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ABSTRACT

Algorithmic Information Theory applications in Bright Field Microscopy and Epithelial

Pattern Formation

by

Hamid Mohamadlou, Doctor of Philosophy

Utah State University, 2015

Major Professor: Dr. Nicholas Flann
Department: Computer Science

Algorithmic Information Theory (AIT), also known as Kolmogorov complexity, is a

quantitative approach to defining information. AIT is mainly used to measure the amount

of information present in the observations of a given phenomenon. In this dissertation we

explore the applications of AIT in two case studies. The first examines bright field cell

image segmentation and the second examines the information complexity of multicellular

patterns. In the first study we demonstrate that our proposed AIT-based algorithm pro-

vides an accurate and robust bright field cell segmentation. Cell segmentation is the process

of detecting cells in microscopy images, which is usually a challenging task for bright field

microscopy due to the low contrast of the images. In the second study, which is the pri-

mary contribution of this dissertation, we employ an AIT-based algorithm to quantify the

complexity of information content that arises during the development of multicellular or-

ganisms. We simulate multicellular organism development by coupling the Gene Regulatory

Networks (GRN) within an epithelial field. Our results show that the configuration of GRNs

influences the information complexity in the resultant multicellular patterns.

(99 pages)
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PUBLIC ABSTRACT

Algorithmic Information Theory applications in Bright Field Microscopy and Epithelial

Pattern Formation

Hamid Mohamadlou

The incredible patterns of multicellular organisms emerge as a result of the operation

of Gene Regulatory Networks (GRN) that work during development. Understanding how

GRNs produce these complex multicellular patterns is a significant challenge in biology.

The primary goal of this dissertation is to employ Algorithmic Information Theory (AIT),

also known as Kolmogorov complexity, to unravel the information complexity of GRNs

and the resultant multicellular patterns. To obtain a better understanding of Kolmogorov

complexity performance, first we study an application in cell image segmentation.

There are an estimated 20,000-25,000 protein-coding genes in the human genome. The

sheer size of the human genome, as well as the huge number of protein and other gene

product networks, requires systems biologists to use simplified computational models to

gain insight into the behavior of the system. The approach taken in this work was to use

a simplified model of a genetic regulatory network called a Boolean network, in which each

gene is represented as a network node that takes binary values. Boolean networks represent

a qualitative description of gene states and their interactions.

In this work, a model of embryonic cells in an epithelium field was simulated. Each cell

holds a Boolean network and each Boolean network is designed to connect to the neighboring

cells through cell-cell signaling. The state of each cellular network is initialized randomly

by setting the state of each gene to 0 or 1. The state of the system during simulation is

run synchronously until steady or cyclic state is reached for all individual cells. The steady
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or cyclic state, which is also referred to as attractor, is used to construct the multicellular

body patterns by treating cells with the same attractor as the same cell types. The states

of all the genes during the simulation of gene network dynamics along with multicellular

patterns were encoded to strings and recoded for further analysis of information content.

Kolmogorov complexity-based algorithms were applied to understand how the complexity

of GRN configuration relates to the complexity of the spatial patterns that emerge as a

consequence of network operation.
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CHAPTER 1

INTRODUCTION

The patterns that emerge during development are the consequence of Genetic Regu-

latory Networks (GRNs) that operate within and between cells [5]. GRNs are dynamic

systems made up of a set of interacting genes where combinations of genes control the ex-

pression of other genes. Gene expression within each cell is determined by signaling within

and between cells, ultimately forming the body plan and subsequent morphology [6]. While

it is known that multicellular patterns emerge as a result of GRN interactions, the de-

tailed processes by which complex variety of cellular patterns develop remains a significant

challenge in biology.

Figure 1.1. A Drosophila embryo at the cellular blastoderm stage triple-labeled for three
segmentation proteins. Courtesy of Stephen W. Paddock, Eric J. Hazen, and Peter J.
DeVries, HHMI, University of Wisconsin, Madison, WI, USA.

The primary objective of this dissertation is to answer this question: How is the in-

formation content in gene network dynamics and multicellular patterns influenced by func-

tional and structural properties of the genetic regulatory network? The challenges in an-
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swering this question are twofold. First is quantifying the complexity of information that

arises in GRN dynamics and resultant multicellular patterns during development. Second

is determining the influential properties of a GRN in terms of the complexity of resultant

multicellular patterns.

In order to quantify the information complexity of biological networks and the resultant

spatial and temporal dynamics and patterns, we use the Algorithmic Information Theoretic

(AIT) approach, also known as Kolmogorov complexity. First, in chapter two, we perform

a study on Kolmogorov complexity, then in chapter three and four we explore the impact of

some of the functional and structural properties of GRNs on developing complex network

dynamics and multicellular patterns. The detailed objectives of each chapter are discussed

in the next section.

1.1 Research objectives

To have a better understanding of Kolmogorov complexity performance, in chapter two

we propose an application of cell image segmentation. The goal is to provide a preprocess-

ing step toward bright field microscopy cell segmentation, or detecting cells in microscopy

images by an image processing technique. Bright field microscopy is the simplest and most

common method of cell imaging but it does not provide sufficient contrast needed by image

processing methods for an accurate segmentation. Some studies have used images in stack

of defocused microscopy frames (also known as Z-stack) to acquire more information for

an accurate cell segmentation. In this study we propose a Kolmogorov complexity based

algorithm called maximal-information to select the most informative images from Z-stack

for an accurate and robust cell segmentation. maximal-information is compared with a re-

cent approach that uses a fixed frame selection strategy over embryonic kidney cells (HEK

293T) image data from multiple experiments.

In chapter three we study pattern formation in a simulated two-dimensional lattice of

cells containing identical GRNs, representing a simple model of an embryonic epithelium.

We explore the role of complexity domains of intracellular GRNs and the nature of cell-to-

cell signaling. We examine contact-mediated signaling, where cells can only send signals
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to neighboring cells, over a range that extends from no signaling to eight different signals.

Kolmogorov complexity is employed to evaluate the information content of the genetic reg-

ulatory networks, the network dynamics, and the emergent cellular patterns. The objective

of this chapter is to provide insight into the relationship between network dynamics and

cellular patterns as a function of the types of cell-cell signaling and complexity domains of

intracellular GRNs.

In chapter four we study the impact of GRN modularity on network dynamics and

multicellular patterns. There are two kinds of modules: structural and functional. When

GRNs are composed of tightly connected clusters of genes that are linked to other clusters by

sparse connections, then these networks are said to exhibit structural modularity. Modules

that occur frequently and consist of few interacting genes are referred to as functional

modules or, more commonly, network motifs. Due to the importance of network structural

modularity and the significance of biological motifs that naturally exist in a diversity of

organisms, the objective of this chapter is to explore the influence of modularity on network

dynamics and multicellular pattern complexity. The simulation model of chapter three is

extended by adding following features to the model: representation of a GRN as a modular

network and insertion of motifs into the complete GRN.

1.2 Modeling approaches and methodology

1.2.1 Boolean networks

To capture the behavior of gene regulatory system, scientists have developed mathemat-

ical and computational models for gene regulatory networks with the purpose of generating

predictions to explain experimental observations. Among these modeling alternatives is a

system of differential equations with quantitative values to capture the temporal and spa-

tial expression levels of the genes. Despite their accuracy for small well known networks,

differential equation suffer from the need for parameter values that are difficult to obtain.

They are also computationally and conceptually too complex to model larger networks [7].

The massive scale of gene and protein networks requires systems biologists to simplify
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the computational models to gain insights into the behavior of these systems. A Boolean

network is a simplified model of a genetic regulatory network, first introduced by Kauffman

[8], [9], in which each gene is represented as a network node that takes binary values (1

for expressed and 0 for not expressed). The state of a gene (0 or 1) is determined by its

Boolean function defined as an expression of AND, OR, NOT over the inputs from other

genes represented as directed edges in the network graph. Boolean networks represent a

qualitative description of gene states and their interactions.

An example of the use of Boolean networks is given for the inferred Drosophila segment

polarity network [1] illustrated in Figure 1.2 (d). This is the network that determines the

polarity (anterior-posterior axis) of each segment of the developing fruit fly. The large tan

box shows the intracellular network within one cell, and the connections between boxes

are the molecular signals that are products of intercellular signaling genes that link gene

outputs of one cell with the inputs of regulatory functions in neighboring cells. In silico

simulation of all known interactions among segment polarity genes in Drosophila has helped

to determine whether the polarity network suffices to produce the organized spatial pattern

in which cells only communicate with their adjacent neighbor [10].

1.2.2 Implementation of epithelial field of embryonic cells

To study pattern formation, a two dimensional lattice of cells containing identical

Boolean GRNs is employed as a simple model of an embryonic epithelium [11]. This is an

abstraction of many developmental systems, such as the cellularized Drosophila embryo [11],

the sensory epithelia of the developing vertebrate retina [12] and the inner ear [13]. Signaling

is implemented in the model as an edge connecting the state of one gene in a cell to an input

of a Boolean function of one or more of its neighbors. Such genes are called communicating

genes and these model ligand receptor interactions among contacting cells. The number of

communicating genes is referred to as the signaling bandwidth.

Two kinds of signaling configurations are considered: (a) Symmetric, where each cell

contains a gene (output of a Boolean function) that receives inputs from all four neighboring

cells. This gene is activated if any of the gene inputs of neighboring cells are active (as
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Figure 1.2. This diagram is discussed in chapter 3. The Drosophila segment polarity network
in Boolean framework introduced by Albert et al. [11]. The network shows interactions
between segment polarity genes and gene products. Genes are shown with rectangles,
mRNAs with ovals and proteins with hexagons. The influence of one gene on another is
indicated by the directed edges, those terminating in an arrow are activating, those with a
dot are inhibiting.

in [14]); or (b) Orthogonal, where two adjacent cells signal directionally (North-South, East-

West). Orthogonal signals correspond to intercellular communication along the anterior-

posterior and dorsal-ventral embryonic axes.

Boolean network simulation will eventually generate a sequence of states that repeat,

and so represent a fixed point. These fixed points within each intracellular network are

referred to as attractors [15] and may be either a single state (a point attractor) or a cycle

of states (a cyclic attractor). Some of these cyclic attractors may have an undetermined

cycle length and are classified as chaotic. Stable attractors of genetic regulatory networks

can be interpreted to represent terminally differentiated cell type [16] [17]. The process
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of cell differentiation where a cell transitions from a pluripotent cell to one with specific

character, then is the sequence of network states that converges to an attractor. In this

dissertation, if the state of two cells converge to the same attractor, even if they are cyclic

attractors that are out of phase, they are considered as the same cell type.

1.2.3 Set Complexity

Set complexity was first introduced by Galas [18] to discover and reflect all computable

similarities and information residing in a set of molecular sequences. Set complexity can be

used to quantify the information content of a regulatory network, its temporal dynamics,

and the spatial pattern produced. By measuring information content, set complexity can

distinguish between critical systems that encode maximal information, and ordered and

chaotic systems that encode less information. Set complexity (symbolized as Ψ) applies

Kolmogorov’s intrinsic complexity [15] to quantify contextual information in a set of objects

by discounting the combination of pairs of objects that are randomly related or redundant.

Set complexity is independent of any specific application, so long as each object in the

set (such as a GRN or multicellular pattern) can be encoded as a string. The Kolmogorov

complexity of two strings is the length of the shortest algorithm that can transform one

string to the other. Exact computation is undecidable [19], but minimum algorithm length

can be approximated by the normalized compression distance (NCD) described in [20].

NCD is defined below, where si and sj are strings, si + sj is the concatenation of si and sj ,

and C(s) is the compression size of string s:

0.0 ≤ NCD(si, sj) =
C(si + sj)−min(C(si), C(sj))

max(C(si), C(sj))
≤ 1.0 (1.1)

NCD is a measure of the similarity of the two strings. If the two strings compress

smaller together than separately, then they are similar and NCD will be closer to 0.0.

Then set complexity of a set of n strings S = {s1, . . . , sn} is defined:

Ψ(S) =
1

n(n− 1)

∑
si∈S

C(si)
∑
sj 6=si

NCD(si, sj)(1−NCD(si, sj)) (1.2)
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According to [21] [11] set complexity is generally insensitive to the specific method

of encoding objects (transforming objects to strings), as long as compression methods are

lossless and effective. As we will see in the next section, we have employed a diversity of

encoding methods selected based on the types of the data. For instance, network dynamics

and cellular patterns each require different encoding methods.

Set complexity can distinguish between ordered, chaotic and critical systems. If the

objects in a set are similar and NCD(si, sj) ' 0, the set belongs to the ordered domain and

Ψ(S) ' 0 indicating minimum information. A set belongs to the chaotic domain when the

objects in the set are random. In this case Ψ(S) takes low value because NCD(si, sj) '

1.0, however it will be greater than the ordered domain due to the effect of the C(si)

multiplicative term. Ψ(S) is maximized when the set of objects describe an information

dense system where the objects are all distinct from one another but share some similarity.

1.3 Project outlines

1.3.1 Project 1: An accurate and robust bright field cell segmentation: A

Kolmogorov complexity study

Cell segmentation is the identification of cells and their observable properties from

biological microscopy images. Florescent microscopy and bright field microscopy are two

main methods of cell imaging. While bright field microscopic imaging is the most common

method of cell microscopy, it presents a challenge to image processing techniques due to low

image contrast and lack of nuclei reporters available with florescent microscopy. For some

studies using bright field cell segmentation, researchers used images in stack of defocused

microscopy frames (also known as a Z-stack) to acquire more information for an accurate

segmentation. SephaCe is a recent method that uses images in the Z-stack for segmentation.

SephaCe presents a series of algorithms to automatically segment images without the need

for any florescent channel. The key to discriminating cells is to initialize a level-set algorithm

with the difference of two strongly defocused images, chosen based on their entropy values,

and then guide contour expansion using the difference of two weakly defocused images.
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In an ideal case, entropy value increases monotonically as defocused distance in Z-stack

increases, implying that there is no irregularity in the frames. Using this fixed frame

selection strategy produces reasonable results in this case, but a fixed strategy cannot

take into account random and systemic noises, variability in experimental configurations

including microscope configurations, and multiple unknowns in the biological system under

study.

In this project we present an optimization-based approach that searches the combi-

nations of Z-stack frames to select the four frames that contain the most information.

We propose a method called maximal-information, which applies Kolmogorov complexity

measures to identify specific out-of-focus frames that encode the maximum information.

maximal-information then searches the space of all possible combinations of two frames

from above the in-focus frame and two frames from below the in-focus frame, evaluates

each set, then picks the set that maximizes information content.

1.3.2 Project 2: Epithelial pattern formation: role of complexity domains and

cell-cell signaling

In this project, we study the information complexity of simulated theoretical GRNs,

their dynamics, and the resultant multicellular patterns. In the simulation we see the

multicellular patterns emerge in a range from random to fairly organized patterns. This

variation is due to different configurations for intra- and intercellular GRNs. We employ

a Kolmogorov complexity-based approach to evaluate the information content of classes of

GRNs with different configurations, their dynamics, and the emergent cellular patterns.

For example, we examine contact-mediated signaling, where cells can only send signals to

their neighboring cells, over a range that extended from no signaling to eight different sig-

nals. Finding a relationship between information complexity of GRNs and the information

complexity of the emergent multicellular patterns has potential biological importance.
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1.3.3 Project 3: Epithelial pattern formation: role of network modularity and

motifs

Several biological studies have claimed that GRNs are modular and contain network

motifs. In this project we explore the influence of modularity of GRNs on GRN dynamics

and multicellular patterns. In the first part of this project the GRNs is designed to be struc-

turally modular. In the second part of the project the most significant motifs are inserted

into random GRNs. The simulation model is unchanged from the previous experiment. We

employ a Kolmogorov complexity-based approach as an information theoretic measure to

evaluate the information complexity of random GRNs, GRN with modular structure, and

GRNs with inserted motifs.

1.4 Research impacts

In this dissertation we demonstrate that Kolmogorov complexity is a powerful tool

to quantify the amount of information contained within a phenomenon. We apply Kol-

mogorov complexity-based algorithms to solve some challenging problems in developmental

biology and in bright field image processing. We demonstrate that our Kolmogorov-based

algorithm significantly improves the results for bright field cell segmentation. Also, we

target a challenging problem in developmental biology. The challenge is to quantify the

information complexity that arises as consequence of gene interactions and the information

complexity of the resultant multicellular patterns. A tool that enables us to quantify in-

formation complexity in GRNs and emergent multicellular patterns will help us explore a

potential relationship between the complexity of GRNs and the complexity of information

in multicellular patterns. Such relationships can potentially have biological significance.



CHAPTER 2

MAXIMIZING KOLMOGOROV COMPLEXITY FOR ACCURATE AND ROBUST

BRIGHT FIELD CELL SEGMENTATION

2.1 Abstract

Background. Analysis of cellular processes with microscopic bright field defocused

imaging has the advantage of low phototoxicity and minimal sample preparation. However,

bright field images lack the contrast and nuclei reporting available with florescent approaches

and therefore present a challenge to methods that segment and track the live cells. Moreover,

such methods must be robust to systemic and random noise, variability in experimental

configuration, and the multiple unknowns in the biological system under study.

Results. A new method called maximal-information is introduced that applies a non-

parametric information theoretic approach to segment bright field defocused images. The

method utilizes a combinatorial optimization strategy to select specific defocused images

from each image stack such that set complexity, a Kolmogorov complexity measure, is

maximized. Differences among these selected images are then applied to initialize and guide

a level-set based segmentation algorithm. The performance of the method is compared with

a recent approach that uses a fixed defocused image selection strategy over an image data

set of embryonic kidney cells (HEK 293T) from multiple experiments. Results demonstrate

that the adaptive maximal-information approach significantly improves precision and recall

of segmentation over the diversity of data sets.

Conclusions. Integrating combinatorial optimization with non-parametric Kolmogorov

complexity has been shown to be effective in extracting information from microscopic bright

field defocused images. The approach is application independent and has the potential to be

effective in processing a diversity of noisy and redundant high throughput biological data.



11

2.2 Introduction

Cell segmentation is the identification of cell objects and their observable properties

from biological images. Current cell segmentation methods perform most accurately when

applied to high contrast and minimal noise images obtained from samples where the cells

have fluorescently-labeled cell nuclei and stained membranes, and are distinct with minimal

adherent membranes. However, these ideal conditions rarely exist.

Fluorescently tagging cells using green fluorescent protein (GFP) leads to robust iden-

tification of each cell during segmentation. While GFP tagging is widespread, there are

disadvantages when applying the method repeatedly to the same sample since under re-

peated application of high-energy light the cells can suffer phototoxicity. Such light can

disrupt the cell behavior through stress, shorten life and potentially confound the exper-

imental results [22–24]. Significantly, a requirement for GFP labeling adds a step before

a new cell line can be studied, thus making it difficult to apply this method in a clinical

setting.

The alternative is to use bright field microscopy, the original and the simplest mi-

croscopy technique, wherein cells are illuminated with white light from below. However,

using only bright field imaging of unstained cells presents a challenging cell detection prob-

lem because of lack of contrast and difficulty in locating both cell centers and borders,

particularly when cells are tightly packed. Bright field imaging, while eliminating photo-

toxicity, leads to an excess of segmentation errors that significantly reduce biological and

medical utility.

We seek to remedy the disadvantages and harness the experimental advantages of bright

field microscopy of living cells by applying information-theoretic measures over defocused

images to improve segmentation accuracy. The approach applies Kolmogorov complexity

to identify the most informative subset of images within the focal stack that maximize

information content while minimizing the effect of noise.

The paper first briefly reviews existing methods for segmentation of living cells, with a

focus on recent approaches to defocused bright field images. Next, measures of Kolmogorov
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complexity are introduced and applied to image data. The new maximal-information

method is then defined and evaluated by comparing its performance with a recent method

sephaCe [24] over image sequence data sets from three separate experiments. An analysis

and a discussion of the results follows.

2.2.1 Cell segmentation methods

Several cell segmentation approaches have been developed over time for detection of

live cells in microscopy images [25–28]. Most of the approaches binarize an image with

certain thresholding techniques, and then use a watershed or level-set based method on

either intensity, gradient, shape, differences in individual defocused images (referred to as

frames) [24, 29], or other measures. The algorithms then remove small artifacts with size

filters, and apply merge and split operations to refine the segmentation [25–27].

Florescent microscopy cell segmentation

Most studies can primarily be categorized into a few key approaches. Wavelets are used

for decomposing an image in both the frequency and spatial domain, and can be an effective

tool since wavelets are robust to local noise and can discard low frequency objects in the

background. Genovesio et al. [30] developed an algorithm to segment cells by combining

coefficients at different decomposition levels. Wavelet approaches work well with whole cell

segmentation, but have difficulty to segment internal cell structures. In Xiaobo et al. [31] a

watershed algorithm was introduced for cell nuclei segmentation and phase identification.

Using adaptive thresholding and feature extraction, Harder et al. [32] classified cells into

four cell classes comprising of interphase cells, mitotic cells, apoptotic cells, and cells with

clustered nuclei. In Solorzano et al. [33] the level-set method determines cell boundaries by

expanding an active contour around each detected cell nuclei.

While these cell segmentation algorithms have been developed for fluorescence mi-

croscopy images, defocused bright field cell segmentation demands more complex and ad-

vanced level of image processing. Broken boundaries, poor contrast, partial halos, and

overlapping cells are some of the shortcomings of available algorithms [24,29] when applied
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to images lacking fluorescent reporters.

Defocused bright field microscopy approaches

Selinummi et al. [34] introduced z-projection based method to replace whole cell flores-

cent microscopy with bright field microscopy. This method computes an intensity variation

over a stack of defocused images (referred to as the z-stack) to obtain a contrast-enhanced

image called a z-projection. Since variability of pixel intensity inside a cell is high compared

to the background, the resulting z-projection image has high contrast and can substitute for

an image obtained through whole cell florescent microscopy. The z-projection approach is

straightforward and free from parameters setting. However, in order to distinguish between

adherent cells, a second channel of nuclei florescent microscopy is required. As a final step

CellProfiler [35] software is applied to both the z-projection and nuclei florescent channel to

produce cell segmentation. While the z-projection approach avoids whole cell florescence, it

still requires an additional nuclei channel of florescent microscopy and so does not eliminate

potential problems with cell toxicity.

2.3 Implementation

A recent method that needs only bright-field defocused images has been introduced in

sephaCe [24]. This system is capable of both the detection and segmentation of adherent

cells and can be downloaded from (http://www.stanford.edu/rsali/sephace/seg.htm) as a

free and open source image analysis package. In contrast to Selinummi et al. where all the

frames of the z-stack are utilized, sephaCe selects only a subset of five frames as input to the

image processing system. sephaCe selects this subset using a hard-coded strategy indepen-

dent of each data set and each individual z-stack contained within that data set. Therefore,

sephaCe does not adapt to the inevitable equipment and biological sample variation. While

parameters of the image processing method can be tuned for specific data sets somewhat

ameliorating the problem, a more general purpose non-parametric frame selection method

is needed for high-throughput processing of diverse data sets. This work introduces a new

adaptable frame selection method that applies an information theoretic measure to select
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frame subsets specific to the idiosyncracies of each z-stack. This method is referred to as

maximal-information.

Following frame subset selection, the maximal-information method applies the same

image processing and segmentation algorithm of sephaCe. Ali et al. [24,29] presents a series

of algorithms that automatically segment each z-stack without the need for any florescent

channel. The key to discriminating adherent cells is to initialize a level-set algorithm [36]

with the difference between two strongly defocused frames and then guide contour expansion

using the difference of two weakly defocused frames. As an initial step, the in-focused frame

is detected by selecting that image from the z-stack in which the Shannon entropy [37] is

minimized. Given an image histogram I, entropy is defined as:

E(I) = −
∫ n

y=1

∫ m

x=1
p(I(x, y)) log p(I(x, y)))dxdy (2.1)

Where p(I(x, y)) is the probability of pixel intensity values. Entropy value is expected

to be maximized for strongly out of focus images and minimized for the in-focus image. Let

the in-focus image frame be I0.

After detecting the in-focus image, four additional images from the z-stack are selected,

two above the in-focus frame and two below. To initialize the level-set algorithm, a difference

image is generated from two strongly defocused images selected at a fixed distance of ±25µm

from the in-focus frame, referred to as I++ and I−−. This image is binarized using the

Otsu [38] thresholding method and then small artifacts are removed by labeling connected

components and applying size filter.

To guide the level-set algorithm in expanding the initial cell boundaries, another dif-

ference image is generated between two slightly defocused images ±10µm from the in-focus

frame, referred to as I+ and I−. Details on how this difference image is applied to compute

local phase and local orientation images that direct the border expansion is given in [29]

and [24].
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2.3.1 Motivation for the maximal-information approach

In the sephaCe package, the four defocused frames are chosen at fixed distances

(±10µm,±25µm) from the in-focused frame to initialize and guide the level-set algorithm.

Figure 2.1(a) illustrates an entropy analysis of a z-stack with 21 frames in which the im-

age separation is 3µm. The in-focus frame I0 is determined as the 12’th frame, the 9’th

and 15’th frames are the weakly defocused frames I− and I+ (in this case ±9µm due to

sampling resolution), the strongly defocused frames I−− and I++ are the 4’th and 20’th

frames. In this z-stack image, as the frames become more blurred, their entropy increases

monotonically implying that there are no irregularities within the frames. In this ideal case,

the fixed strategy can produce reasonable results.

However, in experiments over a diversity of images (given in Section Results) this fixed

selection of out-of-focus frames is demonstrated to produce poor segmentation. A fixed

strategy cannot take into account random and systemic noise, variability in experimental

configurations including microscope configurations, and multiple unknowns in the biological

system under study. Some of these conditions are illustrated in selected frame images

in Figure 2.1(c). Two possible reasons to account for the irregular entropy-focus plane

relationship in Figure 2.1(b) are:

• Biological variability where cells do not adhere to the flat surface of the culture medium

but vary in the z-dimension as they change morphology and form cell-cell adhesive

bonds. That is, a focused frame for one cell could be a defocused frame for other cells.

In Figure 2.1(c), the bright upper cell is positioned higher than the rest. Therefore a

semi-random level of sharpness resides in the all defocused images.

• Systemic noise introduced by microscopy and imaging. For instance in Figure 2.1(c),

frame 6 has strip noises introduced by the camera. Strip noise residing in the image

increases the entropy value from the 5’th frame to 6’th frame while a decrease is

expected.

Applying this fixed distance strategy to select strongly defocused frames can add un-

wanted initial active contours resulting in over-segmentation and also can miss initial active
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Figure 2.1. Relationship between frame entropy as the focus level changes in the z-stack is
shown in (a) and (b). In (a) there is a monotonic increasing and then decreasing relationship
between focus and entropy, with the in-focus frame containing minimum entropy. In (b) a
nosier data set is employed and the relationship between focus and entropy is irregular. As
can be seen in frame 6, banding and stripe noise introduced by the microscope unexpectedly
increases entropy. (c) Illustrates four corresponding frames for data set analyzed in graph
(b).

contours resulting in under-segmentation. Likewise, fixed selection of weakly defocused

frames can add anomalies into the local phase and orientation images and thus misdirect
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the contour expansion to include or exclude cells, particularly when cells are tightly packed.

Overall, the fixed approach in selecting initial images in the sephaCe package is brittle

and error-prone. The unavoidable variation requires an adaptable method rather than a

fixed approach. The maximal-information method uses an optimization based approach

that searches the combinations of z-stack frames to select the four frames that contain the

highest information, evaluated using Kolmogorov information-theoretic measure [39]. This

process is repeated for each individual z-stack and so adapts to the distinctiveness of each

sample. Since the maximal-information method is adaptive, it can be applied to a diversity

of data sets utilizing different microscopes, lighting conditions and biological samples.

2.3.2 Kolmogorov information set complexity

Set complexity [40], denoted Ψ, is applied to quantify the amount of information con-

tained within each possible set of four image frames. The measure is general purpose and

non-parametric in that it computes the information content of set of objects so long as

they can be encoded as strings. Set complexity has been applied to understand the or-

ganization and information content of biological data sets including developmental pattern

formation [5], genetic regulatory network dynamics [41], and gene interaction network struc-

ture [42]. The Kolmogorov complexity [39] of a string is the length of shortest algorithm

that can be used to generate the string. Exact computation is undecidable, but it can be

approximated by the compression size of a string. Bzip2 and zip compressor with block size

of 900 Kbytes have been tested and shown robust for this purpose.

A related Kolmogorov complexity measure is the Normalized Compression Distance

NCD) defined as the length of the shortest program that computes one given string from

another. This measure provides a quantification of similarity between the strings since the

more similar they are, the shorter the program needed. Again, this measure is undecidable

but can be estimated using compression. Normalized Compression Distance described in [19]

and [20] defined below, is such a measure of similarity between two objects that applies
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compression size C(s) of string s:

NCD(si, sj) =
C(si + sj)−min(C(si), C(sj))

max(C(si), C(sj))
(2.2)

where si + sj is the concatenation of si and sj string. If the two strings compress smaller

together than separately, then NCD will be closer to 0.0. As the two strings are more similar,

the concatenated string is more compressed resulting in a lower NCD value. Random strings

or dissimilar regular patterns are not as compressed and so NCD will be closer to 1 [43,44].

1. C(ssi + ssj) ' C(ssi ) ' C(ssj) then NCD(ssi , s
s
j) ' 0.0

2. C(sri + srj) ' C(sri ) + C(srj) then NCD(sri , s
r
j) ' 1.0

3. C(sri + ssj) ' C(sri ) and C(ssj) ' 0.0 then NCD(sri , s
s
j) ' 1.0

where sr is from the set of random strings and ss are simple strings containing regular

patterns. Set complexity [40] of a set of n strings S = {s1, . . . , sn} is defined:

Ψ(S) =
1

n(n− 1)

∑
si∈S

C(si)
∑
sj 6=si

NCD(si, sj)(1−NCD(si, sj)) (2.3)

Set complexity captures the relationships among strings in the set, discounting when

strings are very similar (NCD close to 0.0) and so contain the same information, or highly

dissimilar so that they have nothing in common and appear random (NCD closer to 1.0).

The value is maximized when each string is intrinsically complex (high C(Si)) and the

similarity between the strings lies between maximally dissimilar and maximally similar

NCD(si, sj) ' 0.5, which occurs when C(si+sj) ' C(si)/2−C(sj), assuming C(si) > C(sj).

Figure 2.2 gives an example of applying Ψ(S) to defocused images. Along the top

are the original frames and below them is their binary representation following an Otsu

thresholding step. Each binary image is encoded as a string by concatenating each column

scanning from left to right (more details are provided in Algorithm 2.3.3). For each image

the compression size is given. NCD values between each pair of the images is provided in

Table 2.1.
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Image I++ I+ I− I−−

Raw

Otsu

Figure 2.2. Strongly and weakly defocused selected frames from time step 1 in data set
one. Top row is the raw image frames. The second row is the binary image following Otsu
thresholding that is linearized and compressed.

Table 2.1. The NCD values for the four image frames given in Figure 2.2

NCD I++ I+ I− I−−

I++ 0.0 0.1429 0.2154 0.1071

I+ 0.0 0.0 0.2615 0.1296

I− 0.0 0.0 0.0 0.2000

I−− 0.0 0.0 0.0 0.0

2.3.3 The maximal-information segmentation method

To select the four most informative frames from a z-stack with n frames, the method

searches the space of all possible combinations of two frames from above the in-focus frame

(I++ and I+) and two frames from below the in-focus frame (I− and I−−), evaluates each

set for Ψ, then picks the maximizing combination. The method is given in Algorithm 2.3.3.

Algorithm 1. The maximal-information algorithm to select the four z-stack frames

needed to initialize the level-set method for segmentation. Let the input z-stack be

I containing n frames. The algorithm returns the in-focus frame and four defocused

frames. Note that all compression calculations are calculated once and cached.
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1: maximal-information(I)
2: % binarize and linearize images
3: for i = 1 to k do
4: Ip[i] =Otsu(I[i])
5: end for
6: % compress individual and pairwise strings
7: for i = 1 to k do
8: C[i] = C(Ip[i])
9: end for

10: for i = 1 to k do
11: for j = i+ 1 to k do
12: C[i, j] = C(Ip[i] + Ip[j])
13: NCD[i, j] = (C[i, j]−min(C[i], C[j]))/max(C[i], C[j])
14: end for
15: end for
16: % find in-focus frame
17: m← E(I[i])|1 ≤ i ≤ k
18: I0 ← I[m]
19: % search for weakly and strongly out-of-focus frames
20: Ψmin ←∞
21: for i = 1 to m− 2 do
22: for j = i+ 1 to m− 1 do
23: for k = m+ 1 to n− 2 do
24: for l = m+ 2 to n− 1 do
25: Ψ0 ← Ψ(i, j, k, l, NCD,C)
26: if Ψmin > Ψ0 then
27: Ψmin ← Ψ0

28: I++ ← I[i]; I+ ← I[j]; I− ← I[k]; I−− ← I[l];
29: end if
30: end for
31: end for
32: end for
33: end for
34: return I++, I+, I0, I−, I−−
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First each image in the z-stack is binarized using the Otsu [38] thresholding method

and then converted to a string (linearization) by concatenating each column of the image

to the next column [45]. Many methods of linearization were explored in [45] and column

concatenation was found to be effective because spatially located regularities are picked up

by compression. Bzip2 is applied to compute the compression size of each individual string

and also each pairwise concatenated string (for NCD, Equation 3.1). From these cached

compression values, pairwise NCD values are determined.

The O(n2) compression step dominates the computation time since strings must be

written to file before processing; the final Ψ calculation involves only matrix operations

and is very fast, even though more combinations must be computed. For the three data

sets studied in this work, the preprocessing and level-set algorithms of sephaCe take ap-

proximately 10 seconds per z-stack. The maximal-information frame selection method adds

approximately 20 seconds per z-stack to the run time. Timings were on an Intel Pentium

G640 Processor 2.8 GHz (3 MB cache).

2.4 Results

2.4.1 Set complexity analysis of image data

To understand how Kolmogorov Complexity measures could reveal information in z-

stacks, an initial study was performed by computing the NCD between each pair of 21

frames for three data sets each containing 192 z-stacks. The data sets used for in this

work are human embryonic kidney cells (HEK 293T) sampled at 5 minute intervals for 16

hours. Each z-stack sequence is from a distinct experiment. Data was obtained using a

Leica DM6000 microscope with each z-stack containing 21 image frames each separated by

10µm, with resolution 1024 × 1024 12-bit grey-scale pixels. Since the z-stack was sampled

at a 10µm resolution, the strongly defocused frames for sephaCe were set at ±30µm.

Figure 2.3 presents values of NCD in the form of a heatmap for each pair of frames along

the z-stack sequence for a selection of three images. Frames tend to decrease in similarity as

the focus distance increases so that blue areas (low NCD) are mostly around the diagonal,
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and red areas off the diagonal. However, each image displays significant individuality due to

noise, microscope variability over time and changes in the biological sample as cells divide,

die and move. This inconsistency among NCD matrices over time justifies the need for an

adaptive frame selection strategy.

6 Hamid Mohamadlou, Nicholas Flann

The term NCD(si, sj)(1 −NCD(si, sj)) is maximized when NCD(si, sj) '
0.5. In the case of strings being similar, Ψ(S) ' 0 indicates the set belongs to
the ordered domain and contains little information.

The goal is to select four frames which have the highest Set Complexity value
to start level set algorithm. In order to guarantee proposed algorithm choose two
strongly defocused frames and two slightly defocused frames, area in between
of end frames divides into four parts. Algorithm then use brute force search to
scan each area and choose desire frames to build the highest Set Complexity.

3 Experiments

As initial experiment in order to show frames similarity, Normalized Compression
Distance between each pairs of frames in zStack is calculated. The data set used
for this study is human embryonic kidney cells (HEK 293T) sampled with 192
images, taken at 5 minute intervals. Data was obtained using a Leica DM6000
microscope with each image containing 21 z-stack frames each separated by
10µm, with resolution 1024 × 1024 pixels. After applying Otsu thresholding
method on each frames in zStack, their binary images were encoded into string
to calculate NCD. Figure 2(a) presents value of NCD in form of heatmap for each
pairs of frames. Bottom left pixel (blue) shows NCD value for the first frame with
itself, which is zero. Experiment shows off-diagonal NCD values range between
0.6 (most similar images) to 1 (least similar images). Average NCD of each
frame with other frames in z-Stack indicates infocused frames roughly has the
least similarity with other images. However this is not the case in all the dataset
as the heatmap of NCD in figure 2(b) shows one frame could be distinctively
dissimilar to other frames due to possible noises. In figure 2(c) some central
frames are dissimilar to others.

(a) (b) (c)

Fig. 2. NCD values shown as heatmap for each pairs of frames in z-Stack. X axis starts
from right (first frame in zStack) to left (last frame). Y axis starts from bottom (first
frame in zStack) to top (last frame). Experiment shows off-diagonal NCD values range
from 0.6 (most similar images) to 1 (least similar images). For diagonal, NCD equals
zero(blue). (b) NCD one frames does not have similarity to other defocused frame, (c)
some central frames are dissimilar to others.

Figure 2.3. NCD values shown as a heatmap for all pairs of image frames in the z-stack of
three selected defocused image stacks from the same experiment. Color code blue specifies
pairs of frames with lowest NCD values and red specifies highest NCD values. The lowest z
frame is in the lower left, the highest z frame is in the upper right. Analysis illustrates that
off-diagonal NCD values range from 0.6 (most similar images) to 1 (red, most dissimilar
images). Along the diagonal NCD equals zero (blue). Note the diversity of similarity
relationships among the frames of each z-stack.

Four frames of the z-stack are chosen to start and guide the level-set algorithm. Fig-

ure 2.4 compares the computed Ψ of frames obtained by the maximal-information method

with the Ψ of the frames identified using the fixed distance method of sephaCe, for all 192

z-stacks. In all cases the maximal-information frame set has a higher information content

then the fixed sephaCe set. While this result is not surprising, it supports the need for

adaptability as it demonstrates the inability of a fixed strategy to pick those images that

have high intrinsic information. A mean difference hypothesis statistical analysis demon-

strates that these differences are significant, see Table 2.2. According to the p-value in

Table 2.2, that is much lower than 0.05, the mean difference hypothesis is rejected and so

there is a significant difference between the mean values of the two groups. That is, se-
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lecting images using maximal-information guarantees sets with higher Ψ than the sephaCe

method.
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Figure 2.4. A parametric plot of set complexity values for the four defocused frames selected
by the two algorithms. The X axis indicates the complexity value of the frame set selected
by maximal-information and the Y axis indicates complexity value for the frame set selected
by sephaCe. Each data point represents one z-stack from the 192 z-stacks in the human
embryonic kidney cells (HEK 293T) data set.

2.4.2 Precision and recall analysis

Two examples of segmented bright field microscopy frames are shown in Figure 2.5.

In (a) both algorithms select similar frames and produce similar and accurate results. In

(b) maximal-information selects a alternative set of frames at different focus planes (com-
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Table 2.2. Set complexity values for two different approaches

Fixed defocused distance
(sephaCe)

Selected by
maximal-information

Mean 278.5049 345.1289

Variance 10620.73 12336.47

Observations 192 192

Pearson Correlation 0.9603

P(T¡=t) one-tail 1.19825E-67

t Critical one-tail 1.6536

P(T¡=t) two-tail 2.3965E-67

t Critical two-tail 1.9736

pared to the fixed strategy) and produces significantly lower segmentation errors. Here the

sephaCe method fails to accurately detect four cells along with over-segmenting another.

In order to evaluate the segmentation results, the raw microscope z-stacks were pro-

vided to a human expert (Joseph C. Shope, Utah State University) who identified the cells

using Image-Pro Plus (Media Cybernetics). Optimal z-frames were selected and cell centers

determined by fitting a major and minor axis to produced excel files of cell center coordi-

nates for each z-stack. No segmentation results were given to the expert during this initial

cell identification. In parallel, the two methods were applied to the data sets to produce

segmentation results for each z-stack, drawn as overlays with red (maximal-information)

and blue (sephaCe) as in Figure 2.5. Next, the segmentation results were overlaid with

the expert-determined cell centers and for both methods a count was made of the correctly

identified cells (true positive), missing (false negative) and fragments of cells identified as

one cell or spurious objects (false positive). To measure the quality and utility of the meth-

ods overall, the precision Pr and recall Re of maximal-information and sephaCe correction

was determined, where:

Pr =
tp

tp+ fp
Re =

tp

tp+ fn

with tp, fp, fn being the count of detected true positive, false positive, and false negative

objects, respectively. In Table 2.3 the precision and recall of maximal-information are both
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Figure 2.5. Example cell segmentation results for two z-stacks of human embryonic kidney
cells (HEK 293T) overlaid on the in-focus frame. Segmentations produced by maximal-
information are shown in red; segmentations produced by sephaCe are shown in blue. In
(a) both algorithms select similar frames and produce similar and accurate results. In
(b) maximal-information selects a alternative set of frames at different focus planes from
the fixed strategy and produces significantly lower segmentation errors. Here the sephaCe
method fails to accurately detect four cells along with over segmenting another. In (c)
segmentation results are shown closeup.

significantly better than sephaCe for each of the three data sets.

In Table 2.3 the average correctly segmented cells for maximal-Information is higher

than sephaCe method and demonstrates the advantage of extracting more informative

frames in the z-stack. The average of both missing and unexpected cell segmentation
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Table 2.3. Segmentation results for three data sets for human embryonic kidney cells (HEK
293T)

Data set one maximal-
information

sephaCe Correlation t- stat P (T ≤ t)
one-tail

Correct Segmentation tp 9.12 5.76 0.3970 9.4557 0.0

Unexpected areas fp 0.68 0.80 0.2355 -0.5492 0.2939

Missing cells fn 1.60 4.72 -0.0909 -9.0929 0.0

Precision Pr 93.20% 89.36% 0.3295 1.4461 0.0805

Recall Re 85.37% 54.34% -0.2903 8.2830 0.0

Data set Two maximal-
information

sephaCe Correlation t stat P (T ≤ t)
one-tail

Correct Segmentation tp 13.35 12.60 0.4344 3.4701 0.0012

Unexpected areas fp 1.15 2.20 0.1633 -4.0977 0.0003

Missing cells fn 0.50 1.25 0.2939 -3.4701 0.0012

Precision Pr 92.30% 85.45% 0.1690 4.3714 0.0001

Recall Re 96.40 % 91.08% 0.2822 3.4407 0.0013

Data set three maximal-
information

sephaCe Correlation t stat P (T ≤ t)
one-tail

Correct Segmentation tp 15.56 11.86 0.4549 10.18 0.0

Unexpected areas fp 1.72 2.00 0.3642 -0.9434 0.1759

Missing cells fn 2.81 6.36 0.4926 -9.9501 0.0

Precision Pr 91.66% 86.23% 0.3887 2.6898 0.0

Recall Re 85.94% 65.21% 0.4256 10.12 0.0

tp is the average count of correctly identified cells, fp is unexpected segmentations and fn
is cells that were missed. Recall and precision are given as percentages.

for maximal-information are lower than sephaCe method. All three of these measures of

quality are shown to be significantly better for maximal-information than for the sephaCe

using a paired one-tail T-test (values that are less than 10−8 are reported as 0.0 in the

table).

In addition, Table 2.3 includes the inter-method correlation of tp, fp, fn over the z-

stack data sets. High correlation implies that the performance of both methods is consistent

in that they perform poorly on the same set of “difficult” images, and well on the same

set of “easy” images. Results in Table 2.3 show that true positives are highly correlated

implying that the cells correctly identified by maximal-information include some of the set

of cells recognized by sephaCe.
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2.5 Conclusions

This work has presented a method for identifying live cells in bright field defocused

images. The method applies Kolmogorov complexity measures to identify specific out-of-

focus frames that encode the maximum information. These frames are then used to initialize

active contours and guide contour expansion for level-set segmentation algorithms as applied

in the sephaCe method.

The new maximal-information approach is compared with a selection strategy employed

in the original sephaCe that picks out-of-focus frames using fixed offsets from the estimated

in-focus frame. An empirical study using a large data set of embryonic kidney cells (HEK

293T) z-stacks taken from different experimental runs has demonstrated that the adaptive

method significantly improves the recall and precision of the segmentation.

Kolmogorov set complexity identifies the most informative frames by exploiting simi-

larity measures between all pairs of frames contained within the NCD matrix. Each selected

frame is sufficiently dissimilar (high NCD) to other frames in the set so as to provide unique

and synergistic information about each cell in the z-stack. Recall that the dissimilarity is

due to changes in cell appearance as the focal plane is moved through the cell profile. By se-

lecting the best degree of dissimilarity, the differences between frames (used to initialize and

guide the active contour of the level-set method) maximize sensitivity to the presence and

shape of cells. Kolmogorov set complexity also tempers the effects of noise by discounting

frames that have too higher dissimilarity since this is most likely due to noise.

The method introduced here is generally applicable because it relies on fundamental

non-parametric information-theoretic properties and treats data as simple strings, ignoring

the actual semantics. Robustness is achieved by viewing frame selection as combinatorial

optimization problem with set complexity as the scoring function. The full potential of

the method in dealing with noise, variability in experimental configurations, and multiple

unknowns across a diversity of biological data will be explored in further studies.
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Software and data availability

The software is written in Matlab and is available for download at

https://sites.google.com/site/maximalinformation. Selected z-stack files are also available

for download at https://sites.google.com/site/maximalinformation. For the full data set,

please email nick.flann@gmail.com.
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CHAPTER 3

KOLMOGOROV COMPLEXITY OF EPITHELIAL PATTERN FORMATION: THE

ROLE OF REGULATORY NETWORK CONFIGURATION

3.1 Abstract

The tissues of multicellular organisms are made of differentiated cells arranged in orga-

nized patterns. This organization emerges during development from the coupling of dynamic

intra- and intercellular regulatory networks. This work applies the methods of information

theory to understand how regulatory network structure both within and between cells relates

to the complexity of spatial patterns that emerge as a consequence of network operation.

A computational study was performed in which undifferentiated cells were arranged in a

two dimensional lattice, with gene expression in each cell regulated by identical intracellular

randomly generated Boolean networks. Cell-cell contact signaling between embryonic cells

is modeled as coupling among intracellular networks so that gene expression in one cell can

influence the expression of genes in adjacent cells. In this system, the initially identical cells

differentiate and form patterns of different cell types. The complexity of network structure,

temporal dynamics and spatial organization is quantified through the Kolmogorov-based

measures of normalized compression distance and set complexity. Results over sets of ran-

dom networks that operate in the ordered, critical and chaotic domains demonstrate that:

(1) Ordered and critical networks tend to create the most information-rich patterns and

networks; (2) signaling configurations in which cell-to-cell communication is non-directional

mostly produce simple patterns irrespective of the internal network domain; and (3) direc-

tional signaling configurations, similar to those that function in planar cell polarity, produce

the most complex patterns when the intracellular networks function in non-chaotic domains.
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3.2 Introduction

Multicellular organisms exhibit an incredible variety of cellular patterns, for instance,

those in the Drosophila embryo illustrated in Figure 3.1. These patterns arise during devel-

opment and are a consequence of genetic regulatory networks (GRNs) that operate within

cells and that respond to communication between cells [46,47]. One interesting question to

explore is the relationship between the structure of GRNs and the complexity of cellular

patterns that can emerge from the operation of these networks. A related question is how

GRNs and their evolution contributed to the transition from unicellularity to multicellular-

ity. Although details are not known about the evolution of multicellularity in any lineage,

this process almost certainly involved the co-option of GRNs and intercellular communica-

tion systems that existed in single-celled organisms (Knoll, 2011).While the actual paths of

evolution to complex multicellularity may never be known, potential paths open to evolu-

tion can be explored and understood through computational studies. This is a long term

goal of the investigations reported here.

Evidence suggests that living processes lie “on the edge of chaos,” and that biological

systems experience selection to maximally retain information yet allow evolution [48–50].

Dynamic systems, including biological systems, operate in three complexity domains: or-

dered, critical and chaotic. Ordered systems are robust in that they dampen perturbations

to retain information, but at the cost of limited potential for change. Chaotic systems mag-

nify perturbations and lose information, rendering them unsuitable for homeostatic living

systems; in fact, chaotic systems are implicated in diseases like cancer [51]. Critical systems,

which operate on the cusp between order and chaos, are the most information dense in both

network organization and dynamics [52]. This work focuses on how the information content

of multicellular patterns is influenced by the complexity domain of intracellular GRNs and

the nature of cell to cell signaling.

3.3 Methods

An empirical study was performed with a simulated embryonic epithelium consisting

of a grid of undifferentiated cells, each containing identical Boolean networks to model a
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(a) Expression of hairy (yellow) in the
cellular blastoderm (Courtesy of Lan-
geland, S. Paddock, and S. Carroll,
HHMI)

(b) Expression of segment polarity
genes, wingless (wg ; green) and en-
grailed (en; red). Courtesy of C. Tom-
lin and J. D. Axelrod [53]

(c) Expression of seven Hox genes at
the extended germ band stage. (Cour-
tesy of Dave Kosman, UCSD)

Figure 3.1. Example of pattern formation in Drosophila embryos.

genetic regulatory network. Cell-cell communication was modeled by linking the output of

a Boolean function to the input of the genetic regulatory network controlling one or more

adjacent cells. The complexity domain of the network, its temporal dynamics and resultant

pattern were quantified using the information theoretic measure called set complexity [54].

Empirical studies were performed over ensembles of randomly generated Boolean networks

and the results compiled. Each step is defined in detail below.

3.3.1 Regulatory Network Models

Boolean networks [8] represent sets of expressed or non-expressed genes that are reg-

ulated by other genes using logic functions. They represent a qualitative description of

gene states and there interactions. For instance, the inferred Drosophila segment polarity

network is illustrated in Figure 3.2 (from [1]). Within the large tan box is the intracellular

network of one cell, and the connections between boxes are the intercellular signaling genes
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Figure 3.2. The Drosophila segment polarity network in Boolean framework introduced
by Albert et al. [1]. Network shows interactions between segment polarity genes and gene
products. Some interaction are inter-cellular and connect two cells (represented by the two
tan boxes). Gene’s are shown with rectangles, mRNAs with eclipses and proteins with
hexagons.

that link the outputs with the inputs of regulatory functions that are activating (→) or

inhibiting (ᵀ).

An assignment of true or false (representing expressed or not expressed) to each node

in the network describes the state of the Boolean network. In this work, a node is a gene,

mRNA, or protein and nodes are referred to generically as “genes.” This is illustrated for

the Drosophila segment polarity network in Figure 3.3. Each column is the gene expression

values in a single cell, with rows corresponding to each gene and black showing expression

and grey showing non-expression of a gene. Figure 3.3(a) shows the state of the network
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Figure 3.3. Gene expression in Drosophila segment polarity genetic regulatory network.
The vertical axis shows the genes (lower case) and proteins (upper case) in the network
shown in Figure 3.2, and the horizontal axis is a linear sequence of individual cells. Each
repeating unit in the embryo (a paragsegment) is four cells wide. Eight paragsegments are
represented in the figure. (a) The initial gene expression values, with the exception of the
sloppy-paired (SLP) gene are set randomly. (b) A steady-state gene expression pattern that
emerges from the operation of the Boolean network.

before execution, with all but the sloppy-paired (SLP) gene assigned random values. SLP

is a member of the previously activated pair-rule gene network, and serves as a initiating

gene for activation of the segment polarity network [1]. To simulate the dynamics of the

network, the state of the system is clocked by applying each regulatory function to recom-
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pute output gene values, from all gene values of its inputs. Figure 3.3(b) shows the state

of the network when it has reached a steady state. The pairwise patterning has emerged,

with the values of genes engrailed (en) and wingless (wg) matching the biological embryo

given in Figure 3.1(b).

In this work, sets of random intracellular Boolean networks were generated by ran-

domly interconnecting a varying number of nodes within one cell then instantiating each

regulatory node with a randomly generated logic function. To produce networks of different

complexity domains, the number of inputs to each Boolean function (node in the network)

is set according to s = 2kp(1− p) where s is the sensitivity of the network to perturbations

in gene values, p is the probability of the output of each Boolean function being 1, and k

is the count of inputs to each Boolean function [55]. When s = 1 a single bit change is

on average propagated to one other node and the network is in the critical domain. In an

ordered network, s < 1 and perturbations tend to die out, while in a chaotic network, s > 1

and perturbations tend to grow. In this work, p was fixed at 0.5 and k was changed to

create networks of different domains: k = 1 for ordered, k = 2 for critical, and k = 3 for

chaotic.

To study multicellular pattern formation, a two dimensional lattice of cells containing

identical GRNs was employed as a simple model of an embryonic epithelium [56]. This is an

abstraction of many developmental systems, such as the cellularized Drosophila embryo [57],

and the sensory epithelium of the developing vertebrate retina [12] and inner ear [13].

Signaling is implemented in the model as an edge connecting the state of one gene in a

cell to an input of a Boolean function of one or more of its neighbors (see Figure 3.4).

Such genes are called communicating genes and these model ligand-receptor interactions

among contacting cells. The number of communicating genes is referred to as the signaling

bandwidth.

Two kinds of signaling configurations are considered: (a) Symmetric, where each cell

contains a gene (output of a Boolean function) that receives inputs from all four neighbors.

This gene is activated if any of the gene inputs of neighboring cells are active (as in [14]);
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Figure 3.4. Network model used in this work. Each box is a cell within the epithelium
containing an intracellular Boolean network that is identical to all other cells within the
epithelium. A genetic regulatory network is represented as a graph where nodes are Boolean
functions (representing a gene regulatory function) and edges denote an interaction between
the output of one function and the input of another (a different regulatory gene). In (a)
there is no signaling between cells; (b) illustrates orthogonal communication where one
gene regulates the expression of another gene in an adjacent cell. Red nodes represent
communicating genes; white are intracellular genes.

or (b) Orthogonal, where two adjacent cells signal directionally (North-South, East-West).

Orthogonal signals correspond to intercellular communication along the anterior-posterior

and dorsal-ventral embryonic axes. A mechanism to autonomously generate intercellular

directional signaling via a morphogen gradient has been elegantly demonstrated in [58]. This

is implemented in the Boolean network by connecting an output function of the originating

cell to the input function of the destination cell.

Since this work focusses on the self-organization of patterns, the state of each intracel-

lular network is initialized randomly by setting the activation of each gene to on or off with

equal probability. To simulate the emergence of patterns over the modeled epithelium, the

state of the system is clocked synchronously until either a steady state or the maximum

number of updates is reached.
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Synchronously clocking the network is an abstraction of the actual process of biological

regulation [8], in which the underlying molecular events are stochastic and execute at dif-

ferent temporal scales. To better represent this process, Boolean network dynamics can be

asynchronously updated [59] by applying the regulatory rules in a random order, along with

differential time delays to pre- and post-translational events [60]. The inherent molecular

stochasticity can be likewise modeled by randomly switching the state of genes [61] during

dynamics.

In this work synchronous updating is applied both for its simplicity and its ability

to reproduce biological observations with sufficient fidelity; evidenced by the diversity of

modeling systems that employ this approach including eukaryotic cell dynamics [62], yeast

transcription networks [63], and Drosophila segment formation [1, 64]. In [65] a study was

presented suggesting that synchronous methods can approximate those that employ asyn-

chronous approaches. Furthermore, extensive studies of the Drosophila segment formation

network [60] demonstrated that synchronous updating can converge to the same attractors

as asynchronous updating. Finally, using the synchronous approach considerably eases the

detection of identical intracellular states and subsequently the patterns that emerge in the

simulated epithelium.

Network simulation will eventually generate a sequence of states that represent a fixed

point, where states start to repeat. These fixed points within each intracellular network are

referred to as attractors [8] and may be either a single state, or point attractor, or cyclic,

where the state transitions return to a previous state. To detect whether a cell has reached

a fixed point, the state of each intracellular network at each time point is compared to all its

previous states. If a single match is found, an attractor has been reached since the updates

are deterministic. If no cycle is detected within the maximum number of steps, the cell is

considered to be in a chaotic state.

The assertion that attractors of genetic regulatory networks are terminally differenti-

ated cell types is gaining acceptance in the scientific community [16,17,66]. The process of

cell differentiation is then the sequence of network states that converges to an attractor. In
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this work, if the state of two cells converge to the same attractor, even if they are out of

phase, then they are considered as the same cell type.

3.3.2 Information Complexity

Set complexity [54] can be used to measure the information content of a regulatory

network, its temporal dynamics, and the spatial pattern produced. By measuring informa-

tion content, set complexity can distinguish between critical systems that encode maximal

information, and ordered and chaotic systems that encode low information. Set complexity

(symbolized as Ψ) applies Kolmogorov’s intrinsic complexity [67] to quantify contextual

information in a set of objects by discounting pairs of objects that are randomly related or

redundant. Set complexity is independent of any specific application, so long as each object

in the set can be encoded as a string.

The Kolmogorov complexity of two strings is the length of the shortest algorithm that

can transform one string to the other. Exact computation is undecidable, but minimum

algorithm length can be approximated by the normalized compression distance (NCD) de-

scribed in [19] and [20]. NCD is defined below, where si and sj are strings, si + sj is the

concatenation of si and sj , and C(s) is the compression size of string s:

0.0 ≤ NCD(si, sj) =
C(si + sj)−min(C(si), C(sj))

max(C(si), C(sj))
≤ 1.0 (3.1)

NCD is a measure of the similarity of the two strings [43,44]. If the two strings compress

smaller together than separately, then NCD will be closer to 0.0. Consider the following

cases, where sr is from the set of random strings and ss are simple strings containing regular

patterns:

1. NCD(ssi , s
s
j) ' 0.0 since C(ssi + ssj) ' C(ssi ) ' C(ssj).

2. NCD(sri , s
r
j) ' 1.0 since C(sri + srj) ' C(sri ) + C(srj)

3. NCD(sri , s
s
j) ' 1.0 since C(sri + ssj) ' C(sri ) and C(ssj) ' 0.0

Then set complexity of a set of n strings S = {s1, . . . , sn} is defined:
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Ψ(S) =
1

n(n− 1)

∑
si∈S

C(si)
∑
sj 6=si

dij(1− dij) (3.2)

where dij = NCD(si, sj). The distance dij is maximized when NCD(si, sj) = 0.5, which

occurs when C(si + sj) ' C(si)/2− C(sj), assuming C(si) > C(sj). In the case of strings

in the set being similar, Ψ(S) ' 0 indicating the set belongs to the ordered domain and

contains little information. Chaotic systems generate strings that appear random and so

Ψ(S) is minimized, but not zero because of the C(si) multiplicative term. In [54] it is shown

that Ψ(S) is maximized when the set of strings describe an information dense critical system.

To ensure accurate measurement of compression length the block size of the compressor

must be greater than the string length. Here we used the bzip2 compression algorithm with

a block size of 900 Kbytes [68].

3.3.3 String encoding of networks, network dynamics, and patterns

To compute the set complexity of any set of objects, each must be encoded as a string

by a one-to-one mapping so that no information is lost. The method by which each random

network, temporal dynamics, and the spatial pattern produced are encoded as a string is

described below. Studies in [21] suggest that NCD and Ψ are in general insensitive to the

specific encoding methods employed so long as the compression methods are effective. Let

n be the number of Boolean functions in each intracellular network, k be the number of

input connections of each function and m2 be the total number of cells in the pattern (for

a square pattern of m×m). The following mappings were employed:

Network: The method used is described in the supplementary materials of [69]. Here the

complete intercellular network is represented as a directional connectivity matrix with

side m2nk where each Boolean variable is assigned a unique identifier. The matrix

is then represented in row-order and encoded as a string. Each Boolean function is

encoded by 2k 1’s or 0’s, one for each row in the function table, along with the k

identifiers of its input variables. The two strings are then concatenated.
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Temporal dynamics: To simulate pattern formation, each network is executed for 300

time steps with a “burn in” period of 100 steps [21]. The burn in period is ignored

in the analysis of the dynamics. The 2D space-time matrix of the network state

trajectory with size 200m2n is then encoded as a row-order string of 1’s and 0’s.

Spatial pattern: At the completion of the forward simulation of the network, the dynam-

ics of each intracellular network is analyzed to identify cyclic attractors by searching

for repeating states. Then each cell is assigned a cell type ID by performing 200m2

comparisons where matching attractors are assigned the same type (irrespective of

phase). The string is then a row-order concatenation of each cell’s type ID in the

m×m simulated epithelium.

3.4 Experimental study

Figure 3.5. Examples of patterns from result sets showing their Ψp value (the set complexity
of patterns), the bandwidth (BW is number of communicating genes), the intercellular sig-
naling configuration (orth; is orthogonal, sym; is symmetrical), the cell-cell communication
configuration (comm: sym is symmetric, orth is orthogonal) and the complexity domain
(ordered, critical, chaotic) of the intracellular network. Each cell in the pattern is colored
according to its attractor (same attractor, same color). Patterns are ordered left to right
by increasing compression size.
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In this study the number of Boolean functions in each intracellular network is fixed

at eight and the pattern is fixed at a 20 by 20 square arrangement of cells. These values

represent a balance between computational feasibility and realism. The entire intercellular

network contains 3200 Boolean functions. To simulate the activity of the network, each

gene in each cell is randomly assigned a value of true or false and stepped forward 300

iterations as described in Section 3.3.3.

With three complexity domains of intracellular networks (ordered, critical and chaotic),

two communication configurations (symmetric and orthogonal), and nine bandwidths (zero

through eight) there are 54 experimental conditions. For each condition, 100 random net-

works were constructed and each executed 10 times from a distinct random initial state.

For each run, the specific network, its temporal dynamics and the resulting spatial pattern

were encoded into strings as described in Section 3.3.3 and stored in separate folders. Given

these parameters, the string size of the network is 3200k2k characters; the string size of the

dynamics is 64×103k characters; and the string size of the pattern is 400 characters, where

400 is the maximum number of unique attractors. Additionally, each spatial pattern was

recorded as an image, examples of which are provided in Figure 3.5.

Results presented in Section 3.5 were computed for each experimental condition above

using four hundred network repeats. For every execution of a network, its dynamics and

pattern were encoded as strings and stored. For each of these string sets, 2000 NCD values

were computed by randomly sampling string pairs. Not all pairs were considered because

the total number of NCD values grows as the square of the string set cardinality (see

Equation (3.1)). Next, Ψ was computed for the network, dynamics and pattern string sets

for each of the 54 experimental conditions. Ψ was estimated from sampling by averaging

100 distinct set complexity computations, each determined from a random sampling of 10

NCD values. Sampling was used since the run time of set complexity grows as the square

of NCD set cardinality (see Equation (4.1)).

3.5 Results and discussion

Three studies were conducted that are described below.
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A sample of the results from the first study is given in Figure 3.5. This figure illustrates

six pattern sets that emerged from running the 54 combinations of network complexity do-

mains, signaling configurations, and bandwidths of communication described above. Each

experimental condition produced a diversity of patterns depending on the topology of each

randomly generated intracellular network and its Boolean function values. However, even

in the face of these randomized conditions, common patterning themes are apparent within

each experimental condition. For example, the first row of patterns in Figure 3.5 was

generated by networks operating in the ordered domain and with cells communicating sym-

metrically. These patterns are all simple and composed of regular patches set on a uniform

background, and have a low Ψp (pattern set complexity) of 9.38. In contrast, the fourth row

of patterns that emerged from networks operating in the critical domain and cells linked

by orthogonal communication shows complex diagonal repeating elements with varying pe-

riodicity and high Ψp of 26.94. In general, symmetric signaling tends to produce patterns

that contain contiguous regions and maze-like interfaces that have low Ψp, while orthogonal

signaling tends to produce repeating regular pattern elements that have high Ψp.

3.5.1 Distributions of NCD values

The second study investigated the distributions of NCD values within each set of net-

works Figure 3.6 and patterns Figure 3.7. Distributions of the dynamics were not included

in the results because the emphasis is on the relationship between network complexity and

pattern complexity. These NCD values were computed from ordered, critical and chaotic

intra-cellular networks that communicate by symmetrical or orthogonal signaling. When

many pairs of strings have an NCD value near 0.5, then Ψ is often high because the sum

of mutual Kolmogorov information NCD(si, sj)(1−NCD(si, sj)) will be high. If most pairs

of strings are identical or random, then NCD will exhibit a bimodal distribution at 0.0 and

1.0, and the set typically has a low Ψ value. The specific value of Ψ for each string set will

be dependent on both the NCD distribution and the compression sizes of the individual

strings. Results of the Ψ experiments are discussed in Section 3.5.1.
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Network
Domain

Communication Type

Symmetric Orthogonal

Ordered (a) (c)

Critical (a) (c)

Chaotic (b) (b)

Figure 3.6. Distributions of network NCD values between network pairs as a function of
the number of communicating genes from 0 to 8 along the horizontal axis. The vertical axis
for each plot is NCD from 0.0 at the bottom to 1.0 at the top. High probability is red, low
probability is blue.

Distribution of NCD network values

Figure 3.6 shows that NCD distributions are remarkably similar for all the network

configurations. In addition, each experimental condition exhibits low variance, irrespective

of the bandwidth of the networks. Higher NCD values indicate dissimilarity between net-

work strings due to the random construction of the intracellular networks in each simulated

epithelium. The signaling configuration plays a small role in shaping the distributions be-



43

Pattern
Domain

Communication Type

Symmetric Orthogonal

Ordered (a) (c)

Critical (a) (c)

Chaotic (b) (b)

Figure 3.7. Distributions of pattern NCD values between pattern pairs as a function of the
number of communicating genes from 0 to 8 along the horizontal axis. The vertical axis
for each plot is NCD from 0.0 at the bottom to 1.0 at the top. High probability is red, low
probability is blue. (a)(c) refer to the equivalence classes discussed in Section 3.5.1.

cause specific encodings of intercellular connectivity produces little variation in the strings.

The minor role of variation in NCD values as bandwidth increases is predicted by the bino-

mial distribution of signaling configurations. Given a network with bandwidth i, there are(
n
i

)
possible signaling configurations. At low and high bandwidths the number of possible

signaling configurations is low, so NCD is low. At intermediate bandwidths, the number of

signaling configuration is high and therefore NCD is high.
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Distribution of NCD pattern values

Figure 3.7 shows that the six network configurations produce three different types

of NCD distributions that we call equivalence classes. The first equivalence class (Fig-

ure 3.7(a)) is created by ordered or critical networks connected by symmetric signaling be-

tween cells. These network configurations produce bimodal NCD distributions with maxima

at 0.0 and near 1.0. The 0.0 maximum is a consequence of the majority of cells differen-

tiating to the same attractor. This occurs when the intracellular network only has a few

attractors, or when the intercellular connectivity over-constrains the attainable attractors.

The 1.0 maximum is a consequence of cells converging to many distinct and independent

attractors. This results in patterns with little or no spatial organization. Symmetric con-

nections limit information transfer among cells because signals from neighbors are combined

using disjunction, and this leads to loss of directional information.

The second equivalence class (Figure 3.7(b)) is observed when the intracellular networks

are chaotic, irrespective of the signaling configuration. Here, all NCD values are near

1.0 because the patterns are either disordered or complex but with many imperfections

(as illustrated in Figure 3.7). These imperfections are cells whose intracellular network

dynamics are in long or unlimited attractor cycles (a characteristic of chaotic networks

(Kauffman, 1993) and are therefore classified as unique cell types. Significantly, the addition

of information transfer between cells by orthogonal signaling prevents adjacent cells from

converging to the same attractor.

The third equivalence class (Figure 3.7(c)) is the most complex and is observed with

orthogonal signaling and intracellular networks that are either ordered or critical. Here,

the distribution has a significant population around 0.5 NCD and each pattern has a high

compression size. We also observe that these high information patterns increase with the

number of signals, particularly when there are six or more signals sent through commu-

nicating genes. This highest complexity equivalence class appears only under orthogonal

signaling, likely because this signaling configuration promotes long range information trans-

fer between cells.
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(a) Symmetric communication (b) Orthogonal communication

Figure 3.8. Network vs. pattern complexity. The relationship between network complexity
and the subsequent pattern complexity for the two signaling configurations. Each line shows
the trajectory as the signaling bandwidth increases from zero to eight for ordered, critical
and chaotic networks.

Relationship among network and pattern complexity

The third study investigated how the complexity of intra-and intercellular networks

impact the resulting epithelia patterns. Parametric plots that relate network and pattern Ψ

are given in Figure 3.8 for symmetric and orthogonal signaling configurations. Each graph

includes relationships for ordered, critical and chaotic networks as the signaling bandwidth

grows.

Results show that symmetric communication is sufficient to generate low complexity

patterns in the simulated epithelium (Figure 3.8(a)). The network complexity domain has

a negligible effect on pattern complexity, with ordered, critical and chaotic domains produc-

ing a narrow range of low complexity patterns. Increases in signaling bandwidth produce

modest increases in network complexity for ordered or critical networks. When intracellular

networks are chaotic, increasing bandwidth leads to increases in network complexity, but
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without an increase in pattern complexity.

The introduction of directionality in signaling results in significant changes in pattern

complexity (Figure 3.8(b)). For critical and ordered networks, as signaling bandwidth grows

from 1 to near half the number of intracellular genes, the network complexity reaches a max-

imum (as discussed in Section 4.2.1). Increasing signaling bandwidth beyond this number

of genes maintains network complexity but significantly increases pattern complexity. A

maximum in pattern complexity is reached when every intracellular gene is communicating.

In contrast to ordered and critical networks, chaotic networks that use orthogonal signaling

do not develop complex patterns at any communication bandwidth.

3.6 Summary

This work has explored the potential of ordered, critical or chaotic genetic regulatory

networks to create complex patterns in a simulated field of embryonic cells. The impact

of the transition from autonomous cells to cells that communicate by contact-mediated

signaling was examined as the number of signaling connections increase. An information

theoretic measure was used to evaluate the information content of the originating networks,

the network dynamics and the emergent cellular patterns. The most complex patterns

emerge from ordered and critical networks that communicate directionally. When cells

communicate with all neighbors isotropically, only simple, low information patterns emerge.

Low information patterns also emerge from chaotic networks regardless of the signaling

bandwidth or configuration.

In networks that operate in an isotropic environment (symmetric networks), critical

networks generated the most complex patterns (see Figure 3.8(a)), but only when there

were four or more communicating genes. This is consistent with previous reports that

conclude that critical networks are centrally important in biology [69–71]. More complex

patterns arise when there is directionality to intercellular signaling (orthogonal signaling;

Figure 3.8(b)). A surprising result was that with directional signaling, ordered networks

produce patterns as complex as critical networks and do so at lower levels of network com-

plexity. With orthogonal signaling, there appeared to be a critical point as signaling band-
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width increased. Below this point, there was little effect on pattern complexity of increasing

the number of communicating genes. Above this point, there was a sharp increase in pat-

tern complexity as the number of communicating genes increased. This transition occurred

between 2 and 3 communicating genes for ordered networks and 3 and 4 communicating

genes for critical networks.

What is the biological significance of these results? The first point is that without

directionality within a field of cells, critical networks are much more effective in generating

simple patterns than either ordered or chaotic networks. Significantly, for these networks

to create patterns effectively, there must be a minimum number of communicating genes.

In a biological context, communicating genes correspond to independent signals sent and

received by neighboring cells. Once primitive patterns are generated, they break symmetry

and may then be used as a stepping stone to more complex patterns. The newly established

asymmetry creates directionality within the field of cells. This directionality may been

visioned as corresponding to one or more of the embryonic axes. Regardless of whether

directionality in the embryo is created solely by interactions between adjacent cells or is

imposed by a longer range morphogen gradient, once symmetry is broken, much more

complex patterns can be generated.

Within an anisotropic environment, ordered networks appear to be at least as effective

as critical networks in producing complex patterns. As for the initial symmetry breaking

event, there appears to be a minimum number of communicating genes required for effec-

tive pattern generation within an anisotropic environment. Once this threshold is crossed,

increasing the number of communicating genes produces a linear increase in pattern com-

plexity.

A second biological implication of this work relates to the evolution of patterning

mechanisms. A speculative interpretation of these findings is that if an ancestral unicellu-

lar organism possessed a relatively small number of genes that orchestrated the collective

behavior of these cells, for example, in processes such a quorum sensing, then it is possible

that if these cells formed aggregates, few if any additional genes would be needed to create
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patterns relevant to multicellular development. If these primitive multicellular aggregates

presented a selective advantage, then the evolution of additional intercellular communica-

tion genes could produce a monotonic increase in pattern complexity. Complex patterns of

differentiated cells could emerge in a two-step process in which critical networks operating

in an anisotropic group of cells create one or more axes, followed by the operation of either

ordered or critical networks to increase pattern complexity.



CHAPTER 4

THE ROLE OF NETWORK MOTIFS IN EPITHELIAL PATTERN FORMATION: A

KOLMOGOROV COMPLEXITY STUDY

4.1 Abstract

Genetic regulatory networks consists of quasi-autonomous subnetworks referred to as

modules. Such modular networks determine the cellular patterns in multicellular organisms

during development. However, the role of modularity in this process is poorly understood.

This study applies methods of information theory to explore how network modularity in-

fluences the complexity of multicellular patterns that emerge from the dynamics of the

regulatory networks. A computational study was performed by creating Boolean intra-

cellular networks of varying degrees of modularity within a simulated epithelial field of

embryonic cells. Each cell contains the same network and communicates with adjacent cells

using contact-mediated signaling. The study explored two types of modules: motifs, which

are subnetworks with unique connectivity and regulatory functions, and clusters, which are

densely connected sets of genes sparsely connected to other genes. Comparison of random

networks to those with clusters and motifs demonstrated that: (1) Networks with clusters

tend to produce more complex multicellular patterns without a significant increase in the

gene expression dynamics. (2) Motifs with feedback loops increase information complexity

of the multicellular patterns while simplifying the network dynamics. (3) Negative feedback

loops effect the dynamics complexity more significantly than positive feedback loops.

4.2 Introduction

Understanding how multicellular patterns form during development is a significant

challenge in biology (Figure 4.1). These multicellular patterns emerge as a result of genetic

regulatory networks (GRNs) that operate within cells [5]. GRN’s are networks of interacting
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genes that control biological processes. The gene expression profile for each cell is then

determined by signaling within and among other cells, differentiation thus making the body

plan and subsequence morphology [6].

To understand how GRNs regulate biological events, scientists have developed mathe-

matical and computational models to generate predictions and explain experimental obser-

vations. Among these modeling approaches is a simplified modeling technique that considers

GRNs as Boolean networks in which the activity of a gene is either on or off, with the ac-

tivity of a particular gene controlled by a set of logical rules involving the set of regulatory

inputs to that gene [8].

Figure 4.1. Ventral view of stage 16 Drosophila melanogaster embryo immunostained for
tropomyosin (green; a protein expressed in muscle), Pax 3/7 (blue; a regulatory protein
expressed in central nervous system nuclei and ectoderm), and HRP (red; neurons). All
nuclei shown in gray (DAPI). Courtesy of Julieta Mara Acevedo and Lucas Leclere, Marine
Biological Laboratory, Woods Hole, www.mbl.edu/ dev.biologists.org/

Boolean networks were employed in this study to investigate how Genetic regulatory

networks operate in three complexity domains: ordered, critical and chaotic [48] [49] [50].

In the Order systems some events happens more frequently than others and they are more

accurately predictable, but at the cost of limited potential for change. The parameter that

defining the behavior of chaotic systems are random, magnify the perturbation and do not
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evolve with time. Chaotic systems are unsuitable for homeostatic living systems and in fact

they are implicated in diseases like cancer [72]. Critical systems, which operate in between

order and chaos, are the most information dense in both network organization and dynamics

and support the efficient prorogation of this information in evolution. This work aims to

explore how the information complexity of multicellular pattern and dynamics of GRN is

impacted by one of the most influential network configurations: modularity.

GRNs consist of clusters of genes referred to as modules. Modules are the building

blocks of the complete cellular network. There are two kinds of modules, structural and

functional. If a module contains a set of genes that are densely connected to one another but

sparsely connected to other genes within the network then the module is structural [73], [74].

Modules are functional when they are defined as small interconnected networks of genes that

are not necessarily structurally distinguishable from other part of network, but by distinctive

gene regulatory rules that have been found to be enriched over the population of extant

networks. Functional modules also are referred to as a network motif [2].

Developmental biologists have proposed that modularity in organisms arises from mod-

ularity in the gene regulatory networks [75], [76]. However this question is difficult to answer

since modular developmental networks are poorly understood. In this study we perform

computational experiments that aim to answer these questions: How is the information

content of multicellular patterns and the dynamics of GRNs influenced by structural modu-

larity of the networks? How do network motifs impact multicellular development to produce

information dense patterns? To begin answering these questions we use an information the-

oretic approach known as Kolomogrov complexity to measure the information content of

GRN dynamics and multicellular pattern complexity.

To evaluate the influence of structural and functional modularity on network dynamics

and pattens, we design GRNs that are embedded into cells arranged in a 2D grid, simulating

an epithelium. Each cell contains an identical Boolean network, referred to as a complete

network. In the first study, complete networks were created with multiple modules that

are sparsely connected to each other. We investigated how the structural modularity of the
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network influences the dynamics of the network and complexity of the multicellular pattern

formed by altering the sparsity of module connections.

In the second part of this work we explore the influence of the best understood motifs

on network dynamics and multicellular patterns by inserting them into randomly generated

Boolean networks. The goal was to understand the influence of these motifs on the behavior

of the global regulatory system and the multicellular patterns that arise from the network

dynamics.

4.3 Modularity of gene regulatory networks

The role of modularity in cellular function and organization has been extensively stud-

ied [77]. It is believed that modules perform relatively independent tasks in gene regulatory

networks [78], [75]. The modular organization of biological structure is supported by ex-

perimental studies from pathogen structure, gene networks, and protein-protein interaction

networks [79]. For example, Kim et al. [78] studied the connected subset of protein networks

in protein-protein interaction data for budding yeast. Their analysis suggests that the yeast

protein network is significantly modular. Networks are structurally modular if they contain

highly connected clusters of genes that are linked by sparser connections than those within

the modules. Figure 4.2 shows a small network with a modular structure and a randomly

connected networks.

We refer to the type of modularity illustrated in Figure.4.2(a) as structural modularity

where individual modules are densely connected networks without any specific function.

Of course, structural modules may have a function, but functionality is not how they are

recognized. In contrast to structural modules, functional modules are defined as a set

of interconnected genes that produce a distinct function, regardless of whether they are

structurally isolated within a network. Functional modules that occur frequently and consist

of few interacting genes are referred to as regulatory motifs [2]. This work considers both

structural and functional kinds of modularity.

Regulatory motifs were first noted in Escherichia coli, where they were detected at a

higher frequency than would be expected in random networks. Since then multiple motifs
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(a) (b)

Figure 4.2. Structural modularity. (a) A network with modular structure where intra-
modular connectivity is higher than inter-module connectivity. (b) A randomly connected
network.

have been identified in bacteria and yeast [80]. This finding suggests that motifs are building

blocks of transcription networks and that they may have evolved to achieve specific regu-

latory behaviors in cellular transcription networks [3]. Regulatory motifs may be found in

two different regulatory networks: 1- Developmental networks that guide differentiation and

cell fate determination by transducing signals into irreversible cell-fate decisions [81] [82]

and 2- Sensory networks that respond to signals such as stresses and nutrients rapidly and

make reversible decisions [83].

The motifs that are associated with developmental networks are commonly comprised

of feedback loops. Positive feedback loops are most common and are made up of two

transcription factors that regulate each other. There are two kinds of positive feedback

loops, a double-positive loop (Figure 4.3(b)) and a double-negative loop (Figure 4.3(a)).

The regulatory dynamics of these gene pairs coupled by positive feedback loops often results

in two or more steady states and is referred to as multistability [3]. Positive feedback loops

amplify signals and elongate the time required to reach to a steady state [80]. This slowed

response can be helpful when a cell makes significant decisions such as irreversible cell
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(a) (b) (c)

(f)

(d) (e)

Figure 4.3. Functional modularity. (a) A positive feedback loop (double-negative loop
with two positive autoregulatory loops [2]). (b) A positive feedback loop (double-positive
loop with two positive autoregulatory loops). (c) A negative feedback loop [3] with two
positive autoregulatory loops. (d) Coupled positive-positive feedback loops. (e) Coupled
positive-negative feedback loops. (f) The type-1 coherent feed forward loop [4].

specification and apotosis. Unlike positive feedback loops, negative feedback loops (Figure

4.3(c)) often enhance attractor stability. They also function as noise filters and make cells

more robust to signal noises. In addition, positive and negative feedback loops are coupled

into structures containing two feedback loops, such as positive-positive, positive-negative

and negative-negative feedback loops (Figure 4.3(d,e)). Coupled feedback loops perform

functions that single feedback loops cannot. In particular, Kim et al. [3] found that a

positive-positive feedback loop enhances signal amplification and bistability and a positive-

negative feedback loop increases reliable decision-making by modulating signal responses

and effectively dealing with noise.

Feed-Forward Loops (FFL) are another family of motifs that are associated with sensory
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networks. FFL are found in variety of organisms such as Saccharomyces cerevisiae, Bacillus

subtilis, Caenorhabditis elegans and humans [4]. FFL consists of a three genes (Figure

4.3(f)). The first regulatory gene controls the second and the third genes. The third gene

also is regulated by the second gene. Logical gates such “AND gate” or “OR gate” could be

applied for the three regulatory interactions in the FFL. The best known FFL which occurs

frequently in (E. coli and yeast), is the coherent type-1 FFL [84] with all “AND gates”.

4.4 Multicellular model and its implementation

The large scale of gene and protein networks drove the decision to use Boolean networks

as the framework for this computational study. A Boolean network can be used as a sim-

plified model of a genetic regulatory network. In this application, each gene is represented

as a network node that takes binary values (1 for expressed and 0 for not expressed). The

state of a gene (0 or 1) is determined by its Boolean function defined as the expressions of

AND, OR, NOT on the inputs from other genes. These inputs are represented as directed

edges in the network graph. Boolean networks provide a qualitative description of gene

states and their interactions, first introduced by Kauffman [8], [9].

This work extends our previous study [5] of complexity of multicellular pattern forma-

tion by adding the following features to the model: 1- Representation of gene regulatory

network as a structural modular network (Figure 4.4, Also see methodology section) 2-

Insertion of motifs into the complete GRN (Figure 4.5).

The simulation model was unchanged, and considered a lattice of cells, with each cell

holding a complete Boolean network. Cell-cell signaling was implemented in the model as

an edge connecting the state of one gene in a cell to an input of a Boolean function of one

or more of its neighbors. Such genes are called communicating genes (indicated at the tails

of the larger arrows in Figure.4.4) and the modules containing these genes are referred to

as signaling modules, shown with green background color. The number of communicating

genes is referred to as the signaling bandwidth.

Signaling bandwidth is set to half of the total number of genes in a cell as our pre-

vious study showed that this configuration established effective cell-cell signaling. Also
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    Signaling
      module 

      Cell membrance

Figure 4.4. Structural modularity implementation. Lattice of cells is illustrated in this
figure. Cell-cell signaling is implemented through specific modules referred to as signaling
modules (depicted in green). In this example, cell-cell signaling is orthogonal such that
two adjacent cells signal directionally [north-south and east-west]. These directions can be
thought of as corresponding to the anterior-posterior and dorsal-ventral embryonic axis.

as previously shown, both symmetric and orthogonal signaling configuration is considered

for cell-cell signaling [5]. When each cell signals to any other north, south, east and west

neighboring cells that signaling is called symmetric signaling and when two adjacent cells

signal directionally [north-south and east-west] to corresponded to anterior-posterior and

dorsal-ventral embryonic axis, the signaling is called orthogonal signaling.
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Double positive loop
Epithelium field

 Random
 network

Figure 4.5. Motif insertion. Example motif insertion into a random GRN. Dashed arrows
represent random outgoing signals from the motif. Outgoing and incoming signals from and
to the random GRN are randomly connected to genes within the random network.

The state of each cellular GRN is initialized randomly by setting the state of each gene

to 0 or 1. Randomly generated logic functions are assigned to networks as the transition

rules used to determine the state of genes [5]. The state of the system during simulation

is clocked synchronously until a steady or cyclic state (in up to 300 repeats) is reached

for all individual cells. When the state of genes change in a repetitive cycle or reach to a

fixed state then cell are in attractor state [5]. Attractor is used to construct multicellular

patterns by treating cells with the same attractor as the same cell types. The state of all

the genes as the networks are run along with multicellular patterns is recorded for analysis

of information content.

After running the randomly-generated GRNs, single and coupled feedback and feed-

forward loops are inserted into the randomly generated GRN (Figure 4.5). The network is

run again with the inserted motifs to identify the attractors and visualize the multicellular

patterns that are formed. The information complexity of both the gene network dynam-

ics and multicellular patterns is analyzed by an information theoretic measure called Set
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Complexity.

4.5 Methodology

4.5.1 Building networks with different modularity degree

To produce networks with different modularity scores, we first construct each individual

module as a network where each gene has one or two inputs from other genes. With this

configuration, networks operate in critical domain [5]. Critical domains are on the cusp

between order and chaos and are the most information dense in both network organization

and dynamics [52]. In our previous study [5] we shown that coupled Boolean networks

in grid of cells, where each gene in a single network receives up to two incoming signals

from other genes randomly, operate in critical domains. Interconnection of modules are

implemented by adding random connections between modules. The modularity score of

the complete network is decreased when more connections are added. For example if we

consider 4 modules to build the complete network, each module contained 4 genes, then we

alter the number of random incoming signals to each module from 1 to 6 and we see that

by adding more random incoming connections the modularity score of the whole network

is decreased.

4.5.2 Information Complexity

Set complexity is an information complexity metric that will be used to measure the

information content of each regulatory network, its temporal dynamics and resulting mul-

ticellular patterns. Set complexity distinguishes between chaotic, critical and ordered set

of objects and is based on Normalized Compression Distance (NCD) [19]. By employing

NCD as a metric to evaluate similarity of pairs of objects in a set, set complexity discounts

the influence of the pairs of objects that are randomly related or redundant. As long as

any object can be encoded as a string, set complexity is able to compute the information

content that resides in the set.

Set complexity of a set of n strings S = {s1, . . . , sn} is defined:
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Ψ(S) =
1

n(n− 1)

∑
si∈S

C(si)
∑
sj 6=si

NCD(si, sj)(1−NCD(si, sj)) (4.1)

where C(si) is the compression size of string si. The term NCD(si, sj)(1 − NCD(si, sj))

is maximized when NCD(si, sj) = 0.5, which occurs when C(si + sj) ' C(si)/2 − C(sj),

assuming C(si) > C(sj).

To encode an object to a string, a one-to-one mapping is required so that no information

is lost. The method by which each random network, temporal dynamics, and the spatial

pattern produced are encoded as a string is described in the next section.

4.5.3 Encoding objects to strings

Studies in [21] suggest that NCD and Set Complexity are in general insensitive to the

specific encoding methods employed so long as the compression methods are effective. Let

n be the number of Boolean functions in each intracellular network, k be the number of

input connections of each function and m2 be the total number of cells in the pattern (for

a square pattern of m×m). The following mappings were employed:

Temporal dynamics: To simulate pattern formation, each network is executed for

300 time steps with a burn in period of 100 steps [21]. The burn in period is ignored in the

analysis of the dynamics. The 2D spacetime matrix of the network state trajectory with

size 200×m2 × n is then encoded as a row-order string of 1’s and 0’s.

Spatial pattern: At the completion of the forward simulation of the network, the

dynamics of each intracellular network is analyzed to identify cyclic attractors by searching

for repeating states. Then each cell is assigned a cell type ID by performing 200 × m2

comparisons where matching attractors are assigned the same type (irrespective of phase).

The string is then a row-order concatenation of each cell’s type ID in the m×m simulated

epithelium.

4.5.4 Structural modularity score measurement

The most common method used in the literature to score structural modularity is a
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method by Newman [85]. Newman’s method to compute the modularity score Q for a given

network is as follows:

Q =

c∑
i=1

(eii − a2i ) (4.2)

where c is the total number of modules, eii is fraction of edges in module i, eij is the

fraction of edges that connect module i to module j and ai is the fraction of edges that

connect module i to other modules and is as follows:

ai =
∑

j eij

The module break-downs are known since we generate each modules with higher intra-

connection than the random connections connecting the modules.

4.6 Results and discussion

4.6.1 Modularity of intracellular gene networks influences multicellular pat-

tern and gene network dynamic complexity

In order to analyse how modularity of a network influences the dynamics and pattern

complexity, we partition the population of the networks created by percentile of their mod-

ularity score distribution. Networks that lie in lower third are defined as non-modular, and

networks that lie in upper third are defined as highly modular. Figure 4.6 illustrates the

average dynamics complexity and pattern complexity for 60 non-modular and 60 highly-

modular networks. Experiments are run for two orthogonal and symmetric signaling (Figure

4.6), each with two configuration for modules, critical and chaotic. Critical configuration is

when genes in each module receive up to two incoming signals from other genes, make them

to behave in critical domain when isolated. In chaotic configuration the genes receive up

to three incoming signals [5]. Results in Figure 4.6(a) show how highly modular networks

produce higher dynamics and pattern complexity when cell-cell signaling is orthogonal. A

statistical analysis confirms the distribution of the two classes of networks are significantly

different Table 4.1 and Table 4.2.
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Figure 4.6. Non modular vs. modular. Average dynamics and pattern complexity for 60
non-modular (arrow tails) and 60 highly-modular (arrow heads) networks.

Table 4.1. Orthogonal signaling. Dynamics and pattern complexity change when non
modular networks become highly modular networks.

Critical modular Chaotic modular

Pattern complexity Dynamics complexity Pattern complexity Dynamics complexity

Non
Modular

Highly
Modular

Non
Modular

Highly
Modular

Non
Modular

Highly
Modular

Non
Modular

Highly
Modular

Mean 15.593 23.328 90.059 112.25 20.921 26.565 107.85 134.96

Variance 11.282 15.255 1315.4 1680.0 18.769 19.127 1212.8 2035.9

df 59 59 59 59

t Stat 11.480 3.265 7.993 3.714

P(T¡=t) 5.6E-17 9E-5 2.8E-11 2E-4

t Critical 1.671 1.671 1.671 1.671

Table 4.2. Symmetric signaling. Dynamics and pattern complexity change when non mod-
ular networks become highly modular networks.

Critical modular Chaotic modular

Pattern complexity Dynamics complexity Pattern complexity Dynamics complexity

Non
Modular

Highly
Modular

Non
Modular

Highly
Modular

Non
Modular

Highly
Modular

Non
Modular

Highly
Modular

Mean 11.499 14.940 31.017 31.844 19.193 17.479 74.169 39.422

Variance 12.603 11.919 175.18 138.65 18.212 20.827 690.37 273.23

df 59 59 59 59

t Stat 7.046 0.382 2.526 9.192

P(T¡=t) 1.1E-09 0.3517 7E-04 2E-13

t Critical 1.671 1.671 1.671 1.671
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The observation for symmetric signaling with critical configuration for each module

Figure 4.6(b)) suggest that the networks with modular structure are able to produce mul-

ticellular patterns with higher information content without an increase in the network dy-

namics complexity.

Another interesting observation was that for symmetric signaling with chaotic configu-

ration (Figure 4.6(b)) both network dynamics and pattern complexity decrease. As shown

in the previous study [5] symmetric signaling produces only low information patterns and

dynamics because information transfer among adjacent cells combined using disjunction,

which loses directional information. Now when configuration of each module is chaotic,

structural modularity of network helps to produce more simplified pattern and dynamics.

4.6.2 Insertion of motifs into the randomly generated global networks

In this section we explore the effect of insertion of the best known motifs into ran-

domly generated coupled GRNs. Figure 4.7 shows the influence of insertion of a positive

feedback loops (double-positive loop) into a random GRN. The results are represented for

two orthogonal Figure 4.7(a) and symmetric Figure 4.7(b) of cell-cell signaling. Insertion

of a double-positive feedback loop into random GRNs increases dynamics complexity while

leaving pattern complexity unchanged in the case of orthogonal signaling (Figure 4.7(a)). In

contrast, insertion of this same double-positive feedback loop into a GRNs operating under

symmetric signaling decreases both dynamics and pattern complexity (Figure 4.7(b)).

Figure 4.8 illustrates the average dynamics and pattern complexity for 60 random

GRNs (arrow tails) and 60 GRNs with the insertion of various types of regulatory motifs

(arrow heads). Under conditions of orthogonal and symmetric signaling, insertion of a neg-

ative feedback loop, a double-negative feedback loop or a double-positive feedback loop all

have the same qualitative effect of decreasing network dynamics complexity and increas-

ing pattern complexity; however, a double-positive loop increases pattern complexity much

more than either of the negative feedback loops (Figure 4.8(a)). Insertion of Feed-Forward

loops decreases dynamics with almost no effect on the pattern complexity. ANOVA analysis

presented in Table.4.3 and Table 4.4 shows that insertion of these motifs makes a significant
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change in the average network dynamics and patterns complexity.

Figure 4.7. Effect of insertion of a double-positive feedback loop on network dynamics and
pattern complexity. Insertion of a double-positive loop significantly increases only pattern
complexity in the case of orthogonal signaling, and increases both pattern and dynamics
complexity in the case of symmetric signaling.

Figure 4.8. Effects on network dynamics and pattern complexity of inserting regulatory
motifs into random GRNs. Average dynamics and pattern complexity for 60 random GRNs
(arrow tails) and 60 GRNs with the indicated inserted motifs (arrow heads).

All the motifs with feedback loops affect the pattern complexity in orthogonal cell-cell

signaling. The only motif in this study that has no effect on pattern complexity are Feed-

Forward loops Type-1. This observation is consistent with the association of feedback loop

motifs with developmental networks that mediate important cell fate decisions.

We hypothesize that variation in dynamics complexity originates from two different

sources. 1- The time for GRN to reach to steady state. 2- The proportion of single state
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Table 4.3. ANOVA analysis of dynamics complexity illustrates differences for various groups
of motifs over networks with orthogonal and symmetric signaling

Orthogonal signaling Symmetric signaling

Groups Sum Average Variance Sum Average Variance

Without Motifs 3911.45 52.15 474.35 1560.25 20.80 15.96

Double-negative 3017.06 40.22 284.05 1423.40 18.97 8.18

Double-positive 2633.55 35.11 101.26 1828.02 24.37 7.64

Negative-Feedback 3322.99 44.30 181.91 1658.00 22.10 8.15

Coupled P-P 3355.92 44.74 306.40 1466.11 19.54 4.17

Type-1 feed Forward 2560.45 34.13 249.67 1718.50 22.91 4.02

Orthogonal signaling ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 17099.6 5 3419.93 12.84 1.1E-11 2.234

Within Groups 118226.6 444 266.27

Total 135326.3 449

Symmetric signaling ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 1594.73 5 318.94 39.74 9.5E-34 2.234

Within Groups 3563.42 444 8.02

Total 5158.16 449

versus cyclic attractors produced by the GRN. Since the motifs studied here act as multi-

stable switches, they simplify the complex cyclic attractors to attractors with a few states.

Genes in feedback loops reach a steady state expression quickly and reduce the length and

complexity of cyclic attractors. We hypothesize that this is why in all the cases of orthog-

onal signaling, dynamics complexity decreases from that of the original random networks.

The rate of dynamics complexity reduction associated with the addition of the motifs with

negative feedback loops is significantly lower than for positive loops. Unlike positive feed-

back loops, negative feedback loops do not increase the time to reach to steady states [3].

Therefore they don’t effect the dynamics complexity noticeably. As results shows negative

feedback loop motifs (such as single negative feedback loop and coupled positive-negative

loops) have the lowest reduction in their dynamics complexity.

With symmetric signaling all the motifs except for those containing double-negative

loops increase the pattern and dynamics complexity. The pattern complexity variation are
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Table 4.4. ANOVA analysis of pattern complexity illustrates differences for various groups
of motifs over networks with orthogonal and symmetric signaling.

Orthogonal signaling Symmetric signaling

Groups Sum Average Variance Sum Average Variance

Without Motifs 1233.65 16.44 25.15 592.51 7.90 3.55

Double-negative 1026.61 13.68 22.74 456.57 6.08 1.97

Double-positive 1559.75 20.79 13.10 805.59 10.74 5.08

Negative-Feedback 1457.84 19.43 19.91 687.03 9.16 2.66

Coupled P-P 1372.30 18.29 24.27 530.80 7.07 2.35

Type-1 feed Forward 1250.56 16.67 9.22 692.85 9.23 3.22

Orthogonal signaling ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 2366.77 5 473.35 24.82 4.4E-22 2.234

Within Groups 8466.32 444 19.06

Total 10833.10 449

Symmetric signaling ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 1057.66 5 211.53 67.26 3.0E-52 2.234

Within Groups 1396.30 444 3.14

Total 2453.97 449

similar to networks with orthogonal signaling that confirms the behavior of feedback loops

as a cell differentiation facilitator. Tendency of motifs to simplify the cyclic and random

attractors emerges primarily in networks with symmetric signaling.

4.7 Summary

In the first part of this study we explored the role of compartmentalization of GRNs

into modules on network dynamics and pattern complexity. The results show that networks

with a modular structure tend to produce more complex multicellular patterns without

a significant increase in gene expression dynamics. In the second part of this study we

explored the role of common regulatory motifs on network dynamic complexity and pattern

complexity. These motifs appear frequently in biological networks and often play critical

roles in overall network function. Although the significance of these motifs have been shown

in multiple studies, there is a lack of computational studies to explore how and to what
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degree biological network dynamics and the resulting multicellular patterns are influenced

by network motifs. The results shows that network motifs that are associated with feedback

loops increase the information complexity of the multicellular patterns regardless of whether

cell-cell signaling occurs symmetrically or orthogonally. Another important observation was

that negative feedback loops do not effect the dynamics complexity significantly as positive

feedback loops do.
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CHAPTER 5

CONCLUSIONS

In this dissertation we explored the application of Algorithmic Information Theory

(AIT) for two case studies: bright field cell image segmentation and pattern formation in

multicellular organisms. As the first study showed, AIT can be employed as an effective

preprocessing step in cell image segmentation. We demonstrated that selecting frames with

our proposed AIT-based algorithm will result in more accurate cell image segmentation

because it discards noisy images. In the second study, which was the primary contribu-

tion of this dissertation, we employed an AIT-based algorithm to quantify the complexity

of information content that arises during the development of multicellular organisms. We

simulated multicellular organism development by coupling the Gene Regulatory Networks

(GRN) within an epithelial field. Primary results showed that structure and function of

GRNs impact the complexity of the information content in the resultant multicellular pat-

terns. We demonstrated that some of the GRN classes, in terms of structure and function,

produce more complex patterns than others. This finding has biological significance.

In chapter 2 we proposed an AIT-based algorithm called maximal-information to solve

an image processing challenge in a biological context. Cell segmentation is the identification

of cells and their observable properties from cell microscopy images. Bright field microscopy

is a simple and common method of cell imaging. Bright field microscopy, however, presents

challenges due to low image contrast. Some studies have used a defocused stack of images to

acquire more information for an accurate cell segmentation. In this study, the performance

of the maximal-information method was compared with a recent approach that uses a fixed

frame selection strategy in image data of embryonic kidney cells (HEK 293T) from multi-

ple experiments. Results demonstrated that the adaptive maximal-information approach

significantly improves precision and recall of segmentation over the diversity of data sets.

In chapter 3 of this dissertation, we studied simulated coupled gene networks in an
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epithelium field of embryonic cells. We used a Kolmogorov complexity-based algorithm

to evaluate the information complexity of given Genetic Regulatory Networks, the network

dynamics, and the emergent cellular patterns. Our results demonstrated that the most com-

plex dynamics and patterns emerge from networks that communicate directionally. When

cells communicate with all neighbors isotropically, only simple, low information patterns

emerge. Low information patterns also emerge from chaotic networks (networks in which

each gene accepts 3 signals) regardless of the signaling bandwidth or configuration. In

networks that operate in an isotropic signaling environment, critical networks (networks in

which each gene accepts up to 2 signals) generate the most complex patterns, but only when

there were four or more communicating genes. This is consistent with previous reports that

conclude critical networks are centrally important in biology. Directional signaling among

cells leads to more complex patterns. A surprising result was that directional signaling in

ordered networks produces patterns as complex as critical networks, and do so at lower

levels of network complexity.

In chapter 4 of this dissertation, we studied the concept of GRN modularity and motifs.

It is believed that modules perform relatively independent tasks in cellular function. Due

to the importance of network modularity and the significance of biological motifs that natu-

rally exist in the diversity of organisms, in chapter 4 we explored the influence of modularity

on network dynamics and patterns. The results demonstrated that networks with modular

structure tend to produce more complex multicellular patterns without producing signifi-

cantly high complexity in gene dynamics. Another important result was that the insertion

of some of the well-recognized motifs had a significant effect on the patterns complexity. For

example, network motifs associated with feedback loops increase the information complexity

of the multicellular patterns regardless of the type of cell-cell signaling.

In this work we demonstrated that Kolmogorov complexity is a powerful measurement

tool to quantify the amount of information contained within a phenomenon. We applied

Kolmogorov complexity-based algorithms to successfully solve some challenging problems

in developmental biology and in bright field image processing.
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a b  s  t  r  a c t

The  tissues  of  multicellular  organisms  are  made  of  differentiated  cells  arranged  in  organized patterns.

This organization  emerges  during  development from  the  coupling of  dynamic  intra-  and intercellular

regulatory networks.  This  work applies  the  methods of information  theory  to understand  how  regula-

tory network  structure  both  within  and  between  cells  relates  to  the  complexity  of  spatial  patterns  that

emerge as  a  consequence  of  network  operation.  A  computational  study was  performed in  which  undif-

ferentiated cells were arranged  in  a  two dimensional lattice,  with  gene expression  in  each  cell regulated

by identical intracellular  randomly  generated  Boolean  networks.  Cell–cell  contact signalling  between

embryonic cells is  modeled  as coupling  among  intracellular  networks  so  that gene expression  in  one

cell can  influence  the  expression  of  genes  in  adjacent  cells.  In this  system,  the initially identical  cells

differentiate and form  patterns  of  different cell  types. The complexity  of  network  structure,  temporal

dynamics and  spatial  organization  is  quantified  through  the Kolmogorov-based  measures  of  normal-

ized compression  distance and set  complexity.  Results  over sets  of  random  networks  that  operate  in  the

ordered, critical and chaotic domains  demonstrate  that:  (1)  ordered  and  critical  networks  tend  to create

the most  information-rich  patterns;  (2)  signalling  configurations  in  which  cell-to-cell  communication

is non-directional  mostly  produce  simple  patterns irrespective  of  the internal  network  domain;  and (3)

directional signalling  configurations,  similar  to those that  function  in  planar cell  polarity,  produce  the

most complex  patterns,  but only  when the intracellular  networks  function in  non-chaotic  domains.

© 2013 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Multicellular organisms exhibit an incredible variety of cellular

patterns, for instance, those in the Drosophila embryo illustrated

in Fig. 1. These patterns arise during development and are a

consequence of genetic regulatory networks (GRNs) that oper-

ate  within cells and that respond to communication between

cells (Lander, 2007, 2011).  One interesting question to explore

is  the relationship between the structure of GRNs and the com-

plexity of cellular patterns that can emerge from the operation

of these networks. A  related question is how GRNs and their

evolution contributed to the transition from unicellularity to mul-

ticellularity. Although details are not known about the evolution

of  multicellularity in any lineage, this process almost certainly

∗ Corresponding author at: Department of Computer Science, Utah State Univer-

sity, United States.

E-mail addresses: nick.flann@usu.edu,  nick.flann@gmail.com (N.S. Flann),

hamidmohamadlou@yahoo.com (H. Mohamadlou), gregory.podgorski@usu.edu

(G.J. Podgorski).

involved the co-option of GRNs and intercellular communica-

tion systems that existed in single-celled organisms (Knoll, 2011).

While the actual paths of evolution to complex multicellular-

ity  may  never be known, potential paths open to evolution

can be explored and understood through computational stud-

ies. This is a  long term goal of the investigations reported

here.

Evidence suggests that living processes lie “on the edge of

chaos,” and that biological selection operates to maximally retain

information yet allow evolution (Mitchell et al., 1993; Kitzbichler

et al., 2009; Kauffman and Johnsen, 1991).  Dynamic systems,

including biological systems, operate in three complexity domains:

ordered, critical and chaotic. Ordered systems are robust in that

they  dampen perturbations to retain information, but at the cost

of limited potential for change. Chaotic systems magnify per-

turbations and lose information, rendering them unsuitable for

homeostatic living systems. In fact, chaotic systems are implicated

in  diseases like cancer (Schwab and Pienta, 1995).  Critical systems,

which operate on the cusp between order and chaos, are the most

information dense in both network organization and dynamics (Bak

et al., 1987). This work focuses on how the information content of

0303-2647/$ – see front matter ©  2013 Elsevier Ireland Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.biosystems.2013.03.005
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Maximizing Kolmogorov Complexity for
accurate and robust bright field cell
segmentation
Hamid Mohamadlou1, Joseph C Shope4 and Nicholas S Flann1,2,3*

Abstract

Background: Analysis of cellular processes with microscopic bright field defocused imaging has the advantage of

low phototoxicity and minimal sample preparation. However bright field images lack the contrast and nuclei

reporting available with florescent approaches and therefore present a challenge to methods that segment and track

the live cells. Moreover, such methods must be robust to systemic and random noise, variability in experimental

configuration, and the multiple unknowns in the biological system under study.

Results: A new method calledmaximal-information is introduced that applies a non-parametric information

theoretic approach to segment bright field defocused images. The method utilizes a combinatorial optimization

strategy to select specific defocused images from each image stack such that set complexity, a Kolmogorov

complexity measure, is maximized. Differences among these selected images are then applied to initialize and guide a

level set based segmentation algorithm. The performance of the method is compared with a recent approach that

uses a fixed defocused image selection strategy over an image data set of embryonic kidney cells (HEK 293T) from

multiple experiments. Results demonstrate that the adaptivemaximal-information approach significantly improves

precision and recall of segmentation over the diversity of data sets.

Conclusions: Integrating combinatorial optimization with non-parametric Kolmogorov complexity has been shown

to be effective in extracting information from microscopic bright field defocused images. The approach is application

independent and has the potential to be effective in processing a diversity of noisy and redundant high throughput

biological data.

Background
Cell segmentation is the identification of cell objects and

their observable properties from biological images. Cur-

rent cell segmentation methods perform most accurately

when applied to high contrast and minimal noise images

obtained from samples where the cells have fluorescently-

labeled cell nuclei and stained membranes, and are dis-

tinct with minimal adherent membranes. However, these

ideal conditions rarely exist.

Fluorescently tagging cells using green fluorescent pro-

tein (GFP) leads to robust identification of each cell during

segmentation. While GFP tagging is widespread, there

*Correspondence: Nick.Flann@usu.edu
1Department of Computer Science, Utah State University, Logan,

UT 84322, USA
2Institute for Systems Biology, Seattle, WA 98109, USA

Full list of author information is available at the end of the article

are disadvantages when applying the method repeatedly

to the same sample since under repeated application of

high-energy light the cells can suffer phototoxicity. Such

light can disrupt the cell behavior through stress, shorten

life and potentially confound the experimental results

[1-3]. Significantly, a requirement for GFP labeling adds a

step before a new cell line can be studied, thus making it

difficult to apply this method in a clinical setting.

The alternative is to use bright field microscopy, the

original and the simplest microscopy technique, wherein

cells are illuminated with white light from below. How-

ever, using only bright field imaging of unstained cells

presents a challenging cell detection problem because

of lack of contrast and difficulty in locating both cell

centers and borders, particularly when cells are tightly

© 2014 Mohamadlou et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the

Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,

distribution, and reproduction in any medium, provided the original work is properly cited.



84

The role of network motifs in epithelial pattern formation: A

Kolmogorov complexity study

Hamid Mohamadlou, Gregory Podgorski, and Nicholas Flann �

Department of Computer Science,

Department of biology

{nicholas.flann,gregory.podgorski@usu.edu}
{hamid.mohamadlou@aggiemail.usu.edu}

Abstract. Genetic regulatory network consists of quasi-autonomous subnetworks referred to as

modules. Such modular networks determine the organized patterns in multicellular organisms dur-

ing development. However, the role of modularity in this process is poorly understood. This study

applies methods of information theory to explore how network modularity influences the com-

plexity of multicellular patterns that emerge from the dynamics of the regulatory networks. A

computational study was performed by creating Boolean intracellular networks of varying modu-

larity within a simulated epithelium field of embryonic cells. Each cell contains the same network

and communicates with adjacent cells using contact-mediated signaling. The study explored two

types of modules: motifs, which are subnetworks with unique connectivity and regulatory functions,

and clusters, which are densely connected sets of genes sparsely connected to other genes. Results

comparing random networks to those with cluster and motif modularity demonstrate that: (1)

Networks with modular clusters tend to produce higher information-dense multicellular patterns

without a significant increase in the gene expression dynamics. (2) Network motifs with feedback

loops increase information complexity of the multicellular patterns while simplifying the network

dynamics. (3) Positive feedback motifs don’t effect the dynamics complexity as significantly as

positive feedback loops do.

Keywords: Network motifs, Kolomogrov complexity, Pattern formation

1 Introduction

Understanding the process by which the complex variety of cellular patterns form during

development of multicellular organisms is a significant challenge in biology (Fig.1). While

many challenges remain, it is known that these multicellular patterns emerge as a result

of genetic regulatory networks (GRNs) that operate within cells [1]. GRN’s represent

the interactions among genes where combinations of genes control the expression of other

genes, forming feedback loops. The gene expression profile for each cell is then determined

by signaling within and among other cells, differentiation thus making the body plan and

subsequence morphology[2]. To capture the behavior of this regulatory system, scientists

have developed mathematical and computational models for gene regulatory networks

with the purpose of generating predictions to explain experimental observations. Among

these modeling alternatives is a simplified modeling technique called Boolean networks

that is the approach employed in this study [3].

It is hypothesized that biological systems operate to maximally retain information

across evolutionary time by which they fall into three complexity domains: ordered, crit-

ical and chaotic [4] [5] [6]. In the Order systems some events happens more frequently
� Supported by Luxembourg Centre for Systems biomedicine and the University of Luxembourg.
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