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ABSTRACT 

In vitro, Non-invasive Imaging and Detection of Single Living Mammalian Cells  

Interacting with Bio-nano-interfaces  

by 

Qifei Li, Doctor of Philosophy 

Utah State University, 2015 

 

Major Professor: Dr. Anhong Zhou 

Department: Biological Engineering  

 

Understanding of bio-nano-interfaces of living mammalian cells will benefit the 

identification of cellular alterations (e.g. nucleic acids, amino acids, biomechanics, etc.) due to 

external stimuli, the design of biomaterials (e.g. nanoparticles, nanotubes) and the investigation 

of the interaction between cells and bio-nano-interfaces (e.g. cell differentiation on 3D 

nanostructured materials). Analytical techniques can be applied to evaluate the chemical, 

physical, and mechanical properties of mammalian cells when exposed to such bio-nano-

interfaces. In this study, non-invasive advanced spectroscopy techniques including atomic force 

microscopy (AFM) and Raman microscopy (RM), in conjunction with traditional biological 

methods are utilized to elucidate specific characteristic information for biological samples and 

how these property changes reflect the interaction with external stimuli. 

The focus of this dissertation is on the biophysical, biochemical and cytotoxic 

detection of mammalian cells interacting with bio-nano-interfaces, and this dissertation can 

be classified into three topics: biomechanics/cellular biopolymers measurement, bio-

interfaces and nano-interfaces studies. 
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For the topic of biomechanics/cellular biopolymers measurement, cellular biophysical 

and biomechanical properties could be used as differentiation markers to classify cellular 

differentiation. For the bio-interfaces part, it was observed that BRMS1 expression changed 

cellular biochemical and biomechanical properties, and the expressions of reactive oxidative 

species (ROS), apoptosis and cell viability of five types of cells displayed similar patterns 

over doxorubicin (DOX) incubation time. Secondly, A549 cells were treated with diesel 

exhaust particles (DEP) and resveratrol (RES) to study the effect of RES on the DEP-induced 

cells, and it was found that RES can alleviate DEP intervention on cellular structure and 

increase DEP-induced biomechanical and inflammatory changes. For the nano-interfaces 

topic, first we synthesized a hybrid nanoparticle with the multimodal properties of 

fluorescence imaging, Surface-enhanced Raman spectroscopy (SERS) detection and 

photothermal therapy (PTT) for single living cell analysis of epidermal growth factor 

receptor (EGFR) and specifically killed cancer cells with high EGFR expression. 

Additionally, to increase surface area, light-heat conversion efficiency and biocompatibility, 

we developed a silica coated nanoparticle conjugated with anti-human epidermal growth 

factor receptor 2 (HER2) antibody. Finally, three-dimensional TiO2 nanotubes with Au 

nanoparticles coating were synthesized and used to study trophoblast-derived stem-like cells 

growth on such 3D nanostructures. 

 (251 pages) 
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PUBLIC ABSTRACT 

In vitro, Non-invasive Imaging and Detection of Single Living Mammalian Cells  

Interacting with Bio-nano-interfaces  

by 

Qifei Li 

 Study of bio-nano-interfaces of living mammalian cells will help the identification of 

cellular alterations (e.g. nucleic acids, amino acids, biomechanics, etc.) due to external stimuli, 

the design of biomaterials (e.g. nanoparticles, nanotubes) and the investigation on the interaction 

between cells and bio-nano-interfaces (e.g. cell differentiation on 3D nanostructured materials). 

The chemical, physical, and mechanical changes of mammalian cells interacting with 

biomaterials can be investigated by analytical techniques. In this dissertation, cellular responses 

and property changes are evaluated by non-invasive spectroscopic technique, Raman microscopy 

(RM), and atomic force microscopy (AFM) combined with traditional biological methods. 

This dissertation includes the biophysical, biochemical and cytotoxic measurement of 

cells interacting with bio-nano-interfaces, and this work can be divided into three topics: 

biomechanics/cellular biopolymers measurement, bio-interfaces and nano-interfaces studies.  

Cellular biomechanical, biochemical and genetic changes were detected in the topic 

of biomechanics/cellular biopolymers measurement, and cellular differentiation can be 

identified by cellular biophysical and biochemical properties. For the bio-interfaces, cellular 

biochemical and biomechanical properties were affected by BRMS1 expression (a metastasis 

suppressor) through the study of five metastatic and non-metastatic cancer cells. However, 

both metastatic and non-metastatic cells exhibited similar patterns of reactive oxygen species 

(ROS), apoptosis expression and cell viability changes over doxorubicin (DOX) incubation 
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time. Then A549 cells were incubated with diesel exhaust particles (DEP) and an antioxidant 

resveratrol (RES) to study the effect from DEP and RES, and it was found that RES can 

decrease DEP-induced destructive effect on cellular structure and enhance DEP-induced 

biomechanical and inflammatory changes. For the nano-interfaces, hybrid nanoparticles were 

first developed with the function of fluorescence imaging, Surface-enhanced Raman 

spectroscopy (SERS) detection and photothermal therapy (PTT). These nanoparticles were 

applied for single living cells analysis of epidermal growth factor receptor (EGFR) 

distribution and cancer therapy with high EGFR expression. Additionally, silica coated 

nanoparticles conjugated with anti-human epidermal growth factor receptor 2 (HER2) were 

synthesized to increase surface area, light-heat conversion efficiency and biocompatibility. 

Cancer cells with high-HER2 expression were killed upon an 808 nm laser irradiation. 

Moreover, trophoblast-derived stem-like cells were cultured on three-dimensional TiO2 

nanotubes with Au to study cell viability, morphology and biochemical changes. 
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CHAPTER 1 

INTRODUCTION  

1.1 OVERVIEW    

In biological systems the cell is the basic unit of life, and an understanding of cellular 

behavior is crucial for the area of bioengineering. Environmental stimuli (e.g. chemical and 

physical factors) affect cellular functions, and elucidation of cellular responses to 

environmental stimuli will help understand and discriminate cellular changes. Cellular 

biomechanics and biocomposition are two important parameters to reflect cellular responses 

to external stimuli or changes. Biomechanics plays an important role in cellular 

morphogenesis, focal adhesion, motility, and metastasis [1-4]. Cellular biomechanical 

properties including cell stiffness and cell adhesion directly reflect cell composition, affect or 

can be affected by internal structure (cytoskeleton, organelles, etc.) and external interactions 

(cell-cell and/or cell-ECM). Alterations in the mechanical properties of cells, therefore, can 

be used to detect changes in their cellular composition that occur during differentiation, aging, 

and other changes in physiological status [5, 6]. Not only do alterations in the mechanical 

properties of cells reflect their status but also the mechanical properties of their surroundings, 

extracellular matrix, and neighboring cells can directly induce changes in cell status [7]. 

Therefore, there has been an increasing interest in determining mechanical properties of cells.  

A number of techniques have been used to measure the biomechanics of cells, such as 

the atomic force microscope (AFM) indentation, capillary aspiration, twisted bead and 

unconfined creep compression method [8]. Among these methods, AFM has proven itself to 

be a valuable tool for high resolution imaging of surface topography and for quantitative 
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measurement of the mechanical properties of cells without invasive labels. AFM is a 

scanning analytical technique that is based on the movement of a sharp tip scanning over the 

surface of a biological sample while measuring the near-field physical interactions between 

the sample and tip by a laser detector [9, 10]. AFM is able to image the topographic features 

of cytoskeleton, cellular microenvironments, and quantitatively measure cellular mechanical 

properties at nanometer scales in situ [11]. Therefore, AFM was applied to evaluate the 

biophysical properties of mammalian cells under the near-physiological conditions. 

The biochemical information of cells is also important in biological systems. 

Biochemical processes generate the complexity of living organisms by controlling the 

biochemical signals and chemical energy through metabolism. To understand the whole 

organism, it is necessary to study how biochemical molecules that occur within living cells 

change. Techniques like Raman microspectroscopy (RM), infrared (IR) absorption 

spectroscopy and fluorescence microscopy can be applied to detect the biochemical 

information of organisms. Compared with other methods, RM is the prevalent approach to 

probe the relationship between structure and function of biocomponent (e.g. nucleic acids, 

proteins, pharmacologically relevant molecules, etc.) in the response to external changes [12] 

because it is noninvasive, nondestructive and free from water interference as well as 

maintaining chemical selectivity [13]. Based on inelastic scattering of the interaction between 

laser light and molecular vibrations or other excitations, RM is a spectroscopic technique that 

can identify chemical compositions though characteristic fingerprints in biological systems 

[14]. RM permits biochemistry assessment of single living cells in situ in a simple and rapid 

way, requiring minimal sample preparation and small sample volume, and it has been applied 
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in diagnostic, toxicological and biomedical areas [15]. Clearly, RM is suitable to monitor the 

biochemical changes in living mammalian cells. 

Previously, our group has characterized the biomechanical and biochemical 

alterations of mammalian cells and their corresponding responses to external stimuli by AFM, 

RM and other approaches (e.g. qPCR, immunostaining, flow cytometry). Wu et al. 

demonstrated the potential to apply AFM and RM techniques for in situ biophysical and 

biochemical measurements of breast cancer cells with or without Breast Cancer Metastasis 

Suppressor 1 (BRMS1) expression [16]. Tang et al. evaluated the effects from short time 

exposure of diesel exhaust particles on normal epithelial cells and cancerous epithelial cells 

by AFM, RM and multiplex ELISA [17]. By utilizing AFM and RM, Xiao et al. investigated 

the potential relationship between biomechanics and cellular biopolymers of human lung 

epithelial cells upon anti-cancer drug treatments [18]. At the single cell level, Xiao et al. also 

studied the localization, spatial distribution and endocytosis of epidermal growth factor 

receptor (EGFR) by surface-enhanced Raman spectroscopy (SERS) [19]. Additionally, the 

differentiation of trophoblast-derived stem-like cells was successfully identified by 

measuring cellular biophysical and biochemical alterations with the help of AFM and RM 

[20]. These above works conducted in our research laboratory have demonstrated the 

applications of AFM and RM as noninvasive technologies to study the responses of 

mammalian cells to external stimuli. 

The focus of this dissertation is to non-invasively image and detect single living 

mammalian cells interacting with bio-nano-interfaces in vitro, and this topic is classified into 

three categories from biomechanics/cellular biopolymers detection to bio-interfaces and 

nano-interfaces studies. First, the biophysical and biochemical properties between 
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undifferentiated cells and differentiated cells are distinguished by AFM and RM, respectively, 

and these biophysical and biochemical differences could be applied as “biomarkers” for 

identification purpose. Secondly, mammalian cells were reacted with bio-interfaces (e.g. 

anticancer drug, diesel exhaust particles, and antioxidant) to study cellular responses and 

changes. Thirdly, multifunctional hybrid nanoparticles (CaMoO4:Eu@GNR and 

CaMoO4:Eu@SiO2-GNR-PB) and titanium nanotube were synthesized and characterized. 

Mammalian cells were exposed to nano-interfaces to evaluate how these nano-interfaces 

affect cellular responses. More details of this dissertation will be introduced in the following 

sections. 

1.2 SIGNIFICANCE  

The impact of this work presented in this dissertation could have profound 

implications. Detection of mammalian cells under different stimuli by traditional biological 

methods (qPCR, immunostaining, flow cytometry, etc.) requires the cell sample destruction 

(e.g., cell fixation in immunostaining), while AFM and RM applied in this study could 

measure in situ the cellular biophysical properties and biocomposition at single cell level 

under cellular physiological condition.  

Recently biomechanical and biochemical properties of single cells were found to be 

akin to gene and protein detection. We are able to identify differences in cellular 

subpopulations, disease state, and cellular responses to drugs based on the biomechanical and 

biochemical properties of single cells [21-27]. Cellular behavior depends on the organization 

of subcellular structures and cellular composition, and detection of these changes by AFM 

and RM could facilitate the understanding of cellular structure-function relationship, 

reflecting cellular changes without modification.  
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The applications of AFM and RM could benefit the areas of disease study, 

exploration of new biomaterials, cellular differentiation and regenerative medicine. 

Combined with traditional biological methods, the new non-invasive techniques can provide 

additional information and new aspects to understand the changes of biological systems.  

1.3 LITERATURE REVIEW 

1.3.1 Techniques  

1.3.1.1 Atomic force microscopy (AFM) 

AFM is a high-resolution scanning probe first developed in 1986 by Binnig, et al. 

[28]. It can detect sample topography by the local attractive and repulsive forces interaction 

between the tip (mounted on silicon cantilever) and the sample in physiological conditions 

[11, 29, 30]. AFM can also measure the force-distance curves of a sample to characterize its 

biomechanical parameters by fitting theoretic model (e.g., the Hertz equation [31]). AFM is 

able to detect the surface topography of non-conductive samples at the nanoscale, and AFM 

can be operated in air, vacuum and liquid. Hence, AFM appeared suitable for biological 

samples. 

Different from other light microscopy techniques, AFM requires a sharp, tiny probe 

that approaches the specimen surface to measure the physical parameters while the sensor is 

scanned line by line over the sample surface. To keep the probe signal constant, the feedback 

from the sensor maintains the strength of the interaction (current, force or amplitude) 

constant [32]. There are three AFM modes during operation: contact, non-contact and 

tapping mode (intermittent contact mode). In contact mode, the tip contacts with the sample 

surface softly, and Silicon Nitride tips are normally applied for contact mode. The tip either 
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scans at a constant force (force fixed) or a constant small height (height fixed) above the 

surface, and the motion of the scanner in z-direction is detected. “Atomic resolution” images 

can be obtained in contact mode. For contact mode imaging, the cantilever should be soft 

enough to be deflected by small forces and has a high enough resonant frequency to prevent 

vibrational instabilities. Under the non-contact mode the tips are silicon probes. The 

cantilever should have high spring constant (20-100 N/m) to prevent the tip from sticking to 

the specimen surface at small amplitudes. The tip-sample interaction can be ignored and the 

probe operates within the attractive force region. This mode allows scanning without 

affecting the shape of the specimen. In tapping or intermittent contact mode the probe 

operates in the repulsive force region, and the cantilever is oscillated close to its resonance 

frequency. The specimen surface is touched for a short time to minimize potential sample 

damage. 

AFM has some advantages compared to other imaging approaches such as 

transmission electron microscopy and scanning electron microscopy. AFM possesses a high 

signal-to-noise ratio that does not need signal averaging for contrast enhancement [33]. In 

addition, AFM does not require quick-freezing, fixing and staining of the samples. The major 

difference of AFM is that it has no lens and beam irradiation, so it does not suffer from a 

limitation of space resolution. AFM measures the height of sample surface as a function of 

position generating a quantitative 3-dimensional image of the specimen surface, and AFM 

can accurately measure the lateral and vertical displacement by a computer-controlled piezo 

scanner that allows precise detection of distances and heights [34]. The resolution for a light 

microscope and an electron microscopy is limited by the wavelength of visible light and 

electrons respectively, but the resolution for AFM is restricted by the probe sharpness. Even 
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though AFM and electron microscopy normally have similar range of resolution, AFM 

usually provides a smaller resolution than obtained by electron microscopy [34]. One 

obvious advantage is that AFM can image samples in fluid condition, so biological samples 

can be measured in near physiological conditions. Additionally, AFM can image real-time 

processes of a biological sample.  

AFM-based detection of mechanical properties of samples is a novel application in 

the biological field that potentially allows for a better understanding of biomechanics at 

different levels from the bio-interfaces of cellular structural organization to the nano-

interfaces of complex interaction. Since the introduction of AFM, it has been used to 

distinguish the differences in cellular subpopulations, cellular proliferation and 

differentiation [35-37]. AFM is able to image and measure cellular biophysical properties at 

single living cell level is important in the research of life sciences. Of particular significance 

is the potential use in clinical applications, for example, for early cancer diagnosis before 

diseases progress [38]. AFM is applied here to characterize cellular biomechanics and 

topography. The applications of AFM have expanded as it has been used across multiple 

research areas [39]. 

1.3.1.2 Raman spectroscopy (RM) 

RM is a spectroscopic technique first developed in 1928 by C.V. Raman [40]. Based 

on vibrational modes of molecules, RM can obtain biochemical information from single cells 

without other invasive steps, providing spectral information about the molecular 

compositions, structures, and quantities of cellular biopolymers with a minimal background 

signal from water [41]. The detected Raman spectral frequencies in wavenumber are 

proportional to vibrational energies of molecular polarizability [42].  
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The photons can either be absorbed or scattered when incident light strikes molecules. 

Infrared spectroscopy (IR) and ultraviolet-visible spectroscopy (UV-Vis spectroscopy) are 

two typical absorption spectroscopic approaches that are based on photon absorption 

phenomenon and they can measure the radiation loss as a function of frequency. RM is a 

spectroscopic technique that is based on photon scattering phenomenon with energy transfer. 

If there is no energy change of these photons, this scattering phenomenon is called elastic 

scattering (Rayleigh scattering). If there is a net energy transfer, it is called inelastic 

scattering (Raman scattering), as shown in Figure 1.1. Raman scattering is a low-probability 

case, only occurring among one per 10
6
-10

8
 scattered photons [43]. There are two types of 

Raman scattering: Stokes and anti-Stokes. If the molecule is excited from the ground state ν0 

to a higher state ν1, it is called Stokes scattering; if the molecule drops from a higher 

vibrational state down to a lower one, it is called anti-Stokes scattering. At room temperature 

anti-Stokes scattering is usually less intense because of fewer molecules in excited states. 

Thus, Stokes scattering is detected to acquire Raman spectra. However, if a strong 

fluorescence interference is present, anti-Stokes scattering is preferred. 

The energy of a vibrational transition between two energy states is called the Raman 

shift (in cm
-1

). RM probes the molecular vibrational transitions that rely on chemical bonds, 

so RM can detect “finger printing” information about chemical structure and conformation of 

molecules. It should be noted that only those vibrational modes that change molecule 

polarizability display Raman signal. The disadvantage of RM is that the Raman signal is 

usually very weak, and can be interfered with autofluorescence. However, RM has unique 

advantages over other techniques. First, RM can be combined with confocal microscopy [45] 

to provide high spatial resolution (~1 μm). Another advantage of RM over other methods is 
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the non-invasive analysis of specimen without sample preparation (for example, no need of 

labels, contrast agents or dyes). Moreover, Raman scattering is free from water interference, 

which is important for cellular biopolymer spectroscopy over IR where water has strong 

interference because of its high absorbance at IR wavelengths [46]. 

 

 

 

Figure 1.1 Diagram of IR absorption, Rayleigh scattering and Raman scattering (stokes 

scattering or anti-stokes scattering) processes [44]. 

 

RM has been applied in a range of industrial areas, including semiconductors [47], 

geosciences [48], archeology [49] and pharmaceuticals [50]. With the development of 

instrumentation, currently RM has been widely utilized in bioanalytical fields for chemistry 

[51], biology [52], and medicine studies [53]. Additionally, RM has gained increased 

popularity in the area of mammalian cell research. RM is suitable for biological samples by 

its successful applications in cell sorting, identification of cellular biopolymers, and assessing 



10 
 

 

differentiation status [54, 55]. RM has successfully discriminated undifferentiated stem cells 

from differentiated cells [56-58]. When distinct molecular components are selected, RM 

becomes a powerful tool to identify the differences between normal and dysplasia tissue [59] 

and principal component analysis can discriminate, through characteristic Raman bands, 

normal from abnormal oral squamous cell carcinoma [60]. Similar applications of RM have 

been performed for other types of cancer cell lines (e.g. liver [61], breast [62], prostate [63], 

ovarian [64], and so on). 

Clearly, RM is a good instrumental technique to study the cellular biopolymer 

changes of mammalian cells. We utilized RM to track the biochemical changes (DNA/RNA, 

lipids, proteins, and carbohydrates) of mammalian cells interacting in situ with bio-nano-

interfaces.  

1.3.1.3 Surface-enhanced Raman spectroscopy (SERS) 

SERS is a RM technique that can greatly increase Raman signal from Raman-active 

molecules that have been adsorbed onto certain specific metal surfaces (e.g. gold 

nanoparticles, silver nanoparticles, etc.). Increases in the intensity of Raman signal can be as 

much as 10
10

 to 10
11

 [65, 66]. RM is less effective for surface studies than SERS because the 

incident photons from laser light simply distribute through the bulk and the signal of the bulk 

overwhelms other Raman signal. However, the surface signal of SERS overwhelms the bulk 

signal because of surface enhancement mechanisms, largely suppressing bulk signal. An 

electromagnetic and a chemical enhancement are two primary mechanisms of enhancement 

for SERS. The electromagnetic enhancement relies on the metal feature that contributes more 

compared to chemical enhancement [67], while the chemical enhancement involves changes 

of the adsorbate electronic states [68].  Previous research has reported using SERS probes to 
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target cancer cells in vitro or in vivo, identifying the binding between probes and target 

cancer cells [19, 69-71]. In this study, SERS is applied to locate the distribution of epidermal 

growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) at 

single living cells. 

1.3.1.4 Quantitative polymerase chain reaction (qPCR) 

Quantitative polymerase chain reaction (qPCR),  is a laboratory technique to quantify 

targeted DNA molecules in molecular biology [72]. Due to the detection sensitivity, high 

throughput capabilities, accurate quantification and high degree of potential automation, 

qPCR is selected to monitor gene expression [73]. qPCR has been applied to detect the 

changes of biomechanics-related genes during the differentiation of mesenchymal stem cells 

and human tendon stem/progenitor cells [74, 75]. However, few applications have been 

conducted to sort out the potential correlation between the changes of cell biomechanics and 

the changes of biomechanics-related genes during stem cell differentiation. In this 

dissertation research, qPCR was used to assess the expression of biomechanics-related genes 

during the process of trophoblast cell differentiation. 

1.3.1.5 Photothermal therapy (PTT) 

PTT, also known as photothermal ablation, is a minimally invasive approach to 

cancer therapy. PTT requires photothermal conversion agents to generate rapid localized heat 

to ablate cancerous cells specifically by absorbing light and converting the absorbed light 

into heat [76]. Gold nanostructures are commonly applied as contrast agents because of their 

features to tune optical properties via the localized surface plasmon effect. Gold 

nanostructures with strong near-infrared (NIR) absorption are considered to be a relatively 

noninvasive and effective treatment of cancer compared to the current cancer treatments 
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(chemotherapy, radiotherapy, surgery, and so on), which usually result in severe adverse 

effects and cancer recurrence [77-80]. Previous studies have reported the application of gold 

nanostructures (e.g. Au nanoparticles [81], Au nanoshells [82], Au nanostar [83], etc.) for 

PTT. In this work, a novel hybrid nanostructure was developed for simultaneous molecular 

imaging and photothermal cancer therapy.  

1.3.2 Treatment agents 

1.3.2.1 Doxorubicin (DOX) 

Doxorubicin (DOX, Figure 1.2), an antitumor antibiotic, has been widely used for 

treating a variety of cancers in clinical trials. Several mechanisms of DOX have been 

proposed, such as the inducement of DNA damage via the topoisomerase inhibition, 

intercalation into DNA, interference with the structure of DNA and helicase activity [84-86]. 

In this dissertation we use DOX to treat cancer cells with or without BRMS1 to study cellular 

responses.   

 

 

Figure 1.2 Chemical structure of doxorubicin [87]. 
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1.3.2.2 Resveratrol (RES) 

Resveratrol (trans-3, 4, 5-trihydroxystilbene, RES, Figure 1.3), a phenolic natural 

component from the skin of grapes, blueberries, raspberries and mulberries, has potential 

benefits to human health [88]. This natural compound has been found to possess many 

pharmacological effects, including modulatory lipoprotein metabolism, platelet 

antiaggregatory, anti-inflammatory, anti-fungal properties, cancer chemopreventive and 

anticancer properties [89-92]. Previous studies have shown that RES can effectively inhibit 

oxidative damage than other conventional antioxidants [93, 94] and has been shown to 

scavenge free radicals such as lipid hydroperoxyl, hydroxyl (- OH), and superoxide anion 

(O2
-
) radicals [95]. Interestingly, Birrell et al. [96] showed that RES inhibits 

lipopolysaccharide-induced airway neutrophilia and inflammation through an NF-κB-

independent and unidentified mechanism. The study conducted by King et al. [97] suggested 

that RES significantly decreased intracellular ROS accumulation induced by basal and H2O2, 

reducing H2O2 induced extracellular signal regulated kinase activation in retinal pigment 

epithelial cells. In this study, the RES effect on DEP induced mammalian cells was detected 

and compared with control groups.  

 

Figure 1.3 Chemical structure of resveratrol [98]. 
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1.3.2.3 Diesel exhaust particles (DEP) 

Diesel exhaust particles (DEP), mainly originated from the spark-ignition inside 

diesel engines, are characterized by a carbonic nucleus, in which about 18,000 high-

molecular-weight organic compounds are adsorbed [99]. It is reported that there is a 

relationship between DEP and lung cancer incidence, cardiopulmonary deaths, and 

respiratory and cardiovascular diseases for adults living in metropolitan areas [100-103]. 

DEP induce a variety of cardiovascular and respiratory diseases, which lead to significant 

morbidity and mortality in susceptible populations [104, 105]. DEP exposure is associated 

with asthma [106] and might exacerbate allergic lung inflammation and induce functional 

lung changes [107]. On the cellular level, DEP exposure induces cytotoxic and pro-

inflammatory responses [108], and significantly alters cytokine production [109]. In this 

study, DEP exposure at different time was utilized to stimulate cellular responses, and 

cellular biophysical and biochemical changes were measured.  

1.3.2.4 Titanium nanotubes (TiO2 NT) 

Titanium surfaces have been widely applied in clinical titanium implantations for the 

purpose of bone, joint, or tooth replacements [110]. Compared with the titanium surface, a 

thin TiO2 nanotube layer forms on Ti substrate has desirable bioactive (bone-growth) 

properties [111]. TiO2 nanotube layer can improve the formation of fibrous tissue, alleviating 

the implant and inflammation. By anodization there was vertically aligned yet laterally 

arrayed nanoscale TiO2 nanotopography grown on the titanium surfaces. The TiO2 nanotubes 

largely enhanced the adhesion and propagation of the osteoblast with the filopodia of 

growing cells actually spreading into the nanotubes, inducing an interlocked cellular structure. 
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In comparison with titanium surfaces, the growth rate of osteoblast cells was significantly 

facilitated by as much as ~ 300–400% with the presence of the TiO2 nanotopography [112]. 

It was found that as nanoscale spacing models TiO2 nanotube surfaces can be utilized for 

size-dependent cellular response [113]. The nanotube structure also offered nano-scale cues 

to enhance cellular probing, cell sensing, and cell migration. For bovine aortic endothelial 

cells (BAECs) grown on TiO2 nanotubes, it is of benefit to probe the surface and interlock 

cellular extensions. Extracellular matrix (ECM) deposition and more natural “vascular bed” 

were stimulated by TiO2 nanostructures, which also induced unidirectional cytoskeletons and 

more organized lamellipodia, indicating the functionality of the TiO2 nanotopography 

facilitating endothelialization and endothelial cell migration, especially in the raised 

formation of ECM and increased level of nitric oxide/endothelin ratio [114]. Due to the 

unique nanotopographical structures and biocompatibility of the TiO2 nanotube surface on Ti 

foils, it can facilitate the mobility of endothelial cells [114]. In this study, trophoblast-derived 

stem-like cells were culture on TiO2 nanotubes and cellular responses were detected.  

 

1.4 DISSERTATION FORMAT  

This dissertation is formatted in a multiple paper structure, and it can be divided into 

three main topics as shown in Figure 1.4: biomechanics/cellular biopolymers of native cells 

(Chapter 2); bio-interfaces (Chapter 3 - 4) and nano-interfaces (Chapter 5 - 7). All 

subsequent chapters have been formatted as publications. Chapter 2 was published prior to 

the completion of this dissertation. Chapters 3-5 were submitted and are under review. 
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Figure 1.4 Schematic overview of three main topics covered in this dissertation.  

 

In Chapter 2, AFM, RM and qPCR were applied to study the differentiation of 

porcine trophoblast-derive stem-like cells (TE) on Petri dishes in response to serum and 

serum-free media (Figure 1.5). Cellular biophysical properties were detected by AFM. RM 

was used to collect cellular biopolymers information. Cellular gene expression was measured 

by qPCR.    

 

Figure 1.5 Trophoblast cells differentiation on Petri dish monitored by RM, AFM and qPCR.          
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Figure 1.6 Cancer cells with or without BRMS1 expression treated with different time of 

DOX. 

 

 

Figure 1.7 Cancer cells treated with DEP only or RES first and then DEP exposure at 

different time. 

 

In Chapter 3, we evaluated the bio-interfaces interaction between human cancer cells 

and DOX that cancer cells with or without BRMS1 expression (MDA-MB-231, MDA-MB-

435, MDA-MB-231/BRMS1, MDA-MB-435/BRMS1 and A549 cells) under different time 
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points of DOX exposure (Figure 1.6). Cellular Young’s modulus and adhesion force were 

measured by AFM. The biochemical information of cells was measured by RM. Cellular 

viability, apoptosis expression and reactive oxygen species (ROS) level were analyzed with 

and without DOX treatments. 

 

 

Figure 1.8 Surface modification and conjugation of Au nanorods on the surface of 

CaMoO4:Eu nanoparticles and their applications. 

 

The focus of Chapter 4 was to study human lung cancer cells (A549) in response to 

diesel exhaust particles (DEP) and resveratrol (RES) (Figure 1.7). AFM and fluorescence 
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microscopy were used to collect cellular topography and fluorescence images. RM was 

applied to obtain the subcellular biochemical compositions. Plasma membrane potential and 

cell cycles were analyzed. 

In Chapter 5 the nano-interfaces were studied, and we synthesized a hybrid 

nanoparticle (HNP) with multifunctional properties: fluorescence, SERS and PTT. We 

characterized this HNP and studied the effect of HNP on cellular biomechanical properties. 

HNPs and cancer biomarker (EGFR) distribution on cells were monitored by SERS mapping 

(Figure 1.8). The PTT effect from HNPs was investigated on cancer and non-cancer cells. 

 

 

Figure 1.9 Schematic of silica coated nanoparticles and its application to PTT. 

 

In Chapter 6, breast cancer cells (MDA-MB-435) were studied regarding their 

response to silica coated nanoparticles (Figure 1.9), and the applications of silica coated 

nanoparticles for fluorescence, SERS detection and photothermal effect were evaluated as 

well. The biocompatibility of this silica coated nanoparticle was evaluated by Muse cell 

analyzer.   
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Figure 1.10 Schematic illustration of TiO2 nanotube coated with Au nanoparticles and 

cellular responses. 

 

In Chapter 7, my research focused on the morphological and biochemical changes of 

trophoblast cells grown on 3D TiO2 nanotubes (NTs) with and without gold nanoparticles 

(Au) (Figure 1.10). Cellular morphology was recorded by scanning electron microscopy. The 

subcellular biochemical changes were measured by RM. 

In Chapter 8, I presented a brief summary of my dissertation and discussed the 

potential research for future directions. 
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1.5 DISSERTATION OUTLINE 

Technical 

Chapter 
Title of Chapter Objectives 

Chapter 2 

Identification of 

trophoblast-derived stem-

like cell differentiation in 

serum or serum-free 

medium 

Trophoblast stem-like cells have been 

induced by serum or serum-free medium 

to study cellular differentiation in 

physiological conditions. 

Chapter 3 

Breast cancer cells with or 

without BRMS1 in 

response to doxorubicin 

 

Evaluate BRMS1 expression to cellular 

biomechanical and biochemical changes 

upon DOX treatment. 

 

Chapter 4 

Human lung cancer cells in 

response to diesel exhaust 

particles and resveratrol 

 

Study cellular biomechanical and 

biochemical changes to diesel exhaust 

particles and resveratrol exposure. 

 

Chapter 5 

Human lung cancer cells 

and hepatocyte cells in 

response to hybrid 

nanoparticles and 

photothermal effect of 

nanoparticles 

 

Hybrid nanoparticle with the properties 

of fluorescence imaging, surface-

enhanced Raman spectroscopy detection 

and photothermal therapy were 

synthesized and its effects on cells were 

evaluated. 

Chapter 6 

Breast cancer cells and 

hepatocyte cells in response 

to silica coated 

nanoparticles 

Silica coated nanoparticles were 

synthesized to increase light-heat 

conversion efficiency as well as 

biocompatibility, applying for 

fluorescence imaging, surface-enhanced 

Raman spectroscopy detection and 

photothermal therapy. 

Chapter 7 

Morphology and cell 

viability evaluation of 

trophoblast cells on TiO2 

nanotubes coated with Au 

 

Measure the viability, cellular 

topography and biochemical changes of 

trophoblast cells on TiO2 nanotubes 

coated with Au. 

 

 

 

 

 



22 
 

 

1.6 REFERENCES  

1. Nelson CM, Jean RP, Tan JL, Liu WF, Sniadecki NJ, Spector AA, et al. Emergent 

patterns of growth controlled by multicellular form and mechanics. Proc Natl Acad 

Sci U S A. 2005; 102: 11594-9. 

2. Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS. Cells lying on a bed of 

microneedles: An approach to isolate mechanical force. Proc Natl Acad Sci U S A. 

2003; 100: 1484-9. 

3. du Roure O, Saez A, Buguin A, Austin RH, Chavrier P, Siberzan P, et al. Force 

mapping in epithelial cell migration. Proc Natl Acad Sci U S A. 2005; 102: 14122. 

4. Suresh S. Biomechanics and biophysics of cancer cells. Acta Biomater. 2007; 3: 413-

38. 

5. Starodubtseva MN. Mechanical properties of cells and ageing. Ageing Res Rev. 2011; 

10: 16-25. 

6. Montell DJ. Morphogenetic Cell Movements: Diversity from Modular Mechanical 

Properties. Science. 2008; 322: 1502-5. 

7. Discher DE, Mooney DJ, Zandstra PW. Growth Factors, Matrices, and Forces 

Combine and Control Stem Cells. Science. 2009; 324: 1673-7. 

8. Keefer CL, Desai JP. Mechanical phenotyping of stem cells. Theriogenology. 2011; 

75: 1426-30. 

9. Binnig G, Quate CF, Gerber C. Atomic Force Microscope. Phys Rev Lett. 1986; 56: 

930-3. 

10. Dorobantu LS, Gray MR. Application of atomic force microscopy in bacterial 

research. Scanning. 2010; 32: 74-96. 



23 
 

 

11. Wu YZ, Yu T, Gilbertson TA, Zhou AH, Xu H, Nguyen KT. Biophysical Assessment 

of Single Cell Cytotoxicity: Diesel Exhaust Particle-Treated Human Aortic 

Endothelial Cells. Plos One. 2012; 7. 

12. Schmitt M, Popp J. Raman spectroscopy at the beginning of the twenty-first century. 

J Raman Spectrosc. 2006; 37: 20-8. 

13. Notingher L, Jell G, Notingher PL, Bisson I, Tsigkou O, Polak JM, et al. Multivariate 

analysis of Raman spectra for in vitro non-invasive studies of living cells. J Mol 

Struct. 2005; 744: 179-85. 

14. Ling J, Weitman SD, Miller MA, Moore RV, Bovik AC. Direct Raman imaging 

techniques for study of the subcellular distribution of a drug. Appl Opt. 2002; 41: 

6006-17. 

15. Owen CA, Notingher I, Hill R, Stevens M, Hench LL. Progress in Raman 

spectroscopy in the fields of tissue engineering, diagnostics and toxicological testing. 

J Mater Sci Mater Med. 2006; 17: 1019-23. 

16. Wu Y, McEwen GD, Harihar S, Baker SM, DeWald DB, Zhou A. BRMS1 

expression alters the ultrastructural, biomechanical and biochemical properties of 

MDA-MB-435 human breast carcinoma cells: an AFM and Raman 

microspectroscopy study. Cancer Lett. 2010; 293: 82-91. 

17. Tang MJ, Li QF, Xiao LF, Li YP, Jensen JL, Liou TG, et al. Toxicity effects of short 

term diesel exhaust particles exposure to human small airway epithelial cells (SAECs) 

and human lung carcinoma epithelial cells (A549). Toxicol Lett. 2012; 215: 181-92. 



24 
 

 

18. Xiao LF, Tang MJ, Li QF, Zhou AH. Non-invasive detection of biomechanical and 

biochemical responses of human lung cells to short time chemotherapy exposure 

using AFM and confocal Raman spectroscopy. Anal Methods. 2013; 5: 874-9. 

19. Xiao LF, Harihar S, Welch DR, Zhou AH. Imaging of epidermal growth factor 

receptor on single breast cancer cells using surface-enhanced Raman spectroscopy. 

Anal Chim Acta. 2014; 843: 73-82. 

20. Li Q, Suasnavas E, Xiao L, Heywood S, Qi X, Zhou A, et al. Label-free and non-

invasive monitoring of porcine trophoblast derived cells: differentiation in serum and 

serum-free media. J Biophotonics. 2015; 8: 638-645. 

21. Darling EM, Topel M, Zauscher S, Vail TP, Guilak F. Viscoelastic properties of 

human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and 

adipocytes. J Biomech. 2008; 41: 454-64. 

22. Darling EM, Pritchett PE, Evans BA, Superfine R, Zauscher S, Guilak F. Mechanical 

properties and gene expression of chondrocytes on micropatterned substrates 

following dedifferentiation in monolayer. Cell Mol Bioeng. 2009; 2: 395-404. 

23. Darling EM, Zauscher S, Block JA, Guilak F. A thin-layer model for viscoelastic, 

stress-relaxation testing of cells using atomic force microscopy: Do cell properties 

reflect metastatic potential? Biophys J. 2007; 92: 1784-91. 

24. Suresh S. Biomechanics and biophysics of cancer cells. Acta Biomater. 2007; 3: 413-

38. 

25. Schulze HG, Konorov SO, Caron NJ, Piret JM, Blades MW, Turner RFB. Assessing 

Differentiation Status of Human Embryonic Stem Cells Noninvasively Using Raman 

Microspectroscopy. Anal Chem. 2010; 82: 5020-7. 



25 
 

 

26. Verrier S, Notingher I, Polak JM, Hench LL. In situ monitoring of cell death using 

Raman microspectroscopy. Biopolymers. 2004; 74: 157-62. 

27. Owen CA, Selvakumaran J, Notingher I, Jell G, Hench LL, Stevens MM. In vitro 

toxicology evaluation of pharmaceuticals using Raman micro-spectroscopy. J Cell 

Biochem. 2006; 99: 178-86. 

28. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986; 56: 

930-3. 

29. McElfresh M, Baesu E, Balhorn R, Belak J, Allen MJ, Rudd RE. Combining 

constitutive materials modeling with atomic force microscopy to understand the 

mechanical properties of living cells. Proc Natl Acad Sci U S A. 2002; 99: 6493-7. 

30. Wu YZ, McEwen GD, Harihar S, Baker SM, DeWald DB, Zhou AH. BRMS1 

expression alters the ultrastructural, biomechanical and biochemical properties of 

MDA-MB-435 human breast carcinoma cells: An AFM and Raman 

microspectroscopy study. Cancer Lett. 2010; 293: 82-91. 

31. Kuznetsova TG, Starodubtseva MN, Yegorenkov NI, Chizhik SA, Zhdanov RI. 

Atomic force microscopy probing of cell elasticity. Micron. 2007; 38: 824-33. 

32. Miles M. Scanning probe microscopy - Probing the future. Science. 1997; 277: 1845-

7. 

33. Payton OD, Picco L, Miles MJ, Homer ME, Champneys AR. Improving the signal-

to-noise ratio of high-speed contact mode atomic force microscopy. Rev Sci Instrum. 

2012; 83. 

34. Dufrene YF. Atomic force microscopy, a powerful tool in microbiology. J Bacteriol. 

2002; 184: 5205-13. 



26 
 

 

35. Darling EM, Pritchett PE, Evans BA, Superfine R, Zauscher S, Guilak F. Mechanical 

Properties and Gene Expression of Chondrocytes on Micropatterned Substrates 

Following Dedifferentiation in Monolayer. Cell Mol Bioeng. 2009; 2: 395-404. 

36. Shields KJ, Beckman MJ, Bowlin GL, Wayne JS. Mechanical properties and cellular 

proliferation of electrospun collagen type II. Tissue Eng. 2004; 10: 1510-7. 

37. Seidlits SK, Khaing ZZ, Petersen RR, Nickels JD, Vanscoy JE, Shear JB, et al. The 

effects of hyaluronic acid hydrogels with tunable mechanical properties on neural 

progenitor cell differentiation. Biomaterials. 2010; 31: 3930-40. 

38. Cross SE, Jin YS, Rao J, Gimzewski JK. Nanomechanical analysis of cells from 

cancer patients. Nat Nanotechnol. 2007; 2: 780-3. 

39. Santos NC, Castanho MA. An overview of the biophysical applications of atomic 

force microscopy. Biophys chem. 2004; 107: 133-49. 

40. Gardiner D, Graves P, Bowley H. Practical Raman spectroscopy. 1989. Springer-

Verlag. 

41. Chan JW, Lieu DK. Label-free biochemical characterization of stem cells using 

vibrational spectroscopy. J Biophotonics. 2009; 2: 656-68. 

42. Ball DW. Theory of Raman spectroscopy. Spectroscopy. 2001; 16: 32-4. 

43. Ellis DI, Brewster VL, Dunn WB, Allwood JW, Golovanov AP, Goodacre R. 

Fingerprinting food: current technologies for the detection of food adulteration and 

contamination. Chem Soc Rev. 2012; 41: 5706-27. 

44. Smith E, Dent G. Modern Raman spectroscopy: a practical approach: John Wiley & 

Sons; 2013. 



27 
 

 

45. Everall NJ. Confocal Raman Microscopy: Performance, Pitfalls, and Best Practice. 

Appl Spectrosc. 2009; 63: 245a-62a. 

46. Laane J. Frontiers of molecular spectroscopy: Elsevier; 2011. 

47. Perkowitz S. Optical characterization of semiconductors: infrared, Raman, and 

photoluminescence spectroscopy: Elsevier; 2012. 

48. Chalmers JM, Edwards HG, Hargreaves MD. Infrared and Raman Spectroscopy in 

Forensic Science: John Wiley & Sons; 2012. 

49. Ropret P, Madariaga JM. Applications of Raman spectroscopy in art and archaeology. 

J Raman Spectrosc. 2014; 45: 985-92. 

50. Paudel A, Raijada D, Rantanen J. Raman spectroscopy in pharmaceutical product 

design. Adv Drug Deliv Rev. 2015. 

51. Kneipp K, Kneipp H, I I, Dasari RR, Feld MS. Ultrasensitive chemical analysis by 

Raman spectroscopy. Chem Rev. 1999; 99: 2957-76. 

52. Movasaghi Z, Rehman S, Rehman IU. Raman spectroscopy of biological tissues. 

Appl Spectrosc Rev. 2007; 42: 493-541. 

53. Choo-Smith LP, Edwards HGM, Endtz HP, Kros JM, Heule F, Barr H, et al. Medical 

applications of Raman spectroscopy: From proof of principle to clinical 

implementation. Biopolymers. 2002; 67: 1-9. 

54. Konorov SO, Glover CH, Piret JM, Bryan J, Schulze HG, Blades MW, et al. In situ 

analysis of living embryonic stem cells by coherent anti-stokes Raman Microscopy. 

Anal Chem. 2007; 79: 7221-5. 

55. Lin JQ, Xu H, Wu YZ, Tang MJ, McEwen GD, Liu P, et al. Investigation of Free 

Fatty Acid Associated Recombinant Membrane Receptor Protein Expression in 



28 
 

 

HEK293 Cells Using Raman Spectroscopy, Calcium Imaging, and Atomic Force 

Microscopy. Anal Chem. 2013; 85: 1374-81. 

56. Notingher I, Bisson I, Bishop AE, Randle WL, Polak JM, Hench LL. In situ spectral 

monitoring of mRNA translation in embryonic stem cells during differentiation in 

vitro. Anal Chem. 2004; 76: 3185-93. 

57. Chan JW, Lieu DK, Huser T, Li RA. Label-Free Separation of Human Embryonic 

Stem Cells and Their Cardiac Derivatives Using Raman Spectroscopy. Anal Chem. 

2009; 81: 1324-31. 

58. Schulze HG, Konorov SO, Caron NJ, Piret JM, Blades MW, Turner RFB. Assessing 

Differentiation Status of Human Embryonic Stem Cells Noninvasively Using Raman 

Microspectroscopy. Anal Chem. 2010; 82: 5020-7. 

59. Teh SK, Zheng W, Ho KY, Teh M, Yeoh KG, Huang Z. Diagnostic potential of near-

infrared Raman spectroscopy in the stomach: differentiating dysplasia from normal 

tissue. Brit J Cancer. 2008; 98: 457-65. 

60. Carvalho LFCS, Bonnier F, O'Callaghan K, O'Sullivan J, Flint S, Byrne HJ, et al. 

Raman micro-spectroscopy for rapid screening of oral squamous cell carcinoma. Exp 

Mol Pathol. 2015; 98: 502-9. 

61. Hawi SR, Campbell WB, KajdacsyBalla A, Murphy R, Adar F, Nithipatikom K. 

Characterization of normal and malignant human hepatocytes by Raman 

microspectroscopy. Cancer Lett. 1996; 110: 35-40. 

62. Haka AS, Shafer-Peltier KE, Fitzmaurice M, Crowe J, Dasari RR, Feld MS. 

Identifying microcalcifications in benign and malignant breast lesions by probing 



29 
 

 

differences in their chemical composition using Raman spectroscopy. Cancer Res. 

2002; 62: 5375-80. 

63. Crow P, Barrass B, Kendall C, Hart-Prieto M, Wright M, Persad R, et al. The use of 

Raman spectroscopy to differentiate between different prostatic adenocarcinoma cell 

lines. Brit J Cancer. 2005; 92: 2166-70. 

64. Maheedhar K, Bhat RA, Malini R, Prathima NB, Keerthi P, Kushtagi P, et al. 

Diagnosis of ovarian cancer by Raman spectroscopy: A pilot study. Photomed Laser 

Surg. 2008; 26: 83-90. 

65. Blackie EJ, Le Ru EC, Etchegoin PG. Single-molecule surface-enhanced Raman 

spectroscopy of nonresonant molecules. J Am Chem Soc. 2009; 131: 14466-72. 

66. Le Ru EC, Blackie E, Meyer M, Etchegoin PG. Surface enhanced Raman scattering 

enhancement factors: a comprehensive study. J Phys Chem C. 2007; 111: 13794-803. 

67. Kambhampati P, Child CM, Foster MC, Campion A. On the chemical mechanism of 

surface enhanced Raman scattering: Experiment and theory. J Chem Phys. 1998; 108: 

5013-26. 

68. Srnova-Sloufova I, Vlckova B, Snoeck TL, Stufkens DJ, Matejka P. Surface-

enhanced Raman scattering and surface-enhanced resonance Raman scattering 

excitation profiles of Ag-2,2'-bipyridine surface complexes and of [Ru(bpy)3]2+ on 

Ag colloidal surfaces: manifestations of the charge-transfer resonance contributions 

to the overall surface enhancement of Raman scattering. Inorg chem. 2000; 39: 3551-

9. 



30 
 

 

69. Lee S, Chon H, Lee J, Ko J, Chung BH, Lim DW, et al. Rapid and sensitive 

phenotypic marker detection on breast cancer cells using surface-enhanced Raman 

scattering (SERS) imaging. Biosens Bioelectron. 2014; 51: 238-43. 

70. Dinish US, Balasundaram G, Chang YT, Olivo M. Actively Targeted In Vivo 

Multiplex Detection of Intrinsic Cancer Biomarkers Using Biocompatible SERS 

Nanotags. Sci Rep. 2014; 4: 4075. 

71. Samanta A, Das RK, Park SJ, Maiti KK, Chang YT. Multiplexing SERS nanotags for 

the imaging of differentiated mouse embryonic stem cells (mESC) and detection of 

teratoma in vivo. Am J Nucl Med Mol Imaging. 2014; 4: 114-24. 

72. Wong ML, Medrano JF. Real-time PCR for mRNA quantitation. Biotechniques. 2005; 

39: 75-85. 

73. Ragni E, Vigano M, Rebulla P, Giordano R, Lazzari L. What is beyond a qRT-PCR 

study on mesenchymal stem cell differentiation properties: how to choose the most 

reliable housekeeping genes. J Cell Mol Med. 2013; 17: 168-80. 

74. O'Cearbhaill ED, Punchard MA, Murphy M, Barry FP, McHugh PE, Barron V. 

Response of mesenchymal stem cells to the biomechanical environment of the 

endothelium on a flexible tubular silicone substrate. Biomaterials. 2008; 29: 1610-9. 

75. Yin Z, Chen X, Chen JL, Shen WL, Nguyen TMH, Gao L, et al. The regulation of 

tendon stem cell differentiation by the alignment of nanofibers. Biomaterials. 2010; 

31: 2163-75. 

76. Huang X, El-Sayed MA. Plasmonic photo-thermal therapy (PPTT). Alexandria 

Journal of Medicine. 2011; 47: 1-9. 



31 
 

 

77. Lu WT, Singh AK, Khan SA, Senapati D, Yu HT, Ray PC. Gold Nano-Popcorn-

Based Targeted Diagnosis, Nanotherapy Treatment, and In Situ Monitoring of 

Photothermal Therapy Response of Prostate Cancer Cells Using Surface-Enhanced 

Raman Spectroscopy. J Am Chem Soc. 2010; 132: 18103-14. 

78. Coates A, Abraham S, Kaye SB, Sowerbutts T, Frewin C, Fox RM, et al. On the 

Receiving End Patient Perception of the Side-Effects of Cancer-Chemotherapy. Eur J 

Cancer. 1983; 19: 203-8. 

79. Zachariah B, Balducci L, Venkattaramanabalaji GV, Casey L, Greenberg HM, 

DelRegato JA. Radiotherapy for cancer patients aged 80 and older: A study of 

effectiveness and side effects. Int J Radiat Oncol. 1997; 39: 1125-9. 

80. In H, Bilimoria KY, Stewart AK, Wroblewski KE, Posner MC, Talamonti MS, et al. 

Cancer Recurrence: An Important but Missing Variable in National Cancer Registries. 

Ann Surg Oncol. 2014; 21: 1520-9. 

81. Mackey MA, Ali MR, Austin LA, Near RD, El-Sayed MA. The most effective gold 

nanorod size for plasmonic photothermal therapy: theory and in vitro experiments. J 

Phys Chem B. 2014; 118: 1319-26. 

82. Trinidad AJ, Hong SJ, Peng Q, Madsen SJ, Hirschberg H. Combined Concurrent 

Photodynamic and Gold Nanoshell Loaded Macrophage-Mediated Photothermal 

Therapies: An In Vitro Study on Squamous Cell Head and Neck Carcinoma. Laser 

Surg Med. 2014; 46: 310-8. 

83. Yuan H, Fales AM, Vo-Dinh T. TAT Peptide-Functionalized Gold Nanostars: 

Enhanced Intracellular Delivery and Efficient NIR Photothermal Therapy Using 

Ultralow Irradiance. J Am Chem Soc. 2012; 134: 11358-61. 



32 
 

 

84. Pang B, Qiao X, Janssen L, Velds A, Groothuis T, Kerkhoven R, et al. Drug-induced 

histone eviction from open chromatin contributes to the chemotherapeutic effects of 

doxorubicin. Nat Commun. 2013; 4: 1908. 

85. Tacar O, Sriamornsak P, Dass CR. Doxorubicin: an update on anticancer molecular 

action, toxicity and novel drug delivery systems. J Pharm Pharmacol. 2013; 65: 157-

70. 

86. Gewirtz DA. A critical evaluation of the mechanisms of action proposed for the 

antitumor effects of the anthracycline antibiotics Adriamycin and daunorubicin. 

Biochem Pharmacol. 1999; 57: 727-41. 

87. Guo J, Cai W, Du B, Qian M, Sun Z. Raman spectroscopic investigation on the 

interaction of malignant hepatocytes with doxorubicin. Biophys Chem. 2009; 140: 

57-61. 

88. Jasinski M, Jasinska L, Ogrodowczyk M. Resveratrol in prostate diseases - a short 

review. Cent European J Urol. 2013; 66: 144-9. 

89. Soleas GJ, Diamandis EP, Goldberg DM. Resveratrol: A molecule whose time has 

come? And gone? Clin Biochem. 1997; 30: 91-113. 

90. Middleton E, Kandaswami C, Theoharides TC. The effects of plant flavonoids on 

mammalian cells: Implications for inflammation, heart disease, and cancer. 

Pharmacol Rev. 2000; 52: 673-751. 

91. Di Santo A, Mezzetti A, Napoleone E, Di Tommaso R, Donati MB, De Gaetano G, et 

al. Resveratrol and quercetin down-regulate tissue factor expression by human 

stimulated vascular cells. J Thromb Haemost. 2003; 1: 1089-95. 



33 
 

 

92. Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat 

Rev Drug Discov. 2006; 5: 493-506. 

93. Pervaiz S. Resveratrol: from grapevines to mammalian biology. Faseb J. 2003; 17: 

1975-85. 

94. Sun AY, Simonyi A, Sun GY. The "French paradox" and beyond: Neuroprotective 

effects of polyphenols. Free Radical Bio Med. 2002; 32: 314-8. 

95. Morelli R, Das S, Bertelli A, Bollini R, Lo Scalzo R, Das DK, et al. The introduction 

of the stilbene synthase gene enhances the natural antiradical activity of Lycopersicon 

esculentum mill. Mol Cell Biochem. 2006; 282: 65-73. 

96. Birrell MA, McCluskie K, Wong SS, Donnelly LE, Barnes PJ, Belvisi MG. 

Resveratrol, an extract of red wine, inhibits lipopolysaccharide induced airway 

neutrophilia and inflammatory mediators through an NF-kappa B-independent 

mechanism. Faseb J. 2005; 19: 840-1. 

97. King RE, Kent KD, Bomser JA. Resveratrol reduces oxidation and proliferation of 

human retinal pigment epithelial cells via extracellular signal-regulated kinase 

inhibition. Chem-Biol Interact. 2005; 151: 143-9. 

98. Borra MT, Smith BC, Denu JM. Mechanism of human SIRT1 activation by 

resveratrol. J Biol Chem. 2005; 280: 17187-95. 

99. Mazzarella G, Ferraraccio F, Prati MV, Annunziata S, Bianco A, Mezzogiorno A, et 

al. Effects of diesel exhaust particles on human lung epithelial cells: An in vitro study. 

Resp Med. 2007; 101: 1155-62. 

    100. Kunzli N, Kaiser R, Medina S, Studnicka M, Chanel O, Filliger P, et al. Public-health  

            impact of outdoor and traffic-related air pollution: a European assessment. Lancet.  



34 
 

 

            2000; 356: 795-801. 

    101. Samet JM, Dominici F, Curriero FC, Coursac I, Zeger SL. Fine particulate air     

             pollution  and mortality in 20 US Cities, 1987-1994. New Engl J Med. 2000; 343:  

             1742-9. 

    102. Pope CA, Thun MJ, Namboodiri MM, Dockery DW, Evans JS, Speizer FE, et al.    

        Particulate Air-Pollution as a Predictor of Mortality in a Prospective-Study of Us  

        Adults. Am J Resp Crit Care. 1995; 151: 669-74. 

103. Brauer M, Henderson S. Diesel exhaust particles and related air pollution from traffic  

        sources in the Lower Mainland. Health Canada, Environment and Sustainability  

        Program: Willingdon Green. 2003: 1-28. 

104. Bayram H, Ito K, Issa R, Ito M, Sukkai M, Chung KF. Regulation of human lung  

        epithelial cell numbers by diesel exhaust particles. Eur Respir J. 2006; 27: 705-13. 

105. Hales S, Salmond G, Town GI, Kjellstrom T, Woodward A. Daily mortality in  

         relation to weather and air pollution in Christchurch, New Zealand. Aust Nz J Publ  

         Heal. 2000; 24: 89-91. 

106. Li N, Wang MY, Oberley TD, Sempf JM, Nel AE. Comparison of the pro-oxidative  

        and proinflammatory effects of organic diesel exhaust particle chemicals in bronchial    

        epithelial cells and macrophages. J Immunol. 2002; 169: 4531-41. 

107. Matsumoto A, Hiramatsu K, Li YJ, Azuma A, Kudoh S, Takizawa H, et al. Repeated  

        exposure to low-dose diesel exhaust after allergen challenge exaggerates asthmatic  

        responses in mice. Clin Immunol. 2006; 121: 227-35. 

108. Muller L, Comte P, Czerwinski J, Kasper M, Mayer ACR, Schmid A, et al.      

        Investigating the potential for different scooter and car exhaust emissions to cause  



35 
 

 

        cytotoxic and (pro-)inflammatory responses to a 3D in vitro model of the human  

        epithelial airway. Toxicol Environ Chem. 2012; 94: 164-80. 

109. Boland S, Baeza-Squiban A, Fournier T, Houcine O, Gendron MC, Chevrier M, et al.  

        Diesel exhaust particles are taken up by human airway epithelial cells in vitro and   

        alter cytokine production. Am J Physiol-Lung C. 1999; 276: L604-L13. 

110. Linder L, Carlsson A, Marsal L, Bjursten LM, Branemark PI. Clinical aspects of  

        osseointegration in joint replacement. A histological study of titanium implants. J  

        Bone Joint Surg Br. 1988; 70: 550-5. 

    111. Satsangi A, Satsangi N, Glover R, Satsangi RK, Ong JL. Osteoblast response to  

            phospholipid modified titanium surface. Biomaterials. 2003; 24: 4585-9. 

    112. Oh S, Daraio C, Chen L-H, Pisanic TR, Finones RR, Jin S. Significantly accelerated  

            osteoblast cell growth on aligned TiO2 nanotubes. Journal of biomedical materials  

            research Part A. 2006; 78: 97-103. 

    113. Park J, Bauer S, Schlegel KA, Neukam FW, von der Mark K, Schmuki P. TiO2  

            nanotube surfaces: 15 nm--an optimal length scale of surface topography for cell  

            adhesion and differentiation. Small. 2009; 5: 666-71. 

    114. Brammer KS, Oh S, Gallagher JO, Jin S. Enhanced cellular mobility guided by  

            TiO2 nanotube surfaces. Nano Lett. 2008; 8: 786-93. 

 



36 
 

 

Qifei Li, E. Suasnavas, L. Xiao, S. Heywood, X. Qi, A. Zhou*, S. C. Isom*, J of Biophotonics 8 (2015) 638-645. 

 

CHAPTER 2 

LABEL-FREE AND NON-INVASIVE MONITORING OF PORCINE TROPHOBLAST 

DERIVED CELLS: DIFFERENTIATION IN SERUM AND SERUM-FREE MEDIA 

2.1 ABSTRACT  

Traditional approaches to characterize stem cell differentiation are time-consuming, 

lengthy and invasive. Here, Raman microspectroscopy (RM) and atomic force microscopy 

(AFM)—both considered as non-invasive techniques—are applied to detect the biochemical 

and biophysical properties of trophoblast derived stem-like cells incubated up to 10 days 

under conditions designed to induce differentiation. Significant biochemical and biophysical 

differences between control and differentiated cells were observed. Quantitative real time 

PCR was applied to analyze gene expression. The relationship between cell differentiation 

and associated cellular biochemical and biomechanical changes were discussed.  

2.2 INTRODUCTION 

In vitro characterization of cellular differentiation using traditional methods, 

including immunocytochemistry, fluorescence activated cell sorting and RNA in situ 

hybridization analysis, has limitations: all require large numbers of cells, lengthy steps and 

cellular lysis or fixation [1-3]. Recently, there has been a drive to characterize and monitor 

cellular differentiation processes in situ and in real-time by faster and non-invasive methods. 

Raman microspectroscopy (RM) and atomic force microscopy (AFM) are two highly 

sensitive analytical techniques able to characterize cellular biochemical [4] and 

biomechanical [5] properties in cell samples under near physiological conditions [6]. 
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RM is a spectroscopic technique based on inelastic scattering that exhibits energy 

shift of laser photons corresponding to frequencies of vibration within molecules from 

samples. Raman shifts can serve as a "fingerprint"  to provide information about the 

molecular compositions, structures, and quantities of cellular biopolymers with a minimal 

background signal from water [7, 8], allowing the study of living cells under physiological 

states, without labels or using other invasive steps [9]. Previous studies reported that Raman 

intensities of nucleic acids on undifferentiated stem cells were dominant in comparison with 

differentiated cells, while differentiated cells had larger spectral intensities of proteins and 

lipids than undifferentiated cells [6, 7, 10-18]. 

AFM is a high-resolution scanning probe microscopy that involves the movement of a 

sharp tip over the surface of a biological sample while detecting the near-field physical 

interactions between the sample and tip [19, 20]. AFM can image cytoskeleton, cellular 

microenvironments, and quantitatively detect cellular mechanical properties at nanometer 

scales in physiological condition [5, 21, 22]. It was found that stem cell stiffness will increase 

with differentiation [23-25] and cellular mechanical properties are indicative of stem cell 

differentiation potential [26, 27].  

In the earliest stages of eutherian mammalian embryo development, all the cells 

(blastomeres) are functionally equivalent, and equally capable of giving rise to all cell types 

necessary for proper and complete embryonic/fetal growth and survival.  However, at a 

species-specific timepoint (approximately day 3 in mice, day 5 in humans and pigs, and day 

7 in cattle, e.g.), molecular and morphological transitions destine some of the cells for 

development into the primitive placenta (i.e. the trophectoderm), while the remaining cells 

give rise to the embryo/fetus proper (i.e. the so-called embryonic stem cells) and retain a 
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relatively undifferentiated status [28-30]. Trophoblast cells are the first cells within the early 

developing embryo to undergo a recognizable differentiation event, and the proper formation 

and function of cells is essential to embryo and fetal survival.  In fact, many instances of 

early embryo mortality – at least in in vitro-manipulated embryos – can be traced back to 

dysfunctional trophoblast cells [31-33].  Yet the process of trophoblast differentiation is 

poorly understood.  A thorough appreciation of the biochemical and biophysical aspects of 

trophoblast differentiation may enhance trophoblast function for increased embryonic 

survival. 

In this experiment, trophoblast stem-like cells derived from day 10 porcine embryos 

have been induced by serum and serum-free medium to study cellular differentiation in 

physiological conditions. This is the first work to combine RM and AFM to monitor and 

identify discrete biochemical and biomechanical changes during serum-induced 

differentiation. 

2.3 HYPOTHESIS 

The biochemical and biomechanical properties collected by RM and AFM could be 

used as differentiation indicators to distinguish between differentiated and undifferentiated 

trophoblast-derived stem-like cells.  

2.4 MATERIALS AND METHODS 

2.4.1 Preparation of trophoblast cells 

The cells were collected from porcine embryos on gestational day 10 as described 

elsewhere [34] and were passaged without senescence or morphological changes until 

utilized for experiments. Cell colonies were transfected with an expression construct coding 
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for green fluorescent protein (GFP) using Jet Pei reagent (Polyplus transfection Inc., New 

York, NY, USA) according to instructions [34]. GFP cells help observe TE cells 

morphological changes on magnesium fluoride (MgF2, United Crystals Co., Port Washington, 

NY, USA) over time without chemical label. Cells were cultured in serum-free medium to 

maintain undifferentiated, stem-like characteristics [35], whereas cells cultured in fetal 

bovine serum medium (15% [v:v]) underwent dramatic and predictable changes to cell 

morphology and behaviour. Table 2.1 lists formulations for serum-free and serum-containing 

medium. 

 

Table 2.1 Formulations for serum-containing and serum-free culture media. 

Component Serum-containing Non serum-containing 

DMEM 85% (v:v) 50% (v:v) 

F12 Nutrient Mixture --- 50% (v:v) 

Fetal Bovine Serum 15% (v:v) --- 

B27 Serum-free Supplement --- 1X working concentration 

Epidermal Growth Factor --- 20 ng/mL 

Fibroblast Growth Factor, Basic 2 ng/mL 40 ng/mL 

Gentamicin 20 μg/mL 20 μg/mL 

 

 

2.4.2 Fluorescence imaging of trophoblast cells 

Bright field and fluorescence images were collected by Olympus IX71 inverted 

fluorescence microscope (Olympus America Inc., Center Valley, PA, USA) equipped with an 
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Olympus DP30BW CCD camera using DP-BSW Controller and Manager Software. Images 

were acquired via a 10× lens (Olympus), and cell samples grown on MgF2 substrates were 

observed in medium. Fluorescence images were processed by ImageJ software and nucleus 

diameter measurements were performed on 50~100 cells.  

2.4.3 Raman spectroscopy   

The Raman spectra were measured by Renishaw inVia Raman spectrometer (WiRE 

3.0 software, Renishaw, Wotton-under-Edge, Gloucestershire, UK) equipped with a 300 mW 

785 nm near-IR laser that was focused through a 63 × (NA = 0.90) water immersion 

objective (Leica DMLM, Leica Microsystems, Buffalo Grove, IL, USA). Cells were cultured 

on MgF2 and imaged in Earle's balanced salt solution (EBSS, Thermo Fisher Scientific, 

Waltham, MA, USA).  

The Raman laser spot size is about 24 μm × 0.5 μm, focusing primarily on the cellular 

nuclear region. Raman spectra were collected at Raman static mode at 1 accumulation with 

10s exposure time. For each treatment of the day, two MgF2 windows with cells were 

measured. On each treatment group, 40 ~ 60 Raman spectra from multiple individual cells 

(10 ~ 15 cells, each cell collected 4 spectra but position was changed about 3 μm) were 

detected within 2 hours at room temperature. Renishaw Wire 3.3 software (Renishaw) 

performed for Raman spectra baseline corrected, spectral smoothed and normalized at 

maximum peaks. The processed spectra were imported to OriginPro 8 software (OriginLab 

Corp., Northampton, MA, USA) for Raman intensity analysis. The significance testing was 

employed by one-way ANOVA, and the data were reported as mean ± SD. Principal 

component analysis (PCA) was processed in Matlab R2012b using baseline corrected data. 



41 
 

 
 

2.4.4 Atomic force microscopy 

Contact mode AFM controlled by Picoview software (Picoplus, Agilent Technologies, 

Santa Clara, CA, USA) was applied to trophoblast cells on MgF2 in culture medium. Sharp 

silicon nitride AFM probes (tip radius, 20nm) were employed (Bruker Corp., Billerica, MA, 

USA). Spring constant of tips was calibrated as 0.10~0.11 N/m and deflection sensitivities 

were 45~50 nm/V.  

Scanning Probe Image Processor (SPIP) software (Image Metrology, Hørsholm, 

Denmark) calculated Young’s modulus by converting the force-distance curves to force-

separation curves and fitting the Sneddon variation of Hertz model as below formula shows 

[36-38]:  

Ecell = 4 · F (∆Z) · (1 – η
2

cell)/3 · (∆Z
1.5

) · tan θ, where Ecell: Young’s modulus; F: 

loading force; ηcell: Poisson ratio; ∆Z: indentation; θ: tip half cone opening angle. 

The Poisson’s ratio was 0.5 and the tip half cone opening angle was 36◦. For each 

group, at least 20 force curves of each cell (the total cells are over 15) were collected, and 

detection was accomplished within 2 hours to approximate normal physiologic conditions. 

The AFM images were processed with WSXM software (Nanotec Electrónica S.L., Tres 

Cantos, Madrid, Spain) for deflection and 3-D view. 

2.4.5 Quantitative real time PCR analysis  

On days 3 and 10, total RNA was isolated from cells by the Total RNA kit I (Omega 

Bio-tek; Norcross, GA, USA) following protocol. mRNA was reverse transcribed using 

GoScript Reverse Transcription System kit from Promega (Madison, WI, USA).  

Quantitative PCR (qPCR) was performed on the Eppendorf Mastercylcer Realplex2 machine 
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using Promega GoTaq qPCR master mix with primers (Table 2.2) for HAND1, KLF4, 

CYP17A1, KRT8 and EIF4A1 genes.      

 

Table 2.2 Forward and reverse primer of HAND1, KLF4, KRT8 and EIF4A1 (Forty (40) two-

step cycles (95° C/15 s denaturation – 60° C/30 s anneal/extend) were used for amplification, 

followed by a melt curve analysis to confirm the identity of the fragments amplified. The 

∆∆CT method was used to analyze the qPCR data. EIF4A1 was used as a housekeeping gene 

to normalize CT values. The serum-free samples were used as control samples. 

Gene Forward primer Reverse primer 

HAND1 5’-GCGAGAGCAAGCGGAAAA-3’ 5’-CCTGTGCGCCCTTTAATCC-3’ 

KLF4 5’-GGGAAGGGAGAAGACACTG-3’ 5’-TCTTTGCTTCATGTGGGAGA-3’ 

CYP17A1 5’-GGACACAGATGTCGTCGTCAA-3’ 5’-AAGCGCTCAGGCATGAACA-3’ 

KRT8 5’-AAGCGTACCGACATGGAGAA-3’ 5’-TCCAGCTCGACCTTGTTCA-3’ 

EIF4A1 5’- AGGATCATGTCTGCGAGTCAGG-3’ 5’- ATAGATGCCACGGAGGAGGGAC-

3’ 

 

 

2.5 RESULTS AND DISCUSSION 

2.5.1 Fluorescence imaging for trophoblast cells 

Figure 2.1 compares nucleus diameter of the groups at different days (Figure 2.1(A)) 

and shows representative cell images on each group (Figure 2.1(B)). According to Figure 

2.1(A), the nucleus diameter of serum-free cell maintains similar value with time, from 27.5 
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± 4.6 μm at day 3 to 26.1 ± 5.3 μm at day 10. On the contrary, the nucleus diameter of cells 

in serum gradually increases with time, from 41.6 ± 9.5 μm at day 3 to 55.8 ± 9.1 μm at day 

7, maximizing at day 10 (67.0 ± 9.7 μm).  

Overall, the above observations indicate trophoblast cells maintain smaller nucleus 

diameter in serum-free medium up to 10 days. 

 

Figure 2.1 Nucleus diameter of trophoblast cells (A) and representative GFP images of cells 

(B) in serum-free and serum medium at day 3, 5, 7 and 10 (Error bars of (A) are standard 

deviation of the mean; N ≥ 50, *P < 0.05). 

 

2.5.2 Raman intensity comparison 

After exposure to 785 nm laser in Raman detection (within 2 hrs), LIVE/DEAD 

Viability/Cytotoxicity was conducted by staining cells with Calcein AM (green, live 

cells)/ethidium homodimer-1 (red, dead cells) (Invitrogen). Few dead cells were observed, 

indicating little photodamage effect from Near Infrared light, which is consistent with 

previous studies [39-41].  
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Table 2.3 Tentative Raman band assignments of trophoblast cells. 

                              Raman shift (cm
-1

)                              Band assignment 

                                    624                                                  Phenylalanine 

                                    643                                          C-C twist Phenylalanine 

                                    662                      C-S stretching mode of cystine (collagen type I)       

                                        666                                 G, T-tyrosine-G backbone in RNA                                              

                                    672                                  C-S stretching mode of cytosine 

                                   717                                               CN−(CH3)3 (lipids) 

                                        719                C-C-N+ symmetric stretching in phosphatidylcholine 

                                    720                                                        DNA                                                            

                                        760                                                   Tryptophan 

                                        786                                 DNA & phosphdiester bands DNA 

                                        813                                       Phosphodiester bands RNA                                                                     

                                   832                                          PO2
−stretch nucleic acids 

                                    854                                                    Tyrosine 

                                    881                                                 Tryptophan 

                                    939                               Skeletal modes (polysaccharides) 

                                    961                Phosphate of HA; Calcium-phosphate stretch band   

                                       1006                                              Phenylalanine 

                                       1031                                              Phenylalanine          

                                       1057                                                      lipids 

                                      1066               PO2
−stretching; chain stretching; C-O, C-C stretching  

                                    1070-90                           Symmetric PO2
−stretching of DNA  

                                      1095                      Lipid; Phosphodioxy group (PO2
− in nucleic acids) 

                                       1129                            C-C skeletal stretch transconformation 

                                       1158                              Lipids and nucleic acids (C, G and A ) 

                                       1179                                           Cytosine, guanine 

                                       1213                                      Tyrosine, phenylalanine 

                                       1254           Lipid; A,T breathing mode; Amide III (protein) 

                                       1304                      CH2 deformation (lipid), adenine, cytosine 

                                       1306                               C-N stretching aromatic amines 

                                     1317-9                                     Guanine (B,Z-marker) 

                                       1341                            G (DNA/RNA); CH deformation  

                                     1400-30                γ(C=O) O- (amino acids aspartic & glutamic acid) 

                                       1451                     CH2 deformation (nucleic acid, proteins, lipids) 

                                       1579                                   Pyrimidine ring (nucleic acids) 

                                       1608                                     Phenylalanine, Tryptophan        

                                       1660                                                     Amide I 

                                       1740                                                  Collagen III 

Band assignment is based on [42-50].  
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Table 2.3 lists the tentative Raman band assignments of trophoblast cells. There are 

some remarkable differences among groups, for example, 717 cm
-1

 (CN
-1

(CH3) 3 

(lipid/choline)), 760 cm
-1

 (Tryptophan), 786 cm
-1

 (DNA & phosphdiester bands DNA), 813 

cm
-1

 (Phosphodiester bands RNA), 1006 cm
-1

 (Phenylalanine) and 1057 cm
-1

 (lipid). The 

mean Raman peaks intensities were extracted to quantitatively analyze the differences, as 

shown in Figure 2.2. For serum groups, the DNA intensity gradually decreases from 0.12 at 

day 3 to 0.09 at day 10 (Figure 2.2(A)). However, the DNA intensity of cells in serum-free 

medium fluctuates over time. Similar to DNA changes, the RNA intensity of serum groups 

(Figure 2.2(B)) slowly drops, while that of cells in serum-free medium fluctuates over times. 

The tryptophan (760 cm
-1

) intensity of serum groups (Figure 2.2(C)) increases over time. 

However, for cells in serum-free medium the tryptophan intensity fluctuates. Similarly, for 

serum groups the phenylalanine (1006 cm
-1

) intensity (Figure 2.2(D)) grows continuously, 

while that of cells in serum-free medium fluctuates with time. The lipid/choline intensities 

(717 cm
-1

 and 1057 cm
-1

) fluctuates with time regardless cells in serum or serum-free 

medium (Figure 2.2(E-F)).  

Our spectral results are similar to previous studies [10, 39, 51, 52] that an increase of 

protein peak intensity and decrease of nucleic acids peak intensity are related to the 

differentiation of stem cells. However, the lipid peak intensities exhibits an increasing trend. 

Regardless of the days in culture, the lipid peaks of serum groups (differentiated cells) are 

higher than those of serum-free groups (undifferentiated cells). The lipid peaks do not show a 

steady increase in trophoblast cell system, which is not consistent with those observation in 

multipotent and pluripotent stem cells [13]. The reason may be accounted for cell type 
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difference, and the lipid expression of trophoblast cells may be different from stem cells 

during their development. 

 

Figure 2.2 Raman peak intensity analysis of trophoblast cells on DNA (A), RNA (B), 

tryptophan (C), phenylalanine (D), lipid/choline (E) and lipid (F) at day 3 (black), 5 (red), 7 

(blue) and 10 (cyan) in serum and serum-free medium (Error bars are standard deviation of 

the mean; N ≥ 10, *P < 0.05). 

 

2.5.3 Spectroscopic markers comparison and principal component analysis (PCA) of 

Raman spectra 

Previous studies indicate increasing 757 cm
-1

 to 784 cm
-1

 intensity ratio is correlated 

with the reduction of Oct4 and Nanog expression, which decrease rapidly with the 

differentiation of human embryonic stem cells (hESCs) [39, 53] and human induced 
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pluripotent stem cells (hiPSCs) [54]. Here, the peak intensity ratio of 760 cm
-1

 (tryptophan) 

to 786 cm
-1

 (DNA) was applied to assess trophoblast cells differentiation.  

 

Figure 2.3 Raman peak ratio (760 cm
-1

/786 cm
-1

) in serum and serum-free medium (A) 

(Inset fluorescence images of trophoblast cells at day 10, scale bar: 50 μm); distribution 

diagram of two protein/nucleic acid peak intensity ratios (760/786 cm
-1

 and 854/786 cm
-1

) 

(B), and PCA plot (C) (Error bars of (A) are standard deviation of the mean; N ≥ 10, *P < 

0.05). 

 

Peak intensity ratio (760 cm
-1

/786 cm
-1

) of trophoblast cells are presented in Figure 

2.3(A) (inset fluorescence images of cells at day 10). The ratios in serum medium were larger 

than those in serum-free medium at each day. For serum groups the ratio increase in the first 

five days, then drops slightly, reaching the maximum at day 10. The ratio of serum-free 

groups grows in the first seven days, then decrease largely at day 10. This ratio of serum 

groups increased with time, probably suggesting the cellular differentiation. In contrast, the 

ratio fluctuated for serum-free groups, which may indicate cells still remain undifferentiated 

or differentiated slowly in serum-free medium. 
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Figure 2.4 AFM deflection (A-H) and corresponding 3-D view (A’-H’) images of cells in 

serum-free and serum medium at day 3, 5, 7 and 10. Insets in deflection images are the line 

profiling of nucleus height. 

 

Turner et al. have successfully assessed hESCs differentiation by distribution diagram 

of two protein/nucleic acid intensity ratios (757 cm
-1

/784 cm
-1

  (tryptophan/nucleic acid) and 

853 cm
-1

/784 cm
-1

 (tyrosine/ nucleic acid)) [39]. We applied the same method, as shown in 
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Figure 2.3(B). The X-axis displays the peak intensity ratio of 760 cm
-1

/786 cm
-1

, and Y-axis 

is the peak intensity ratio of 854 cm
-1

/786 cm
-1

. The serum group at day 10 (upper right) has 

the largest distribution in comparison with other groups, even though over 50% of these 

points overlay with other points.  

PCA is also applied to analyze Raman spectra difference for serum and serum-free 

groups (each group has ≈ 200 spectra). PCA simplifies the spectra by exhibiting the data with 

principal component (PC) variables ordered from the largest variance to the least variance 

[55]. The X-axis and Y-axis correspond to the 1
st
 and the 2

nd
 PC variables, respectively. 

These two PCs account for 87.58% of variance and mainly represent the Raman spectra of 

the cells. Similarly to Figure 2.3(B), the data points in serum group at day 10 (white 

diamond) are not closely clustered, even over 50% of these points overlay with other groups 

as shown in Figure 2.3(C). Clusters of other groups sit tightly with each other.  

Our distribution diagram and PCA analysis (Figure 2.3(B, C) both imply that “Day 10 

serum” group exhibits the largest distribution of cellular biocomponents (e.g., 

proteins/nucleic acids) among other groups. 

2.5.4 Topography and biomechanics comparison 

The nucleus diameter can be obtained by AFM, as shown in Figure 2.4. The inset is 

the line profiling of nucleus height crossed cells. The nucleus diameter of cells in serum-free 

medium (Figure 2.4 (A-D, A’-D’)) remains the similar value over time, while its 

cytoskeleton structures (e.g., filamentous actin bundles) increase from over time. However, 

the nucleus diameter of serum group (Figure 2.4 (E-H, E’-H’)) increases with time, and its 

surrounding cytoskeleton structures become less visible over time. At day 3, mesh-like 

structures are clearly visible on surface of cells in serum (Figure 2.4 (E, E’) black arrows 
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pointed) in comparison with those of serum-free group (Figure 2.4(A, A’) one black arrow 

pointed). Meantime, the nucleus diameter (~42 μm) of cells in serum medium is larger than 

that (~27 μm) of cells in serum-free medium. At day 5, the nucleus diameter (~32 μm) of 

cells in serum-free medium is still less than that (48 μm) of cells in serum medium. Similar 

trends are observed over 7 days (cells in serum medium have larger nucleus diameter than 

those in serum-free medium). For the height differences, the overall height (around 1.65 μm) 

of cells in serum-free medium is higher than that (around 1.00 μm) of cells in serum medium 

over time. The AFM image analysis confirms the result of nucleus diameter shown in Figure 

2.1. 

To analyze the biomechanics properties, we compare the Young’s modulus (via AFM 

force-distance curve measurements) of different groups (Figure 2.5). Serum groups show a 

gradual increase in Young’s modulus over time, from 3.16 ± 0.90 kPa at day 3 to 11.20 ± 

4.41 kPa at day 10. However, Young’s modulus of serum-free groups remains unchanged 

(~7.30 kPa) from day 3 to 7, then significantly increases to 13.70 ± 4.11 kPa at day 10.  

The Young’s modulus gradually increases in serum groups over time, which is 

similar to the mouse embryonic stem cells study conducted by Pillarisetti et al. [24]. 

However, that of serum-free groups maintains stable at first 7 days, followed by significant 

increase at day 10. Further studies are needed to investigate the reason leading to Young’s 

modulus increase of undifferentiated cells at day 10.  
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Figure 2.5 Young’s modulus of cells in serum-free and serum medium at day 3, 5, 7 and 10. 

Error bars are standard deviation of the mean; N ≥ 10, *P < 0.05. 

 

2.5.5 Analysis of gene expression by qPCR 

Four genes were selected for qPCR: CYP17A1, HAND1, KLF4 and KRT8. The gene 

CYP17A1 is involved in the steroid biosynthetic pathway, testing for differentiation [56]. 

HAND1 is essential for placental development and to promote trophoblast giant cells 

differentiation [57]. The KLF4 gene is a transcription factor that regulates proliferation, 

differentiation, development and apoptosis [58]. KRT8 is prominent in simple single-layer 

epithelial cells, such as differentiated trophoblast [59].  
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Figure 2.6 Gene expression analysis of cells cultured 3 and 10 days in serum medium 

compared to serum-free medium by qPCR. All values are presented as a ratio of fold-change 

values:  Serum/Non-serum fold-change. A) CYP17A1 levels. The ratio at day 10 was 

approach zero, which does not register on the scale used to present the data, but should not be 

interpreted as an absent or null value (as in panel B); B) HAND1 levels; C) KLF4 levels; D) 

Relative KRT8 levels. Error bars are standard error of the mean. (N = 3, *P < 0.05; N.S. = 

non-serum; N/A = fold change ratio not available because of a null value for non-serum 

group). 

 

In Figure 2.6, the X-axis displays time point and the Y-axis shows the expression 

ratio (fold-change; serum/non-serum). Figure 2.6(A) exhibits that on day 3 CYP17A1 are 
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approximately 200-fold higher for serum group than serum-free group, but this discrepancy 

has disappeared by day 10. Day 3 HAND1 from serum-treated cells are undetectable, thus 

there is insufficient data (N/A = not available) in Panel B.  Panel C shows there is a 

numerical drop in relative KLF4 gene expression in serum- vs. un-treated cells, but this drop 

is not statistically significant and relative KRT8 gene expression levels do not change 

significantly across time in Panel D. 

Cells express very low levels of CYP17A1 when cultured in serum-free conditions, 

but CYP17A1 is turned on when these cells are in serum medium. After three days the cells 

in serum medium showed a 200 fold upregulation of CYP17A1 compared to the serum-free 

groups. There is a significant decrease of CYP17A1 from day 3 to day 10. HAND1 

transcripts were undetectable in serum groups on day 3, so expression ratio was not feasible.  

For day 10, the serum group had 12-fold higher HAND1 expression compared to the cells 

cultured in non-serum medium, which is consistent with the role played by HAND1 in 

cellular differentiation. qPCR results demonstrated a non-significant drop when analyzing 

KLF4 and KRT-8 genes. Thus, these genes might not have an impact on these cells. The 

medium and time differences might impact the expression of certain genes, and these 

biomacromolecules variations can also be observed in Figure 2.2.  

Our initial qPCR results give us clues that we may seek and screen more genes 

related to cell biomechanics (e.g., cell adhesion, extracellular matrix) and cell differentiation 

to sort out such potential correlation.  

2.6 CONCLUSION 

Porcine trophoblast derived cells are interesting model for stem like cell research for 

their regenerative properties, indefinite passage, and foreign DNA receptivity. Trophoblast 
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cells exhibit different morphologies and functions with/without serum medium, providing a 

unique tool for studying trophoblast cell differentiation. This is the first work to combine RM 

and AFM to compare trophoblast cell differentiation, showing that RM and AFM are able to 

distinguish between undifferentiated and differentiated trophoblast cells. Meantime, this 

work evaluated the biochemical and biophysical changes of both undifferentiated and 

differentiating cells at the same day instead of only studying cellular differentiation over 

time. Characterization of trophoblast cells biochemical and biophysical properties extends 

the knowledge to further investigations as this area develops.   
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CHAPTER 3 

IN VITRO EVALUATION OF THE ROLE OF BREAST CANCER METASTASIS 

SUPPRESSOR 1 (BRMS1) IN BREAST CNACER CELLS TO CHEMOTHERAPY USING 

A MULTIMODAL APPOACH  

3.1 ABSTRACT  

The Breast Cancer Metastasis Suppressor 1 (BRMS1) is a nucleo-cytoplasmic protein 

that suppresses cancer metastasis without affecting the growth of the primary tumor. 

Previous work has shown that it decreases the expression of protein mediators involved in 

chemoresistance. This study measured the biomechanical and biochemical changes in 

BRMS1 expression and the responses of BRMS1 to drug treatments on cancer cells in vitro. 

The results show that BRMS1 expression affects biomechanical properties by decreasing the 

Young’s modulus and adhesion force of breast cancer cells after doxorubicin (DOX) 

exposure. Raman spectral bands corresponding to DNA/RNA, lipids and proteins were 

similar for all cells after DOX treatment. The expression of cytokines were similar for cancer 

cells after DOX exposure, although BRMS1 expression had different effects on the secretion 

of cytokines for breast cancer cells. The absence of significant changes on apoptosis, reactive 

oxygen species (ROS) expression and cell viability after BRMS1 expression shows that 

BRMS1 has little effect on cellular chemoresistance. Analyzing cancer protein expression is 

critical in evaluating therapeutics. Our study may provide evidence of the benefit of 

metastatic suppressor expression before chemotherapy. 
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3.2 INTRODUCTION 

The most deadly feature of cancer cells is their metastatic property, which is 

controlled by metastasis suppressors. Clinical studies have reported that Breast Cancer 

Metastasis Suppressor 1 (BRMS1) affects disease progression and prognosis [1, 2]. BRMS1 

is part of an expanding class of proteins called metastasis suppressors that stifle cancer 

metastasis without affecting the primary tumor growth [3]. A loss of BRMS1 is correlated 

with poor prognosis among cancer patients [4-6]. BRMS1 decreases the expression and 

activity of numerous mediators of chemoresistance such as NF-κB activity [7] and AKT 

phosphorylation [8] in several cancer models [9-11]. Some reports studied BRMS1’s effect 

on cellular biophysical and biocomponents differences [12, 13], but little research evaluates 

these biophysical and biochemical changes in response to drug treatments in presence of 

BRMS1. Thus, we compared the responses of cancer cells with and without BRMS1 to a 

therapeutic agent using multiple approaches.  

Atomic force microscopy (AFM) is a scanning analytical technique that can measure 

the biomechanical and topographical characteristics of a sample at nanoscale resolution [14, 

15].  Attractive or repulsive forces between tip and sample surface will cause a positive or 

negative bending of the cantilever. This alteration is detected by a laser, and reflected by a 

position photodetector [15, 16]. AFM has been used to detect biomechanical differences 

between human lung adenocarcinoma epithelial cell (A549) and human primary small airway 

epithelial cell (SAECs) after exposure to anticancer drugs [17]. Therefore, AFM was selected 

to study the biomechanical properties of cells. 

Raman microspectroscopy (RM) is a spectroscopic technique based on inelastic 

scattering when a laser impinges upon a molecule, interacting with the electron cloud and 

http://en.wikipedia.org/wiki/Molecule
http://en.wikipedia.org/wiki/Molecular_orbital
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the bonds of that molecule. RM provides chemical information in the vibrational system, so it 

can identify chemical molecular compositions through characteristic fingerprints in living 

cells [18]. RM is used to study cells in near physiological conditions, without labeling or 

fixation [19], and has been applied to investigate the interaction between pharmaceuticals 

and living cells in toxicology studies [20]. Thus, RM is a suitable technique to collect the 

biochemical information of cells. 

Apoptosis, ROS expression and cell viability tests were also applied to detect 

BRMS1’s effect on cellular chemoresistance. Apoptosis is a universal and efficient suicide 

pathway in cells, and it might enhance a death cascade by a drug [21]. ROS, generated during 

cellular metabolism, are oxygen-containing molecules that can damage DNA, proteins, and 

lipids [22]. The viability of cancer cells will change according to the interaction conditions 

with anticancer drugs. Comparing the results of apoptosis, ROS expression and cell viability 

between parental and BRMS1-expressing cells though doxorubicin (DOX) exposure can 

reflect BRMS1 effect on chemosensitivity. In this work, using five different cell lines: 

metastatic MDA-MB-231 (231), metastatic MDA-MB-435 (435), non-metastatic MDA-MB-

231/BRMS1 (231/BRMS1), non-metastatic MDA-MB-435/BRMS1 (435/BRMS1) and A549. 

We investigated the biomechanical and biochemical changes induced on BRMS1 expression 

when treated with the chemotherapeutic agent DOX. Knowledge of these differences could 

improve the understanding of metastasis suppressors and be of significant clinical benefit in 

human cancer therapy.  

3.3 HYPOTHESIS 

BRMS1 expression has limited impact on cellular physiological conditions when 

cancer cells were treated with anti-cancer drugs (DOX). 

http://en.wikipedia.org/wiki/Chemical_bond
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3.4 MATERIALS AND METHODS 

3.4.1 Cell culture  

To express BRMS1 cDNA, 231 and 435 cells were transfected with a lentiviral vector 

construct under a cytomegalovirus promoter. 231, 231/BRMS1, 435 and 435/BRMS1 cells 

were cultured in a 1:1 mixture of Dulbecco’s-modified eagle’s medium (DMEM) and Ham’s 

F-12 medium supplemented with 5% fetal bovine serum (Thermo Fisher Scientific, Waltham, 

MA, USA). A549 cells (ATCC, Manassas, VA, USA) were cultured in F-12k medium 

containing 10% fetal bovine serum at 37 °C with 5% CO2 in a humidified atmosphere. All 

cells were passaged at 80-90% confluency using 0.5% Trypsin-EDTA solution (Thermo 

Fisher Scientific).  

3.4.2 Drug preparation and treatment 

DOX was dissolved in deionized water. Stock solutions of DOX (8 µM) were stored 

at 4 °C according to instructions (Sigma-Aldrich, St. Louis, MO, USA). For final drug 

concentrations, solutions were serially diluted. The dose of DOX treatment for A549 is 71 

nM, referring to the study of Kashkin et al [23]. Meantime, the IC50 concentration of DOX 

corresponding to 231, 231/BRMS1, 435, and 435/BRMS1 cell is 49 nM, 71 nM, 122 nM, 

and 114 nM, respectively, referring to the research from Danney et al [24].  

3.4.3 Immunofluorescence for detection of BRMS1 localization 

435 and 435/BRMS1 cells were plated on cover slips (Thermo Fisher Scientific), 

washed with cold PBS (Thermo Fisher Scientific), fixed with 4% para-formaldehyde 

(Electron microscopy sciences, Hatfield, PA, USA) and permeabilized with 0.2% Triton X-

https://en.wikipedia.org/wiki/St._Louis,_Missouri
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100 in PBS. After blocking with 5% Bovine serum albumin (BSA) in PBS for one hour, cells 

were incubated with anti-BRMS1 monoclonal antibody (1:100 dilution) in 5% BSA solution 

overnight at 4
0
C. After washing thrice with PBS, Alexa Fluor 488-labeled anti-mouse IgG 

(1:400 dilution, Thermo Fisher Scientific) was added and incubated at room temperature for 

1 hour. After washing the cells thrice with PBS, the cover slips were mounted (Vector 

laboratories Inc., Burlingame, CA, USA) and observed under an Olympus IX-70 inverted 

fluorescence microscope (Olympus America Inc., Center Valley, PA, USA).  

3.4.4 Raman spectroscopy   

To avoid high near infrared (IR) Raman scattering and fluorescence background, 

magnesium fluoride (MgF2, United Crystals Co., Port Washington, NY, USA) substrates 

were used. The cells were seeded on MgF2 in culture medium overnight and treated with 

corresponding IC50 concentration of DOX. Before measurements, cells were rinsed thrice in 

PBS, and maintained in EBSS (Thermo Fisher Scientific) for Raman spectra collection. 

Before experiments began, LIVE/DEAD viability experiments were conducted to 

verify if the cells were alive on MgF2. Raman spectra were recorded using a Renishaw inVia 

Raman spectrometer (Renishaw, Wotton-under-Edge, Gloucestershire, UK) equipped with a 

63 × 0.9NA water immersion objective (Leica DMLM, Leica Microsystems, Buffalo Grove, 

IL, USA) and a 300 mW 785 nm near-IR laser. Spectra were collected in static mode for 1 

accumulation at 10 s laser exposure over a wavenumber range of 600-1800 cm
-1

. Eight cells 

per treatment were analyzed with micro-Raman spectroscopy. Cosmic rays of Raman spectra 

were removed by Renishaw WiRE 3.3 software (Renishaw).  
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3.4.5 Atomic force microscopy  

Cells were detected by a contact mode PicoPlus AFM controlled by Picoview 

software (Agilent Technologies, Santa Clara, CA, USA). Biomechanical properties were 

calculated from in situ force-distance curve measurements in medium at room temperature. 

The radius of silicon nitride tips was 20 nm. Its spring constant was calibrated to 0.10~0.11 

N/m by Thermo K Calibration (Agilent Technologies) and its corresponding deflection 

sensitivities were 45~50 nm/V. More than 10 cells were detected, collecting at least 15 force 

curves on the central area of different cells to avoid spurious detections [25, 26]. Scanning 

Probe Image Processor (SPIP) software (Image Metrology, Hørsholm, Denmark) was used to 

calculate Young’s modulus by fitting the Sneddon variation of Hertz model [27-29]. 

Adhesion force (the force between tip and cellular surface during tip retracting) was 

calculated from deflection (nm) vs. distance (nm) curves by SPIP. The half cone-opening 

angle of tip was 36
◦
, and cellular Poisson’s ratio was 0.5. The detection was accomplished 

within 2 hours (h) to approximate physiological conditions. 

Ecell = 4 · F (∆Z) · (1 – η
2

cell)/3 · (∆Z
1.5

) · tan θ, where Ecell: Young’s modulus; F: 

loading force; ηcell: Poisson ratio; ∆Z: indentation; θ: tip half cone opening angle.  

3.4.6 Cytokine and chemokine analysis 

A total of 25 cytokines and chemokines were selected to analyze their expression. 

The samples were centrifuged at 250 × g for 5 min, the supernatant was collected and stored 

at −80 °C prior to the assay. The samples were tested as single batches on Q-Plex Array
TM

 

kits (Quansys Biosciences, Logan, UT, USA).  
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3.4.7 ROS and apoptosis assay  

The ROS expression was detected by a Muse™ Oxidative Stress kit (EMD Millipore 

Co., Billerica, MA, USA), and apoptosis level was determined by a Muse™ Annexin V and 

Dead Cell kit (EMD Millipore Co.). Cells were cultured in 6-well plates to about 70% 

confluence, then the medium was replaced with DOX containing medium. Every treatment 

had three replicates. At each time point, the cells were collected and analyzed using a Muse 

Cell Analyzer (EMD Millipore Co.). 

3.4.8 Cell viability assay  

Cell viability was analyzed using LIVE/DEAD Viability/Cytotoxicity Assay Kit 

(Thermo Fisher Scientific). Calcein AM is retained within live cells producing green 

fluorescence; whereas, EthD-1 enters damaged membrane and binds to nucleic acids, 

producing red fluorescence. Every treatment has three replicates. After staining, cells were 

imaged using fluorescence microscope with DP30BW CCD camera (Olympus America Inc.) 

to analyze the relative proportion of live/dead cells.  

 

3.5 RESULTS 

3.5.1 BRMS1 distributed mainly in nucleus with some expression observed in the 

cytosol 

To assess the biophysical and biochemical differences of breast cancer cells with and 

without BRMS1, it is important to pinpoint the distribution of BRMS1. Figure 3.1 shows the 

immunofluorescence images for 435 and 435/BRMS1 cells. BRMS1 is highly expressed 

(green) in (Figure 3.1B) 435/BRMS1 cells compared to 435 cells (Figure 3.1A). Further, it is 
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observed that BRMS1 is mainly distributed within cellular nucleus, which is consistent with 

previous research [30].  

 

Figure 3.1 BRMS1 mainly distributed around the nucleus. Immunofluorescence images of 

(A) 435 and (B) 435/BRMS1 cells stained with anti-BRMS1 antibody (blue: nucleus; green: 

expression of BRMS1). 

 

3.5.2 BRMS1 affects the biomechanical properties and the response of cancer cells to 

DOX 

AFM was employed to quantify the biomechanical properties. The results are shown 

after 4 h DOX exposure where A549, 231 and 435 cells showed similar changes as both 

Young’s modulus (Figure 3.2A) and adhesion forces increased (Figure 3.2B). However, both 

biomechanical properties of 231/BRMS1 and 435/BRMS1 moderately decreased. For 231 

and 231/BRMS1 cells, the differences in the Young’s modulus and adhesion force 
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corresponded to 7.5 kPa and 0.30 nN respectively. While for the 435 and 435/BRMS1 cells, 

the differences were 11.6 kPa and 0.29 nN respectively. However, after incubation with 

DOX, both the Young’s modulus and adhesion forces decreased for both cell lines. The 

difference amounts to 2.8 kPa and 0.04 nN for 231 and 231/BRMS1 and, 2.6 kPa and 0.07 

nN for 435 and 435/BRMS1. 

These results suggest that BRMS1 expression affects the biomechanical properties of 

cancer cells and also induces a differential response when interacting with DOX. 

 

 

Figure 3.2 BRMS1 expression alters the biomechanical properties and the response of cancer 

cells to DOX. (A) Young’s modulus and (B) adhesion force of 231, 231/BRMS1 (231/B), 

435, 435/BRMS1 (435/B) and A549 cells without DOX treatment and treated with 4 h DOX 

group. Error bars are standard deviation of the mean (N ≥ 10, **p < 0.01; B represents 

BRMS1). 
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3.5.3 BRMS1 has little effect on the biochemical changes of cancer cells to DOX 

To compare the differences in biochemical information, Raman spectra of cells with 

and without DOX treatment were collected. A representative Raman video images of 231, 

231/BRMS1, 435, 435/BRMS1 and A549 are shown in Figure 3.3A-E. The average Raman 

spectra were collected from over 24 spectra for each individual group, and all those spectra 

exhibited similar spectral peaks. 

To identify the spectral differences, the spectrum of corresponding control group was 

subtracted from the average Raman spectra of different DOX groups (4 h, 12 h and 24 h) as 

shown in Figure 3.3A’-E’. Raman peaks at 786 cm
-1

, 937 cm
-1

, 1006 cm
-1

, 1095 cm
-1

, 1313 

cm
-1

, 1450 cm
-1

, 1608 cm
-1

 and peak range from 1200-1300 cm
-1

 show significant differences 

when BRMS1 is expressed. The peak at 786 cm
-1 

arises from pyrimidine ring breathing mode. 

Raman peak at 937 cm
-1 

is assigned to α-helix and C-C stretching in the protein backbone. 

The peak at 1006 cm
-1 

belongs to the symmetric ring breathing mode of phenylalanine (Phe). 

Raman peak at 1095 cm
-1 

can be assigned to lipid, and the peak at 1313 cm
-1 

corresponds to 

guanine (G). The bands at 1450 cm
-1 

can be assigned to the CH2 deformation (def) of lipid 

whereas the 1608 cm
-1 

corresponds to tryptophan (Tyr). The spectral region of 1200-1300 

cm
-1

 belongs to Amide III. Table 3.1 lists the other major cellular biopolymers, i.e. nucleus 

acids, proteins, lipids and carbohydrates. 

The Raman intensities were extracted as shown in Figure 3.4. Most of the peak 

intensities from BRMS1-expressing cells are larger than parental cells (Figure 3.4A-G). 

Meanwhile, these spectral intensities displayed a similar trend from control to 24 h DOX 

group.  
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Figure 3.3 Similar Raman peaks corresponding to DNA/RNA, lipids and proteins between 

cell lines have noticeable changes for all cancer cells after DOX treatment. The 

representative Raman video images of (A) 231, (B) 231/BRMS1, (C) 435, (D) 435/BRMS1 

and (E) A549 (inset in each image is the average Raman spectra from nucleus of control and 

treated with DOX for 4 h, 12 h and 24 h). Spectra difference between different time (4h, 12h 

and 24h) of DOX treated cells and control cells of (A’) 231, (B’) 231/BRMS1, (C’) 435, (D’) 

435/BRMS1 and (E’) A549 (B represents BRMS1). 

 

The peak intensity at 786 cm
-1

 (Figure 3.4A) gradually reduces in all cell lines from 

control group to 24 h DOX exposure. After 24 h DOX exposure, the intensity at 786 cm
-1

 for 

231, 231/BRMS1, 435, 435/BRMS1 and A549 slightly decreases 1.2, 1.2, 1.1, 1.1 and 1.2 

folds respectively, compared to the corresponding control group. Interestingly, the intensity 

of 1313 cm
-1

 (Figure 3.4B) increases for all cells from control to 24 h DOX exposure. In the 

control group, the intensity of 1313 cm
-1

 for BRMS1-expressing cells is slightly larger than 

that of cells without BRMS1. All cells increase 1.1 fold at 1313 cm
-1

 after 24 h DOX 

treatment compared to control. Similarly, the peaks at 1095 cm
-1

, 1450 cm
-1

, 937 cm
-1

 and 

1006 cm
-1

 (Figure 3.4C-F) all exhibit increasing intensity for all cells when compared to the 

control. However, the intensity at 1608 cm
-1

 of 231, 231/BRMS1, 435, 435/BRMS1 and 

A549 at 24 h group reduces 7%, 19%, 5%, 4% and 15% respectively compared to control. 

The spectral region of 1200–1300 cm
−1

 (Figure 3.4H) fluctuates over DOX exposure time, 

and the band areas of 12 h and 24 h DOX groups increase compared to control group for all 

cancer cell lines due to an alteration of proteins secondary structure. The band area ratios 

between the 1450 cm
−1

 and 1006 cm
−1

 in Figure 3.4I, A1450/A1003, can reveal a structural 
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modification [40]. Most of the cells have the largest mean ratio at 24 h DOX treatment, 

indicating the largest relative content of lipids at 24 h DOX incubation.  

Overall, although BRMS1 expression changes the biochemical information of cancer 

cells, all cancer cells respond to DOX similarly over time.  

 

Table 3.1 Tentative Raman band assignments of cells. 

                              

                              Raman shift (cm
-1

)                             Band assignment 

                                    624                                                  Phenylalanine 

                                    717                                               CN−(CH3)3 (lipids) 

                                        719            C-C-N+ symmetric stretching in phosphatidylcholine 

                                    720                                                        DNA                                                            

                                        760                                                   Tryptophan 

                                        786                                 DNA & phosphdiester bands DNA 

                                        813                                       Phosphodiester bands RNA                                                                     

                                    832                                          PO2
−stretch nucleic acids 

                                    854                                Ring breathing tyrosine (proteins) 

                                    937                                 C-C stretching, α-helix (proteins) 

                                    961                Phosphate of HA; Calcium-phosphate stretch band   

                                       1006                                              Phenylalanine 

                                       1031                                              Phenylalanine          

                                       1057                                                      Lipids 

                                       1066          PO2
−stretching; chain stretching; C-O, C-C stretching  

                                       1084                         Phosphodiester groups in nucleic acids                                               

                                       1095                                                      Lipid 

                                   1200-1300                                         Amide III (proteins) 

                                       1313                                                    Guanine 

                                     1317-9                                     Guanine (B,Z-marker) 

                                     1335/6                                                  Guanine 

                                     1400-30            γ(C=O) O- (amino acids aspartic & glutamic acid) 

                                       1450                                       CH2 deformation (lipids) 

                                       1579                                   Pyrimidine ring (nucleic acids) 

                                       1608                                     Phenylalanine, Tryptophan        

                                      1658/9                                Amide I band (protein band) 

                                       1740                                                  Collagen III 

Band assignments refer from literature [31-39]. 
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Figure 3.4 BRMS1 expression has little impact on the biochemical changes of cancer cells to 

DOX. Raman intensity analysis of five cancer cell lines at (A) 786 cm
-1

 (pyrimidine), (B) 

1313 cm
-1

 (guanine), (C) 1095 cm
-1

 (lipid), (D) 1450 cm
-1

 (CH2 deformation of lipid), (E) 

937 cm
-1

 (α-helix), (F) 1006 cm
-1

 (phenylalanine) and (G) 1608 cm
-1

 (phenylalanine and 

tryptophan) at different DOX exposure times (control, 4 h, 12 h and 24 h). Error bars are 

standard deviation of the mean. The band area of 1200-1300 cm
-1

 (H) and the intensity ratio 

(I) between the 1450 cm
-1

 and 1006 cm
-1

 bands (A1450/A1006) of 231, 231/BRMS1, 435, 

435/BRMS1 and A549 cells at different DOX exposure times (N ≥ 6, **p < 0.01, B 

represents BRMS1). 
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3.5.4 BRMS1 affects the expression of cytokine and chemokine 

Multiplex ELISA was applied to analyze a total of 25 human cytokines and 

chemokines, and the majority of them were undetectable. However, several cytokines (IL-8, 

IL-15, RANTES, MCP-1, GROα, GMCSF, IL-2 and TNFα) showed prominent expression 

levels after DOX treatments (Figure 3.5).  

All cells expressed IL-8, IL-15, RANTES and MCP-1, while some of these cells did 

not release GROα, GMCSF, IL-2 and TNFα. For 231 and 231/BRMS1, the expressions of 

IL-8, IL-15, RANTES and IL-2 are very similar from control to 24 h DOX group. However, 

the average expression of GROα is 1041 and 5282 pg/mL for 231 and 231/BRMS1 

respectively from control to 24 h DOX group, and 231 and 231/BRMS1 secrete an average of 

135 and 9 pg/mL for GMCSF correspondingly. Similar to 231 and 231/BRMS1, these 

cytokines fluctuate from control to 24 h DOX group for 435 and 435/BRMS1. Among the 

eight cytokines 435 releases more than 435/BRMS1 except IL-2 that is undetectable. On 

average, 435 cells express about 2-fold more IL-15, 9-fold more RANTES, 85-fold higher 

MCP-1, 87-fold more IL-8, 93-fold higher TNFα, and 6308-fold more GROα than the 

435/BRMS1 from control to 24 h DOX group. Meanwhile, the average expression of 

GMCSF is 1687 pg/mL for 435 cells, while that of 435/BRMS1 is undetectable. For A549 

cells, cytokine expression also varies. A549 cells express low level of IL-15, RANTES, 

GMCSF, IL-2 and TNFα (each one is less than 9 pg/mL on average) comparing to IL-8, 

MCP-1 and GROα (83142, 975 and 27650 pg/mL on average, respectively) from control to 

24 h DOX group. 

Overall, different cell lines release different cytokines at varying levels from control 

to 24 h DOX group. Among the 25 cytokines and chemokines, many are expressed at a 
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negligible level. The eight cytokines discussed here indicate that 231 and 231/BRMS1 

release similar levels of IL-8, IL-15, RANTES and IL-2, while 435 cells express cytokines at 

a much higher level than the 435/BRMS1 (except IL-2). 

 

 

Figure 3.5 The expression of cytokine and chemokine was affected by BRMS1. Cytokines 

and chemokines analysis of (A) IL-8, (B) IL-15, (C) RANTES, (D) MCP-1, (E) GROα, (F) 

GMCSF, (G) IL-2 and (H) TNFα released from 231, 231/BRMS1, 435, 435/BRMS1 and 

A549 cells. Cells were exposed to DOX for 0h (control), 4 h, 12 h and 24 h before 

measurement. Unit of Y-axis: pg/mL. Error bars are standard deviation of the mean (N = 3, 

**p < 0.01, B represents BRMS1). 
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3.5.5 BRMS1 expression has little effect on apoptosis, ROS expression and cell viability 

of cancer cells from DOX 

When DOX interacts with cancer cells, an apoptotic response, an increase in ROS, 

and reduced viability is triggered. These results also show that apoptosis, ROS expression 

and cell viability tests are all time-dependent, and the percentage variations of these three 

tests follow similar changes across all cell lines. In Figure 3.6A, there is a large increase in 

the number of apoptotic cells after 24 h DOX exposure, with a pronounced increase in 435 

and 435/BRMS1 cells. For instance, at 12 h exposure, both 435 and 435/BRMS1 have a 

similar apoptosis percentage (ca. 5~6%); after 24 h exposure, the percentage of apoptotic 

cells increases to 24 % for 435, and 27% for 435/BRMS1. Plus, both are significantly higher 

than ~17% for both 231 and 231/BRMS1 at the same exposure time. Similarly, the 

production of ROS in five cells grew with the increase of DOX exposure time (Figure 3.6B). 

The overall level of ROS production for A549, 231, and 231/BRMS1 after 24 h DOX 

exposure was larger than those for 435 and 435/BRMS1 cells. For cell viability (Figure 3.6C), 

the viable cell percentages of 231, 231/BRMS1, 435, 435/BRMS1 and A549 decreased after 

DOX treatment, changing into 72.7%, 72.4%, 74.8%, 70.7% and 74.5% respectively after 24 

h DOX incubation. After 4 h and 12 h DOX exposure, the differences of viability percentage 

between cancer cells and cancer cells with BRMS1 are ~3% and ~2.8%, correspondingly.  

The apoptosis, ROS expression and cell viability changes of five cells display a 

similar pattern from control to 24 h DOX exposure, reflecting the similar responses between 

cancer cells and BRMS1-expressing cells to DOX treatment. 
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3.5.6 BRMS1 expression has little effect on apoptosis, ROS expression and cell viability 

of cancer cells from DOX 

When DOX interacts with cancer cells, an apoptotic response, an increase in ROS, 

and reduced viability is triggered. These results also show that apoptosis, ROS expression 

and cell viability tests are all time-dependent, and the percentage variations of these three 

tests follow similar changes across all cell lines. In Figure 3.6A, there is a large increase in 

the number of apoptotic cells after 24 h DOX exposure, with a pronounced increase in 435 

and 435/BRMS1 cells. For instance, at 12 h exposure, both 435 and 435/BRMS1 have a 

similar apoptosis percentage (ca. 5~6%); after 24 h exposure, the percentage of apoptotic 

cells increases to 24 % for 435, and 27% for 435/BRMS1. Plus, both are significantly higher 

than ~17% for both 231 and 231/BRMS1 at the same exposure time. Similarly, the 

production of ROS in five cells grew with the increase of DOX exposure time (Figure 3.6B). 

The overall level of ROS production for A549, 231, and 231/BRMS1 after 24 h DOX 

exposure was larger than those for 435 and 435/BRMS1 cells. For cell viability (Figure 3.6C), 

the viable cell percentages of 231, 231/BRMS1, 435, 435/BRMS1 and A549 decreased after 

DOX treatment, changing into 72.7%, 72.4%, 74.8%, 70.7% and 74.5% respectively after 24 

h DOX incubation. After 4 h and 12 h DOX exposure, the differences of viability percentage 

between cancer cells and cancer cells with BRMS1 are ~3% and ~2.8%, correspondingly.  

The apoptosis, ROS expression and cell viability changes of five cells display a 

similar pattern from control to 24 h DOX exposure, reflecting the similar responses between 

cancer cells and BRMS1-expressing cells to DOX treatment. 
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Figure 3.6 BRMS1 expression has little influence on apoptosis, ROS expression and cell 

viability of cancer cells from DOX. The representative (A) Apoptosis, (B) ROS expression 

and (C) cell viability images and the histogram of (A’) Apoptosis, (B’) ROS expression and 

(C’) cell viability percentage from 231, 231/BRMS1, 435, 435/BRMS1 and A549 cells 

without DOX treatment and treated with 4 h, 12 h and 24 h DOX (Error bars are standard 

deviation of the mean; N = 3, **p < 0.01, B represents BRMS1).    
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3.6 DISCUSSIONS  

Studies were conducted to understand the effects of metastasis suppressors on cellular 

biomechanical and biochemical properties and its responses to chemotherapeutic drugs. To 

perform these studies, a representative metastasis suppressor, BRMS1, was selected. 

Immunolocalization experiments using BRMS1 antibody confirmed the high expression and 

localization of BRMS1 predominantly to the nucleus of MDA-MB-435/BRMS1 cells. 

BRMS1 is an important part of the SIN3-HDAC complexes, critical for deacylating histone 

proteins and condensing the chromatin machinery leading to reduced transcription of several 

genes [41, 42]. BRMS1 was also found, albeit at lower levels, in the cytosol, which is 

consistent with earlier reports categorizing BRMS1 as a nucleo-cytoplasmic protein [43].  

It is reported that in BRMS1-expressing cells, the activation of focal adhesion kinase 

and β1 integrin were reduced, leading to a decrease level of cellular adhesion and 

cytoskeletal reorganization [44]. Our results demonstrate that BRMS1 could affect cellular 

biomechanical properties. The Young’s moduli of metastatic cancer cells (231, 435) are 

lower than that of non-metastatic cells (231/BRMS1, 435/BRMS1), which is consistent with 

reported studies [26, 45-47]. This distinction in cell elasticity is attributed to altered 

cytoskeletal organization, in particular the intermediate filament and actin filament structures, 

which have been identified as the main determinants of cell elasticity [48]. Furthermore, 

interaction with DOX results in an increase in Young’s modulus for cancer cells; while 

decreasing it in BRMS1 expressing cells. Metastatic cancer cells (231, 435) possessed lower 

adhesion forces than BRMS1 expressing non-metastatic cells. In addition, interaction with 

DOX led to increased cell adhesion in metastatic A549, 231 and 435 cells, whereas a 

decrease was seen in non-metastatic 231/BRMS1 and 435/BRMS1 cells. The measured 
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adhesion force is associated with cell-surface biomolecules [49]. Alterations in cell adhesion 

after DOX treatment may be caused by cellular response to chemical stimulus leading to the 

variation of cell-surface macromolecules. 

The Raman spectral results demonstrate that BRMS1 expression has an effect on 

cellular biochemical properties. However, after DOX treatment, the spectral changes of 

cancer cells with BRMS1 are similar to those without BRMS1. DOX incubation time also 

plays a critical role in changing spectral intensities.  The results suggest that BRMS1 

expression changes the cells’ biochemical makeup without affecting chemotherapeutic 

sensitivity of these in vitro cancer cells. It is reported that the expression of BRMS1 largely 

enhances major histocompatibility complex (MHC) genes and significantly reduces the 

expression level of some genes related to protein localization and secretion [50]. This 

phenomenon is more obvious between 435 and 435/BRMS1, as shown in Figure 3.5. 

Although 231 and 231/BRMS1 secrete similar level of IL-8, IL-15, RANTES and IL-2, the 

level of GMCSF for 231/BRMS1 is much less than that of 231. This result may indicate that 

the expression of BRMS1 in different cell lines has different effects on secretion of cytokines. 

In addition, the expression values of cytokines and chemokines for five cell lines are at 

similar magnitude comparing control to DOX treated groups, suggesting that DOX has 

similar influences on cancer cells with and without BRMS1. The results from apoptosis, ROS 

expression and cell viability reflect similar patterns for five cell lines upon DOX treatments, 

confirming that DOX has similar impacts on cancer cells with and without BRMS1. 

In conclusion, this study demonstrates the distribution of BRMS1 within cells. It is 

also observed that BRMS1 has an influence on cellular biomechanical and biochemical 

properties. However, the effect on cellular biomechanical and biochemical information from 
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BRMS1 does not affect the chemotherapeutic sensitivity of cells with BRMS1 compared to 

cells without BRMS1. These findings have provided critical clues on the biomechanical and 

biochemical changes from BRMS1 expression and the following drug treatments, and 

confirmed that the drug treatment of breast cancer remains effective in the presence of 

BRMS1. Our future work is to study more metastasis suppressors and their effects on cellular 

levels, providing clinical cues for drug treatments. 
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CHAPTER 4 

DIESEL EXHASUT PARTICLES (DEP) INDUCED HUMAN LUNG CANCER CELLS 

DAMAGE AND THE STRUCTURE PROTECTIVE EFFECT OF RESVERATROL (RES) 

4.1 ABSTRACT  

In this study, scanning electron microscopy (SEM), confocal laser scanning 

microscopy and atomic force microscope (AFM), Raman spectroscopy (RM), multiplex 

ELISA, flow cytometry, were applied to analyze the biochemical and biophysical responses 

of in vitro human lung carcinoma epithelial cells (A549) treated with or without resveratrol 

(RES), followed by different time points (from 0 h to 48 h) of diesel exhaust particles (DEP) 

exposure. SEM identified the elements and size of DEP and the morphology of cells treated 

with DEP and RES. Confocal microscope and AFM results confirmed that DEP destroyed 

cellular structure and the protective effect from RES. AFM topography showed that RES 

protected cells from DEP-induced damage to cytoskeleton and cell architectures. Also, AFM 

force-distance measurements indicated that RES treatments attenuated DEP-induced 

alterations in cell elasticity and surface adhesion force over DEP incubation time. RM 

monitored the changes of characteristic Raman peak intensities of DNA and protein over 

DEP exposure time for both RES and non-RES treated groups. The cytokine and chemokine 

changes quantified by Multiplex ELISA revealed that the inflammatory responses were 

enhanced with the increase in DEP exposure time, and that RES attenuated the expression 

levels of cytokine and chemokine. In addition, DEP and RES changed the plasma membrane 

potential (PMP) and cell cycle of A549 cells. This work demonstrated that significant 

biophysical and biochemical changes induced by DEP may be relevant to early pathological 
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changes induced by DEP damage, and that the pretreatment of RES protected cellular 

damage and increased cellular sensitivity to DEP exposure, revealing the importance of 

antioxidant on the prevention of respiratory diseases.   

4.2 INTRODUCTION 

A relationship between lung cancer incidence, cardiopulmonary deaths, respiratory 

and cardiovascular diseases for adults living in metropolitan areas and the level of particulate 

matter (PM) has been reported [1-4]. One specific type of PM significant to public health is 

the diesel exhaust particle (DEP), which is characterized by a carbonic nucleus, in which 

some 18,000 high-molecular-weight organic compounds are adsorbed [5]. The mechanisms 

of DEP causing adverse health effects are involved with reactive oxygen species (ROS) 

generation, oxidative stress and inflammation [6], and these repsonses can lead to DNA 

damage [7]. 

Resveratrol (trans-3, 4, 5-trihydroxystilbene, RES) is a phenolic natural component of 

Vitis vinifera L, mainly abundant in the skin of the grapes and found to be present in higher 

concentration in red than in white wines. This natural compound has been found to show 

many pharmacologic effects, including lipoprotein metabolism modulation, platelet 

antiaggregation, anti-inflammation, anti-fungal, cancer chemopreventive, and anticancer 

properties [8-11]. Studies have shown RES can effectively inhibit oxidative damage [12, 13] 

and has been shown to scavenge free radicals such as lipid hydroperoxyl, hydroxyl (•OH), 

and superoxide anion (O2
•-
) radicals [14].  

It is clinically important to study cellular responses when cells are exposed to DEP 

with or without RES because people are under the condition of taking up antioxidants by 

daily diet and being exposed to potential DEP-containing environment. The investigation of 
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DEP and RES on cellular biophysical and biochemical changes is needed to better 

understand the mechnisms of DEP and RES on mammalian cells. Atomic force microscopy 

(AFM) has proven to be a valuable tool to study single cells. With AFM measurement, 

cellular topography and mechanics properties (adhesion force and elasticity) can be measured 

and statistically analyzed [15-17], allowing researchers to better understand biophysical 

responses of mammalian cells under the different treatments. Previous applications of AFM 

in human lung carcinoma epithelial cells (A549) studies include elasticity modulus 

measurements [18, 19], recognition of surface heparin sulphate proteoglycan receptors [20], 

and photodynamic and sonodynamic effects [21, 22], demonstrating the feasibility and utility 

of AFM to detect cellular biophysical properties. Raman microspectroscopy (RM) is a 

spectroscopic technique that can be utilized to identify characteristic fingerprints of living 

cells based on chemical compositions and molecular structures [23]. When the light is 

scattered from a molecule, a small fraction of light (approximately 1 in 10
7
 photons) is 

scattered at lower optical frequencies than the frequency of the incident photons. Raman 

scattering can occur with a change in vibrational, rotational or electronic energy of a 

molecule, Thus RM is a sensitive method to measure compounds in biological system and 

can provide supplementary information on cellular composition. Previous applications of RM 

were mainly focused on physical and structural investigations; more recently, it has gained 

popularity in the field of cellular biology [24, 25], suggesting that RM can provide cellular 

biochemical information for analysis. 

The primary target tissue of inhaled DEP is lung epithelial cells, so this experiment 

was conducted by exposing A549 cells - as model of alveolar epithelial cells - to DEP and 

RES. The purpose of this work is to improve understanding of the cellular biomechanical and 
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biochemical changes and the connection with cellular responses by which DEP cause damage 

to the airway epithelium and the potential protection from RES to those DEP damaged cells. 

In order to address this, the effects of DEP and RES on cellular topograpy, cytoskeleton, 

biomechanics, biocomponents, inflamatory responses, plasma membrane potential and cell 

cycle of the human epithelial A549 cell line were investigated.  

4.3 HYPOTHESIS 

DEP could destroy cellular structure, and induce cellular inflammatory responses, 

while RES could alleviate DEP-induced destructive effect on cytoskeleton and enhance the 

inflammatory responses of cells.  

4.4 MATERIALS AND METHODS 

4.4.1 Preparation of human lung carcinoma epithelial A549 cells 

Human lung carcinoma A549 cells (ATCC, Manassas, VA, USA) were cultured in 

F-12k medium containing 10% fetal bovine serum (Thermo Fisher Scientific, Waltham, MA, 

USA) at 37 °C with 5% CO2 in a humidified atmosphere. Cells (approximately 10
6
 cells/mL) 

were passaged at 70-90% confluency and used for experiments. 

RES was dissolved in complete cell growth media, and sonicated for 3 min at room 

temperature. Then 10 µM RES culture media was added directly into A549 cells for 24 hours. 

DEP was generously given by Dr. M. Ian Gilmour of the National Health and Environmental 

Effects Research Laboratory, U.S. Environmental Protection Agency (Research Triangle 

Park, NC, USA). DEP was suspended in complete cell growth media and underwent vortex 

for 10 s, and subsequently sonicated for 20 min at room temperature. Then 400 µg/mL DEP 

suspension was added 50 µL directly into 2 mL culture media. One group of cells was treated 



94 
 

 
 

with the DEP suspension for 0 hour (h) (no DEP treatment), 4 h, 8 h, 16 h, 24 h and 48 h, 

respectively. And the other group of cells was treated with RES for 24 hours in advance and 

then added the DEP suspension for 0 h, 4 h, 8 h, 16 h, 24 h and 48 h, respectively, at a final 

concentration of 10 µg/mL DEP. DEP were characterized by scanning electron microscopy 

(SEM) and energy-dispersive X-ray spectra (EDX), which was recorded by FEI Quanta FEG 

650 equipped with a FEG source (FEI Quanta FEG 650, FEI Company, Hillsboro, OR, 

USA). Cell samples of different treatments were stained for cytoskeletal (Alexa Flour® 488 

phalloidin) and nuclear architecture (DAPI) according to manufacturer’s protocol (Thermo 

Fisher Scientific), and were imaged by an LSM 710 confocal laser scanning microscopy 

(Carl Zeiss, Thornwood, NY, USA). 

4.4.2 Raman Microspectroscopy 

To minimize background in RM, a density of 1x10
5
 cells per 2 mL of media was 

seeded on a sterilized magnesium fluoride (MgF2) optical window (United Crystals Co., Port 

Washington, NY). Raman spectra were acquired with a Renishaw inVia Confocal Raman 

System coupled a Leica microscope (Leica DMLM, Leica Microsystems, Buffalo Grove, IL, 

USA) with a 63  water immersion objective. The Raman system (Renishaw, Wotton-under-

Edge, Gloucestershire, UK) was equipped with a thermoelectrically cooled Renishaw 

RenCam NIR enhanced charge-coupled device (CCD) detector and a 785 nm near-IR laser 

was employed as excitation source. The Raman microscope was equipped with a motorized 

XYZ positioning stage (Prior Scientific, Cambridge, UK) with integrated position sensors on 

the X and Y axes with a 0.1 m displacement capacity. Instrument control and data 

collection was performed with Renishaw WiRE 3.3 software. The confocal configuration 

placed a physical block or “pinhole” in the laser path and reduced the illuminated laser area 
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to a ~3 × 3 m laser spot. Additional high confocality software settings allowed largely 

improved signal-to-noise in the final data. The spectrometer was calibrated with silicon at a 

static spectrum centered at 520.5 cm
-1

 for 1 s. Cells were cultured on 13 mm MgF2 with ~70% 

confluency, then placed in a 50 mm glass Petri dish lined with a reflective metal substrate, 

with Earle’s Balanced Salt Solutions (EBSS) as the imaging medium. Spectra were collected 

in a static mode for two accumulations at 20 s laser exposure over a wavenumber range of 

600  1800 cm
-1

 for cells and culture medium at the same focal plane [26]. If necessary, 

Cosmic Ray Removal (CRR) was performed. Four spectra per location and three locations 

for each cell were imaged (16 total spectra per location): nucleus, cytoplasm and cell 

membrane. The diffraction limited optical resolution for the 63  objective was calculated by 

the Abbe equation [23]. In this experiment, 48 spectra (4 replicates per location × 3 locations 

per cells × 4 individual cells) for each time treatment point were collected. Raman spectra are 

affected by the physical properties of the samples and background noise, so it is necessary to 

perform mathematical processes to reduce systematic noise, and enhance resolution of 

chemical compositions from target cells. Firstly, Raman spectra were smoothed by moving 

average smoothing to filter high-frequency noise. Then, second derivative of smoothed 

spectra was performed to eliminate baseline drifts and background interference. This method 

of data processing helps to distinguish overlapping peaks and improve resolution and 

sensitivity of spectra [27]. 

4.4.3 Measurement of cytokines and chemokines secretion by multiplex ELISA 

To analyze the secretion of cytokines and chemokines, cell supernatants with 

different treatments were collected and centrifuged at 250 × g for 5 min to remove cells and 

then centrifuged at 2500 × g for 5 minutes to remove DEP prior to storage at -80°C.  The 
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samples were tested as single batches on Quansys Biosciences’ (Logan, UT, USA) Q-Plex 

Array
TM

 kits for human cytokines and chemokines. The data were reported as mean ± SD 

(standard deviation of the mean), and the statistical difference was analyzed by one-way 

ANOVA.  

4.4.4 Flow Cytometry  

Flow cytometry was performed with BD FACSAria II (BD Biosciences, San Jose, 

CA, USA), and data analysis was conducted by FACSDiva version 6.1.3 (BD Biosciences).  

Protocol of Plasma membrane potential. The dye bis-(1, 3-Dibarbituric acid)-

trimethine oxanol (DiBAC4(3)) (Ex/Em: 493/516 nm; Enzo Life Sciences, Farmingdale, NY, 

USA) was applied to detect the alterations in plasma membrane potential of A549 in the 

absence and presence of 10 µM RES and 10 µg/mL DEP. DiBAC4(3) serves as an indicator 

for the changes in membrane potential. An increase in fluorescence intensity indicates 

depolarization of cells, while a decrease in fluorescence intensity is indicative of cell 

hyperpolarization. The harvested DEP-treated cells were incubated in 5 µM dye-PBS 

solution in 37
o
C incubator with 5% CO2 for 30 min. Then stained cells were immediately 

tested by flow cytometry. 

Protocol of Cell cycle. The floating and adherent cells were collected, washed twice 

with PBS before centrifuged. The pellet was fixed in 70% (v/v) ethanol for 24 h at 4 °C. The 

cells were washed once with PBS and resuspended in cold propidium iodide (PI; 50 µg/ml) 

containing RNase A (0.1 mg/mL) in PBS (pH 7.4) for 30 min in the dark. Cellular DNA 

content was analyzed by flow cytometry. Forward light scatter characteristics were used to 

exclude cell debris from the analysis. At least 10,000 cells were used for each analysis.  
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4.4.5 Atomic Force Microscopy  

The cells were seeded on poly-L-lysine coated glass bottom Petri dishes (MatTek 

Corp., Ashland, MA, USA) at a density of 1x10
5
 cells per 2 mL of media. Cells with 

different treatments were then measured by AFM. For AFM measurements, the in situ 

approach was used to visualize cell topography and measure the mechanical properties such 

as adhesion force and Young’s modulus; that is, cells grown on poly-D-lysine-coated glass 

bottom Petri dishes were directly transferred onto AFM scanner stage for measurements 

without any pretreatment, and whole measurements were conducted in culture media at room 

temperature within 2 h; the acquired imaging and data thus reflected the morphology and 

physiological status of the observed living cells.  

The contact mode Picoplus AFM controlled by software PicoView 1.14 (Agilent 

Technologies, Santa Clara, CA, USA) was applied to perform measurements directly in cell 

culture media. The spring constant of the cantilever was calibrated at 0.06 ~ 0.11 N/m using 

the Thermal K Calibration Kit (Agilent Technologies). The length of tip with pyramid shape 

is approximately 3 µm, and the curvature radius of the Si3N4 tip is around 10 nm. Meanwhile, 

the approach/retract velocity applied throughout the experiments of deflection (nm) vs. 

distance (nm) curve acquirement was 6 µm/s. The values for the adhesion force (the 

detachment force between bare AFM tip and cell surface in the process of AFM cantilever 

retracting, which reflects alteration of cell membrane adhesion behavior/property or 

denaturation of membrane surface adhesion molecules) were extracted from curves of 

deflection (nm) vs. distance (nm) via the Scanning Probe Image Processor (SPIP) software 

(Image Metrology, Hørsholm, Denmark). Over 10 cells were measured, collecting at least 50 

force curves of each individual cell. By applying the AFM tip to the cell surface, the 
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elasticity modulus of cells can be evaluated based on the slope of compliance portion of the 

deflection-distance curves. To analyze alterations in cell elasticity, Young’s modulus was 

calculated according to the formula [15, 28, 29]: 
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Where, Ecell, cellular Young’s modulus; F, loading force; ηcell, Poisson ratio (assuming 0.5); 

Δz, indentation; 𝜃 is the tip half opening angle that equals to 36
o
. 

Young’s modulus and adhesion force were calculated based on hundreds of 

deflection-distance curves acquired for each group. Furthermore, to assess statistically 

significant differences in biomechanical properties including adhesion force and cellular 

elasticity between the two groups, the data were reported as mean ± SE (standard error of the 

mean), and the statistical difference was analyzed by a Student’s t-test. The data used to 

graph histogram were measured from the whole cell body, and the histograms were plotted 

by OriginPro 9.0 (OriginLab Corp., Northampton, MA, USA).  

 

4.5 RESULTS  

4.5.1 Characterization of DEP by SEM 

From the EDX spectrum (Figure 4.1A), the DEPs used in this study consisted of non-

metal element, metal and metal oxide compounds [30]. DEP size in culture medium ranged 

from nanometers to as large as micrometers (Figure 4.1A (inset)), which is similar to 

previous report [31]. 
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Figure 4.1(B-D) illustrates the representative SEM images of A549 cells without 

treatment, treated with 24 h DEP, and treated with 24 h RES first and then 24 h DEP (black 

arrow points to DEP), respectively. It was found that after 24 h DEP exposure (Figure 4.1C) 

the filaments of the cells decreased compared to control (Figure 4.1B). However, the group 

of cells treated with 24 h RES first and followed by 24 h DEP exposure (Figure 4.1D) 

exhibited more well-defined filaments than that of 24 h DEP group (Figure 4.1C), suggesting 

that RES may play an important role in protecting cellular structure.  

 

 

Figure 4.1 Energy-dispersive X-ray spectroscopy of DEP (A) used in this study (inset is the 

representative SEM image of DEP). Representative SEM images of A549 cells without 

treatment (B), treated with 24 h DEP (C) and treated with 24 h RES and 24 h DEP (D) (black 

arrow points to DEP).  
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4.5.2 Morphological comparison by confocal laser scanning microscopy 

To further detect cytoskeletal alterations of A549 treated with DEP for different 

exposure times before and after RES pre-treatment, laser scanning confocal microscopy was 

applied to visualize cellular structure, as shown in Figure 4.2 (green fluorescence). DEP can 

be easily found in DIC images (black dots). It was observed that cytoskeleton was gradually 

obscure after 16 h DEP exposure in non-RES group (Figure 4.2A). Additionally, cell shape 

and cell architectures especially lamellipodia structures became obviously contracted over 

longer DEP exposure time. In contrast, cytoskeletal structures arranged in parallel can be 

readily seen in RES group (Figure 4.2B) under similar DEP exposure time (e.g., 16 h 

exposure timepoint), and the RES group possessed more cellular filamentous cytoskeleton or 

filopodia. These observations revealed the damage effect from DEP on cellular structures and 

protective effect of RES on cytoskeleton, confirming the findings from AFM results below.  

4.5.3 RES attenuated DEP-induced biomechanical alterations of A549 cells by AFM 

AFM was applied to imaging cellular topography and detect cell biomechanics for the 

cells under DEP and/or RES exposures, as shown in Figure 4.3. Figure 4.3(A-B) displayed 

cellular deflection topography images from different treatment times (from 4 h to 48 h) and 

the corresponding 3D view images (row 1 and row 2), respectively. Morphological changes 

due to DEP exposure were found in Figure 4.3A, and it was observed that cell size gradually 

reduced over DEP exposure time, compared to control cells. However, the RES treated group 

(Figure 4.3B) exhibited well-defined cytoskeleton and more cellular surrounding structures 

in comparison with non-RES treated group under similar DEP exposure time. For example, 

after 8 h exposure, RES/DEP treatment group presented more flat and filamentous 
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cytoskeleton than non-RES groups, suggesting that the presence of RES may maintain 

cellular morphology even under DEP exposure.  

 

 

Figure 4.2 Differential interference contrast (DIC) images (row 1 and row 3) and 

corresponding fluorescence (FL) confocal images (row 2 and row 4) of A549 cells treated 

with DEP for different time and treated with RES and DEP for different time (scale bar: 10 

µm; DEP: black spot in DIC images; nucleus: DAPI, blue; cytoskeleton: fluorescein 

phalloidin, green). 

 

After observing the cytoskeletal changes, it was of interest to investigate the 

biomechanical properties of A549 in the absence and presence of RES, which would offer 

new insights into assessments of DEP cytotoxicity and RES role in protecting cells from DEP 

induced damage. Therefore, AFM was also used to quantify mechanical property changes 
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(including Young’s modulus and membrane adhesion force) of A549 cells in culture medium, 

as shown in Figure 4.3(C-D). Furthermore, a statistical analysis of alterations of adhesion 

force and Young’s modulus (cell elasticity) obtained from multiple cells was conducted. 

Both histograms of Young’s modulus (Figure 4.3C) and adhesion force (Figure 4.3D) 

fluctuated over DEP exposure time in both non-RES and RES groups, and they both had 

peak values at 24 h DEP (19.16 kPa for non-RES group; 17.17 kPa for RES group). In 

addition, it was observed that Young’s modulus in presence RES increased slightly over the 

exposure time except 16 h and 24 h (which slight decrease). In general, the presence of RES 

lead to the slight increase in adhesion force across all exposure time (Figure 4.3D), indicating 

that RES made cell tougher and difficult to migrate. For example, at 0 h DEP (control group) 

the value of Young’s modulus and adhesion force for RES group was 1.3-fold and 1.2-fold 

than those of non-RES group, respectively; while at 48 h DEP treatment, the value of 

Young’s modulus and adhesion force for RES group was 1.2-fold and 1.2-fold than those of 

non-RES group, respectively. The AFM results indicated that DEP damage lead to the 

changes of cytoskeleton and biomechanical properties, and RES may play a protective role in 

cellular structures from the DEP induced damage. 

4.5.4 RES affected DEP-induced biochemical changes of A549 cells by Raman 

microspectroscopy 

Raman representative bright-field images and the corresponding spectra of four time 

points (0 h, 4 h, 16 h and 48 h DEP exposure) with or without RES treatments were shown in 

Figure 4.4(A-B). Raman bright-field images exhibited the morphologic changes of A549 

cells (labelled with white dash line) treated with different time points of DEP. Three 

averaged spectra (under each bright-field image) correspond to three locations on a single 
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cell were presented in color: nucleus (black), cytoplasm (red), and cell membrane (blue). 

Each spectrum was the averaged spectrum from four randomly selected cells. It was observed 

that the spectra of non-RES group and RES group are similar at 0 h and 48 h DEP. Both 

groups exhibited well-define spectral peaks at 0 h DEP, while these characteristic peaks 

disappeared after 48 h DEP treatment, indicating the destructive effect from DEP. However, 

it was found that RES group displayed more spectral peaks than non-RES group at 4 h and 

16 h DEP incubation, suggesting that RES may protect cellular biocomposition against DEP. 

To further compare these spectral differences, characteristic peaks were extracted for analysis.  

A representative Raman spectrum of A549 cells without treatment is shown in Figure 

4.4C. Two characteristic peaks at 786 cm
−1

 (DNA and phosphodiester) and 1660 cm
−1

 

(Amide I) are selected to compare the spectral changes of cellular biopolymers due to DEP 

and RES exposure, and the change in peak intensities (normalized to the highest peak in the 

spectrum) from three cell locations is displayed in Figure 4.4(D-F). It was found that these 

peak intensities at nucleus, cytoplasm and cell membrane decreased with the increase of DEP 

exposure time. The peak intensity decrease of 786 cm
-1

 at nucleus (Figure 4.4D) indicated 

that extended DEP exposure could damage cellular DNA. Also, DEP could suppress the 

presence of Amide I at cytoplasm and membrane, as seen from Figure 4.4(E-F). In addition, 

RES treatment attenuated the decrease of the DEP-induced peak intensities, suggesting RES 

affects the cellular biocomponents of exposed cells. 
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Figure 4.3 Representative AFM deflection images and corresponding 3-D images of A549 

treated with 10 µg/mL DEP (A) and treated with 10 µM RES and 10 µg/mL DEP (B) for 

different times. Histograms of Young’s modulus (C) and adhesion force (D) of A549 cells 

treated with different groups. The data of histograms were obtained from multiple individual 

cells (Error bars are standard deviation of the mean; N ≥ 10, **p < 0.01). 
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Figure 4.4 Raman bright-field images and spectra of A549 cells with 0 h, 4 h, 16 h and 48 h 

DEP treatment (A) and treated with 24 h RES in advance, followed by 0 h, 4 h, 16 h and 48 h 

DEP treatment (B). In row 1 of (A) and (B) white dash line illustrates cellular morphology; 

black arrow points to nucleus; red arrow points to cytoplasm; blue arrow points to 

membrane. Row 2 of (A) and (B) is the corresponding confocal Raman spectra at different 

cellular locations as assigned by different color: nucleus (black); cytoplasm (red) and cell 

membrane (blue). A representative Raman spectrum of A549 cells without treatment (C). 

Raman peak intensity changes for nucleus (D), cytoplasm (E) and membrane (F) at Raman 

peaks 786 and 1660 cm
−1

 (Error bars of (D–F) are standard deviation of the mean; N ≥ 4, **p 

< 0.01).  
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4.5.5 Cytokine and Chemokine analysis of DEP-induced A549 cells before and after 

RES treatment 

Seven human cytokines and chemokines (IL-6, IL-8, MCP-1, RANTES, GROα, GM-

CSF and Eotaxin) assayed by multiplex ELISA were selected to compare the inflammatory 

changes among different treatments, as shown in Figure 4.5. It was noticed that the increase 

of DEP exposure time resulted in the elevated inflammatory responses, which were reflected 

by the increasing level of some important cytokines and chemokines secretion. As an 

example, from to 0 h DEP to 48 h DEP exposure,  it led to the expression of IL-6, IL-8, 

MCP-1, RANTES, GROα, GM-CSF and Eotaxin increased 44.4%, 74.3%, 62.7%, 43.2%, 

21.5%, 49.7% and 116.7%, respectively. As comparison, it was found that RES treatment 

increased the secretion of cytokines and chemokines of DEP-induced cells (even for control 

group), especially for IL-6, IL-8, MCP-1, RANTES and GROα (Figure 4.5(A-E)). In control 

cells (0 h DEP), RES treatment exhibited an increase of 4.3-fold for IL-6, 3.3-fold for IL-8, 

2.5-fold for MCP-1, 3.5-fold for RANTES, 2.0-fold for GROα, 1.1-fold for GM-CSF, and 

1.7-fold for Eotaxin than those of non-RES treatment.  

Overall, the cytokines and chemokines levels for A549 cells were found to be 

elevated over DEP exposure time. Compared to non-DEP treated groups, A549 released 

higher levels of cytokines and chemokines in presence of RES. This observation suggested 

that the presence of RES seems to make the DEP damaged cells become “worse” with 

enhanced inflammatory responses, and it is possible that RES may play a different role in the 

regulation of cytokines/chemokines levels than the regulation of cell biomechanics over DEP 

exposure.   
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Figure 4.5 RES induced cytokines and chemokines release from A549 cells. Histograms of 

IL-6, IL-8, MCP-1, RANTES, GROα, GM-CSF and Eotaxin (A-G) showed mean values of 

three independent experiments of both types of cells. Cells were exposed to 10 µM RES for 

24 h and 10 µg/mL DEP for 0 h (no DEP treatment), 4 h, 8 h, 16 h, 24 h and 48 h, or only 

treated by 10 µg/mL DEP 0 h (no DEP treatment), 4 h, 8 h, 16 h, 24 h and 48 h for before 

measurement (Error bars are standard deviation of the mean; N = 3, **p < 0.01).  
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4.5.6 Plasma membrane potential and cell cycle analysis   

To further evaluate the biophysical responses, flow cytometry was applied to 

investigate the effect of RES on plasma membrane potential (PMP) and cell cycle of DEP 

exposed A549 cells (Figure 4.6). These histograms of statistical analysis were based on three 

independent experiments of just DEP treated cells and RES combined with DEP treated cells. 

In PMP measurement, the fluorescence of the dye DiBAC4(3) reflects the level of 

PMP. In depolarized cells, DiBAC4(3) can easily bind to intracellular proteins or membrane 

to exhibit higher fluorescence intensity, which corresponds to high PMP. Conversely, a 

decrease in fluorescence (low PMP) is indicative of cell hyperpolarization. The PMP of both 

cells with and without RES groups fluctuated over DEP exposure time (Figure 4.6A). Non-

RES group (DEP only) showed the increasing trend up to 8 h at which PMP reached the 

largest (2.0-fold of 0 h DEP), and then decreased gradually till reached stable at 24 h through 

48 h exposure time (67.9% of 0 h DEP) . However, the presence of RES maintained the PMP 

stable in first 8 h of DEP exposure, then decreased till 16 h; slightly increased PMP (~9% of 

0 h DEP) after 24 h DEP exposure was then observed. It was noticed that the PMP value of 

non-RES group was 2.0-fold at 8 h DEP and 1.9-fold at 16 h DEP than those of 

corresponding RES group. However, the PMP values of non-RES group at 24 h and 48 h 

DEP became 61.3% and 61.1% of those corresponding RES group. The fluctuation of PMP 

revealed that DEP can lead to cellular depolarization and hyperpolarization at different times 

of DEP exposure, and RES can decrease DEP-induced PMP over the first 16 h of DEP 

exposure, followed by the increase in PMP from 24 h to 48 h. 
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Figure 4.6 Changes of plasma membrane potential (A) (control group was normalized as 1) 

and cell cycle (B) of A549 cells treated with 10 µg/mL DEP and treated with 10 µM RES 

and 10 µg/mL DEP assayed by flow cytometry. Results represent the means of three separate 

experiments, and error bars represent the standard error of the mean. All experimental groups 

significantly differs from control group (Error bars are standard deviation of the mean; N = 3, 

**p < 0.01). 

 

The regulation of the cell cycle plays an important role in cell survival because it can 

repair genetic damage and prevent uncontrolled cell division. To study the effect from RES 

on the cell cycle progression of A549 cells, the cells were stained with PI and then flow 

cytometry was performed on cells incubated with 10 μM RES for 24 h in advance then 

treated without DEP or treated with 10 µg/mL DEP for 4 h, 8 h, 16 h, 24 h and 48 h (Figure 

4.6B). It was observed that most of cells from non-RES and RES groups were resting cells 

(over 80% of cells for all treatments in G1 stage except cells treated with RES and 16 h DEP 

(79% of cells in G1)), and G2 stage had the least percentage of cells for all treatments. Cells 

treated with RES and 16 h DEP were significantly increased in the S phase. The percentages 
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of cells in G2 stage for both non-RES and RES groups decreased over DEP exposure time 

except the group of RES and 16 h DEP. In non-RES group the cells, G2 stage percentage 

decreased 75.9%, 60.2%, 81.4%, 42.4% and 50.9% at 4 h, 8 h, 16 h, 24 h and 48 h DEP, 

compared to control group, respectively. Similarly, compared to control group, G2 stage 

percentages in presence of RES also decreased 78.1%, 74.5%, 61.6%, 31.7% and 32.6% at 4 

h, 8 h, 16 h, 24 h and 48 h DEP respectively. In comparison, it was found that the non-RES 

group had 1.6-fold, 1.6-fold, 1.3-fold, 2.1-fold, 2.2-fold and 2.6-fold more cells in G2 than 

the RES group at 0 h, 4 h, 8 h, 16 h, 24 h and 48 h DEP, respectively. These cell cycle results 

indicated that most of A549 cells from both non-RES and RES groups were arrested in the 

G1 phase of cell cycle over DEP exposure time. The percentages of cells in G2 phase 

decreased over DEP exposure time for both non-RES and RES groups, and RES group had 

less percentage of G2 stage cells than that of non-RES group at each DEP exposure time 

point.        

4.6 DISCUSSION 

Cytotoxicity of DEP evokes increasing concerns with adverse effects on human 

health, especially on the respiratory system. Antioxidant is an effective approach for 

protection against environmental factor-induced damage. RES has been well known for its 

antioxidant role and protective effects against oxidative damage [32]. Previous approaches to 

study cytotoxicity associated with DEP exposure and test the protective ability of RES were 

based mainly on traditional molecular biology methods (e.g., Microarray; microRNA; 

western blotting). However, very little information from these traditional methods can be 

provided with cell biophysical properties (cytoskeleton, cell architectures and cell 

biomechanics) and biochemical properties (biochemical components, cell surface 
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biomacromolecules/biopolymers), especially analysis of these properties at the single living 

cell level. Thus, investigations of such biophysical and biochemical information using our 

proposed instrument techniques would further elucidate the role of RES in potential 

protection of DEP induced cell damage.  

Inspired by this motivation, first SEM was applied to confirm the localization of DEP 

on A549 cells and distinguish their structural differences (Figure 4.1). It was noticed that the 

size of DEP was not uniform and distributed randomly around the cells. There were obvious 

morphological differences between DEP group and RES/DEP combined treatment group: the 

later displayed more filaments and well-defined surrounding cellular structures. Confocal 

fluorescence microscopy images (Figure 4.2) showed that changes of cytoskeletal 

organization induced by DEP can be distinguished. The cytoskeletal structures of DEP 

treated cells became obscure and decreasing F-actin filaments after 8 h DEP exposure, 

implying denaturation of membrane molecules occurred at these time points, whereas cells of 

combined RES and DEP treatment group possessed a clear and intact cytoskeleton structures 

in the first 16 h.  

Furthermore, AFM was utilized to detect biophysical changes at single cell level in 

the absence and presence of RES, and besides visualization of possible rearrangement and 

even destruction of cytoskeleton induced by DEP. Observations of membrane cytoskeleton 

indicated that DEP treatment induced significant alterations in cell architectures after 16 h 

treatment, and the topographical images revealed that the cell lamellipodia structures became 

obviously contracted over DEP exposure time. However, the group treated with combined 

RES/DEP possessed more cellular filamentous cytoskeleton or filopodia than the group 

treated with DEP only at the same DEP treatment duration (e.g., after 8 h DEP exposure), 
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and the topography images of combined RES with DEP group were similar to non-treatment 

group (Figure 4.3). Such observations and analyses revealed that 10 µg/ml of DEP 

intervention could induce obvious changes in cell membrane cytoskeleton and cell 

topography, and 10 µM RES of 24 h incubation (before DEP exposure) could prevent the 

structural damage from DEP. In addition, cellular biomechanics (Young’s modulus and 

adhesion force) were generally increased after treated with RES at most of DEP exposure 

timepoints, compared to non-RES group. It was reported that cancer cells normally have 

lower cellular biomechanics (cell stiffness and adhesion) than that of their normal 

counterparts, and these biomechanical differences can be indicative of early diagnosis of 

cancers [33, 34]. When first treated with RES before DEP exposure, the biomechanical 

properties of A549 cells were larger than these of non-RES group, which means RES treated 

A549 cells became less cancerous and would be more difficult to migrate. These 

observations implied that RES plays a significant role in the regulation of cellular 

cytoskeleton and prevention of cancer migration. Characterizations of these biophysical 

properties demonstrated the competence and utility of AFM as a force-sensitive 

nanotechnique in the study of DEP induced cellular damage and the potential protective 

effect of RES. Our work here supports the conclusion that cell nanomechanics [17] such as 

elasticity [35] could be a promising “biomarker” to reveal cellular phenotypic events [36] 

associated with cytoskeleton arrangement [15] and the decomposition of membrane surface 

molecules.  

To assess how RES treatment affects the biochemical composition of A549 cells over 

DEP exposure time, RM was then used to evaluate spectral changes that directly reflect the 

biochemical alterations of individual A549 cell under various DEP treatment times (Figure 
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4.4). The Raman spectra from three locations (cell nucleus, cytoplasm, cell membrane) were 

selected to compare spectral changes in some characteristic peak intensities, as a function of 

DEP exposure time. It was noticed that Raman spectra at each location were distinctive with 

reproducible band differences. Spectra of non-DEP group (Ctrl and RES in Figure 4.4) 

illustrated well-defined Raman bands. Peak assignments of RM spectra of A549 cells have 

been given previously [37-41]. For RM spectra of cells treated with only DEP and DEP 

combined with RES, these characteristic peaks were significantly suppressed in all five DEP 

exposure timepoints (4, 8, 16, 24 and 48 h), suggesting DEP had destructed cellular surface 

structures. Statistical analysis of Raman characteristic peaks at 786 cm
-1

 (DNA) at nucleus 

and 1660 cm
-1

 (protein) at cytoplasm and membrane revealed that biochemical changes were 

time-dependent (Figure 4.4(D-F)). The gradual decrease of peak intensity at 786 cm
-1

 and 

1660 cm
-1

 clearly indicated that DEP can damage cellular DNA and protein, which is 

consistent with previous studies that DEP exposure leads to DNA damage [42, 43]. 

Meantime, the DNA and protein decrease induced by DEP were attenuated for RES-treated 

cells, indicating A549 cells became more sensitive to DEP exposure after 24 h RES pre-

treatment. It was reported that RES has the functions of chemopreventive and 

chemotherapeutic for lung cancer by inhibiting cancer cells growth and inducing 

considerable physiologic alterations (apoptosis, cell cycle, cell proliferation, etc.) [44, 45], 

which may account for the biophysical and biochemical differences between RES group and 

no-RES group. Our previous study found that normal cells are more sensitive to DEP 

exposure [46], suggesting RES treatment may turn cancer cells (A549) to less malignant 

cancer cells. Additionally, the higher expression of pro-inflammatory responses 

(cytokines/chemokines) in Figure 4.5 confirmed that RES treated cancer cells actually led to 
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more secretion of typical cytokines/chemokines, especially IL-6, IL-8, MCP-1, RANTES and 

GROα. Higher levels of such cytokines and chemokines also implied greater protein changes 

in cells, which is supported by the RM results which showed that RES treated cells had larger 

change of characteristic protein peak intensities than those of non-RES treatment. 

It was reported that among normal cells cellular depolarization and hyperpolarization 

can induce a decrease and an increase in cellular stiffness respectively [47, 48]. From AFM 

measurements (Figure 4.3.(C-D)), it was noticed that cellular Young’s modulus at 8 h and 24 

h DEP exposure was the least and largest within DEP treated groups, which can match with 

the largest and the least value of PMP at 8 h and 24 h DEP exposure (Figure 4.6(A)). 

However, it was difficult to find similar relationship in other groups. Although the changes of 

PMP measured by flow cytometry cannot fully match with the trend of cellular Young’s 

modulus measured by AFM, our measurements still provide complimentary cell 

biomechanics information (cell elasticity) in addition to other biophysical properties (PMP). 

In Figure 4.6B cell cycles of both RES group and non-RES group arrest in the G1 phase, 

which can delay cell proliferation and migration. This observation is different from previous 

report that RES can cause an arrest cells in S phase of cell cycle [49], and this difference may 

come from different RES treatment conditions (time, concentration and so on), and the 

chemical structure difference between RES and RES analogue. 

In summary, SEM, confocal, and AFM results confirmed the destructive effect of 

DEP on cellular structures and the protective role of RES in cytoskeleton. We successfully 

observed the biophysical and biochemical differences of cells under different DEP exposure 

duration with and without RES. DEP treatments can change cell stiffness and adhesion force, 

which is beneficial for the study of respiratory diseases at sub-cellular scale. RES can 
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strengthen cellular biomechanical properties, inhibiting cellar metastasis and making cell 

more sensitive to DEP. Characteristic Raman peak intensity changes revealed that DEP can 

decrease DNA and protein, and the presence of RES attenuated the decease of DNA and 

protein induced by DEP. Cytokines and chemokines analysis indicated that RES pre-

treatment can enhance the DEP-induced inflammatory responses of exposed cells, making 

cells more sensitive to DEP by secreting higher level of cytokines and chemokines. 

Combined RM and AFM measurements allowed us to quantitatively assess biochemical and 

biomechanical changes due to DEP-induced cytotoxicity and the effect from RES at single 

cell level. These findings indicated that DEP exposure induces significant biophysical and 

biochemical alterations that are relevant to early pathological development. Meantime, RES 

plays a protective role in DEP-induced lung cell structure damage. This work evaluates 

cellular biomechanical and biochemical changes, and provides an insightful information on 

the interaction between environmental pollution and antioxidant on a single cell, which is 

important for the research area of respiratory diseases.   
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CHAPTER 5 

IN-VITRO BIOMECHANICAL PROPERTIES, FLUORESCENCE IMAGING, SURFACE-

ENHANCED RAMAN SPECTROSCOPY, AND PHOTOTHERMAL THERAPY 

EVALUATION OF LUMINESCENT FUNCTIONALIZED CaMoO4:Eu@Au HYBRID 

NANORODS ON HUMAN LUNG ADENOCARCINOMA EPITHELIAL CELLS 

5.1 ABSTRACT  

Highly dispersible Eu
3+

-doped CaMoO4@Au-nanorod hybrid nanoparticles (HNPs) 

exhibit optical properties, such as plasmon resonances in the near-infrared region ~790 nm 

and luminescence 615 nm, offering multimodal capabilities: fluorescence imaging, surface-

enhanced Raman spectroscopy (SERS) detection and photothermal therapy (PTT). HNPs 

were conjugated with a Raman reporter (4-mercaptobenzoic acid), showing desired SERS 

signal (enhancement factor ~4.7610
5
). The HNPs have heat conversion efficiency 25.6%, 

and hyperthermia temperature ~42 °C could be achieved by adjusting either concentration of 

HNPs, or laser power, or irradiation time. HNPs were modified with antibody specific to 

cancer biomarker epidermal growth factor receptor (EGFR), then applied to human lung 

cancer (A549) and mouse hepatocyte cells (AML12), and in-vitro PTT effect was studied. In 

addition, the biomechanical properties of A549 cells were quantified using atomic force 

microscopy. Together, this study shows the potential applications of these HNPs in 

fluorescence imaging, SERS detection, and PTT functionalities with good photostability and 

biocompatibility. 
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5.2 INTRODUCTION 

Development of novel nanostructured materials with desired properties of 

luminescent, surface-enhanced Raman spectroscopy (SERS) and photothermal therapy (PTT) 

have drawn significant interest in clinical diagnosis and therapeutic monitoring in biological 

systems [1-5]. Ultrasensitive and non-invasive detection of specific bioanalytes in living cells 

can be achieved by SERS through increasing the weak inelastic scattering signal into a 

structurally sensitive probe [6]. To realize this SERS function with good stability and 

biocompatibility, the gold nanorods (GNRs) are conjugated with Raman reporter molecules 

followed by protective polymers (e.g., PEG) [7]. PTT reagents such as GNRs absorb near-

infrared (NIR) photons which can be converted into heat energy (hyperthermia temperature 

~42 °C) to destroy the cancer cells [8]. Hybrid nanoparticles (HNPs) exhibit fluorescence 

emission (~615 nm), good photothermal stability, and high biocompatibility are the potential 

good candidates for cancer therapy. Also, GNRs have high tissue penetration in the NIR 

region (700–850 nm). Recently, PTT agents such as GNRs [9], Au nanoshells [10], zinc 

ferrite spinel reduced graphene oxide (ZnFe2O4–rGO) [11], palladium nanostructures [12], 

CuS nanoparticles (NPs) [13], Cu9S5 nanocrystals [14], and other inorganic NPs have been 

intensively investigated. However, none of these nanostructured materials have fluorescence 

properties. It is also known that the proximity of GNRs on the surface of luminescent NPs 

(ex. lanthanide ion doped NPs) significantly enhances the luminescence efficiency [15]. 

HNPs were synthesized and can be used as prospective materials for killing tumor cells and 

diagnostic imaging applications.  

The cellular biomechanics (Young’s modulus and adhesion) can be considered as an 

indicator of early diagnosis of cancers, where cancer cells have lower Young’s modulus than 
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their normal counterparts [16]. When the NPs interact with cells, the proteins present in the 

cell membrane bind to the surface of NPs and form a coating known as the protein corona. 

Rapid corona formation affects NPs uptake and the death of endothelial cell at an early stage 

[17]. Although many NPs for therapeutic applications have been studied, a little is known 

about the morphological and biomechanical changes of cancer cells induced by NPs. 

Moreover, attaining specific targeting of NPs in tumor site is particularly important. It can be 

achieved by conjugating antibodies (Ab) to the HNPs. Epidermal growth factor receptor 

(EGFR), one of the cell surface biomarkers for targeting in Ab-based cancer therapy, is a 

transmembrane receptor protein embedded in the plasma membrane of many types of cancer 

cells. Overexpression of EGFR (>50%) is observed in lung cancer patients [18, 19].  Recent 

studies have shown that NPs labelled with anti-EGFR Ab could effectively kill the target 

cancer cells when irradiated by laser light with a wavelength around the nanoparticle 

absorption peak [20, 21].
 
 

Herein, we demonstrate the potential use of CaMoO4:Eu@GNR (CMO:Eu@GNR) 

HNPs as multi-functional probes for optical imaging, and SERS and as a PTT agent. The 

specificity of anti-EGFR Ab coated CMO:Eu@GNR is used for the enabled targeting of 

EGFR over-expressing human lung cancer cells (A549 cell). Also, the effect of 

CMO:Eu@GNR on cellular biomechanics and biocompatibility of the cancer cells were 

studied. The SERS enhancement factor (EF), photothermal responses and efficiency of light-

to-heat conversion of the CMO:Eu@GNR were evaluated. Also, we investigated the 

influence of HNPs on the PTT of A549, AML12, and white blood cells (WBC) cells 

illuminated at an 808 nm laser for in-vitro cancer killing study.  
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5.3 HYPOTHESIS 

The synthesized NPs could specifically image, detect and kill A549 cells by the 

mechanism of antibody-receptor binding. 

5.4 MATERIALS AND METHODS 

5.4.1 Materials   

Calcium nitrate tetrahydrate, (Ca(NO3)2.4H2O, 99%, Alfa Aesar, Ward Hill, MA, 

USA), ammonium molybdate (H8MoN2O4, 99.99%, Alfa Aesar), europium(III) nitrate 

hydrate (Eu(NO3)3 · xH2O, 99.99%, Sigma Aldrich), oleic acid (Alfa Aesar), 1-octadecene 

(95%, Alfa Aesar), NaOH pellet (Merck & Co., Kenilworth, NJ, USA), hydrochloric acid 

(HCl, Sigma-Aldrich, St. Louis, MO, USA), HS-PEG-COOH (MW = 5000, Nanocs Inc., 

New York, NY, USA), mPEG-SH (MW = 5000, Nanocs Inc.), N-(3-dimethylaminopropyl)-

N-ethylcarbodiimide hydrochloride (C8H17N3HCl, MW = 191.7 g/mol, Sigma-Aldrich) 

(EDC), N-hydroxysuccinimide (C4H5NO3, Sigma-Aldrich, MW = 115.09 g/mol) (NHS), 4-

mercaptobenzoic acid (MBA, Sigma-Aldrich), anti-human epidermal growth factor 

receptor (EGFR) antibody (Thermo Fisher Scientific, Waltham, MA, USA), and 

phosphate buffered saline (1X) (PBS) (Thermo Fisher Scientific) were used for HNPs 

synthesis. Human (homo sapiens) lung carcinoma (A549 cells) (ATCC, Manassas, VA, 

USA), Mouse hepatocyte cells (AML12, normal hepatocyte from liver tissue), 0.5% 

trypsin-EDTA solution (Thermo Fisher Scientific), LIVE/DEAD Viability/Cytotoxicity 

Assay Kit (Thermo Fisher Scientific), Earle’s balanced salt solution (EBSS, Thermo 

Fisher Scientific) and PBS were used for cell experiments.  

 

https://en.wikipedia.org/wiki/St._Louis,_Missouri
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5.4.2 Coating GNRs on CaMoO4:Eu NPs 

Twenty mg of the CMO:Eu NPs were dispersed in 5 mL of 0.1 M HCl, and the 

mixture was sonicated for 1 h. To this, 2 mL of diethyl ether was added and sonicated for 30 

min. The resulting solution was centrifuged at 6000 rpm for 15 min. The obtained precipitate 

was washed twice with ethanol and redispersed in 5 mL of PBS solution. To this, 20 mg of 

HS-PEG-COOH was added and sonicated for 1 h. The PEGylated capped NPs were collected 

by centrifugation and washed with PBS solution for three times to remove the excess of HS-

PEG-COOH present in the sample. The final precipitate obtained was redispersed in a PBS 

solution. For the synthesis of HNPs, GNRs with 10 nm in diameter and 35 nm in length were 

purchased from Nanopartz. First, 4 mL of the GNRs was centrifuged at 13,000 rpm for 30 

min and then redispersed in PBS. Centrifugation was repeated for three times to reduce the 

excess of cetyltrimethylammonium bromide (CTAB) present on the surface of the GNRs. 

Four mL of GNRs dispersed in PBS was added to 1 mL of the PEGylated CMO:Eu NPs 

under continuous stirring and then sonicated for 1 h. The resulting solution was centrifuged, 

and the HNPs precipitated was collected. These particles were washed with a PBS solution 

for three times and redispersed in PBS. 

5.4.3 Raman reporter labeling and antibody conjugation 

The synthesized NPs were labeled with MBA by adding 200 µL of a MBA 

solution (2 mM) into 1 mL of the synthesized NPs solution. After 30 min sonication, 

the MBA-labelled CMO:Eu@GNR NPs were collected. For conjugating the anti-

human EGFR antibody with the MBA-labelled CMO:Eu@GNR NPs, 10 µL HS-PEG-

COOH of 1 mg/mL concentration was added into the MBA-labelled NPs. After 15 
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min sonication, 40 µL mPEG-SH of 1 mg/mL was added for 2 h incubation followed 

by 30 min sonication. The prepared NPs were centrifuged for 15 min at 13,000 rpm 

and then resuspended in water. Next, 10 µL EDC (10 mM) and 10 µL NHS (25 mM) 

were added and sonicated for 30 min. The prepared NPs were centrifuged for 15 min 

of 13,000 rpm and then resuspended in PBS. Then, the prepared NPs were labelled 

with antibody (20 µL, 0.2 mg/mL) with 1 h sonication. After 15 min centrifugation at 

13,000 rpm, the prepared NPs were resuspended in PBS and stored at 4 °C for further 

experiments. 

5.4.4 Characterization of synthesized NPs 

Transmission electron microscopy (TEM) images and energy-dispersive X-ray 

spectroscopy spectrum (EDX) were collected using an FEI Titan 80–300 kV (S) TEM 

equipped with a spherical aberration (Cs) image corrector. All the images were collected at 

300 kV. For the TEM measurements, the powder samples were ground and dispersed in 

methanol. A drop of the dispersed particles was placed over a carbon-coated copper grid and 

evaporated to dryness at room temperature. 

UV-visible spectra were recorded using a Multiskan UV-visible spectrophotometer. 

All the luminescence spectra were recorded using a Horiba FluoroMax-3 fluorescence 

spectrophotometer. A zeta potentiometer (ZetaPALS, Brookhaven Instrument, Holtsville, NY, 

USA) was used to measure the surface charge of the particles. Hydrodynamic diameter and 

particle size distributions of the HNPs were determined by dynamic light scattering (DLS) 

measurements using a DynaPro NanoStar (Wyatt Technology Corp., Santa Barbara, CA, 

USA) instrument at 25±0.1 °C. Disposable cuvettes were used for the measurements.  
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The temperature changes of the CMO:Eu@GNR solutions irradiated by an 808 NIR 

laser (Xi’an Sampling Laser Technik Institute, Xi’an, Shanxi, China) were collected by a 

portable fiber optic thermometer (Qualitrol, Fairport, NY, USA). The photothermal images 

of the CMO:Eu@GNR solutions were recorded using an FLIR A20 camera (FLIR Systems, 

Inc., Wilsonville, OR, USA), and the laser power was measured using a handheld laser 

power meter (Edmund Optics, Barrington, NJ, USA). 

5.4.5 Calculation of Raman enhancement factor (EF) of CMO:Eu@GNR-MBA 

𝐸𝐹 =  
𝐼𝑆𝐸𝑅𝑆

𝐼𝑅𝑆
 ×

𝑁𝑅𝑆

𝑁𝑆𝐸𝑅𝑆
− − − −(1) 

Using the above equation, NSERS was calculated from the results of TEM and concentration 

analyses. First, the laser-activated volume (Vlaser) in the micro-Raman experiment was 

calculated from the laser spot diameter [dspot = 0.61λ/NA = 1.2 μm; λ = 785 nm, NA 

(numerical aperture) = 0.9] and the penetration depth (pd = x μm), resulting in a Vlaser value of 

0.942x μm
3
. From the commercial sample, the surface area and weight of one GNR (length = 

38 nm, diameter = 10 nm) were determined as 1350×10
−6

 μm
2
, and 5.2×10

−14 
g, respectively. 

The concentration of the CMO:Eu@GNR-MBA solution was about 20 Au μg/mL, which 

corresponds to 3.85 × 10
8 

GNRs/mL = 3.85×10
-4 

GNRs/μm
3
. Therefore, the 

CMO:Eu@GNR-MBA solution in Vlaser contained 3.62×10
-4 

GNRs, which indicates that the 

SERS spectra were generated by 3.62×10
-4 

CMO:Eu@GNR-MBA molecules. On the other 

hand, the surface area of the MBA was 0.33 nm
2 

as a monolayer [22] and therefore the 

number of MBA molecules absorbed onto one GNR was approximately 4091 and 

consequently 1.5x MBA molecules, which is NSERS in the above equation, were absorbed onto 

the GNRs present in Vlaser.  
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The density of MBA used in regular Raman detection was approximately 3.1×10
-6 

g/mL. Thus, the number of MBA molecules in Vlaser for regular Raman detection was 

1.13×10
4
 MBA. Finally, we determined the Raman enhancement factor (EF) as  

5
4

E 1076.4
925

495,58

5.1

1013.1
 = 




x

x

I
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5.4.6 Heat transfer efficiency of synthesized NPs 

The change in the temperature of the HNPs was estimated by the heat input from the 

NIR laser via GNRs and heat dissipated into the ambient atmosphere, which can be 

expressed as follows: 

∑ 𝑚𝑖𝐶𝑖  
𝑑𝑇

𝑑𝑡
𝑖=2

= 𝑄𝑖𝑛 − 𝑄𝑜𝑢𝑡         (2) 

where mi and Ci are the mass and specific heat capacity of sample i, respectively. T is the 

temperature of the HNPs on NIR irradiation at time t. The mass of HNPs is significantly 

smaller than that of water (1 g), and the specific heat capacity of GNRs and water are ~0.129 

Jg
1

K
1

 and 4.18 Jg
1

K
1

, respectively [23]. By neglecting the specific heat capacity of GNR, 

eq. (i) can be modified as follows:   

                     𝐶𝑖  
𝑑𝑇

𝑑𝑡
= 𝑄𝑖𝑛 − 𝑄𝑜𝑢𝑡        (3) 

where Qin = (I0Itr)η and Qout = ∑hS[T(t)To], I and Itr are the NIR laser power before and 

after transmitting through the HNPs, h is the heat transfer efficiency, and S is the surface area 

of the interference between the HNPs and external environment. The increase in the 

temperature of the HNPs at any time t can be estimated as follows:  

𝑇(𝑡) = 𝑇0 +
(𝐼0 − 𝐼𝑡𝑟)𝜂

𝑚𝐶𝐵
(1 − 𝑒−𝐵𝑡)       (4) 
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where Tm is the maximum stable temperature of the HNPs at which laser is turned off, η is 

the photothermal conversion efficiency, and B is the heat dissipation constant. 

The dissipation constant (B) was calculated using the temperature decay profile after 

the laser was turned off as follows: 

               𝑇(𝑡) = 𝑇0 + (𝑇𝑚 − 𝑇0)𝑒−𝐵𝑡        (5) 

In thermal equilibrium condition, Qin= Qout 

i.e., 𝜂 = 𝑚𝐶𝐵
∆𝑇

∆𝐼
− − − −(6) , all symbols have their usual meanings. 

5.4.7 Cell culture and NPs treatment 

A549 cells (ATCC) were cultured in F-12k medium containing 10% fetal 

bovine serum at 37°C with 5% CO2 in a humidified atmosphere. Mouse hepatocyte 

cells (AML12, normal hepatocyte from liver tissue) purchased from American Type 

Culture Collection (ATCC) were cultured in a 1:1 mixture of Dulbecco's modified 

Eagle's medium and Ham's F12 medium (ATCC) with 0.005 mg/ml insulin, 0.005 

mg/ml transferrin, 5 ng/ml selenium, 40 ng/ml dexamethasone (Sigma-Aldrich) and 

10% fetal bovine serum (ATCC) at 37°C with 5% CO2 in a humidified atmosphere.  

Both cells were passaged at 70–90% confluency using 0.5% Trypsin-EDTA 

solution, and the cell number was estimated by a hemocytometer to be ∼1×10
5
 

cells/mL. A549 and AML12 cells (∼1×10
5
 cells/mL) were treated with 100 μL 

prepared NPs (20 μg/mL) for two hours incubation at 37 °C. Then, cells were washed 

to remove non-bound NPs. The binding of the NPs onto the cells was verified by 

fluorescence and SERS spectra. The fluorescence images were captured under a 

fluorescence microscope with DP30BW CCD camera (Olympus IX71, Olympus 



131 
 

 
 

America Inc., Center Valley, PA, USA) with an excitation at 450 nm and an emission at 

630 nm.  

5.4.8 Atomic force microscopy 

A549 cells were detected by AFM contact mode controlled by Picoview 

software (Picoplus, Agilent Technologies, Santa Clara, CA, USA). AFM probe was 

applied silicon nitride with 20 nm tip radius (Bruker Corp., Billerica, MA, USA), and 

its spring constant was calibrated as 0.06–0.10 N/m and deflection sensitivities were 

30–40 nm/V. The biomechanical properties (Young’s modulus and adhesion force) of 

cells were calculated using a Scanning Probe Image Processor (SPIP) software (Image 

Metrology, Hørsholm, Denmark) by Sneddon’s modification of the Hertz model from the 

force curves for the elastic indentation in a soft sample [24, 25]. The model describes the 

relationship between applied loading force F and indentation depth 𝛿: 

𝐹 =
2

𝜋
× 𝑡𝑎𝑛 (𝛼) ×

𝐸𝑐𝑒𝑙𝑙

1 − 𝛾2
× 𝛿2 

where Ecell: Young’s modulus; F: loading force; 𝛾: Poisson ratio (its value was 0.5); 

and α: tip half cone opening angle (its value was set to 36). The force was obtained 

by the cantilever deflection d(z) and the spring constant of the cantilever k: F = k×d(z). 

The indentation depth was calculated from the z-height and the cantilever deflection: 

𝛿 = z-d(z). The Young’s modulus were obtained from the force curves transformation 

and the linear regression fitted by the Hertz model [26].
 
 For each group, at least 25 

force curves of each cell (the total cells are over 20) were detected, and the detection 

was accomplished within 2 h to approximate cellular physiological conditions. For 
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deflection and 3D view images, the AFM images were imported into a WSXM 

software (Nanotec Electrónica S.L., Tres Cantos, Madrid, Spain). 

5.4.9 SERS measurements of cells treated with synthesized NPs 

SERS spectra were recorded using a Renishaw inVia Raman spectrometer 

(WIRE 3.3 software, Renishaw, Wotton-under-Edge, Gloucestershire, UK) equipped with 

a 300 mW, 785 nm NIR laser. Cells were cultured on magnesium fluoride (MgF2, 

United Crystals Co., Port Washington, NY, USA) and imaged in EBSS through a 63 × 

(NA = 0.90) water immersion objective (Leica DMLM, Leica Microsystems, Buffalo 

Grove, IL, USA). For Raman streamline mapping, the data were acquired at 1 

accumulation with 10 s exposure, and the peak at 1078 cm
1

 from MBA was selected 

for mapping. On each group, the cells were detected within 2 h at room temperature. 

Renishaw Wire 3.3 software (Renishaw) performed for Raman spectra baseline 

corrected, spectral smoothed, and normalized at maximum peaks. The processed 

spectra were imported to OriginPro 9 software (OriginLab Corp., Northampton, MA, 

USA) for analysis.  

5.4.10 NIR photothermal therapy on cells 

For NIR PTT, A549 and AML12 cells (∼1 × 10
5
 cells/mL) were incubated 

with about 100 μL prepared NPs (20 μg/mL CMO:Eu@GNR-MBA-Ab and 

CMO:Eu@GNR-MBA, respectively) for two hours incubation at 37 °C. Next, the 

cells were rinsed with PBS thrice and then exposed to the 808 nm laser irradiation at 1 

W/cm
2
 power densities for 5 min. For cell viability test, the cells with triplicates were 

stained using a LIVE/DEAD viability/cytotoxicity Assay Kit (Thermo Fisher Scientific) 
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according to the instruction. After staining, the cells were imaged using a fluorescence 

microscope equipped with a DP30BW CCD camera (Olympus IX71) at 10× objective 

to analyze the relative proportion of live/dead cells. 

5.4.11 Zeta Potential and DLS studies 

The colloidal stability of the NPs was estimated using a zeta potential (the potential 

close to the particle surface and thus the electrostatic stabilization) in PBS solvent. The 

average zeta potential of the GNR particles in a CTAB solution was found to be ~41.12 mV. 

The value slightly decreased when the particles were dispersed in PBS (~35.5 mV), whereas 

the PEGylated CMO:Eu NPs showed a negative zeta potential of ~29.5 mV. The 

CMO:Eu@GNR HNPs showed a zeta potential of ~27.6 mV. This indicates that 

positive charge is present on the surface of HNPs. It confirms the high stability of the 

particles in PBS.  

5.4.12 White blood cell (WBC) count experiment 

EDTA stabilized human whole blood were freshly obtained from Innovative Research 

(Novi, MI, USA). Whole blood and serum were used for white blood cell (WBC) count 

analysis. 

5.4.13 Statistics analysis 

Data are presented as mean ± standard deviation of error. Differences were 

considered significant at p <0.01. The OriginPro 9 software (OriginLab Corp.) was 

used for one-way ANOVA for significance test. 
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5.5 RESULTS 

5.5.1 Characterization of HNPs 

Transmission electron microscopy (TEM) and high-resolution transmission 

electron microscopy (HRTEM) images of the CMO:Eu@GNR NPs and selected area 

electron diffraction pattern (SAED) are shown in Figure 5.1(A–D). The TEM image 

confirms the formation of hybrid nanostructures where GNRs are attached to the 

surface of CaMoO4:Eu NPs (Figure 5.1(B)). The average sizes of CaMoO4:Eu found 

to be ~10~15 nm and GNRs with an average diameter of ~8–12 nm and a length of 

~40 nm. The distance between lattice planes ~2.283 Å corresponding to the lattice 

spacing in the (211) plane of tetragonal CaMoO4, JCPDS card No. 29–0351(Figure 

5.1(C)) was calculated using ImageJ Software v1.47. The bright circular spots in the 

SAED patterns confirms the presence of both CaMoO4 and GNRs phases in the 

CMO:Eu@GNR (Figure 5.1(D)). Furthermore, the energy dispersive X-Ray analysis (EDX) 

spectrum confirms the presence of Ca, Mo, O, Eu, and Au elements in the hybrid sample. 

Figure 5.1(E) shows the UV-visible spectra of CMO:Eu@GNR with and without Ab 

between 200–1000 nm. Three characteristic peaks were observed ~260, 530, and 790 nm. 

The absorption band ~260 nm was assigned to the Mo–O charge-transfer band (CTB) [27], 

and the bands ~530 and 790 nm can be attributed to the surface plasmon resonance (SPR) of 

GNRs [3]. The inset of Figure 5.1(E) shows the comparison of the normalized SPR 

absorption spectrum between 400–1000 nm. Figure 5.1(F) depicts the 

photoluminescence spectra of the CMO:Eu@GNR with and without Ab coating at a fixed 

excitation of 464 nm (
7
F0

5
D2) and show a strong red luminescence ~612 nm. Inset shows 

a digital photograph of HNPs under UV light. HNPs show a strong excitation spectrum at 
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~275 nm, which is assigned to OMo CTB (Mo–O CTB), and two sharp peaks at ~394 and 

464 nm are assigned to the 
7
F0

5
L6 and 

7
F0

5
D2 transitions of Eu

3+
, respectively [8].  
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Figure 5.1 (A) TEM and (B) HRTEM images of CMO:Eu@GNR. (C) HRTEM image 

of CaMoO4:Eu NPs and (D) SAED pattern for (A). (E) UV–visible and (F) 

photoluminescence (λex = 464 nm) spectra of CMO:Eu@GNR without (black) and with 

Ab (red). Inset in (E) shows the comparison of normalized absorption spectrum at an 

SPR of ~790 nm. Digital photograph of the CaMoO4:Eu NPs dispersed in PBS under a 

UV-lamp (λex = 254 nm), shown in the inset of (F). 

 

5.5.2 Photothermal properties of HNPs 

The PTT abilities of HNPs were investigated using 808 nm NIR laser irradiation. 

Figure 5.2(A) shows a thermal image of phosphate buffered saline (PBS) and 

CMO:Eu@GNR solution placed in a 1 cm quartz cuvette using a forward looking infrared 

(FLIR) thermal imaging camera on irradiation with a NIR laser (~1 mm spot size, 1 W/cm
2
) 

after 900 s at room temperature. As the irradiation time increased, the color of the thermal 

images of HNPs is gradually changed from dark blue to bright yellow (high temperature). In 

contrast, the thermal images for the PBS solution changed slightly over time as compared to 

those HNPs. Thermal images confirms that the NIR light could be absorbed by the 

CMO:Eu@GNR and converted to heat energy. It consists of a fiber-optic thermocouple 

temperature sensor (accuracy ±0.1 C) for temperature measurement, a FLIR thermal 

imaging camera, and an 808 nm NIR laser. 

Figure 5.2(B, C) show the temperature kinetic curves at different concentrations. The 

bright circular spots in the SAED patterns (0 ~28 µg/mL of GNRs) and excitation powers (0 

~1.1.2 W/cm
2
) of the CMO:Eu@GNR irradiated with NIR laser for 900 s (ΔT is the 
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temperature change, sample temperature ~27 C). The temperature of the HNPs solution 

exponentially increases with the concentration of GNRs, and the similar temperature 

increasing profile is observed with the increase of excitation power. CMO:Eu@GNR 

achieved a PTT temperature of ~42 C (ΔT = 15 C) in ~210, 258, 377, and 481 s for 28, 21, 

14, and 7 µg/mL of GNRs, respectively (Figure 5.2(B)). In the case of 0 µg/mL of GNRs 

(pure PBS), ΔT was found to be ~4.4 C in 900 s, which is ~87.5% lesser than PTT 

temperature obtained using CMO:Eu@GNR (28 µg/mL GNRs). The heating ability of the 

CMO:Eu@GNR at various laser irradiation powers for ~28 µg/mL of GNRs concentration, is 

shown in Figure 5.2(C). The required PTT temperature of ~42 C (ΔT = 15 C) was 

obtained in ~136, 237, 351, and 673 s for 1.2, 1.0, 0.8, and 0.6 W/cm
2
 of NIR laser power, 

respectively. Thus, by increasing the NIR laser power, the time required for the desired PTT 

temperature can be decreased. Moreover, the increase in the temperature of the PBS solution 

was significantly less than required PTT temperature.  

Heat conversion efficiency (η) can be determined by plotting ΔT vs. ΔI as reported by 

Pinchuk and co-workers (Eq. 2-6) [23].  The value of heat dissipation rate constant (B) was 

further analyzed using the cooling temperature profile when the laser was turned off. The 

natural log of (T(t)–T0)/(Tm–T0) as a function of time after the laser was turned off. The 

average value of B was found to be ~1.5810
3

 s
1

 with R
2
 = 0.99923. Recently, Pinchuk and 

co-workers reported a B value of ~4.6610
3

 s
1

 for spherical Au particles with an SPR of 

530 nm. It was reported that the value of B depended on the volume of the NPs in the 

cuvette and was almost independent of the amount of the NPs present in the sample [23].
 
The 

η value was found to be ~25.6%. However, a slight deviation in the ΔT was observed at a 

higher NIR laser irradiation power.  
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Figure 5.2 (A) Infrared images of PBS and CMO:Eu@GNR aqueous solutions 

exposed to 808 nm laser (1 W cm
-2

) for 900 s recorded at different time intervals. (B) 

Photothermal responses of CMO:Eu@GNR NPs at different concentrations in 

aqueous solution for 900 s NIR laser (808 nm, 1 W/cm
2
). (C) Photothermal responses 

of 808 nm laser irradiation with different power densities for 900 s at fixed 

CMO:Eu@GNR NP concentration (28 μg/mL GNR). (D) Temperature change of 

CMO:Eu@GNR solution at 1 W/cm
2
 808 nm laser irradiation over six LASER 

ON/OFF cycles. Experiment was carried out at room temperature.   
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To understand the photostability of HNPs, six cycles of ON/OFF NIR laser 

irradiations were performed (~1 W/cm
2
 for 300 s (laser ON), followed by naturally cooling 

for 900 s (laser OFF) (Figure 5.2(D)). It was found that the temperature (ΔT) increased by 

17.6 C in the first laser ON condition of the CMO:Eu@GNR (GNR concentration ~28 

µg/mL). During six cycles of laser ON/OFF, the temperature elevations remained almost the 

same as in the first cycle within the limits of error bar, indicating the good photostability of 

HNPs. Furthermore, the effect of laser ON/OFF on luminescence emission was measured (λex 

= 464 nm) on the start and end of each cycle. A slight decrease in the emission of ~<2% was 

observed at the end of the sixth cycle.  

The biocompatibility of the HNPs was investigated using the LIVE/DEAD 

viability/cytotoxicity assay kit. Cells has high viability (>90%) at lower concentrations of the 

CMO:Eu@GNR (2.5–20 μg/mL) incubated for 24 h and decreased to ~84% as the 

concentration increased to 40 μg/mL. The decrease in cell viability at high concentration of 

CMO:Eu@GNR can be attributed to the production of hydroxyl radicals from CaMoO4:Eu 

[28]. Hydroxyl radicals can generate reactive oxygen species (ROS), causing cellular 

apoptosis [29, 30].  

5.5.3 Cell biomechanical properties 

To investigate the interactions between cells and the HNPs (without and with 

Ab), the cellular morphological effects were observed by atomic force microscopy 

(AFM) and compared with control cells (Figure 5.3). In case of control group (Figure 

5.3(A-A’)), its surrounding cytoskeleton structures were less visible than the NPs 

treated groups (Figure 5.3(B-B’, C-C’)). The short black arrows in these treated groups 
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indicate the filamentous actin bundles, which suggests that the mechanical properties of 

cells vary with the interaction of HNPs. 

The comparison of biomechanical properties of different groups were shown in 

Figure 5.3(D, E). The control group has the largest Young’s modulus ~13.7±8.3 kPa, 

while the CMO:Eu@GNR-Ab group has the least Young’s modulus ~11.3±6.2 kPa. 

Furthermore, the CMO:Eu@GNR-Ab group has the largest adhesion force ~0.53±0.20 

nN and control group has the least adhesion force ~0.34±0.22 nN. These results 

implied that the CMO:Eu@GNR-Ab has significant effects on the cellular 

biomechanics. One-way ANOVA for significance test was applied. 

5.5.4 Fluorescence imaging of HNPs treated cells 

To investigate the bioimaging application, CMO:Eu@GNR and 

CMO:Eu@GNR-Ab were incubated with A549 cells for 2 and 16 h, respectively. Red 

fluorescence from the CMO:Eu@GNR (λem=615 nm) was observed from A549 cells 

on excitation ~464 nm (
5
D2 level of Eu

3+
 ion). Figure 5.4 shows phase contrast, 

fluorescence, and overlay of phase contrast and fluorescence images of control, A549 

cells incubated with CMO:Eu@GNR NPs for 2 and 16 h (with and without Ab). It was 

found that the fluorescence intensity from the cells after 16 h incubation is larger than 

that of 2 h incubation; and no fluorescence was observed from the control cells under 

similar conditions. The increase in the fluorescence intensity with time may be due to 

more uptake of the CMO:Eu@GNR by the A549 cells. The Ab-conjugated 

CMO:Eu@GNR after 16 h incubation showed the strongest fluorescence compared to other 

groups. This result showed the specificity of CMO:Eu@GNR-Ab as compared to the 

control and CMO:Eu@GNR groups. The fluorescence emission from Eu
3+

 doped NPs was 
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similar to previous studies that used Ab-coated NPs for enhanced fluorescence imaging [31-

33]. 

 

 

Figure 5.3 Atomic force microscopy detection of A549 cells (A) without treatment, 

(B) treated with CMO:Eu@GNR, or (C) CMO:Eu@GNR-Ab for 2 h: (A–C) are 3D 

view images of (A–C); (D) Young’s modulus and (E) adhesion force of cells. Error 

bar: standard deviation of the mean; N ≥ 20, **P <0.01. 
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Figure 5.4 Phase, fluorescence, and overlay images of A549 cells without treatment 

and treated with CMO:Eu@GNR or CMO:Eu@GNR-Ab for 2 h and 16 h. Scale bar: 

100 μm. 
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5.5.5 SERS measurement 

Gold nanomaterials have been widely applied as Raman signal enhancement 

substrates due to their good biocompatibility and strong SERS signal [34, 35]. 4-

mercaptobenzoic acid (MBA) was selected as the Raman reporter molecule to evaluate the 

SERS ability of the CMO:Eu@GNR for its well-established strong Raman peak ~1078 cm
1 

(aromatic ring vibration) [36]. To estimate the EF, we calculated the EF per MBA molecule 

as the ratio of the intensity of 1078 cm
1

 obtained from the CMO:Eu@GNR-MBA NPs and 

the Raman intensity of the MBA without NPs under excitation 785 nm laser by eq. (1) in 

Materials and Methods part. SERS signals are enhanced by many orders of magnitude 

stronger than intrinsic cellular Raman signals. The average EF of the CMO:Eu@GNR 

calculated using eq. (1) was ~4.7610
5
, demonstrating the SERS capability of the 

CMO:Eu@GNR (the EF calculation was based on the SERS signal of MBA on the 

CMO:Eu@GNR NPs). 

The HNPs were conjugated with Ab for the enhancement of specificity. Figure 5.5 

shows the Raman bright-field image, Raman streamline mapping and Raman spectrum (900–

1250 cm
1

) from SERS negative (black cross) and SERS positive (red cross) sites on a 

single live A549 cell incubated with CMO:Eu@GNR. Raman mapping for a live cell was 

performed by selection of 1078 cm
1

 (a characteristic peak from Raman reporter 

molecule MBA). The Raman spectra obtained from SERS positive and negative spots are 

shown in Figure 5.5(C). The SERS positive spectra from both CMO:Eu@GNR-MBA and 

CMO:Eu@GNR-MBA-Ab groups show a strong characteristic peak from MBA at 

1078 cm
1

. The order of strong Raman mapping pixel intensity is found to be control < 

CMO:Eu@GNR-MBA < CMO:Eu@GNR-MBA-Ab. The bright color spots in the Raman 
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mapping indicates the distribution of EGFR biomarkers on single live cell (Figure 5.5(B)). 

The high pixel intensity in Raman mapping for CMO:Eu@GNR-MBA-Ab group confirms 

the higher cellular distribution of HNPs compared to non-Ab group.  A few CMO:Eu@GNR 

were still distributed around the cellular membrane edges in CMO:Eu@GNR-MBA 

group due to nonspecific binding. In contrast, more NPs were bound to the cells in 

CMO:Eu@GNR-MBA-Ab group. As expected, no SERS signal was detected from the 

control group (no NPs treatment) except a lowest intensity characteristic peak ~1004 

cm
1

, which is assigned to the phenylalanine from the cell [37]. CMO:Eu@GNR were 

also applied to the AML12 cells (EGFR negative) for SERS detection, as shown in 

Figure 5.6. It was found that a few NPs were distributed around AML12 live cell 

membrane of both CMO:Eu@GNR-MBA and CMO:Eu@GNR-MBA-Ab groups, 

indicating nonspecificity binding of NPs. The spectra from Figure 5.6(C) confirmed 

these Raman positive spots were CMO:Eu@GNR due to presence of the characteristic 

peak from Raman reporter MBA molecule. These SERS results compared the spectral 

differences among the three groups, illustrating the specificity of the Ab-conjugated 

NPs and the distribution of these NPs.  

5.5.6 Photothermal treatment of cells 

NPs with strong NIR absorption are considered to be a relatively noninvasive and 

effective treatment of cancer compared to the current cancer treatments (chemotherapy, 

radiotherapy, surgery, and so on), which usually result in severe adverse effects and cancer 

recurrence [38-41]. In PTT, the malignant cells were killed by localized hyperthermia 

generated by the conversion of absorbed light to heat. The distribution of cancer biomarker 

EGFR (via CMO:Eu@GNR) into A549 cells was confirmed by Raman results (Figure 5.5), 



145 
 

 
 

cells were treated with CMO:Eu@GNR (without and with Ab) and irradiated by a NIR laser 

for 5 min (1 W/cm
2
). Figure 5.7(A) shows the fluorescence images of phase, live 

(green), and dead (red) cells with and without NPs treatments. Most of the cells were 

alive in control group, whereas a few dead in CMO:Eu@GNR groups, but complete 

cell death was observed in CMO:Eu@GNR-Ab group within the external 808 nm laser 

exposure area. Moreover, there was no significant difference in the cell viability 

between no-laser and laser control groups, suggesting that 808 nm NIR laser has 

negligible effect on the cells under similar conditions. Besides being tested on cancer 

cells A549, noncancerous hepatocyte AML12 cells were also treated with 

CMO:Eu@GNR (with and with Ab).  

 

 

Figure 5.5 (A) Raman bright-field images of A549 cells without treatment and treated 

with CMO:Eu@GNR-MBA or CMO:Eu@GNR-MBA-Ab for 2 h (peak at 1078 cm
-1
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from MBA was selected for mapping). Scale bar: 10 μm (horizontal), 5 μm (vertical). 

(B) Raman streamline mapping and (C) corresponding Raman spectra of A549 cells 

without treatment and treated with CMO:Eu@GNR-MBA or CMO:Eu@GNR-MBA-

Ab NPs for 2 h.   

 

 

Figure 5.6 (A) Raman Bright-field images of AML12 cells without treatment and 

treated with 2-h CMO:Eu@GNR-MBA or CMO:Eu@GNR-MBA-Ab (peak at 1078 

cm
-1

 from MBA was selected for mapping). Scale bar: 10 μm (horizontal), 5 μm 

(vertical). (B) Raman streamline mapping (Black cross: SERS negative; red cross: 

SERS positive) and (C) the corresponding Raman spectra of AML12 cells without 

treatment and treated with 2-h CMO:Eu@GNR-MBA or CMO:Eu@GNR-MBA-Ab 

NPs at 63 water immersion objective.  
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Figure 5.7 (A) Photothermal therapy. A549 cells were incubated without NPs (control), 

with CMO:Eu@GNR or CMO:Eu@GNR-Ab for 2 h; after that, cells were irradiated under 1 

W/cm
2
 808 nm laser for 5 min  (green: live cells; red: dead cells. Scale bar: 100 μm). (B) Cell 

viability of A549 cells without treatment and treated with CMO:Eu@GNR or 

CMO:Eu@GNR-Ab for 2 h; after that, irradiation for 5 min under 1 W/cm
2
 808 nm laser. 
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Inset shows the fluorescence image of A549 cells treated with CMO:Eu@GNR-Ab NPs for 2 

h, then irradiated without/with laser; Error bar: standard deviation of the mean; N = 3, **P 

<0.01. 

 

As shown in Figure 5.8, it was also found that the CMO:Eu@GNR have no 

PTT effect on AML12 cells, suggesting the HNPs with conjugated anti-EGFR 

antibodies are specific to cancer cells that overexpressed EGFR. The quantitative cell 

viability of A549 cells without and with treated (CMO:Eu@GNR and CMO:Eu@GNR-

Ab) groups for 2 h was studied on 5 min 1 W/cm
2
 808 nm laser irradiation (Figure 

5.7(B)). The CMO:Eu@GNR group shows a slight toxicity (viability ~90.2±7.6%), 

compared to control group. However, CMO:Eu@GNR-Ab group shows the least 

percentage of viability (~4.6±1.7%), indicating the high PTT effect from the Ab-

labelled NPs. Inset of the Figure 5.7(B) shows the fluorescence images of the A549 

cells incubated with the CMO:Eu@GNR-Ab NPs where the laser spot edge (white 

dashed line) shows a boundary between green (no laser) and red (laser) fluorescence 

regions. Within the laser spot, almost all cells were killed and displayed red color 

(dead cells). These results demonstrated that the CMO:Eu@GNR-Ab NPs could effectively 

and specifically kill A549 cells. This was because the CMO:Eu@GNR-Ab CMO:Eu@GNR 

can target the A549 cells via the interactions between the Ab and EGFR on the cancer cell 

surface. Thus, the CMO:Eu@GNR with high specificity and PTT efficiency may be of great 

importance for cancer treatments and have a potential to apply in clinical cancer therapy.  
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Figure 5.8 Fluorescence images of A549 and hepatocyte cells control without laser 

and with 5 min 1 W/cm
2
 808 nm laser irradiation and treated with 2 h 

CMO:Eu@GNR or CMO:Eu@GNR-Ab, then for 5 min 1 W/cm
2
 808 nm laser 

irradiation (Green: live cells; red: dead cells. Scale bar: 100 µm). 

 

5.6 DISCUSSION  

Hybrid nanomaterials with fluorescence in red region with NIR–SPR properties 

are increasingly attractive in theranostics of cancer that combines both diagnostic and 

therapeutic functions in recent years. NIR radiation is used as emerging tool in the 

fight against cancer [42]. We synthesized CaMoO4:Eu NPs having a strong 

luminescence at ~615 nm and conjugated with GNRs having NIR absorption at ~790 

nm. When these HNPs are uptaken at the tumor site, the temperature increase (~42 °C) 

on NIR irradiation can kill the cancer cells. HNPs synthesized in this way have a great 

advantage in PTT tumor ablation. The HNPs were coated with anti-EGFR Ab for the 

selectively targeting of A549 cancer cells. Antibody conjugation to HNPs was further 
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confirmed by redshift in Mo–O CTB (~15 nm) and SPR band (~0.5 nm) (Figure 5.1(E)). 

The decrease in SPR band absorption for the Ab-conjugated NPs implies that the surface 

of the GNRs has different environment than Ab free NPs. EI-Sayed and his co-workers 

studied the in detailed analysis of with and without anti-EGFR conjugated Au NPs to 

distinguish between cancerous and noncancerous cells using red shift [43].
 
Moreover, Ab 

conjugated Au NPs were specifically and homogeneously bind to the surface of the cancer 

cells 600% greater affinity than to the noncancerous cells [43]. Furthermore, a slight decrease 

in the luminescence intensity of Eu
3+

 ion was observed after Ab conjugation (Figure 5.1(F)). 

Asymmetric ratio (A21 = ∫
5
D0

7
F2/∫

5
D0

7
F1) values for without and with Ab coated NPs are 

found to be ~8.6 and 5.3, respectively. The luminescence of HNPs is slightly higher than 

CaMoO4:Eu, this is due to proximity effect of GNRs [15]. The high colloidal stability 

(zeta potential) and uniform hydrodynamic size distribution of the HNPs were shown in 

Figure 5.9 and Figure 5.10. Indeed, the HNPs are good candidates for the development 

of PTT and imaging agents due to its easy access, simple conjugation procedures and 

low toxicity.  

 

 

Figure 5.9 Zeta potentials of different samples at pH ~7. 
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 Figure 5.10 DLS data of CMO:Eu@GNR NPs. 

 

HNPs with plasmon-enhanced fluorescence properties have attracted much 

attention as imaging nanoprobes for PTT due to its small size and deeper tumor 

permeation. Our HNPs have PTT conversion efficiency of ~25.6% and a sharp 

luminescence peak at ~615 nm. Recently, Sun and co-workers synthesized GNRs and gold 

nanostars (GNSs) with strong NIR absorption 800 nm [44]. They concluded that pure GNRs 

show a higher η value, which varies in the range 69.7–94.2%. It is well known that pure gold 

particles exhibit strong PTT activity. Self-assembled WO3−x hierarchical nanostructures 

ranging from 700–1400 nm were prepared with η ~28% by Hu and co-workers [45], and the 

same research group prepared CuS NPs with η ~38% [13]. Although various nanostructures 

have been evaluated as PTT agents, HNPs offer additional favorable properties that enable 

their use for cancer therapy. More importantly, the HNPs synthesized here not only have a 

high η value, but also have good NIR photostability (Figure 5.2(D)) and fluorescence 

properties (Figure 5.1(F)). These results demonstrate that the CMO:Eu@GNR could be used 

as a photothermal and imaging agent for cancer therapy applications.  
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Biomechanical properties played important roles in cellular morphogenesis, 

focal adhesion, motility, and metastasis [46-48], but also useful in medicine to 

understand the formation and stage of tumor development. The biomechanical 

properties of the cancer cells were investigated at singular cell level on incubation 

with HNPs. The biomechanical values of the control group were similar to our 

previous studies [49, 50]. Our AFM results (Figure 5.3) revealed that the interaction of 

HNPs with cells showed more surrounding cytoskeleton structures, much softer cell 

membrane and increased surface adhesion force compared to control cells. These 

alterations in cell topography and biomechanics indicate that the HNPs affected the 

cellular biophysical properties within a short time (2 h) under similar experimental 

conditions.  

HNPs-MBA shows high sensitive SERS properties which arises from the interaction 

of MBA molecules with GNRs. Several factors (e.g., substrate types, aspect ratios, plasmon 

absorption, reporter molecules, excitation source) [51] may affect the value of EF. The 

average EF value (4.7610
5
) of our HNPs was similar to previous reports [51, 52]. Raman 

streamline mapping in Figure 5.5 and Figure 5.6 consist of over 1000 spectra detected over 

80% of the cell area. HNPs without Ab are partly attached to the cellular surface, suggesting 

that there was still nonspecific binding to cells due to long incubation time. Nevertheless, the 

nonspecific cellular binding of CMO:Eu@GNR NPs was significantly less than that of 

CMO:Eu@GNR-Ab with high specificity. To confirm this both cancerous (A594) and 

noncancerous cells (AML12) were treated with HNPs (with and without Ab) and 

irradiated with 808 nm NIR laser for 5 min (Figure 5.8). it was found that most of the 

cancer cells were killed and noncancerous cells were still alive. Furthermore, WBC 
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were treated with HNPs to evaluate their biocompatibility. WBC count demonstrates 

that HNPs treated groups (HNPs, HNPs-Ab, HNPs + laser, HNPs-Ab + laser) show a 

slight decrease in count by ~9% as compared to control group (Figure 5.11). The 

decrease of WBC count for NPs treated groups largely comes from the immune 

function of WBC to protect cells against foreign invaders (HNPs). However, the 

numbers of WBC for HNPs treated groups are still within normal range (~4000–

11,000 white blood cells/µL) [53] after this slight decrease, indicating the good 

biocompatibility of HNPs. These results indicate that rationally engineered HNPs having 

fluorescence in red region (λex = 464 nm) and PTT conversion efficiency (λex = 808 nm) can 

be used as efficient PTT agents. Meantime, the HNPs stand out because of its efficient NIR 

light absorption between 700–850 nm and their small size leading to the higher possibility of 

deeper tumor penetration. These properties of HNPs make them favorable for in vivo study in 

future experiments. 

 

 

Figure 5.11 The effect of different treatments on the WBC counts (NPs: CMO:Eu@GNR; 

**p < 0.01, N = 3, error bar: standard deviation of the mean). 



154 
 

 
 

In summary, multifunctional HNPs were synthesized for in vitro fluorescence 

imaging, SERS detection, and PTT cancer therapy applications. Fluorescence images 

show the fluorescent function of the HNPs with fluorescence at 615 nm (
5
D0

7
F2) on 

excitation 464 nm. Ab was coated on the surface of the HNPs to enhance the cellular 

uptake. The biomechanical experiments shows that the Young’s modulus of the A549 

cells decreased whereas the adhesive force increased with the interactions between the 

HNPs and cells, and these changes further increased in the group of HNPs combined 

with Ab (CMO:Eu@GNR-Ab). Raman mapping confirmed the distribution of HNPs 

around the nucleus and membrane region using SERS characteristic peak of MBA at 

1078 cm1
, and the EF was found to be 4.76  10

5
. Moreover, these HNPs effectively 

suppressed A549 cell viability upon 808 nm laser irradiation. However, no significant 

decrease in cell viability of noncancerous cells (AML12) was observed. The PTT 

efficiency of CMO:Eu@GNR were found to be ~25.6%. Thus, a combination of 

fluorescence imaging, SERS and the NIR photothermal ablation of targeted tumor cells 

would allow multimodal imaging and PTT in vivo for the future applications.  
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CHAPTER 6 

NEAR-INFRARED PHOTOTHERMAL THERAPY OF PRUSSIAN BLUE COATED 

MULTIFUNCTIONAL CaMoO4:Eu@SiO2/Au NANOSTRUCTURES FOR TARGETING 

HUMAN EPIDERMAL GROWTH FACTOR RECEPTOR 2 EXPRESSING CANCER 

CELLS 

6.1 ABSTRACT  

Here we report the synthesis, characterization and application of Prussian blue (PB) 

functionalized CaMoO4:Eu@SiO2@Au-nanorod hybrid nanoparticles (NPs) having 

multimodal capabilities such as fluorescence imaging, surface-enhanced Raman spectroscopy 

(SERS) detection and photothermal therapy (PTT). The average size of CaMoO4:Eu@SiO2 

nanoparticles was found to be ~206 nm. Hybrid particles are highly dispersible in water for 

several weeks without settling and show a strong absorption in NIR region which is overlap 

of Prussian blue absorption between 600–1000 nm and surface plasmon resonance of Au 

nanorods around 800 nm. Upon 808 nm laser excitation particles shows hyperthermia 

temperature (43 °C). Also, PB NPs can be used in clinical trials for treatment of radioactive 

exposure, and PB acts as a Raman reporter molecule (2152 cm
-1

 characteristic peak) with 

good biosafety and stability in the human body. In addition, using both SiO2 NPs and Au 

nanorods to coat on the surface of CaMoO4:Eu nanoparticles increases the biocompatibility. 

Furthermore, the PTT efficiency of HER2 (human epidermal growth factor receptor 2) 

antibody conjugated hybrid nanoparticles on MDA-MB-435 cancerous cells is 

significantly higher than and hepatocyte cells (non-cancerous). This is due to more uptake 

of hybrid nanoparticles in cancerous cells than non-cancerous cells. Together, this study 
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shows the potential applications of these HNPs in fluorescence imaging, SERS detection, and 

PTT functionalities with good photostability and biocompatibility.  

6.2 INTRODUCTION  

The combination of diagnostic and therapeutic functions into a single construct is an 

emerging field to further promote clinical diagnosis and therapeutic processes. This construct 

can image and detect a specific target, measure the biological changes and conduct the 

therapeutic processes. In this way, specificity and selectivity can be significantly facilitated 

followed by high therapeutic efficacy while decreasing deleterious side effects. Recently, we 

developed hybrid materials with the properties of fluorescence, surface-enhanced Raman 

spectroscopy (SERS) and photothermal therapy (PTT) potential. Different from traditional 

fluorophores restricted by the limitation of photobleaching and short lifetime [1], the 

synthesized inorganic hybrid materials do not experience these problems. In addition, the 

hybrid materials exhibit enhancement in luminescence intensity (λem: ~615 nm) due to metal 

(GNR) proximity effect [2], and this luminescence feature is from Eu
3+

 ion (
5
D2 level of 

Eu
3+

 ion). Moreover, the Raman-labeled hybrid materials can be applied as sensitive SERS 

probes for Raman imaging in living cells. Similarly, Raman imaging techniques are not 

limited by photobleaching or solvent and environmental effects because of the need for only 

one irradiation source and the narrow spectral peaks [3]. When the absorption band of a 

Raman-labeled construct overlaps with the laser excitation, the SERS signal can be greatly 

intensified [4]. Furthermore, the hybrid materials have the property of PTT potential, which 

is a non-invasive laser-based approach applied to ‘burn’ tumor cells by converting the photon 

energy into thermal energy (hyperthermia temperature ~42 °C) [5]. Therefore, the 

combination of fluorescence, Raman imaging and PTT might be important for increasing the 
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curative rates of cancer treatments and has a potential for application in clinical cancer 

therapy.  

Mesoporous silica nanoparticles (NPs) with the features of high surface area, 

adjustable pore size and chemically modifiable surfaces have been widely applied as efficient 

drug delivery carriers with good biocompatibility [6, 7]. Prussian blue (PB) is not only an 

inorganic pigment containing ferric ferrocyanide, but it is also an antidote for heavy metal 

poisoning [8]. Moreover, PB is very useful as an FDA approved treatment for radioactive 

exposure [9]. In addition, recent studies have indicated that PB could efficiently transform 

irradiation laser into heat for cancer treatment [10, 11], and its low price promotes its use in 

practical applications. The soluble PB is loaded onto silica NPs as well as the surface of 

GNR through electrostatic interactions. The conjugation of PB can greatly increase the PTT 

efficacy because the absorption bands of PB and GNR used in this work are both close to the 

NIR laser wavelength. Meantime, PB can be applied as a Raman reporter molecule for SERS 

imaging. The synergistic PTT effect from PB and GNR could provide us with new insight in 

fighting against cancer. 

The HER2 (human epidermal growth factor receptor 2) protein is over-expressed in 

25% to 30% of human breast cancers [12]. A monoclonal antibody (mAb), anti-HER2, was 

conjugated onto the external surface of PB modified CaMoO4:Eu@SiO2@GNR (HNP-PB) to 

selectively recognize HER2/neu glycoproteins that are usually overexpressed on breast 

cancer cells. The specific targeting capability of HNP-PB-Ab is strongly affected by the mAb 

density on the outer surface of HNP-PB, and the mAb was modified with a polyethylene 

glycol (PEG) spacer to reduce non-specific binding to other cells without the receptor.  
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Herein, the synthesized hybrid materials are characterized first, then applied for 

imaging and PTT with an enhanced specificity when conjugating HER2 antibodies, and their 

biocompatibility is also evaluated. 

6.3 HYPOTHESIS 

The developed silica coated NPs could effectively visualize, detect and treat human 

breast cancer cells by the mechanism of antibody-receptor binding with enhanced 

biocompatibility. 

6.4 MATERIALS AND METHODS 

6.4.1 Materials  

Calcium nitrate tetrahydrate, (Ca(NO3)2.4H2O, 99%, Alfa Aesar, Ward Hill, MA, 

USA), ammonium molybdate (H8MoN2O4, 99.99%, Alfa Aesar), europium(III) nitrate 

hydrate (Eu(NO3)3 · xH2O, 99.99%, Sigma-Aldrich, St. Louis, MO, USA), oleic acid (OA, 

Alfa Aesar), 1-octadecene (95%, Alfa Aesar), NaOH pellet (Merck & Co., Kenilworth, NJ, 

USA), hydrochloric acid (HCl, Sigma-Aldrich), HS-PEG-COOH (MW = 5000, Nanocs Inc., 

New York, NY, USA), mPEG-SH (MW = 5000, NANOCS), N-(3-dimethylaminopropyl)-N-

ethylcarbodiimide hydrochloride (C8H17N3HCl, MW = 191.7 g/mol, Sigma-Aldrich) (EDC), 

N-hydroxysuccinimide (C4H5NO3, Sigma-Aldrich, MW = 115.09 g/mol) (NHS), Prussian 

blue (PB) (Sigma-Aldrich, USA), human epidermal growth factor receptor 2 (HER2) 

antibody (Santa Cruz Biotechnology Inc., Dallas, TX, USA), and phosphate buffered 

saline (1X) (PBS) (Thermo Fisher Scientific, Waltham, MA, USA) were used for HNPs 

synthesis. MDA-MB-435 human breast carcinoma (435 cells), mouse hepatocyte cells 

(AML12, normal hepatocyte from liver tissue, ATCC, Manassas, VA, USA), 0.5% 

https://en.wikipedia.org/wiki/St._Louis,_Missouri
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trypsin-EDTA solution (Thermo Fisher Scientific), LIVE/DEAD 

Viability/Cytotoxicity Assay Kit (Thermo Fisher Scientific), Earle’s balanced salt 

solution (EBSS, Thermo Fisher Scientific) and PBS were used for cell experiments.  

6.4.2 Synthesis of CaMoO4:Eu@SiO2@GNR core/shell Nanoparticles 

CaMoO4:Eu (2 at.%; CMO:Eu) nanoparticles were synthesized by a 

thermolysis process. A detailed method of synthesis was discussed elsewhere 

[submitted for publication]. To remove the unwanted oleic acid (OA) capped on the 

surface of the particles, 20 mg of the CMO:Eu nanoparticles were dispersed in 5 mL 

of 0.1 M HCl, and the mixture was sonicated for 1 h. To this, 2 mL of diethyl ether 

was added and sonicated for 30 min. The resulting solution was centrifuged at 6000 

rpm for 15 min. The obtained precipitate was washed four times with ethanol. For the 

silica-coating on the surface of CaMoO4:Eu nanoparticles, 200 mg of CMO:Eu 

nanoparticles was added to 100 mL of deionized water and 25 mL of NH4OH aqueous 

solution added and sonicated for 30 min. To this 8 ml of Tetraethyl orthosilicate 

(TEOS) added drop wise and the reaction mixture was vigorously stirred for 24 h. 

Resulting precipitate was collected by centrifugation and washed with water to 

remove the unwanted reactants present on the surface of the particles and redispersed 

in 50 ml of distilled (DI) water.  

For the synthesis of CMO:Eu@SiO2@GNR hybrid nanoparticles, we used 

commercially available Au nanorods (GNRs; Nanopartz Inc., Loveland CO, USA) 

with 10 nm in diameter and 43 nm in length. First, 4 mL of the GNR was centrifuged 

at 13,000 rpm for 30 min and then redispersed in DI water. Centrifugation was 

repeated for three times to reduce the excess of cetyltrimethylammonium bromide 
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(CTAB) present on the surface of the GNR. Secondly, 10 mg of HS-PEG-COOH was 

added to 10 ml of CMO:Eu@SiO2 and sonicated for 1 h and the resulting solution was 

centrifuged three times with DI water to remove the excess of HS-PEG-COOH 

present in the sample. The precipitate obtained was redispersed in a 10 ml of DI water 

followed by sonication for 2 h. To this GNRs were added dropwise and stirred for 24 

h.  Finally, CMO:Eu@SiO2@GNR hybrid nanoparticles (non-PEGylation) were 

centrifuged at 13000 rpm for 15 min and redispersed in DI water. To this, 200 ml of 

100 µM mPEG-SH was added and stirred for 12 h. Finally, nanoparticles solution was 

centrifuged and redispersed in DI water. This step is used to control the surface charge 

on the particles. 

6.4.3 Prussian blue labeling and antibody conjugation  

The synthesized NPs were labeled with PB by adding 100 µL PB solution (2 

mM) into 1 mL of non-PEGylated NPs solution. After 30 min sonication, the PB-

labelled CMO:Eu@SiO2@GNR NPs were centrifuged for 15 min of 13,000 rpm to 

remove extra PB molecule and then resuspended in PBS for antibody conjugation. For 

conjugating the HER2 antibody (Ab) with the PB-labelled CMO:Eu@SiO2@GNR 

NPs, 10 µL HS-PEG-COOH of 1 mg/mL concentration was added into the PB-

labelled NPs. After 15 min sonication, 40 µL mPEG-SH of 1 mg/mL was added for 2 

h incubation followed by 30 min sonication. The prepared NPs were centrifuged for 

15 min at 13,000 rpm and then resuspended in water. Next, 10 µL EDC (10 mM) and 

10 µL NHS (25 mM) were added and sonicated for 30 min. The prepared NPs were 

centrifuged for 15 min of 13,000 rpm and then resuspended in PBS. Then, the 

prepared NPs were labelled with antibody (20 µL, 0.2 mg/mL) with 1 h sonication. 
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After 15 min centrifugation at 13,000 rpm, the prepared NPs were resuspended in PBS 

and stored at 4 °C for further experiments. 

6.4.4 Characterization of synthesized NPs 

X-ray diffraction (XRD) patterns of the powder samples were examined at room 

temperature using a PANalytical X’Pert X-ray diffractometer equipped with Ni filtered CuKa 

(l = 1.54056 Å) radiation as the X-ray source. XRD patterns of the powder sample were 

examined at room temperature.  The microstructure and morphology of the nanoparticles 

were analyzed using Scanning Electron Microscopy (SEM) (FEI Quanta FEG 650, FEI 

Company, Hillsboro, OR, USA) integrated with the energy dispersive analysis of X-ray 

(EDX) spectrometer operated at accelerating voltage of 20 kV.  Scanning transmission 

electron microscopy (STEM) of single particles was measured using Titan TEM with 

ChemiSTEM capability. Fourier transform infrared spectroscopy (FTIR) spectrum was 

measured with a FT–IR spectrometer (Bomem MB 102, Agilent technologies, Santa Clara, 

CA, USA). UV-visible spectra were recorded using a Multiskan UV-visible 

spectrophotometer (Thermo Scientific). All the luminescence spectra were recorded using a 

Jobin Yvon Horiba Fluoromax-3 at room temperature. A zeta potentiometer (ZetaPALS, 

Brookhaven Instrument, Holtsville, NY, USA) was used to measure the surface charge of the 

particles. Hydrodynamic diameter of the HNPs was determined by dynamic light scattering 

(DLS) measurements using a DynaPro NanoStar (Wyatt Technology Corp., Santa Barbara, 

CA, USA) instrument at 25 ± 0.1 °C. Disposable cuvettes were used for the measurements.  

The surface area and the total pore volume were evaluated using the BET (Brunauer–

Emmett–Teller) model and the pore size was evaluated using the BJH (Barrett–Joyner–

Halenda) model (Lucideon, Schenectady, NY, USA). The temperature changes of the 
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CMO:Eu@GNR solutions irradiated by an 808 NIR laser (Xi’an Sampling Laser Technik 

Institute, Xi’an, Shanxi, China) were collected by a portable fiber optic thermometer 

(Qualitrol, USA), and the laser power was measured using a handheld laser power meter 

(Edmund Optics, Barrington, NJ, USA).  

6.4.5 Heat transfer efficiency of synthesized NPs 

The change in the temperature of the HNPs was estimated by the heat input from the 

NIR laser via GNRs and heat dissipated into the ambient atmosphere, which can be 

expressed as follows: 

∑ 𝑚𝑖𝐶𝑖  
𝑑𝑇

𝑑𝑡
𝑖=2

= 𝑄𝑖𝑛 − 𝑄𝑜𝑢𝑡         (1) 

where mi and Ci are the mass and specific heat capacity of sample i, respectively. T is the 

temperature of the HNPs on NIR irradiation at time t. The mass of HNPs is significantly 

smaller than that of water (1 g), and the specific heat capacity of GNRs and water are ~0.129 

Jg
1

K
1

 and 4.18 Jg
1

K
1

, respectively.[13] By neglecting the specific heat capacity of GNR, 

eq. (i) can be modified as follows:   

                     𝐶𝑖  
𝑑𝑇

𝑑𝑡
= 𝑄𝑖𝑛 − 𝑄𝑜𝑢𝑡        (2) 

where Qin = (I0Itr)η and Qout = ∑hS[T(t)To], I and Itr are the NIR laser power before and 

after transmitting through the HNPs, h is the heat transfer efficiency, and S is the surface area 

of the interference between the HNPs and external environment. The increase in the 

temperature of the HNPs at any time t can be estimated as follows:  

𝑇(𝑡) = 𝑇0 +
(𝐼0 − 𝐼𝑡𝑟)𝜂

𝑚𝐶𝐵
(1 − 𝑒−𝐵𝑡)       (3) 
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where Tm is the maximum stable temperature of the HNPs at which laser is turned off, η is 

the photothermal conversion efficiency, and B is the heat dissipation constant. 

The dissipation constant (B) was calculated using the temperature decay profile after the 

laser was turned off as follows: 

               𝑇(𝑡) = 𝑇0 + (𝑇𝑚 − 𝑇0)𝑒−𝐵𝑡        (4) 

In thermal equilibrium condition, Qin= Qout 

i.e., 𝜂 = 𝑚𝐶𝐵
∆𝑇

∆𝐼
− − − −(5) , all symbols have their usual meanings. 

6.4.6 Cell culture and NPs treatment 

435 cells were cultured in a 1:1 mixture of Dulbecco’s-modified eagle’s medium 

(DMEM) and Ham’s F-12 medium supplemented with 5% fetal bovine serum (ThermoFisher 

Scientific). Mouse hepatocyte cells (AML12, normal hepatocyte from liver tissue) 

purchased from American Type Culture Collection (ATCC) were cultured in a 1:1 

mixture of Dulbecco's modified Eagle's medium and Ham's F12 medium (ATCC) with 

0.005 mg/ml insulin, 0.005 mg/ml transferrin, 5 ng/ml selenium, 40 ng/ml 

dexamethasone (Sigma-Aldrich) and 10% fetal bovine serum (ATCC) at 37°C with 

5% CO2 in a humidified atmosphere.  

Both cells were passaged at 70–90% confluency using 0.5% Trypsin-EDTA 

solution, and the cell number was estimated by a hemocytometer to be ∼1×10
5
 

cells/mL. 435 and AML12 cells (∼1×10
5
 cells/mL) were treated with 100 μL prepared 

NPs (20 μg/mL) for two hours incubation at 37 °C. Then, cells were washed with PBS 

to remove non-bound NPs. 435 cells without treatment, treated with HNP-PB or HNP-PB-

Ab were fixed first, then measured by scanning electron microscopy (SEM) and energy-
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dispersive X-ray spectra (EDX), which was controlled by FEI Quanta FEG 650 equipped 

with a FEG source (FEI Company). The fluorescence images were captured under a 

fluorescence microscope with DP30BW CCD camera (Olympus IX71, Olympus 

America Inc., Center Valley, PA, USA) with an excitation at 450 nm and an emission at 

630 nm. EDTA stabilized human whole blood were freshly obtained from Innovative 

Research (Novi, MI, USA). Whole blood and serum were used for white blood cell (WBC) 

count analysis. 

6.4.7 SERS measurements of cells treated with synthesized NPs  

SERS spectra were recorded using a Renishaw inVia Raman spectrometer 

(WIRE 3.3 software, Renishaw, Wotton-under-Edge, Gloucestershire, UK) equipped with 

a 300 mW, 785 nm NIR laser. Cells were cultured on magnesium fluoride (MgF2, 

United Crystals Co., Port Washington, NY, USA) and imaged in EBSS through a 63 × 

(NA = 0.90) water immersion objective (Leica Microsystems, Buffalo Grove, IL, USA). 

For Raman streamline mapping, the data were acquired at 1 accumulation with 10 s 

exposure, and the peak at 2152 cm
1

 from PB was selected for mapping. On each 

group, the cells were detected within 2 h at room temperature.  

6.4.8 NIR photothermal therapy on cells 

For NIR PTT, 435 and AML12 cells (∼1 × 10
5
 cells/mL) were incubated with 

about 100 μL prepared NPs (20 μg/mL CMO:Eu@SiO2@GNR-PB-Ab (HNP-PB-Ab) 

and CMO:Eu@SiO2@GNR-PB (HNP-PB), respectively) for two hours incubation at 

37 °C. Next, the cells were rinsed with PBS thrice and then exposed to the 808 nm 

laser irradiation at 0.8 W/cm
2
 power densities for 5 min. For cell viability test, the 
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cells with triplicates were stained using a LIVE/DEAD viability/cytotoxicity Assay 

Kit (Thermo Fisher Scientific) according to the instruction. After staining, the cells were 

imaged using a fluorescence microscope equipped with a DP30BW CCD camera 

(Olympus IX71) at 10× objective to analyze the relative proportion of live/dead cells.  

6.4.9 Apoptosis and reactive oxygen species (ROS) analysis   

The apoptosis level was recorded by a Muse™ Annexin V and Dead Cell kit (EMD 

Millipore Co., Billerica, MA, USA), and ROS level was measured by a Muse™ Oxidative 

Stress kit (EMD Millipore Co.). Cells were cultured in 6-well plates to about 70% confluence, 

and every treatment had three replicates. The cells were collected and analyzed using a Muse 

Cell Analyzer (EMD Millipore Co.). 

6.4.10 Statistics analysis 

Data are exhibited as mean ± standard deviation of error. One-way ANOVA is 

conducted for significance test by OriginPro 9 software (OriginLab Corp., Northampton, 

MA, USA). 

6.5 RESULTS AND DISCUSSIONS 

6.5.1 Characterization of HNP-PB  

Figure 6.1(A) shows the X-ray diffraction (XRD) pattern of CMO:Eu@SiO2 hybrid 

NPs. All diffraction peaks are well matches with tetragonal structure of CaMoO4 (JCPDF No: 

29–0351 having space group I41/a (88) and Z = 4) [14] and a broad peak between 15–30° 

centered at ~23° was assigned to porous silica present on the surface of the CMO:Eu 

nanoparticles [15]. The intensity of the diffraction peak centered at ~23° weak as 
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compared to that of CaMoO4 due to the amorphous nature of SiO2 on the surface of 

CaMoO4. No impurity phases were detected. In this way luminescence functionalized 

CMO:Eu nanoparticles are capped by SiO2 shell. Similar results were reported on 

mesoporous SiO2 functionalized with luminescent core or Fe3O4 magnetic 

nanoparticles [16, 17].  

The structural and morphological properties of the CMO:Eu@SiO2 (Figure 6.1(B)) 

and CMO:Eu@SiO2@GNR (Figure 6.1(C)) nanoparticles were examined by SEM. A 

mesoporous spherical SiO2 shell with uniform thickness was formed over CMO:Eu core. 

The average diameter of CMO:Eu@SiO2 nanoparticles was found to be ~206 nm. However, 

SEM micrographs were not able to resolve the thickness of SiO2 shell and CMO:Eu core. It 

was confirmed by using STEM micrograph (inset of Figure 6.1(B)). Moreover, the 

presence of SiO2 shell on the surface of CMO:Eu nanoparticles significantly enhanced the 

dispersion ability of the nanoparticles in distilled water. Furthermore, all the particles were 

spherical in shape and no irregular shaped particles were observed. Thickness of the SiO2 

shell can be varied simply changing the concentration of TEOS in the reaction [15]. The 

obtained CMO:Eu@SiO2 nanoparticles possessed uniform pore size of ~2.2 nm and high 

surface area 380 m
2
/g. SEM micrograph of CMO:Eu@SiO2@GNR hybrid nanoparticles was 

shown in Figure 6.1(C). On average each CMO:Eu@SiO2 nanoparticles was surrounded by 

~5 GNRs. The presence of elements in CMO:Eu@SiO2 nanoparticles was further confirmed 

by Energy-dispersive X-ray spectroscopy (EDX) spectrum as shown in Figure 6.1(D). Inset 

of Figure 6.1(D) shows the Fourier transform infrared spectroscopy (FTIR) spectra of (i) 

CaMoO4:Eu
3+

 and (c) CMO:Eu@SiO2 nanoparticles. The absorption peaks at 1642 and 3450 

cm
−1

 are attributed to bending and stretching vibrations water molecules present on the 
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surface of nanoparticles [18]. The band at ∼816 cm
−1

 is attributed to asymmetric stretching 

vibrations of O–Mo–O of MoO4
2−

 tetrahedral [14]. The absorption band ~1110 cm
−1

 is due to 

stretching vibrations of Si–O–Si which arises from hybrid nanoparticles [16].  
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Figure 6.1 (A) XRD (B) SEM of Silica coated CMO nanoparticles and (C) Silica coated 

CMO nanoparticles conjugated with gold nanorods, Inset of (B) shows the STEM of 

CMO@SiO2; Inset of (C) shows the SEM of single CMO@SiO2@GNR. (D) EDX spectrum 

of CMO@SiO2. (E) Excitation, and (F) Luminescence spectra of CMO@SiO2@GNR-PB 

nanoparticles under different excitations. (G) UV–visible spectra of GNR, 

CMO@SiO2@GNR, PB and CMO@SiO2@GNR-PB. (H) Photothermal responses of 808 

nm laser irradiation with different power densities for 900 s at fixed CMO@SiO2@GNR-PB 

concentration (28 μg/mL GNR). (I) Temperature change of CMO@SiO2@GNR-PB solution 

with 28 μg/mL GNR at 0.8 W/cm
2
 808 nm laser irradiation over seven LASER ON/OFF 

cycles. Experiment was carried out at room temperature.   

 

The excitation (monitoring emission at 615 nm) and emission (excitation at 265, 285, 

300, 395 and 464 nm) spectra of CMO@SiO2@GNR-PB hybrid nanoparticles are shown in 

Figure 6.1(E-F). Excitation consists of a strong and broad absorption in the range of 225–350 

nm, peak centered at 285 nm is attributed to Mo–O charge transfer (CT). Inset of the Figure 

6.1(E) shows the expansion the excitation spectrum between 350 to 480 nm. The sharp 

absorption peaks ~395 (
7
F0→

5
L6) and 464 nm (

7
F0→

5
D2) are due to the f–f transitions of 

Eu
3+

 ion [19]. Figure 6.1(F) shows the emission spectra of bare CMO@SiO2@GNR-PB 

hybrid nanoparticles at different excitation wavelengths. Emission spectra consist of sharp 

emission peaks which are assigned to 
5
D0,1→ 

7
Fi , i=0–4, transitions of Eu

3+
 ion. The 

emission at 595 and 615 nm correspond to the magnetic (
5
D0→

7
F1) and electric dipole 

transitions (
5
D0→

7
F2) of Eu

3+
 ion, respectively, where the emission intensity of the electric 

dipole transition is significantly higher that other transitions. When Eu
3+

 ions occupy the 
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Ca
2+

 lattice sites in CaMoO4 host, only the magnetic dipole transition should be allowed 

according to Judd–Ofelt theory, but the non-inversion center leads to a dominant 

hypersensitive electric dipole transition at 615 nm.  Moreover, there is a significant 

enhancement in the luminescence intensity of CMO@SiO2@GNR-PB hybrid nanoparticles 

as compared to CMO@SiO2. This may be due to proximity of GNRs on the surface of 

luminescent NPs that significantly enhance the luminescence efficiency [2]. Figure 6.1(G) 

shows the UV-visible spectra of GNR, CMO@SiO2@GNR, PB and CMO@SiO2@GNR-

PB between 200–1000 nm. Two characteristic peaks were observed ~530 and 808 nm, which 

are assigned to surface plasmon resonance (SPR) of GNRs. Bare GNRs and 

CMO@SiO2@GNR hybrid nanoparticles show almost no any absorbance around 680 nm 

whereas Prussian blue shows a strong absorption at 680 nm which arises due to a charge-

transfer absorption band from Fe(II) to Fe(III) peculiar to Prussian blue [20]. The 

CMO@SiO2@GNR-PB hybrid nanoparticles show a broad absorption from 500–1000 nm 

which arises due to overlap of PB absorption and SPR band of GNRs, which enable the use 

of hybrid nanoparticles as a potential agent for NIR mediated PTT agent [21].  

 

 

Figure 6.2 (A) Photothermal responses of PBS, GNR, PB, CMO@SiO2@GNR and 

CMO@SiO2@GNR-PB for 900 s at fixed 0.8 W/cm
2
. (B) The photothermal response of the 
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CMO@SiO2@GNR-PB solution (28 μg/mL GNR) was recorded for an NIR laser (808 nm, 

0.8 W/cm
2
), and then the laser was turned off. (C) Temperature increase of synthesized 

CMO@SiO2@GNR-PB solution as a function of laser power extinction. 

 

The photothermal properties of CMO@SiO2@GNR-PB hybrid nanoparticles 

were investigated by monitoring the temperature of 1 mL water containing 

CMO@SiO2@GNR-PB NPs (28 μg/mL GNRs) under 808 nm NIR light for 900 s at 

different irradiation powers (0.8–1.2 W/cm
2
) (Figure 6.1(H)). Temperatures increased 

between 25 to 65 °C on NIR irritation (0.8 W/cm
2
) to the hybrid nanoparticles for 900 

s. It was also found that the temperature of hybrid nanoparticles was exponentially 

increased with time and laser irradiation power. The comparison of photothermal 

responses of 808 nm laser irradiation at PBS, GNR, PB, CMO@SiO2@GNR and 

CMO@SiO2@GNR-PB for 900 s at fixed 0.8 W/cm
2
 was shown in Figure 6.2(A). No 

significant difference in temperature change was observed when PBS was irradiated 

with an 808 nm NIR radiation. It was found that the order of PTT heating efficiency 

follows CMO@SiO2@GNR<PB<GNR<CMO@SiO2@GNR-PB. To understand the 

photostability of CMO@SiO2@GNR-PB hybrid nanoparticles, seven cycles of ON/OFF NIR 

laser irradiations were performed (~0.8 W/cm
2
 for 300 s (laser ON), followed by naturally 

cooling for 1800 s (laser OFF) (Figure 6.1(I)). It was found that the temperature increased to 

43 C in the first laser ON condition of the CMO@SiO2@GNR-PB. After the seventh cycle 

of laser ON/OFF, the temperature elevations remained almost the same as in the first cycle 

within the limits of error bar. It confirms the excellent photothermal stability of 

CMO@SiO2@GNR-PB hybrid nanoparticles. The PTT heat conversion efficiency (η) of 
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CMO@SiO2@GNR-PB hybrid nanoparticles was determined using the previous report by 

Pinchuk and co-workers (Eq. 1-5) [13].
 
PTT effect of CMO@SiO2@GNR-PB hybrid 

nanoparticles on an 808 nm NIR laser, in which the irradiation lasted for 300 s, and then the 

laser was shut off and allowed to cool the nanoparticles up to 1800 s (Figure 6.2(B)).  Inset of 

Figure 6.2(B) shows log of (T(t)–T0)/(Tm–T0) versus time obtained from cooling curve and 

the value of heat dissipation rate constant (B) was calculated using the cooling temperature 

profile when the laser was turned off. The average value of B was found to be ~1.6110
3

 s
1

 

by linear fitting to Figure 6.2(B) with R
2
 = 0.99883. Figure 6.2(C) shows the linear 

relationship between ΔT and ΔI. The η value was found to be ~30.6%. Furthermore, there is 

no significant difference in luminescence emission was measured on 464 nm excitation to the 

hybrid nanoparticles at the start and end of each cycle (Figure 6.1(I)).    

6.5.2 Zeta potential/hydrodynamic diameter properties 

 

Moreover, for the cellular uptake of the hybrid nanoparticles, its surface charge and 

dispersion ability play essential factors. Bare GNRs show a positive charge of ~43.9 mV. 

CMO@SiO2 nanoparticles show a negative charge of –26.6 mV, this is may be due to the 

presence of –OH groups present on the surface of nanoparticles. Further, zeta potential of 

CMO@SiO2@GNR-PB hybrid nanoparticles shifted to +16 mV. This high value reveals the 

good colloidal stability of the hybrid nanoparticles but minimum surface charge is required 

for the better tumor penetration. Recently, Joshi and Halas group demonstrated that the 

PEGylated gold nano-shell (–5.4 mV) and nanomatryoshkas (–4.4 mV) shows more tumor 

uptake as compared to bare gold nano-shell (–57 mV) and bare nanomatryoshkas (–46.7 mV) 

nanoparticles [22]. Also, mesoporous silica coated gold nanoparticles with zeta potential –

22.5 mV have been successfully tested for both in-vitro and in-vivo applications [23].  



179 
 

 

6.5.3 Characterization of HNP-PB distributed on cells by SEM   

To understand the distribution of nanoparticles in cell environment, 435 cells were 

treated with HNP-PB and HNP-PB-Ab nanoparticles.  Figure 6.3(A) illustrates the 

representative SEM images of 435 cells without treatment, treated with HNP-PB and treated 

with HNP-PB-Ab (black arrow points to NPs) and its EDX spectra were displayed in Figure 

6.3(B). The scale of HNP-PB and HNP-PB-Ab group in Figure 6.3(B) is slightly different, 

which is caused by the distribution of NPs, but both groups confirm the distribution of NPs 

on cells. After 2 h NPs incubation, cells treated with HNP-PB-Ab group exhibited a strong 

EDX signal which confirms the presence of highest occupancy NPs distributed around the 

cell surface as compared to control and HNP-PB groups, indicating the specificity of HNP-

PB-Ab. Few NPs were still observed on HNP-PB treated cells because of non-specific 

binding. 

 

 

Figure 6.3 (A) Representative SEM images of 435 cells without treatment, treated with 

HNP-PB or HNP-PB-Ab (black arrow points to NPs). (B) Corresponding energy-dispersive 

X-ray spectroscopy of 435 cells without treatment, treated with HNP-PB or HNP-PB-Ab. 
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6.5.4 Fluorescence imaging of HNP-PB on cells 

Figure 6.4 exhibits phase contrast, fluorescence, and overlay of phase contrast 

and fluorescence images of 435 and AML12 cells without treatment (control), treated 

with 2 h HNP-PB (with or without Ab). In 435 cells (Figure 6.4(A)) there was no 

obvious fluorescence red color in the groups of control and 2 h HNP-PB; while a 

strong red color was observed in the group of 2 h HNP-PB-Ab, demonstrating the 

fluorescence function of synthesized NPs with strong specificity once conjugated with 

antibodies. To further investigate the specificity of HNP-PB-Ab, non-cancerous cells 

(AML12, HER2 negative) were treated with the same groups (Figure 6.4(B)). Still no 

red fluorescence was detected under the groups of control and 2 h HNP-PB. However, 

there was a slight red fluorescence color in the group of 2 h HNP-PB-Ab. When 

compared to 435 cells of 2 h HNP-PB-Ab group with the group of AML12 cells, it 

was evident that 435 cells possessed much more red color than AML12 cells, 

indicating the over-expression of HER2 on 435 cells than AML 12 cells. This also 

further confirmed the specificity of HNP-PB-Ab for 435 breast cancer cells.  

The red fluorescence was observed in the group of 435 and AML12 cells 

treated with HNP-PB-Ab by ~464 nm excitation and 615 nm emission, and this 

fluorescence property is from Eu
3+

 ion (
5
D2 level of Eu

3+
 ion). Previous studies also 

demonstrated the fluorescence emission from Eu
3+

 doped NPs for enhanced imaging 

[15, 16]. Compared to 435 cells with AML12 cell line, 435 cells over-express HER2 

[24], and AML12 cell line was derived from normal liver and is non-tumorigenic [25]. 

The 435 cells of 2 h HNP-PB-Ab group exhibited the strongest fluorescence compared 

to other groups.  
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Figure 6.4 Phase (PH), fluorescence (FL), and overlay images of 435 (A) and AML12 

cells (B) without treatment and treated with HNP-PB or HNP-PB-Ab for 2 h. Scale bar: 

100 μm. 
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6.5.5 Distribution of HNP-PB on cells detected by SERS 

HNP-PB possess SERS function due to GNR conjugation, and GNR has been 

largely utilized to enhance Raman intensity [26, 27]. Prussian blue (PB) was selected 

to evaluate the SERS ability as the Raman reporter molecule for its strong Raman 

vibrational band at ~2152 cm
-1

 (stretching vibration of carbon nitrogen triple bond 

group) [28]. Raman mapping for live 435 and AML12 cells was performed by 

selection of 2152 cm
-1

 (a characteristic peak from PB). The HNP-PB were conjugated 

with Ab for the enhancement of specificity. Figure 6.5 shows the Raman bright-field 

image, the corresponding Raman streamline mapping and representative Raman spectrum 

(2000–2300 cm-1) from SERS negative (green cross) and SERS positive (red cross) sites of 

single living 435 (Figure 6.5(A)) and AML12 cell (Figure 6.5(B)). It was observed 

that 435 cells treated with HNP-PB-Ab illustrated the strongest distribution of NPs 

(bright yellow color indicated), suggesting the specificity of synthesized HNP-PB-Ab. 

Few NPs were still distributed around the 435 cells treated with HNP-PB due to non-

specific binding. NPs were also applied to the AML12 for comparison (Figure 6.5(B)). 

It was found that few NPs were located around AML12 cells in both HNP-PB and 

HNP-PB-Ab groups, indicating non-specific binding of NPs. These SERS results 

verified the specificity of HNP-PB-Ab and the distribution of these NPs on cancerous 

cells (e.g., 435 cells) but not on non-cancerous cells (e.g., AML 12 cells). 
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Figure 6.5 Raman streamline mapping of 435 (A) and AML12 cells (B) without treatment 

and treated with HNP-PB or treated with HNP-PB-Ab for 2 h (peak at 2152 cm
-1

 from PB 

was selected for mapping). Scale bar: 10 μm.  
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Figure 6.6 (A) Photothermal effect and biocompatibility. 435 and AML12 cells were 

incubated without NPs (control), with HNP-PB or HNP-PB-Ab for 2 h; after that, cells were 

irradiated under 0.8 W/cm
2
 808 nm laser for 5 min  (green: live cells; red: dead cells. Scale 

bar: 100 μm). (C) Cell viability of 435 and AML12 cells (Error bar: standard deviation of the 

mean; N = 3, **P <0.01). (D) Human white blood count.  
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6.5.6 Photothermal effect and biocompatibility of HNP-PB 

The photothermal effect of HNP-PB and HNP-PB-Ab NPs on HER2 positive 435 

cells and HER2 negative cells is presented in Figure 6.6. Cells were treated with HNP-PB 

(without or with Ab) and irradiated by an 808 nm NIR laser for 5 min (0.8 W/cm
2
). Figure 

6.6(A-B) exhibits the fluorescence images (live cells: green; dead cells: red) of 435 

and AML12 cells without or with NPs treatments (HNP-PB or HNP-PB-Ab). Cells 

were alive in the control group, whereas a few dead cells were observed in the HNP-

PB group when treated to both types of cells. As expected, almost all cells were dead 

when HNP-PB-Ab was applied to 435 cancer cells (Figure 6.6(A)). However, only 

few dead AML12 cells in HNP-PB-Ab group were observed (Figure 6.6(B)), 

indicating that HNP-PB-Ab can specifically target and kill 435 cancer cells that 

overexpressed HER2.  

The quantitative cell viability of 435 and AML12 cells without and with treated 

(HNP-PB or HNP-PB-Ab) groups for 2 h was studied on 5 min 0.8 W/cm
2
 808 nm laser 

irradiation (Figure 6.6(C)).  There was no significant viability differences for AML12 

cells among these three group. However, 435 cells treated with HNP-PB-Ab had the 

least percentage of viability (~4.0±2.8%) comparing to control and HNP-PB group, 

demonstrating the specificity and high PTT efficiency from HNP-PB-Ab. Moreover, 

HNP-PB with or without Ab were treated with WBC to evaluate their biocompatibility, 

as shown in Figure 6.6(D). WBC count reveals that there was no significant viability 

differences among these three groups, and the numbers of WBC for all treated groups 

were within normal range (~4000–11,000 white blood cells/µL) [29], indicating the 

good biocompatibility of synthesized HNP-PB.  
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Figure 6.7 Cytotoxicity of synthesized HNP-PB. (A) The histograms show the percentages 

of ROS- (M1) and ROS+ (M2) for one experiment. 435 cells were incubated without NPs 

(control), with HNP-PB or HNP-PB-Ab for 2 h; after that the formation of ROS was 

measured using the Muse flow cytometry-based oxidative stress assay™. (B) The scattered 

apoptosis blots represent one experiment. 435 cells were incubated without NPs (control), 

with HNP-PB or HNP-PB-Ab for 2 h; after that apoptosis was evaluated after staining with 

FITC-annexin-V/7ADD. (C) The graph displays the summary ROS+ cells from three 

independent experiments. (D) The graph represents the summary mean percentages ± SD of 

apoptosis (early and late apoptosis) of three independent experiments. (E) Cell viability of 

435 and AML12 cells: control and treated with different concentrations of HNP-PB for 24 h 

(Error bars are standard deviation of the mean; N = 3, **P <0.01). 
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The PTT results indicated that the HNP-PB-Ab could kill 435 cells with high 

specificity, PTT efficiency and biocompatibility. The high specificity comes from the 

binding interactions between the Ab and HER2 on the cancer cell, the advanced PTT 

efficiency is from the synergistic effect of GNR and PB that can convert light to heat 

effectively, and the good biocompatibility of HNP-PB-Ab is caused by the inert 

property of SiO2 and GNR and the stability of PB. Therefore, the HNP-PB-Ab with high 

specificity, PTT efficiency and biocompatibility could be used as a potential approach for 

cancer treatment and may apply in clinical cancer therapy.  

6.5.7 Cytotoxicity of synthesized HNP-PB 

To evaluate the cytotoxicity of synthesized HNP-PB, ROS, apoptosis and cell 

viability were measured for the cells exposed to these NPs. Figure 6.7(A) is the 

representative result of ROS expression from flow cytometry, and Figure 6.7(C) compares 

ROS+ cells from three independent experiments. The representative apoptosis result is shown 

in Figure 6.7(B), and Figure 6.7(D) exhibits the summary mean percentages of apoptotic 

cells of three independent experiments. Figure 6.7(E) analyzes the cell viability of 435 and 

AML12 cells incubated with HNP-PB for 24 h at different concentrations (from 0 to 400 

µg/mL). In Figure 6.7(C) the cell population with ROS+ cells in control group is 3.33 ± 

0.72%, and there is a slight increase in HNP-PB without (3.81 ± 0.38%) or with antibody 

(4.48 ± 1.63%) groups. There is no significant difference among them for ROS expression. 

 Similarly, there is no significant difference in NPs-induced apoptosis among the three 

groups (Figure 6.7(D)): control group (5.70 ± 1.01%), cells treated with HNP-PB (5.77 ± 

1.46%) and HNP-PB-Ab (6.03 ± 1.14%), respectively.  



188 
 

 

The effect of HNP-PB on cell viability (Figure 6.7(E)) was evaluated using the 

LIVE/DEAD viability/cytotoxicity assay kit. Even though cell viability decreased slightly 

with the increase of HNP-PB concentration, it still remains >90% up to 400 μg/mL of the 

HNP-PB incubated for 24 h. This observation is similar to previous study that mesoporous 

silica nanoparticles have little impact on cellular activities (viability, mitochondrial activity, 

membrane integrity) with good biocompatibility [30]. The slight decrease of cell viability at 

high concentration (400 μg/mL) of HNP-PB may be attributed to CMO:Eu, which has been 

reported to produce hydroxyl radicals at high concentration [31]. Hydroxyl radicals can 

generate ROS which induces cellular apoptosis [32, 33]. However, the concentration of 

HNP-PB used in this study is under 50 μg/mL, so the impact of cytotoxicity of higher NP 

concentration is limited.  

Overall, the cytotoxic effect of HNP-PB on cancerous and non-cancerous cells was 

negligible, further demonstrating the good biocompatibility of synthesized NPs.  

6.6 CONCLUSION  

In summary, PB coated CaMoO4:Eu@SiO2@Au-nanorod hybrid nanoparticles were 

prepared and used as a fluorescence, SERS and PTT probe for biomedical applications. The 

nanostructures were heated up to hyperthermia temperature (43 °C) on excitation with NIR 

light and can be used to kill cancer cells. Also, electric dipole transition of Eu
3+

 ion (615 nm) 

can be used for imaging cancer cells on excitation with 464 nm. Surface functionalized 

GNRs and SiO2 shell make hybrid particles more biocompatible. Core/shell features of the 

particles were demonstrated by STEM. Finally, in-vitro results suggest that HER2 antibody 

functionalized hybrid nanoparticles may induce more cell death as compared to bare 

nanoparticles on 808 nm laser excitation. Also, the porous SiO2 structure may useful for 
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loading drug and NIR fluorophores into the porous structure. This method can be used to 

prepare various other upconversion core functionalized mesoporous nanostructures decorated 

with GNRs and could be used for different biomolecules in biological and biomedical 

applications. In addition, the ROS generation, apoptosis level and cell viability changes 

induced from the synthesized construct were evaluated, confirming the good 

biocompatibility of synthesized materials. Thus, this work demonstrates the promising 

potential of CMO:Eu@SiO2@GNR-PB nanocomposites that potentially benefit the area of 

cancer therapy. 
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CHAPTER 7 

TROPHOBLAST DERIVED CELLS BIOPHYSICAL AND BIOCHEMICAL CHANGES 

ON TiO2 NT ARRAYS COATED WITH GOLD NANOPARTICLES (TiO2 NTs-Au) 

7.1 ABSTRACT  

Trophoblast derived cells (TE) are interesting model of stem-like cell research for 

their regenerative properties, indefinite passage, and foreign DNA receptivity. In this work, 

vertically orientated TiO2 nanotube (NT) arrays coated with gold nanoparticles were 

fabricated, and trophoblast cells were grown on the surface of these TiO2 NT fabricated 

substrates. Fluorescence microscopy, Raman spectroscopy, and scanning electron 

microscopy were applied to study cell viability, cellular biochemical information and 

morphology of TE cells grown on TiO2 NTs surface up to 30 days. This study will benefit 

efforts to design and fabricate new biomimetic materials for regenerative medicine, and 

provide new insight into the nature of trophoblast cells-nanotopography interaction. 

7.2 INTRODUCTION 

Titanium surfaces have been widely applied in clinical implantations for the purpose 

of bone, joint, or tooth replacements [1]. Compared with a non-textured titanium surface, a 

thin TiO2 nanotube (NT) layer formed on Ti substrate has desirable bioactive (bone-growth) 

properties [2]. In recent years TiO2 NT arrays have gained much attention as a potential 

biomaterial for their superior biocompatibility to induce specific cell responses.  

TiO2 NT surfaces with nanoscale spacing models can be utilized for size-dependent 

cellular response [3]. The nanostructure also offered nanoscale cues to enhance cellular 
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probing, cell sensing, and cell migration. For bovine aortic endothelial cells (BAECs) grown 

on TiO2 NT, it is of benefit to probe the surface and interlock cellular extensions. 

Extracellular matrix (ECM) deposition and a more natural “vascular bed” were stimulated by 

TiO2 NT, which also induced unidirectional cytoskeletons and more organized lamellipodia, 

indicating the TiO2 nanotopography facilitated endothelialization and endothelial cell 

migration, evidenced especially in the raised formation of ECM and increased level of nitric 

oxide/endothelin ratio [4]. The size of TiO2 NT also can regulate the differentiation of human 

mesenchymal stem cell (hMSC) towards an osteoblast lineage without osteogenic inducing 

factors. In a relatively confined diameter range (30 nm ~ 100 nm), TiO2 NT size is correlated 

with the hMSC oriented differentiation vs. adhesion and growth [5]. Nanoscale TiO2 surface 

topography is associated with the proliferation, vitality, and motility of mesenchymal stem 

cells (MSCs) and their differentiation to bone-forming cells was associated specifically with 

NT with diameters between 15 and 100nm [6]. It was reported that 15-nm TiO2 NT can 

maximally induce the adhesion, proliferation, migration, and differentiation of MSCs, while 

100-nm NT have the opposite effect, inducing cell death [3].  

Cellular interactions with the extracellular matrix and other cells, are induced by 

integrins that regulate all major cellular activities including adhesion, differentiation, cellular 

shape changes, proliferation, migration, gene expression, and apoptosis in a synergistic 

approach with hormones and growth factors [7, 8]. Due to cell adhesion to the extracellular 

matrix, integrins cluster into focal adhesion complexes, causing activation of intracellular 

signaling cascades into the cytoskeleton and to the nucleus [9, 10]. Various kinds of proteins 

such as FAK, paxillin, tensin, p130Cas, and others are recruited by functional focal adhesion 

complexes, which grow in size and complexity with time of adhesion [9, 11]. On 15 nm TiO2 
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NT the phosphorylation of focal adhesion kinase FAK and the ERK kinase was highest in 

growing stem cells, while lowest on 100 nm NT. The concentration and topography of cell 

adhesion sites in the extracellular matrix are critical for integrin clustering and activation [6]. 

Porcine trophoblast derived cells have possessed a feature of stem cell - self-renewal, 

and they are valuable tools for studying the molecular basis of early embryo physiology. In 

serum-free medium these cells grow in colonies that form domes, self-regenerate, and can be 

passaged indefinitely, but in serum medium these cells fail to self-regenerate, undergo wide-

ranging morphological changes, and ultimately senesce. In this study, we designed and 

synthesized three-dimensional TiO2 NT coated with gold nanoparticles (Au) to study the 

biochemical and morphological alterations of trophoblast-derived stem-like cells treated with 

serum and serum-free media grown on this substrate at different time points. This study 

provided the new insight into the trophoblast cell-nanotopography interaction that would be 

of benefit in the design and fabrication of new biomimetic materials for regenerative 

medicine. 

7.3 HYPOTHESIS 

Three-dimensional nanostructures have stronger effects on the morphological and 

functional development of TE cells over two-dimensional Petri dishes. 

7.4 MATERIALS AND METHODS 

7.4.1 Synthesis of TiO2 and TiO2 NT coated with gold nanoparticles  

Anodization methods were applied to prepared TiO2 NT arrays substrate. First 

titanium foils (0.5 mm thick, 99.6% purity, 1 cm × 1 cm, Alfa Aesar, Ward Hill, MA, USA) 

were immersed into acetone and ethanol for 30 min ultrasound in order to thoroughly 
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degrease. Then a solution consisting of HF:HNO3:H2O = 10:30:60 (vol%) was used to 

chemically polish titanium foils. The anodization solution was prepared with a mixture 

(90:10 vol%) of glycerol and deionized water (18.2 MΩ cm
−1

). The cleaned titanium foils 

were anodized for 3 h using a two electrode electrochemical system with a platinum foil as 

the cathode at a constant potential (20 V) with a direct current power supply (Agilent 

Technologies, Santa Clara, CA, USA). After that the TiO2 NTs substrate was annealed for 2 

h at 400 °C. 

To attach gold nanoparticles, the prepared TiO2 NTs substrate was immersed in a 

0.02 M SnCl2 solution with concentrated HCL and deionized water for 5 min. After being 

rinsed with deionized water and ethanol, respectively, the air dried TiO2 NTs substrate was 

immersed in a 0.02 M HAuCl4 solution three times (each time 2 min) to deposit Au seeds 

onto the substrate by reduction. 0.10 M cetyltrimethyl ammonium bromide (CTAB), 2.5 × 

10
−4

 M HAuCl4 and 0.10 M freshly prepared ascorbic acid were mixed to make the growth 

solution. The treated substrate was immersed into growth solution for 2 min, then exposed to 

30 min UV irradiation. After that the substrate was re-immersed into the growth solution in a 

38 °C water bath for 16 h. Finally the substrates with gold particles were ready to be prepared 

for characterization and cell growth experiments.  

7.4.2 Trophoblast-derived stem-like cell preparation  

Porcine trophoblast-derived stem-like cells were processed as described previously 

[12]. Though no animals were used in the current experiments, the authors can assert that the 

cells utilized herein were collected in strict accordance with the animal welfare guidelines 

reviewed and approved by the Institutional Animal Care and Use Committee at Utah State 

University (Protocol #2239). Briefly, cells were harvested from pig embryos on gestational 
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day 13, dissociated into small clumps of cells using mechanical (vortex) and enzymatic 

(trypsin) means, and cultured in a defined (fetal bovine serum-free) medium at 39 °C with 

5% CO2 in air. The detailed formula of medium is in Table 7.1. The serum-free medium 

consists of 49% (v:v) Dulbecco’s Modified Eagle Medium (DMEM; Corning/Mediatech; 

Manassas, VA, USA), 49% (v:v) Ham’s F12 Nutrient Mixture (Corning), and 2% (v:v) B-27 

Supplement (50X; Invitrogen, Carlsbad, CA, USA) supplemented with 20 ng/ml Epidermal 

Growth Factor (Sigma-Aldrich, St. Louis, MO, USA), 40 ng/ml FGF2 (Sigma-Aldrich), and 

20 μg/ml gentamicin. Cells were cultured under these conditions until utilized for the 

experiments detailed here. Upon initiation of the current work, cells were subpassaged and 

plated onto the prepared TiO2 NTs or TiO2 NTs-Au substrate cell culture well inserts in 

either the serum-free medium mentioned earlier, or a presumptive ‘differentiation’ medium 

that consists of 85% (v:v) DMEM base medium, 15% (v:v) fetal bovine serum, 2 ng/ml 

FGF2, and 20 μg/ml gentamicin.  

7.4.3 Fluorescence microscopy   

Bright field and fluorescence images were collected by an Olympus IX71 inverted 

fluorescence microscope (Olympus America Inc., Center Valley, PA, USA) equipped with an 

Olympus DP30BW CCD camera using Olympus DP-BSW Controller and Manager 

Software. Images were acquired via a 10× lens (Olympus). LIVE/DEAD 

Viability/Cytotoxicity Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA) was used 

to image cell viability. 
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7.4.4 Raman microspectroscopy 

 Raman spectra were recorded using a Renishaw inVia Raman spectrometer 

(Renishaw, Wotton-under-Edge, Gloucestershire, UK) equipped with a 63 × 0.9NA water 

immersion objective (Leica Microsystems, Buffalo Grove, IL, USA) and a 785 nm near-IR 

laser. Cells cultured onto TiO2 NT coated with gold nanoparticles were placed under the 

Raman microspectrometer. Cells were maintained in medium during Raman measurements.  

The wavenumber of 520.5 ± 0.1 cm
-1 

with silicon at a static spectrum was the standard 

calibration for the spectrometer. Spectra were then collected in static mode for 1 

accumulation at 10 s laser exposure over a wavenumber range of 600–1800 cm
-1

.  

Cosmic rays of Raman spectra were removed by Renishaw Wire 3.3 software. Due to 

the interferences from background and other factors, mathematical approaches were 

employed to reduce systematic noise and amplify the signal of biochemical compositions in 

target cells.  

7.4.5 Scanning electron microscope 

The substrates were characterized by a Hitachi S4000 scanning electron microscopy 

(SEM, Hitachi America Ltd, Tarrytown, NY, USA). X-ray photo-electron spectroscopy 

(XPS) was performed with a Kratos Axis Ultra DLD instrument using a monochromatic Al 

K-α source. Powder X-ray diffraction (XRD, X’PertPRO/cubix PRO, PANalytical) was 

obtained using Cu K-α radiation. 

 

 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CCsQFjAB&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FScanning_electron_microscope&ei=suixU8XSONSlsASXqoH4Bg&usg=AFQjCNFY2595-cVDO83dYumd4cyRxipOSQ&sig2=DCmLqXCRXfinGWhflM2QGQ&bvm=bv.69837884,d.cWc
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7.5 RESULTS AND DISCUSSION 

7.5.1 Characterization of TiO2 NTs and TiO2 NTs-Au substrates 

The synthetic TiO2 NTs had around 63 nm inner diameter (Figure 7.1A) and a 540 

nm length (Figure 7.1B). It is reported that TiO2 NTs with small diameter (~ 30 nm) can 

promote the adhesion of hMSC without affecting differentiation, while TiO2 NTs with large 

diameter ((~ 70 to 100 nm) can induce hMSC selective differentiation into osteoblast-like 

cells [5]. In this study, TiO2 NTs with ~63 nm diameter were selected to study the effect of 

3D substrate on the growth of trophoblast cells.  

Gold nanoparticles have been considered as biocompatible in vitro [13], and they are 

suitable candidates for nanomedicine because of their noncytotoxic, nonimmunogenic and 

good biocompatible properties. In addition, gold nanoparticles can be applied to enhance the 

Raman signal of reporter molecule [14]. To increase the biocompatibility and Raman signal, 

gold nanoparticles were coated onto the surface of TiO2 NTs. It was found that the gold 

nanoparticles, randomly distributed on the surface of TiO2 NTs (Figure 7.1C), were mainly 

hexagonal in shape with ∼140 nm diameter (Figure 7.1D). The gold nanoparticles and gold 

cluster covered most of the TiO2 NTs surface area. TiO2 NTs-Au substrates were sterilized 

before culturing trophoblast-derived stem-like cells for further detection.   

7.5.2 Biochemical analysis of trophoblast-derived stem-like cells grown on TiO2 NTs-Au 

substrates 

To evaluate cellular biochemical information on three-dimensional substrates, 

trophoblast-derived stem-like cells were seeded on TiO2 NTs-Au substrates. TiO2 NTs-Au 

substrates were chosen because gold nanoparticles on the surface of TiO2 NTs could enhance 

the Raman signal from cells, while cells grown on TiO2 NTs substrates only displayed the 
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signal from TiO2 NTs substrates, as shown in Figure 7.2. For example, the Raman peak at 

639 cm
-1

 was from the TiO2 NTs substrate (labelled with black dash line). However, cells 

grown on TiO2 NTs-Au substrates exhibited the enhanced Raman peaks from cells.  

 

 

Figure 7.1 (A) The SEM top view of TiO2 NTs, (B) cross section of TiO2 NTs, (C) the top 

view of TiO2 NTs-Au, (D) the enlarged top view of TiO2 NTs-Au. 
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Figure 7.2 Raman spectra of trophoblast-derived stem-like cells grown on TiO2 NTs-Au NPs, 

TiO2 NTs and MgF2 substrates (black dash line indicates the peak from TiO2). 

 

The smallest size of trophoblast cell was around 20 µm under undifferentiated status, 

so the cells of all groups covered the area coated with gold nanoparticles to receive enhanced 

Raman signal from cells. Raman average spectra of cells on TiO2 NTs-Au at day 3, 5, 7, 10, 

15 and 30 on serum-free and serum media were illustrated in Figure 7.3. The characteristic 

Raman peaks were labelled, and Raman signal was intensified because of the surface 

plasmon resonance effects from gold nanoparticles. The Raman spectra of both serum-free 

and serum groups at different days exhibited the characteristic peaks at 720 cm
-1

 (DNA), 854 

cm
-1

 (Tyrosine), 1006 cm
-1

 (Phenylalanine), 1129 cm
-1

 (C-C skeletal stretch 

transconformation), 1158 cm
-1

 (Lipids and nucleic acids), 1213 cm
-1

 (Tyrosine, 

phenylalanine), 1260 cm
-1

 (Protein band), 1341 cm
-1

 (CH deformation (proteins and 
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carbohydrates)), 1374 cm
-1

 (Ring breathing modes of DNA/RNA), 1490 cm
-1

 (nucleic acids), 

1582 cm
-1 

(Phenylalanine).  

 The difference between serum and serum-free groups was the Raman peak at 1446 

cm
-1 

(CH2 deformation (proteins & lipids)) as shown in Figure 7.3B. There was no Raman 

peak at 1446 cm
-1 

from day 3 to day 30 for cells with serum-free media groups. However, at 

day 7, 10 and 15 the Raman peak at 1446 cm
-1 

was more apparent on serum groups than 

serum-free groups, but decreased at day 3, 5 and 30 on serum groups. This Raman peak 

could be a potential biochemical marker to distinguish undifferentiated and differentiated 

trophoblast cells from day 7 to day 15.  

Raman spectroscopy is able to monitor the biopolymer changes of trophoblast cells in 

situ and in real-time. It is reported that the Raman intensity of nucleic acids can be indicative 

of stem cells differentiation that the intensity of nucleic acids for differentiated stem cells is 

significantly less than that of undifferentiated cells [15, 16]. In this study, the most 

significant difference between differentiated and undifferentiated cells was the CH2 

deformation (proteins & lipids) indicated by Raman peak at 1446 cm
-1

. This observation was 

different from above reported stem cells research, and the reasons may be accounted for the 

differences in cell type and the effect of substrate (TiO2 NTs-Au) used in this study.    

7.5.3 Cell viability analysis of trophoblast-derived stem-like cells grown on TiO2 NTs-

Au substrates  

As shown in Figure 7.4, viabilities of the TE cells grown on TiO2 NTs-Au at day 3, 5, 

7, 10, 15 and 30 on serum and serum-free media (green: live; red: dead; scale bar: 100 µm) 

were compared. Firstly the cells on both media were alive among 30 days, suggesting the 

good biocompatibility of TiO2 NTs-Au substrates. Secondly the size of cells in serum-free 
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medium (Figure 7.4A) was less than that of cells in serum medium (Figure 7.4B), suggesting 

that cells in serum-free media still maintained undifferentiated state up to 30 days. However, 

the size of cells in serum medium was larger and more stretched over time as compared with 

cells in serum-free medium.  

 

 

Figure 7.3 Raman spectra of trophoblast-derived stem-like cells on TiO2 NTs-Au at day 3, 5, 

7, 10, 15 and 30 on (A) serum-free and (B) serum media. 



206 
 

 

Previous study reported that the adhesion of hMSC grown on TiO2 NTs with small 

diameter can be increased, and the differentiation of hMSC grown on TiO2 NTs with large 

diameter can be facilitated [5]. In this study the TiO2 NTs-Au substrates affected little on 

cellular morphology and differentiation, and the reasons may be the diameter of TiO2 NTs 

used in this work which was between 30 nm to 100 nm, gold nanoparticles coating, cell line 

differences or the role of culture medium. Thus, these observations indicated the good 

biocompatibility of substrate and limited impact on cellular morphology and differentiation.   

7.5.4 Morphological characterization of trophoblast-derived stem-like cells grown on 

different substrates 

To compare the influence from substrates on cellular structure, three substrates (TiO2 

NTs-Au NPs, TiO2 NTs and flat Petri dish substrate as control), one time point (3 days) and 

one medium type (serum-free medium) were selected. Trophoblast cells with similar cell 

density were seeded on these three substrates with serum-free medium. After three days, cells 

were fixed first and then imaged by SEM to visualize the morphological changes.  

Figure 7.5 illustrated the SEM images of trophoblast cell grown on TiO2 NTs-Au NPs 

(A), TiO2 NTs (B) and Petri dish (C). Firstly it was observed that cells grown on three-

dimensional TiO2 NTs-Au NPs and TiO2 NTs substrates presented more cellular structures, 

like more filaments, compared to cells grown on flat Petri dish. In addition, there were lots of 

cytoskeleton structures expanded along the substrates for cells grown on three-dimensional 

substrates. Together, these observations from SEM images indicated that cells grown on 

three-dimensional substrates may undergo more aggressive proliferative process as compared 

with cells on flat Petri dish in the same medium.  
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Figure 7.4 Cell viability of trophoblast-derived stem-like cells on TiO2 NTs-Au at day 3, 5, 7, 

10, 15 and 30 on (A) serum-free and (B) serum media (green: live; red: dead; scale bar: 100 

µm). 
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Figure 7.5 SEM images of trophoblast-derived stem-like cells on (A) TiO2 NTs-Au NPs, (B) 

TiO2 NTs and (C) Petri dish substrate (Cells were grown in serum-free medium). 

 

Research conducted by Schmuki et al. reported that cell adhesion and spreading were 

increased for nanotube diameters between 15 and 30 nm, while cell activities were reduced 

for diameters larger than 50 nm, and the diameter of nanotube played more dominant role 

than surface modification onto the nanotube in affecting cellular function [17]. From our 

observation (SEM images), the activity of trophoblast cells did not exhibit obvious decay, 

which was different from Schmuki et al. finding [17]. However, it was found that trophoblast 

cells grown on three-dimensional TiO2 NTs-Au NPs and TiO2 NTs substrates both possessed 

more filaments, compared to cells grown on the flat Petri dish.    
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Thus, the SEM results showed that cells grown on nanostructures had more cellular 

filaments, suggesting more vigorous interaction with substrates during the growth and 

attachment, compared to cells grown on the flat Petri dish, implying that three-dimensional 

substrates played an important role in the development of cellular morphology, cytoskeleton 

and function under similar conditions. These observations motivated us to seek other biology 

method, like qPCR or gene microarray, to examine the ECM-related gene expression that 

may help understand the molecular mechanisms of TE cells-TiO2 NTs interaction.  

7.6 CONCLUSIONS  

In this work we evaluated the behavior of trophoblast cells on nanoscale topographies 

of TiO2 NTs. We developed aligned TiO2 NTs layers with ~63 nm diameter and TiO2 NTs 

coated with ~140 nm gold nanoparticles on the surface to explore the influence of surface 

structures. Cells grown on TiO2 NTs substrates only displayed the Raman peak from TiO2. 

To study the biochemical information on three-dimensional substrates, trophoblast cells were 

grown on TiO2 NTs-Au substrates because gold nanoparticles can enhance the Raman signal 

from cell. It was found that the most significant difference between differentiated and 

undifferentiated cells was the Raman peak at 1446 cm
-1 

(CH2 deformation (proteins & 

lipids)), and this Raman peak could be a potential biochemical marker to distinguish 

undifferentiated and differentiated trophoblast cells grown on TiO2 NTs-Au NPs substrates 

from day 7 to day 15. In addition, cell viability results showed that cells would be alive on 

TiO2 NTs-Au NPs substrates up to 30 days, demonstrating the good biocompatibility of 

fabricated substrates. SEM images of trophoblast cells grown on three different substrates 

(TiO2 NTs-Au NPs, TiO2 NTs and Petri dish substrate) were compared, and it was found that 

cells grown on TiO2 NTs-Au and TiO2 NTs substrates both had more cellular filaments and 
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more spread on substrates. Integrin may play important roles in the morphological and 

functional differences of trophoblast cells grown on three-dimensional nanostructures or two-

dimensional Petri dishes. The predicted size of an integrin heterodimer is about 10 nm 

diameter [18]. It is reported that a 15-20 nm spacing of nanotubes will force integrin 

clustering into the closest packing, resulting in integrin activation, and the activation of 

integrin-mediated signaling pathways induced by nanotubes could control cell proliferation, 

migration, differentiation, and cell survival [6]. In conclusion, this study would benefit to 

design and fabricate new biomimetic materials for regenerative medicine and tissue 

engineering, providing new understanding of the trophoblast cells-nanotopography 

interaction. 
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CHAPTER 8 

SUMMARY AND FUTURE DIRECTION  

8.1 SUMMARY 

The focus of this dissertation is on in vitro, non-invasive imaging and detection of 

single living mammalian cells interacting with bio-nano-interfaces. We studied the 

biophysical and biochemical alterations and cellular responses of mammalian cells (e.g. 

human cancer cells and porcine trophoblast-derived stem-like cells) upon external stimuli 

(e.g. anticancer drug, diesel exhaust particles, antioxidant, nanoparticles, serum-free media 

and nanotubes). This dissertation research of six technical chapters (chapter 2-7) can be 

summarized as follows:  

 Classification of differentiated and undifferentiated trophoblast-derived stem-like 

cells grown on Petri dish by biomechanical, biochemical and genetic properties.   

 Single living cell imaging, biomechanical and biochemical detection and cellular 

responses measurement upon different treatments. 

 Development and synthesis of multifunctional hybrid nanoparticles with the functions 

of fluorescence, SERS and photothermal properties for different cancer biomarkers 

detection and specifically targeting cancer cells for PTT. 

 Development and synthesis of three-dimensional TiO2 nanotubes coated with Au to 

study the morphological and biochemical alterations of trophoblast-derived stem-like 

cells grown on this substrate. 

In chapter 2, AFM, RM and qPCR were applied to distinguish between 

undifferentiated and differentiated trophoblast-derive stem-like cells grown on Petri dish. 
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Cellular biomechanical, biochemical changes were measured and cellular biophysical and 

biochemical properties can be used as differentiation markers to classify cellular 

differentiation.   

In Chapter 3, the responses of five cancer cells with and without BRMS1 (MDA-MB-

231, MDA-MB-435, MDA-MB-231/BRMS1, MDA-MB-435/BRMS1 and A549 cells) 

treated with anticancer drug (Doxorubicin) were studied by a multimodal approach. It was 

found that BRMS1 expression changes cellular biochemical and biomechanical properties. 

BRMS1 expression induces a differential biomechanical response when interacting with 4 h 

DOX. Cancer cells with or without BRMS1 show similar biochemical changes upon DOX 

treatment. ROS, apoptosis expression and cell viability changes of five cells display a similar 

pattern from control to 24 h DOX exposure, indicating that BRMS1 has no effect on cellular 

chemoresistance. 

In chapter 4, diesel exhaust particles (DEP) and an antioxidant resveratrol (RES) were 

treated with cells to study the destructive effect from DEP and protective function from RES 

by measuring cellular biophysical and biomechanical changes as well as cellular plasma 

membrane potential and cell cycles. It was found that RES can alleviate DEP damage on 

cellular structure and increase DEP-induced biomechanical changes. In addition, RES could 

significantly prevent hyperpolarization of A549 cells, increase DEP-induced ROS generation 

and change DEP-induced cell cycle. 

In chapter 5, a hybrid nanoparticle with the properties of fluorescence imaging, SERS 

detection and PTT was synthesized for single living cell analysis of epidermal growth factor 

receptor (EGFR) and specifically killing cancer cells with high EGFR expression. 

Fluorescence images demonstrated fluorescence function of NPs with fluorescence at 615 nm 
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(
5
D0

7
F2) on excitation 464 nm. The distribution of EGFR on single living cell was 

visualized by SERS mapping. These NPs effectively suppressed A549 cell viability upon 808 

nm laser irradiation with good biocompatibility.  

In chapter 6, silica coated nanoparticles conjugated with anti-human epidermal 

growth factor receptor 2 (HER2) antibody were developed to increase surface area, light-heat 

conversion efficiency and biocompatibility, applying for fluorescence imaging, SERS 

detection and PTT. SERS mapping demonstrated the distribution of HER2 on single living 

cell with HER2 expression. These NPs can kill 435 cells upon 808 nm laser irradiation with 

better biocompatibility. These NPs have the potential for cancer diagnostics, treatment and 

therapy. 

In chapter 7, a three-dimensional TiO2 NTs with or without Au substrate was 

synthesized for trophoblast-derived stem-like cell growth. The cell vibiality, morphology and 

biochemical changes were analyzed.  

 

8.2 FUTURE DIRECTIONS 

8.2.1 AFM/RM system combined with traditional biological methods to characterize 

cells  

The biophysical and biochemical changes were detected in this dissertation by 

AFM/RM system in a non-invasive way, demonstrating the advantage of AFM/RM system 

for single living cell biomechanics and biopolymers characterization. AFM/RM system, as a 

novel technique, should be complementary with the conventional biological approaches (e. g. 

western blot, PCR, flow cytometry) to provide additional cell information for us to analyze. 

For example, AFM measures the biophysical properties (topography, Young’s modulus, 
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adhesion force) of single living cell. Cellular biomechanics should also be measured in a 

large-scale way to make the AFM results more conclusive, although large-scale measurement 

of living cells biomechanics is not available currently. Alternatively, cytoskeleton can be 

recorded by fluorescence imaging, and cellular biophysical information collected from AFM 

and fluorescence imaging can be compared, even cells will be fixed first before fluorescence 

imaging. Darling et al. have applied AFM to detect the elastic and viscoelastic properties of 

undifferentiated adipose-derived stem cells (ASCs), combining with the detection of lineage-

specific metabolite production to purify tissue-specific cells for cell-based regenerative 

therapies [1]. 

RM can record the biochemical information of single living cell without any label by 

characteristic Raman peak collection. Traditional methods, like flow cytometry or qPCR 

were incorporated to detect the cell responses or genetic changes, trying to find the 

connection between cellular biocomponent changes and cellular responses. Turner et al. have 

found that undifferentiated human embryonic stem cells possess higher Raman intensities of 

nucleic acids than differentiated cells; conversely, differentiated cells have more protein-

related Raman intensities than undifferentiated cells [2]. These differences were associated 

with the cellular biopolymers changes that specifically overlapped with collagen, proline and 

hydroxyproline, consistent with Col1a1 gene downregulation in stem cells [3].  

In summary, AFM/RM system has the advantage of single living mammalian cell 

detection, providing additional information for further characterization of biological systems 

compared with traditional biological techniques. Therefore, AFM/RM system combining 

conventional biological techniques is still a future research direction.   
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8.2.2 Application of hybrid nanoparticles with good biocompatibility  

In chapter 5 and chapter 6, our laboratory developed two hybrid nanoparticles 

conjugated with two different antibodies (CaMoO4:Eu@Au conjugated with EGFR 

antibodies and Silica coated CaMoO4:Eu@GNR conjugated with HER2 antibodies). These 

hybrid nanoparticles can be applied to locate the distribution of these receptors at single 

living cell level by RM because of the surface plasmon resonance effect from metallic 

nanoparticles (GNR).  

One future direction in this part is multiplex imaging. By modifying these hybrid 

nanoparticles with different antibodies, we can measure the interaction between receptors on 

single living cells. For example, one ongoing project in our laboratory is to apply multiplex 

SERS detection to track two receptors (GPR120 and CD36) and their interaction because 

these two receptors play a critical role in the chemoreception of fatty acids, which is 

important to the research area of obesity therapy.  

Another future direction is nanoparticle based therapy (e. g. photothermal therapy 

(PTT); photodynamic therapy (PDT); drug delivery and controlled release). The hybrid 

nanoparticles of chapter 4 and chapter 5 were applied for PTT after confirming the specific 

targeting of cancer cells. By external laser irradiation, the temperature of hybrid 

nanoparticles rapidly increases, suppressing the viability of cancer cells by hyperthermia. 

Similarly, the PDT effect of selectively killing diseased cells comes from the photosensitizer 

to produce reactive oxygen species (ROS) by an appropriate light source irradiation. 

Application of hybrid nanoparticles in this area can increase PDT efficiency due to the 

surface area increase. PTT and PDT can be combined to more effectively kill diseased cells 

due to the synergistic effect. Additional, drug molecules can be loaded into a porous 
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nanostructure as a carrier for deliver and controlled release. By nanostructure modification, 

the drug molecule can be released at target environment (e. g. cancer thrives in an acidic 

environment).  

These nanostructures must be biocompatible for the human body before the above 

applications. So far, we tested the effect of hybrid nanoparticles on cell viability, apoptosis, 

cell cycle and ROS level in vitro. To apply these hybrid nanoparticles in vivo, we need to 

conduct more experiments (e.g. white blood cell count; distribution and stability of 

nanoparticles in body, retention time) in the future. 

 8.2.3 Fate control of stem-like cell by substrate modification  

In chapter 7, three-dimensional TiO2 nanotubes with or without Au substrates were 

synthesized for trophoblast-derived stem-like cell growth. One future research in this 

direction is to find the potential correlations between structure, function and mechanisms of 

cells interacting with nano-interfaces. Previous studies have reported that the size of TiO2 

nanotubes can affect the differentiation, proliferation and migration of stem cells [4]. 

However, few literature reported about the biochemical and genetic changes of stem cells 

grown on these nanostructures, and that is the direction we are planning to do in the future.  

Another future research on TiO2 nanotubes is to load growth factor or molecules into 

the nanotubes to direct the growth of trophoblast-derive stem-like cells growth. It is reported 

that TiO2 nanotubes can integrate polymer micelles as drug nanocarriers to load more poorly 

water soluble drugs [5], which opens the door for the application of controlling the 

development of stem cells by modifying the surface of nanotubes with different molecules.  



219 
 

 

In summary, the future direction is the fate control of trophoblast-derive stem-like 

cells by modifying the size of three-dimentional TiO2 nanotubes, coating chemicals or 

loading molecules into nanotubes.    
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