Utah State University
DigitalCommons@USU

All Graduate Theses and Dissertations

Graduate Studies

5-1955

An Economic Evaluation of Selected Treatments for Avian Botulism in Waterfowl on Utah Marshes, 1953-54

Donald A. Smith Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

Part of the Other Life Sciences Commons

Recommended Citation

Smith, Donald A., "An Economic Evaluation of Selected Treatments for Avian Botulism in Waterfowl on Utah Marshes, 1953-54" (1955). *All Graduate Theses and Dissertations*. 4532. https://digitalcommons.usu.edu/etd/4532

This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

AN ECONOMIC EVALUATION OF SELECTED TREATMENTS FOR AVIAN BOTULISM IN WATERFOWL ON UTAH MARSHES, 1953-54

Ъу

Donald A. Smith

A thesis submitted in partial fulfillment of the requirements for the degree

of

MASTER OF SCIENCE

in

Wildlife Management

UTAH STATE AGRICULTURAL COLLEGE Logan, Utah

378.2 5-5-412

ACKNOWLEDGEMENT

I am indebted to the Utah State Department of Fish and Game, and specifically to Noland F. Nelson, waterfowl biologist, for the opportunity of, and aid in, conducting this research. Funds were provided under Federal Aid Projects in Research W-61-D-1, W-61-D-2, and W-61-D-3.

Appreciation is expressed to Dr. Jessop B. Low of the Utah Cooperative Wildlife Research Unit, and Dr. Allen W. Stokes, Utah State Agricultural College, for their time and assistance in preparing this manuscript. Projessor Bliss H. Crandall of the Utah Agricultural Experiment Station aided in statistical analyses.

Donald A. Smith

TABLE OF CONTENTS

	Page
Introduction	1
Purnose and scope	1
Study areas	2
Review of literature	24
Extent of outbreaks	4
History of research	4
Mathada	10
Detection of sick birds	10
Pick-up of sick ducks	10
Classification of birds	13
Method of injecting antitoxin	13
Treatments used	15
Hospital inoculation treatment	15
Fresh water treatment	15
Field inoculation treatment	17
No treatment	17
	7.7
Hospital construction	11
Equipment used	20
Determination of recovery of birds after treatment	20
Calculations for cost of treatment	21
Percult -	22
	24
Evaluation of recovery from treatments	22
Evaluation of costs of treatments	24
Cost-per-treated-bird	24
Cost-per-recovered-bird	24
	~
Other significant findings	26
	06
Recovery in relation to species	20
Recovery in relation to sex	21
Recovery in relation to age	21
Recovery in relation to body condition	21
	08
Management recommendations	20
	20
oummary	29
itorature aited	30
Siterature cited	52
npendix	34
Thomas	

LIST OF TABLES

Ta	ble		Page
	1.	Waterfowl losses from botulism in North America as recorded in literature	5
	2.	Percent recovery of birds hospitalized and injected with selected amounts of antitoxin	23
	3.	Percent recovery from fresh water, field inoculation, and no treatment groups	23
	4.	Cost-per-treated-bird in 1953 and 1954	24
	5.	Cost-per-recovered-bird in 1953 and 1954	24
	6.	Cost-per-recovered-bird for sick classes II and III combined	25
	7.	Percent recovery for classes II and III combined	26
		Appendix	
ſa	ble		Page
	1.	Number and percent recovery for various amounts of antitoxin as administered to hospital inoculated ducks .	35
	2.	Number of birds treated by each method and number and percent recovering after treatment	36
	3.	Expenditures, on a per-treated-bird basis, for labor and material used in botulism research during 1953 and 1954 .	37
	4.	Cost-per-recovered-bird for treatments used on birds with botulism in 1953 and 1954	38
	5.	Number of treated birds with the number and percent of first-year band returns from the hunting season	39
	6.	Recovery of ducks, by species, from treatments for botulism used in 1953 and 1954	40
	7.	Recovery of birds after treatment for botulism in relation to age and sex, as recorded in 1953 and 1954 .	41
	8.	Recovery of birds stricken with botulism during 1953 and	44

LIST OF FIGURES

Figure		Page
1.	Points of reported incidence of botulism among wild birds in North America	6
2.	Airthrust boat used extensively in botulism work during 1953 and 1954	11
3.	Typical position of a worker preparing to pick up a sick duck	11
4.	Pick-up nets (1) used to capture sick ducks and a pitchfork (2) used to gather dead birds	12
5.	Sick birds typical of class I (1), II (2), and III (3) as classified for purposes of research conducted in 1953 and 1954	14
6.	Technique used in inoculating sick ducks	16
7.	Hospital enclosures as constructed at Ogden Bay Refuge (1), Farmington Bay Refuge (2), and the Public Shooting Grounds (3) - note structure used as a field laboratory at extreme right of diagram 1	18
8.	Hospital treated ducks utilizing a pond within the hospital enclosure	19

INTRODUCTION

Purpose and scope

Each year thousands of western waterfowl succumb to disease, predators, mechanical injury and other decimating factors. Based on a review of records it is conservatively estimated that an average of 25,000 ducks have succumbed to botulism on western marsh areas annually.

In a recent study, the United States Fish and Wildlife Service valued each duck and goose at \$8.00 (McLeod, 1950). Applying this value to the estimated annual numerical loss, a total of \$200,000 has been lost each season in mortality of western waterfowl from botulism. Control of this malady would reduce annual waterfowl and monetary losses.

Prevention and cure are the only means of controlling botulism in wild ducks. At present, no economical preventative measure exists and control is based on curing stricken birds. The prupose of this study was to evaluate the cost of treatment and rate of recovery of birds stricken with botulism when treated by selected methods. The 4 treatments selected for evaluation were: (1) hospital inoculation, (2) fresh water, (3) field inoculation, and (4) no treatment or control. Research included a comprehensive evaluation of factors such as age, sex, species, body condition, degree of affliction, reaction to various amounts of antitoxin, and reaction to selected treatment methods, thought to be pertinent in botulism control. This study was conducted during botulism outbreaks of 1953 and 1954, and was confined to state-owned marshlands of Utah.

Study areas

Three major areas provided sick birds used in this research: (1) Ogden Bay Refuge, (2) Farmington Bay Refuge, and (3) the Public Shooting Grounds. These man-made marsh areas are located on the saline flat lands adjacent to Great Salt Lake.

The majority, 1,979 or 89.3 percent, of sick birds were taken from Ogden Bay Refuge on the Weber River Delta. This state-owned waterfowl refuge contains approximately 13,700 acres of diversified habitat. Excellent conditions for the production and existence of <u>Clostridium</u> <u>botulinum</u>, type C, the causative agent of botulism, were apparently present throughout the area.

Farmington Bay Refuge, approximately 20 miles south of Ogden Bay Refuge in Davis County, Utah, was dried for improvements in 1953, but was traversed regularly during the 1954 season. In preparation for the hunting season, water was diverted into the north lake of Farmington Bay on October 1, 1953. A two-man crew picked up and disposed of approximately 2,000 dead ducks from approximately 20 acres of the reflooded marsh on October 6, 1953. This was the most serious outbreak of the study and indicated the rapidity with which sickness advanced. Few sick birds were noted, which indicated that the crisis had passed. Farmington Bay Refuge provided 121 of the 2,214 ducks treated during 1953 and 1954.

Not more than 12 sick or dead birds were seen on the Public Shooting Grounds, 8 miles west of Corinne, Utah, in 1953. During the 1953 season, 3 sick birds were transported from the area to Ogden Bay Refuge for treatment. In 1954 this state-owned shooting area supplied 111 sick birds for treatment.

Other areas were observed during the study but did not provide sick

birds for treatment. These areas consisted of: (1) State-owned lands beyond Bear River Migratory Bird Refuge, and (2) Smith and Utah Lakes west of Provo, Utah.

REVIEW OF LITERATURE

Extent of outbreaks

Alkali poisoning or western duck sickness, as botulism was originally known, was first reported among wild ducks around Great Salt Lake, Utah, in 1893. Waterfowl losses, suggestive of botulism, were reported prior to this date but lacked verification. In 1910, losses around Great Salt Lake were of sufficient proportions to attract nation-wide attention (Kalmbach and Gunderson, 1934). Marsh areas adjacent to Great Salt Lake have consistently produced large outbreaks of botulism.

The initial appearance of the epizootic in California occurred in the vicinity of Soleta Lake in 1908. A subsequent outbreak prevailed in this area in 1909 (Clarke, 1913).

Since its debut, botulism has been reported from widely scattered areas in varying intensities. Only two areas outside North America have reported the incidence of botulism. Repeated outbreaks have occurred in the vicinity of Victoria, Australia (Kalmbach, 1935). Evidence of the malady was noted in the vicinity of Laguna Castillos, Uruguay, in 1921 (Kalmbach and Gunderson, 1934). Points of occurrence in North America are indicated on figure 1. Some important outbreaks in North America are listed in table 1.

History of research

Botulism research began with the 1911 outbreak in California. Attention was directed toward the cause of the malady and was centered around a body of stagnant, alkaline water and exposed mud flats of the Tulare Lake area. Results of this beginning project indicated the

Area	Year	Approximate loss	Reference
Great Salt Lake, Utah	1893 1910 1912 1913 1914 1929 1932 1950 1952	"thousands" 200,000-300,000 75,000 46,7231 8-10,0002 100,000-300,000 65,000-150,000 20,000 50,000	Zimmerman, 1946 Zimmerman, 1946 Kalmbach and Gunderson, 1934 Kalmbach and Gunderson, 1934 Kalmbach and Gunderson, 1934 Kalmbach and Gunderson, 1934 McLeod, 1950 Utah Fish & Game Comm., 1950 Nelson, 1952
Buena Vista Lake, Calif.	1913	40,000 ³	Kalmbach and Gunderson, 1934
Tulare Lake, Calif.	1913		Kalmbach and Gunderson, 1934
Lake Malheur, Oregon	1925	100,000	Kalmbach and Gunderson, 1934
Tule Lake, Calif.	1925	25-50,000	Kalmbach and Gunderson, 1934
Chase Lake Bird Refuge, South Dakota	1930	"large numbers of waterfowl"	Kalmbach and Gunderson, 1934
Oaks and Sylvan Lakes, Minnesota	1931	"Great numbers of ducks, shore birds and domestic poultry died on mud flats of these areas."	Kalmbach and Gunderson, 1934
Tlahualilo, Mexico	1925	"Many thousands of birds"	Kalmbach and Gunderson, 1934

Table 1. Waterfowl losses from botulism in North America as recorded in literature

1. Picked up only those birds lying in conspicuous places.

2. Picked up in approximately 2 miles of shoreline on the lower channel of Weber River.

3. Combined loss from Buena Vista and Tulare Lake during 1913.

J

Figure 1. Points of reported incidence of botulism among wild birds in North America

causative organism to be harbored by the water. Many conditions necessary for production of toxin and some characteristic symptoms shown by stricken birds were unveiled during this program (Clarke, 1913).

In 1914 the Bureau of Biological Survey launched its first botulism study around Great Salt Lake, Utah. Findings indicated that "Duck sickness in Utah is caused by the toxic action of certain soluble salts found in alkali" (McLeod, 1950). Giltner and Couch, working under the Bureau in 1930, isolated and identified <u>Clostridium botulinum</u>, type C, from intestinal tracts of stricken birds, thus removing the cause of botulism from chemical texicology and directing it toward bacteriology (Kalmbach and Gunderson, 1934). These workers later proved a definite relationship of this organism to western duck sickness (Kalmbach, 1935). Attempts were made to determine field conditions favorable to toxin production, and the relative suitability of various media was investigated. Research during following seasons was directed toward demonstrating that toxin was produced in the field, and in food likely to be ingested by feeding waterfowl (Kalmbach and Gunderson, 1934). Much of today's research is concerned with these points.

Since discovery of the causative organism, many widespread and diverse studies have been conducted. Some workers revived old theories, others proceeded to supplement previous discoveries concerning <u>Clostridium botulinum</u>, type C. Although numerous requirements of the bacterium have been discovered, many characteristics of the malady continue to baffle biologists.

Various methods were employed to reduce waterfowl losses while research on causes of botulism was progressing. Scaring or luring devices were used to keep ducks from toxic areas (Coburn and Quortrup, 1938).

Disinfectants and water manipulations were designed to reduce losses (Jensen, <u>et al.</u>, 1944). The efficiency of treatment methods has been studied. Some treatments were found to be laborious and uneconomical, others seemed to fit the needs of the biologist.

Placing birds in an enclosure with fresh water, clean food and shelter was a pioneer treatment of birds with botulism (Wetmore, 1918). Wetmore conducted a study involving 1,211 ducks of 7 species. These sick birds were treated by placing them in fresh water and in some cases administering caster oil (orally) to soothe irritation. Large species received 2 cc. and smaller ducks 1 cc. of caster oil. Birds with lead poisoning (as determined by autopsy after death) were eliminated from the calculations and a 77 percent recovery was noted. Severely stricken birds showed a low recovery.

A more recent treatment, used extensively during the past 8-10 years, is to treat birds with injections of botulinum antitoxin. Quortrup (1943) injected 175 birds with 2 cc. of botulinum antitoxin and obtained 91.4 percent recovery. A control group of 59 birds receiving no antitoxin was placed in a fresh water area. This group showed a 64.4 percent recovery.

McLeod (1950) cites a program under which birds unable to hold their heads up received shots of antitoxin. Large ducks received 4 cc. of antitoxin and smaller birds, such as teal, received 2 cc. If ducks failed to recover after the first injection and did not die, a second injection was given. A recovery of 70 percent was noted for this treatment.

In a study of treated sick birds from state-owned marshes in Utah, Nelson (1952) reports an 84.6 percent recovery of all birds inoculated

with antitoxin and 71.9 percent recovery for those placed in fresh water.

During this 1952 study, a total of 6,887 ducks were treated. This large number of birds greatly reduced the cost of treatment by reducing time and expense involved in capturing sick birds. The cost-per-bird for antitoxin injected ducks was \$0.33, and for fresh water treated ducks the cost-per-bird was \$0.20.

Recent research by the United States Fish and Wildlife Service at Bear River Refuge, Utah, has concerned the causative organism and its toxic excretory product. Some sick birds have been treated by hospitalization and inoculation with antitoxin during this research, but cost and recovery data are, at present, unavailable. A recent review of botulism research and present status of the disease has been presented by Sciple (1954).

METHODS

Detection of sick birds

During early summer, paralyzed birds were scattered along the shores of study areas. As the number of stricken ducks increased, they moved out into the canals and borrow pits. Some birds could dive; severly afflicted ones could not. When the numbers seen from the dikes were great enough, airboats were launched and reconnaissance was made over the area. Sick birds were recognized by their inability to fly and subsequent "flapping" along the water or by their "squatting" along the shores. Most birds were captured on the open water. Birds along the shore were generally in the poorest condition, as they apparently sought these dry areas as sickness advanced.

Pick-up of sick ducks

Air-thrust boats and wire hand nets reduced time and effort required for pick-up operations. Airboats, propelled by 65-horsepower aircraft engines, could travel over areas nearly free of surface water. This unique ability increased the volume of pick-up of sick birds. When the number of sick birds was large, movement from one sick bird to the next usually required only a matter of seconds; because of this speed, few birds escaped.

Pick-up nets were constructed, by the writer, of 3/4-inch conduit tubing frames with No. 9 wire nets (figure 4, diagram 1). When approached, a sick bird invariably dived beneath the surface, if capable; capture was usually possible only after the bird resurfaced. However, with pick-up nets most birds could be captured on the first attempt. Wire was used

Figure 2. Airthrust boat used extensively in botulism work during 1953 and 1954

Figure 3. Typical position of a worker preparing to pick up a sick duck

Figure 4. Pick-up nets (1) used to capture sick ducks and a pitchfork (2) used to gather dead birds

on the net after cotton netting proved unsuccessful because of its fouling of the bird. Dead birds were picked up with an ordinary 5-tine pitchfork (figure 4, diagram 2).

Classification of birds

Birds included in this study were classified by species, sex, age, degree of sickness, and body condition. The characters of species, sex, and age were determined by commonly accepted methods. The degree of sickness and body condition are relative classes. Three degrees of sickness as used by Quortrup (1943) were found to fill the needs of the problem: (1) Class I birds were mildly afflicted; able to walk and move along, but flightless. (2) Class II birds were somewhat more paralyzed and were unable to move along when placed on a flat surface. (3) Class III birds were the more severely stricken, prostrate birds (figure 5).

Body condition was also of 3 degrees: (1) skinny, (2) medium, and (3) fat - a classification determined by feeling the breast of the bird. This classification was designed to determine whether body condition of afflicted birds might affect their recovery.

Method of injecting antitoxin

Intraperitoneal injections of antitoxin were made with a 22 cc. calibrated medical syringe with a l-inch, 20-gauge needle. The specifications of the equipment are not important, but this combination proved very satisfactory. The antitoxin used was a commercial, polyvalent (type A, B, and C) botulinum antitoxin of bovine and equine origin.

Intraperitoneal inoculations were most easily made with the worker in a sitting position. A bird was grasped and placed on its back, across the worker's legs, with its head on the side opposite the person's working hand. By grasping a fold of skin just posterior to the breast bone, a

Sick birds typical of class I (1), II (2), and III (3) as classified for purposes of research conducted in 1953 and 1954

suitable base was presented for the injection (figure 6). Care should be taken to place the needle between the folds of skin erected by the fingers and also to avoid puncturing internal organs.

Treatments used

Treatments used in this study were selected on the basis of expected economy and success. The four treatments selected for study were: (1) hospital inoculation, (2) fresh water, (3) field inoculation, and (4) no treatment. These treatments had been used by earlier workers, either partially or entirely, and seemed to warrant critical comparison. Hospital inoculation treatment. After capture, birds to be included in the hospital inoculation treatment were transported to the hospital site. Before being released in the hospital, birds were banded, recorded, and inoculated with 1 of 3 amounts of antitoxin (2 cc., 1 cc., or 1/2 cc.). Most injections previous to this study had consisted of 2 cc. amounts. Some workers considered this more than was needed for optimum recovery and suggested smaller quantities. Teal, because of their small size, received a maximum dose of 1 cc. of antitoxin. Birds were randomly chosen and segregated into 3 groups for the different quantities of antitoxin. This method of obtaining birds for inoculation served to eliminate bias concerning species, sick class, and/or body condition.

Fresh water treatment. Birds included in the fresh water treatment were picked up in the field and transported to the hospital. Case histories were recorded and each bird was banded for identification. Birds were then released in the hospital enclosure in an effort to determine the effect of protection, and clean, fresh water on their sickness.

Field inoculation treatment. Field inoculated birds received 2 cc.

of antitoxin, with the exception of teal which received 1 cc. As these birds were being inoculated, their case histories were recorded. After inoculation they were banded and released as near their original location as possible. Class III birds were transported to a dry area, preferably an island, to prevent drowning. Frequent observations were made throughout the area to recover any birds dying after treatment. Birds succumbing to the disease could usually be found close to their release site. No treatment. In conjunction with the field inoculation treatment, an experiment was conducted in which no treatment of birds was involved. These birds were picked up, banded, and their case histories recorded. They were then released as were birds in the field inoculation treatment. Handling was kept at a minimum to determine, as nearly as possible, the recovery rate under natural field conditions. Field treatments were designed in an attempt to determine the extent of a stress factor, if any, produced by handling in transporting to a hospital, and also the effect of antitoxin administered under field conditions.

Hospital construction

In 1952, employees of the Utah State Department of Fish and Game constructed a hospital on Ogden Bay Refuge to be used in botulism research. In 1954, with what appeared to be the beginning of a large, widespread outbreak, hospitals were constructed at Farmington Bay Refuge and on the Public Shooting Grounds.

The hospitals were of temporary construction and consisted of an area enclosed by common chicken wire, 3 feet high. A section of moving, fresh water was included in each enclosure and shade was provided by a grass or willow covered shelter. A plywood enclosure, included on the hospital at Ogden Bay Refuge, was designed as a modified field laboratory.

Figure 7. Hospital enclosures as constructed at Ogden Bay Refuge (1), Farmington Bay Refuge (2), and the Public Shooting Grounds (3) - note structure used as a field laboratory at extreme right of diagram 1

Figure 8. Hospital treated ducks utilizing a pond within the hospital enclosure

Because of limited use, this structure was deemed unnecessary for hospitals at Farmington Bay Refuge and the Public Shooting Grounds.

Equipment used

Little equipment was required for this study. Part of the equipment and material was used only in hospital construction, and consisted of construction materials and tools. Other equipment, used mainly in the pick-up and treatment phase, was as follows:

pickup trucks
 air-thrust boats (gas and oil)
 pitchforks and specially constructed pick-up nets
 antitoxin, syringes and antiseptic materials
 portable cooler and canned ice
 banding equipment
 record sheets and datum boards
 garbage cans (20 gal.)
 holding crates

Determination of recovery of birds after treatment

The percent recovery of birds included in each method was determined by comparing the number of bands found on birds dying after treatment and the total number banded. In the hospital treatments, the gathering of dead birds was relatively easy and resulted in an accurate count. However, some suspicion was placed on the return from birds dying after being treated in the field. Observations revealed that after release, field treated birds retreated to the nearest available cover.

To test the validity of the data being collected on field-treated birds, 3 methods were employed. (1) Occasional reconnaissance, by persons on foot, was made of vegetated areas to find birds succumbing in these areas. (2) A comparison was made of the number of band returns from birds of the various treatments shot during the hunting season. (3) Statistical checks were run on the numbers found dead after treatment and the hunting return by means of the "chi-square" method of analysis to determine the relationship of these figures. The level of significance was placed at 5 percent for these analyses. Calculations for cost of treatment

The figures in this manuscript designating the cost-per-bird were calculated from data collected throughout this study. Items involving cost of equipment or material were treated to yield cost-per-bird.

Items involving time were divided proportionately between treatments. Time required for various phases of operation was calculated on a man-minute basis. Some operations involved the services of 2, 3 or 4 men receiving various salaries. The time required of each man was multiplied by his salary and divided by the number of birds involved. Individual figures were subsequently added to give the total cost-perbird of that particular operation.

Costs or depreciation of permanent equipment are not considered except as depreciation required repairs involving costs or time. Hospital construction materials and time are divided by 5 on the premise that these structures will serve approximately 5 years and costs should be distributed proportionately. The resulting figure was multiplied by 2 for the 1953 and 1954 research. Hospital repair is included as a total because it is required each season (appendix table 3).

The cost-per-bird and recovery rate of each treatment were combined to yield the cost-per-recovered-bird (appendix table 4). By this action the relative economics of the treatments could be determined by comparing one figure.

RESULTS

Botulism outbreaks occurring in Utah during 1953 and 1954 were extremely mild. In 1953, pick-up of sick birds did not begin until August 24. In 1954, no attempt to treat birds was made until August 16. There were 1,710 birds treated in 1953 and 504 in 1954. In contrast, during the 1952 outbreak, operations were begun about August 1, and 6,887 birds were treated (Nelson, 1952). The sharp decline in number of stricken birds over this 3-year period is not fully understood. However, both 1953 and 1954 were seasons of low water levels, which could have caused various reactions harmful to toxin production.

Although numbers of waterfowl treated in 1953 and 1954 were small, it was determined that they were sufficient to be statistically valid. In some groups of birds, however, the expected numbers, when using the "chi-square" method of analysis, were below 5 and considered unreliable for comparison.

Evaluation of recovery from treatments

A total of 994 ducks, 861 treated in 1953 and 133 in 1954, were included in the hospital inoculation treatment. To determine the effects of different sized doses of antitoxin on recovery, these birds were divided into 3 unequal subgroups receiving 2 cc., 1 cc., and 1/2 cc. respectively, of botulinum antitoxin.

Recovery from the 3 dosage groups did not vary appreciably for class I and II birds, but class III birds seemed dependent on amount of antitoxin administered. Class III birds showed a 54.5 percent

recovery with 2 cc., 42.7 percent with 1 cc., and 28.6 percent with 1/2 cc. of antitoxin (table 2). Teal, which received 1 cc. and 1/2 cc. injections, showed their highest recovery, 68.8 percent when considering class II and III birds only, when inoculated with 1/2 cc. of antitoxin.

	Amount of antitoxin							
Sick class	2 cc.	1 cc.	1/2 cc.					
I II III Weighted average	97.4% 83.6 54.5 92.1%	95.2% 82.0 42.7 88.7%	98.6% 80.4 28.6 91.7%					

Table 2. Percent recovery of birds hospitalized and injected with selected amounts of antitoxin

Recovery of sick birds from the fresh water treatment was a comparatively low 82.7 percent. Both the field inoculation and no treatment groups produced high recovery rates. The 95.5 percent recovery following field inoculation was highest of the 4 methods employed. Class I birds showed a high recovery regardless of treatment. However, these mildly stricken birds had their highest recovery, 99.6 percent, under field inoculation and no treatment groups (table 3).

Sick class	Fresh	Field	No
	Water	inoculation	treatment
I	93.9%	99.6%	99.6%
II	59.2	85.7	64.3
III	11.8	22.2	20.0
Weighted average	82.7%	95.5%	94.8%

Table 3. Percent recovery from fresh water, field inoculation, and no treatment groups

Greater costs required by the inoculation treatment suggests that class I birds should be left unmolested in the field. Determination of the most economical treatment for class II and III birds is dependent on the costs involved.

Complete recovery data is given in appendix tables 1 and 2.

Evaluation of costs of treatments

<u>Cost-per-treated-bird</u>. The cost of treating birds was high during this study. A low incidence of botulism and the consequent difficulty in obtaining sick birds increased time and operational expenditures. The costper-treated-bird for each treatment is given in table 4.

Table 4. Cost-per-treated-bird in 1953 and 1954

Hospi	tal inoc	ulation	Fresh	Field inocu-	No treat-		
2 cc.	l cc.	1/2 cc.	water	lation	ment		
\$0.69	\$0.64	\$0.61	\$0.57	\$0.64	\$0.53		
	Hospi 2 cc. \$0.69	Hospital inoc 2 cc. l cc. \$0.69 \$0.64	Hospital inoculation 2 cc. 1 cc. 1/2 cc. \$0.69 \$0.64 \$0.61	Hospital inoculation Fresh water 2 cc. 1 cc. 1/2 cc. water \$0.69 \$0.64 \$0.61 \$0.57	Hospital inoculationFresh inocu- lation2 cc.1 cc.1/2 cc.\$0.69\$0.64\$0.61\$0.69\$0.64		

This listing shows that the control group (no treatment) was most inexpensive. Under ordinary conditions, where banding was eliminated, there would be no expense for this group of birds.

<u>Cost-per-recovered-bird</u>. To aid in economically evaluating treatments, the cost-per-recovered-bird was determined. This cost was derived by use of the following formula:

Total number of birds treated X Cost-per treated-bird Total number of birds recovering after treatment

The results of these caluclations are given in table 5.

Table 5. Cost-per-recovered-bird in 1953 and 1954

Sick class	Hospi	tal inocu l cc.	ulation 1/2 cc.	Fresh water	Field inocu- lation	No Treat- ment
I	\$0.71	\$0.67	\$0.62	\$0.61	\$0.64	\$0.53
II	0.83	0.78	0.76	0.96	0.75	0.82
III	1.27	1.51	2.14	4.84	2.88	2.65
Wtd. avg.	0.75	0.72	0.67	0.69	0.69	0.56

Because of a high recovery rate and lack of costs, class I birds may most economically be left untreated in the field. Class II and III birds, however, remain as groups which may be helped by treatment. Class I birds were therefore not considered in further evaluation of treatments.

Field inoculation was the most economical treatment for class II birds, costing \$0.75. For class III birds, hospital inoculation with 2 cc. of antitoxin was most economical at a cost-per-recovered-bird of \$1.27 (table 5).

Separation of class II and III birds, as observed in the field, is at times difficult. Use of different treatments for these 2 sick classes would also present complications. To overcome these difficulties, classes II and III were grouped to present a single cost-per-recovered-bird used in comparing treatments. The results of this grouping showed field inoculation to be most economical costing \$0.86 per-recovered-bird (table 6).

Item	Hospi	tal inocul	ation	Fresh water	Field inocu-	No Treat-
	2 cc.	l cc.	1/2 cc.		lation	ment
Cost	\$0.90	\$0.91	\$0.87	\$1.17	\$0.86	\$0.92

Table 6. Cost-per-recovered-bird for sick classes II and III combined

All field inoculated birds with the exception of teal, received 2 cc. of antitoxin. In analyzing the hospital inoculation treatment results (table 6), it was found that birds which received 1/2 cc. of antitoxin showed the most economical recovery. However, by viewing table 7, it was found that 2 cc. injections produced an approximate 7 percent greater recovery than the 1/2 cc. dosage. This difference in rate of recovery seems to warrant the \$0.03 per-bird added expense.

Item	Hospi	tal inocul	lation	Fresh	Field inocu-	No treat-
	2 cc.	l cc.	1/2 cc	water	lation	ment
Recovery	76.8%	70.1%	70.0%	48.7%	74.5%	57.6%

Table 7. Percent recovery for classes II and III combined

It was previously determined that if banding were eliminated from the no treatment or control group, there would be no cost involved. By eliminating all costs and retaining the combined recovery rate of 57.6 percent for class II and III birds (table 7), no treatment would be most economical of the 4 groups studied. However, the 16.9 percent difference in recovery between not treating and field inoculation indicates that the cost of field inoculation was feasible expenditure. A limited number of severely stricken birds included as the no treatment group in 1953 and 1954 makes any conclusion questionable.

Other significant findings

Recovery in relation to species. Overall, Shoveller ducks (Spatula clypeata) had the highest recovery, 91.9 percent, after treatment. Baldpate (Mareca americana), Green-winged Teal (Anas crecca carolinensis), and Pintail (Anas acuta tzitzihoa) followed in percent recovery. Baldpate showed a 91.4 percent recovery; Green-winged Teal and Pintail both had 90.1 percent recovery (appendix table 6).

Wetmore (1918) and others, indicate that Green-winged Teal showed the least resistance to botulism and had low recovery after treatment. Relative susceptibility of a species is difficult to determine because of differential migration of species and consequent fluctuating numbers of each species present in the toxin area. The 3 species of teal treated, Green-winged Teal, Cinnamon Teal (<u>Anas c. cyanoptera</u>), and Blue-winged Teal (<u>Anas discors</u>), showed the greatest recovery where handling was minimized. The 2 species of diving ducks which were treated, Ruddy (<u>Oxyura jamaicensis rubida</u>) and Redhead (<u>Aythya americana</u>), both showed low recovery rates. Appendix table 6 gives a complete listing of recovery by species.

<u>Recovery in relation to sex</u>. Males of all species combined had a slight but significant margin of recovery over females. Males showed a 90.0 percent and females 88.9 percent recovery. Complete recovery data by sex is included in appendix table 7.

<u>Recovery in relation to age</u>. Adult birds showed a 90.2 percent recovery and juveniles 88.2 percent. By comparing the number of adult and juvenile birds stricken with botulism during 1953 and 1954, adults would appear to be more susceptible. However, the number of individuals stricken from each age class may be dependent on relative numbers of the age class present and not on a difference in susceptibility. Appendix table 7 provides age-recovery data.

Recovery in relation to body condition. Class I birds classified as skinny had a greater recovery than birds classified as fat. Class II and III birds, however, showed their greatest recovery in the 'fat' condition.

In both the fresh water and no treatment groups, birds classified as medium showed the greatest recovery (appendix table 8). The inconsistency in recovery in relation to body condition indicates that recovery is not especially dependent on body condition. Body condition is evidently not a true index of a birds affliction as it is in many other diseases.

MANAGEMENT RECOMMENDATIONS

During 1953 and 1954 botulism was extremely mild among waterfowl on Utah marshes. With such small outbreaks, ducks were mildly afflicted and only a small number advanced to the prostrate or class III stage. Few severely stricken birds were obtained for this study and it is recommended that further research be conducted on class II and III ducks.

Class I birds had a high recovery rate regardless of treatment. It is recommended that such mildly stricken birds be left unmolested in the field.

Class II and III birds combined showed their highest recovery, 74.5 percent, under the field inoculation treatment. The combined cost-perrecovered-bird for these classes under the field inoculation treatment was \$0.86. It is recommended in future outbreaks, involving large numbers of birds, that the field inoculation treatment be used. It is further recommended that all birds except teal receive 2 cc. of polyvalent botulinum antitoxin. Teal should be given 1/2 cc. injections of antitoxin. In event of small outbreaks such as those of 1953 and 1954, no attempt should be made to treat birds.

Although under normal conditions, leaving birds unmolested in the field (no treatment) would cost nothing and would yield a relatively high recovery, this is not recommended for large numbers of severely stricken birds. However, choice of treatments to be used for large outbreaks may depend on whether the expected difference in recovery, 16.9 percent, from leaving birds unmolested in the field and field inoculation would warrant the expense of inoculating. The importance of this difference will depend on the number of birds stricken. The larger the number stricken, the more important the 16.9 percent.

SUMMARY

- To aid in economically curing ducks stricken with botulism, 4 treatments previously used against the disease were chosen for a comparative study of relative economy and effectiveness.
- 2. Treatments chosen for this study were hospital inoculation, fresh water, field inoculation, and no treatment or control. Birds in the inoculation treatments received measured doses of a polyvalent botulinum antitoxin. Recovery of ducks included in fresh water and no treatment was dependent on natural dissipation of ingested toxin. Hospital and fresh water treated birds were placed in an enclosure, others were left in the field.
- 3. Research began with the advent of sickness in 1953 and was concluded at the end of the 1954 botulism season. Operations were conducted on state-owned waterfowl areas of Utah. Research was confined to areas having the greatest numbers of afflicted ducks; namely, Farmington Bay and Ogden Bay Refuges and the Public Shooting Grounds.
- 4. Birds were classified according to species, sex, age, degree of sickness and body condition. Degree of affliction and body condition were relative measures determined by the workers. Birds were grouped into 3 sick classes; I, II, and III. Class I birds were mildly sick and class III individuals were prostrate and unable to hold their heads up. Class II was an intermediate degree.
- Skinny, medium, and fat were the body condition classes used. These classes were determined by manual observation of each bird. Body

condition seemed to have little effect on recovery.

- 6. Pick-up operations were facilitated by airthrust boats and wire pick-up nets. Sick birds were placed in holding crates until treated. Dead birds were picked up and later burned and buried. A total of 2214 birds were treated during the 2 seasons research. Recovery was dependent on the treatment used. The field inoculation treatment was found to return the most economical recovery.
- 7. Recovery from each treatment was determined by subtracting the number of birds found dead after treatment from the total treated by that specific method. Birds treated by the field methods were thought to be dying in dense vegetation and not detected. Three methods were devised to check this premise: (1) Frequent reconnaissance of vegetated areas in search of dead birds, (2) comparison of the number of dead birds found after treatment and the bands returned from ducks shot during the hunting season for each treatment, and (3) data were analyzed by use of "chi-square" to determine significance. No significant difference was found between the hunting return and the recovery of birds dying after treatment which indicated that either figure was valid in determining recovery.
- 8. Field inoculation, which was found to be most economical of the 4 methods, cost \$0.64 per-treated-bird during this research, and is recommended for future use. Other treatments varied from \$0.53 in the fresh water treatment to a high of \$0.69 per-treated-bird for hospital inoculation with 2 cc. of antitoxin. Included in costs were such items as labor, construction materials, antitoxin, repair of equipment, and petroleum products.
- 9. Different antitoxin doses were included in an attempt to determine the relative effect of smaller doses (2 cc. had been used in most

previous treatments). Doses used consisted of 2 cc., l cc., and l/2 cc. amounts and were administered by intraperitoneal injections.

10. Management recommendations included the prescribed use of the field inoculation treatment. The 2 cc. injection was the most economical for use on larger species of ducks and 1/2 cc. injections were recommended for teal. Because of a shock or stress factor from handling, greater numbers of class I birds were saved if left unmolested in the field. It was recommended that these birds be omitted and that only class II and III birds be treated.

LITERATURE CITED

Clarke, F. C.

1913 Preliminary report upon the disease occurring among the ducks of the southern San Joaquin Valley during the Fall of 1913. Condor 15:214-226.

Coburn, D. R., and E. R. Quortrup

1938 Recent findings in relation to control of botulism in waterfowl. Trans. 4th No. Am. Wildlife Conf. pp. 359-363.

Jensen, G. Horton, E. R. Quortrup, C. C. Sperry, and C. S. Williams

1944 Botulism at the Bear River Refuge, Utah, during the 1944 experimentation in water manipulation. U. S. Fish and Wildlife Service Unp. Rpt. pp. 1-66.

Kalmbach, E. R., and Millard F. Gunderson

1934 Western duck sickness a form of botulism. U. S. Dept. of Agr. Tech. Bul. 411. pp. 1-82.

Kalmbach, E. R.

1935 Will botulism become a world-wide hazard to wild fowl? Reprint from Journ. Am. Vet. Med. A soc. 87(2):183-187.

McLeod, Edith R.

1950 Duck botulism. The Sci. Mo. 71(5):302-308.

Nelson, Noland F.

1952 Botulism losses. Utah Pacific Flyway Rpt. Third Quarter 1952, No. 20. pp. 2-3.

Quortrup, E. R.

1943 The value of antitoxin in the treatment of ducks afflicted with botulism. U. S. Fish and Wildlife Service Unp. Rpt. pp. 1-2.

Sciple, George W.

1953 Avian botulism: information on earlier research. U. S. Fish and Wildlife Service Special Scientific Rpt.: Wildlife No. 23. pp 1-9.

Utah Fish and Game Commission

1950 Botulism strikes again. Utah Fish and Game Bul. 9(4):4. Wetmore, Alexander

1918 The duck sickness in Utah. U. S. Dept. Agr. Bul. 672. Zimmerman, F. R.

1946

Western duck sickness (botulism) in the Green Bay area. Wis. Cons. Bul. 11(12):3-7. APPENDIX

			Amount of antitoxin										
Year	Sick		2 cc.			l cc.			1/2 cc.				
	Class	Tl	R ²	%3	T	R	%	Т	R	%	T	R	%
1953	I	236	231	97.9	212	201	94.8	187	185	98.9	635	617	97.2
	II	66	54	81.8	54	46	85.2	50	40	80.0	170	140	82.4
	III	19	11	57.9	24	9	37.5	13	3	23.1	56	23	41.1
	Total	321	296	92.2	290	256	88.3	250	228	91.2	861	780	90.8
1954	I	38	36	94.7	36	35	97.2	33	32	96.1	107	103	96.3
	II	7	7	100.0	7	4	57.1	6	5	83.3	20	16	80.0
	III	3	1	33.3	2	2	100.0	1	1	100.0	6	4	66.7
	Total	48	44	91.7	45	41	91.1	40	38	95.0	133	123	91.7
Total	I	274	267	97.4	248	236	95.2	220	217	98.6	742	720	95.7
	II	73	61	83.6	61	50	82.0	56	45	80.4	190	156	82.1
	III	22	12	54.5	26	11	42.7	14	4	28.6	62	27	43.5
	Total	369	340	92.1	335	297	88.7	290	266	91.7	994	903	90.8

Table 1. Number and percent recovery for various amounts of antitoxin as administered to hospital inoculated ducks.

1. Designates the total number of birds treated.

2. Designates the total number of treated birds not found dead after treatment - these birds were assumed to have recovered.

3. Designates the percent of birds recovering after treatment.

	Sick		and the second				Tre	atmen	t							
Year	class	class Hospital				Field						Total				
		In	ocula	tion	Fre	sh wa	ter	In	ocula	tion	No	treat	ment			
-		Tl	R2	<i>%</i> 3	Т	R	%	Т	R	%	T	R	%	Т	R	%
1953	I II III Total	635 170 56 861	617 140 23 780	97.2 82.4 41.1 90.8	367 96 32 495	345 53 4 402	94.0 55.2 12.5 81.2	147 29 6 182	146 23 2 171	99.3 79.3 33.3 94.0	146 23 3 172	145 15 0 160	99•3 65.2 00.0 93•0	1295 318 97 1710	1253 231 29 1513	96.8 72.6 29.9 88.5
1954	I II III Total	107 20 6 133	103 16 4 123	97.1 80.0 66.7 92.5	97 24 2 123	91 18 0 109	93.8 75.0 00.0 88.6	114 13 3 130	114 13 0 127	100.0 100.0 00.0 97.7	111 5 2 118	111 3 1 115	100.0 60.0 50.0 97.5	429 62 13 504	419 50 5 474	97.7 80.6 38.5 94.0
Total	I II III Total	742 190 62 994	720 156 27 903	95.6 82.1 43.5 90.8	464 120 34 618	436 71 4 511	93.9 59.2 11.8 82.7	261 42 9 312	260 36 2 298	99.6 85.7 22.2 95.5	257 28 5 290	256 18 1 275	99.6 64.3 20.0 94.8	1724 380 110 2214	1672 281 34 1987	97.0 73.9 30.9 89.7

Table 2. Number of birds treated by each method and number and percent recovering after treatment

1. Designates the total number of birds treated.

2. Designates the total number of treated birds not found dead after treatment - these birds were assumed to have recovered.

			Trea	tment		
		Hospi	tal		Fiel	d
Expenditure		Inoculat	ion			No
	Amoun	it of ant	itoxin	Fresh	Inocu-	treat-
	2 cc.	l cc.	1/2 cc.	water	lation	ment
Travel						
Salary	\$0.161	\$0.161	\$0.161	\$0.161	\$0.161	\$0.161
Mileage	0.030	0.030	0.030	0.030	0.028	0.028
Antitoxin	0.110	0.055	0.028	0.000	0.110	0.000
Const. of equip.	0.022	0.022	0.022	0.022	0.022	0.022
Hospital const.						
Salary	0.010	0.010	0.010	0.010	0.000	0.000
Material	0.012	0.012	0.012	0.012	0.000	0.000
Checking ducks in						
hospital (salary)	0.010	0.010	0.010	0.010	0.000	0.000
Airboat						
Gas	0.032	0.032	0.032	0.032	0.047	0.047
Oil	0.003	0.003	0.003	0.003	0.004	0.004
Service (salary)	0.041	0.041	0.041	0.041	0.041	0.041
Repair	0.032	0.032	0.032	0.032	0.032	0.032
Pick-up of ducks						
(salary)	0.164	0.164	0.164	0.164	0.164	0.164
Recording ducks						
(salary)	0.008	0.008	0.008	0.008	0.008	0.008
Banding ducks					0	0
(salary)	0.020	0.020	0.020	0.020	0.0002	0.0002
Inoculating ducks						
(salary) 3	0.015	0.015	0.015	0.000	0.0002	0.000
Miscellaneous	0.022	0.022	0.022	0.022	0.022	0.022
Total ⁴	\$0.69	\$0.64	\$0.61	\$0.57	\$0.64	\$0.53

Table 3. Expenditures, on a per-treated-bird basis, for labor and material used in botulism research during 1953 and 1954

1. Includes repair of airboat trailers.

- These items were being accomplished during the pick-up operations and are included in that cost.
- Items included in this category were garbage cans, alcohol, funnels, gas pumps, gas drums, oil can spouts, flying service, and hardware.
- 4. Totals are rounded to the nearest cent other costs carried to 3 places for accuracy.

Sick class					Amo	Inc unt c	l culatio f anti	Hospital on toxin	treat	ments				F	resh	
		2	cc.			1	cc.			1	/2 cc.			W	ater	
	Tl	R ²	c ³	CR ⁴	T	R	С	CR	Т	R	C	CR	Т	R	С	CR
I II III Total	274 73 22 369	267 61 12 340	\$0.69 0.69 0.69 \$0.69	\$0.71 0.83 1.27 \$0.75	248 61 26 335	236 50 11 297	\$0.64 0.64 0.64 \$0.64	\$0.67 0.78 1.51 \$0.72	220 56 14 290	217 45 4 266	\$0.61 0.61 0.61 \$0.61	\$0.62 0.76 2.14 \$0.67	464 120 34 618	436 71 4 511	\$0.57 0.57 0.57 \$0.57	\$0.61 0.96 4.84 \$0.69

Table 4. Cost-per-recovered-bird for treatments used on birds with botulism in 1953 and 1954

			Fi	eld trea	atment			
Sick		Inoc	ulation			No tr	eatment	
class	T	R	C	CR	T	R	C	CR
I II III Total	261 42 9 312	260 36 2 298	\$0.64 0.64 0.64 \$0.64	\$0.64 0.75 2.88 \$0.67	257 28 5 290	256 18 1 275	\$0.53 0.53 0.53 \$0.53	\$0.53 0.82 2.65 \$0.56

1. Designates the total number of birds treated.

2. Designates the total number of treated birds not found dead after treatment - these birds were assumed to have recovered.

3. Designates the total cost-per-treated-bird.

4. Designates the total cost-per-recovered-bird.

									1	Freatm	lent										~~~~~	
	1				Hosp	oital										Field	1			1		
Year	Sick		Am	ount	of a	ntito	xin				Fre	sh								1		
	class		2 cc.		1 cc		1/	2 c	с.	1	wat	ter		Inoc	ula	tion	No	treat	tment		Tot	al
		Tl	R ² %	3 т	R	%	T	R	96	Т	R	9	6	Т	R	%	Т	R	%	Т	R	%
1953	I II III Total	236 66 19 321	18 7. 3 4. 1 5. 22 6.	6 212 5 54 3 24 9 290	8 1 0 9	3.8 1.9 0.0 3.1	187 50 13 250	11 1 0 12	5.9 2.0 0.0 4.8	367 96 32 495	44 2 2 46	12. 2. 0. 9.	.0 .1 .0 .3	147 29 6 182	9 2 1 12	6.1 6.9 16.7 6.6	146 23 3 172	12 1 0 13	8.3 4.3 0.0 7.6	1295 318 97 1710	102 10 2 114	7.9 3.1 2.1 6.7
1954	I II III Total	38 7 3 48	12. 00. 00. 12.	6 36 0 7 0 2 1 45	0 0 0 0	0.0 0.0 0.0	33 6 1 40	1 0 0 1	3.0 0.0 0.0 2.5	97 24 123	7 1 0 0 2 0 3 1	1. 0. 0.	.0 .0 .0	114 13 3 130	300 m	2.6 0.0 0.0 2.3	111 5 2 118	3 0 0 3	2.7 0.0 0.0 2.5	429 62 13 504	9 0 0 9	2.1 0.0 0.0 1.8
Total	I II III Total	274 73 22 369	19 6. 3 4. 1 4. 23 6.	9 248 1 61 5 26 2 335	8 1 0 9	3.2 1.6 0.0 2.7	220 56 14 290	12 1 0 13	5.5 1.8 0.0 4.5	461 120 31 618	+ 45 2 + 0 3 47	9. 1. 0. 7.	•7 •7 •0	261 42 9 312	12 2 1 15	4.6 4.8 11.1 4.8	257 28 5 290	15 1 0 16	5.9 3.6 0.0 5.5	1724 380 110 2214	111 10 2 123	6.4 2.6 1.8 5.6

Table 5. Number of treated birds with the number and percent of first-year band returns from the hunting season

1. Designates the total number of birds treated.

2. Designates the number of first-year band returns from treated birds shot during the hunting season. All of the 1954 returns were not in for this manuscript.

3. Designates the percent of first-year band returns from treated birds shot during the hunting season.

									Trea	tmen	t										
						Hospit	al				1.00.000				Fie	eld					
				Inc	ocula	ation															
Species			А	mount	t of	antito	oxin			Free	sh wa	ater	Ind	ocula	ation	No	trea	atment		Tota	1
		2	CC.		1 cc	2.]	L/2 c	ec.												
	Tl	R ²	%3	Т	R	%	Т	R	%	Т	R	%	Т	R	%	Т	R	%	Т	R	%
Pintail	192	178	87.5	203	186	91.6	277	260	93.9	440	359	81.6	192	185	96.4	189	177	93.7	1493	1345	90.1
Mallard	3	3	100.0	9	7	77.8	14	12	85.7	10	8	80.0	5	5	100.0	3	3	100.0	44	38	86.4
Green-winged																					
Teal	0	0	00.00	51	44	86.3	40	35	87.5	57	52	91.2	33	30	90.9	31	30	96.8	212	191	90.1
Baldpate	7	7	100.0	7	7	100.0	13	13	100.0	31	25	80.6	33	30	90.9	25	24	96.0	116	106	91.4
Shoveller	38	35	92.1	40	37	92.5	52	47	90.4	63	55	87.3	35	34	97.1	32	31	96.9	260	239	91.9
Cinnamon Teal	0	0	00.0	9	7	77.8	5	3	60.0	5	4	80.0	3	3	100.0	2	2	100.0	24	19	79.2
Blue-winged																					
Teal	0	0	00.00	6	2	33.3	3	3	100.0	3	3	100.0	0	0	00.0	1	1	100.0	13	9	69.2
Gadwall	2	2	100.0	4	3	75.0	9	6	66.7	7	4	57.1	8	8	100.0	5	5	100.0	35	28	80.0
Redhead	0	0	00.00	4	3	75.0	3	1	33.3	0	0	00.00	3	3	100.0	2	2	100.0	12	9	75.0
Ruddy	0	0	00.0	2	1	50.0	1	1	100.0	2	1	50.0	0	0	00.0	0	0	00.00	5	3	60.0
Total	290	266	91.7	335	297	88.7	369	340	92.1	618	511	82.7	312	298	95.5	290	275	94.8	2214	1987	89.7

Table 6. Recovery of ducks, by species, from treatments for botulism used in 1953 and 1954

1. Designates the total number of birds treated.

2. Designates the total number of treated birds not found dead after treatment - these birds were assumed to have recovered.

											Hos	pita	al trea	atme	nt										
						In	nocula	tio	n									Fre	sh wa	ter					
Year	Sick Class	1	Adult male		J	fuver ma	nile le	A f	dul ema	t le	Ju	veni emal	ile le	A	dult male		Ju	veni male	ile 9		Adu] fema	lt ale	Ju	reni emal	le
		Tl	R ²	<i>%</i> 3	Т	R	%	T	R	%	Т	R	%	Т	R	%	Т	R	%	Т	R	%	T	R	%
1953	I II III Total	468 113 43 624	454 96 20 570	97.0 85.0 46.5 91.3	55 22 6 83	55 17 2 74	100.0 77.3 33.3 89.2	62 22 5 89	61 14 1 76	98.4 63.6 20.0 85.4	50 13 2 65	47 13 0 60	94.0 100.0 00.0 92.3	269 71 23 363	255 39 3 297	94.8 54.9 13.0 81.8	34 7 3 44	29 3 0 32	85.3 42.9 00.0 72.7	39 10 6 55	37 7 1 45	94.9 70.0 16.7 81.8	25 8 0 33	24 4 0 28	96.0 50.0 00.0 84.8
1954	I II III Total	81 15 5 101	79 13 3 95	97.5 86.7 60.0 94.1	5 2 0 7	4 1 0 5	80.0 50.0 00.0 71.4	9 2 0 11	8 2 0 10	88.9 100.0 00.0 90.9	12 1 1 14	12 0 1 13	100.0 00.0 100.0 92.9	72 17 2 91	71 12 0 83	98.6 70.6 00.0 91.2	9 3 0 12	9 2 0 11	100.0 66.7 00.0 91.7	9 3 0 12	7 3 0 10	77.8 100.0 00.0 83.3	7 1 0 8	6 1 0 7	85.7 100.0 00.0 87.5
Total	I II III Total	549 128 48 725	533 109 23 665	97.1 85.2 47.9 91.7	60 24 6 90	59 18 2 79	98.3 75.0 33.3 87.8	71 24 5 100	69 16 1 0 86	97.2 66.7 20.0 86.0	62 14 3 79	59 13 1 73	96.2 92.9 33.3 92.4	341 88 25 454	326 51 3 380	95.6 58.0 12.0 83.7	43 10 3 56	38 5 0 43	88.4 50.0 00.0 76.8	48 13 67	44 10 1 55	91.7 76.9 16.7 82.1	32 9 0 41	30 5 0 35	93.8 55.6 00.0 85.4

Table 7. Recovery of birds after treatment for botulism in relation to age and sex, as recorded in 1953 and 1954

1. Designates the total number of birds treated.

2. Designates the total number of treated birds not found dead after treatment - these birds were assumed to have recovered.

3. Designates the percent of birds recovering after treatment.

											Fie	eld.	treatm	nents	3										
		_]	Inocula	atio	on									F	resh wa	ater	r.				
Year	Sick Class	1	Adul male	t e		Juve ma	enile ale	1	Adu. Cema	lt ale	Jī t	iver fema	nile ale		Adul 1 male	t e	Jì	uver ma	nile Le		Adı fen	ilt male	Ju f	iven 'ema	nile ale
		Tl	R ²	<i>%</i> 3	T	R	%	T	R	%	Т	R	%	т	R	%	Т	R	%	Т	R	%	Т	R	%
1953	I II	114 20	114 15	100.0	10	93	90.0 75.0	14 4	14	100.0	9	9	100.0	114 12	114	100.0	11	11 2	100.0	13	12	92.3 71.4	8	8	100.0
	III Total	3 137	1 130	33.3 94.9	1 15	0 12	00.0	1 19	0 18	00.0 94.7	11	1 11	100.0 100.0	1 127	0 122	00.0 96.1	1 15	0 13	00.0 86.7	1 21	0 17	00.0 81.0	0 9	0 8	00.0 88.9
1954	I II III Total	74 7 3 84	74 7 0 81	100.0 100.0 00.0 96.4	16 0 0 16	16 0 0 16	100.0 00.0 00.0 100.0	15 2 0 17	15 2 0 17	100.0 100.0 00.0 100.0	12 0 0 12	12 0 0 12	100.0 00.0 00.0 100.0	72 4 0 76	72 3 0 75	100.0 75.0 00.0 98.7	12 1 2 15	12 1 1 14	100.0 100.0 50.0 93.3	15 0 0 15	15 0 0 15	100.0 00.0 00.0 100.0	12 1 0 13	12 0 0 12	100.0 00.0 00.0 92.3
Total	I II III Total	188 27 6 221	188 22 1 211	100.0 81.5 16.7 95.5	26 4 1 31	25 3 0 28	96.2 75.0 00.0 90.3	29 6 1 36	29 6 0 35	100.0 100.0 00.0 97.2	21 1 23	21 1 23	100.0 100.0 100.0 100.0	186 16 1 203	186 11 0 197	100.0 68.8 00.0 97.0	23 4 3 30	23 3 1 27	100.0 75.0 33.3 90.0	28 7 1 36	27 5 0 32	96.4 71.4 00.0 88.9	20 2 0 22	20 0 0 20	100.0 00.0 00.0 90.9

Table 7. Continued

1. Designates the total number of birds treated.

2. Designates the total number of treated birds not found dead after treatment - these birds were assumed to have recovered.

3. Designates the percent of birds recovering after treatment.

Table 7. Continued-

							Tota	1					
Year	Class	A m	dult ale		Ju	veni. male	le		Adul fema	t le	J	uven: femal	ile Le
		T	R ²	%3	T	R	%	T	R	96	Т	R	%
1953	I	965	937	97.1	110	104	94.5	128	124	96.9	92	88	95.7
	II	216	158	73.1	36	25	69.4	43	30	69.8	23	18	78.3
	III	70	24	34.3	11	2	18.9	13	2	15.4	3	1	33.3
	Total	1251	1119	89.4	157	131	83.4	184	156	84.8	118	107	90.7
1954	I	299	296	99.0	42	41	97.6	48	45	93.8	43	42	97.7
	II	43	35	81.4	6	4	66.7	7	7	100.0	3	1	33.3
	III	10	3	30.0	2	1	50.0	0	0	00.0	1	1	100.0
	Total	352	334	94.9	50	46	92.0	55	52	94.5	47	44	93.6
Total	I	1264	1233	97.5	152	145	95.4	176	169	96.0	135	130	96.3
	II	259	193	74.5	42	29	69.0	50	37	74.0	26	19	73.1
	III	80	27	33.8	13	3	23.1	13	2	15.4	4	2	50.0
	Total	1603	1453	90.6	207	177	85.5	239	208	87.0	165	151	91.5

1. Designates the total number of birds treated.

2. Designates the total number of treated birds not found dead after treatment--these birds were assumed to have recovered.

								H	ospi	ital Tr	eatme	nt							
	Sick				Ino	culat	tion							Fr	esh W	ater			
Year	Class				Body	Cond	lition							Body	Cond	ition			
			Skin	ny		Mediu	um		Fat	5	S	kinny			Mediu	m		Fat	
		Tl	R2	<i>9</i> 63	Т	R	96	Т	R	96	T	R	96	Т	R	ø	Т	R	96
1953	I II III	221 67 32	217 57 11	98.2 85.1 34.4	185 28 5	181 23 2	97.8 82.1 40.0	29 4 0	28 4 0	96.6 100.0 00.0	237 71 21	218 39 4	92.0 54.9 19.0	98 18 7	93 9 0	94.9 50.0 00.0	17 2 3	13 2 0	76.5 100.0 00.0
	Total	320	285	89.1	218	206	94.5	33	32	97.0	329	261	79.3	123	102	82.9	22	15	68.2
1954	I II III Total	57 14 6 77	55 12 4 71	96.5 85.7 66.7 92.2	28 5 0 33	28 4 0 32	100.0 80.0 00.0 97.0	6006	6006	100.0 00.0 00.0 100.0	46 14 1 61	43 12 0 55	93.5 85.7 00.0 90.2	26 5 1 32	26 4 0 30	100.0 80.0 00.0 93.8	7 0 0 7	7 0 0 7	100.0 00.0 00.0 100.0
Total	I II III Total	278 81 38 397	272 69 15 356	97.8 85.2 39.5 89.7	213 33 5 251	209 27 2 238	98.1 81.8 40.0 94.8	35 4 0 39	34 4 0 38	97.1 100.0 00.0 97.4	283 85 22 390	261 51 4 316	92.2 60.0 18.2 81.0	124 23 8 155	119 13 0 132	96.0 56.5 00.0 85.2	24 2 3 29	20 2 0 22	83.3 100.0 00.0 75.9

Table 8.	Recovery of	f birds	stricken	with	botulism	during	1953	and	1954	in	relation	to	their	relative
	body condit	tion												

 Designates the total number of birds treated.
 Designates the total number of treated birds not found dead after treatment--these birds were assumed to have recovered.

Table 8.	Continued	-
----------	-----------	---

									Fiel	d Treat	ments								
	Sick				Inc	culat	ion							No t	reatm	nent			
Year	class				Body	cond	ition							Body	cond	lition			
		10	skinr	ıу		Mediu	ım		Fa	t		Skir	iny		Medi	um		Fat	
		Tl	R2	%3	Т	R	%	Т	R	96	T	R	96	T	R	96	Т	R	%
1953	I	67	67	100.0	55	54	98.2	25	25	100.0	66	66	100.0	47	47	100.0	33	32	97.0
	II	20	17	85.0	6	3	50.0	3	3	100.0	17	12	70.6	4	3	75.0	2	0	00.0
	III	4	1	25.0	1	0	00.0	1	1	100.0	2	0	00.00	1	0	00.00	0	0	00.0
	Total	91	85	93.4	62	57	91.9	29	29	100.0	85	78	91.8	52	50	96.2	35	32	91.4
1954	I	41	41	100.0	56	56	100.0	19	19	100.0	45	45	100.0	52	52	100.0	14	14	100.0
	II	7	7	100.0	3	3	100.0	0	0	00.00	4	2	50.0	11	1	100.0	1	1	100.0
	III	0	0	00.00	2	0	00.00	0	0	00.00	1	0	0.00	2	1	50.0	0	0	00.0
	Total	48	48	100.0	61	59	96.7	19	19	100.0	50	47	94.0	55	54	98.2	15	15	100.0
Total	I	108	108	100.0	111	110	99.1	44	44	100.0	111	111	100.0	99	99	100.0	47	46	97.9
	II	27	24	88.9	9	6	66.7	3	3	100.0	21	14	66.7	5	4	80.0	3	1	33.3
	III	4	l	25.0	3	0	00.00	1	1	100.0	3	0	00.0	3	1	33.3	0	0	00.0
	Total	139	133	95.7	123	116	94.3	48	48	100.0	135	125	92.6	107	104	97.2	50	47	94.0

1. Designates the total number of birds treated.

2. Designates the total number of treated birds not found dead after treatment--these birds were assumed to have recovered.

Table 8. Continued -

Year	Sick class	Total								
		Skinny			Body condition Medium			Fat		
		Tl	R2	963	Т	R	96	Т	R	96
1953	I II III Total	591 175 59 825	568 125 16 709	96.1 71.4 27.1 85.9	385 56 14 455	375 38 2 415	97.4 67.9 14.3 91.2	104 11 4 119	98 9 1 108	94.2 81.8 25.0 90.8
1954	I II III Total	189 39 8 236	184 33 4 221	97.4 84.6 50.0 93.6	162 14 5 181	162 12 1 175	100.0 85.7 20.0 96.7	46 1 47	46 1 47	100.0 100.0 100.0
Total	I II III Total	780 214 67 1061	752 158 20 930	96.4 73.8 29.9 87.7	547 70 19 636	537 50 3 590	98.2 71.4 15.8 92.8	150 12 4 166	144 10 1 155	96.0 83.3 25.0 93.4

1. Designates the total number of birds treated.

2. Designates the total number of treated birds not found dead after treatment--these birds were assumed to have recovered.