
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

5-2015

Runtime Detection of a Bandwidth Denial Attack from a Rogue Runtime Detection of a Bandwidth Denial Attack from a Rogue

Network-on-Chip Network-on-Chip

Rajesh JayashankaraShridevi
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
JayashankaraShridevi, Rajesh, "Runtime Detection of a Bandwidth Denial Attack from a Rogue Network-
on-Chip" (2015). All Graduate Theses and Dissertations. 4548.
https://digitalcommons.usu.edu/etd/4548

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Theses and
Dissertations by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F4548&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.usu.edu%2Fetd%2F4548&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/4548?utm_source=digitalcommons.usu.edu%2Fetd%2F4548&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

RUNTIME DETECTION OF A BANDWIDTH DENIAL ATTACK FROM A

ROGUE NETWORK-ON-CHIP

by

Rajesh JayashankaraShridevi

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Computer Engineering

Approved:

Dr. Koushik Chakraborty Dr. Sanghamitra Roy
Major Professor Committee Member

Dr. Rajnikant Sharma Dr. Mark R. McLellan
Committee Member Vice President for Research and

Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2015

ii

Copyright c© Rajesh JayashankaraShridevi 2015

All Rights Reserved

iii

Abstract

Runtime Detection of a Bandwidth Denial Attack from a Rogue Network-on-Chip

by

Rajesh JayashankaraShridevi, Master of Science

Utah State University, 2015

Major Professor: Dr. Koushik Chakraborty
Department: Electrical and Computer Engineering

Network-on-Chip, the de-facto industry standard for connecting on-chip components

in forthcoming System-on-Chips plays a central role in providing a robust, reliable and

secure communication fabric. Conceptual similarities of NoCs to well established computer

networks makes the former vulnerable to security threats similar to those confronted during

the evolution of computer networks. Further, growing importance of NoC has triggered a

constant scrimmage between exploiting new potent security threats and identification of

techniques to prevent these threats.

This work explores a covert threat model for multi-processor system on chips de-

signed using 3rd party NoCs. The proposed malicious NoC can disrupt the availability of

on-chip resources, thereby causing large performance bottlenecks for software running on

MPSoC platform. This research rationalizes the potency and relevance of such threat and

propose techniques that enables a MPSoC integrator to monitor the trustworthiness of the

deployed NoC throughout the chip lifetime.

(56 pages)

iv

Public Abstract

Runtime Detection of a Bandwidth Denial Attack from a Rogue Network-on-Chip

by

Rajesh JayashankaraShridevi, Master of Science

Utah State University, 2015

Major Professor: Dr. Koushik Chakraborty
Department: Electrical and Computer Engineering

Chips with high computational power are the crux of today’s pervasive complex dig-

ital systems. Microprocessor circuits are evolving towards many core designs with the

integration of hundreds of processing cores, memory elements and other devices on a sin-

gle chip to sustain high performance computing while maintaining low design costs. Two

decisive paradigm shifts in the semiconductor industry have made this evolution possible:

(a) architectural and (b) organizational.

At the heart of the architectural innovation is a scalable high speed data communica-

tion structure, the network-on-chip (NoC). NoC is an interconnect network for the glueless

integration of on-chip components in the modern complex communication centric designs.

In the recent days, NoC has replaced the traditional bus based architecture owing to its

structured and modular design, scalability and low design cost. The organizational revo-

lution has resulted in a globalized and collaborative supply chain with pervasive use of

third party intellectual properties to reduce the time-to-market and overall design costs.

Despite the advantages of these paradigm shifts, modern system-on-chips pose a

plethora of security vulnerabilities. This work explores a threat model arising from a

malicious NoC IP embedded with a hardware trojan affecting the resource availability

of on-chip components. A rigorous simulation infrastructure is established to evaluate

v

the feasibility and potency of such an attack. Further, a non-invasive runtime monitoring

technique is proposed and thoroughly investigated to ensure the trustworthiness of a third

party NoC IP with low overheads.

vi

Acknowledgments

I would like to express my sincere gratitude to my adviser, Dr. Chakraborty, for his

insightful advice and patient guidance. Without his motivation and insights this work

would have never been complete. Also, I would like to thank Dr. Roy for her useful cri-

tiques of this research, as well as her valuable inputs which helped me tremendously in

framing this work. Also, I would like to express my appreciation to my committee mem-

ber: Dr. Rajnikant Sharma, for his valuable comments on this research. I would like to

thank various student members of Bridge Lab for their constant support, encouragement,

as well as making Bridge Lab such a pleasant and rewarding place to work. Specifically, I

would like to thank Dean for his technical guidance throughout this research, Yiding and

Hu for their constant support. I wish also to acknowledge the help provided by Manzi,

Chidambaranathan, Prabal, Shamik, Kurt, Harshitha, Brian, and Shayan. I would like to

express my great appreciation to the ECE department and all of the staff members, for of-

fering me this opportunity of Masters research, as well as the financial assistance towards

my tuition. I am particularly grateful for the assistance given by Mary Lee Anderson and

Tricia Brandenburg, who have helped me through numerous paper works and format-

ting of the dissertation. I would also like to extend my thanks to Trent Johnson and Scott

Kimber for providing technical support and maintaining the computer laboratory.

Last but not least, special thanks to my parents and my brother Swamy for their con-

stant support, encouragement and guidance throughout my study.

Rajesh Jayashankara Shridevi

vii

Contents

Page

Abstract . iii

Public Abstract . iv

Acknowledgments . vi

List of Tables . ix

List of Figures . x

Acronyms . xi

1 Introduction . 1
1.1 Organization of the Thesis . 2

2 Background . 4
2.1 Network-on-chip . 4

2.1.1 Evolution of NoC . 4
2.1.2 Conceptual View of the NoC . 5
2.1.3 Advantages of NoC . 8

2.2 Collaborative Innovation Model in the Semiconductor Industry 9
2.3 Literature Review . 10

2.3.1 Stage of Trojan Insertion . 11
2.3.2 Source of Threat . 12
2.3.3 Nature and Potency of Attack . 12
2.3.4 NoC Security . 12

3 rNoC design . 15

3.1 Operational Phases . 15
3.2 Realizing a rNoC . 16

3.2.1 Activation Module . 16
3.2.2 Victim IP Selection . 17
3.2.3 Traffic Flow Manipulation . 18

3.3 rNoC: Threat Model and Potency . 19
3.3.1 Potency Evaluation Methodology . 20
3.3.2 Results and Significance . 21
3.3.3 Area and Power Footprint . 21
3.3.4 Third-Party NoC IP Usage Trend . 22

viii

4 Runtime Latency Auditor for NoCs (RLAN) . 23
4.1 Design Challenges . 23
4.2 Design of RLAN . 24

4.2.1 Tagging Timestamps . 25
4.2.2 Creating Source/Destination in RLAN 26

4.3 Variants of RLAN . 28
4.4 Scalability of RLAN . 29
4.5 Role of the SoC Firmware . 31

5 Methodology . 32

6 Results . 33

6.1 Efficacy . 33
6.2 Multiple Application Environment . 35
6.3 CDF-NLD Threshold . 36
6.4 Performance Overhead . 37
6.5 Area and Power . 37

7 Conclusion . 39

References . 40

ix

List of Tables

Table Page

2.1 Comparison of Threats in NoCs. 14

6.1 False Positive (FP) and False Negative (FN) rates 37

6.2 Power Overhead due to RLAN configurations 38

x

List of Figures

Figure Page

2.1 Paradigm shift from bus based architecture to interconnect networks 6

2.2 Block diagram of typical virtual channel NoC router 7

2.3 A typical packet format used in NoC communication 7

2.4 Examples for network-on-chip topologies . 8

2.5 Block diagram illustrating the SoC design flow 10

3.1 rNoC router with the embedded hardware trojan 17

3.2 Hierarchical approach for Victim Selection in rNoC 18

3.3 Threat scenario : 3PIP vendor sabotaging a SoC integrator 20

3.4 Application performance degradation due to rNoC 22

4.1 Real world example to illustrate RLAN technique 25

4.2 Block diagram of SoC firmware with RLAN control 26

4.3 Overview and operation of RLAN . 28

4.4 Detection point comparison for variants of RLAN 30

4.5 Scalability of RLAN . 30

6.1 Efficacy of RLAN under single application environment 34

6.2 Magnified cross-section of Figure 6.1 for analysis 34

6.3 Efficacy of RLAN under multi-program environment 35

6.4 Magnified cross-section of Figure 6.3 for analysis 36

6.5 Runtime Overhead of the RLAN technique 38

xi

Acronyms

3PIP third party intellectual property

CDF cumulative distribution function

DoS denial of service

FN false negative

FP false positive

IC integrated circuit

IP intellectual property

MPSoC multiprocessor system-on-chip

NLD network latency differential

NoC network-on-chip

PAP proximal analogous packet

QoS quality of service

RLAN runtime latency auditor for NoC

rNoC rogue network-on-chip

SoC system-on-chip

TTM time-to-market

VC virtual channel

1

Chapter 1

Introduction

Emerging global semiconductor environment represents a competitive arena where

the collaborative innovation model grows in prominence to sustain ubiquitous computing.

In the modern economic landscape, tightening supply chain budgets and growing design

complexity are the by-products of the semiconductor industry’s doctrine: smaller, faster and

cheaper. A remarkable technology trend that captures this interplay is the rapid growth in

demand for multi-processor system on chips (MPSoC) [1, 2]. With unprecedented pres-

sure of time-to-market, modern MPSoCs integrate many different Third Party Intellectual

Property (3PIP) components within a single die. These components are obtained from a

diverse pool of design houses, with a wide array of in-built functionality. Needless to say,

such a practice has far reaching implications toward the security and trustworthiness of

an entire chip [3–5]. Security assurance and verification of 3PIPs are challenging due to

the limited design information available from the respective 3PIP providers who want to

preserve their technological innovations. Consequently, many existing techniques based

on internal signal inspection are useless for detecting trojans embedded in 3PIP (e.g., [6]).

While many components in an MPSoC can be 3PIP, including the processing elements,

hardware accelerators, and memory modules, recent trends show a growing use of 3PIP

on-chip interconnects. Vast majority of these interconnect designs employ Network-on-Chip

(NoC), which facilitates glue-less integration of various hardware modules within a single

substrate. For example, Arteris, a NoCs IP provider, has experienced a tremendous growth

of 797% in their sales over the last few years [7]. Given this trend, it is now critical to

carefully consider the security implications of a 3PIP NoC in an MPSoC.

NoC 3PIPs present several unique challenges in trustworthy computing, compared to

3PIP processing elements, hardware accelerators, and memory modules. First, a NoC has

2

direct access to all the components in a SoC, and therefore plays a central role in resource

availability of a chip. Second, unlike processing elements or specialized components, there

is only one instance of a NoC in a MPSoC. Consequently, validating its security assurance

and performance guarantee becomes hard, as one cannot deploy 3PIP trustworthiness

based on replicated execution [1]. These unique aspects conspire to create a perfect secu-

rity storm when the NoC assumes a malicious role in a MPSoC. A rogue 3PIP NoC (rNoC)

can cause a plethora of damages like data corruption, denial of service, and information

stealing.

A secure system must provide three central aspects of trustworthiness: confidentiality,

integrity and availability [8]. This research focuses on the impact of rNoCs maliciously ma-

nipulating the availability of on-chip resources through a focused bandwidth denial attack

in the NoC. Such an attack can directly translate to application performance degradation in

modern many-core systems as they employ rudimentary in-order cores that lack the ability

to tolerate large on-chip communication latency [9,10]. Using rigorous circuit-architectural

methodology, it is demonstrated that a potent rNoC can be designed with a negligible foot-

print. Further, to counter this imminent threat, a novel run-time technique is proposed to

detect this attack and ascertain the trustworthiness of a NoC.

1.1 Organization of the Thesis

The rest of this thesis is organized as follows:

• Background: Chapter 2 equips the reader with necessary basics on the network-on-

chip and the backdrop of the system-on-chip (SoC) supply chain flow to reveal the

security loopholes. In order to show the novelty of this research, a thorough review

of the contemporary research in SoC and 3PIP security is presented.

• rNoC Design: In Chapter 3, the implementation details of the proposed threat model

is discussed. The rNoC’s potency and design footprint is investigated to show the

trojan’s feasibility and significance in modern SoC environment.

3

• RLAN Design: Chapter 4 details the proposed runtime latency monitoring tech-

nique to detect a focused bandwidth denial attack. The variants and scalability of

the non-invasive trojan detection technique are discussed in detail.

• Methodology: Chapter 5 describes the simulation infrastructure and the tools used

to evaluate the threat model and monitoring technique.

• Results: In Chapter 6, the efficacy of the proposed monitoring technique is evaluated

along with the overheads incurred for the security assurance of a 3PIP NoC. The

results indicate modest overheads of 12.73% in area, 9.84% in power and 5.4% in

terms of network latency.

• Conclusion: Chapter 7 concludes by highlighting the contribution of this research

and its significance in the modern MPSoC environment.

4

Chapter 2

Background

This chapter aims to establish the bedrock for the research presented in this thesis.

Section 2.1 presents an outline on the concepts of NoC and emphasizes on the advantages

of the NoC fabric in emerging MPSoCs. Section 2.2 scrutinizes the collaborative innovation

model and globalized supply chain adopted by the semiconductor industry to sustain high

performance computing. It further outlines the security loopholes that have surfaced as a

by-product of the newly adopted system-on-chip (SoC) supply chain model.

The comprehensive review of contemporary research presented in Section 2.3, under-

lines the novelty and importance of this research.

2.1 Network-on-chip

Network-on-chip is a layered and scalable on-chip communication fabric designed

to replace the traditional bus and crossbar based interconnection platforms in modern

many-core systems. Basic NoCs heavily borrow the concepts and techniques from the age-

old distributed computer networks paradigm. Critical parameters such as performance,

power consumption and reliability along with the fundamental differences between the

on-chip networks and computer networks has shaped the research in NoC domain. To

fully comprehend the operation and importance of a NoC, the section is further subdi-

vided to briefly outline the evolution of NoC (Section 2.1.1), present a conceptual view of

NoC, its components and operation (Section 2.1.2) and finally highlight the merits of NoC

(Section 2.1.3).

2.1.1 Evolution of NoC

The advent of sub nanometer semiconductor processing technology along with high

5

density transistor integration brought about several critical challenges to the fore. Firstly,

to meet the resource demands of growing computation-intensive applications and to sus-

tain high performance, the number of on-chip components and the design complexity of

a computing system increased exponentially. Secondly, with technology scaling, global

interconnect design issues of delay, power consumption, noise, scalability and reliability

began to plague the complex MPSoC designs. Thirdly, the traditional shared bus based

on-chip communication architectures where bus accesses by all connected components are

serialized, reached the limits of scalability. All these factors colluded together to cause

a critical bottleneck in system integration and productivity. To counter these crucial is-

sues and sustain high performance, researchers and industry experts conceived a shift in

the architectural paradigm (i.e, birth of on-chip interconnection network) as well as in

the organizational paradigm (growth of the collaborative innovation, described in Section

2.2). The birth of interconnection network encouraged the addition of more on-chip com-

ponents. Swiftly, NoC flourished as the de-facto standard for on-chip communication in

modern many-core computing systems.

2.1.2 Conceptual View of the NoC

Figure 2.1 illustrates the paradigm shift from bus based architecture to NoCs in many-

core systems as discussed above. A typical NoC constitutes multiple routers and network

interfaces (NI) that connect different intellectual property (IP) blocks through physical

links (wires). An IP block and NI are together known as a tile/node. A closer look at

the building blocks of a NoC follows:

• Router : A typical NoC router consists of buffers, an interconnection matrix, func-

tional and control units. Figure 2.2 shows the block diagram of a typical virtual-

channel router broadly partitioned as datapath and control plane. The datapath consists

of input buffers, crossbar and the output buffers and as the name suggests it handles

the storage and movement of packets of data/signal. The control plane on the other

hand, consists of route calculation, virtual channel (VC) allocation and switch alloca-

6

PE 1 PE 2

PE 3 PE 4

C�O���A�

S�I���

L1 Cache L1 Cache

L1 Cache L1 Cache

M
E

M
O

R
Y

C
O

N
T

R
O

L
L

E
R

Q
U

E
U

E
, U

N
P

E
 &

 I
/O

SH
A

R
E

D
 C

A
C

H
E

Designer components

R

R

R

R

R

R

R

R

R

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

PE
L1 Cache

R

R

R

R

R

R

�

�

R

PE

PE

MC PE

HA

MC PE

PE

PE

R

R

R

MC

PE

MC

R R R

HA PE PE

R

PE

HA PE

PE MC

R 3rd Party IP components

~2000: multicore

bus based designs

~2010: many core

NoC centric design

~2015: MPSoC

NoC centric + 3rd party IP

Fig. 2.1: Paradigm shift from bus based architecture to interconnect networks. Bus based
architecture design connecting a few cores (e.g., Intel nehalem) was replaced by NoC cen-
tric designs connecting many cores (e.g., Intel SCC). To maintain high performance com-
puting at low design cost emphasis is shifting towards pervasive use of 3rd party IPs.

tion blocks. These blocks make decisions pertaining to the route taken by the packets

and also manage arbitration and resource allocation when multiple packets contend

for limited physical resources.

Each flit 1 of a packet 2 arrives at the input buffers of a router from an upstream router.

The route computation module determines the output port to which the packet must

be forwarded. The packet then requests for an output virtual channel and the VC

allocation module allocates the required resource after evaluating all requests. The

switch allocation module provides a time slot during which each flit of a packet is

forwarded from the input buffers to the output port. Finally, the flits are transmitted

from the output buffers to the downstream router’s input port.

• Network Interface : NI serves as the interface between the communication network

and the IP blocks. NI generally handles the packetization, packet re-ordering and

1Flit: Flow control digit, is the smallest unit of data recognized by the flow control method
2Packet: A fixed length of flits, that encapsulates the information to be transmitted along with destination

address and other critical information

7

Route
Computation

VC
Allocator

Switch
Allocator

CONTROL PLANE

DATAPATH

C�O���A�

SW����

V� �

	
 �

V� �

V� �

V�

V� �

Input 1

Input 5

Output 1

Output 5

INPUT BUFFERS

Fig. 2.2: Block diagram of typical virtual channel NoC router.

retransmissions. It splits the incoming data into packets and augments critical infor-

mation required for routing the packets to the correct destination. Along with the

destination address, the NI can augment error detection/correction information and

any other monitoring information required by the designer into the packet header.

Figure 2.3 illustrates an example packet format for the NoC.

• Link : Links are the physical wires connecting the routers in a network. There exists

two kinds of links: serial and parallel.

NoCs can be tuned in a variety of parameters such as topology, buffering, data widths,

arbitration techniques, routing algorithms, etc. based on the application requirement. An

Fig. 2.3: A typical packet format used in NoC communication.

8

overview of important architectural aspects follows:

• Topology : Topology determines the physical layout and the connections between

network components. Figure 2.4 illustrates some of the well-known topologies. The

topology choice depends on the cost-performance trade off of the applications.

• Routing : Routing algorithms compute the path taken by the data from the source to

destination. Routing algorithms have been efficiently used to increase performance

under different load scenarios (congestion based routing algorithms e.g., [11–13]

among others), provide fault tolerance (e.g., [14–16], etc.) and improve reliabil-

ity [17, 18].

• Flow Control : Flow control ensures the effective utilization of network resources

such as buffers and link bandwidth, thereby play a critical role in determining the

performance and power consumption of a NoC. Some typical flow control tech-

niques are circuit-switching (message based), store-and-forward (packet based) and

wormhole (flit based).

2.1.3 Advantages of NoC

A summary of the benefits of the NoC architecture in modern MPSoCs are as follows:

Fig. 2.4: Examples for network-on-chip topologies: 3x3 mesh, 3x3 torus, 3-fly-2-ary butter-
fly and irregular network.

9

• Abstraction : NoCs provide a clear demarcation between computation and commu-

nication in a MPSoC.

• Structured and Customizable : The NoC topology, buffer size, data widths, routing

algorithms and various other parameters are customizable according to application

requirement and have a lower complexity due to a structured design.

• Parallelism : Concurrent spatial reuse of links and routers allow parallelism in data

flow.

• Scalable : NoC architecture can be scaled to accommodate hundreds of on-chip com-

ponents. They exhibit better performance under load as communication flows can

be handled in parallel.

• Wire Routing Congestion : NoC significantly reduces the number of wires required

to route data and signals in a SoC thereby increasing wire utilization and efficiency.

• Modular : NoC architecture makes it easy to swap different IP blocks and create

derivative chips based on the need of each application. This in turn reduces the

time-to-market (TTM) due the modular nature of system design and increases pro-

ductivity.

2.2 Collaborative Innovation Model in the Semiconductor Industry

Globalization, rapidly changing consumer demands, shrinking product life cycles and

fierce competition has changed the dynamics and organization of the semiconductor in-

dustry’s supply chain. Integrated circuits (IC) are no longer designed and manufactured

by the same firm but the IC/SoC supply chain is distributed worldwide. Modern SoC de-

signs are a combination of numerous on-chip devices that come from various third party

design houses as well as those designed in-house. To keep pace with the consumer de-

mands, constantly reduce the time-to-market(TTM) and at the same time reduce cost of

design and manufacturing in the competitive market, semiconductor industry has adopted

a globalized collaborative innovation model where firms specialize in a specific stage or

10

specific component in the SoC design flow. Hence, many firms must work together to de-

velop, manufacture and supply a finished IC. Figure 2.5 illustrates the globally distributed

SoC design flow. The figure also shows that there are multiple stages within the supply

chain which are untrustworthy. The globalized supply chain is vulnerable to many dif-

ferent security threats such as IP piracy, reverse engineering, counterfeiting, insertion of

hardware trojans, etc. Researchers, academicians and industry experts have explored an

overabundance of threat models, metrics and remedies, but with the exponential growth in

the use of 3PIPs and deeper understanding of devices, more covert and potent threat mod-

els are conceived. With billions of dollars spent for security assurance in today’s environ-

ment, it is imperative to investigate low cost and low overhead techniques to strengthen

the trustworthiness and ensure secure system designs.

2.3 Literature Review

This section presents a comprehensive study of contemporary works related to this

research. As seen above, security assurance of on-chip hardware components is an obstacle

of growing magnitude and importance. The contemporary research in hardware security

Fig. 2.5: Block diagram illustrating the SoC design flow.

11

can be broadly classified on three major axes based on their underlying assumptions:

• Stage of trojan insertion : Hardware trojans can be embedded in the integrated cir-

cuit in many stages during the life cycle of chip design and manufacturing process

(Section 2.3.1).

• Source of threat : A potent hardware trojan can be effectively embedded in any of the

numerous on-chip components such as the processing elements, memory, hardware

accelerators, communication network, etc. (Section 2.3.2).

• Nature and potency of security violation : The nature of attack is limited only by the

trojan designer’s imagination and the trojan’s source. A plethora of potent attacks

such as information stealing, total chip failure, data manipulation, resource availability, etc.

can be envisaged (Section 2.3.3).

The first and second component can be assessed by inspecting the threat model pro-

posed in the work, where as the third component can be determined by understand-

ing the malicious activity from the perspective of the security properties of a system—

confidentially, integrity, and availability.

2.3.1 Stage of Trojan Insertion

Several recent works protect against untrusted foundries by detecting malicious cir-

cuit modifications (e.g., [19–24] among others). Further, there has also been research to

avoid cloning the chip design and counterfeiting using physically unclonable functions

(PUF) (e.g., [25–29], among others). But as semiconductor industry adopts the collaborative

innovation model, these mechanisms are ineffective to protect against design time mali-

cious 3PIP in an MPSoC. To offer security in such a scenario Chen et al. proposed task

duplication so as to verify the validity of one execution [1]. While this work is an im-

portant step forward in 3PIP security assurance, research in this domain needs immediate

attention to design novel and scalable solutions with low overhead.

12

2.3.2 Source of Threat

Security researchers and trojan designers have explored embedding the hardware tro-

jan in a variety of on-chip components. An overabundance of research focused on detec-

tion of trojans in processing and storage elements (e.g., [30–43]). As computing systems

evolved with the addition of more on-chip components research on hardware security

broadened with the aim to ensure trustworthiness. Similarly, with the advent of NoC, re-

search on NoC security gathered steam. Section 2.3.4 summarizes the recent works in NoC

security, highlighting the novelty and importance of the research presented in this thesis.

2.3.3 Nature and Potency of Attack

Hardware trojans can be designed to violate one of the three central aspects of trust-

worthiness: (a) confidentiality, (b) integrity, and (c) availability. Trojans that attack the con-

fidentiality of a system aim to steal data from on-chip devices either through direct in-

formation leakage or side channel analysis of signals and circuit behavior. Demme et

al. investigated metrics to measure information leakage attacks [44] while many research

works focused on detection and prevention of such attacks [45, 46]. Though theft of data

is the most profitable attack for a trojan designer, there have been several cases of covert

data manipulation. Previous works explore techniques to ensure data integrity in storage

memories [42, 47] and program code integrity [30, 48, 49]. Another class of trojans influ-

ence the availability of resources, making them unavailable when the system demands it.

Denial-of-service attacks are the most common type of attacks that affect resource avail-

ability. The potency of these trojan attacks can range from simple loss of performance and

energy efficiency to catastrophic system wide irreversible failures.

2.3.4 NoC Security

A vast majority of recent works assume a secure NoC, where the threat is assumed to

rise from the software or the processing elements. Data Protection Unit (DPU) proposed

by Fiorin et al. [50] and Secure Network Interface (SNI) by Diguet et al. [51]) are two such

13

works that analyze secure access control on memory banks. Few works employ encrypted

data transmission over the NoC (e.g., [52, 53]) or partition the NoC into separate zones

based on trust [54, 55]. On the other hand, some works have looked into creating efficient

chip resource partitioning to isolate secure and non-secure applications [54, 56]. These

works are also primarily concerned with the confidentiality of the data transmitted on the

system. Another class of works inspects security threats violating the availability of the on-

chip NoC bandwidth, and explores techniques within the scope of a secure NoC. Diguet et

al.’s work on SNI can protect from denial of service (DoS) attack caused by replay, livelock,

deadlock and incorrect path. Fiorin et al. propose the use of DoS probe as a part of the NoC

monitoring architecture [57]. Parallel to these works in security, there have been numerous

proposals to provide quality of service (QoS) guarantees in a NoC [58]. While these works

are conceptually closer to the work presented in this thesis, the proposed mechanisms

are impractical for the threat model explored in this work, as the NoCs derived from a

3PIP cannot be modified. Similarly, recent work by Ancajas et al. explores a rNoC [59], but

their threat model and protection mechanisms are focused on confidentiality and are unable

to detect or thwart malicious manipulation of resource availability from a rNoC. Table 2.1

summarizes the different threat in NoCs.

This work explores a new threat model based on a key underlying assumption: a

rogue NoC manipulating the availability of the on-chip communication bandwidth. With

NoCs being such an integral part of present and future MPSoCs, the need to investigate

trustworthiness of a third party NoC IP is immense. The work presented here is distinct

from contemporary secure 3PIP works, primarily in two aspects.

• In the light of proliferation of 3PIP NoCs, this research explores a threat where the

NoC is malicious. Consequently, unlike a majority of existing works, the security

measures cannot be placed inside the NoC architecture.

• The threat model presented in this research is concerned with the availability of on-

chip resources.

14

Table 2.1: Comparison of Threats in NoCs.

Trojan Locationa Attackb Protectionc Activationd

rNoC(This work) NoC Malign IP NI Time

DPU [50] [57] S/W IT(Mem)/DC/DoS NI —

surfNoC [54] S/W IT(S/W) NoC —

AE [53] S/W IT(Mem) NI —

IMP [60] µP IT(µP/Mem) — S/W

NoC-MPU [61] S/W IT(Mem) NI —
a The part of the system where a trojan is inserted.
b The type of attack carried out in the NoC.(IT-Information Theft,DoS-Denial of Service)
c The part of the system where a protection mechanism is implemented to prevent an attack.
d The activation mechanism employed in case of a hardware trojan.

15

Chapter 3

rNoC design

This Chapter discusses the design of the proposed rogue NoC (rNoC), elaborating

on its operational phases (Section 3.1), and the router micro-architecture modifications re-

quired for the implementation of the trojan (Section 3.2). Further, Section 3.3 discusses the

threat posed by a rNoC for the SoC integrators and other IP providers, demonstrates the

potency of the proposed rNoC design and motivates the need for research in this domain.

The trojan design overhead is evaluated in terms of area and power to show that a potent

rNoC can be designed with negligible footprint.

3.1 Operational Phases

A rNoC broadly follows a set of phases as described below.

• Trojan insertion: The NoC 3PIP provider creates a rNoC by inserting a malicious circuit

in the NoC router during the design or verification phase. The Trojan is designed to

engage in a focused bandwidth denial attack targeting either one or a few key on-chip

resources. This threat model can be realized by one or two malicious design and

verification engineers in the NoC IP design team [6].

• Identifying Client: The NoC provider must then identify a client SoC integrator to sup-

ply a rogue version of their IP. At first glance, this may appear counter-productive as

clearly the NoC IP provider may lose their SoC integrator client eventually. However,

given the growing role of a NoC 3PIP, other SoC integrators may pay off the NoC IP

provider for monopolizing a niche market. For example, in Figure 3.3, SoC Integrator

3 might pay off the NoC provider to victimize SoC Integrator 4, and steal its clients.

The notion of a disgruntled employee inserting a malicious design or a sabotage from

competitors to harm the company’s prospects is not new. Such practices have seen

16

the light of the day in other industries including the software domain [62, 63], and it

is not unreasonable to expect a similar trend in the hardware domain.

• Activation and Operation: The trojan can employ a variety of subtle activation mech-

anisms as discussed in Section 3.2.1. Once activated, the trojan engages in a subtle

bandwidth denial attack on a few selected on-chip nodes or processing elements

(PE). While a rNoC can cause a catastrophic chip failure (e.g., intentionally dropping

every packet), this research assumes that the role of the rNoC here is more subtle.

In this mode, the rNoC aims to cause performance degradation at the application

level, to implicate a potentially inferior IP/chip design, rather than a fundamentally

incorrect design.

3.2 Realizing a rNoC

To realize a rNoC, the router micro-architecture is modified, and the arbitration pro-

tocol is augmented with the trojan functionality. A standard NoC router with a typical

4-stage pipeline is chosen as the baseline. The four pipeline stages of the NoC router are

input buffer, route calculation, VC allocation and switch traversal as seen in Figure 3.1.

The control and data path of the trojan are fed to various router pipe stages to allow covert

manipulation of the router functionality. The trojan has three major modules: activation,

victim IP selection, and traffic flow manipulation, outlined next.

3.2.1 Activation Module

Trojan activation modes are broadly classified under external and internal [24]. Externally-

activated triggers rely on the interaction with the outside world and hence require medium

to communicate or access data to/from external environment. Use of antenna, sensors, in-

put/output peripherals, etc. are the common modes of external activation. In the case of

a 3PIP NoC, specific nature and content of interaction with external environment cannot

be guaranteed at design time by the IP vendor and hence must effectively rely on internal

triggers. A variety of internal triggers can be envisaged (e.g., logic/condition based, time

17

Fig. 3.1: rNoC router with the embedded hardware trojan.

based, temperature/voltage based, supply noise based, internal counter based triggers).

Trojan activation can also be achieved using other methods such as software-hardware

coalition [59,60] or triggered using traffic activity and traffic patterns in the network. Since

3PIPs allow limited opportunity for introspection, a smart designer can carefully create an

activation module that can elude existing trojan detection techniques.

3.2.2 Victim IP Selection

The challenge in victim IP selection is finding a victim node such that applications run-

ning on the node can perceive a noticeable performance drop. In a large network topology,

this can be a complicated problem. For example, consider a case where a rNoC selects a

node randomly. If the applications running on the chip rarely send/receive traffic from

this chosen victim node, then there will be virtually no impact. A trojan design that can

dynamically identify a node with a heavy network traffic is investigated in this research.

Figure 3.2 shows the proposed design. A major goal of this design is to enable scala-

bility and to limit the area/power footprint of the trojan. A hierarchical process that tracks

only a handful of node activities at any given time is employed. Each node monitors its

18

Fig. 3.2: Hierarchical approach for Victim Selection in rNoC. In stage 1, aggregate band-
width information of the region is collected and in stage 2, the victim node is identified
based on high usage rates.

ingress and egress rates, and then sends an activity report containing the bandwidth con-

sumption information periodically to a central node. The central node accumulates the

aggregate activity on a regional basis, and finally determines the most highly active re-

gion. Subsequently, it only keeps track of node activity within that region to converge on

the most active node, which is then selected as a victim node. In reality, these nodes are

likely to be a memory controller or a node holding a last level cache slice. Figure 3.2 shows

a 64 node network having a 2-stage victim selection process. This hierarchical design can

be easily scaled to larger networks with negligible footprint by increasing the number of

monitoring stages during victim selection.

3.2.3 Traffic Flow Manipulation

To ensure a stealthy attack, the trojan manipulates the traffic flow at each router that

a flit passes through. The trojan specifically targets the stages of the router that involve

contention in resource allocation. In this work, the hardware trojan is designed to exploit

two specific stages of the router micro-architecture to realize the attack: Arbitration and

Allocation. The goal of these modifications are to deny fair crossbar traversal slots for

the flits originating from (or destined to) the victim node. The router performance under

load is strongly dependent on the fairness and quality of these two stages. In both stages,

19

inducing minor delay by unfair resource allocation to flits originating/destined from/to

victim IPs will remain inconspicuous and at the same time, inflicting flit delays at each

hop will have a significant effect on the packet latency. This distributed model of traffic

flow manipulation is harder to detect as it bears resemblance to delays due to resource

contention and can be misinterpreted as traffic congestion related delays.

• Arbiter: The role of an arbiter is to resolve multiple requests to a single resource

shared by many agents. In particular, arbiter allocates the virtual channel from in-

put buffer to output buffers for flit traversal. Round Robin (RR) is one of the com-

mon mechanisms used, which allows flits to reserve the crossbar traversal slots uni-

formly. To enable the attack, the trojan circuit de-prioritizes the flits destined to (or

sourced from) the victim node, deviating slightly from the uniform scheduling. Con-

sequently, flits may be delayed at a given router for a pre-designated number of cy-

cles. This delay must be restricted to a low number of cycles at each hop to prevent

it from being perceived as anomalous behavior.

• Allocator: An allocator matches resources to requesters under constraints to allow

flits to traverse through the crossbar. Flits must request the allocator for time slots

for the switch traversal. By suppressing the request made by a flit from the victim

node for a pre-determined number of cycles, the trojan induces a delay in allocation.

Since both stages are internal specifications of a router design, a SoC integrator will

not be able to inspect its fairness or operation. Unfortunately, a 3PIP rNoC cannot be de-

tected by internal signal inspection (e.g, [6]) as modern IP providers are reluctant to release

their proprietary RTL containing the internal specifics of the IP design.

3.3 rNoC: Threat Model and Potency

A rNoC poses a potent threat on the economic health of SoC integrators, as well as,

on other on-chip IP providers by directly controlling the perceived availability of various

on-chip resources. The performance of various applications on an MPSoC can often de-

pend heavily on a few IPs. For example, an application with a heavy memory footprint

20

has a strong dependence on the on-chip memory controllers, as well as, on SoC nodes with

cache slices housing pertinent data. If the traffic to these nodes are thwarted by a rNoC,

the application may suffer a substantial performance loss, resulting in potentially unhappy

clients for the SoC integrators. In this scenario, only applications with high memory re-

quirement suffers while other applications in the same network perform correctly. This

inconsistent behavior, combined with the lack of non-invasive techniques to introspect the

performance of each IP at runtime denounces the blame on a faulty memory controller,

memory module or an inefficient integration of 3PIP components. Figure 3.3 shows a clas-

sic scenario for this threat, where the SoC integrator 4 may suffer a hefty business loss due

to a rNoC.

3.3.1 Potency Evaluation Methodology

To evaluate the performance degradation seen by applications due to a focused band-

width denial attack from a rNoC, Booksim2.0—a cycle-accurate interconnection network

simulator— is used. Flit delays are simulated in the crossbar allocation stage, for those

Analog

MemHA

PE Analog

HA

AAAAAAAAAAAAAn

MMMMMMMMMMMMMAA

E

NoC

Mem

PE

Mem

SoC Integrator 2 SoC Integrator 3 SoC Integrator 4

PE

Pool of 3PIPs

NoC

Analog

3PIIPPss

C Analog

Analog

ooggggggg Analog

Mem

PPooool o

NNMem

PE PEAAAAAAAAAAAAAn

AA MMMMMMMMMMMMMM

EE

NoC

PE

HA

rNoC

HA HA

HA

E

MMMMMMMMMMMM

AAAAAAAAAAAAAn

AAAAAAA

NoC

MMA Mem Mem

SoC Integrator 1

V
ic
ti
m
iz
e
d

Fig. 3.3: Threat scenario : 3PIP vendor sabotaging a SoC integrator. A NoC provider se-
lectively provides a rNoC to one of its SoC integrators. Subsequently, the rNoC causes a
bandwidth denial attack for applications running on the chip produced by the SoC inte-
grator 4, damaging its reputation.

21

flits originating from a node under attack, and the average latency overhead of these pack-

ets are calculated. Booksim2.0 [64], coupled with network packet traces of multithreaded

applications in the PARSEC suite released by Netrace0.9 [65] is used to simulate real world

application behavior. To accurately model different degrees of the proposed distributed at-

tack and to estimate the potency, a range of delays (e.g., one cycle to four cycle delay per

flit at each hop) are inflicted on the flits belonging to the victim nodes. The results of these

simulations are discussed next.

3.3.2 Results and Significance

Figure 3.4 shows the increase in packet latency caused by bandwidth denial attacks.

The packet latency overhead ranges from 14.5% to 72%, based on the additional delay

inflicted per hop. It can be observed that the latency degradation remains fairly consis-

tent across benchmarks. These latency degradation directly translate to application perfor-

mance degradation in modern many-core systems, with rudimentary in-order cores that

are unable to hide on-chip communication latency. Given this remarkable threat potency

from a rNoC design on future MPSoC platforms, it is important to investigate the feasibility

and stealth of the trojan design embedded in the 3PIP NoC module.

3.3.3 Area and Power Footprint

The area and power footprint of the RTL design is carefully investigated to better

comprehend the trojan’s feasibility. To evaluate the overhead of the Trojan design footprint

in a NoC, the RTL of an open-source Stanford Verilog model of a modern NoC router [66]

is augmented with the modules described in Section 3.2. The router is used as a part of

a mesh topology with 5-input/output ports (4 cardinal directions + 1 local) and 5 virtual

channels in each port. The RTL design is synthesized with the TSMC 45nm library using

Synopsys Design Compiler. Synthesis results show that the embedded trojan design has

negligible overheads of 4.32% and 0.014% in area and power, respectively. Hence a rNoC

presents a potent threat to impact the performance while using a low design footprint.

22

bla
ck
sc
ho
les

bo
dy
tra
ck

ca
nn
ea
l

flu
ida

nim
ate

sw
ap
tio
ns vip

s
x2
64

Av
era

ge

L
a
te
n
c
y
 D
e
g
ra
d
a
ti
o
n

0

10

20

30

40

50

60

70

80
D1 D2 D3 D4

Fig. 3.4: Application performance degradation due to rNoC. Communication latency
degradation incurred due to bandwidth denial attack. [D1,D2,D3,D4] implies [1,2,3,4] cy-
cle additional delay at each hop introduced by a 64-node rNoC.

3.3.4 Third-Party NoC IP Usage Trend

To fully comprehend the significance of rNoC, one needs to recognize the growth of

third-party NoC IPs. In the past decade, the use of NoC IPs in SoCs has grown exponen-

tially. The turn-key solutions provided by companies such as Sonics and Arteris enable

design firms to improve their methodology and shorten time-to-market schedules by al-

lowing ease of integration of different SoC components. NoC IPs are used increasingly

in a wide array of market segments such as mobile phones, tablets, automotive and gen-

eral purpose processing to name a few. In 2014, Gartner Inc–an independent technology

research firm–has ranked NoC IP sales of Sonics as #7 based on Design IP revenue with

a 44.8% profit growth compared to the previous year [67] and Arteris has experienced a

growth in sales of 797% over the last few years [7]. Given this ubiquity of IC devices us-

ing NoCs, it becomes more important to preserve the trustworthiness and security of such

systems. Hence, this work proposes a non-invasive runtime technique to detect focused

bandwidth denial attacks in a 3PIP NoCs.

23

Chapter 4

Runtime Latency Auditor for NoCs (RLAN)

This chapter details the proposed runtime technique RLAN to detect traffic abnormal-

ities in the NoC caused by a malicious NoC IP. While the performance degradation due to

unfair bandwidth allocation is evident at the application level (Section 3.3), runtime detec-

tion of such malicious activities has several key challenges, outlined in Section 4.1. These

challenges lay the foundation for the proposed technique RLAN (Section 4.2). RLAN is a

non-invasive technique that can work without any modification to a 3PIP NoC IP. To realize this

goal, the technique is integrated in the SoC firmware module that interfaces the process-

ing element to the network interface (NI) of the NoC IP. Section 4.3 discusses the RLAN

variants, while Section 4.4 and Section 4.5 outlines the scalability and role of SoC firmware

design.

4.1 Design Challenges

The crux of the detection technique is to identify the latency elongation of network

packets caused by a bandwidth denial attack. There are three key challenges in runtime

detection, outlined next.

• Understanding Attack Semantics: An ongoing attack on any given node cannot be de-

tected simply by comparing the latencies of various packets sourced (or destined) to

that node. This is because, once under attack, there will be little anomaly in latencies

between similar packets from/to the victim node, thereby defeating the purpose of

the detection mechanism. Also, comparing latencies of other packets in the network

will not serve the purpose due the difference in spatial and temporal characteristics

of the network.

24

• Limiting False Positives: False positives may arise because the latencies of network

packets between a given source-destination incur variations based on normal net-

work level activities. In particular, in an MPSoC environment, different applications

may coexist at different times, resulting in a wide variation in network level conges-

tion during their runtime. As a result, RLANs must distinguish latency elongation

due to normal network activities from those of malicious activities. Furthermore,

claiming a 3PIP provider is engaged in malicious activities has potential legal impli-

cations, and therefore must be backed by strong irrefutable evidence.

• Managing Overhead: To create a practical solution technique, it is critical to manage

its circuit-architectural overhead in terms of performance impact on other traffic, and

area and power. With growing network size, scalability of the proposed technique

is another important consideration. Several RLAN variants are explored to balance

overhead and efficacy in Section 4.3.

4.2 Design of RLAN

The insight of the proposed RLAN design is that packets traversing routes with significant

overlap (spatial similarity) around the same time (temporal similarity) have comparable latencies.

Figure 4.1 gives a real world example to illustrate the concept. At 5PM, the time taken

between the three routes between same source and destination varies. This is due to the

difference in spatial traffic congestion (spatial variation). Comparing just the highlighted

routes (similar routes) at 5PM and 3AM, it is seen that there is still a variation in the time

taken for the travel. The difference in traffic congestion at different times is responsible

for the effect (temporal variation). To counter these variations, RLAN uses routes with sig-

nificant overlap. This phenomenon is exploited to devise the proposed solution. Essen-

tially, given an existing packet, a Proximal Analogous Packet (PAP) is created by slightly

altering the source and/or destination. PAP have similar priority and hop count to the

original packets and contain information to help relate to their original counterparts. Sub-

sequently, the latencies of the original packets are compared to their Pips and statistics

25

are gathered over a significant sample size to detect malicious activities. The proposed

design involves two major steps: (a) Tagging timestamps (Section 4.2.1); and (b) Creating

source/destination in RLAN (Section 4.2.2).

4.2.1 Tagging Timestamps

To compare latencies, during the operational phase of RLAN, all packets are tagged

with a timestamp. Figure 4.2 illustrates the required design. During the operation, the

PE forwards the data to be communicated to the SoC Firmware, where a clock module

tags a timestamp and dispatches it to the NI for packetization and injection into the net-

work. At a destination, the incoming packet is depacketized in the NI and forwarded to

the SoC firmware where timestamps are extracted. By scrutinizing extracted timestamps,

RLAN establishes healthy interconnect latency thresholds and detects irregularities in the

NoC fabric. An auxiliary benefit obtained from tagging timestamps is isolation of com-

munication time from the computation time in a SoC. This aids in dynamic assessment of

Fig. 4.1: Real world example to illustrate RLAN technique. RLAN solution works on a
principle similar to road traffic. At 5PM, there is a variation in the time taken to reach
a destination between three routes of same distance (spatial variation). Comparing the
traffic at 5PM and 3AM, the time taken for the same route varies due to the difference in
traffic at different time (temporal variation).

26

performance levels of different IPs as well.

4.2.2 Creating Source/Destination in RLAN

During the design of RLAN it was observed that there can be three subtle variations in

the attack semantics. These variations in attack scenario outlined below are used to guide

the creation of PAP. In particular, packets of a victim node may observe excess latency on

their egress path, ingress path, or both. It turns out that these variations lead to intricate

design implications for creating an effective PAP. Hence, it becomes essential to create

topology aware monitoring packets to weed out false negatives. The proposed approach

to tackle all of these variations are outlined next. An underlying theme of this approach is

limiting the complexity through maximal use of local network activities and minimizing

the need for global information.

• Scenario 1–Attack on ingress packets: The trojan targets packets that are destined to

the victim node (A). Figure 4.3(a) illustrates the operation of RLAN, where the victim

node A’s ingress packets suffer from latency elongation. Consider that node B sends

a packet (X) to node A. A PAP is created and injected from B directed to one of the

nodes (P) proximal to X’s destination. When the PAP arrives at P, the SoC firmware

Fig. 4.2: Block diagram of SoC firmware with RLAN control. The SoC integrator augments
the RLAN control logic in the SoC Firmware. The SoC Firmware pads a timestamp to the
data before forwarding it to the NI for packetization.

27

identifies and re-injects it towards A. At A, the SoC firmware stores the arrival time

and compares it with the arrival time of X. Repeated deviations of packet arrival

times are flagged as abnormal network activities.

• Scenario 2–Attack on egress packets: The trojan targets packets originating from

the victim node (A). In this scenario, a PAP cannot be injected from the same source

as previously done, as all packets originating from the source are under attack (i.e,

delayed). To tackle this case, a node close to the source is used as a proxy. Figure

4.3(b) illustrates the operation, where the original source A sends a signal to any one

of the proximal nodes (P) every time it injects a packet (X). P interprets the signal and

injects a PAP to the same destination (B) as that of (X). At B, the SoC firmware com-

pares the arrival time and flags abnormal activity if repeated large deviations occur.

The solution complexity is higher, as the proximal nodes are unaware of neighboring

activities and need a signal from A. During the design of RLAN for this scenario, an-

other solution was deliberated upon where PAP is injected as a reply to an original

packet and their latency compared. But the solution is inaccurate due to variation in

sporadic network congestion as the path taken by the two packets is different both

spatially and temporally.

• Scenario 3–Attack on egress & ingress packets: In this scenario, the embedded tro-

jan attacks all packets originating from and destined to the victim node. This varia-

tion escalates solution complexity further as PAPs should neither originate nor travel

to the victim node directly. The first two solution variants are combined together to

tackle the complexity. Here, the SoC firmware is responsible for sending a signal to

generate an effective PAP, as well as, comparing arrival time of PAP. Figure 4.3(c) il-

lustrates the operation. Consider A as the victim node. For the egress packets, a PAP

is created at a node proximal to A and directed towards the destination. Whereas all

flits that are destined to A are first sent to the proximal node before being re-injected

towards A.

28

Fig. 4.3: Overview and operation of RLAN. a) Proximal nodes around the victim act as
proxy destinations for PAPs. Source (B) sends a PAP to one of the proximal nodes (P),
which is forwarded to the original packet destination (A). b) Proximal nodes around the
victim act as proxy sources. Source (A) sends a signal to one of the proximal nodes (P),
which injects a PAP to the destination (B). c) Nodes around the victim IP act as proxy
sources (egress) and destinations (ingress). PAP path is spatially and temporally similar to
that of the original packet.

4.3 Variants of RLAN

A particular design challenge in RLAN is managing its runtime overhead, as PAPs in-

troduce additional resource contention in the system. On the other hand, speedy detection

of trojan activity in a NoC is critical for the security assurance of the MPSoC. To perform

a trade-off analysis between overhead and fast detection, an analytic model is established.

The key insights behind this model are explained below.

• The RLAN technique is intermittently active. To model this behavior, a test phase (P)

and test length (T) are defined. Further, P is defined as the time period of successive

RLAN invocations, while T indicates the active duration of RLAN within P.

• To intuitively assess the overhead from RLAN, detection factor (d f) is defined, which

is the ratio T/P. A high d f indicates that RLAN is active most of the runtime, and

thus should incur a larger overhead.

• To assess the detection point (dp) of RLAN, two central aspects need to be consid-

ered: (a) required number of flits to make a decision (n); and (b) total runtime of the

29

program, modeled as m phases of length P. Both are application dependent, as n is

driven by the packet injection rate (i) of the program. dp is the percentage of total

runtime required to accurately identify the presence of the trojan.

d f =

T

P
(4.1)

dp =

n

d f × i
×

1

mP
(4.2)

Equation 4.1 and Equation 4.2 presents the analytic model to explore the trade-off

between dp and d f . The first term of Equation 4.2 (for dp) denotes the total time for n

samples to be taken, while mP in the second term shows the total runtime of the program.

Ideally, the detection point should be low so that the embedded trojan can be quickly

detected.

Figure 4.4 shows the variation of detection point across benchmarks for different

RLAN configurations (based on d f) that is used: 0.1, 0.25, 0.5, 0.8. Two key patterns

can be observed. Certain benchmarks (e.g. bodytrack, vips) have worse detection points

compared to others. These benchmarks have low injection rates. Hence, RLAN takes a

longer time to obtain the required samples to accurately identify the trojan. For a given

benchmark, as the detection factor increases, the detection point reduces. The trade-off

between detection factor and its incurred overhead is investigated in Section 6.5.

4.4 Scalability of RLAN

With increasing levels of integration, next generation system-on-chips will feature

larger NoCs [68]. Hence, the solutions proposed to address the current issues must be

scalable to the larger networks. The scalability of RLAN in terms of the increase in de-

tection point is evaluated here. The detection points for three different network sizes are

compared: 16 (4x4), 64 (8x8) and 256 (16x16) nodes. For this comparison, a detection factor

of 0.5 and runtime of 10 minutes is considered. Figure 4.5 shows the increase in dp with

30

0

0.04

0.08

0.12

0.16

0.2

bla
ck
sch

ole
s

bo
dy
tra
ck

can
ne
al
fer
ret

flu
ida

nim
ate

sw
ap
tio
ns vip

s
x2
64

av
era

ge

D
et
ec
ti
o
n
 P
o
in
t

0.1 0.25 0.5 0.8

0.36 0.29

df

Fig. 4.4: Detection point comparison for variants of RLAN. Variation of the detection point
(dp) across benchmarks with n=100000. Detection point is evaluated for the 4 RLAN vari-
ants represented by detection factors (df) of 0.1, 0.25, 0.5 and 0.8 (lower is better). The
runtime is considered to be 10 minutes.

increase in network size. Since each node in the network has to be assessed individually,

detection point increases as a factor of network size. It is observed that for a network con-

sisting of 256 nodes, the average detection point is at 8.2% of the total runtime compared

to 2% for 64 node NoC for the considered simulation parameters.

0

2

4

6

8

10

bla
ck
sch

ole
s

bo
dy
tra
ck

can
ne
al
fer
ret

flu
ida

nim
ate

sw
ap
tio
ns vip

s
x2
64

av
era

ge

D
et
ec
ti
o
n
 P
o
in
t

4x4 8x8 16x16NoC Size
18.72 15.03

Fig. 4.5: Scalability of RLAN. Variation of detection point for three NoC sizes: 4x4, 8x8 and
16x16 for a detection factor (df) of 0.5 (lower is better).

31

4.5 Role of the SoC Firmware

The SoC firmware is an integral component of the proposed solution. Its role, listed

next, helps to explore the design trade-offs to successfully realize RLAN.

• The SoC integrator must decide parameters (test length and test phase) to limit over-

head. The SoC firmware must have provisions to hold the above test parameters and

inject PAPs at suitable periods.

• In all scenarios, proximal nodes serve as proxy nodes to mask the original source/

destination of the victim node. The SoC firmware must have the capability to inject,

identify and forward PAPs. At the same time, it must encode adequate information

to associate PAPs to their original counterparts, for arrival time comparison.

• Another prominent role is to accurately identify abnormal network activity. The SoC

firmware must only flag repeated deviations and be able to distinguish abnormal

activity from intermittent delays caused by sporadic congestion in the network.

These functions are implemented in a standard SoC OCP interface [69], and overhead

from its synthesized hardware is evaluated in Section 6.5.

32

Chapter 5

Methodology

This Chapter describes the simulation infrastructure that combines multiple tools to

obtain a rigorous and accurate analysis of the proposed trojan design and also the latency

monitoring system to identify the presence of such a trojan.

A meticulous cross-layer methodology is employed combining application induced

traffic simulation on a cycle-accurate NoC simulator with detailed circuit level analysis

from the synthesized hardware.

Architecture Layer: First, a traditional NoC without any security features is considered

as the baseline to evaluate the design cost. An open-source Stanford Verilog model of a

modern NoC router [66] is used for this evaluation. Further, the NoC routers are assumed

to be arranged as a 8x8 mesh topology (i.e, 64 nodes). The router has a 4 stage pipeline of

route computation, virtual channel allocation, switch allocation and switch traversal. The

RLAN technique is carefully modeled in Booksim 2.0 and real world application traces

(PARSEC benchmarks) from Netrace0.9 [65] are simulated. The network latency overhead

includes the effect of routing resource contention arising from the additional traffic intro-

duced through the proposed techniques.

Circuit Layer: The area/power overheads of the rNoC design is evaluated by augment-

ing the open-source Stanford Verilog model of a modern NoC router, and subsequently

synthesizing it using the Synopsys Design Compiler and a 45nm TSMC standard cell li-

brary. To assess the area/power overhead from the proposed techniques, the schemes are

implemented in a standard SoC OCP interface [69], and subsequently the design footprint

of the synthesized hardware is compared to the original footprint.

33

Chapter 6

Results

In this Chapter, the results on the efficacy of RLAN (Section 6.1) are discussed along

with the area, power and performance overheads of RLAN (Sections 6.4 and 6.5).

6.1 Efficacy

Network Latency Differential (NLD) is the difference in packet latency between a PAP

and its original counterpart. Figure 6.1 presents the CDF (cumulative distribution func-

tion) of PAPs with respect to NLD1. The figure shows the CDF for four cases: a no-attack

scenario (NA) and three attack scenarios (T1, T2 and T3 with 1, 2 and 3 cycle delay per

hop per flit belonging to victim node). Figure shows that in the absence of a bandwidth

denial attack (AVG NA cluster), a large percentile of PAPs will have small to negligible

NLDs. The NLD for no-attack scenario is a non-zero value as a PAP can be created only

after the SoC firmware processes the original data. Further, the created PAP must travel in

the same path as the original packet and contend for the same resources during this travel.

The attack cases on the other hand, have a noticeable NLD due to the delay inflicted by

the trojan at each hop. Hence, a clear distinction is seen between the CDF of no-attack case

and the attack cases.

In Figure 6.2, it is observed that only 4% of packets have an NLD greater than 12

for the no-attack case (represented by point P1). However, during an attack, a significant

percent of PAPs are expected to have a higher NLD. This contrast in an attack scenario,

where more than 60% of packets have an NLD greater than the chosen NLD(12) is clearly

noticeable (represented by point P2). Hence, there is a clear separation between a no-attack

1To eliminate obvious noise, the presented data is truncated to a minimum NLD of 6.

34

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Network Latency Differential (NLD)

AVG_NA
AVG_T1
AVG_T2

AVG_T3

Fig. 6.1: Efficacy of RLAN under single application environment. For a given NLD (x-axis),
the y-axis shows the percentage of PAPs suffering equal of greater NLDs. Four different
cases are presented: no-attack, and three attack scenarios, T1,T2, T3, with delay per hop
as 1,2 and 3, respectively. All benchmarks are shown in lighter shade, with the average
shown in the darker shade.

and attack scenario that enables the identification of a trojan by setting a threshold of CDF-

NLD pair. For example, consider a threshold pair of 30-12 (CDF-NLD). This indicates that

if more than 30 percentile of packets have a NLD of 12 during the sample period, the node

under observation is said to be under attack. The selection of threshold is discussed further

in Section 6.3. Figure 6.2 also shows that NLD values between 12 and 16 are suitable to

accurately identify a trojan but the bandwidth to choose an appropriate threshold keeps

reducing. For the simulated parameters in a single application scenario, choice of NLD

beyond 16 may lead to a large number of false positive (FP) and false negative (FN).

0

20

40

60

80

100

6 8 10 12 14 16 18 20 22 24

C
u
m
u
la
ti
v
e
D
is
tr
ib
u
ti
o
n

Network Latency Differential (NLD)

AVG_NA
AVG_T1
AVG_T2

AVG_T33

X

X
P1

P2

P3

P4

Fig. 6.2: Magnified cross-section of Figure 6.1 for analysis. Figure illustrates the CDF-NLD
threshold selection and analysis of false positives and false negatives.

35

6.2 Multiple Application Environment

Given that an MPSoC may have multiple co-scheduled applications, it is imperative

to study the efficacy of the proposed schemes under such an environment. The proposed

technique is subjected to rigorous testing by superimposing heavy random traffic with an

injection rate of 0.25, on top of application induced traffic to simulate multiple applications

running simultaneously. Figure 6.3 shows the CDF plot for such a situation. There is an

observable amount of disturbance in the CDF compared to the results obtained for single

application environment. A very high injection rate of 0.25 was chosen to simulate the net-

work under significant load and carry out a worst case analysis to assess the performance

of the proposed technique. Even under this scenario, a less but clear distinction is noticed

between the attack and no-attack scenarios.

For example, in Figure 6.4 if the NLD of 12 is considered again, the percentage of

packets above the NLD in the no-attack case increases to 8% (denoted by point M1). In

contrast, for the three different attack scenarios, the corresponding percentile is still over

40% (denoted by point M2) for all benchmarks. It can be observed that the point M2 in

the figure is obtained for a specific benchmark that observes significant disturbance due

to co-scheduled applications and not the average of all benchmarks. This is done to limit

the FP and FN that can arise due to a wrong choice of threshold. Another noticeable factor

is that the NLD bandwidth for accurate trojan detection has reduced due to the increased

variance in packet latency caused by increased traffic in the NoC (now between 12 and 14).

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Network Latency Differential (NLD)

AVG_NA
AVG_T1
AVG_T2
AVG_T3

Fig. 6.3: Efficacy of RLAN under multi-program environment.

36

0

20

40

60

80

100

6 8 10 12 14 16 18 20 22 24

C
u
m
u
la
ti
v
e
D
is
tr
ib
u
ti
o
n

Network Latency Differential (NLD)

AVG_NA
AVG_T1
AVG_T2
AVG_T3

X

M1

M2

M3

M4

X

Fig. 6.4: Magnified cross-section of Figure 6.3 for analysis. Figure illustrates the selection
of CDF-NLD threshold and analysis of false positives and false negatives.

6.3 CDF-NLD Threshold

To accurately identify the presence of a trojan, CDF-NLD threshold is carefully se-

lected to minimize the FP and FN. In Figure 6.2 (single application), point P1 denotes the

maximum percentile of packets with NLD-12 under no-attack and P2 denotes the per-

centile of packets having the same NLD (12) under an attack scenario. The difference in

CDF for these two scenarios is more than 50%. By choosing a CDF threshold of 30% (for

NLD 12), it is ensured that there are no FP or FN. Due to the clear distinction between

no-attack and attack scenario, the CDF threshold of 16% can also be used for a NLD of 16.

Hence, if more than 16% of packets have NLD greater than 16, the NoC’s availability is

said to be compromised by trojan activity.

Under the simultaneous application environment, it is seen that the contrast between

no-attack and attack scenarios reduces considerably. Increased network traffic and inter-

ference due to multiple applications induces sporadic delays in the network. If the same

threshold of 16% is retained for NLD of 16, it is observed that the false negative rate is

2.74% for ferret benchmark. Under this scenario, an attack having delay of 1 cycle per hop

may not be flagged as trojan activity. By re-evaluating the threshold to 23%(CDF) for NLD

of 12, zero FP and FN can be guaranteed. Figure 6.4 illustrates two threshold combina-

tions that can result in accurate identification of trojan activity. Points (M1, M2) and (M3,

37

M4) denote the extremes of CDF for NLD of 12 and 14 respectively.

Table 6.1 presents the false positive(FP) and false negative(FN) rates in both single

and multiple application environments. A CDF threshold of 30% is considered to assess

the FP and FN rates for four different NLD values: 10, 12 14 and 16. It is observed that

for NLD value of 12, the FP and FN are zero in both environments. NLD of 10 results in a

high false positive rate in the multiple application environment. Network congestion due

to multiple application will result in sporadic delays which are wrongly flagged as trojan

activity. On the other hand, selecting a high NLD threshold(16) can result in FN of 1.8%

and 6.2% in the two environments.

6.4 Performance Overhead

Figure 6.5 presents a comparative analysis of performance overhead across different

RLAN variants. The maximum overhead (10.48%) is seen in x264 when the detection factor

is 0.8. This configuration ensures high detectability as the test is active for a majority of

the application runtime. On an average, for d f = 0.8, the overhead incurred is 5.47%. The

variation in overheads for different benchmarks is due to the different injection rates of

the applications. At low injection rates, the relative impact of PAP induced congestion is

larger, resulting in higher RLAN overhead.

6.5 Area and Power

The overheads are evaluated by adding the security features in a standard SoC OCP

Table 6.1: False Positive (FP) and False Negative (FN) rates. FP and FN is shown with
CDF threshold of 30% and four NLD values: 10, 12, 14 and 16 for both Single and multiple
application environment.

NLD
Single Application Multiple Application

FP FN FP FN

10 2.13% 0% 17.88% 0%
12 0% 0% 0% 0%
14 0% 0% 0% 0.76%
16 0% 1.83% 0% 6.21%

38

0

2

4

6

8

10

bla
cks
cho
les

bod
ytr
ack
can
nea
l
fer
ret

flu
ida
nim
ate vip

s
x26
4

Av
era
ge

P
er
fo
rm
an
ce

O
v
er
h
ea
d
(%
)

0.1 0.25 0.5 0.8df

Fig. 6.5: Runtime Overhead of the RLAN technique. The performance overhead is evalu-
ated for detection factors of 0.1, 0.25, 0.4 and 0.8.

interface [69]. RLAN incurs an area overhead of 12.73% due to the hardware for PAP

creation and latency comparison. Table 6.2 shows the power overhead for different config-

urations of RLAN. The RLAN circuit is active only for the length of the test and is power

gated for the rest of the application execution time. Hence, the detection factor plays a role

in deciding the power overhead incurred. For a detection factor of 0.8, the RLAN circuit is

active for 80% of the test phase and incurs a power overhead of 9.84%.

Table 6.2: Power Overhead due to RLAN configurations. The standard OCP interface is
considered as the baseline.

df 0.1 0.25 0.5 0.8

Power Overhead 1.49% 3.28% 6.26% 9.84%

39

Chapter 7

Conclusion

This research explores a novel security threat stemming from the pervasive use of

3PIP NoC, where a rogue NoC can disrupt the perceived on-chip resource availability. The

following contributions are made to the domain of 3PIP NoC security.

• Established a potent and covert threat model in the on-chip communication infras-

tructure that can have a significant impact on application performance.

• Implemented a detailed design of a rogue NoC, analyzed its design footprint and

threat significance to demonstrate that a potent rNoC design is feasible with negligi-

ble footprint and scalable to larger networks.

• Designed a non-invasive technique (RLAN) to systematically monitor trustworthi-

ness of a 3PIP NoC during runtime and effectively counter the emerging security

threat.

• Analyzed the circuit-architectural impact of the proposed monitoring scheme under

realistic environments and showed that the proposed solution can provide security

assurance with modest overheads of 12.73% in area, 9.34% in power and 5.4% in

terms of network latency.

40

References

[1] C. Liu, J. Rajendran, C. Yang, and R. Karri, “Shielding heterogeneous mpsocs from
untrustworthy 3pips through security-driven task scheduling,” in IEEE Symposium
on Defect and Fault-Tolerance in VLSI Systems (DFT), pp. 101–106, 2013.

[2] Knowledge@Wharton, “Collaborative innovation holds key to semicon-
ductor industry growth,” http://knowledge.wharton.upenn.edu/article/

collaborative-innovation-holds-key-semiconductor-industry-growth/, 2013.

[3] M. Abramovici and P. Bradley, “Integrated circuit security: new threats and solu-
tions,” in CSIIRW, p. 55, 2009.

[4] J. L. Funk, “Systems, components and modular design: the case of the us semicon-
ductor industry,” IJTM, vol. 42, no. 4, pp. 387–413, 2008.

[5] G. Linden and D. Somaya, “Systemonachip integration in the semiconductor indus-
try: industry structure and firm strategies,” Industrial and Corporate Change, vol. 12,
no. 3, pp. 545–576, 2003.

[6] A. Waksman, M. Suozzo, and S. Sethumadhavan, “Fanci: identification of stealthy
malicious logic using boolean functional analysis,” in ACM Conference on Computer
and Communications Security (CCS), pp. 697–708, 2013.

[7] “Arteris leaps onto inc. 500 list of americas fastest-growing private companies,
http://www.arteris.com/.”

[8] N. I. of Standards and Technology, An Introduction to Computer Security: The NIST
Handbook.

[9] Y. Hoskote, S. R. Vangal, A. Singh, N. Borkar, and S. Borkar, “A 5-ghz mesh intercon-
nect for a teraflops processor,” IEEE Micro, vol. 27, no. 5, pp. 51–61, 2007.

[10] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mattina, C.-
C. Miao, J. F. Brown III, and A. Agarwal, “On-chip interconnection architecture of the
tile processor,” IEEE/ACM International Symposium on Microarchitecture (MICRO), pp.
15–31, 2007.

[11] P. Lotfi-Kamran, A.-M. Rahmani, M. Daneshtalab, A. Afzali-Kusha, and Z. Navabi,
“Edxy - a low cost congestion-aware routing algorithm for network-on-chips,” Journal
of Systems Architecture - Embedded Systems Design, vol. 56, no. 7, pp. 256–264, 2010.

[12] M. Ebrahimi, M. Daneshtalab, P. Liljeberg, J. Plosila, and H. Tenhunen, “Catra-
congestion aware trapezoid-based routing algorithm for on-chip networks,” in
IEEE/ACM Design Automation & Test in Europe (DATE), pp. 320–325, 2012.

41

[13] M. Li, Q.-A. Zeng, and W.-B. Jone, “Dyxy: a proximity congestion-aware deadlock-
free dynamic routing method for network on chip,” in IEEE/ACM Design Automation
Conference (DAC), pp. 849–852. ACM, 2006.

[14] Z. Shi, X. Zeng, and Z. Yu, “A scalable and reconfigurable fault-tolerant distributed
routing algorithm for nocs,” IEICE Transactions, vol. 94-D, no. 7, pp. 1386–1397, 2011.

[15] F. Chaix, D. Avresky, N.-E. Zergainoh, and M. Nicolaidis, “A fault-tolerant deadlock-
free adaptive routing for on chip interconnects,” in IEEE/ACM Design Automation &
Test in Europe (DATE), pp. 909–912, 2011.

[16] D. Fick, A. DeOrio, G. K. Chen, V. Bertacco, D. Sylvester, and D. Blaauw, “A highly
resilient routing algorithm for fault-tolerant nocs,” in IEEE/ACM Design Automation
& Test in Europe (DATE), pp. 21–26, 2009.

[17] A. Alaghi, M. Sedghi, N. Karimi, M. Fathy, and Z. Navabi, “Reliable noc architecture
utilizing a robust rerouting algorithm,” in Design Test Symposium (EWDTS), 2008 East-
West, pp. 200–203, 2008.

[18] A. DeOrio, D. Fick, V. Bertacco, D. Sylvester, D. Blaauw, J. Hu, and G. K. Chen, “A
reliable routing architecture and algorithm for nocs,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), vol. 31, no. 5, pp. 726–739, 2012.

[19] K. Hu, A. N. Nowroz, S. Reda, and F. Koushanfar, “High-sensitivity hardware trojan
detection using multimodal characterization,” in IEEE/ACM Design Automation & Test
in Europe (DATE), pp. 1271–1276, 2013.

[20] M. Li, A. Davoodi, and M. Tehranipoor, “A sensor-assisted self-authentication frame-
work for hardware trojan detection,” in IEEE/ACM Design Automation & Test in Europe
(DATE), pp. 1331–1336, 2012.

[21] S. Wei, K. Li, F. Koushanfar, and M. Potkonjak, “Provably complete hardware tro-
jan detection using test point insertion,” in IEEE International Conference on Computer-
Aided Design (ICCAD), pp. 569–576, 2012.

[22] S. Wei and M. Potkonjak, “The undetectable and unprovable hardware trojan horse,”
in IEEE/ACM Design Automation Conference (DAC), p. 144, 2013.

[23] X. Zhang and M. Tehranipoor, “Ron: An on-chip ring oscillator network for hardware
trojan detection,” in IEEE/ACM Design Automation & Test in Europe (DATE), pp. 1638–
1643, 2011.

[24] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan taxonomy and de-
tection,” IEEE Design and Test for Computers, vol. 27, no. 1, pp. 10–25, 2010.

[25] J. A. Roy, F. Koushanfar, and I. L. Markov, “Epic: Ending piracy of integrated circuits,”
in IEEE/ACM Design Automation & Test in Europe (DATE), pp. 1069–1074, 2008.

[26] M. Potkonjak, S. Meguerdichian, A. Nahapetian, and S. Wei, “Differential public
physically unclonable functions: Architecture and applications,” in IEEE/ACM De-
sign Automation Conference (DAC), pp. 242–247, 2011.

42

[27] Y. Yao, M. Kim, J. Li, I. L. Markov, and F. Koushanfar, “Clockpuf: physical unclonable
functions based on clock networks,” in IEEE/ACM Design Automation & Test in Europe
(DATE), pp. 422–427, 2013.

[28] D. Forte and A. Srivastava, “On improving the uniqueness of silicon-based physically
unclonable functions via optical proximity correction,” in IEEE/ACM Design Automa-
tion Conference (DAC), pp. 96–105, 2012.

[29] R. Kumar and W. Burleson, “Litho-aware and low power design of a secure current-
based physically unclonable function,” in ACM International Symposium on Low Power
Electronic Devices (ISLPED), pp. 402–407, 2013.

[30] R. Huang, D. Y. Deng, and G. E. Suh, “Orthrus: efficient software integrity protection
on multi-cores,” SIGARCH Comput. Archit. News, vol. 38, no. 1, pp. 371–384, Mar. 2010.

[31] M.-K. Yoon, S. Mohan, J. Choi, J.-E. Kim, and L. Sha, “Securecore: A multicore-based
intrusion detection architecture for real-time embedded systems,” in Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2013 IEEE 19th, pp. 21–32,
2013.

[32] D. Y. Deng, D. Lo, G. Malysa, S. Schneider, and G. E. Suh, “Flexible and efficient
instruction-grained run-time monitoring using on-chip reconfigurable fabric,” in
IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 137–148. IEEE
Computer Society, 2010.

[33] M. Ozsoy, D. Ponomarev, N. Abu-Ghazaleh, and T. Suri, “Sift: Low-complexity
energy-efficient information flow tracking on smt processors,” Computers, IEEE Trans-
actions on, vol. PP, no. 99, pp. 1–1, 2012.

[34] X. Zhang, L. van Doorn, T. Jaeger, R. Perez, and R. Sailer, “Secure coprocessor-based
intrusion detection,” in Proceedings of the 10th workshop on ACM SIGOPS European
workshop, pp. 239–242. ACM, 2002.

[35] B. Salamat, T. Jackson, A. Gal, and M. Franz, “Orchestra: intrusion detection using
parallel execution and monitoring of program variants in user-space,” in Proceedings
of the 4th ACM European conference on Computer systems, pp. 33–46. ACM, 2009.

[36] B. Salamat, T. Jackson, G. Wagner, C. Wimmer, and M. Franz, “Runtime defense
against code injection attacks using replicated execution,” Dependable and Secure Com-
puting, IEEE Transactions on, vol. 8, no. 4, pp. 588–601, 2011.

[37] Q. Zeng, D. Wu, and P. Liu, “Cruiser: concurrent heap buffer overflow monitoring
using lock-free data structures,” SIGPLAN Not., vol. 46, no. 6, pp. 367–377, June 2011.

[38] A. Waksman and S. Sethumadhavan, “Tamper evident microprocessors,” in
IEEE/ACM International Symposium on Security and Privacy, pp. 173–188, 2010.

[39] Y.-Y. Chen, P. A. Jamkhedkar, and R. B. Lee, “A software-hardware architecture for
self-protecting data,” in ACM Conference on Computer and Communications Security
(CCS), pp. 14–27, 2012.

43

[40] R. Elbaz, D. Champagne, C. H. Gebotys, R. B. Lee, N. R. Potlapally, and L. Torres,
“Hardware mechanisms for memory authentication: A survey of existing techniques
and engines,” Transactions on Computational Science, vol. 4, pp. 1–22, 2009.

[41] S. Chen, J. Xu, N. Nakka, Z. Kalbarczyk, and R. K. Iyer, “Defeating memory corrup-
tion attacks via pointer taintedness detection,” in IEEE Dependable Systems and Net-
works (DSN), pp. 378–387, 2005.

[42] G. E. Suh, D. E. Clarke, B. Gassend, M. van Dijk, and S. Devadas, “Efficient memory
integrity verification and encryption for secure processors,” in IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), pp. 339–350, 2003.

[43] B. Gassend, G. E. Suh, D. E. Clarke, M. van Dijk, and S. Devadas, “Caches and hash
trees for efficient memory integrity verification,” in Proceedings of High Performance
Computer Architecture (HPCA), pp. 295–306, 2003.

[44] J. Demme, R. Martin, A. Waksman, and S. Sethumadhavan, “Side-channel vulnerabil-
ity factor: A metric for measuring information leakage,” in ISCA, pp. 106–117, 2012.

[45] T. E. Levin, J. S. Dwoskin, G. Bhaskara, T. D. Nguyen, P. C. Clark, R. B. Lee, C. E.
Irvine, and T. Benzel, “Securing the dissemination of emergency response data with
an integrated hardware-software architecture,” in TRUST, pp. 133–152, 2009.

[46] O. Gelbart, E. Leontie, B. Narahari, and R. Simha, “Architectural support for secur-
ing application data in embedded systems,” in IEEE International Conference on Elec-
tro/Information Technology (EIT), pp. 19–24, 2008.

[47] B. Rogers, C. Yan, S. Chhabra, M. Prvulovic, and Y. Solihin, “Single-level integrity
and confidentiality protection for distributed shared memory multiprocessors,” in
Proceedings of High Performance Computer Architecture (HPCA), pp. 161–172, 2008.

[48] Y. Fei and Z. J. Shi, “Microarchitectural support for program code integrity monitor-
ing in application-specific instruction set processors,” in IEEE/ACM Design Automa-
tion & Test in Europe (DATE), pp. 815–820, 2007.

[49] A. Seshadri, M. Luk, A. Perrig, L. Doom, and P. Khosla, “Pioneer: Verifying code
integrity and enforcing untampered code execution on legacy systems,” in Malware
Detection, ser. Advances in Information Security. Springer US, 2007, vol. 27, pp. 253–
289.

[50] L. Fiorin, G. Palermo, S. Lukovic, V. Catalano, and C. Silvano, “Secure memory ac-
cesses on networks-on-chip,” IEEE Transactions on Computers (TC), vol. 57, no. 9, pp.
1216–1229, 2008.

[51] J.-P. Diguet, S. Evain, R. Vaslin, G. Gogniat, and E. Juin, “Noc-centric security of re-
configurable soc,” in NOCS, pp. 223–232, 2007.

[52] C. H. Gebotys and R. J. Gebotys, “A framework for security on NoC technologies,” in
IEEE Computer Society Annual Symposium on VLSI, pp. 113–117, 2003.

44

[53] H. K. Kapoor, G. B. Rao, S. Arshi, and G. Trivedi, “A security framework for noc using
authenticated encryption and session keys,” Circuits, Systems, and Signal Processing,
pp. 1–18, 2013.

[54] H. M. G. Wassel, Y. Gao, J. Oberg, T. Huffmire, R. Kastner, F. T. Chong, and T. Sher-
wood, “Surfnoc: a low latency and provably non-interfering approach to secure
networks-on-chip,” in International Symposium on Computer Architecture (ISCA), pp.
583–594, 2013.

[55] Y. Wang and G. E. Suh, “Efficient timing channel protection for on-chip networks,” in
ACM/IEEE International Symposium on Networks-on-Chip (NOCS), pp. 142–151, 2012.

[56] T. Alves and D. Felton, “Trustzone: integrated hardware and software security,” ARM
white paper, vol. 3, no. 4, pp. 18–24, 2004.

[57] L. Fiorin, G. Palermo, and C. Silvano, “A security monitoring service for nocs,” in
IEEE/ACM International Conference on Hardware/software Codesign and System Synthesis,
pp. 197–202, 2008.

[58] J. Diemer and R. Ernst, “Back suction: Service guarantees for latency-sensitive on-chip
networks,” in NOCS 2010, Fourth ACM/IEEE International Symposium on Networks-on-
Chip, Grenoble, France, May 3-6, 2010, pp. 155–162, 2010.

[59] D. M. Ancajas, K. Chakraborty, and S. Roy, “Fort-nocs: Mitigating the threat of a
compromised noc,” in IEEE/ACM Design Automation Conference (DAC), pp. 1–6, 2014.

[60] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and Y. Zhou, “Designing and im-
plementing malicious hardware.” in Proceedings of 1st Usenix Workshop on Large-Scale
Exploits and Emergent Threats, vol. 8, pp. 1–8, 2008.

[61] J. Porquet, A. Greiner, and C. Schwarz, “Noc-mpu: a secure architecture for flexible
co-hosting on shared memory mpsocs,” in IEEE/ACM Design Automation & Test in
Europe (DATE), pp. 1–4, 2011.

[62] D. Mandy and D. Sappington, “Incentives for sabotage in vertically related indus-
tries,” Journal of Regulatory Economics, vol. 31, no. 3, pp. 235–260, 2007.

[63] F. Analoui and A. Kakabadse, Sabotage: How to Recognise and Manage Employee Defi-
ance. Mercury, 1991.

[64] N. Jiang, D. Becker, G. Michelogiannakis, J. Balfour, B. Towles, D. Shaw, J. Kim, and
W. Dally, “A detailed and flexible cycle-accurate network-on-chip simulator,” in IS-
PASS, pp. 86–96, 2013.

[65] J. Hestness, B. Grot, and S. W. Keckler, “Netrace: dependency-driven trace-based
network-on-chip simulation,” in ACM/IEEE International Symposium on Networks-on-
Chip (NOCS), pp. 31–36. ACM, 2010.

[66] D. Becker. (2012, August) Open source noc router rtl [Online]. Available:
https://nocs.stanford.edu/cgi-bin/trac.cgi/wiki/Resources/Router.

45

[67] Gartner Inc., Semiconductor Design IP Revenue, Chip Infrastructure, Worldwide, 2012 and
2013. Gartner Research, March 2014.

[68] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu, “Kilo-noc: a heterogeneous network-
on-chip architecture for scalability and service guarantees,” in International Symposium
on Computer Architecture (ISCA), pp. 401–412, 2011.

[69] OCP International Partnership. (2009) Open Core Protocol Specification: Release 3.0
[Online]. Available: www.ocpip.org.

	Runtime Detection of a Bandwidth Denial Attack from a Rogue Network-on-Chip
	Recommended Citation

	PAP_threshold_allbench_multi.eps

