characteristics in their physical signals. In fact, each device has unique features in its

signal that can be used for identification and monitoring purposes.

In this regard, the term physical layer identification (PLI) or device fingerprinting refers

to the process of classifying different electronic devices based on their analog identities

that are created by employment of signal processing and data analysis methods. Due

to the fact that a device behavior undergoes changes due to variations in external and

internal conditions, the available PLI techniques might not be able to identify the device

reliably. Therefore, a tracking system that is capable of extracting and explaining the

present variations in the electrical signals is required to be developed. In order to achieve

the best possible tracking system, a number of prediction models are designed using certain

statistical techniques. In order to evaluate the performance of these models, models are

run on the acquired data from five different fabrications of the same device in four distinct
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experiments. The results of performance evaluation show that the surrounding temperature

of a device is the best option for predicting its signal.

The last part of this research project belongs to the security evaluation of a PLI system.

The leveraged security examination technique exposes the PLI system to different types of

attacks and evaluates its defending strength accordingly. Based on the mechanism of the

employed attack in this work, the forged version of a device’s signal is generated using an

arbitrary waveform generator (AWG) and is sent to the PLI system. The outcomes of this

experiment indicate that the leveraged PLI technique is strong enough in defeating this

attack.

(86 pages)
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Public Abstract

Evaluation of Tracking Regimes for, and Security of, PLI Systems

by

Shayan Taheri, Master of Science

Utah State University, 2015

Major Professor: Dr. Ryan Gerdes
Department: Electrical and Computer Engineering

In recent years, the researchers and engineers have realized that the trustiness of com-

puter and networking devices and hardware can no longer be examined properly using the

existing identification and security checking methods that operate based on the digital rep-

resentation of data. As an example, since the digital identifiers can be copied, it is difficult

to tie a digital identity to a device for sure. Also, the new or present created cyber attacks

can manipulate the used digital data in a network easily. Due to these issues, the trend in

development of new identification and security checking methods has moved toward analog

signals of the devices that can be acquired from different parts of their circuits. In fact,

these analog signals have adequate information and features to uniquely identify the devices.

The dark side of analog-based methods is when some changes appear in the behavior of

devices in different conditions and over time. It causes the loss of ability of these methods

in differentiation of the devices. This is due to the mismatch between the current signal

of the device and the reference signal, which is obtained earlier. In this regard, a number

of statistical models are designed that use the environmental or a device’s circuit-related

parameters in order to predict its future behavior. The achieved results from running the

designed statistical models on the related data show that the surrounding temperature of

the device is the best option for predicting its signal information and features.
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In the last part of this study, the defending strength of an analog-based identification

and security checking method in confrontation with a specific attack is evaluated. In the

utilized attack, the forged version of a device’s signal is generated and is checked by the

security method. According to the outcomes of accomplished experiments, the leveraged

security checking method is able to defeat this attack perfectly.
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Chapter 1

Introduction

Existing methods in the area of computer and network security used to be concentrated

primarily on digital domain, because of its flexibility and controllability in designing and

creating new methods. However, due to the emergence of new cyber attacks in this branch

of security field and vulnerability of existing defense techniques in digital domain such as

leakage of digital tokens (network keys) or identifiers (username and password), attention

has moved toward design and creation of methods based on the physical representation of

information. The concept that is behind the physical domain is identification of the devices

based on the differences in their analog signaling characteristics and behavior. In other

words, the analog signal of every device has some unique features that are due to hard-

ware and manufacturing inconsistencies, and can be used for identification and monitoring

purposes.

The signal classification process starts by creating and utilizing analog identities for

electronic devices such as wired Ethernet cards, sensors, RFID devices and so on, through

the application and interpretation of applying signal processing techniques to either tran-

sient portion or steady-state portion of their signal. This process is called device finger-

printing or physical layer identification (PLI), and is defined as using the physical layer

(i.e. lowest layer or first layer) of the Open Systems Interconnection (OSI) model for the

identification of modern networking devices. Any systematic approach for accomplishment

of this operation (which includes the equipment, algorithms, and so forth) is referred to as

a physical layer identification system (PLIS).

The methodology of PLI can be divided into three steps: (a) identify and acquire a

repetitive and always present signal, also known as Fingerprint, which is correlated to the

device properties such as clock, design of circuitry, the amount of load on its IC, et cetera,
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(b) extract a set of meaningful features from the signal, (c) employ a classification technique

to compare a test feature set with a database of existing feature sets in order to verify the

targeted identity of the device under test. The device is accepted if the differences between

its test feature set and the chosen reference feature set from the database lie within a certain

threshold range. Enhancement of the higher-level mechanisms in provision of security is

achieved by integrating the physical-based methods and digital-based methods, which can

be greatly efficient in defensive purposes such as Intrusion Detection (discovering node

impersonation and network tampering), Authentication (preventing unauthorized access

to the physical network), Forensic Data Collection (tying a physical device to a specific

network incident), and Assurance Monitoring (determining whether a device will or is in

the process of failing).

Changes in conditions and states cause differences in behavior of the electronic devices,

which intervenes in the process of device identification. For example, the fingerprint of a

device at two distinct times (before turning the PC off at night and after turning it on in the

morning) is different. In this regard, a physical layer identification technique [1] is leveraged

that has the ability of reliably identifying electronic devices over time based on information

profiles that are created for them. Each information profile belongs to an electronic device

and consists of three main components that are: (a) an optimal detector named Matched

Filter, which is sensitive enough to perceive the small variations in the device’ signal (for

example, the steady-state portion of the entered signals to the matched filter function is

used for identification purposes due to its sufficient amount of information); (b) the outputs

of the applied matched filter to all of the acquired records from the device; and (c) the

outcome of an adaptive thresholding strategy, in which the matched filter outputs of a

certain number of records are used as the training data in order to calculate the threshold

value for the acceptance of the upcoming data. The positive and negative versions of this

value are used as the highest and lowest values for the threshold range.

The adaptive thresholding strategy also provides this possibility to re-identify a device

after its connectivity to the network has been lost and re-established again, by using the last
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calculated threshold value. There are two points regarding the electronic devices, Ethernet

cards that are used in this project: (i) they are chosen from the same make and model in

order to make differentiation of the devices more difficult; and (ii) their operational speed

is 10 MB/second, which provides simplicity and extensibility. On the other hand, these

devices have less information segments in their signals that limit their diversification.

In this study, a tracking system (a.k.a. tracking regime) that is capable of extracting

and explaining the present variations in an electrical signal is developed. It is a requisite for

identification of different devices based on their unique behavior under different conditions

and states (for channel, position, temperature and so on). The role of this tracking system

in transfer learning terminology [2] is defined as discovering a target prediction function for

the target domain with unlabeled data (future fingerprint - such as matched filter output)

using labeled source domain data (available fingerprint along with any other auxiliary data,

for example, temperature), which is known as Transductive Transfer Learning (TTL). Once

the target prediction function is found, its accuracy and performance is verified by checking

the amount of closeness between the predicted data and the actual data.

At last, the security of PLI system under investigation is evaluated based on its strength

in confrontation with the signal replay attack, in which a previously acquired record (or

signal) from a device is reproduced. The framework [3] that is implemented for this purpose

evaluates the defending strength of a PLI system by exposing the system to different types

of attacks using an arbitrary waveform generator (AWG), which is an electronic equipment

that is capable of generating arbitrary shaped signals. Each attack is designed with an AWG

that has certain performance parameters such as sampling rate, resolution, signal-to-noise

ratio, and total harmonic distortion.

The contributions of this thesis are listed as follows:

• Understanding and analyzing the behavior of networking devices (for example, Ether-

net cards) comprehensively in different fabrications, states, and conditions and, over

time. In this regard, five Ethernet cards are tested in four experiments. The purpose
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in experiments 1, 2, and 4 is studying the device behavior when its surrounding tem-

perature has small, large, and factual variations respectively. In experiment 3, the

objective is finding the similarities and differences between the device’s signal and the

supplied voltages to its printed circuit board’s general bus and the mounted IC on it.

• Developing a tracking system that is capable of extracting and explaining the present

variations in a device’s signal.

• Evaluating the defending strength of a PLI system in confrontation with the signal

replay attack, in which a previously acquired signal from a device is reproduced.

1.1 Related Work

Research and development in the areas of security checking of electronic devices through

their signal detection, classification, and identification has been investigated by many re-

searchers and engineers during the last century [4–7]. The classification and identification

techniques can be divided into two categories: (a) analog-based, which uses the charac-

teristics of the device’s analog signal; and (b) digital-based, which uses the variations in

the digital representation of data. The analog-based techniques can be grouped based on

their: (i) analysis domain (time or frequency); and (ii) signal portion of interest (transient

or steady-state) or signal modulation features.

The techniques that are used for identification and classification of the networking

devices based on the transient portion of their analog signal concentrate mostly on the

wireless area [8–10], as opposed to the steady-state based techniques that focus primarily

on the wired area [11, 12]. Due to the emergence of new cyber attacks in the wireless area

in recent years, more attentions are drawn to this area [13–19]. Specifically, the subject of

overcoming the eavesdropping attack has highly been investigated in the cited works. This

attack is described as the act of stealing the transmitted information between the authorized

users in a wireless network by a malicious person (a.k.a. man-in-the-middle).

Regardless of the concentration of the recent physical layer identification techniques

on the wireless area, there are still different important aspects of the wired area that have
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not been scrutinized sufficiently. The effects of different states and conditions (i.e. changes

in time and cable length or variations of manufacturing process, supply voltage, and tem-

perature) on identification of wired networking devices is one of these aspects that has

been studied only in a few research works and insufficiently [11,12,20-22]. However, the

performance degradation of electronic circuits (i.e. alteration of their output signal) due

to environmental effects has been studied intensively since a few decades ago, and many

innovative circuit design techniques have been presented to tackle this problem. This trend

originated from the continuation of CMOS technology device scaling (process feature size

shrinkage) that reinforces these effects.

Oscillators are very important elements in digital, analog, and radio frequency inte-

grated circuits and their instability can affect different applications such as, communication

networks, data link protocols, medical wireless sensor networks, and clock generation sub-

systems. Walls studied the environmental effects (for example, acceleration, temperature,

humidity, pressure, vibration, magnetic field, electric field, load, and radiation) on the

frequency, output level, and noise amplitude of precision oscillators output signal [20]. Ac-

cording to the results, the sensitivity of a given oscillator to a parameter depends on the

value of other parameters along with the device history. Also, it is difficult to separate the

influence of one parameter from that of another. The most important parameters that can

affect the performance of these oscillators are acceleration, vibration, and temperature.

Wu et al. proposed a technique for improving robustness of a ring-oscillator based

phase lock loop using an on-chip calibration module [21]. This module has a small footprint

on the area and power consumption of chip and compensates the effects of supply voltage

variations. The authors of [22] improved the stability of a ring oscillator efficiently by: (a)

biasing the low drop-out regulator module with high accuracy band-gap reference in order to

reject the influence of supply voltage variations on the output frequency; and (b) generating

a bias voltage for weakening the effects of temperature variations using a temperature sensor

and a voltage adder/subtractor. An adaptive body bias compensation technique to increase

the resiliency of RF power amplifier to process, supply voltage, and temperature (PVT)
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variations was presented in [23]. The variations are sensed using a current source and their

effects on the device performance are reduced through threshold voltage adjustment. A

similar work was accomplished by Gomez et al. for LNAs and mixers [24]. Different gate

biasing schemes for reducing the effects of temperature variations on an RF power amplifier

performance was analyzed in [25].

The reliability of a reconfigurable linearized low noise transconductance amplifier was

strengthened by sensing and improving the linearity of device’s output signal [26]. Omann

et al. designed a new circuit model for RF power amplifiers that is robust against PVT

variations [27]. According to this model, a scaled power amplifier replica cascade circuit

and a controlled current mirror are utilized to form a feedback loop in order to stabilize

the circuit operating point. The problem of CMOS technology device scaling is not limited

to performance degradation. It can bring other challenges such as augmentation of short-

channel effects and increase in power consumption. This causes the emergence of other

technologies such as multiple gate field effect transistors (FETs) and spin transfer torque

(STT) in the design of new integrated circuits. Although these technologies might have

their own issues in the aspect of circuit reliability and stability. In this regard, a tool for

evaluating and analyzing the effects of PVT variations on FinFET-based circuit models

was presented in [28]. Vatajelu et al. presented a reliability evaluation methodology for

STT magnetic random access memory cells to investigate the behavior of these cells under

different operational conditions [29]. Therefore, it is required to understand and analyze

the device behavior and its identification fingerprint under different operational conditions

and states in order to construct a comprehensive identification and classification system.

In this regard, development of a tracking system capable of extracting and explaining the

variations of an electrical signal in different conditions and states is studied in this research

work.

The security evaluation of a PLI system is accomplished by exposing it to different

types of attack and measuring its defending strength accordingly [30]. In general, there are

three main types of attack that can be used for defeating a PLI system: (a) Feature Replay,
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in which a forged signal similar to the device’s signal, according to the features that are

used by the PLI system, is generated and sent to the system; (b) Signal Replay, in which a

previously acquired record (or signal) from the device is reproduced; and (c) Coercion, in

which an attacker accesses an authorized device directly and control it for running malicious

functions. Only a few research works have been done in this area: Danev and Capkun [31]

attacked a transient-based PLI system by sending the forged version of a device’s signal

to the system repeatedly and modifying the forged signal gradually in order to improve

its similarity to the original signal. According to the results of this work, the PLI system

was vulnerable in confronting this attack. A modulation-based PLI system was attacked

in [32], using low-cost software-defined radios to reproduce modulation features in order to

impersonate a target device. This identification system showed weak resistance in front of

the applied attack. A new PLI system named GenePrint was introduced for UHF passive

tags in [33], which showed enough resiliency to various malicious feature replay attacks. In

this regard, the leveraged PLI system in this work is exposed to two versions of a signal

replay attack in order to evaluate its defending strength.

1.2 Organization of Chapters

The rest of this thesis is organized as follows. In Chapter 2, the methodology of the

PLI system and the concepts behind it are explained. Also, the designed experimental

setups for performance analysis of the PLI system and the respective results are presented.

The beginning part of Chapter 3 belongs to the description of all of the employed data

preparation concepts and data modeling techniques for finding a relationship between the

device’s signal and either environmental or circuit-related parameters. Next, all of the

developed models for the tracking system are presented and their results are delivered.

Chapter 4 delineates the method used for security evaluation of the PLI system at the

beginning. Then, the simulation framework for implementation of this method and the

related results are presented. Finally, the thesis is concluded in Chapter 5.
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Chapter 2

Physical Layer Identification System

2.1 Overview

The minute and unique variations in the signaling behavior of every electronic device

due to hardware and manufacturing inconsistencies can be exploited for identification and

monitoring purposes. These variations can be sensed and manifested more efficiently by

applying various signal processing and data analysis methods to the test data. The employed

physical layer identification technique in this study attempts to verify the identity of a

networking device – 10 MB Ethernet card, based upon the layer-specific behavior of the

Physical and Data Link layers. Verification is done by monitoring the analog characteristics

of the synchronization signal, acquired from the device and determining whether the digital

hardware address corresponds to the expected physical signal.

In this process, a profile is created from the trustworthy data (i.e. training data) in

order to represent both the history of the device behavior and its expected future perfor-

mance. The three main components of the profile are the matched filter, the output of the

applied matched filter to all of the collected records, and the threshold values for acceptance

of the previous records and the incoming records. The proposed technique can be effectively

used in stability analysis (evaluating the device behavior over time) and forensic analysis

(examining the newly received data from a device based on the previously collected data)

of the networking devices.
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2.2 Concepts

2.2.1 Matched Filter

Matched filter is an optimal linear detector that is commonly used in receiver systems.

Its application in here is for maximizing the signal-to-noise ratio of an input signal (i.e. test

signal) in the presence of additive white Gaussian noise (a basic noise model that is added

to a signal for mimicking the effect of many random processes that occur in nature). The

operation of this filter can be interpreted as the inner product of two time-aligned signals,

and has a transfer function in the frequency domain according to the Equation 2.1, where

A∗(ω) is the complex conjugate of the Fourier Transform of the reference signal α(t) in

the time-domain, P (ω) is the power spectral density (i.e. the distribution of a signal power

over the different frequencies) of the associated noise with the input signal, k is an arbitrary

constant such that its values are chosen based on the operating environment, and t0 is the

sampling time of the maximum filter output that is determined by aligning the reference

signal with a newly received signal (i.e. test signal).

H(ω) = k.
A∗(ω)

P (ω)
. exp(−jωt0) (2.1)

Consequently, the time-domain version of the transfer function can be obtained by

applying inverse Fourier Transform to it, which will result in Equation 2.2.

h(t) =


α(t0 − t) 0 ≤ t ≤ T (Period)

0 Otherwise

(2.2)

Applying convolution to the time-aligned versions of the matched filter and the test

signal delivers a value that is a measurement of the closeness of the newly received signal to

the reference one. This parameter is called Matched Filter Output (MFO), and is presented

by Equation 2.3. Prior to applying the matched filter, several pre-processing techniques

can be applied to the device’s signal in order to amplify its variations and characteristics.
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This will empower the detection capability of the filter in discovering the device identity.

According to Equation 2.3, λ(t0) is the filter output, h(t0) is the time-aligned matched filter

that is acquired from a trustworthy record, and β(t0) is the time-aligned test signal that is

acquired from a test record.

MFO : λ(t0) = h(t0) ∗ β(t0) =

∫ t0

t0−T
α(τ).β(τ).dτ (2.3)

Depending on the analysis type, the test record can come from the same device or a

different device. When a record from the same device is used, the filter output is called

Control Response and when a record from a different device is used, it is called Subject

Response. Among different components of a record (shown in Figure 2.1), including the

noise (black part), transient to steady-state (red part), steady-state or synchronization

signal (blue part), transient to MAC address (green part), and receiver MAC address and

transmitter MAC address (brown part), the third one that is repetitive in behavior and is

always present is used for these calculations. Meanwhile, the synchronization signal has the

Manchester coding format, in which the data bits are represented by transitions from one

logical state to the other (for example, running XOR function on the data and clock). This

makes the signal self-clocking and provides additional reliability.
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Fig. 2.1: Different components of a device’s record.
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2.2.2 Adaptive Thresholding Strategy

In order to determine the allowable range of variations for the future matched filter

outputs of a device, a threshold parameter needs to be calculated based on the available

ones. In other words, it provides an indication of the maximum amount of acceptable

deviation in a filter response before its signal is marked as too different from the trustworthy

one. Calculation of the threshold value is done based on the distributional properties of

the previously obtained filter responses. Since the acquired signal from the device has a

stochastic nature, the threshold value for accepting the matched filter output will be time

variant. This requires having a strategy for tracking the filter outputs and calculating their

threshold values accordingly.

According to the proposed strategy, the next m records of a device should be similar

to the previous n records and the threshold value needs to be updated every n records

respectively. In this way, the origin of the device’s signal can be determined on a record-

by-record basis. This concept is shown visually in Figure 2.2.

Training'Data'(n"'MFOs)!!!!!!!!!!!Testing'Data'(m"'MFOs)1

Updating'the'Threshold'Range1

Fig. 2.2: The concept of adaptive thresholding strategy.

Due to the fact that the distribution (i.e. its type, location, and scale) of the filter

output is unknown, prediction intervals must be used in order to determine the threshold

value [34]. In this regard, a two-sided prediction interval is incorporated to establish the

allowable range of variations for the m future filter outputs with 100 × (1 − γ)% level of

confidence, as shown in Equation 2.4.
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threshold+/−(MFOj , . . . ,MFOj+m−1) =

µ(MFOj−n, . . . ,MFOj−1)± r(1−γ;m,n) × σ(MFOj−n, . . . ,MFOj−1) , n < j (2.4)

According to this equation, MFOj represents the matched filter output of jth record,

and µ(.) and σ(.) are the mean and standard deviation functions respectively. The param-

eter r(.) is called Range Parameter and is calculated using Equation 2.5. In this equation,

t(.) is the probability distribution function of the Student’s t-distribution (i.e. it is used for

estimating the mean of a set of few chosen samples from a stochastic variable data when the

standard deviation and the mean of all data points are unknown), γ is the level of failure,

n is the number of previous filter outputs that are used as the training data, and m is the

number of future filter outputs that are utilized as the testing data.

r(1−γ;m,n) ≈ (1 +
1

n
)
1
2 . t( 1−γ

2m
;n−1) (2.5)

2.2.3 APRS Metrics and Misclassification Matrix

To present the outcome of employing the matched filter in device differentiation, four

metrics common to machine learning and data mining along with the misclassification ma-

trix (a.k.a. confusion matrix) are incorporated. The metrics provide only an overall picture

of the system performance for a single device, while the misclassification matrix shows the

amount of overlapping between two devices as well as the occurrence of misidentification

for a device. In the context of this work, the result parameters that are used in calculating

the performance metrics are defined according to the following:

• True Positive (TP): A record is correctly rejected as not having originated from the

original device (a.k.a. True Reject).

• False Positive (FP): A record is wrongly rejected as not having originated from the

original device (a.k.a. False Reject). Equation 2.6 is used in order to calculate this



13

parameter.

FP = nc − n− nr (2.6)

• True Negative (TN): A record is correctly accepted as having originated from the

original device (a.k.a. True Accept).

• False Negative (FN): A record is wrongly accepted as having originated from the

original device (a.k.a. False Accept). Equation 2.7 is used in order to calculate this

parameter.

FN =
m

nc
.

nc
m∑
L=1

nLa (2.7)

According to Equations 2.6 and 2.7, nc is the total number of collected records for a

device, n is the number of used records for training data (per each testing period), m is

the number of used records for the testing data (per each testing period), nr is the total

number of rejected records, and nLa is the number of accepted records in Lth period of

testing. According to these definitions, four major performance evaluation metrics namely,

Accuracy (A) that is the rate of correctly accepted and rejected records, Precision (P) that

is the rate of correctly rejected records, Recall (R) that is the success rate in rejection of

records, and Specificity (S) that is the success rate in acceptance of records, are defined

according to Equations 2.8 - 2.11.

A =
TP + TN

TP + TN + FP + FN
(2.8) P =

TP

TP + FP
(2.9)

R =
TP

TP + FN
(2.10) S =

TN

TN + FP
(2.11)
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Next, a table containing the calculated metrics for all of the tested devices is assembled,

which is also known as APRS table. Lastly, the misclassification matrix is constructed using

the achieved true negative rates (a.k.a. specificity) and false negative rates from applying

the device identification technique to the records of all of the examined devices. An ideal

device identification method should produce a matrix, in which all of the diagonal elements

are equal to one and all of the off-diagonal elements are equal to zero.

2.3 Experimental Approach

In order to achieve a comprehensive understanding of the device’s circuit and its vari-

abilities in different fabrications, the data collection process is run for five Ethernet cards

(manufactured by Genica). In this way, enough data are collected to evaluate the ability of

employed PLI technique in a forensic analysis. One of the tested Ethernet cards (i.e. m5c5)

is shown in Figure 2.3. The process of acquiring records from the test Ethernet cards is

similar between setups: two personal computers (PC) are used in each setup, one to act as

the Test PC (TPC) that includes the test Ethernet card, and the other one as the Data

Acquisition PC (DAQPC). The DAQPC includes a passively tapped Ethernet card (from

Realtek company) in order to receive data from the TPC using a crossover cable. Each data

packet is captured in the form of a differential signal (to attenuate environmental noise),

and is observed via a Tektronix DPO 7254C Digital Phosphor Oscilloscope, which uses

MATLAB for process configuration and control.

IC (GN-788)Transformer
(FM-209L)

Fig. 2.3: An Ethernet card under test.
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According to the oscilloscope configuration, the sampling rate is 10.0 Giga-Samples/Second,

the bandwidth is 500 MHz, the record length is 1 million data points, the resolution is 8

bits, and record detection is based on a simple negative slope-based threshold. The TPC

is instructed to ping the DAQPC to generate traffic for data acquisition with the goal of

acquiring 10,000 numbers of correct records. Meanwhile, in order to reduce the effect of

the measurement equipment on the load characteristics of the DAQPC and minimize the

possibility of packet loss, only the receiving pins of the DAQPC’s Ethernet card on the

secondary side of transformer are connected to the oscilloscope. The collected records from

all of the examined Ethernet cards during each run constitute a Dataset.

In each of the designed experimental setups according to the desired objectives for

behavioral analysis of the devices, the related auxiliary data (for example, temperature

data and supply voltage data) are acquired along with the records of the Ethernet cards

under test. For each setup, there are two executions of the data acquisition process and

consequently two datasets in order to attain a good apprehension of the characteristics and

behaviors of the devices. In Setups 1 to 3, two desktop PCs are used for the TPC and

DAQPC with GNU/Linux as their operating systems and are placed in the same room.

These desktop PCs along with the slots (i.e. 5V 32-bit) of TPC are shown in the left and

right parts of Figure 2.4 respectively.

DAQ PC

Test PC

Test Ethernet Card Slot

Fig. 2.4: The desktop TPC and DAQPC (left) and the slots of TPC (right).

On the other hand, two mini PCs are used for the TPC and DAQPC with Windows

and Xubuntu as their operating systems respectively and are placed in two different rooms
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for Setup 4. This setup requires longer cables for PCs communications compare to the other

setups. The general view of the experimental setup and the data measurement locations

are shown in Figures 2.5 and 2.6.

NI USB-6008

Voltage Divider Circuit

DAQ PC

DAQ Ethernet Card

Temperature Trandsucers

Test Probes for Observing Records

(3)

(4)

Fig. 2.5: The mini DAQPC and its data measurement location.

HP Power Supply

Voltage Divider Circuit

Test PC

Temperature Transducer (2)

MCC USB-201

Temperature Transducer (1)

Bus's Supply Voltage

IC's Supply Voltage

Test Ethernet Card Slot

Fig. 2.6: The mini TPC and its data measurement location.

In Setups 1 and 2, the ambient temperature as well as the Ethernet card’s surrounding

temperature for both the TPC and DAQPC are acquired using a National Instruments USB-

6008. According to the objectives of the Setup 2, a hairdryer is used in order to increase the

surrounding temperature of the TPC’s Ethernet card periodically. In the third and fourth

setups, the voltages of the employed LAN transformer (Tonyo FM-209L) and IC (Genica

GN-788) in the Ethernet card under test are acquired along with the previously stated

temperatures. All of the discussed temperature and voltage parameters are collected via a

National Instruments USB-6008 and a Measurement Computing USB-2523 respectively in

Setup 3, while in the latter setup the TPC-related temperatures and voltages in addition
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to the DAQPC-related temperatures are obtained via a Measurement Computing USB-201

and a National Instruments USB-6008 respectively. According to Figures 2.5-2.6, the TPC’s

surrounding and ambient temperatures are sensed using the first and second temperature

transducers, while those of the DAQPC are sensed using the third and fourth temperature

transducers respectively.



18

2.4 Results and Discussion

In order to examine the device behavior under different operational conditions and

states along with achieving an understanding of the device behavior and activities over

time, four experiments are designed according to Table 2.1.

Table 2.1: Description of the designed experiments.

Experiment Datasets Description 

1 1-2 Analyzing the device behavior with respect to the 
small variations of its surrounding temperature. 

2 3-4 Analyzing the device behavior with respect to the large 
variations of its surrounding temperature. 

3 5-6 
Analyzing the similarities and differences between the 
device's signal and the supplied voltages to its printed 
circuit board's general bus and the mounted IC on it. 

4 7-8 Analyzing the device behavior with respect to the 
factual variations of its surrounding temperature. 

!

2.4.1 Overview of Experiments

The core concept of the explained physical layer identification technique is manifesting

and exploiting the existing unpredictable variations in the electronic devices signals (that are

introduced during the design and fabrication processes) in order to mark their similarities

and differences for identification purposes. Studying these unpredictable variations is helpful

in analyzing the device behavior in different operational conditions and over time (i.e. its

behavioral stability). In this regard, the developed methodology was applied to five Ethernet

cards from Genica manufacturer in four different experimental setups, and at eight distinct

times. The information of the Ethernet cards is shown in Table 2.2. According to this table,

there should be a correspondence between the MAC address and the analog signal of every



19

Ethernet card.

Table 2.2: The information of Ethernet cards - (1).

Identifier MAC Address Serial

m5c1 00:00:e8:12:65:36 DB0211105319
m5c2 00:00:e8:12:17:db DB0211105339
m5c3 00:00:e8:12:2c:85 DB0211105358
m5c5 00:00:e8:12:6d:77 DB0211105389
m5c7 00:00:e8:12:65:2e DB0211105349

For each test run of an experimental setup, the data collection process was carried

out on each Ethernet card for ten thousand times that resulted in obtaining 10,000 records

(a.k.a. frame). An example of an Ethernet card record is shown in the top plot of Figure

2.7. This voltage signal is from the m5c1 card in the dataset 8 (i.e. the second test run of the

fourth experimental setup) and its unit is volt. As was mentioned before, the steady-state

part (i.e. synchronization signal) of Ethernet card record is selected in order to identify its

nature. This is due to the fact that there are enough variations in this part of the signal for

analyzing the device behavior. The synchronization signal of the shown record is presented

at the bottom plot of Figure 2.7.
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Fig. 2.7: Ethernet card’s record (top) and synchronization signal (bottom).
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Experimentally, it has been proven that: (a) an electronic device’s signal is time-variant;

and (b) the signals from two different devices have dissimilar variations at any given time,

even if they have the same overall trend. Regarding the case (a), the upper plot of Figure

2.8 shows the variations in the synchronization signals of the first and second records of the

m5c2 card, while the lower plot that corresponds to the case (b) shows the variations in the

synchronization signals of the first records from the m5c2 and m5c3 cards.
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Fig. 2.8: The variations in the device’s synchronization signal.

The shown variations are for the first 500 data points of the synchronization signals

that are picked from the dataset 8. In fact, these variations can cause a significant change

in the level of the matched filter output signal, even between two different test runs of the

same setup. Figure 2.9 displays the significant change between the levels of the obtained

matched filter outputs from the m5c3 card in the first and second test runs of Setup 3.

According to the implementation of the PLI system, the matched filter is applied to

the steady-state portion of the collected records in order to identify the devices and also

compare them. In the identification case, the first record of the device is chosen as the

reference (i.e. trustworthy) record and the other instances (i.e. 9,999 records) are tested

against it. While in the comparison case, the first record of the main device under check
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Fig. 2.9: The significant change in the level of MFO signal.

is chosen as the reference record and all of the other records (except the first one) of a

secondary device are tested against it. In implementation, the reference records that are

used for testing the devices records in all of the setups (except Setup 4) are obtained from

the first dataset. In the fourth setup, the reference records are captured from the dataset

7.

The achieved matched filter outputs from these two cases are used to calculate a thresh-

old that determines the acceptance or rejection of the records (i.e. specifically the synchro-

nization signals). The selected values for the parameters n (the number of previous filter

outputs that are used as the training data), m (the number of future filter outputs that are

utilized as the testing data), and γ (the level of failure) are 25, 20, and 0.01 respectively.

Next, the performance metrics are calculated, and the APRS table and misclassification ma-

trix are constructed accordingly. Figure 2.10 displays the APRS table and misclassification

matrix for the dataset 8.

The individual and mean values for the accuracy, precision, recall, and specificity

(APRS) metrics show the performance of the identification system in acceptance of cor-

rect records and rejection of wrong records. In fact, the system demonstrates a good
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Tested Card A P R S
m5c1 0.813 0.999 0.767 0.998
m5c2 0.811 0.999 0.764 0.997
m5c3 0.999 0.999 1.000 0.997
m5c5 1.000 0.999 1.000 0.998
m5c7 1.000 1.000 1.000 0.999
Mean 0.924 0.999 0.906 0.998

Subject
m5

Control c1 c2 c3 c5 c7
m5c1 0.998 0.934 0 0 0
m5c2 0.943 0.997 0 0 0
m5c3 0 0 0.997 0 0
m5c5 0 0 0 0.998 0
m5c7 0 0 0 0 0.999

Fig. 2.10: APRS table (left) and misclassification matrix (right).

performance in the second test run of experimental setup 4. As was mentioned before, the

misclassification matrix is a representation of the true negative rates (i.e. specificity) and

false negative rates of the identification system. This matrix shows the capability and weak-

ness of system in identification of the tested devices based on its diagonal and off-diagonal

elements respectively. The system indicates an acceptable capability in identification of the

devices in this test run. However, it is not successful enough in distinguishing the m5c1 and

m5c2 cards.

2.4.2 Analysis of Results

The results of accomplished behavioral analysis on the collected datasets from each

designed experiment are presented and discussed in this section. The records of the devices

are collected along with the auxiliary data (for example, temperature data and supply

voltage data) for the purpose of finding a correlation between them.

Experiment 1: In the first experimental setup that is used for the datasets 1 and 2,

it can be observed that there is a relationship between the matched filter output and the

surrounding temperature of the Ethernet card under test based on their trends. Depending

on the environmental conditions and the internal state and characteristics of the devices,

the degree of similarities between these two signals varies.

In other words, the correlation between the matched filter output and the temperature

signal can be stronger or weaker from time to time and/or from device to device. Figure

2.11 shows the MFO signal (upper plot) and the device’s surrounding temperature signal

(lower plot) of the m5c7 card in the first run of Setup 1. The units of the MFO signal
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Fig. 2.11: Matched filter output (upper) and surrounding temperature (lower) in Setup 1.

and temperature signal are Volt-Squared (V 2) and Celsius (◦C) respectively. The PLI

system demonstrated a satisfactory performance in identifying the devices and comparing

them. Furthermore, the system marked the m5c1 and m5c2 cards as similar devices in both

datasets of this experimental setup. The mean of APRS values for datasets 1 and 2 from

the tested devices are presented in Table 2.3.

Table 2.3: Mean of APRS values for datasets 1 and 2.

A P R S

Dataset 1 0.941 1.000 0.926 1.000
Dataset 2 0.927 1.000 0.909 0.999
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Experiment 2: In order to scrutinize the relationship between the matched filter

output and the device’s surrounding temperature, the Setup 2 has been designed for which

the temperature is manually increased for the aim of studying its effect on the device’s signal.

In this setup, the amount of correlation between the filter output and temperature signal at

different orders of signal variations is evaluated. According to the results obtained from two

iterations of this experiment, the matched filter output is highly affected by changes in the

temperature signal. In other words, the device’s signal exhibits more dependency on the

temperature when it is varied in larger orders. An example of either of the matched filter

output and temperature signal for this setup is shown in Figure 2.12 that are appertained

to the m5c7 card in the second test run. It can be seen that the matched filter output of

the device follows moderated version of the temperature data variations.
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Fig. 2.12: Matched filter output (upper) and surrounding temperature (lower) in Setup 2.

The PLI system has a poor performance in identifying the devices due to getting a large

number of false positives and consequently low specificity values for all of the cards (except

for the m5c5 in the dataset 2). Also, a number of the Ethernet cards were misidentified in

this setup. For example, the m5c1 card was marked as the m5c3, and the m5c7 card was

marked as the m5c1 during the first and second test runs. In fact, an attacker can use this
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notion in order to defeat the PLI system by increasing the surrounding temperature of a

victim device. The results of identification process for this setup are presented in Table 2.4.

Table 2.4: Mean of APRS values for datasets 3 and 4.

A P R S

Dataset 3 0.838 0.853 0.964 0.331
Dataset 4 0.832 0.870 0.932 0.431

Experiment 3: Although it was demonstrated that the matched filter output has

a clear relationship with the device’s surrounding temperature, especially at larger orders

of variations, it is required to investigate the device circuit-related parameters and the

other environmental parameters. In this regard, the voltage that is supplied from the LAN

transformer to the general bus of the circuit in addition to the voltage that is supplied to

the mounted IC on the circuit are measured in order to find their relationship with the MFO

signal. The results of this experiment illustrate a very weak relation between the measured

voltages and the matched filter output, which was not expected. The Bus’s supply voltage

(a.k.a. transformer’s supply voltage) exhibits an exponential behavior similar to the MFO

signal, while the IC’s supply voltage shows an inverse exponential behavior. However, this

coherent behavior between these parameters can be eliminated completely by the noise

interferences. Meanwhile, the amount of correlation between the matched filter output and

the device’s surrounding temperature in this setup is similar to the first setup, which was

discussed previously.

The MFO signal and the device’s surrounding temperature for the m5c2 card during

the first test run are shown in Figure 2.13. Additionally, the Bus and IC supply voltages for

the same card and test run are shown in Figure 2.14. The unit of these voltage signals is volt.

According to these figures, similarities exist between these parameters with the difference

that the temperature signal has a higher rank in having relationship with the device’s signal

in comparison with the other parameters. In fact, due to the noise interference with a supply

voltage signal, a sensible mathematical relationship between it and the device’s signal can

not be established. Finally, the performance of the PLI system in this setup is similar to the
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Fig. 2.13: Matched filter output (upper) and surrounding temperature (lower) in Setup 3.

first setup; therefore, the discussions that were made earlier for it will apply here as well.

This was expected because these two setups have the same operational conditions including,

the room, communication cable length, etc. The results for the performance evaluation of

this setup are presented in Table 2.5.

Table 2.5: Mean of APRS values for datasets 5 and 6.

A P R S

Dataset 5 0.938 1.000 0.923 0.999
Dataset 6 0.933 1.000 0.916 0.999
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Fig. 2.14: IC’s supply voltage (upper) and bus’s supply voltage (lower) in Setup 3.

Experiment 4: While the personal computers, the cable type and length, and the

location of TPC and DAQPC were all identical for the previous setups, it is beneficial

to investigate the effects of changing these components on the device fingerprint. To do

this, newer mini personal computers, longer cable, and different locations for the TPC and

DAQPC are leveraged in the design of Setup 4. Also, the responsible sensor for measuring

the surrounding temperature of the Ethernet card under test is enclosed inside the TPC by

limiting the air flow.

According to the acquired data from two test runs with this setup, four major effects

are observed: (a) the amplitude of device’s voltage signal is decreased by 18-19%; (b) the

range of variations in the temperature signal is increased; (c) the direction of the trends of

the supply voltages signals is reversed; and (d) the IC’s supply voltage shows an observable

exponential behavior, which will correlate better with the matched filter output. Meanwhile,

a highly smoothed version of the variations in the temperature signal can be seen in both

MFO signal and IC’s supply voltage signal of this setup.

For the m5c1 card in the dataset 8, the matched filter output and the device’s sur-

rounding temperature are shown in Figure 2.15, while the IC’s supply voltage and the
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Fig. 2.15: Matched filter output (upper) and surrounding temperature (lower) in Setup 4.
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Fig. 2.16: IC’s supply voltage (upper) and bus’s supply voltage (lower) in Setup 4.
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Bus’s supply voltage signals are shown in Figure 2.16. Finally, it should be pointed out

that the PLI system could function properly in this setup, similar to the first and third

setups. The values of the specificity metric for the tested cards decreased slightly, which

can be caused by the existence of the larger range of variations in the temperature signal.

The performance analysis results for this test setup are listed in Table 2.6.

Table 2.6: Mean of APRS values for datasets 7 and 8.

A P R S

Dataset 7 0.924 1.000 0.906 0.998
Dataset 8 0.924 0.999 0.906 0.998
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Chapter 3

Study of Tracking System Models

3.1 Overview

Studying the unique variations of a device’s electrical signal under different operational

conditions and states is crucial for developing a robust and integral physical layer identifi-

cation system. In this regard, a tracking system capable of modeling the device behavior

and predicting its future signal data should be developed. The proposed strategy for im-

plementing this tracking system has two steps. In the first step, different data preparation

concepts are applied to the device’s signal and/or the auxiliary data (for example, ambient

temperature and supply voltage) in order to study their variations, and eventually manifest

their trends. Next, various data modeling techniques are executed on the prepared data

with the goal of constructing the most efficient data predictive model for the device future

signals.

3.2 Concepts for Data Preparation

In this section, the employed data preparation concepts for development of the tracking

system are introduced.

3.2.1 Charging/Discharging Trend

According to the results of the applied matched filter to the acquired signals from

the Ethernet cards under test, it can be seen that there is charging/discharging trend in

the time-domain behavior of the device’s circuit (refer to Figure 2.9). This behavior is

possibly due to the leveraged series resistor-capacitor (RC) sub-circuit in the main circuit.

An RC circuit is composed of resistor(s) and capacitor(s), and is driven by a voltage or

current source. When the circuit is active, the capacitor is charged up gradually through
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the resistor until the voltage across the capacitor reaches that of the supply voltage. Once

the supply voltage is disconnected from the circuit, the capacitor would discharge itself back

through the resistor. The formulations that depict the charging and discharging trends of

the circuit are presented in Equations 3.1 and 3.2 respectively [35]. In these equations, VC

is the voltage across the capacitor, VS is the supply voltage, t is the elapsed time since the

connection/disconnection of the supply voltage, and RC is the circuit time constant. In

implementation, the expression in the right side of charging/discharging equation (excluding

VS) is used in prediction of the matched filter output signal. The parameter t is described

as the duration time of collecting records for each device in each test run.

VC = VS .(1− exp(
−t
RC

)) (3.1) VC = VS . exp(
−t
RC

) (3.2)

3.2.2 Euclidean Norm

The Euclidean norm (or 2-norm) of a data vector provides a measure of the magnitude

of the vector elements. In other words, it calculates the Euclidean distance of the vector

with respect to the origin of the space. The Euclidean norm of the data vector x defined in

an n-dimensional space can be calculated by using Equation 3.3 [36].

‖x‖ =
√
x21 + x22 + · · ·+ x2n (3.3)

3.2.3 Mean of Absolute Value (MAV)

MAV is one of the most popular time-domain feature extraction methods for signals,

which provides the average of the rectified version of a signal (i.e. the average of the absolute

values of the signal data points), and technically specify the signal power level. Equation 3.4

represents the mean of the absolute value of signal f [k], with N number of data points [37].

MAV =
1

N
.

N∑
i=1

∣∣f [i]
∣∣ (3.4)
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3.2.4 Autoregressive Model

Autoregressive model is used for describing certain time-varying processes that exist

in nature, economics, etc. According to this model, a signal data at a certain time depends

linearly on its previous values and on a stochastic error term. Also, the “autoregressive”

term is defined as the linear regression of a variable against its previous values (with respect

to time). Equation 3.5 shows the autoregressive model in which, X is the time-domain

signal, ε is the error data, c is the constant term, p is the model order, and φ is for the

model parameters (a.k.a. coefficients) [38].

AR(p) : Xt = c+ εt +

p∑
i=1

φi.Xt−i (3.5)

3.2.5 Moving Average

Moving average is a filter that smooths out short-term fluctuations and highlights long-

term trend of a signal. The filtering process is done by averaging the signal data points in

equal length subsets. These subsets are represented by a mobile Window, which starts its

action from the first data point and moves toward the last data point. In Equation 3.6, the

relationship between the input signal and the output signal of this filter is presented [39].

The parameter x[t] represents the input signal that has N data points, M is the window

size, and y[k] is the output signal.

y[k] =
1

M
.
M−1∑
j=0

x[k + j] , 1 ≤ k ≤ N − (M − 1) (3.6)

3.2.6 Normalization

Normalization is the process of regularizing data values based on a specific statistical

analysis concept. The normalization concept used in this work refers to the adjustment of

a data vector with respect to its magnitude (i.e. 2-norm) [40].

3.2.7 Standard Deviation

The standard deviation of a signal data indicates the amount of variations or dispersions
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of its data points from their average value. When the outcome of this function is close to

zero, it is interpreted that the data points of a signal are very close to the expected value

(i.e. signal average). Contrariwise, they are diffused over a wider range of values when the

outcome is a high value. The standard deviation of signal x[t] that has N data points is

calculated using Equation 3.7 [41]. The parameter µx represents the average value of the

signal.

STD =

√√√√ 1

N − 1
.

N∑
i=1

∣∣x[i]− µx
∣∣2 (3.7)

3.3 Techniques for Data Modeling

The data modeling techniques used for developing the tracking system are described

in this section.

3.3.1 Correlation Analysis

Correlation analysis is used to measure the degree of linear dependency between two

variables. In this approach, one variable is called Independent and the other one is called

Dependent. Then, the correlation function tries to discover whether a change in the inde-

pendent variable will result in a change in the dependent one. The outcome of this function

is called Correlation Coefficient, which is always between -1 and +1. When the outcome is

equal to 0, it means that there is no linear relationship between the variables. The corre-

lation coefficient of either -1 or +1 indicates that the variables are perfectly related. The

positive sign shows that the change occurs in the same direction, while the negative one

shows the direction is opposite. Equation 3.8 is used to calculate the correlation coefficient

of variables X and Y [42].

Correlation Coefficient (X,Y ) =

∑
(X − µX).(Y − µY )√∑

(X − µX)2 .
∑

(Y − µY )2
(3.8)
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3.3.2 Cross Correlation Analysis

It is a measurement of similarity between two time-series of data as a function of the

time lag between them. In other words, if X and Y are two time-series signals, the cross

correlation function (a.k.a. sliding dot product) tries to find a relationship between X and

the shifted copies (in both negative and positive directions) of Y . The outcome of this

analysis is presented in the form of a function of the examined lags. The cross correlation

function is defined as [43]:

(X ∗ Y ) [n] =

∞∑
m=−∞

X∗[m].Y [m+ n] (3.9)

3.3.3 Autocorrelation

Autocorrelation is the cross correlation of a time-series signal with itself. This proce-

dure tries to find a relationship between a time-series signal and its own time-lagged copies.

This function is useful in finding obscured repetitive patterns in a signal [44].

3.3.4 Simple Linear Regression (SLR)

Simple linear regression (SLR) is a technique that is used to determine the effect of

changes of a variable (the explanatory variable) on another variable (the response variable)

with the purpose of finding the linear relationship between the variables and predicting

the future values of the response variable (a.k.a. the variable of interest) [45]. In this

method, a straight line is fitted through the cloud of data points in the X-Y plane. The

shape of the fitted line depends on the degree of the explanatory variable. The slope (β)

and vertical intercept (α) of this line are calculated based on the correlation between the

variables and crossing of the line from the center of the cloud of data points respectively.

The Equations 3.10 and 3.11 represent the actual (based on assumption) and the modeled

relationships between the response variable (y) and the explanatory variable (x) respectively.

The predicted data points using this model are represented by ŷ variable in this context.

Actual Model (Assumption) : yi = α+ β.xi + εi , i = 1, . . . , N (3.10)
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Prediction Model : Y = α+ β.X (3.11)

ŷi = α+ β.xi , i = 1, . . . , N (3.12)

The fitted line will not pass through all of the data points and deviates from each by

a certain degree. The vertical distance between each data point and the fitted line (i.e.

the difference between the actual value and the predicted value of the response variable) is

called a Residual, which in fact specifies the error of the prediction model. The residual

parameter is used to define a minimization function (shown in Equation 3.13), which its

solution provides the coefficients of the prediction model.

Q(α, β) =
N∑
i=1

ε2i =
N∑
i=1

(yi − ŷi)2 (3.13)

Moreover, it is used in calculation of Coefficient of Determination (a.k.a. R-Squared),

a statistical measure that provides information regarding the goodness of the fit (i.e. the

model accuracy in predicting data). The R-Squared value of 0 corresponds to a completely

scattered data points around the fitted line, whereas the value of 1 specifies a fitted line

that passes through all of the data points. Equations 3.14 - 3.17 are employed to calculate

the R-Squared value.

Total Sum of Squares : SStot =
N∑
i=1

(yi − µy)2 (3.14)

Regression Sum of Squares : SSreg =

N∑
i=1

(ŷi − µy)2 (3.15)

Residual Sum of Squares : SSres =

N∑
i=1

(yi − ŷi)2 (3.16)
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Coefficient of Determination : R2 = 1− SSres
SStot

(3.17)

Also, the coefficient of determination is influenced by the number of introduced ex-

planatory variables into the model, which might either improve or harm its value. In order

to achieve an optimal number of explanatory variables for the prediction model, an asso-

ciated statistical measure named, Adjusted R-Squared is presented, the value of which is

always less than or equal to the R-Squared value. Growth in the value of this measure

is achieved only if the introduced explanatory variable(s) into the model improves the R-

Squared value more than what is expected. In this way, the achieved prediction model

provides the best functionality without having redundant terms. The formulation for the

adjusted R-Squared is defined as:

Adjusted R− Squared : R̄2 = 1−
SSres
SStot

. (N − 1)

N − P (3.18)

Where, the parameter P is the number of regressors in the model (including the con-

stant term). Other regression-based techniques have a lot in common with the simple linear

regression technique, except some differences in the data prediction mechanism.

3.3.5 Multiple Linear Regression (MLR)

This technique is very similar to the SLR technique with the difference that the response

variable is a function of more than one explanatory variables. The prediction model for this

technique is shown in Equation 3.19. In this equation, Y represents the response variable,

Xi represents the ith explanatory variable, and other parameters are coefficients [46].

Y = α+ β1.X1 + β2.X2 + β3.X3 + · · · (3.19)

3.3.6 Non-Linear Regression (NLR)

According to this technique, the prediction model for the response data is a non-linear

combination of the model parameters (a.k.a. the coefficients) and one or more explana-
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tory variables. The fitted line is achieved by a method of successive approximations (for

example, numerical optimization algorithms). Y = f(X,β) shows a general representation

of the prediction model, which is a non-linear function of the coefficients and explanatory

variable(s) [47]. Meanwhile, it is possible to suitably linearize some non-linear prediction

models (for example, exponential or logarithmic functions) by applying different mathemat-

ical methods to them.

3.3.7 Robust Regression

The common regression-based techniques can provide accurate results when their un-

derlying assumptions are satisfied. Dissatisfaction of these assumptions (for example, when

the error data in a linear regression are not normally distributed) causes insensibility of the

techniques to the outliers (i.e. the data points that do not follow the pattern of the rest),

which leads to misleading results. In order to overcome this problem, the robust versions

of the techniques are used [48]. These modified techniques use a process called Iteratively

Reweighted Least Squares to resist against the outliers. This process works based on using

the weighted data points in an iterative process. According to this approach, all of the data

points are weighted equally using a weighting function such as Bisquare, Huber, etc. From

the next iteration, the data points that were located farther from the other data points in

previous iteration are given lower weight values. This iterative process continues until the

best coefficients for predicting the response data are achieved [49].

3.3.8 General Linear Model (GLM)

In most of the common regression-based techniques, the default assumptions for the

error terms are: (a) they are uncorrelated across measurements, and (b) they follow a normal

(a.k.a. Gaussian) distribution (either one-dimensional or multi-dimensional depending on

the number of error terms). The Gaussian distribution is considered for the response data

conventionally. However, there exist some cases that both the response data and error data

do not follow a normal distribution. In order to tackle this issue, general linear model

(GLM) technique is used that relaxes the assumptions for the response and error data by
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using other data distribution models such as Inverse Gaussian (IG), Poisson, and Gamma

distributions. The best distribution for the prediction model is the one that results in the

highest accuracy in predicting the response data with the lowest error.

Due to the fact that each type of distribution has a unique formula for calculating

the mean value (a.k.a. expected value), it is required to have a function for relating the

explanatory variables to the mean of the employed distribution. A function, f(.) that is used

for this purpose is called Link Function, which creates a mapping between the mean of the

response data (according to the chosen distribution) and the explanatory data. Meanwhile,

the model of this technique is in fact a generalization of the model of MLR technique. This

is due to the fact that there is a linear relationship between the response data and the

explanatory data. However, the possibility of entering multiple response variables along

with having various options for the response data distribution exists in this technique.

The formulations for the prediction model and link function are shown in Equations

3.20 and 3.21 respectively [50]. In these equations, Y represents the response variable(s), X

represents the explanatory variable (s), U represents the error variable(s), and B represents

the coefficients. Also, the constant term of the model is included in the X parameter.

Y = X.B + U (3.20)

f(µY ) = X.B (3.21)

3.3.9 Smoothing Spline

Smoothing spline is a dual-purpose technique since it can be used either as a predictive

model for the response data or as a filter for the output signal of a system in order to smooth

it and eliminate the noise. When using this technique as a predictive model, a spline function

is employed to fit a smooth curve to the response data using the explanatory data. The

filtering process is accomplished in a similar way. The desired spline function is obtained by

solving the minimization problem that is shown in Equation 3.22. In this equation, y is the
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response variable, x is the explanatory variable, S(.) is the spline function, w is the weight

that is equal to 1 for all of the data points by default, and ρ is the smoothing parameter [51].

ρ.

N∑
i=1

wi.(yi − S(xi))
2 + (1− ρ).

∫ xn

x1

(
d2S

dx2
)2.dx (3.22)

If the value of smoothing parameter is not specified, it is selected automatically near

the value of interest that is calculated by Equation 3.23. The parameter h in this equation

represents the average of distances between the data points.

V alue of Interest =
1

1 + h3

6

(3.23)

3.3.10 ARMA and ARMAX Modeling

Autoregressive Moving Average (ARMA) technique is used to understand the behavior

of a time-series of data (i.e. a stationary stochastic process) with the purpose of predict-

ing its future values. The ARMA model that is shown in Equation 3.24 consists of two

polynomials that are built by applying the autoregressive (AR) model and moving average

(MA) model to the previous values of the time-domain signal under study [52]. In fact,

this model is capable of predicting the future values of a signal with the knowledge of its

previous values solely.

ARMA(p, q) : Xt = c+ εt +

p∑
i=1

φi.Xt−i +

q∑
i=1

θi.εt−i (3.24)

In Equation 3.24, X is the time-domain signal, ε is the error data, c is the constant

term, p and q are the orders of AR and MA models respectively, and φ and θ are the model

parameters (a.k.a. coefficients) of AR and MA models respectively. The model error terms

are considered as a white noise signal that is sampled from a normal distribution with zero

mean value. These terms are independent and identically distributed random variables,

where each has the same probability distribution as the other ones and all are mutually

independent. After specifying the best values for the orders of the AR and MA models,
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the model parameters are calculated by minimizing the error data using the least squares

regression method.

Autoregressive Moving Average with Exogenous Inputs (ARMAX) technique is con-

sidered as the developed version of the ARMA technique. In this technique, an exogenous

input (X) model is employed along with the previously mentioned models in order to un-

derstand the behavior of the signal under investigation and predict its future values. The

formulation of ARMAX model is shown in Equation 3.25, in which d and η are the ex-

ogenous input signal and its associated coefficient(s) respectively, and b is the order of the

exogenous input model [52].

ARMAX(p, q, b) : Xt = c+ εt +

p∑
i=1

φi.Xt−i +

q∑
i=1

θi.εt−i +

b∑
i=0

ηi.dt−i (3.25)

3.3.11 Analysis of Residuals

Analysis of residuals is a powerful diagnosis tool that can be used for the following

purposes [53,54]: (a) validating the relationship between the response data and explanatory

data, and finding the sensitivity of a prediction model to each explanatory variable, (b)

checking the response data distribution, and (c) evaluating the response data dispersion.

So, it helps to understand the accuracy of a prediction model, provides intuition on how to

improve the model, and detects any violation of the underlying statistical assumptions (for

example, the incorrect shape of chosen distribution, the existence of outliers or any unusual

features).

For an ideal case, the magnitude of residuals should be small and there should not

be any pattern in their scatter plot (i.e. having noisy residuals data). This implies that

all of the required explanatory variables were found successfully and the response signal is

predicted with a good degree of accuracy. If any of the required explanatory variables is

missing, any of the underlying statistical assumptions in developing the regression model is

violated, and/or there is no correlation between the response data and explanatory data,

then it will result in a non-random pattern in the residuals scatter plot.
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3.3.12 Thermal System Modeling (TSM)

A thermal system operates based on storing and/or transferring the heat flux [55]. Heat

can flow between objects in three different mechanisms that are conduction, convection

(including mass transfer), and radiation. In conduction mechanism, the heat flows when

there is a temperature difference across an object or between objects. Convection occurs in

the fluids (for example, liquids and gases) when groups of molecules move through advection

or through diffusion or as a combination of both. Radiation is made by thermal motion

of the charged particles (for example, ions, electrons, and protons) due to electromagnetic

radiation. Thermal systems can be modeled with certain mathematical formulations that

are analogous to those of electrical circuits.

The fundamental elements in a thermal system are ambient temperature (which is

modeled as ground in electrical circuits), thermal resistance (in accordance with electrical

resistance), thermal capacitance (similar to electrical capacitance), heat source (similar

to current source), and external temperature (similar to supply voltage). There are four

components that determine the heat flow through an object: (a) the temperature difference

between two objects or between the inside and outside of an object, (b) the thickness of

the side of an object that the heat is passing through, (c) the object cross-sectional area,

and (d) the thermal conductivity (i.e. the ability to conduct heat) of the object material.

Using these parameters, two formulations can be defined for the system thermal resistance

that are presented in Equations 3.26 and 3.27.

Thermal Resistance (Rth) =
Object Thickness

Thermal Conductivity ×Object Area (
◦Kelvin

Watt
) (3.26)

QHigh−to−Low =
θHigh − θLow

Rth
(Watt) (3.27)

In Equation 3.27, Q is the heat flow, θHigh is the temperature of the warmer object,

θLow is the temperature of the colder object, and Rth is the thermal resistance. Thermal
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capacitance is defined as an indication for the amount of heat that an object can store.

According to this definition, there is either increase or decrease in the internal temperature

of an object when the heat flows in or out.

Based on Equation 3.28 that is used to calculate the thermal capacitance of an object,

m is the object mass and Cth is its specific heat (i.e. the required amount of heat per unit

mass to raise the temperature of an object by one degree Celsius).

Thermal Capacitance (Cth) = m× Cp (3.28)

The generation of a certain amount of heat (or power) in a system is accomplished by

a heat source that can operate in either constant or variable modes with respect to time.

The generated heat can be calculated by different mathematical models. The formulation

that is used in this study to calculate the heat flux is shown in Equation 3.29. In this

equation, ∆θ is the difference between the final internal temperature (θFinal) and initial

internal temperature (θInitial) of an object, and ∆t is the time that the object goes through

the heating or cooling process.

Q(θFinal−θInitial) =
m× Cp ×∆θ

∆t
(3.29)

Finally, it should be stated that any thermal system can be mathematically modeled

using the Energy Balance theory. Based on this theory, at any given node (i.e. location) in

the system, the entered heat into the node is equal to the emitted heat from the node plus

the stored heat inside the node.
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3.4 Results and Discussion

3.4.1 Overview of Prediction Models

In this section, the results of the prediction models that are constructed using the stud-

ied data preparation concepts and data modeling techniques are presented and discussed.

Analyzing the results provides an understanding of the device’s signal behavior and its de-

pendency on the environmental and circuit-related parameters. It will help in developing an

efficient tracking system capable of predicting the device behavior under different conditions

and over time. The created prediction models are divided into two categories: (a) Basic

Models that are constructed using a single data modeling technique; and (b) Combined

Models that are built by leveraging two different data modeling techniques. The perfor-

mance of each of these models is evaluated by studying the minimum, mean, median, and

maximum of the R-Squared values that are achieved by running the model on the respective

data (for example, the matched filter output, device’s surrounding temperature, et cetera),

acquired from the five Ethernet cards under test.

Tables 3.1-3.5 show the results of running the developed basic and combined models

on the data acquired from the Ethernet cards. The main parameters that are present in

most of these models are MFO, Temperature, IC’s Supply Voltage, Bus’s Supply Voltage,

and Charging/Discharging Trend Data. These parameters correspond to the matched filter

output, the surrounding temperature, the supplied voltage to the IC mounted on the device’s

circuit, the supplied voltage to the circuit general bus, and the calculated data using the

charging/discharging trend formulation respectively. The prediction models are designed

with the purpose of discovering the relationship between two or more parameters that can

be employed in the tracking system. During the model development process, with respect

to the purpose that is followed, different statistical methods (such as normalization, mean of

absolute value, and moving average) are applied to the parameters data in order to manifest

their behavior more accurately.

Many of these models are applied to multiple datasets in order to guarantee the con-

sistency of their performance results. In the “Dataset(s)” column of Tables 3.1-3.5, the
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sign “+” means concatenation of the datasets and the word “and” means the datasets are

used in the same data matrix (i.e. they have their own positions in the matrix of data

and aren’t concatenated). The sign “∼” in the “Model” column is used to represent the

similarity between the left side variable (i.e. response variable) and right side variable(s)

(i.e. explanatory variable(s)).

The utilized data prediction techniques in the basic and combined models are: sim-

ple linear regression for Models 1-19, multiple linear regression for Models 20-25, general

linear model for Model 26, non-linear regression for Model 27, ARMA modeling in Model

28, ARMAX modeling in Models 29-30, correlation analysis in Model 31, autocorrelation

analysis in Model 32, cross correlation analysis in Model 33, the combination of smoothing

spline method and simple linear regression in Models 34-35, the combination of multiple

linear regression and non-linear regression in Models 36-49, and the combination of thermal

system modeling and simple linear regression in Model 50.
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3.4.2 Basic Models

Regarding the SLR-based models, the purpose of building Models 1-6, 8, 11, 12, and

16-19 is to find the relationship between the device’s record (i.e. in terms of its noisy and

steady-state parts and the related matched filter output) and its surrounding temperature.

Figure 3.1 shows the achieved scatter plot from running Model 1 on the acquired data from

the m5c2 card in the second test run of Setup 3.
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Fig. 3.1: A scatter plot for Model 1.

For Models 7, 9, and 13-15, the goal is to find the correlation between the matched

filter output and the IC’s supply voltage. Also, finding the connection between the matched

filter output and the Bus’s supply voltage is the objective in Model 10. The Aligned

Synchronization Signals variable in Models 3 and 4 is referred to as the steady-state parts

of the records under test that are aligned before the matched filter is applied to them. The

window size for moving average function is 100 in Model 8 and it is 15 in Models 15-17.

Figure 3.2 shows the ability of this function to filter out the present fluctuations and noise

in the signal.
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Fig. 3.2: Filtering MFO signal using moving average function with a window size of 10.

The derivation function that is used in Model 16 is for manifesting the device’s signal

trend (a.k.a. the average signal). However, it increases the noise effects due to amplification

of the signal high frequency components. In order to tackle this issue, a filter (such as the

moving average function with large window size) is required to attenuate these unwanted

effects.

Models 18 and 19 are designed based on two different but related strategies: (a) there

might be a delay between the effects of the device’s surrounding temperature and its synchro-

nization signal. Therefore, it is assumed that there is a lag between sensing the temperature

and observing its effect on the matched filter output. This delay is implemented in Model

18 by shifting the matched filter output data vector to the right and the temperature data

vector to the left; and (b) the process of collecting records might be accomplished with a

lower speed than the temperature data acquisition. In other words, it is assumed that the

corresponding temperature of the device’s synchronization signal is seen with a delay due

to the possible difference between the operating speeds of the oscilloscope and the DAQ

device. This strategy is implemented in Model 19 by shifting the matched filter output data

vector to the left and the temperature data vector to the right. The shift operation (either

left or right) in each of these cases is run fifteen times.

Once the amount of linear correlation between each pair of parameters is found, it

is required to study other assumptions in creating the prediction models: (a) more than

one explanatory variables, and (b) different types of connecting functions. Due to the fact
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that all of the characteristics of the matched filter output cannot be predicted by using the

device’s surrounding temperature solely, the Model 20 was designed, for which the device’s

matched filter output is predicted by using its corresponding temperature data along with

the matched filter output of the same card from the previous dataset. Model 25 was tested

in both non-robust and robust modes in order to investigate the influence of outliers on the

amplitude of residuals. Moreover, the outcome of examining different distributions for the

response data is shown in the results of Model 26.

The ARMA regression technique is incorporated in Model 28, which has two stages of

training and testing for data prediction. In the training stage, the values of the p and q

orders are in the range of {1:5,10,20,50,100,110}. Once the model is run on a dataset, the

desired values of orders in predicting the MFO signal of each Ethernet card are calculated.

These values are used to create the Outcome Range that is used in the testing stage. In

this stage, the data prediction process is run on another dataset. Models 29 and 30 were

created using ARMAX modeling technique. The difference between these two models is in

the used range in the training stage. In Model 29, the employed range is similar to the one

used in Model 28. While in Model 30, the leveraged range of values for the orders is {1:10}.

3.4.3 Combined Models

In order to construct a more accurate model for prediction of the device behavior, mul-

tiple data modeling techniques can be combined. In fact, each of the leveraged techniques

in creation of a prediction model can be helpful in understanding a portion of the device’s

signal. The goal in designing Models 34 and 35 was to eliminate the disturbing fluctuations

and noise effects that exist in the matched filter output signal in order to achieve a smoother

data to be predicted by the device’s surrounding temperature. The difference between these

two models is in the mode of robust simple linear regression technique, which determines

the method for residuals calculation. The robust mode used in Model 34 is Bisquare Weight,

while it is Least Absolute Residuals (LAR) in Model 35. The residuals are calculated in

bisquare weight mode by minimization of a weighted sum of squares (i.e. the weight given

to each data point depends on how far the point is located from the fitted line). In other
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words, the closer the point is to the fitted line, the larger the weight it gets. In LAR mode,

a line or curve is determined that minimizes the absolute difference of the residuals rather

than the squares difference (which is used in the regular mode).

The parameter “Fitted MFO” in Models 40 and 41 represents the predicted matched

filter output data that are calculated using non-linear regression technique. In the NLR

model, the explanatory variable is time and the function is the formulation of the circuit

charging/discharging trend. The moving average function implemented in Models 42-45 has

the window size of 25 for the related parameters. The technique of analyzing the residuals

that is used in Models 46-49 consists of two stages in this study. In stage 1, the matched

filter output data are predicted by either multiple linear regression technique (using the de-

vice’s surrounding temperature and IC’s supply voltage) or non-linear regression technique

(using the charging/discharging trend data) and the respective residuals are calculated. The

residual parameter from stage 1 has the role of response variable in the second stage, and is

predicted by parameter(s) other than the one(s) used in the previous stage. In other words,

if the matched filter output was predicted by using the charging/discharging trend data,

then the stage 1’s residual parameter is predicted using the device’s surrounding tempera-

ture and the IC’s supply voltage, and vice versa. By analyzing the achieved residuals from

both stages, we will be able to determine the priority and importance of each explanatory

parameter in getting a high R-Squared value.

According to the strategy of Model 50, the device’s signal and consequently its matched

filter output can be affected directly by the device’s internal temperature rather than the

surrounding temperature, despite the correlation between them. Therefore, the thermal

system modeling technique is utilized in order to create a model for calculating the device’s

internal temperature, which is used as the explanatory variable for predicting the matched

filter output. The employed model [56] for this purpose is shown in Figure 3.3, in which

Qin is the heat source, θint is the device’s internal temperature, θext is the device’s external

temperature that is time-variant, Rth is the thermal resistance, and Cth is the thermal

capacitance.
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Qin Cth

+
−θext(t)

Rth

θint

Fig. 3.3: The created thermal system model.

Generally, the two main materials in manufacture of every IC are silicon and plastic

(i.e. for packaging). Consequently, determination of the IC’s thermal conductivity and

specific heat was accomplished by several examinations according to the values of these two

parameters for the materials. At last, it should be stated that the IC’s initial temperature

parameter that is present in the respective equations is measured using a thermometer.

Based on analyzing the results of all presented models, it can be interpreted that the

surrounding temperature of the device has the highest priority among all of the discussed

parameters for predicting the matched filter output. The reason for this correlation is

believed to be owing to the temperature role, which is an intrusion into the device’s signal.

In other words, there is a base behavior in the device’s signal over time (i.e. either charging

or discharging trend according to the circuit activities) and the temperature tries to change

this behavior. On the other side, the device has a resistive manner in confrontation with

this intrusion, but its strength is not sufficient. Due to the fact that the effects of noise

or any other environmental interferences can be present in the actual data of the matched

filter output and the device’s surrounding temperature, it is clear that the trends of these

two parameters should be considered for the tracking system development. In this regard,
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a comparative analysis is run on the actual MFO and the predicted MFOs by Models 35,

36, 1, and 7, which is shown in Figure 3.4. The used data for this analysis are from the

m5c2 card in the dataset 6.
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Fig. 3.4: A comparison between the actual MFO and four predicted MFOs.
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Table 3.1: The results of basic models - (1).
!

Number Model Dataset(s) 
R-Squared (%) 

Minimum Mean Median Maximum 

1 MFO ~ Temperature 

1 3.4274 15.3892 8.8275 38.984 

2 1.1636 6.62916 6.8874 10.587 

3 90.879 92.834 93.022 95.217 

4 87.102 91.2528 92.014 93.684 

5 0.0234 8.48116 10.109 18.141 

6 0.0579 25.3906 3.3027 65.954 

7 4.412 17.157 13.711 34.651 

8 8.9329 25.4824 13.018 43.33 

1 + 2 0.4533 3.35042 1.2408 9.9828 

1 + 2 + 3 92.574 94.4912 93.8 97.145 

1 + 2 + 5 + 6 13.704 36.5778 30.972 75.978 

2 Normalized MFO ~ Temperature 1 0.0594 0.1544 0.0749 0.303 

3 Euclidean Norm of Aligned Synch. Signals ~ Temperature 1 3.9106 16.3136 10.853 41.336 

4 MFO ~ Euclidean Norm of Aligned Synch. Signals 1 95.434 97.064 96.364 99.054 

5 Mean of Absolute Value(Aligned Synch. Signals) ~ Temperature 
1 3.5305 15.9571 10.411 40.58 

2 1.3247 6.7344 7.3856 11.004 

6 Mean of Absolute Value(MFO) ~ Temperature 
1 3.5305 15.9571 10.411 40.58 

2 1.3247 6.7344 7.3856 11.004 

7 MFO ~ IC’s Supply Voltage 

5 0.0103 2.6065 0.6453 7.5458 

6 0.1295 0.8734 0.4940 2.5094 

7 2.2333 9.0122 5.9355 18.549 

8 0.4211 4.22734 4.2131 8.9731 

8 Moving Average(MFO) ~ Moving Average(Temperature) 
1 10.418 44.6944 41.022 83.481 

2 12.084 38.7274 38.222 55.502 

9 [Mean(MFO of Card 1);Mean(MFO of Card 2);…] ~ 
[Mean(IC’s Voltage of Card 1);Mean(IC’s Voltage of Card 2);…] 

1 and 2 3.3112 

1 + 2 4.8446 

!
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Table 3.2: The results of basic models - (2).
!

Number Model Dataset(s) 
R-Squared (%) 

Minimum Mean Median Maximum 

10 MFO ~ Bus’s Supply Voltage 

5 0.0182 2.40126 1.7701 7.2353 

6 0.39588 3.7495 2.7953 9.6343 

7 1.4013 8.48874 7.6861 16.228 

8 0.09612 0.582342 0.1971 1.9846 

11 MFO ~ Mean(Record’s Noisy Part) 
1 0.016715 1.30865 0.30126 5.6557 

2 ~ 0 0.0274 0.03315 0.053 

12 MFO ~ Standard Deviation(Record’s Noisy Part) 
1 ~ 0 0.065 0.04541 0.15117 

2 ~ 0 0.057113 0.03134 0.19821 

13 MFO ~ Temperature * IC’s Supply Voltage 
5 0.2596 10.2745 11.083 18.749 

6 0.0644 25.3003 5.85 65.431 

14 MFO ~ Temperature / IC’s Supply Voltage 
5 0.2797 10.4249 11.267 18.842 

6 0.05714 25.349 5.7639 65.541 

15 Moving Average(MFO) ~ Moving Average(IC’s Supply Voltage) 5 + 6 5.6187 58.1059 70.071 93.469 

16 MFO ~ Derivation(Moving Average(Temperature)) 
1 0.12876 0.32914 0.36645 0.48856 

2 0.011492 0.069433 0.057447 0.12364 

17 MFO ~ Moving Average(Temperature) 
1 3.3137 15.993 10.128 39.907 

2 0.98628 5.30138 8.5805 11.382 

18 Right Shift(MFO) ~ Left Shift(Temperature) 
1 1.2923 9.8848 4.3121 32.118 

2 0.414 3.76786 3.4852 7.1716 

19 Left Shift(MFO) ~ Right Shift(Temperature) 
1 2.1177 11.9229 6.3057 33.751 

2 0.4575 5.38282 5.8108 9.0241 

20 MFO(Now) ~ Temperature(Now) + MFO(Old) 
7 4.45 19.5344 15.214 42.98 

8 8.451 25.1526 19.144 43.012 

21 MFO ~ Moving Average(Temperature) + ... 
Derivation(Moving Average(Temperature)) 

1 3.3343 16.165 10.406 40.07 

2 1.0915 7.59322 8.5865 11.418 

!
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Table 3.3: The results of basic models - (3).
!

Number Model Dataset(s) 
R-Squared (%) or Analysis Outcome 

Minimum Mean Median Maximum 

22 MFO ~ Temperature + Euclidean Norm of Aligned Synch. Signals 1 95.502 97.0898 96.551 99.055 

23 MFO ~ Temperature + IC’s Supply Voltage 

5 6.0535 13.3755 13.741 18.831 

6 0.1898 25.8041 5.8978 65.628 

5 + 6 47.142 74.4048 81.225 93.782 

24 MFO ~ Temperature + Bus’s Supply Voltage 

5 2.2466 12.8571 15.147 18.801 

6 3.0415 27.5374 10.6 65.85 

5 + 6 47.106 68.6494 74.327 85.441 

25 

MFO ~ Temperature + IC’s Supply Voltage + ... 
Mean(Record’s Noisy Part) , Non-Robust Mode 5 + 6 53.368 76.9688 81.71 93.544 

MFO ~ Temperature + IC’s Supply Voltage + ... 
Standard Deviation(Record’s Noisy Part) , Non-Robust Mode 5 + 6 50.192 74.8496 81.309 93.534 

MFO ~ Temperature + IC’s Supply Voltage + ... 
Mean(Record’s Noisy Part) , Robust Mode 5 + 6 53.361 76.6564 81.592 92.351 

MFO ~ Temperature + IC’s Supply Voltage + ... 
Standard Deviation(Record’s Noisy Part) , Robust Mode 5 + 6 50.17 74.5388 81.188 92.342 

26 MFO ~ Temperature 
(Distributions: Gamma, Inverse Gaussian (IG), Normal, and Poisson) 1 3.4267 

(IG) 15.2382 8.8272 38.984 
(Normal) 

27 MFO ~ a * exp(b/Temperature) 
1 3.1115 14.8535 8.762 37.776 

2 1.0231 6.25314 6.6943 10.232 

28 

Main Signal = MFO 
Mode: Training , Range 1 7 1.4432 7.91226 6.2235 15.0119 

Main Signal = MFO 
Mode: Testing , Outcome Range 8 3.6987 8.37136 5.2954 19.3301 

29 

Main Signal = MFO , Exogenous Input = Temperature 
Mode: Training , Range 1 7 4.5156 14.2828 15.0345 25.7814 

Main Signal = MFO , Exogenous Input = Temperature 
Mode: Training, Outcome Range 8 6.9882 16.0243 11.1678 26.6816 

30 
Main Signal = MFO , Exogenous Input = Temperature 

 
Mode: Training , Range 2 

7 3.5157 13.5641 14.1118 25.1073 

8 6.1626 15.1022 10.8614 26.9627 

31 Correlation(MFO,Temperature) 
1 0.18513 0.36321 0.30262 0.62437 

2 0.10787 0.24616 0.26244 0.32537 

32 Autocorrelation(Residuals = Actual MFO – Predicted MFO) 
1 

No deterministic and/or periodic pattern can be seen 
in the results of all of the Ethernet cards. 

2 

33 Cross Correlation(MFO,Temperature) 
1 

For all of the Ethernet cards, maximum output of the 
function is achieved at a lag of zero. 

2 
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Table 3.4: The results of combined models - (1).
 

Number Model Dataset(s) 
R-Squared (%) 

Minimum Mean Median Maximum 

34 
Spline(MFO) ~ Temperature 

 
Robust Mode = Bisquare Weights 

1 32.361 47.418 45.375 72.156 

2 17.119 33.0804 33.848 42.555 

5 22.979 44.2766 46.595 64.093 

6 4.8476 54.4275 73.553 85.14 

35 
Spline(MFO) ~ Temperature 

 
Robust Mode = Least Absolute Residuals 

1 72.952 91.0634 95.524 98.189 

2 89.919 94.001 93.705 97.542 

5 90.418 96.1212 97.124 98.252 

6 -1.8579 63.4162 72.19 98.999 

36 MFO ~ Temperature + IC’s Supply Voltage 
+ Charging Trend Data 

5 6.1389 24.7638 19.951 41.435 

6 52.003 70.962 68.762 95.019 

37 MFO ~ Temperature + IC’s Supply Voltage 
+ Discharging Trend Data 

5 26.166 35.7736 35.972 49.591 

6 53.497 70.5032 72.72 81.233 

38 
MFO ~ Temperature + Bus’s Supply Voltage 

+ Charging Trend Data 
5 2.5571 24.0206 19.942 41.749 

6 52.086 70.9838 68.604 95.169 

39 
MFO ~ Temperature + Bus’s Supply Voltage 

+ Discharging Trend Data 
5 15.175 30.5358 31.466 49.962 

6 52.371 69.4022 72.169 81.311 

40 
MFO ~ Temperature + IC’s Supply Voltage 
+ Fitted MFO (based on Charging Trend) 

5 7.5232 18.2152 20.804 24.72 

6 0.56222 35.827 49.723 66.475 

41 
MFO ~ Temperature + IC’s Supply Voltage 

+ Fitted MFO (based on Discharging Trend) 
5 11.022 26.3378 21.992 43.5 

6 47.583 70.4312 71.97 92.527 

42 Moving Average(MFO) ~ Moving Average(Temperature) + ... 
Moving Average(Charging Trend Data) 

7 24.039 41.9878 41.631 66.89 

8 39.807 59.3744 64.439 83.436 

43 Moving Average(MFO) ~ Moving Average(Temperature) + ... 
Moving Average(Discharging Trend Data) 

7 24.566 55.4722 57.896 83.199 

8 36.072 59.1124 64.391 83.057 
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Table 3.5: The results of combined models - (2).
 

Number Model Dataset(s) 

R-Squared (%) 

Minimum Mean Median Maximum 

44 
Moving Average(MFO) ~ Moving Average(Temperature) + ... 

Moving Average(Charging Trend Data) + ... 
Moving Average(IC’s Supply Voltage) 

7 36.331 56.2328 64.824 71.472 

8 39.254 68.0928 76.556 86.196 

45 
Moving Average(MFO) ~ Moving Average(Temperature) + ... 

Moving Average(Discharging Trend Data) + ... 
Moving Average(IC’s Supply Voltage) 

7 43.055 61.9466 67.336 84.66 

8 39.193 61.2096 67.181 84.701 

46 

Analysis of Residuals – Version 1 
Stage 1: Using Temperature and 

IC’s Supply Voltage 

5 6.0535 13.3755 13.741 18.831 

6 0.18977 25.8041 5.8978 65.628 

Analysis of Residuals – Version 1 
Stage 2: Using Charging Trend Data 

5 22.846 30.6766 28.24 43.656 

6 33.495 55.6848 52.621 77.981 

47 

Analysis of Residuals – Version 1 
Stage 1: Using Temperature and 

IC’s Supply Voltage 

5 6.0535 13.3755 13.741 18.831 

6 0.18977 25.8041 5.8978 65.628 

Analysis of Residuals – Version 1 
Stage 2: Using Discharging Trend Data 

5 9.9943 25.0849 21.887 40.051 

6 27.85 63.4444 70.951 82.001 

48 

Analysis of Residuals – Version 2 
Stage 1: Using Charging Trend Data 

5 2.1532 6.90174 2.6891 17.378 

6 0.38889 11.88 4.1364 41.861 

Analysis of Residuals – Version 2 
Stage 2: Using Temperature and 

IC’s Supply Voltage 

5 7.3632 18.0546 20.693 24.277 

6 0.56209 34.8793 48.781 66.314 

49 

Analysis of Residuals – Version 2 
Stage 1: Using Discharging Trend Data 

5 1.1326 13.8854 5.3353 37.365 

6 25.989 53.4564 41.514 92.522 

Analysis of Residuals – Version 2 
Stage 2: Using Temperature and 

IC’s Supply Voltage 

5 11.015 26.214 21.877 43.222 

6 44.939 67.2844 66.782 92.527 

50 MFO ~ Device’s Internal Temperature 
7 4.4623 17.1825 13.754 34.713 

8 8.958 25.5718 19.633 43.565 
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Chapter 4

Security Evaluation of PLI Systems

4.1 Overview

Generation of a forged signal using an arbitrary waveform generator (AWG) – an elec-

tronic equipment that produces arbitrarily shaped signals – is one of the most effective

techniques in attacking the PLI systems [3]. Evaluating the defending strength and weak-

nesses of a PLI system and, finding the required AWGs for defeating it can be accomplished

using three different strategies: (a) constructing the models of all of the available AWGs in

the market and attacking the PLI system by employing them; (b) accomplishing comparison

between multiple PLI systems, and finding the one that can be crushed in confrontation

with the most expensive AWG; and (c) developing and solving a cost minimization problem

for the purpose of finding the most cost-effective AWG (i.e. the AWG that has the smallest

run-time). The configuration and performance parameters (for example, sampling rate and

resolution) of an AWG determine the characteristics and behavior of the generated forged

signal.

4.2 Architecture of Attack

According to the general strategy of defeating a PLI system, an attacker tries to re-

produce those portions of a device’s signal that are used for identification as accurate as

possible. This process can be implemented in two different forms: (a) Feature Replay, in

which the specific features of the trustworthy signals that are used for identification by the

PLI system are sent to it repeatedly; and (b) Signal Replay, in which the attacker acquires

a sampled version of the device’s signal and tries to generate highly similar versions of those

portions of it that are used for identification (i.e. synchronization portion in here) using an

AWG. Figure 4.1 shows an architecture that leverages the second form in order to attack
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the targeted PLI system.

Device 

Sampler AWG 

Sampler 

Attacker!

PLI 
System!

Phase 1 Path Phase 2 Path 

Attacker Intervention Point 

Fig. 4.1: The architecture of attack.

This attack’s architecture consists of two main phases. Phase 1: the device’s signal is

captured and sampled for both the attacker and PLI system using the same samplers (i.e.

with the same resolution and sampling rate). In this way, the attacker and PLI system will

have the same sampled version of the signal for processing. Additionally, having a sampler

for the attacker with higher sampling rate and resolution compare to either the PLI system’s

sampler or the AWG’s built-in sampler is not advantageous. This is due to the fact that

the attacker’s signal will be down-sampled again for the identification process and it will

not provide any new information for the AWG function. Also, it is useful in the applied

implementation of this architecture because of requiring less number of oscilloscopes.

Phase 2: the sampled version of the device’s signal is transmitted to the AWG to create

a forged signal that can be accepted by the PLI system. The attacker intervention point in

this architecture acts as a leaker of the trustworthy information in the first phase, and as

an exporter of the false information in the second phase. Meanwhile, transmission of data

between the architecture’ components is accomplished through a loss-less channel. This is

the ideal case for the attacker since modeling the channel effects is not needed.
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4.3 Arbitrary Waveform Generator (AWG) Configuration

Generally, the structure of an arbitrary waveform generator (AWG) consists of three

main components that are source memory, digital-to-analog converter (DAC), and low-pass

filter (LPF). According to the AWG function, the source memory renders the binary values

of the sampled version of a waveform (known as Codes) to the DAC in order to generate a

stepped analog waveform with certain characteristics, which is then smoothed by the low-

pass filter. For simplification, evaluating the AWG’s output quality is limited to the DAC

performance, and other components are considered to be in their ideal conditions.

At high frequencies, the dynamic non-linear behavior (i.e. the time-variant and non-

linear characteristics) of the DAC’s output is dominant, and consequently only the dynamic

parameters of this component are considered for performance analysis. The most impor-

tant parameters that can be selected in this regard are Settling Time, Resolution, Total

Harmonic Distortion (THD), and Signal-to-Noise Ratio (SNR). Finally, the resemblance

of the generated forged signal to the device’s signal, which is an indication of its attack-

ing strength, is checked by sending it to the PLI system for extracting its features and

comparing them with the reference feature set.

4.3.1 AWG Performance Parameters

The most important parameters that can be selected for performance analysis of an

AWG are discussed in the following [3]:

Settling Time: It is the required amount of time for a system’s output to reach

its steady state. This parameter is used in AWG’s built-in sampler(s) and low-pass filter

(a.k.a. reconstruction filter) of an arbitrary waveform generator. It specifies the maximum

allowable sampling rate value. The sampling rate should be less than or equal to the

inverse of the settling time. For an ideal case, the settling time should be very low that

results in getting a pulse waveform nearly. In this way, there is no need to focus on the

transient part of the DAC’s output signal. Usually, the sampled version of a signal becomes

indistinguishable based on the design of a sampler. This behavior is caused by the Aliasing
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phenomenon [57], which can be prevented by leveraging an anti-aliasing filter. This filter

provides a trade-off between the aliasing effect and signal bandwidth. In fact, the signal is

band-limited by the filter in order to attenuate this effect. The low-pass filter component

of the AWG runs this function on the DAC’s output.

Resolution: This parameter is defined as the number of discrete values that a sampler

can produce over the range of values of an analog signal. Due to the differences between

the AWG’s built-in sampler(s) and the identical samplers of the attacker and PLI system,

the data points of the generated forged signal will not be exactly equivalent to the discrete

voltage levels of the initial sampled signal. This problem is solved by using a discretizer,

which rounds each data point of the test signal to the nearest voltage level of the desired

signal.

Total Harmonic Distortion: In general, distortion is defined as the unwanted al-

terations in the original shape and/or other characteristics of a signal or waveform. Total

harmonic distortion (THD) parameter is a measure for the amount of existing harmonic

distortion in a signal. This parameter is defined as the sum of the powers of all harmonic

components relative to the power of the fundamental frequency. The amount of existing dis-

tortion in the DAC’s output depends on its architecture as well as its non-ideal constituent

parts.

Signal-to-Noise Ratio: This parameter is a measure for comparing the level of a

desired signal to the level of background noise (i.e. the existing noise in the actual signal)

and is defined as the ratio of the signal power to the noise power. Due to various possibilities

for modeling noise, a basic model named additive white Gaussian noise (AWGN) can be

utilized for the performance analysis. The SNR parameter in this case is described as the

ratio of the distorted signal power to the AWGN signal power. So, a noise signal having

the same length as the distorted signal is created according to the specified SNR value and

is added to it in order to obtain a signal that is both distorted and noisy.



60

4.4 Simulation Framework for Security Evaluation

A simulation framework regarding the generation of a forged signal and its identity

assessment by a PLI system is presented in here. This simulation framework consists of

two major parts: one is of them is for emulation of the AWG’s function and the other

one is for accomplishment of the PLI system role. Regarding the first part, a sampled

version of a trustworthy device’s analog signal is acquired in the beginning. The achieved

discrete signal is directly sent to the discretizer if its sampler has the same sampling rate

as the AWG’s sampler. Otherwise, it is down-sampled before sending it for discretizing. In

this stage of processing the signal, it is discretized according to the AWG’s resolution. In

order to complete this part of the simulation framework, the distortion model (based on the

found value for the coefficient M), the up-sampling function (if the signal was down-sampled

previously because of the AWG’s sampler), the reconstruction filter, and the noise model

are applied to the signal in order.

There are three reasons behind having this order: (a) if the signal was down-sampled

previously, it needs to be up-sampled for having the same number of data points as the

original sampled version of the device’s signal; (b) if the distortion model is not applied

to the down-sampled signal, then the high frequency distortion components are introduced

to the signal that are not desirable; and (c) it is a requisite to apply the noise model to

the smoothed signal; otherwise, its major effects would be filtered by the reconstruction

filter. Once the forged signal is constructed, it is sent to the PLI system part of the

simulation framework. In this part, the signal is discretized according to the resolution of

PLI system’s sampler before it is dispatched to feature extraction and comparison with the

reference signal.
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4.5 Results and Discussion

The practical implementation of the leveraged PLI system security evaluation is pre-

sented in this section. It is accomplished according to the simulation framework with the

difference that the distortion and noise injection parts are ignored. In this implementation,

a Tektronix AFG 3252 with the sampling rate of up to 2.0 Giga-Samples/Second and reso-

lution of 14 bits is used as the AWG in order to generate the forged versions of the records

of 26 Ethernet cards that are acquired via a Tektronix DPO 7254C Digital Phosphor Os-

cilloscope at 40.0 Giga-Samples/Second rate in an experimental setup similar to Setup 1,

which was explained in chapter 2.

In this experiment, the records of the devices are detected based on a positive slope-

based threshold and each has the length of 4 million data points. Also, the information of

the used Ethernet cards that are from the D-Link (i.e. model 4), Genica (i.e. model 5), and

Netronix (i.e. model 6) manufacturers are presented in Tables 2.2 and 4.1. Once the forged

version of an original record is generated, it is observed by the oscilloscope at 40.0 Giga-

Samples/Second rate and has the length of 500 thousand data points. Due to the fact that

an original record has a different length than its corresponding forged one, they are aligned

before the comparison analysis is accomplished on them. Meanwhile, even with ignoring

the noise injection part of the simulation framework, a small amount of environmental and

equipment-related noise is still present in the generated forged record.
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Table 4.1: The information of Ethernet cards - (2).

Identifier MAC Address Serial

m4c1 00:40:05:34:a0:31 B229237077076
m4c2 00:40:05:36:01:15 B229237077139
m4c3 00:40:05:36:01:19 B229237077140
m4c4 00:40:05:35:75:40 B229237077075
m4c5 00:40:05:34:a0:30 B229237077074
m4c6 00:40:05:36:01:1a B229237077133

m5c6 00:00:e8:12:61:47 DB0211105364
m5c8 00:00:e8:12:c4:a0 DB0211105317
m5c9 00:00:e8:12:61:09 DB0211105326
m5c10 00:00:e8:12:32:4a DB0211105404
m5c11 00:00:e8:12:65:3e DB0211105394

m6c1 00:08:54:0c:37:5f 122901133CF05938
m6c2 00:08:54:0c:37:13 122901133CF05997
m6c3 00:08:54:0c:37:4c 122901133CF05948
m6c4 00:08:54:0c:37:42 122901133CF05949
m6c5 00:08:54:0c:37:10 122901133CF06000
m6c6 00:08:54:0c:37:55 122901133CF05939
m6c7 00:08:54:0c:37:54 122901133CF05940
m6c8 00:08:54:0c:37:0f 122901133CF05999
m6c9 00:08:54:0c:4c:bf 122901133CF06650
m6c10 00:08:54:0c:37:4d 122901133CF05947

Among all of the collected records (10,000) for each device, 25 of them are selected (i.e.

records 1001-1025) to be forged by the AFG and observed via the oscilloscope. The desired

resolution and sampling rate for the forged record are determined based on the AFG configu-

ration. In this regard, the maximum and minimum voltages of the AFG are set to 1.982 (V)

and -1.968 (V) respectively. Also, two different sampling rates, 1.0 Giga-Samples/Second

and 2.0 Giga-Samples/Second are considered in designing the forged records for ensuring

the PLI system performance in confronting this attack. After the generation of the forged

records for all of the Ethernet cards, they are aligned with their corresponding original ones.

Figure 4.2 shows one period of the synchronization signals of the correct and forged records

(i.e. 23th records) for the m5c8 card in the dataset of 1.0 GS/s rate. As it can be seen from

the figure, the aligned signals look alike and the difference between them at each data point

is relatively small.
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Fig. 4.2: One period of the correct and forged synchronization signals and their differences.

Next, the matched filter is applied to them in order to measure their differences. The

left and right plots in Figure 4.3 show the matched filter outputs of the correct records and

forged records for the m5c8 card. As it can be observed, there are noticeable differences

between the actual and forged matched filter outputs that can be detected by the PLI

system.

Experimentally, it has been realized that a test signal is rejected by the PLI system

if the difference between its matched filter output and the reference signal’s matched filter

output is greater than 1000. Also, the dispersion of the forged matched filter outputs is

relatively high. In fact, even if the mean of the forged matched filter outputs was close to

the desired value, they should lie within a confidence interval to be unrecognizable.
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Fig. 4.3: The generated forged records at 1.0 GS/s (left) and 2.0 GS/s (right) rates.

The calculated values for the specificity parameter in accomplishing overall identifica-

tion on the concatenation of the correct records and the generated forged records at 1.0

GS/s and 2.0 GS/s rates that are equal to 1.2% and 0.9%, show that the PLI system is not

consistently defeatable using the employed AFG. The results of the PLI system security

evaluation can be seen in Tables 4.2 and 4.3.
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Table 4.2: The PLI system performance results - Generation of records at 1.0 GS/s rate.

Tested Card Mean of MFO Di↵erence Standard Deviation of MFO Di↵erence
m4c1 2633.9328 243.5335
m4c2 2726.6279 258.9514
m4c3 2674.2843 285.7394
m4c4 2561.8614 239.8448
m4c5 2624.5832 286.6853
m4c6 2687.3948 369.6344
m5c1 2697.2938 374.1369
m5c2 2597.4423 405.5606
m5c3 2419.3011 406.8911
m5c5 2822.1364 371.5194
m5c6 2610.8769 381.1607
m5c7 2826.8154 388.2999
m5c8 1473.4116 630.917
m5c9 2887.1808 337.133
m5c10 2369.8088 453.0534
m5c11 1871.7038 375.2898
m6c1 3571.1074 351.2073
m6c2 3512.3917 360.4098
m6c3 3630.3118 331.6449
m6c4 3384.2011 265.0739
m6c5 3377.6708 295.8297
m6c6 3267.8174 269.5025
m6c7 3255.9447 241.17
m6c8 3331.2028 301.6552
m6c9 3532.2908 324.5976
m6c10 3450.3552 370.7902

Table 4.3: The PLI system performance results - Generation of records at 2.0 GS/s rate.

Tested Card Mean of MFO Di↵erence Standard Deviation of MFO Di↵erence
m4c1 2660.0017 279.4235
m4c2 2703.3737 308.4298
m4c3 2674.9187 370.7383
m4c4 2668.6305 243.3249
m4c5 2754.092 355.6048
m4c6 2814.6057 395.445
m5c1 2870.246 412.34
m5c2 2752.9736 362.2898
m5c3 2601.093 446.8713
m5c5 2928.349 467.2262
m5c6 2677.4696 468.7418
m5c7 2992.5637 486.4892
m5c8 1884.0954 474.6846
m5c9 2904.4833 433.7018
m5c10 2490.3316 395.3304
m5c11 2066.8977 294.4031
m6c1 3452.8653 423.1126
m6c2 3399.8502 403.6955
m6c3 3455.4232 404.0636
m6c4 3313.2883 377.0952
m6c5 3249.2712 330.8913
m6c6 3297.9493 368.935
m6c7 3146.379 299.4883
m6c8 3230.928 335.7953
m6c9 3384.926 413.9747
m6c10 3446.3713 474.6577
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Chapter 5

Conclusion

This research project embodies three main parts that are: (i) testing networking devices

according to their analog signals and understanding their behavior in different conditions

and over time; (ii) developing a tracking system for predicting the future behavior of the

devices; and (iii) attacking the leveraged testing method in the first part and evaluating

its security strength accordingly. In the first part, the signals of five different Ethernet

cards along with their associated environmental and circuit-related data (i.e. the surround-

ing temperature, the bus’s supply voltage, and the IC’s supply voltage) in four different

conditions are acquired for their behavioral analysis. Next, a PLI system is leveraged in

order to examine the possibility of identifying the devices in each condition. According

to the achieved results, a relationship can be observed between the device’s signal and its

surrounding temperature. Also, the temperature should not exceed a certain high threshold

value; otherwise, the signal will seem too different from the reference signal.

In the second part, the development of a tracking system capable of predicting the

future behavior of the devices is studied. In this regard, diverse models based on multiple

data preparation concepts and data modeling techniques are designed. The models use

the previously collected environmental and circuit-related data in order to estimate the

future signals of the devices. Based on analyzing the achieved results in this part, it can be

understood that the surrounding temperature of the device is the best option in predicting

its signal. The reason of this relationship is interpreted to be due to the temperature role

as an intruder into the circuit activities.

The security evaluation of the leveraged PLI system is investigated in the last part.

Hereof, the attack is accomplished by generating the forged versions of the original records

of 26 different Ethernet cards and sending them to the system. The creation of forged
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records is done by an arbitrary waveform generator, wherein its configuration determines

the characteristics and alikeness of these forged records to the original records. The results

of this part demonstrate that both the mean and dispersion of the forged matched filter

outputs are greater than those of the original matched filter outputs. Therefore, the PLI

system is able to defend itself against this designed attack.
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