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ABSTRACT 

High-Resolution Multi-Spectral Imagery and Learning Machines in Precision Irrigation 

Water Management 

by 

Leila Hassan Esfahani, Doctor of Philosophy 

Utah State University, 2015 

Major Professor: Mac McKee 

Department: Civil and Environmental Engineering 

 

The current study has been conducted in response to the growing problem of water 

scarcity and the need for more effective methods of irrigation water management. Remote 

sensing techniques have been used to match spatially and temporally distributed crop water 

demand to water application rates. Remote sensing approaches using Landsat imagery have 

been applied to estimate the components of a soil water balance model for an agricultural 

field by determining daily values of surface/root-zone soil moisture, evapotranspiration 

rates, and losses and by developing a forecasting model to generate optimal irrigation 

application information on a daily basis. Incompatibility of coarse resolution Landsat 

imagery (30m by 30m) with heterogeneities within the agricultural field and potential 

underestimation of field variations led the study to its main objective, which was to develop 

models capable of representing spatial and temporal variations within the agricultural field 

at a compatible resolution with farming management activities. These models support 

establishing real-time management of irrigation water scheduling and application. The 
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AggieAirTM Minion autonomous aircraft is a remote sensing platform developed by the 

Utah Water Research Laboratory at Utah State University.   It is a completely autonomous 

airborne platform that captures high-resolution multi-spectral images in the visual, near 

infrared, and thermal infrared bands at 15cm resolution. AggieAir flew over the study area 

on four dates in 2013 that were coincident with Landsat overflights and provided similar 

remotely sensed data at much finer resolution. These data, in concert with state-of-the-art 

supervised learning machine techniques and field measurements, have been used to model 

surface and root zone soil volumetric water content at 15cm resolution. The information 

provided by this study has the potential to give farmers greater precision in irrigation water 

allocation and scheduling. 

(153 pages) 
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PUBLIC ABSTRACT 

High-Resolution Multi-Spectral Imagery and Learning Machines in Precision Irrigation 

Water Management 

by 

Leila Hassan Esfahani, Doctor of Philosophy 

Utah State University, 2015 

Major Professor: Mac McKee 

Department: Civil and Environmental Engineering 

 

The goals of preserving scarce water resources, cultivating more lands, and saving 

on irrigation water bills have directed the attention of water resources managers toward the 

concepts of precision agriculture and, in particular, to precision irrigation. The purpose of 

precision irrigation is to increase irrigation efficiency to avoid crop water stress, avoid yield 

reduction due to under-irrigation and leaching of nutrients, runoff, and reduce soil erosion 

due to over-irrigation. In this study, irrigation efficiency has been defined in terms of 

irrigation uniformity and the response of the crop to irrigation. Crop water demand, soil 

moisture, evapotranspiration rate, and potential water losses to deep percolation and runoff 

have been calculated by using remotely sensed data, field measurements, and learning 

machines.  Sub-field level irrigation water allocation and scheduling have been examined 

for an agricultural field in Utah. These calculations have been carried out at 30 m by 30 m 

resolution, which is commensurate with the applied remotely sensed data (Landsat 
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imagery). In addition to a focus on the use of satellite data for irrigation scheduling, this 

study has developed a similar irrigation water allocation model at a much finer resolution 

(15 cm by 15 cm) using a different set of remotely sensed data (acquired through use of an 

autonomous, unmanned remote sensing aircraft called AggieAirTM) to create surface and 

root zone soil moisture maps at 15 cm resolution. The high-resolution information provides 

the capability to represent spatial variations within the agricultural field at a compatible 

resolution with farming management activities. Instead of farmers visually perceiving 

agricultural field conditions, specifically soil moisture, this study provides a means 

whereby farmers might gain information about actual soil moisture distribution over the 

field, which could help in scheduling irrigation and enabling greater precision in the 

application of irrigation water by identifying dry/wet spots. 
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CHAPTER 1 

INTRODUCTION 

Rapidly growing population levels and the need for drinking water and food are 

increasing global water demand drastically. Water use has been growing at more than twice 

the population rate, and a number of regions are already chronically short of water. 

Agricultural, industrial, and domestic consumption represent the major water withdrawals.  

Irrigated agriculture, responsible for nearly 40% of world food production, uses about 70% 

of total water withdrawals (FAO, 2006). Water shortage is a key concern for the future of 

agricultural production. This is more pressing when viewed in conjunction with climate 

change that is expecting to bring more extreme climatic conditions including droughts. 

Thus, as the population grows, more efficient use of water in the production of food will 

be of key importance. 

Since water scarcity threatens both rain-fed and irrigation farming, water managers 

must seek new and sustainable solutions to water supply problems. Water shortage in 

irrigated farming has been a common problem, bordering on the norm rather than the 

exception, and irrigation management will shift from emphasizing production per unit area 

towards maximizing the production per unit of water consumed (Fereres and Soriano, 

2007).   

Managers, planners, engineers, consultants, policymakers, and irrigators are 

cooperating to investigate new methods to cope with water scarcity issues. They are 

interested in effective methods to observe, measure, and respond to agricultural field 

conditions to forecast water demand and schedule optimally water allocation based on 

available water supplies. 

http://jxb.oxfordjournals.org/search?author1=Elias+Fereres&sortspec=date&submit=Submit
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1.1. Problem Statement 

Of all sectors of the economy, agriculture is the most sensitive to water scarcity, 

which can have a huge impact on food production. Many researches have worked to combat 

this growing problem with more effective methods of water management. Irrigation 

patterns play an essential role in the productivity of a farm, especially in arid areas. Gains 

in water use efficiency can only be achieved by precisely matching water applications 

operations to the spatially and temporally distributed crop water demand. 

 

1.2. Purpose and Objectives 

The purpose of this study is to develop adaptable methods that allow for better 

response to agricultural farm conditions in terms of irrigation water scheduling and 

allocation. Remote sensing approaches (Landsat/Airborne imagery) have been applied to 

estimate surface/root-zone soil moisture and evapotranspiration rates, and state-of-art 

supervised learning machine techniques have been used to model these phenomena at 

different spatial scales. Incompatibility of coarse resolution of Landsat imagery with 

heterogeneities within the agricultural farms led us to our main objective which was 

developing models with the capability of representing spatial and temporal variations 

within the agricultural field at a compatible resolution with farming management activities. 

These models support establishing real-time management of irrigation water scheduling 

and application. 

Chapter 2 presents a study in which Landsat imagery, field measurements, and 

crop-related remote sensing algorithms were applied to demonstrate the adequacy and 

accuracy of a model for optimizing irrigation water allocation and simulating soil moisture 
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conditions for a center pivot irrigation system in the study area. The accuracy of the model 

was checked using a soil water balance approach for the crop growing cycle (Chapter 2). 

Chapter 3 uses high-resolution remote sensing imagery to develop accurate surface 

soil moisture estimates as main component of an agricultural water balance that could be 

used to enhance the quality of calculations in irrigation scheduling and water allocation. 

High resolution multi spectral imagery have been used to develop a data mining model that  

resulted in high resolution surface soil moisture estimations (Chapter 3). 

Chapter 4 applies the same methodology used in Chapter 3 to estimate spatially 

distributed root-zone soil moisture values.  It uses surface soil moisture information from 

chapter 3 as a boundary condition. An intensive calculation procedure was adopted in 

Chapters 3 and 4 to quantify the quality of soil moisture estimates at different calculation 

levels (Chapter 4). 

 

1.3.  Research Motivation 

Recent literature has shown encouraging studies in a variety of agricultural water 

management problems through the use of remote sensing approaches and data mining 

algorithms.  This initiated the idea that this methodology could be potentially applied for 

soil moisture estimation and irrigation water allocation models at a fine scale (at 0.15m) 

and at a comparatively coarse scale of Landsat imagery (30m). The information at these 

scales helps in identifying and understanding heterogeneities, variability, and correlations 

within the agricultural field in terms of soil moisture, evapotranspiration, and loses. Also 

the Bayesian based algorithm used to estimate root-zone soil moisture provided additional 

information about the variability of the results obtained. 
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1.4.  Research Contributions 

The current research has demonstrated the applicability of remote sensing 

approaches in monitoring agricultural field conditions to provide a solution to the 

objectives mentioned earlier. The information derived from this study provides high 

resolution surface and root zone soil moisture maps that are compatible with farming 

management activities. Also at Landsat level the developed models present information on 

optimizing center pivot operation in terms of saving water. This is the first study that 

combines learning machines with optimization algorithms to adjust the settings of a 

programmable irrigation facility while attempts to support more efficient irrigation water 

allocation schedules. Based on this study farmers can get the information to: 

 Keep a record of their farm in terms of soil water content. 

 Improve decision making on irrigation rates and 

applications. 

 All of which improves the quality of the crops and enhances 

marketing. 

 

1.5.  Remote Sensing Data 

AggieAir Minion is a remote sensing platform developed by Utah Water Research 

Laboratory at Utah State University. This completely autonomous airborne platform, 

equipped with multi-spectral cameras (red, green, blue, near infrared, and infrared/thermal) 

flew over the study area on May 16, June 1, June 9 and June 17, 2013, capturing the images 

at 15 cm resolution. 
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The flights were scheduled to coincide with Landsat over passes (either Landsat 7 

ETM+, Landsat 8 OLI, that have similar spectral coverage at a spatial resolution of 30m) 

so that high-resolution products could be compared to the standard Landsat outputs. In 

order to acquire sufficient training and testing data to establish the learning algorithms at 

both spatial scales (AggieAir and Landsat), intensive ground sampling was accomplished 

at precisely determined locations. The data collection procedure was designed to cover 

maximum spatial distribution of soil moisture, crop type, and soil texture characteristics.  

In addition, field data were collected for three dates in 2012, September 2 and 18 

and October 4. The information from this part of study is used to develop an optimal water 

allocation model. 

 

1.6.  References 

FAO., 2006. Water Monitoring-Mapping Existing Global Systems & Initiatives. Prepared 

by FAO on behalf of the UN-Water Task Force on Monitoring, Rome (Italy). 

Fereres  E., Soriano M.A., 2007. Deficit irrigation for reducing agricultural water use. J. 

Exp. Bot. 58 (2), 147-159.  

 

 

 

  

http://jxb.oxfordjournals.org/search?author1=Elias+Fereres&sortspec=date&submit=Submit
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CHAPTER 2 

ASSESSMENT OF SURFACE SOIL MOISTURE USING HIGH-RESOLUTION 

MULTI-SPECTRAL IMAGERY AND ARTIFICIAL NEURAL NETWORKS1 

ABSTRACT 

Many crop production management decisions can be informed using data from 

high-resolution aerial images that provide information about crop health as influenced by 

soil fertility and moisture. Surface soil moisture is a key component of soil water balance, 

which addresses water and energy exchanges at the surface/atmosphere interface; however, 

high-resolution remotely sensed data is rarely used to acquire soil moisture values. In this 

study, an artificial neural network (ANN) model was developed to quantify the 

effectiveness of using spectral images to estimate surface soil moisture. The model 

produces acceptable estimations of surface soil moisture (root mean square error (RMSE) 

= 2.0, mean absolute error (MAE) = 1.8, coefficient of correlation (r) = 0.88, coefficient of 

performance (e) = 0.75 and coefficient of determination (R2) = 0.77) by combining field 

measurements with inexpensive and readily available remotely sensed inputs. The spatial 

data (visual spectrum, near infrared, infrared/thermal) are produced by the AggieAir™ 

platform, which includes an unmanned aerial vehicle (UAV) that enables users to gather 

aerial imagery at a low price and high spatial and temporal resolutions. This study reports 

                                                           
1 Reprinted from Remote Sensing Journal, Vol. 7(3), Leila Hassan-Esfahani, Alfonso 
Torres-Rua, Austin Jensen, Mac McKee, “Assessment of Surface Soil Moisture Using 
High-Resolution Multi-Spectral Imagery and Artificial Neural Networks” pages 2627-
2646, © 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open 
access article distributed under the terms and conditions of the Creative Commons 
Attribution license (http://creativecommons.org/licenses/by/4.0/) 
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the development of an ANN model that translates AggieAir™ imagery into estimates of 

surface soil moisture for a large field irrigated by a center pivot sprinkler system. 

 

2.1. Introduction  

Soil moisture content (SMC) is an important factor in managing irrigated farms. 

SMC includes two main components: surface soil moisture (SSM) (held in the upper 10 

cm of soil) and root zone soil moisture (held in the upper 200 cm of soil). Surface soil 

moisture is a key component for addressing energy and water exchanges at the land 

surface/atmosphere interface and can be estimated using different techniques, such as in 

situ measurements, physically based models, remote sensing, etc. Grayson and Western 

addressed the estimation of soil moisture by applying: (1) field (or in situ) measurements;  

(2) remote sensing techniques; and (3) soil water balance simulation models [1,2]. Soil 

moisture constitutes a very small volume in terms of the total global water balance, but it 

plays a significant role in water resources planning and management [2]. Many current 

crop production management decisions that are made by growers, production managers, 

and crop advisors in precision agriculture are already based on observation from remotely 

sensed data such as satellite imagery. The objective of this research is to generate surface 

soil moisture (SSM) estimates using high-resolution, remotely sensed data, collected at 15 

cm pixel resolution, as inputs to a learning machine algorithm (Artificial neural networks 

(ANNs))developed under supervised learning procedures. ANNs are used to build the SSM 

estimation model. To our knowledge, this is the first study to document estimation of 

surface soil moisture using remotely sensed data at such a fine spatial resolution and readily 

available in the sense of temporal resolution. The results will contribute not only to efficient 
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and reliable high-resolution multi-spectral remote sensing validation, but also to better 

utilization of remotely sensed soil moisture products for enhanced irrigation modeling and 

scheduling. 

Various techniques for retrieving soil moisture content have been the subject of 

research for almost four decades. Gravimetric measurements of soil moisture are very 

reliable but are laborious. Measuring SMC with imbedded sensors, such as time and 

frequency domain reflectometers (TDRs and FDRs), does not require a huge investment of 

time or facilities; however, most of these methods suffer from some of these same 

disadvantages. In situ measurements can be exhaustive and expensive if large areas are 

involved, as these measurements are mainly “local,” with a particular footprint representing 

moisture conditions in only a fraction of a cubic meter of soil [3]. Because of the spatial 

heterogeneity of soil moisture due to different soil conditions, vegetation, topography, or 

impact of human activities, local measurements when are carried out on a larger scale such 

as fields or watersheds, might result in inaccuracies [4]. Remote-sensing techniques might 

provide a useful tool to address these data acquisition difficulties. 

Some of the early work in estimating SMC using remote sensing [5–10] established 

that thermal remote sensing, in concert with in situ measurements, can be used to measure, 

or at least quantitatively infer, soil moisture content. The possibility of estimating SSM (0–

7.6 cm) from visible and near-infrared (NIR) reflectance data has also been demonstrated 

[11]. Optical and thermal remote-sensing techniques or passive and active microwave 

sensors offer large-scale monitoring of SSM [11–13]. Some meteorological satellites, such as 

the Advanced Microwave Scanning Radiometer (AMSR-E), the European Remote Sensing 

(ERS) satellite scatterometer or the Meteorological Satellite (METEOSAT), offer the 
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possibility of monitoring operational SSM [3]. However, the coarse spatial resolutions 

(ERS-Scat: 50 km, AMSR-E: 56 km and METEOSAT: visible and infrared (IR) 5 km) of 

the instruments are often not consistent with the scale of hydrologic processes of interest 

[14, 15].). A number of studies on soil moisture estimations introduced the error sources 

that have degraded the accuracy of satellite remotely sensed soil moisture content such that 

it is critical to calibrate soil moisture estimation algorithms and to validate derived products 

using ground-truth data. The error sources comprise radio-frequency interference (RFI) 

[16], vegetation water content [13, 17], surface roughness [16], and land surface 

heterogeneity [18]. It has been stated in the literature that a space-borne sensor designed to 

interpret SMC on the basis of soil microwave emission, and therefore the relationship 

between soil dielectric constant and water content, will show considerable systematic 

uncertainty of around 4% with maximum figures at relatively low water content in SMC 

retrieval [19].  

Remote-sensing measurements in the thermal IR band has given rise to the thermal 

inertia (TI) approach for SMC retrieval. The TI approach relates SMC to the magnitudes 

of the differences between daily maximum and minimum soil and crop canopy 

temperatures [6]. This approach retrieves SMC from models that describe TI as a function 

of water content [20,21]. The implementation of the TI approach is simple because 

knowledge of soil physical properties and climate can produce representative SMC profiles 

up to a depth of 1 m. The limitation of the approach, however, is its sensitivity to the 

uncertainty of soil physical properties, which are complex to determine spatially and are 

typically obtained with point measurements [22]. The TI method provides large-scale 

spatial coverage, but the functions are empirical and have the drawback of being site- and 
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time-specific, such that none of them are general enough to be applied extensively [21]. 

Monitoring soil moisture by remote sensing includes another set of approaches that permits 

SSM retrieval from the information contained in satellite-derived surface temperature (Ts) 

and vegetation index (VI). However, one of the major drawbacks of the Ts-VI method is 

that, in order to have enough points in a remote-sensing image to use in the determination 

of the boundaries of extreme conditions, a sufficiently large number of pixels must be 

sampled. This limitation is a handicap when dealing with smaller scale imagery on the 

order of the size of a typical farm field [11]. 

The difficulties associated with the above introduced approaches have led 

researchers to look for data-driven modeling tools, such as artificial neural networks 

(ANNs), support vector machines (SVMs), and relevance vector machines (RVMs), to 

estimate soil moisture [2,3,23–27]. For example, Landsat data has been used for soil 

moisture estimation using relevance vector and support vector machines [3]. One of the 

major advantages of the machine learning approach to SMC estimation is that it can 

provide estimates having resolutions commensurate with remotely sensed data [3]. 

 

2.2. Materials and Methods  

 

2.2.1. Artificial Neural Networks (ANNs) 

This section presents a brief description of ANNs relevant to this study.  

A three-layered feed-forward neural network (FFNN) model was developed that includes 

“I” input neurons, “h” hidden neurons, and “o” output neurons, which can be shown 

symbolically as ANNs (i,h,o) [28].  Connection weights and bias connect these neurons. 

Input is multiplied by the connection weights. These products are simply summed, fed 
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through a transfer function to generate a result, and then output. The hidden layer neurons 

usually use a sigmoidal activation function, while the output layer neurons utilize a linear 

activation function. The activation functions are used to transform inputs to targeted 

outputs with a nonlinear regression procedure. Each ANN model requires training and 

testing operations. In the training operation, by minimizing the cost function (Mean 

Squared Error (MSE) in this study), the connection weights and bias values are optimized. 

Once trained, an independent set of data that was not used for training is applied to test the 

neural network model [26]. The issue that threatens the application of ANN-based models 

is the randomness of predicted output, which is fixed in this study [29]. This was carried 

out by applying seed generation function. Since weights are initialized randomly, seed 

generation function was reset to overcome the randomness of the results by fixing the 

weights initialization and make the results reproducible. Also the models were run for a 

wide range of seed values. The training operation of ANNs was performed by a back-

propagation algorithm, which is the most commonly used supervised training algorithm in 

the multilayer feed-forward networks. The network weights are simultaneously modified 

by the back-propagation algorithm which seeks to minimize the difference between the 

targets and the computed outputs. In this kind of algorithm the processing operation is 

performed in a forward direction, from inputs to hidden layers and eventually  

to an output layer [30]. A back-propagation method uses a least-mean-square-error method 

and generalized-delta rule to optimize the network weights. The derivative chain rule and 

the gradient-descent method are utilized to adjust the network weights [31]. Forward pass 

and reverse pass are two main phases of the training operation. In the first phase, the input 

data are multiplied by the initial weights, forming weighted inputs that then are added to 
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yield the net to each neuron. This net generates the output of the neuron after passing 

through an activation or transfer function.  

In back-propagation networks, a derivative of the activation function modifies the 

network weights. Therefore, continuous-transfer functions are targeted. The Log-sigmoid 

transfer function and Hyperbolic tangent sigmoid transfer function are the most common 

continuous-transfer functions in back-propagation networks [32]. The Log-sigmoid transfer 

function was used in this study. The output of the neuron is transmitted to the next layer as 

an input, and this procedure is repeated until it reaches the output layer. The error between 

the network outputs and the target outputs is computed at the end of each forward pass and 

it is checked with a specific value. If the error passed this value, the procedure continues 

with a reverse pass; otherwise, training is stopped [33]. In the reverse pass, the weights in 

the network are modified using the error value. The modification of weights in the output 

layer is different from the modification of weights in the hidden layers. In the output layer, 

the target outputs are provided, whereas in the intermediate layers, target values do not 

exist [31]. Therefore, back propagation uses the derivatives of the objective function 

regarding the weights in the entire network to distribute the error to neurons in each layer 

in the entire network [33].  

 

2.2.2. Selection of Possible Input Variables 

One of the critical issues in training learning machine algorithms such as ANNs is 

to select the appropriate input variables. The idea is to choose the combination of variables 

that are highly correlated with soil moisture. Previous studies have shown good correlation 

between soil water content and infrared (IR) skin temperature and normalized difference 
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vegetation index (NDVI), and between IR heating rate and thermal images [34,35]. Optical 

and microwave remotely sensed data have been used for surface soil energy balance 

modeling [6,11,12,36]. After collecting these variables from independent datasets, the 

correlation and dependency among these variables were evaluated in the study reported 

here. Some Vegetation Indices (VIs) are considered as input variables with some 

contributions in soil moisture estimations [4,37–39]. 

 

2.2.3. Study Area, Instrumentation, Techniques and Data  

 

2.2.3.1. Study Area 

The study area is a farm in Scipio, Utah (39°14ʹN, 112°6ʹW), equipped with a center 

pivot irrigation system covering an area of approximately 84 acres. The main crops are 

alfalfa and oats, grown from April to October. Figure 2.1 shows the location of the farm in 

Utah, and provides information about the heterogeneity within the farm due to different 

crop types and the presence of an access road. Generally the center pivot lateral rotates 

clockwise and supplies irrigation water to the field at a constant rate from an upstream 

reservoir. In the current study a full rotation of the center pivot takes three days and six 

hours to irrigate the field fully to field capacity. This study was carried out for the crop 

growing cycle starting 16 May 2013 and ending 17 June 2013 (4 days).  

 

2.2.3.2. Instrumentation: AggieAir Minion (Remote Sensing Platform)  

AggieAir is the remote sensing platform applied in the current study. This platform 

is comprised of an autonomous unmanned aerial vehicle (UAV) that carries a multispectral 

sensor payload. 
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Figure. 2.1. The location of the study area in Utah (schematic Utah counties map 
(on the left) and cropping pattern for 2013 irrigation season (on the right)), 
(39°14ʹN, 112°6ʹW). 
 
 

The UAV navigates over the area of interest based on a pre-programmed flight plan 

and captures images using the on-board sensor payload system. The UAV is a small aircraft 

(8 feet wing span, 14-pound take-off weight) that can fly for an hour at a speed of 30 miles 

per hour. In this study, the UAV was equipped with visual, near-infrared, and thermal 

cameras and flew over the study area on four dates in 2013 (16 May, 1 June, 9 June, and 

17 June), acquiring imagery with the optical cameras at 0.15 m resolution and with the 

thermal camera at about 60 cm. The wavelength range peaks around 420, 500, 600 and 800 

nm, respectively, for blue, green, red and NIR sensors. Detailed information about the 

operation of the AggieAir system has been previously published by Jensen [40]. 

After the AggieAir UAV completes a flight mission, the aircraft may have acquired 

300–400 images from each camera: visual, near-infrared, and thermal (Figure 2.2a). The 

images can be georeferenced directly using the position and orientation of the UAV when 

the image was exposed (Figure 2.2b) [40]. EnsoMOSAIC is used to orthorectify the 

AggieAir imagery with high accuracy [40,41]. EnsoMOSAIC generates hundreds of tie-
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points between overlapping images and uses photogrammetry and block adjustment to 

refine the position and orientation information for each image, thereby accurately 

georeferencing each image (Horizontal Accuracy: 1–2 pixels Vertical Accuracy: 1.5–2 

pixels (when all error sources are controlled)). EnsoMOSAIC also generates an internal 

digital elevation model (DEM) to compensate for distortions in the imagery caused by 

changing elevations. The resulting product is an orthorectified mosaic (Figure 2.2c) that is 

in 8-bit digital format. AggieAir uses a modified “reflectance mode” method to convert the 

digital numbers of the mosaic to reflectance values [40]. This radiometric normalization is 

the ratio of the digital number from the mosaic to the digital number from a spectralon 

white reflectance panel with known reflectance coefficients, multiplied by the reflectance 

factor which accounts for the zenith angle of the sun at the time, date, and location of the 

photos. The product of this method is an orthorectified mosaic in reflectance values. The 

reflectance values (for all four flights) range from 0.11 to 0.36, 0.20 to 0.49, 0.15 to 0.51 

and 0.51 to 0.61 for blue, green, red and NIR, respectively. Thermal values range from 

10.2 to 43.3 degrees Celsius.  

 

2.2.3.3. Ground-Based Data Collection 

 In order to perform ground truthing, at the same time the AggieAir UAV flew over 

the study area, intensive ground sampling was conducted at precisely determined locations 

in the field [42]. Soil samples were collected based on a pre-defined spatial distribution 

map that was developed in light of the crop types and soil characteristics in the field. 
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Figure. 2.2. (a) Some raw natural color images from the unmanned aerial vehicle 
(UAV) taken from the study area (39°14ʹN, 112°6ʹW); (b) Orthorectified image using 
position and orientation of UAV aircraft during image capture; and (c) Accurate 
orthorectified mosaic image from EnsoMOSAIC. 
 

The data collection included almost 50 samples per AggieAir flight scattered all 

over the field (minimum of 12 in each quarter) to cover the soil condition properties. 

Further, the unusable samples were discarded and the data collected from the four days 

were pooled (making a data set of 184 points) and utilized in the modeling procedure. The 

research crew collected soil samples from the surface soil and determined gravimetric soil 

moisture values after the samples were oven dried and weighted. The crew also used a 

hand-held measuring device to makein-field measurements and double-check the 

laboratory soil moisture results. The device, manufactured by Decagon Inc. (Pullman, WA, 

USA), includes a sensor read-out and storage system for real-time readings. Called 

“Procheck,” it was connected to a GS3 soil moisture, temperature, and EC sensor from 

Decagon Inc as well [43]. Figure 2.3 illustrates the location of soil moisture samples in the 

study area.  
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Figure. 2.3. Spatial distribution of soil moisture sample locations in the study area. 

 

2.2.3.4. Soil Texture Analysis 

The upper and lower limits of soil moisture storage in the root zone are a function 

of soil texture. After the soil has been saturated and drained by gravity, the soil is said to 

be at “field capacity,” and the amount of water that remains in the root zone but which the 

crop can no longer extract is called the “wilting point” [44]. In order to take these two 

parameters in to account, 14 different points from around the field were selected for soil 

texture sampling. After soil type determination, the corresponding field capacity values 

were acquired from previously published values and considered as model inputs [45].  



18 
 

Figure 2.4 illustrates the soil field capacity map developed by utilizing a Spherical Kriging 

interpolation method for the information from the 14 available sampling locations. 

 

 

Figure. 2.4. Map of field capacity based on soil texture type and plot of the location of soil 
samples. 
 

2.3.5. Relevant Vegetation Indices (VIs) from AggieAir Imagery 

Visual spectrum (red, green, and blue, or RGB), near-infrared (NIR), and 

infrared/thermal remotely sensed data and some vegetation indices (VIs) are used as input 

variables for the soil moisture model. All AggieAir data (RGB, NIR, and thermal imagery), 

normalized difference vegetation index (NDVI), vegetation condition index (VCI), 

enhanced vegetation index (EVI), vegetation health index (VHI), and filed capacity were 

chosen as model inputs with surface soil moisture as the target or output. The VHI was 
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proposed by Kogan (1995), which is an additive combination of VCI and Temperature 

Condition Index (TCI) [36]. Equations (1)–(5) represent the vegetation indices included in 

this study: 

NDVI =  
ρNIR − ρRED

ρNIR + ρRED
 

(

1) 

VCI =  100 ×  
ρNDVI − ρNDVImin

ρNDVImax
− ρNDVImin

 
(

2) 

EVI =  2.5 × 
ρNIR − ρRED

ρNIR +  C1 × ρRED −  C2 × ρBLUE + L
 

(

3) 

TCI =  100 ×
BTmax − BT

BTmax − BTmin
 

(

4) 

𝐕𝐇𝐈 =  𝟎. 𝟓 × 𝐕𝐂𝐈 + 𝟎. 𝟓 × 𝐓𝐂𝐈 
(

5) 

where ρNIR, ρRED and ρBLUE are NIR, red, and blue reflectance bands; C1, C2 and L are the 

coefficients of the aerosol resistance term, which uses the blue band to correct for aerosol 

influences in the red band; and BT is the thermal brightness, which is the thermal band 

reflectance. 

 
2.2.3.6. Model Validation  

A K-fold cross validation was used as the model validation technique in order to 

generalize an independent dataset. In general, in K-fold cross validation the original dataset 

(including all samples) is partitioned in to K sub-data sets. Each time, a single sub-data set 

is retained for evaluation and the remaining (K-1) sub-data sets are used for training. This 

process repeats K times, and the errors for each time are estimated. Furthermore, the K 
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model errors are averaged to represent the best model [46,47]. Since the authors were not 

confident about the optimal percentage of data being considered for training, testing and 

validation to avoid over-fitting, a 5-fold cross validation technique is applied to the original 

data set and Mean Squared Error (MSE) is the calculated evaluation criterion. The 5-fold 

cross-validation was done repeatedly, and during the training phase different values for the 

training technique’s parameters were used in concert with different network architectures. 

Further, the authors ended up with the best values for number of hidden nodes and training 

parameters. Then with these in hand, finally the network was trained using all the data, 

with the best umber of hidden nodes and training parameters.  

 

2.2.3.7. Wrapper Selection 

For model construction, it is necessary to identify the best combination of input 

variables from the available data. A wrapper selection method was used to accomplish this. 

Guyon (2003) introduced the advantages of applying this method with reference to three 

main aspects: (1) improving the performance of predictors; (2) obtaining faster and more 

cost-effective predictors; and (3) providing a better understanding of the underlying 

process that generated the data [48]. This method is recommended over the backward 

selection method and is applicable to cases with a small number of inputs. Wrapper 

selection considers all possible combinations of input variables and develops a separate 

model for each combination. The models are then scored based on their predictive power, 

and the best model can be selected based on the corresponding score [48,49]. In order to 

check the goodness of fit, root mean square error (RMSE), mean absolute error (MAE), 

coefficient of correlation (r), coefficient of performance (e), and coefficient of 
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determination (R2) are the statistical parameters that were calculated to evaluate the 

performance of the many alternative models and score their predictive power [50]. 

 

2.2.3.8. Division Set Up in ANN Model Architecture 

The input data division set up can have a significant influence on the performance 

of an ANN model. Bowden (2002) presented two methodologies for dividing data into 

representative subsets (training, testing and validation) with similar statistical properties. 

These methods were proven to develop more robust results compared to conventional 

approaches in which the dataset was simply divided into arbitrary subsets [51]. The 

methods were applied by using a 5-fold cross validation method for data generalization. 

Other water resources related studies have utilized Bowden’s approach and concluded that 

it ensures that the training, testing, and validation sets are representative of the same 

population [52–57]. 

It is difficult to assess beforehand how large an artificial neural network model 

should be for a specific application to avoid over-fitting. Model size strongly relates to 

sample size, and collecting more data and increasing the size of the training set or reducing 

the size of a network are recommended as solutions [28]. In this study, collecting more 

data was impossible; therefore, the error of the validation data set was checked as 

alternative method of investigation [28]. As training initiates, the error for all three data 

sets (training, testing, and validation) decreases, and in the case of over-fitting, the error 

for validation set increases while the error in the training set maintains a decreasing trend. 

If the error in the validation set continues in a reducing trend, there is no danger of over-

fitting. 
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2.3. Results and Discussion 

 

2.3.1. Input Data 

 

2.3.1.1. Soil Moisture Data Calculation Results 

In order to ground truth data and relate soil moisture values to remotely sensed data, 

gravimetric soil moisture measurements were checked with the corresponding in-field 

measurements of volumetric soil moisture using soil bulk density values that were 

extracted from soil texture data. A t-test comparing the gravimetric soil moisture 

measurements against the volumetric soil moisture measurements showed these two data 

sets are not statistically different at a 95 percent confidence level with P-value of 0.3. The 

results from the t-test indicates that either of these data sets can be used for further 

calculations. Finally, the gravimetric soil moisture values from four flight dates were 

pooled representing the maximum, minimum and mean values of 30.6, 10.1 and 19.7, 

respectively, and used as model targets. Also, the spatial distribution of soil moisture from 

high to low values is in accordance with time after irrigation. The highest values occur 

immediately behind the center pivot lateral, and the driest spots were concentered in front of 

the lateral. 3.1.2. Spatial Information of Vegetation Indices 

Due to heterogeneity within the field because of the different crop types, an access 

road, wheel tracks, the center pivot station, and historic locations of fence lines and ditch 

banks that once occupied the modern field, spatial analysis was required. The significance 

of spatial information comes from the ability of the human brain to detect spatial patterns 

in a map or an image. Table 2.1 represents the temporal and spatial changes of NDVI during 
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the study period. The same information is provided for other three VIs in the supplementary 

material. 

 

Table. 2.1. Temporal and spatial changes in normalized difference vegetation index 
(NDVI) values during the study period. 
 

Crop Type/Date NDVI(Mean) 

5/17/2013 6/1/2013 6/9/2013 6/17/2013 

Three way, Oat, 

Barley , Wheat 

0.09 

Planting 

0.34 

continued growth 

0.43 

continued growth 

0.53 

full growth 

Alfalfa 0.42 

continued growth 

0.47 

continued growth 

0.53/0.08 

full growth/ after cut 

0.59/0.13 

full growth/ after cut 

Oat, Alfalfa 0.43 

germination 

0.48 

continued growth 

0.53 

full growth 

0.57 

full growth 

 

 

2.3.2. Wrapper Selection Outcome 

Goodness-of-fit statistics were used to test the degree of association between the 

observed and estimated data. As noted previously, root mean square error (RMSE), mean 

absolute error (MAE), coefficient of correlation (r), coefficient of performance (e) and 

coefficient of determination (R2) were calculated for the models to score their predictive 

power. In the scoring phase, the authors referred to RMSE and judged the models 

predictive power based on them, further MAE and R2 were considered and finally e and r 

came to account. 

 The models with high but similar predictive power were compared spatially against 

thermal, NIR and false color images. Also the research crew has collected a set of notes 
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about their observations during the data collection procedure. The notes paid attention to 

crop types, crops growing stage, location of lateral, irrigation uniformity, wet and dry spots 

(created due to deficiencies in the irrigation sprinkler system), existence of wind (wind 

direction if it scatters the water) and weather condition. After the models with high but 

similar predictive power were developed, the best model was selected visually to 

accommodate the spatial distribution of above information. Figure 2.5 illustrates how 

schematically wrapper selection would evaluate the models for the inputs from AggieAir 

(RGB, NIR, and Thermal) as an example of wrapper scoring. for this study, 1023 models 

in 10 sets for all possible combinations of 10 inputs were developed (10 combinations of 

1, 45 combinations of 2, 120 combinations of 3, 210 combinations of 4, 252 combinations 

of 5, 210 combinations of 6, 120 combinations of 7, 45 combinations  

of 8, 10 combinations of 9 and 1 combination of 10 inputs), and the model results were 

compared. 

A trial-and-error approach was utilized to select those models that worked on 

different numbers of neurons (up to 2 × (number of inputs) + 1 to avoid over-fitting issues), 

hidden layers, training functions, and division setups [32]. Finally, the model with 8 inputs 

(red, blue, NIR, thermal, NDVI, VCI, EVI, and field capacity) was selected because it had 

the best predictive power and best spatial pattern, which was checked visually. Table 2.2 

shows the best model results for all 10 sets of combinations along with their highest 

predictive power statistics. 
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2.3.3. Results Extracted from Artificial Neural Networks (ANNs)  

After the intensive trial and error selection procedure using cross validation 

procedure, a network architecture with one hidden layer and 17 nodes and a division set up 

of 80:10:10 with trainlm (Levenberg-Marquardt backpropagation) as a training function 

was selected. 

 

 

Figure. 2.5. Schematic view of possible performance by 5-input dataset using 
wrapper selection method and artificial neural network (ANNs). 
 

Figure 2.6 illustrates (a) the measured  versus the estimated soil moisture values of 

the selected model; (b) the corresponding one-by-one scatter plot (showing that all the 

points are clustered along the 45° line); (c) residual plot; and (d) residual histogram to 

demonstrate the validation of the model in the sense of normality, linearity, and equality of 

variances. Figure 2.7 represents the performance plot of the selected ANN model with 8 
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inputs, showing Mean Squared Error (MSE) trend during the learning procedure for the 

training, testing and validation sets to evaluate possible over-fitting issues. The decreasing 

trend of the validation set confirms that there is no over-fitting in the model. Figure 2.8 

shows estimated surface soil moisture maps (Volumetric Water Content (%) (right 

column), at four different dates (a) 16 May, (b) 1 June, (c) 9 June and (d) 17 June 2013 

(Res. 15 cm) alongside false color composite images (NIR–Green–Blue) (left column). The 

false color map (NIR-Green-Blue) is related to the relative density of vegetation in the 

image. Exposed soil (bare) is expected to have lower soil moisture content while areas with 

high vegetation density the opposite. The concept of using false color composite images 

was taken from previously published studies [56,58]. 

 

 Table. 2.2. Goodness-of-fit statistics from Wrapper selection results (1 to 10 inputs) with 
highest predictive power using ANN. 
 
ANN Inputs Division 

Set up 

# of 

Neurons 

RMSE MAE r e R2 

One 

Input 

Thermal 80/10/10 4 3.0 2.4 0.64 0.4 0.41 

Two 

Inputs 

Thermal, Field 

capacity 

75/15/10 5 2.5 1.8 0.78 0.60 0.61 

Three 

Inputs 

Red, Blue, 

Thermal 

70/15/15 7 2.7 2.1 0.74 0.54 0.55 

Four 

Inputs 

Red, NDVI, VCI, 

VHI 

70/15/15 7 2.5 1.8 0.77 0.59 0.60 
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Five 

Inputs 

Green, Thermal,  

VCI, EVI, Field 

Capacity 

80/10/10 9 2.1 1.6 0.84 0.71 0.71 

Six 

Inputs 

NIR, Thermal, 

NDVI,  

EVI, VHI, Field 

Capacity 

80/10/10 11 2.1 1.5 0.84 0.70 0.71 

Seven 

Inputs 

Red, Blue, NIR, 

Thermal,  

NDVI, VCI, Field 

Capacity 

80/10/10 12 2.1 1.6 0.86 0.73 0.73 

Eight 

inputs 

Red, Blue, NIR, 

Thermal, NDVI, 

EVI, VCI, Field 

Capacity 

80/10/10 17 2.0 1.3 0.85 0.75 0.77 

Nine 

Inputs 

Red, Green, Blue, 

Thermal, NDVI, 

EVI, VCI, VHI, 

Field Capacity 

80/10/10 17 2.0 1.4 0.87 0.75 0.75 

Ten 

Inputs 

Red, Green, Blue, 

NIR, Thermal, 

NDVI, EVI, VCI, 

80/10/10 19 2.0 1.3 0.85 0.73 0.73 
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VHI, Field 

Capacity 

 

 

 

 

Figure. 2.6. (a) The measured soil moisture values versus the estimated values of the 
selected model; (b) one-by-one scatter plot; (c) residual plot; and (d) residual 
histogram.  
 
 

As shown in Figure 2.8, the soil moisture maps have a direct association with the 

false color composite maps. The field exterior area was not irrigated during the growing 

cycle and was expected to be less moist. Although the wheel tracks and the access road are 

located within the irrigation zone, they are expected to be drier since they are covered by 

bare soil, become more compacted due to traffic over them, and lose moisture rapidly. This 

assumption also applies to the zones where the crops have been cut. 
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Figure. 2.7. Performance plot of the selected ANN model with 8 inputs showing 
Mean Squared Error (MSE) trend during the leaning procedure for three data sets 
(training, testing and validation). 
  

Different crop types have different water demands and water up-take rates that 

cause surface soil moisture heterogeneity even after a uniform irrigation event. This 

heterogeneity appeared in the form of cropping patterns in the soil moisture maps. 

According to the clockwise rotation of the lateral, the spots with the maximum soil 

moisture values are expected to fall near the lateral and in a counterclockwise direction. 

This status is clearest in Figure 2.7a where the field was under a heavy irrigation event at 

the time the aerial imagery was captured. Table 2.3 shows the comparison between 

measured and estimated soil moisture values for different crop type zones. Soil moisture 

numerical values are presented in the supplementary materials. 
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Table. 2.3. Comparison between measured and estimated soil moisture values for different 
crop type zones. 
 
 
Crop 

Type/Date 

Soil Moisture (Volumetric Water Content (%)) (Zonal Mean) 

5/17/2013 6/1/2013 6/9/2013 6/17/2013 

Measur

ed 

Estimat

ed 

Measur

ed 

Estimat

ed 

Measur

ed 

Estimat

ed 

Measur

ed 

Estimat

ed 

Three way, Oat, 

Barley , Wheat 

18.9 20.1 21.5 19.0 14.9 15.7 19.3 17.6 

Alfalfa 27.6 25.9 25.0 23.5 18.4 18.9 21.2 20.4 

Oat, Alfalfa 18.0 18.3 20.5 18.1 15.7 15.8 22.5 18.9 

 

 

The main problem with such modeling procedures is being dependent to site and 

time. This implies that ground sampling and modeling will be required for every flight to 

ensure accurate and quality data. So far this is a handicap and should be strengthened with 

more studies over different types of crops, in different areas at different stages of growth. 

Having such a model (or a collection of models) makes this practical for routine use 

(independent of site and time). In addition, the current study was targeted toward showing 

the detailed information that can be interpreted from high resolution data. Even though 

such a high resolution might not be required for monitoring agricultural farm conditions 

that are cropped with inexpensive crops such as alfalfa and oats, this resolution presents its 

value for other crops that require high resolution data (e.g., vineyards, orchards). These 

results essentially help to justify future work to look at the value of high resolution data for 

precision farming activities. 



31 
 

One step forward in generalizing the presented modeling methodology in temporal 

scale could be the idea of pooling the soil moisture data collected from different dates. In 

the case of the current study, every single sampling location experiences four different 

conditions of soil moisture level, which provides a wide range of information about soil 

moisture status through time. This type of information makes the model more robust in its 

ability to simulate previously unseen soil moisture conditions through time. 

 

2.4. Conclusions 

This paper demonstrates the application of a high resolution remote sensing 

technology (AggieAir) for estimating surface soil moisture as a key piece of information in 

irrigation water management. High-resolution multi-spectral imagery, in combination with 

ground sampling, provided enough information for the modeling approaches to accurately 

estimate spatially distributed surface soil moisture. 

This paper presents the results of a modeling approach utilizing ANN in concert 

with time and site specific information. Parallel to other modeling approaches, such as data 

mining algorithms or linear regression, the ANN model is calibrated for this study within 

the conditions of the information collected including soil moisture measurements, soil 

texture, crop type information, and high resolution multi-spectral imagery. 

This paper presents the results of a modeling approach utilizing ANN in concert 

with time and site specific information. Parallel to other modeling approaches, such as data 

mining algorithms or linear regression, the ANN model is calibrated for this study within 

the conditions of the information collected including soil moisture measurements, soil 

texture, crop type information, and high resolution multi-spectral imagery. 
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Figure. 2.8. Estimated soil moisture maps (Volumetric Water Content (%)), with 
ANNsmodel for four different dates (a) 16 May; (b) 1 June; (c) 9 June and (d) 17 June 2013 
(Res. 15 cm) (right), false color images (left). 
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While the site-specific calibrated ANN in this study cannot be used immediately in 

another location, the modeling procedure (identifying spatial information with the most 

significant contribution to soil moisture estimation (Table 2.2)) along with similar field 

measurements and high resolution multi-spectral imagery and the data mining algorithm, 

are transferable from this study. 

Surface soil moisture estimation was accomplished with an ANN model (RMSE: 

2.0, MAE: 1.3, r: 0.87, e: 0.75, R2:0.77) for four dates in 2013 (16 May, 1 June, 9 June, 

and 17 June). These results show the capability of the model to accurately estimate surface 

soil moisture. Compared to the traditional soil moisture estimations that are based on a 

farmer’s visual perceptions or a few soil moisture samples averaged across the farm, the 

modeling approach presented enables greater precision in the application of water and 

identifies dry/wet spots and water stressed crops. 

AggieAir imagery, combined with appropriate analytic tools, allows spatial 

estimation of surface soil moisture. These estimates were made at much finer resolutions 

in space and time than those available from conventional remote sensing technologies (e.g., 

satellite or commercial aerial photography services). Also, the application of data mining 

algorithms to AggieAir aerial imagery allows for quantification of actionable information 

for precision agriculture (soil moisture values across the field). The soil moisture maps that 

are produced can then be related to irrigation water management for scheduling and 

application rates. 

The results from the wrapper selection (Table 2.2) prove the significance of thermal 

imagery as the most relevant information in surface soil moisture estimations. In the case 

of one input, a model with thermal imagery can estimate the soil moisture values with 
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RMSE of approximately 3% (thermal images are provided in supplementary material 

section). 

Soil water holding capacity as a function of soil texture plays an important role in 

soil moisture values. This parameter was observed by utilizing field capacity as an input to 

the models. Table 2.2 shows that field capacity is a component of most of the models. The 

effect of this parameter is confounded by other important inputs in the spatial distribution 

of soil moisture in Figure 2.8. Based on the information presented in Table 2.2, among the 

available vegetation indices, NDVI and VCI have a greater explanatory contribution in 

surface soil moisture estimates. The soil moisture maps have a good association with false 

color composite maps that allows for distinction of agricultural features in the field. 

 

2.5. Future Work 

Further studies will involve the estimation of surface soil moisture using other data 

mining algorithms and its application as a boundary condition to produce remotely sensed 

estimates of root zone soil moisture. In addition, Pixel-wise estimation of soil moisture 

could also be applied in a water balance models. 

 

2.6. References  

1. Grayson, R.B.; Western, A.W. Towards areal estimation of soil water content from 

point measurements: Time and space stability of mean response. J. Hydrol. 1998, 

207, 68–82.  



35 
 

2. Gill, K.; Kemblowski, M.; McKee, M. Soil moisture data assimilation using 

support vector machines and ensemble Kalman filter. JAWRA J. Am. Water 

Resour. Assoc. 2007, 43, 1004–1015. 

3. Zaman, B.; McKee, M.; Neale, C.M.U. Fusion of remotely sensed data for soil 

moisture estimation using relevance vector and support vector machines. Int. J. 

Remote Sens. 2012, 33, 6516–6552. 

4. Liu, W.; Baret, F.; Gu, X.; Zhang, B.; Tong, Q.; Zheng, L. Evaluation of methods 

for soil surface moisture estimation from reflectance data. Int. J. Remote Sens. 

2003, 24, 2069–2083. 

5. Idso, S.; Jackson, R.; Reginato, R. Estimating evaporation: A technique adaptable 

to remote sensing. Science 1975, 189, 991–992. 

6. Idso, S.; Jackson, R.; Reginato, R. Compensating for environmental variability in 

the thermal inertia approach to remote sensing of soil moisture. J. Appl. Meteorol. 

1976, 15, 811–817. 

7. Reginato, R.; Idso, S.; Jackson, R.; Vedder, J.; Blanchard, M.; Goettelman, R. Soil 

water content and evaporation determined by thermal parameters obtained from 

ground-based and remote measurements. J. Geophys. Res. 1976, 81, 1617–1620.  

8. Reginato, R.; Jackson, R.; Pinter, P. Evapotranspiration calculated from remote 

multispectral and ground station meteorological data. Remote Sens. Environ. 1985, 

18, 75–89. 

9. Jackson, T. Soil water modeling and remote sensing. IEEE Trans. Geosci. Remote 

Sens. 1986, 24, 37–46. 

http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()


36 
 

10. Quattrochi, D.; Luvall, J. Thermal infrared remote sensing for analysis of landscape 

ecological processes: Methods and applications. Landsc. Ecol. 1999, 14, 577–598.  

11. Kaleita, A.; Tian, L.; Hirschi, M. Relationship between soil moisture content and 

soil surface reflectance. Trans. ASAE 2005, 48, 1979–1986. 

12. Humes, K.; Kustas, W.; Jackson, T.; Schmugge, T.; Moran, M. Combined use of 

optical and microwave remotely sensed data for the estimation of surface energy 

balance components over a semi-arid watershed. In Proceedings of the IEEE 

Topical Symposium on Combined Optical-Microwave Earth and Atmosphere 

Sensing, Albuquerque, NM, USA, 22–25 March 1993; pp. 86–89.  

13. Njoku, E.G.; Jackson, T.J.; Lakshimi, V.; Chan, T.K.; Ngheim, S.V. Soil moisture 

retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sens. 2003, 41, 215–229. 

14. Aritola, J.F.; Pepper, I.L.; Brusseau, M.L. Environmental Monitoring and 

Characterization; Elsevier Academic Press: San Diego, CA, USA, 2004. 

15. Das, N.N.; Mohanty, B.P. Root zone soil moisture assessment using remote sensing 

and vadose zone modeling. Vadose Zone J. 2006, 5, 296–307. 

16. Njoku, E.G.; Ashcroft, P.; Chan, T.K.; Li, L. Global survey and statistics of radio-

frequency interference in AMSR-E land observations. IEEE Trans. Geosci. Remote 

Sens. 2005, 43, 938–947. 

17. Crosson, W.L.; Limaye, A.S.; Laymon, C.A. Parameter sensitivity of soil moisture 

retrievals from airborn C- and X-band radiomter measurements in SMEX02. IEEE 

Trans. Geosci. Remote Sens. 2005, 43, 2842–2853. 

18. Crow, W.T.; Chan, T.K.; Entekhabi, D.; Houser, P.R.; Hsu, A.Y.; Jackson, T.J.; 

Njoku, E.G.; O’Neill, P.E.; Shi, J.; Zhan, X. An observing system simulation 

http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()


37 
 

experiment for hydros radiomter-only soil moisture products. IEEE Trans. Geosci. 

Remote Sens. 2005, 43, 1289–1303. 

19. Fernandez-Galvez, J. Errors in soil moisture content estimates induced by 

uncertainties in the effective soil dielectric constant. Int. J. Remote Sens. 2008, 29, 

3317–3323. 

20. Cai, G.; Xue, Y.; Hu, Y.; Wang, Y.; Guo, J.; Luo, Y.; Wu, C.; Zhong, S.; Qi, S. 

Soil moisture retrieval from MODIS data in northern China plain using thermal 

inertia model. Int. J. Remote Sens. 2007, 28, 3567–3581. 

21. Lu, S.; Ju, Z.; Ren, T.; Horton, R. A general approach to estimate soil water content 

from thermal inertia. Agric. For. Meteorol. 2009, 149, 1693–1698. 

22. Verstraeten, W.W.; Veroustraete, F.; van der Sande, C.J.; Grootaers, I.; Feyen, J. 

Soil moisture retrieval using thermal inertia, determined with visible and thermal 

spaceborne data, validated for European forests. Remote Sens. Environ. 2006, 101, 

299–314. 

23. Gill, M.; Asefa, T.; Kemblowski, M.; McKee, M. Soil moisture prediction using 

support vector machines. J. Am. Water Resour. Assoc. 2006, 42, 1033–1046. 

24. Jiang, H.; Cotton, W. Soil moisture estimation using an artificial neural network: A 

feasibility study. Can. J. Remote Sens. 2004, 30, 827–839. 

25. Hassan-Esfahani, L; Torres-Rua, A.; Jensen, A.; McKee, M. Topsoil moisture 

estimation for precision agriculture using unmmaned aerial vehicle multispectral 

imagery. In Proceedings of the 2014 IEEE International Geoscience and Remote 

Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July 2014; pp. 

3263–3266. 

http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()


38 
 

26. Elshorbagy, A.; Parasuraman, K. On the relevance of using artificial neural 

networks for estimating soil moisture content. J. Hydrol. 2008, 362, 1–18. 

27. Khalil, A.; Gill, M.K.; McKee, M. New applications for information fusion and soil 

moisture forecasting. In Proceedings of the 8th International Conference on 

Information Fusion, Philadelphia, PA, USA, 25–28 July 2005; IEEE: Piscataway, 

NJ, USA; pp. 1622–1628.  

28. Haykin, S. Neural Networks: A Comprehensive Foundation, 2nd ed.; MacMillan: 

New York, NY, USA, 1999. 

29. Khan, M.; Coulibaly, P. Streamflow forecasting with uncertainty estimate using 

Bayesian learning For ANN. In Proceedings of the 2005 IEEE International Joint 

Conference on Neural Networks, Montreal, QC, Canada, 31 July–4 August 2005; 

Volume 5, pp. 2680–2685. 

30. Tokar, S.A.; Johnson, P.A. Rainfall-runoff modeling using artificial neural 

networks. J. Hydrol. Eng. 1999, 4, 232–239. 

31. Rumelhart, D.E.; McClelland, J.L.; PDP Research Group. Parallel Distributed 

Processing. Volume 1: Foundations; The MIT Press: Cambridge, MA, USA, 1986. 

32. Hecht-Nielsen, R. Neurocomputing; Addison-Wesley Publishing Company: 

Reading, MA, USA, 1990. 

33. Wasserman, P.D. Neural Computing Theory and Practice; Van Nostrand Reinhold: 

New York, NY, USA, 1989. 

34. Gillies, R.R.; Carlson, T.N. Thermal remote sensing of surface soil water content 

with partial vegetation cover for incorporation into climate models. J. Appl. Metrol. 

1995, 34, 745–756. 

http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.sciencedirect.com/science/article/pii/S0022169408004204#bib23
http://ascelibrary.org/journal/jhyeff


39 
 

35. Wetzel, P.J.; Woodward, R.H. Soil moisture estimation using GOES-VISSR 

infrared data: A case study with a simple statistical method. J. Clim. Appl. 

Meteorol. 1987, 26, 107–117. 

36. Kogan, F.N. Droughts of the late 1980s in the United States as derived from NOAA 

polar-orbiting satellite data. Bull. Am. Meteorol. Soc. 1995, 76, 655–668. 

37. Mallick, K.; Bhattacharya, B.K.; Patel, N.K. Estimating volumetric surface 

moisture content for cropped soils using a soil wetness index based on surface 

temperature and NDVI. Agric. For. Meteorol. 2009, 149, 1327–1342. 

38. Liang, S.; Rui, S.; Xiaowen, Li.; Shunlin, L.; Renhua, Z. Monitoring surface soil 

moisture status based on remotely sensed surface temperature and vegetation index 

information. Agric. For. Meteorol. 2012, 166, 175–187. 

39. Bhuiyan, C.; Singha, R.P.; Koganc, F.N. Monitoring drought dynamics in the 

Aravalli region (India) using different indices based on ground and remote sensing 

data. Int. J. Appl. Earth Observ. Geoinf. 2006, 8, 289–302. 

40. Jensen, A.M. A Geospatial Real-Time Aerial Image Display for a Low-Cost 

Autonomous Multispectral Remote Sensing. Master’s Thesis, Utah State 

University, Logan, UT, USA, 2009. 

41. MosaicMill EnsoMOSAIC. Available online: http://www.ensomosaic.com 

(accessed on 6 May 2012). 

42. Long, D.; Longuevergne, L.; Scanlon, B.R. Uncertainty in evapotranspiration from 

land surface modeling, remote sensing, and GRACE satellites. Water Resour. Res. 

2014, 50, 1131–1151.  

http://journals.ametsoc.org/loi/jcam
http://journals.ametsoc.org/loi/jcam
http://journals.ametsoc.org/loi/bams
http://www.sciencedirect.com/science/article/pii/S0168192312002493
http://www.sciencedirect.com/science/article/pii/S0168192312002493
http://www.sciencedirect.com/science/article/pii/S0168192312002493
http://www.sciencedirect.com/science/article/pii/S0168192312002493


40 
 

43. Decagon Devices, Inc. Available online: http://www.decagon.com/ (accessed on 20 

November 2014). 

44. Israelson, O.W.; West, F.L. Water holding capacity of irrigated soils. Utah State 

Agric. Exp. Station Bull. 1922, 183, 1–24.  

45. Costa, A.; Albuquerque, J.A.; Costa, A.; Pértile, P.; Silva, F.R. Water retention and 

availability in soils of the State of Santa Catarina-Brazil: Effect of textural classes, 

soil classes and lithology. Braz. Soil Sci. Soc. 2013, 37, 1535–1548. 

46. Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and 

model selection. In Proceedings of the Fourteenth International Joint Conference 

on Artificial Intelligence, Montreal, QC, Canada, 20–25 August 1995; Volume 12, 

pp. 1137–1143. 

47. Geisser, S. Predictive Inference; Chapman and Hall: New York, NY, USA, 1993. 

48. Guyon, I. An introduction to variable and feature selection. J. Mach. Learn. Res. 

2003, 1157–1182. 

49. Kohavi, R.; John, G.H. Wrappers for feature subset selection. Artif. Intell. 1997, 

12, 273–324. 

50. Glover, D.M.; Jenkins, W.J; Doney, S.C. Least Squares and Regression 

Techniques, Goodness of Fit and Tests, Non-Linear Least Squares Techniques; 

Woods Hole Oceanographic Institute: Woods Hole, MA, United States, 2008. 

51. Bowden, G.J.; Maier, H.R.; Dandy, G.C. Optimal division of data for neural 

network models in water resources applications. Water Resour. Res. 2002, 

doi:10.1029/2001WR000266. 

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.529
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.529
http://w3eos.whoi.edu/12.747/notes/lect03/lectno03.html
http://w3eos.whoi.edu/12.747/notes/lect03/lectno03.html
http://w3eos.whoi.edu/12.747/notes/lect03/lectno03.html


41 
 

52. Bowden, G.J.; Maier, H.R.; Dandy, G.C. Input determination for neural network 

models in water resources applications. Part 2. Case study: Forecasting salinity in 

a river. J. Hydrol. 2005, 301, 93–107. 

53. Anctil, F.; Lauzon, N. Generalisation for neural networks through data sampling 

and training procedures, with applications to stream flow predictions. Hydrol. Earth 

Syst. Sci. 2004, 8, 940–958. 

54. Jia, Y.; Culver, T.B. Bootstrapped artificial neural networks for synthetic flow 

generation with a small data sample. J. Hydrol. 2006, 331, 580–590. 

55. Lauzon, N.; Anctil, F.; Petrinovic, J. Characterization of soil moisture conditions 

at temporal scales from a few days to annual. Hydrol. Process. 2004, 18, 3235–

3254. 

56. Whalley, W.R.; Leeds-Harrison, P.B.; Bowman, G.E. Estimation of soil moisture 

status using near infrared reflectance. Hydrol. Process. 1991, 5, 321–327. 

57. Hassan-Esfahani, L.; Torres-Rua, A.;McKee, M. Assessment of optimal irrigation 

water allocation for pressurized irrigation system using water balance approach, 

learning machines, and remotely sensed data. Agr. Water Manage. 2015, 153, 42-

50. doi:10.1016/j.agwat.2015.02.005 

58. Yin, Z.; Lei, T.; Yan, Q.; Chen, Z.; Dong, Y. A near-infrared reflectance sensor for 

soil surface moisture measurement. Comput. Electron. Agric. 2013, 99, 101–107. 

 

 

 

  

http://dx.doi.org/10.1016/j.agwat.2015.02.005


42 
 

CHAPTER 3 

HIGH-RESOLUTION ROOT-ZONE SOIL WATER CONTENT ESTIMATION USING 

BAYESIAN-BASED MODEL AND HIGH-RESOLUTION VISUAL, NIR, AND 

THERMAL IMAGERY: A CASE STUDY 

ABSTRACT 

Soil moisture information is important for various research applications including 

weather and climate prediction, hydrological forecast applications, and watershed and 

agricultural management. For precision agriculture, it is considered a key parameter in 

irrigation scheduling and application. Knowledge of root zone volumetric water content 

supports more efficient irrigation management by enabling estimation of required water 

application rates at appropriate temporal and spatial scales. High-resolution multispectral 

imagery provides an adequate set of data to obtain a remotely sensed estimate of soil 

moisture at three different depth in the root zone soil profile as well as root zone soil 

volumetric water content due to the fact that spectral reflectance of vegetation and 

vegetation indices are indicators of crop status influenced by soil water content and 

fertility.  The remote sensing platform used in this study, called AggieAirTM, was 

developed by the Utah Water Research Laboratory at Utah State University.  It consists of 

an autonomous unmanned aerial system (UAS) that is equipped with visual, near-infrared, 

and thermal cameras. Bayesian data mining algorithms (Bayesian Artificial Neural 

Networks) were tested and calibrated to combine the remotely sensed spatial information 

with field measurements. The integrated data mining approach was developed to obtain 

high-resolution soil moisture maps at the surface and 15 cm below the surface using the 

multispectral information from AggieAir.  Since soil moisture variations were negligible 
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at 30 cm, a uniform soil moisture value was assumed at this depth. Finally, a trapozoidal 

integration method was utilized to estimate volumetric water content in the root zone using 

the results of the modeling approach.  

 

3.1. Introduction 

Surface and deep soil moisture (SM) can be important information in climate 

prediction, hydrological forecast applications, and watershed and agricultural management 

(Manfreda and Fiorentino 2008; Seneviratne et al. 2010). Soil moisture monitoring may 

enhance the understanding of water and energy exchange rate in the atmosphere/ground 

interface. Soil moisture content (SMC) includes two main components: surface soil 

moisture (SSM) (almost held in the upper 10 cm of soil) and root zone soil moisture (almost 

held in the upper 200 cm of soil) (Gill et al. 2007). SMC can be estimated using different 

techniques, such as in situ measurements, physically based models, and remote sensing 

(Gill et al. 2007; Abdallah and Mohamed 2013). Although in situ measurements are precise 

and reliable, they are time- and energy-intensive and are not available over large spatial 

scales. Satellite remote sensing of soil moisture has recently become a consistent 

alternative that can provide continuous and large scale monitoring of the SSM state. 

Though it is only able to provide surface information, it is still a good source of data for 

hydrological and agricultural applications (Gao et al. 2006; Escorihuela et al. 2010). 

Remote sensing of soil moisture in the visual domain, thermal infrared and microwave 

portion of the electromagnetic spectrum, at different spatial scales has drawn a great deal 

of attention. A growing need for regional- to global-scale observations of the spatial 

distribution of soil moisture has motivated the development of airborne and satellite 
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microwave sensors (Famiglietti et al. 2008). Satellite remote sensing approaches in 

particular have engendered much enthusiasm and interest with their promise of global data 

coverage, leading Vinnikov et al. (1999) to speculate that, in regard to long-term soil 

moisture monitoring, “The future obviously belongs to remote sensing of soil moisture 

from satellites.” In fact, the intervening decades of research on remote sensing of soil 

moisture are now beginning to bear fruit in terms of operational satellites for large-scale 

soil moisture monitoring. Great advances have been made in satellite remote sensing 

approaches for estimating surface soil moisture, but the coarse spatial resolution and the 

shallow sensing depth are significant limitations for many applications (Wagner et al. 

2007).   

 

3.1.1. Dedicated soil moisture missions 

The National Aeronautics and Space Administration (NASA) Advanced 

Microwave Scanning Radiometer (AMSR-E) provides moisture content estimates for near 

surface soils (0–2 cm) at approximately a 43-km by 75-km footprint scale (Njoku et al. 

2003) (AMSR-E is not currently producing any data since the antenna stopped spinning in 

October 2011)  the European Space Agency (ESA) Soil Moisture Ocean Salinity (SMOS) 

mission maps 0–5 cm surface soil moisture every three days, achieving an accuracy of 4% 

at a spatial resolution of about 50 km across the globe since its launch on 2 November 2009 

(Kerr et al. 2010; ESA 2015); and NASA’s Soil Moisture Active Passive (SMAP) mission 

uses an L-band radar and an L-band radiometer for soil moisture mapping of the top ~5 cm 

and is clearly sensitive to soil moisture in regions having vegetation water contents up to 

~5 kg m–2 averaged over the radiometer resolution footprint of ~40 km; it was launched on 
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January 31, 2015 and is designed to measure soil moisture over a three-year period (SMAP 

hand book, Entekhabi et al. 2010). These satellites all use sensors in the microwave portion 

of the spectrum. 

 

3.1.2. Satellite remote sensing of SM 

Since the coarse spatial resolution of dedicated satellite missions are not 

commensurate with many hydrological, agricultural and ecological contexts, and are 

mainly developed for Earth system monitoring and observations, researchers have carried 

out several studies on remote sensing estimations of SM at other frequencies using satellite 

imagery with finer resolution compared (Hassan et al. 2007; Mallick et al. 2009; see 

chapter 4). Generally a number of error sources can degrade the accuracy of satellite 

remotely sensed soil moisture content such that it is critical to calibrate retrieval algorithms 

and to validate derived products using ground-truth data. The error sources include radio-

frequency interference (a problem of microwave remote sensing missions) (RFI) (Njoku et 

al. 2005), vegetation water content (Crosson et al. 2005; Njoku et al. 2003), surface 

roughness (Crosson et al. 2005), and land surface heterogeneity (Crow et al. 2005). Future 

research advances in this area will require the use of new observation data at suitable spatial 

and temporal scales (Seneviratne et al. 2010).  

The growing need for high-resolution remotely sensed data and appropriate field 

data to calibrate and validate applications of these data to the solution of practical questions 

are the motivations of the current research. The researchers investigated existing data-

driven models to estimate soil moisture and found several studies analogous to the current 

work that have been conducted under different (much coarser) resolutions in time and space 



46 
 

(Gill et al. 2007; Zaman et al 2012; Jiang and Cotton 2004; Khalil et al. 2005). Several 

approaches to estimating root-zone soil moisture in conjunction with surface measurements 

have been introduced. They mainly consider surface soil moisture as a boundary condition 

or model input in root zone soil moisture estimations (Ragab 1995; Laio 2006; Sabater et 

al. 2007; Albergel et al. 2008; Zaman et al. 2012; Manfreda et al. 2014; Hirschi et al. 2014; 

see chapter 4). 

In this study, the soil is assumed to be composed of three layers: one at the surface 

with a depth of a few centimeters (SM-0), the second layer below it with an average depth 

of 15 cm (SM-15), and the third layer with an average depth of 30 cm that may be assumed 

to be coincident with the rooting depth of many types of crops or vegetation (1 foot) (SM-

30). 

To our knowledge, this is the first study to document estimation of root zone soil 

moisture (SM-RZ) using remotely sensed data at a fine spatial resolution (at 15 cm), that 

is readily available at customized temporal intervals (essentially, flights available on 

demand), and that uses these estimates to provide a high-resolution map of root zone soil 

volumetric water content. The results can contribute to efficient and reliable high-

resolution multi-spectral remote sensing validation and, potentially, to better utilization of 

remotely sensed soil moisture products for enhanced irrigation modeling and scheduling. 

In examining the issue of root zone soil moisture, the current study is the logical 

next step from a previous study (see chapter 2) in which the authors applied Artificial 

Neural Networks (ANNs) as a data mining tool to estimate surface soil moisture (SM-0). 

The current paper adapts the same methodology to estimate root zone soil moisture using 

a modeling approach for three layers at soil vertical profile (SM-0, SM-15, and SM-30). 

http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A()
http://www.sciencedirect.com/science/article/pii/S003442571400337X
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Also, the present study uses Bayesian Artificial Neural Networks (Bay-ANNs) as the data 

mining tool to enhance the quality of estimations. Bay-ANN is an adaptive regularization 

method that adds one term to the cost function to be minimized. The regularized cost 

function contains two terms:   a mean squared errors MSE term and the weights. The idea 

is that this cost function will penalize large weights and the prediction capabilities of the 

ANN algorithm could be increased as the Bay-ANNs would have smoother behavior than 

ANNs. In the case of the Bayesian regularization, instead of fixing the relative weights 

(alpha and beta parameters) the weights and biases of the network are considered as random 

variables with specified distributions, and the regularization parameters alpha and beta are 

obtained from the variances associated with these distributions.  The Bayesian technique 

is described in more detail in Section 2.1. 

 

3.2. Materials and Methods  

 

3.2.1. Bayesian Artificial Neural Networks (Bay-ANNs) 

Artificial neural networks (ANNs) have proven to be valuable tools in the field of 

water resources engineering (Koksal et al. 2011). Maier and Dandy (2000) have published 

a review of 43 papers in which ANNs are used for prediction and forecasting of water 

resources variables. The multi-layer perceptron (MLP) is the most commonly used 

architecture for these practical applications due to its capability to approximate any smooth 

function as long as enough data are provided to estimate the MLP parameters (Nabney 

2001; Torres et al. 2011).  In this study, the multi-layer perceptron (MLP) networks were 

implemented and trained using MATLABTM and the associated NETLAB toolbox 

http://www.sciencedirect.com/science/article/pii/S0378377410003331#bib0065
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developed by Nabney (2001). The data was presented to a series of MLP networks with 

variable numbers of hidden nodes and a single hidden layer. Each network had a variable 

number of input nodes ranging from 1 to 10 and a single output node corresponding to the 

value of either soil moisture at 15 cm depth or at the surface. 

MLP networks determine nonlinear transformations from the vector of inputs to the 

output (either soil moisture at 15 cm depth or surface in this study) by parameterizing a set 

of network weights. In contrast to traditional ANN network training, where an optimal set 

of weights is selected by minimizing a suitable error function, the Bayesian approach deals 

with a probability distribution of network weights (Titterington  2004). 

The idea of using a Bayesian approach comes from the fact that it produces 

probabilistic results rather than the deterministic results of traditional ANNs. In this 

approach, the trained network is represented by a posterior distribution of weights rather 

than a single set of weights. An array of inputs, combined with the posterior weight 

distribution, creates a distribution of network outputs. The mean variance of a Gaussian 

approximation to this predictive distribution can then be calculated to provide error bars of 

the mean prediction. This is a feature that is difficult to achieve with other ANN training 

methods (MacKay 1994). 

The MLP architecture can be described as given by Pierce et al. (2008): 

 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1)                                      𝑦𝑘 = ∑ 𝑤𝑘𝑚
II 𝑡𝑎𝑛ℎ(∑ 𝑤𝑚𝑑

(I)
𝑥𝑑

𝐷

𝑑=1

𝑀

𝑚=1

+ 𝑏𝑚) + 𝑏𝑘 

where 𝑦𝑘 is the kth component of the output vector in an MLP ( 𝑦(𝑛); 𝑦𝑘 ∈ 1 ≤ 𝑘 ≤ 𝐾 );  

𝑥𝑑 is the dth component of the input vector in an MLP (𝑥(𝑛); 𝑥𝑑 ∈ 1 ≤ 𝑑 ≤ 𝐷 );  𝑤𝑘𝑚
II , 𝑤𝑚𝑑

(I)  

are weight matrices for the second and first layer, respectively; 𝐾 is the number of outputs 
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or predicted values; 𝐷 is the number of inputs; 𝑀 represents the number of hidden nodes; 

and 𝑏𝑚, 𝑏𝑘 are the bias vectors for the first and second layer, respectively. 

Using input target pairs with N training samples, Λ = [𝑥𝑛, 𝑡𝑛], while 𝑛 = 1, … . , 𝑁. 

The learning procedure runs by optimizing the network parameters 𝑊 = (𝑤, 𝑏)  and 

seeking to minimize the overall error function, which can be described as: 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛(2)                                      𝐸 =
𝛽

2
∑(𝑡(𝑛) − 𝑦(𝑛))2

𝑁

𝑛=1

+
𝛼

2
∑ 𝑤𝑖

2

𝑊

𝑖=1

= 𝛽 × 𝐸Λ + 𝛼 × 𝐸𝑊 

where  𝐸Λ is the data error function;  𝐸𝑊 is the penalty term; 𝑊 is the number of biases and 

weights in the network and 𝛼 and 𝛽 are the Bayesian hyperparameters. 

Applying a network optimization function is one option available for network 

training. A helper function can be used with any function that searches in parameter space 

using error and gradient functions which is called optimization function (Nabney 2001). 

The helper function facilitates the training of networks using the general purpose 

optimizers, as well as sampling from the posterior distribution of parameters using general 

purpose Markov chain Monte Carlo sampling algorithms.  The models perform forward, 

targeted toward estimating the probability of the weights and biases of the MLP model, 

given the dataset (MacKay 1992). 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (3)                                                               𝑝(𝑊|𝑡(𝑛)) =
𝑝(𝑡(𝑛)|𝑊) × 𝑝(𝑊)

𝑝(𝑡(𝑛))
 

where 𝑝(𝑊|𝑡(𝑛)) is the posterior probability of the weights; 𝑝(𝑡(𝑛)|𝑊) represents the 

likelihood function; 𝑝(𝑊) is the prior probability of the weights; and 𝑝(𝑡(𝑛)) is the 

evidence for the dataset. 
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Nabney (2001) expressed the likelihood and the prior probabilities by assuming a 

Gaussian distribution for the error term 𝜉(𝑛) = 𝑡𝑛 − 𝑦𝑛 and the weights, W. 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4)                                          𝑝(𝑡(𝑛)|𝑊, 𝛽) = (2𝜋𝛽−1)
−𝑁

2⁄ exp (−𝛽𝐸Λ) 

 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5)                                          𝑝(𝑡(𝑛)|𝑊, 𝛼) = (2𝜋𝛼−1)
−𝑁

2⁄ exp (−𝛼𝐸W) 

Assuming Gaussian zero-mean noise,  𝐸Λ shows the uncertainty (or error) of the 

target variables with variance equal to 𝛽−1 (𝜎2 ≡ 𝛽−1). The conditional probability of W 

is defined by 𝐸𝑊 with variance equal to 𝛼−1 (𝜎𝑊
2 ≡ 𝛼−1). Then Equation (3) can be 

modified as: 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (6)                                           𝑝(𝑊|𝑡(𝑛), 𝛼, 𝛽) =  
𝑝(𝑡(𝑛)|𝑊, 𝛽)𝑝(𝑊|𝛼)

𝑝(𝑡(𝑛)|𝛼, 𝛽)
 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (7)                                         𝑝(𝑊|𝑡(𝑛), 𝛼, 𝛽) =  
exp (𝐸(𝑊𝑀𝑃)(1 2)∆𝑊𝑇𝐻∆𝑊)⁄

exp (𝐸(𝑊𝑀𝑃)(2𝜋)𝑊 2⁄ |𝐻|
1

2⁄ )
 

where 𝐸(𝑊𝑀𝑃) is the expected or most probable values for the weights and bias matrices 

and H is a Hessian matrix of dimension  𝑊 × 𝑊 , where W is the number of weights 

(Nabney 2001). 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (8)                                       𝐻 = 𝛽∇∇𝐸Λ
𝑀𝑃 + 𝛼𝐼  

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (9)                                      ∆𝑊 = 𝑊 − 𝑊𝑀𝑃 

Once the maximizing of likelihood for 𝛼 and 𝛽 is used to estimate the distribution 

of W, an integrating method can be applied to the prediction and the variance of the 

predictions (Neal 1996). 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (10)                                        𝑝(𝑦𝑘 |𝑥(𝑛), 𝑡(𝑛)) =   ∫(𝑡(𝑛)| 𝑥(𝑛), 𝑊)𝑝(𝑊|𝑡(𝑛))𝑑𝑊 

which can be approximated by: 
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𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (11)                                     𝑝(𝑦𝑘|𝑥(𝑛), 𝑡(𝑛))

∝ (2𝜋𝜎𝑦
2)

−1 2⁄
exp (−

1

2
𝜎𝑦(𝑦𝑀𝑃

(𝑛)
− 𝑡(𝑛)2

) 

 

where 𝜎𝑦
2 is the output or estimated variance array, which is 𝜎𝑦

2 =

(𝜎1
2, … . . , 𝜎𝑘

2, … … 𝜎𝐾
2). 

Then the variance of output can be assessed as (Torres-Rua  2011): 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (12)                                                       𝜎𝑦
2 = 𝛽𝑀𝑃

−1 + 𝑔𝑇𝐻−1𝑔 

where g represents the gradient of  𝑦(𝑛) with respect to the weights, which is 𝑔 =

∇𝑊𝑦(𝑛)|𝑊𝑀𝑃 

 

The variance of output is due to both the intrinsic noise in the target data and the 

posterior distribution of the ANN weights.  It can be captured using confidence interval 

estimations (Pierce et al. 2008). 

 

3.2.2.  Selection of possible input variables 

The appropriate selection of input variables is crucial in training data mining 

algorithms. The intent of this research was to develop surface soil moisture estimates and 

a model of soil moisture at 15 cm depth that uses the surface soil moisture measurements 

as a boundary condition. The efficiency of models could then be improved by choosing the 

most effective combination of input variables, many of which are remotely sensed. One 

previous study has presented a good correlation between soil water content and infrared 

(IR) skin temperature and normalized difference vegetative index (NDVI), another one 

presented a good correlation between soil water content and IR heating rate and thermal 
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(Wetzel and Woodward 1987; Gillies and Carlson 1995). Remotely sensed optical and 

microwave data have been used for surface soil energy balance modeling (Kogan 1995; 

Kaleita et al. 2005). After these variables were collected from independent datasets, they 

were evaluated for correlation and dependency. Some vegetation indices (VIs) are 

considered as parameters that have some contributions in soil moisture estimations (Liu et 

al. 2003; Bhuiyan et al. 2006; Haubrock  et al. 2008; Ben-Dor et al. 2009; Mallick et al. 

2009; Liang et al. 2012; Hassan-Esfahani et al. 2014; see also chapters 2 and 4). 

 

3.2.3. Study area, instrumentation, techniques and data  

 

3.2.3.1. Study area 

The study area is an 84-acre agricultural field located in Scipio, Millard County in 

Central Utah at 39°14'N 112°6'W (Figure 3.1). The field is equipped with a modern center 

pivot irrigation sprinkler system to supply water for crops such as oats, alfalfa, barley, and 

wheat grown from April to October. Figure 3.1 shows the location of the farm and presents 

the heterogeneity within the field due to different crop types and the presence of an access 

road.  The irrigation system is fed by an upstream reservoir and rotates clockwise when 

functioning.  In order to irrigate the field fully to field capacity with the current settings of 

the center pivot, a full lateral rotation takes three days and six hours.  In order to monitor 

the dynamic properties of soil moisture, the experiment was designed based on flights with 

eight days offset during the full growing cycles of alfalfa, which was the main crop in the 

field. For the first growing cycle, the feasibility of five consecutive flights was investigated, 

but one of the flights was removed from the experiment plan due to the presence of haze 
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and clouds. Although monitoring more growing cycles would be beneficial to produce a 

more generalized data set, this was beyond the budget limitations of the project. The study 

reported here was carried out for the crop growing cycle starting May 16, 2013 and ending 

June 17, 2013, and included four flights. 

 

 

Figure. 3.1. The location of the study area in Utah (schematic Utah counties map (on the 
left) and cropping pattern for 2013 irrigation season (on the right)), (39°14'N 112°6'W) 
 

3.2.3.2. Instrumentation: Aggieair minion (the remote sensing platform)  

The remote sensing platform that was utilized in this study, AggieAir, is comprised 

of three main subsystems: (1) the UAV aircraft, (2) the sensor payload, and (3) the ground 

control station (GCS). The aircraft is completely autonomous and navigates over the area 

of interest using a pre-programmed flight plan that can be easily designed to capture images 

of the desired area. The UAV is small with an 8-ft wing span and a 14-pound take-off 

weight.  It can travel at 30 miles per hour for up to one hour. The GCS utilizes a wireless 

connection to monitor the flight and transmit high-level commands to the aircraft, which 

in turn sends flight information (location, speed, etc.) back to the GCS. In this study, the 
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UAV was equipped with visible, near-infrared, and thermal infrared cameras, and flew 

over the study area on four dates in 2013, May 16, June 1, June 9, and June 17, to acquire 

imagery at 0.15m resolution for the visible and near infrared bands and 0.6 m resolution 

for the thermal infrared band which was processed to 0.15m resolution for further 

calculations. The wavelength range peaks around 420, 500, 600 and 800 nm for blue, green, 

red and NIR sensors, respectively.    

During an AggieAir flight, the aircraft may acquire 300 to 400 images from each 

camera. The images can be georeferenced directly by simply applying the position and 

orientation of the UAV when the image was exposed (Jensen 2009; AggieAir 2015).  To 

produce an orthomosaic with highest accuracy, EnsoMOSAIC is used to orthorectify the 

AggieAir imagery (MosaicMill 2012).  EnsoMOSAIC creates hundreds of tie-points 

between overlapping images and applies photogrammetry and block adjustment to refine 

the position and orientation information for each image, thereby accurately georeferencing 

each image (Horizontal Accuracy: 1-2 pixels Vertical Accuracy: 1.5-2 pixels (when all 

error sources are controlled)).  EnsoMOSAIC also creates an internal digital elevation 

model (DEM) to compensate for distortions in the imagery caused by changing elevations.  

The resulting product is an orthorectified mosaic with 8-bit digital number format. The 

method used for absolute radiometric normalization of AggieAir imagery is called the 

“reflectance mode” method (Jensen 2009). AggieAir uses a modified “reflectance mode” 

method which uses the ratio of the digital number from the mosaic to the digital number 

from a Spectralon standard white reference panel with known reflectance coefficients 

multiplied by the reflectance factors.  The method also uses the zenith angle of the sun for 
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the time and date of flight.  The product of this method is an orthorectified mosaic in 

reflectance values (see chapter 2).   

 

3.2.3.3. In-field data collection 

In order to ground-truth the data and acquire sufficient training and testing data for 

constructing the Bay-ANN models, at the same time that AggieAir flew over the study area 

an intensive ground sampling was performed at precisely determined locations over the 

field. The data collection activity was designed in consideration of heterogeneity of crop 

types and soil characteristics. To guarantee that a wide range of physical conditions were 

sampled to improve the statistical representativeness of the dataset, the four flight dates 

were chosen to be at different crop growth stages and at the same time that Landsat passed 

over the farm.  The availability of Landsat data provides independent information for 

studies on downscaling and upscaling issues.  The data collection procedure was carried 

out by including around 50 samples per AggieAir flight at locations across the field (12 

sample points in each quarter of the center pivot coverage). The data that were collected 

were pooled and utilized as model targets.  Since the effective rooting depth (FAO 56) was 

seen to be around 30 centimeters in the field, in order to acquire the root zone soil moisture 

information, the research crew collected soil samples from the surface, 15 centimeters, and 

30 centimeters depth (since the crop root development was concentrated near the surface 

because the sprinkler irrigation pattern produced a coincident 30 cm rooting depth) and 

determined gravimetric soil moisture values after the samples were oven dried and 

weighed. In order to make in-field measurements and verify the laboratory results, the crew 

employed a hand-held sensor read-out and storage system for real-time readings from 
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Decagon Inc. This device was connected to a GS3 soil moisture, temperature, and EC 

sensor from Decagon as well. Figure 3.2 illustrates the locations of soil moisture samples 

in the study area (Decagon Devices Inc.).  

 

 

 

Fig. 3.2. Spatial distribution of soil moisture sample locations in the study area 

 

3.2.4. Soil texture analysis 

To estimate root zone soil moisture, soil water infiltration and conductivity must be 

considered. In order to define soil water characteristics, soil variables such as texture are 

required.  After the soil has been irrigated to saturation and drained by gravity, the soil is 

said to be at “field capacity,” and crops can readily use the soil moisture held until total 

water potentials approach the permanent wilting point (Donahue et al. 1983). In order to 

consider field capacity and the permanent wilting point, 14 different points throughout the 
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field were chosen for soil texture sampling. After soil type determination, the 

corresponding field capacity values were derived from previously published studies and 

considered as model inputs (Costa et al. 2013). Figure 3.3 shows the soil field capacity map 

developed by applying a Spherical Kriging interpolation method (GIS package) for the 

information from the 14 available data points. 

 

Fig. 3.3. Map of field capacity based on soil texture type and plot of the location of soil 
samples 
 

3.2.5. Relevant Vegetation Indices (VIs) for surface soil moisture estimation 

Visual (visible) spectrum (red, green, and blue, or RGB), near-infrared (NIR), and 

infrared/thermal remotely sensed data and some vegetation indices (VIs) were used as input 

variables for the artificial neural network (ANN) surface soil moisture estimation model 

(Hassan-Esfahani et al. 2014, see also chapters 2 and 4). All AggieAir data (RGB, NIR, 
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and thermal imagery), normalized difference vegetation index (NDVI), vegetation 

condition index (VCI), enhanced vegetation index (EVI), vegetation health index (VHI), 

and field capacity were chosen as model inputs (see chapter 2). Proposed by Kogan (1995), 

the VHI is an additive combination of VCI and Temperature Condition Index (TCI). 

Equations 13–16 represent the vegetation indices: 

 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (13)                                                        𝑁𝐷𝑉𝐼 =  
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝐸𝐷
 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (14)                                               𝑉𝐶𝐼 = 100 × 
𝜌𝑁𝐷𝑉𝐼 − 𝜌𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝜌𝑁𝐷𝑉𝐼𝑚𝑎𝑥
− 𝜌𝑁𝐷𝑉𝐼𝑚𝑖𝑛

 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (15)                                  𝐸𝑉𝐼 = 2.5 ×  
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅 +  𝐶1 × 𝜌𝑅𝐸𝐷 −  𝐶2 × 𝜌𝐵𝐿𝑈𝐸 + 𝐿
 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (16)                                                       𝑇𝐶𝐼 = 100 ×
𝐵𝑇𝑚𝑎𝑥 − 𝐵𝑇

𝐵𝑇𝑚𝑎𝑥 − 𝐵𝑇𝑚𝑖𝑛
 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (17 )                                                     𝑉𝐻𝐼 = 0.5 × 𝑉𝐶𝐼 + 0.5 × 𝑇𝐶𝐼 

 

where 𝜌𝑁𝐼𝑅 , 𝜌𝑅𝐸𝐷 and 𝜌𝐵𝐿𝑈𝐸 are NIR, red, and blue reflectance bands; 𝐶1, 𝐶2 and L are the 

coefficients of the aerosol resistance term, which uses the blue band to correct for aerosol 

influences in the red band and are equal to 6, 7.5, and 1, respectively; and BT is the thermal 

brightness, which is the thermal band reflectance. 

 

3.2.6. Model Validation  

A K-fold cross validation technique was used in this study to validate the model’s 

generalization. Generally in a K-fold cross validation, the original data set is partitioned 

into K (almost equal size) subsets. Each time a subset is retained for testing and the 

remaining K-1 subsets are kept for training. This procedure iterates K times and every time 
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an evaluation criterion is calculated. Mean squared error (MSE) is calculated as the 

evaluation criterion in a 5-fold cross validation in the current study. Further, the MSE for 

the 5 models are averaged to represent the best model.  During the training phase different 

values for the training parameters were utilized in concert with different network 

architectures (Geisser 1993; Kohavi 1995). Finally the calibrated network was trained 

using all the data, with the best number of hidden units and training parameters.  

3.2.7. Input variable wrapper selection 

The model construction procedure utilized a wrapper selection method to identify 

the most relevant information from among the models developed. Guyon (2003) introduced 

the advantages of applying this method with respect to three main aspects: (1) enhancing 

the performance of predictors, (2) acquiring faster and more cost-effective predictors, and 

(3) providing a better understanding of the underlying process that generated the data. This 

method is recommended over the backward selection method and is applicable to cases 

with a small number of inputs. In a wrapper selection approach, all possible combinations 

of input variables are considered, and a separate model is developed for each of the 

combinations. The models are then scored based on their predictive power, and the best 

model can be selected based on the corresponding score (Kohavi and John 1997). Root 

mean square error (RMSE), mean absolute error (MAE), coefficient of correlation (r), 

coefficient of performance (e), and coefficient of determination (R2) are the statistical 

parameters that were calculated to evaluate the performance of the many alternative models 

and score their predictive power in order to check the goodness of fit (Glover et al. 2008). 
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3.2.8. Root zone soil water content estimation 

Estimated soil moisture values at 30cm, 15 cm, and the surface were integrated into 

the root zone to yield root zone soil water content estimate. The flowchart presented in 

Figure 3.4 illustrates the entire procedure, from the initial high-resolution multi-spectral 

imagery and in situ data collection to the final calculation of volumetric root zone soil water 

content. 

 

 

Fig. 3.4. Volumetric root zone water content calculation procedure 

 

3.3.  Results and discussion 

 

3.3.1. Surface soil moisture (SM-0) 

 

3.3.1.1. Surface soil moisture data 

For surface soil, the gravimetric soil moisture measurements were compared with 

the dataset of in-field volumetric soil moisture measurements using a paired t-test. This 
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comparison was carried out by considering bulk density values derived from the soil texture 

information. The t-test results showed that the two datasets are not statistically different at 

a 95 percent confidence level. The t-test results imply that either of the initial data sets can 

be used for further calculations. Then the gravimetric soil moisture values from four flight 

dates were pooled representing the maximum, minimum and mean values of 30.6, 10.1 and 

19.7 (VWC(%)), respectively, were considered as model targets. Table 3.1 shows the 

comparison between measured and estimated soil moisture values for different crop type 

zones. 

 

Table. 3.1. Comparison between measured and estimated soil moisture values for different 
crop type zones 
 

Crop 

Type/Date 

Soil Moisture (Volumetric Water Content (%)) (Zonal Mean) 

5/17/2013 6/1/2013 6/9/2013 6/17/2013 

Measur

ed 

Estimat

ed 

Measur

ed 

Estimat

ed 

Measur

ed 

Estimat

ed 

Measur

ed 

Estimat

ed 

Three way, 

Oat, Barley , 

Wheat 

18.9 20.1 21.5 19.0 14.9 15.7 19.3 17.6 

Alfalfa 27.6 25.9 25.0 23.5 18.4 18.9 21.2 20.4 

Oat, Alfalfa 18.0 18.3 20.5 18.1 15.7 15.8 22.5 18.9 

 

 

3.3.1.2. Spatial information 

The significance of the spatial information originates from the ability of the human 

brain to detect spatial patterns in a map or an image. In order to enhance interpretation of 
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results, a spatial analysis was done using NDVI as a common vegetation index that 

describes field condition in terms of crop type and growing stage. Spatial information 

magnifies the heterogeneity within the field due to different crops, the access road, wheel 

tracks, the center pivot station, and older fence lines and ditch banks that once occupied 

the modern field decades ago but that are no longer visible from the ground. Table 3.2 

represents the temporal and spatial changes of NDVI during the study period.  

 

Table. 3.2. Temporal and spatial changes in NDVI values during the study period related 
to the different crops present in the area of study 
 
 
Crop 

Type/Date 

 

NDVI(Mean) 

5/17/2013 6/1/2013 6/9/2013 6/17/2013 

Three way, 

Oat, Barley , 

Wheat 

0.09 

Planting 

0.34 

continued 

growth 

0.43 

continued growth 

0.53 

full growth 

Alfalfa 

 

0.42 

continued 

growth 

0.47 

continued 

growth 

0.53/0.08 

full growth/ after 

cut 

0.59/0.13 

full growth/ after 

cut 

Oat, Alfalfa 

 

0.23 

germination 

0.38 

continued 

growth 

0.53 

full growth 

0.57 

full growth 
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3.3.1.3.Correlation test of the potential inputs 

After selecting the potential inputs for the model, a correlation test has been carried 

out on the data set to ensure the necessity of each input parameter. The highly correlated 

inputs would be removed on the favor of each other to support the models’ simplicity. 

Table 3.3 presents the p-values of the correlation test that proves the potential contributions 

of each input in the models. The criterion of deciding on the existence of correlation 

between the inputs was having a p-value close to 1 or -1 to present the direct or inverse 

correlations. As it has been shown in Table 3.3, none of the parameters are highly correlated 

and they are recommended to get involved in the modeling procedure. 

 

Table. 3.3. P-values presented as the results of correlation test. 

Potential 

Inputs 

Red green  Blue NIR Thermal NDVI VCI EVI VHI Field 

Capacity 

Red 1.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.39 

green  0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.55 

Blue 0.00 0.00 1.00 0.08 0.00 0.00 0.00 0.00 0.00 0.13 

NIR 0.00 0.00 0.08 1.00 0.00 0.00 0.00 0.00 0.00 0.76 

Thermal 0.03 0.00 0.00 0.00 1.00 0.64 0.06 0.01 0.14 0.71 

NDVI 0.00 0.00 0.00 0.00 0.64 1.00 0.00 0.00 0.00 0.66 

VCI 0.00 0.00 0.00 0.00 0.06 0.00 1.00 0.00 0.00 0.39 

EVI 0.00 0.00 0.00 0.00 0.01 0.00 0.00 1.00 0.00 0.79 

VHI 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00 1.00 0.43 

Field 

Capacity 

0.39 0.55 0.13 0.76 0.71 0.66 0.39 0.79 0.43 1.00 
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3.3.1.4. Input variables wrapper selection 

The goodness-of-fit measures were applied to test the degree of association between 

the observed and estimated data. As noted previously, root mean square error (RMSE), 

mean absolute error (MAE), coefficient of correlation (r), coefficient of performance (e) 

and coefficient of determination (R2) were calculated for the models to score their 

predictive power.  The results of models with the greatest predictive power were compared 

spatially. This was carried out based on the notes that the research crew had made about 

field observations and were consistent with the field measurements. They paid attention to 

crop types, crops growing stage, location of lateral, irrigation uniformity, wet and dry spots 

(created due to deficiencies in the irrigation sprinkler system), existence of wind (wind 

direction if it scatters the water) and weather conditions. After the models with high but 

similar predictive power were developed (models with close quality metrics), the best 

model was selected on the basis of visual inspection of its ability to accommodate the 

spatial distribution of the above information. In total, 1023 models in 10 sets for all possible 

combinations of 10 inputs were established (10 combinations of 1, 45 combinations of 2, 

120 combinations of 3, 210 combinations of 4, 252 combinations of 5, 210 combinations 

of 6, 120 combinations of 7, 45 combinations of 8, 10 combinations of 9 and 1 combination 

of 10 inputs), and the model results were analyzed and compared. A trial-and-error 

approach was utilized to select the number of hidden units and optimization algorithm for 

each model (Nabney 2001). The model with 8 inputs (red, green, blue, NIR, NDVI, EVI, 

VHI, and field capacity) was ultimately selected because it had the highest predictive 

power and produced the best spatial patterns. Table 3.4 shows the best model results for all 

10 sets of combinations along with their highest predictive power. 
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Table. 3.4. Goodness-of-fit statistics from wrapper selection results (1 to 10 inputs) for 
surface soil moisture estimations (SM-0) with highest predictive power using Bayesian 
artificial neural networks 
 

 Bayesian ANN Inputs # 

hidden 

units 

Optimization 

algorithm 

RMSE MAE r e R2 

One 

Input 

Thermal 5 QUASINEW 3.0 2.4 0.64 0.41 0.41 

Two 

Inputs 

Thermal, Field 

Capacity 

5 QUASINEW 2.8 2.2 0.70 0.49 0.50 

Three 

Inputs 

Thermal, VHI, Field 

Capacity 

13 QUASINEW 2.5 1.7 0.78 0.59 0.61 

Four 

Inputs 

NDVI, VCI, EVI, 

VHI, Field Capacity  

14 QUASINEW 2.3 1.5 0.82 0.66 0.67 

Five 

Inputs 

Red, NIR, Thermal, 

EVI, Field Capacity 

16 QUASINEW 1.9 1.3 0.87 0.76 0.77 

Six 

Inputs 

Red, Green, 

Thermal, NDVI, 

VCI, VHI 

16 QUASINEW 1.77 1.3 0.89 0.80 0.80 

Seven 

Inputs 

Red, Green, NIR, 

Thermal, VCI, VHI, 

Field Capacity 

15 QUASINEW 1.78 1.25 0.89 0.79 0.80 

Eight 

inputs 

Red, Green, Blue, 

NIR, NDVI, EVI, 

14 QUASINEW 1.6 1.1 0.92 0.84 0.84 
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VHI, Field 

Capacity  

Nine 

Inputs 

Green, Blue, NIR, 

Thermal, NDVI, 

VCI, EVI, VHI, 

Field Capacity 

14 QUASINEW 2.1 1.3 0.86 0.74 0.74 

Ten 

Inputs 

Red, Green, Blue, 

NIR, Thermal, 

NDVI, VCI, EVI, 

VHI, Field Capacity 

12 QUASINEW 2.1 1.4 0.84 0.70 0.70 

* The best model is presented in bold 

 

3.3.1.5.Bayesian artificial neural networks (Bayesian ANN) model for surface soil 

moisture (SM-0) 

After an intensive trial and error selection procedure, a network architecture with 

14 hidden units and the Matlab QUASINEW optimization algorithm was selected. Figure 

3.5 illustrates the measured surface soil moistures versus estimated values of the selected 

model, a one-by-one plot (showing that all the points are clustered along the 45° line), a 

residual plot, and a histogram of error to represent the validation of the model in the sense 

of normality, linearity, and equality of variances. The points in the residual plot are 

randomly dispersed around the horizontal line (zero error line), that confirms the regression 

model is appropriate for the data. The error histogram is bell-shaped, confirming the 

conclusions that random errors inherent in the process have been drawn from a normal 

distribution.  
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Fig. 3.5. Measured surface soil moistures versus estimated values of the selected model, 
the corresponding one-by-one plot, residual plot, and histogram of error 
 

3.3.2. Soil moisture at 15 centimeters depth (SM-15) 

 

3.3.2.1. Soil moisture data 

For soil moisture measurements at 15-cm depth, soil samples were collected 

simultaneously with surface soil moisture samples. The volumetric soil moisture content 

at 15 cm was determined using gravimetric measurements of moisture in the soil samples 

and bulk density values from the soil texture test. 

 

3.3.2.2. Wrapper selection 

The goodness-of-fit evaluation measures were utilized to test the degree of 

association between the surface soil moisture as a boundary condition in concert with high-

resolution remotely sensed data and soil moisture values at 15 cm depth. As mentioned 
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previously, the predictive power of the models was determined using root mean square 

error (RMSE), mean absolute error (MAE), coefficient of correlation (r), coefficient of 

performance (e) and coefficient of determination (R2).  The same quantitative and 

qualitative evaluations were conducted to identify the models with best predictive power 

for soil moisture at 15 cm. In this set of calculations, a total of 1023 models in 10 sets for 

all possible combinations of 10 inputs were established with surface soil moisture values 

as the boundary condition, and the model results were analyzed and compared. A trial-and-

error approach was applied to select model properties such as the number of hidden units 

and optimization algorithm (Nabney 2001). The model with 9 inputs (surface soil moisture, 

red, green, blue, thermal, NDVI, EVI, VHI, and field capacity) was ultimately selected 

because it had the highest score and best spatial pattern, which was checked visually. Table 

3.4 shows the best model results for all 10 sets of combinations along with corresponding 

statistical parameters and model properties. 

 

Table. 3.5. Goodness-of-fit statistics from wrapper selection results (1 to 10 inputs) for 
soil moisture estimations at 15 cm (SM-15) with highest predictive power using Bayesian 
artificial neural networks 
 

 Bayesian ANN Inputs # hidden 

units 

Optimization 

algorithm 

RMSE MAE r e R2 

One Input Surface Soil 

Moisture 

6 QUASINEW 1.7 1.3 0.81 0.61 0.61 

Two 

Inputs 

Surface Soil 

Moisture, NIR 

8 QUASINEW 1.6 1.2 0.82 0.68 0.68 
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Three 

Inputs 

Surface Soil 

Moisture, Thermal, 

NDVI 

14 QUASINEW 1.2 1.0 0.91 0.82 0.82 

Four 

Inputs 

Surface Soil 

Moisture, Thermal, 

NDVI, EVI 

15 QUASINEW 1.2 0.9 0.91 0.81 0.82 

Five 

Inputs 

Surface Soil 

Moisture, Thermal, 

NDVI, VHI, Field 

Capacity 

15 QUASINEW 1.2 0.9 0.90 0.82 0.82 

Six Inputs Surface Soil 

Moisture, Green, 

Blue, NIR, Thermal, 

Field Capacity 

15 QUASINEW 1.2 0.8 0.91 0.82 0.83 

Seven 

Inputs 

Surface Soil 

Moisture, Red, 

Green, Blue, NIR, 

EVI, Field Capacity 

11 QUASINEW 1.1 0.8 0.92 0.84 0.83 

Eight 

inputs 

Surface Soil 

Moisture, Red, 

Green, Blue, NIR, 

Thermal, EVI, Field 

Capacity 

13 QUASINEW 1.1 0.7 0.91 0.84 0.84 

Nine 

Inputs 

Surface Soil 

Moisture, Red, 

11 QUASINEW 1.1 0.7 0.92 0.85 0.85 
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Green, Blue, 

Thermal, NDVI, 

EVI, VHI, Field 

Capacity 

Ten 

Inputs 

Surface Soil 

Moisture, Red, 

Green, Blue, NIR, 

Thermal, NDVI, 

VCI, EVI, VHI, 

Field Capacity 

9 QUASINEW 1.2 0.9 0.91 0.82 0.82 

Eleven 

Inputs 

Surface Soil 

Moisture, Red, 

Green, Blue, NIR, 

Thermal, NDVI, 

VCI, EVI, VHI, 

Field Capacity 

5 QUASINEW 1.4 1.0 0.87 0.77 0.77 

*The best model is presented in bold 

 

As it is shown in Table 3.5, surface soil moisture (SM-0) is the main input to the 

Bay-ANN models for soil moisture estimations at 15 cm depth (SM-15). Adding thermal 

and NDVI (a function of red and NIR bands) magnifies the quality of statistical parameters 

mainly because they convey some information about evapotranspiration rates and green 

vegetation coverage (which is related to SM content under the surface). Adding more VIs 

does not increase the quality of the results in a significant way because they are functions 

of components which have already played their effective role (NIR, red, and thermal). The 
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quality of the models increases slightly by adding field capacity, which is a function of soil 

texture and essentially influences soil water holding capacity. An obvious conclusion from 

the above model could be the physical correlation of soil moisture at surface (SM-0) and 

15 cm depth (SM-15) which is derived from the first model developed with only one input 

(SM-0). 

 

3.3.2.3. Bayesian artificial neural networks model for soil moisture at 15 cm depth (SM-

15) 

After an intensive trial and error selection procedure, a network architecture with 

11 hidden units and the QUASINEW optimization algorithm was selected. Figure 3.6 

illustrates the measured soil moisture values at 15 cm versus the estimated values of the 

selected model, along with the corresponding one-by-one scatter plot (showing that all the 

points are clustered along the 45◦ line), residual plot, and error histogram to represent the 

validation of the model in the sense of normality, linearity, and equality of variances.  The 

points in the residual plot are randomly dispersed around the horizontal line (zero error 

line), that confirms the regression model is appropriate for the data. The error histogram is 

bell-shaped, confirming the conclusions that random errors inherent in the process have 

been drawn from a normal distribution.  
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Fig. 3.6. Measured soil moistures at 15 cm versus predicted values of the selected model, 
the corresponding one-by-one plot, residual plot, and histogram of error 
 

3.3.3. Soil moisture at 30 centimeters depth (SM-30) 

 

3.3.3.1. Soil moisture data 

For soil moisture measurements at 30 cm depth, soil samples were collected 

simultaneously with surface and 15 cm soil moisture samples. The volumetric soil moisture 

content at 30 cm was determined using the same method as at 15 cm depth. Since the results 

of the measurements presented a very negligible range of soil moisture variation 

throughout the growing cycle (3 percent) at 30 cm depth, an average volumetric water 

content of 19.6% was assumed to be constant over the entire field. Figure 3.7 shows how 

volumetric soil water content at 30 cm is almost constant, regardless of the shape of the 

root zone volumetric soil water content profile for four sample locations. Figure 3.7 

illustrates volumetric soil water content variation in the root zone profile for four points 
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(one in each quarter of the study area). NE 4 is a point located in the northeast (NE) quarter 

which had been just irrigated for the first two flights. The irrigation was totally stopped for 

a day at the time of third flight to make the farm ready to harvest. Since a full irrigation 

event takes more than three days,  the location of the lateral in the last flight (Figure 3.8) 

creates the impression that the NE quarter was irrigated almost a day before the AggieAir 

mission. In the case of third and fourth flights, irrigation water had penetrated the soil 

profile. For an example case of NW5 (located in northwest quarter), almost two days 

passed after the last irrigation and before the flight, which implies a drier surface soil due 

to higher evaporation rate of the surface layer. 

 

Fig. 3.7. Volumetric soil water content variation in the root zone profile at sample locations 
for each flight 

 

3.3.4.  Volumetric Water Content (VWC) in the root zone soil (SM-RZ) 

After estimating volumetric water content values at the three different depths to 

cover the crop root zone (surface, 15 cm and 30 cm), these values were integrated over the 
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root zone to present an estimate of the VWC in the soil vertical profile. Figure 3.8 illustrates 

the measured VWC in the root zone versus estimated VWC.  It shows that the model could 

estimate the root zone VWC with good accuracy (RMSE= 0.05, MAE=0.04, r=0.97, 

e=0.92, R2=0.94) and that the estimations strongly follow the trends and fluctuations in the 

measured values. Figure 3.9 illustrates the pixelwise root zone VWC values for the four 

flights. 

 

Fig. 3.8. Pixelwise measured root zone VWC versus pixelwise estimated root zone VWC 

 

The Bayesian ANN models for soil moisture at the surface and 15 cm depth generated 

accurate soil moisture estimations (RMSE: 1.6, MAE: 1.08, r: 0.92, e: 0.84, R2:0.84 for 

surface and RMSE: 1.1, MAE: 0.71, r: 0.92, e: 0.85, R2:0.85 at 15 cm depth) for the four 

flights. These results in the agricultural soil profile could provide a source of information 

for irrigators as a main component of a soil water balance model. Figure 3.9 shows the 

association of root zone VWC with the crop type. The Bayesian ANN models for soil 

moisture at the surface and 15 cm depth generated accurate soil moisture estimations 

(RMSE: 1.6, MAE: 1.08, r: 0.92, e: 0.84, R2:0.84 for surface and RMSE: 1.1, MAE: 0.71, 

r: 0.92, e: 0.85, R2:0.85 at 15 cm depth) for the four flights. 
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Fig. 3.9. Pixelwise VWC in the root zone for the four flights 

 

These results in the agricultural soil profile could provide a source of information 

for irrigators as a main component of a soil water balance model. Figure 3.9 shows the 

association of root zone VWC with the crop type. The variation in the colors confirms that 

crops have different water requirements and absorption rates that lead to heterogeneity in 

the maps, even after a uniform irrigation event. Also, the field exterior area was not under 

irrigation, and the maps illustrate a lower soil VWC.  Though no ground-based 
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measurements were made in these areas, the results qualitatively match expectations. The 

access road and wheel tracks are covered by bare soil and also show lower soil VWC. 

One step forward in generalizing the current results in the temporal scale could be 

the idea of pooling the soil moisture data collected from different dates.  In the case of the 

current study, every single data point experiences four different conditions of soil moisture 

level, which provides a wide range of information about soil moisture status through time.  

This type of information makes the model more robust in its ability to simulate previously 

unseen soil moisture conditions through time. 

 

3.4. Conclusions 

This paper presented the application of a new remote sensing technology 

(AggieAir) for estimating root zone soil water content as a potentially useful piece of 

information for a water balance model that supports irrigation water management.  High-

resolution multi-spectral imagery, in conjunction with surface and root zone ground 

sampling, provided enough information for the modeling approaches. Bayesian ANN 

models that utilize the remotely sensed information to quantify spatially distributed root 

zone soil volumetric water content. 

This paper presents the results of a modeling approach applying Bayesian ANN in 

concert with time and site specific information. Parallel to other modeling approaches, such 

as data mining algorithms or linear regression, the ANN model is calibrated for this study 

within the conditions of the information collected including soil moisture measurements, 

soil texture, crop type information, and high resolution multi-spectral imagery. While the 

site-specific calibrated Bay-ANN in this study cannot be used immediately in another 
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location, the modeling procedure (identifying the information with the most significant 

contribution to soil moisture estimation (Table 3.4 and 3.5) along with similar field 

measurements and high resolution multi-spectral imagery and the data mining algorithm, 

are transferable from this study to other areas and applications. 

Surface and 15 cm depth soil moisture estimations were accomplished with Bay-

ANN models (RMSE: 1.6, MAE: 1.08, r: 0.92, e: 0.84, R2:0.84 for surface and RMSE: 1.1, 

MAE: 0.71, r: 0.92, e: 0.85, R2:0.85 at 15 cm depth) for four dates in 2013 (May 16, June 

1, June 9, and June 17). The statistical measurements of the behavior of these models 

indicate good accuracy in their geospatial estimation of soil moisture. Generally, irrigation 

scheduling is traditionally based on the farmer’s visual perceptions of soil moisture or a 

few soil moisture samples averaged across the farm. Irrigation scheduling can be greatly 

improved by the modeling approach used in this study as it enables greater precision in the 

application of irrigation water by identifying dry/wet spots. 

AggieAir imagery, in conjunction with Bay-ANN, provided accurate estimation of 

root zone (30 cm) soil moisture. Compared to the traditional remote sensing technologies, 

e.g., satellite or commercial aerial photography services, this estimation method, with high 

spatial (15 cm by 15 cm pixels) and temporal resolution, is a potential step forward for 

possible future use in precision agriculture and irrigation scheduling. The actionable 

information derived here produces root zone soil water content maps (Figure 3.9) that can 

result in more efficient irrigation water allocation. 

The results from the wrapper selection (Table 3.4) prove the significance of thermal 

imagery and soil texture data, which appeared as field capacity in the model inputs, as these 

were the most relevant information in surface soil moisture estimations. The same applies 
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to the information derived from Table 3.5, which shows that thermal band and field 

capacity are the most repeated information in the wrapper selection of appropriate model 

inputs for soil moisture estimations at 15 cm. In the case of one input, a model with thermal 

imagery can estimate the surface soil moisture values with a RMSE of approximately 3%, 

and a model with surface soil moisture estimations can estimate the soil moisture values at 

15 cm with RMSE of approximately 1.7%. 

Vegetation indices were applied as model inputs to magnify the AggieAir data. 

Tables 3.4 and 3.5 illustrate the significance of these indices and how they improve the 

model statistics as they come into account. Figure 3.9 presents the heterogeneities across 

the farm in terms of crop type, access road, and field exterior area, which are in accordance 

with the experimental expectation.  
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CHAPTER 4 

ASSESSMENT OF OPTIMAL IRRIGATION WATER ALLOCATION FOR 

PRESSURIZED IRRIGATION SYSTEM USING WATER BALANCE APPROACH, 

LEARNING MACHINES, AND REMOTELY SENSED DATA2 

ABSTRACT 

Efficient irrigation can help avoid crop water stress, undesirable levels of nutrient 

leaching, and yield reduction due to water shortage, runoff or over irrigation. Gains in water 

use efficiency can be achieved when water application is precisely matched to the spatially 

distributed crop water demand. Thus, greater irrigation efficiency will facilitate quality 

crops and help to minimize additional agricultural and financial inputs. Irrigation efficiency 

is defined based on indicators such as irrigation uniformity, crop production, economic 

return, and water resources sustainability. This paper introduces a modeling approach for 

optimal water allocation relative to maximizing irrigation uniformity and minimizing yield 

reduction. Landsat images, local weather data, and field measurements were used to 

develop a model that describes field conditions using a soil water balance approach. The 

model includes two main modules: optimization of water allocation and forecasting the 

components of the soil water balance model. Each module includes two sub-modules that 

consider two objectives. The optimization sub-module use Genetic Algorithms (GA) to 

identify optimal crop water application rates based on the crop type, growing stage, and 

sensitivity to water stress. Results from the optimization module are passed to 

                                                           

2Reprinted from Agricultural water Management Journal, Vol. 153, Leila Hassan-Esfahani, 
Alfonso Torres-Rua, Mac McKee, “Assessment of optimal irrigation water allocation for 
pressurized irrigation system using water balance approach, learning machines, and remotely 
sensed data” pages 42-50, Copyright (2015), with permission from Elsevier. 
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the forecasting sub-module, which allocate water through time across the area covered by 

the center pivot based on the results from the previous period of irrigation (previous day) 

and the operational capacity of the center pivot irrigation system. The model was tested for 

a farm installed with alfalfa and oats and equipped with a center pivot in Scipio, Utah. The 

model products were assessed based on ground data (soil moisture measurements) under 

optimized and simulated (irrigator decisions) center pivot operations. Based on the 

simulation and optimization results obtained from the model, study area irrigator could use 

up to 20 percent less water (saved quantity over total quantity of water) over the growing 

season, compared to traditional operating procedures, without reducing the benefits. 

 

4.1. Introduction 

Irrigation plays an essential role in the agricultural productivity of a farm, especially 

in arid areas. Gains in water use efficiency can be achieved when water application is 

precisely matched to the spatially and temporally distributed crop water demand. In the 

past few decades, new technologies have played an important role in improving irrigation 

water allocation. For example, precision agriculture technologies have significantly 

advanced irrigation scheduling. Electronic devices for continuous monitoring of soil 

moisture and climatic conditions are widely used for more precise irrigation management 

of hay as a source of food for animals (Sammis, 1981; Irmak et al., 2008; Cruz-Blanco et 

al., 2014). Satellite sensors, such as MODIS, Landsat, and GOES, and remote sensing 

technology can be used to estimate crop water use and offer the potential for better water 

management in irrigated areas as a continuous, automated, and easy-to-use source of 

information (Fares et al., 2006).  Optical and thermal remote sensing data from ground-

http://ascelibrary.org/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(cruz%5C-blanco%2C+m)
http://ascelibrary.org/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(cruz%5C-blanco%2C+m)
http://www.sciencedirect.com/science/article/pii/S037837741200282X#bib0040
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based and space-borne platforms have been used to quantify water stress and 

evapotranspiration at field and district scales (Taghvaeian et al., 2013). Infrared 

thermometry has been used in conjunction with a few weather parameters to develop non-

water-stressed and non-transpiring baselines for irrigated maize in a semi-arid region. 

Taghvaeian et al. (2012), Torres et al. (2011), Allen et al. (2007), and Bastiaanssen et al. 

(2005) have used remotely sensed data to calculate daily evapotranspiration.  

In addition to new technologies and satellite information, computer modeling have 

become popular for irrigation management. Many existing models have been developed to 

simulate on-farm irrigation water demands based on climate-soil-plant systems (Ahmadi 

and Merkley, 2009). Some optimizing irrigation planning models attempt to obtain the 

optimum irrigation quantity values to satisfy the objective function and constraints. These 

optimization models for irrigation planning have received extensive interest. Kuo et al. 

(2000) developed a model based on on-farm irrigation scheduling and a simple Genetic 

Algorithm (GA) optimization method for decision support in irrigation project planning. 

Delavar et al. (2012) developed a real-time modeling approach for optimal water allocation 

during a drought. Moghaddasi et al. (2009) developed a model for optimal allocation of 

water among different crops and irrigation units. Ines at al. (2004) presented an innovative 

approach to explore water management options in irrigated agriculture using combined 

remote sensing-simulation modeling and genetic algorithm optimization. 

Learning machines have also been used to solve problems related to water resources 

management. Pulido-Calvo and Gutierrez-Estrada (2008) used computational neural 

networks (CNNs) to model irrigation demand and forecast water demand.  Kashif Gill et 

javascript:popRef2('c11')
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al. (2007) presented soil moisture data assimilation research that employed learning 

machines and a soil moisture prediction model using support vector machines. 

The present work uses Landsat satellite images, field measurements, and crop-

related remote sensing algorithms to demonstrate the adequacy and accuracy of a model 

for optimizing irrigation water allocation and simulating soil moisture conditions among 

the 24 irrigation sectors in the study area. The accuracy of the model was checked using a 

soil water balance approach for the crop growing cycle. 

 

4.2. Model Components Review 

 

4.2.1. Irrigation Scheduling 

Irrigation managers use a process called irrigation scheduling to determine the 

frequency and duration of irrigation events, based on the application rate of the irrigation 

equipment, distribution uniformity (Delavar et al., 2012), soil infiltration rate, available 

water capacity (Moghaddasi et al., 2009), soil water holding capacity, and crop 

characteristics. 

 

4.2.2. Irrigation Scheduling Based on Models 

Optimization is the process of choosing the best solution (considering some criteria) 

from a set of available alternatives. In a common case, an optimization problem includes 

maximizing or minimizing a real function by systematically selecting input values from 

within an available set and computing the value of the objective function (Bradley et al., 

javascript:popRef2('c11')
http://en.wikipedia.org/wiki/Optimization_problem
http://en.wikipedia.org/wiki/Maxima_and_minima
http://en.wikipedia.org/wiki/Function_of_a_real_variable
http://en.wikipedia.org/wiki/Argument_of_a_function
http://en.wikipedia.org/wiki/Value_(mathematics)
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1997). In the current study, the spatially distributed values for irrigation rates are optimized 

based on specific criteria.  

 

4.2.2.1. Genetic Algorithms 

Genetic algorithms have been applied in many studies as search heuristics to find 

optimal solutions to non-linear problems, and they constitute a routinely used and useful 

method that mimic the process of natural selection. The priorities of GA over other 

potential algorithms are stated best by Goldberg. GAs differ from conventional 

optimization and search procedures in the following ways: (1) GAs work with a coding of 

the parameter set, not the parameters themselves; (2) GAs search from a population of 

points, not a single point; (3) GAs use objective function information, not derivatives or 

other auxiliary knowledge; and (4) GAs use probabilistic transition rules. 

 

4.2.2.2. Optimization Objectives 

In the current study, the spatially distributed values for irrigation rates are optimized 

considering two different objectives targeted toward saving water. These objectives were 

selected based on criteria regarding crop type, soil texture type, availability of water, 

irrigation system capacity and restrictions, growing stage, or sensitivity to water stress. 

Both are fundamental approaches to optimize irrigation water allocation and are 

summarized as follows: 

 Maximizing soil moisture uniformity 

 Minimizing yield reduction 
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4.2.2.2.1. Gini Coefficient 

The Gini coefficient is a measure of statistical dispersion. It ranges from 0 to 1 and 

measures the inequality among values of a frequency distribution. It was first introduced 

for measuring the inequality of income distribution of a nation's residents and was later 

applied in other fields of studies (Cullis and van Koppen, 2007). A Gini coefficient of zero 

describes perfect equality, where all values are the same (everyone has the same income), 

and a Gini coefficient of one (or 100%) expresses maximal inequality among values (where 

only one person has all the income). Equation 1 represents this concept as the objective 

function (Gini, 1912). 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1:                                               𝐺𝐼𝑁𝐼 =
2 ∑ 𝑖 × 𝑦𝑖

𝑛
𝑖=1

𝑛 ∑ 𝑦𝑖
𝑛
𝑖=1

−
𝑛 + 1

𝑛
 

where n is the number of measurements and y is the measured values. The GA minimizes 

the Gini coefficient to seek a uniform water application distribution by changing irrigation 

rates in space and time, subject to system operational constraints. 

 

4.2.2.2.2. Yield Function 

The second objective function was based on a yield function. FAO No. 66 (Steduto 

et al., 2012) presented a linear relationship between crop yield and water use by an equation 

where relative yield reduction is related to the corresponding relative reduction in 

evapotranspiration (ET). Equation 2 represents this relationship as the objective function 

(FAO. Paper No. 66). This function has been used in other studies (Moghaddasi et al., 

2009; Delavar et al., 2012): 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2:                                                         (1 −
𝑌𝑎

𝑌𝑥
) = 𝐾𝑦 (1 −

𝐸𝑇𝑎

𝐸𝑇𝑥
) 
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where 𝐾𝑐 is the crop coefficient and 𝑌𝑎,𝑌𝑥 𝐸𝑇𝑎  and 𝐸𝑇𝑥 are actual and maximum yield and 

actual and maximum evapotranspiration, respectively. As with the spatial uniformity 

objective, the GA minimizes yield reduction by changing irrigation rates in space and time, 

subject to system operational constraints. 

 

4.3. Materials and Methods 

 

4.3.1. Study Area 

The study area is a farm of approximately 84 acres in Scipio, Utah, equipped with 

a modern center pivot sprinkler irrigation system with the capacity of 610 GPM. The crops 

for this farm, grown from April to October, are alfalfa in three-quarters of the field and 

oats in the north-east quarter (Fig. 4.1). Generally, the center pivot lateral rotates clockwise 

at a constant speed and supplies irrigation water from an upstream reservoir. The center 

pivot is computer programmable, and the smallest portion of the farm that can be 

individually irrigated is a 15 degree arc, which is considered as an irrigation sector in this 

study. These 15 degree arcs were numbered from 1 to 24. This study was performed for 

the crop growing cycle starting September 2, 2012 and ending October 4, 2012. This 

growing cycle was chosen among four alternative growing cycles in the entire growing 

season based on the availability of Landsat images covering all growing stages. 
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Fig. 4.1. The location of the study area in Utah, USA (schematic Utah counties map (on 
the right) and cropping pattern for 2013 irrigation season (on the left)), (39°14'N 
112°6'W). 
 

4.3.2. Soil Moisture Water Balance (SMWB) 

Agricultural soil water refers to the amount of water that is held in the crop root 

zone at a given time. It is the difference between the water added and water withdrawn and 

is presented in Equation 3 as follows (Hillel, 1971), 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3:                     𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑠 𝑠𝑜𝑖𝑙 𝑤𝑎𝑡𝑒𝑟 = (𝑃 + 𝐼 + 𝐶) − (𝐸𝑇 − 𝐷 − 𝑅𝑂) 

where P is precipitation, I is the irrigation quantity, C is ground water contribution, ET is 

evapotranspiration, D is deep percolations, and RO is runoff losses. The optimal solution 

for the amount of water that should be applied to irrigate each 15 degree arc covered by 

the center pivot is obtained using Equation 3. The cropping pattern, irrigation schedule for 

supplying crop water requirements, crop type, crop sensitivity to water stress, and soil 

texture are additional considerations. Figure 4.2 illustrates the entire procedure for 

calculating soil moisture water balance model components:  
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Fig. 4.2. Flowchart of soil moisture water balance calculation (SMWB) for the first time 
step. 
 

Satellite images for three different dates in the growing cycle, September 2nd, 

September 18th, and October 4th, were downloaded from Landsat, to represent early 

growing stage, full growth, and after-cut conditions, respectively. The 30-meter resolution 

images consisted of visible bands, near-infrared (NIR), and thermal. The digital numbers 

(DN) of downloaded Landsat raw images were converted to reflectance values using the 

approach recommended in the Landsat 7 Handbook (Irish, 2000). A Matlab model was 

developed to compute the Normalized Difference Vegetation Index (NDVI) on a pixel-by-

pixel basis for those three dates, and the crop coefficient, Kc, was calculated using the 
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calculated NDVI image and available experimental equations from the literature (Figure 

4.2.c.). The equations are as follow (Ines et al., 2006; Rafn et al., 2008): 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4                  𝐾𝑐 = 1.1875𝑁𝐷𝑉𝐼 + 0.05     𝑓𝑜𝑟 𝑓𝑢𝑙𝑙 𝑐𝑜𝑣𝑒𝑟 𝑜𝑓 𝑎𝑙𝑓𝑎𝑙𝑓𝑎  

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5                  𝐾𝑐 = 1.2246𝑁𝐷𝑉𝐼 − 0.2203      𝑓𝑜𝑟 𝑓𝑢𝑙𝑙 𝑐𝑜𝑣𝑒𝑟 𝑜𝑓 𝑜𝑎𝑡  

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6                  𝐾𝑐 = 1.25 𝑁𝐷𝑉𝐼 + 0.2      𝑓𝑜𝑟 𝑏𝑎𝑟𝑒 𝑠𝑜𝑖𝑙  

These equations were selected from among those available for their compatibility 

with crop type, climate, and irrigation conditions. In order to get daily Kc values, a spline 

interpolation method was applied, considering the information for Landsat overpasses on 

the dates right before and after the growing cycle as the boundary conditions. Meanwhile, 

a weather station near the farm supplied data about wind, radiation, humidity, temperature, 

and precipitation. Daily reference evapotranspiration values were determined by the RefET 

software which is based on the Penman-Monteith ET approach (Allen et al., 1998 and 

2013) (Figure 4.2.d.).  Multiplying daily reference evapotranspiration and Kc values 

supplied daily crop evapotranspiration values (ETdaily). 

Intensive ground sampling was conducted simultaneously with Landsat overpasses 

at georeferenced locations. The research crew collected soil samples from the top and root 

zone soil, and gravimetric soil moisture values were determined from laboratory tests. The 

crew also used a hand held measurement device called pro-check to obtain on-field 

measurements of soil moisture and double check the lab results (Figure4. 2. a. and 4.2.b.).  

Soil moisture probes were installed at 1 and 2 feet deep to provide hourly information about 

soil moisture, soil temperature, and soil electrical conductivity (Figure 4.3).  Following the 

methodology described by Pulido-Calvo and Gutierrez-Estrada (2008), the visible, NIR, 

IR, and thermal bands of the Landsat 7 satellite images for September 2nd, along with 
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surface soil moisture measurements, were used to calibrate an Artificial Neural Network 

(ANN) model to estimate surface soil moisture using Landsat data as inputs. The specific 

Landsat spectral bands used in the model were selected after an intensive trial-and-error 

procedure. Once calibrated, the ANN model was applied to the entire field image to obtain 

a soil moisture map of the farm (Figure 4.2.a.).  The same procedure was executed to 

develop a root zone soil moisture map at 0.5 and 1 ft. depth with the same inputs and 

surface soil moisture from the last step. The deep and surface soil moisture values were 

used to estimate the volumetric available water content in the root zone.   

In order to determine the water holding capacity of different soil types within the 

field, soil samples within the farm were collected from 14 different points and from three 

depths at each point. After soil type determination, the corresponding field capacity values 

were derived from previously published values and used as model inputs (Costa et al., 

2013). Figure 4.3 illustrates the soil field capacity map developed by utilizing a Spherical 

Kriging interpolation method for the information from the 14 available sampling locations. 

The local weather station provided precipitation data in the study area, which was 

zero for the growing cycle. The farmer operated the center pivot system at full capacity 

and constant angular velocity.  This approach was also considered in the study in the case 

of current irrigation management modeling (Figure 4.2.f.).When estimating irrigation 

water requirements, the on-farm daily soil water balance may be calculated using Equation 

7, which is derived from Equation 3. 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 7                                             𝑆𝑀𝑡+1 =  𝑆𝑀𝑡 +  𝐼𝑟𝑟𝑡 − 𝐸𝑇𝑡 + 𝑃𝑡 − 𝐿𝑜𝑠𝑠𝑒𝑠 
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where SM(t) and SM(t+1) are the soil moisture values at the (t)th and (t+1)th day, Irr(t) is the 

depth of irrigation water at the (t)th day, P(t) is the effective rainfall at the jth day, and ET(t) 

is the evapotranspiration rate at the (t)th day. 

 

 

Fig. 4.3. Map of field capacity based on soil texture type and plot of the location of soil 
moisture sensors. 
 

4.3.3. Optimization 

Table 4.1 represents the components of the model based on a water balance 

approach. Daily root zone soil moisture and evapotranspiration, field capacity, and wilting 

points are parameters that were considered as inputs in the water balance equation. To 

ensure correct optimization results, the actual irrigation schedule that was followed by the 

farmer was previously simulated using the water balance model. Then, the GA model was 

used to yield optimized irrigation values for the two different objectives. 
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Table. 4.1. Components of the model based on a water balance approach. 

Current water management 

simulation 

Maximizing Soil Moisture 

Uniformity 

Minimizing Crop Yield 

Reduction 

 Replicating the 

current irrigation 

management using 

the data derived 

from soil moisture 

sensors 

 Model follows 

farmers’ schedule  

 Objective function 

#1 

 Minimizing soil 

moisture deficit 

 Applying GA and 

water balance 

model 

 Minimizing GINI 

coefficient  

 Objective function 

#2 

 Minimizing crop 

yield reduction 

 Applying GA and 

water balance 

model 

 Minimizing Yield 

function 

 

 

4.3.3.1. Objective One: Maximizing Soil Moisture Uniformity 

The first objective was based on the concept of the Gini coefficient. This concept 

was utilized to represent soil moisture uniformity among the 24 arcs, or irrigation sectors, 

in the farm.  As mentioned previously, an arc is the smallest portion of the farm for which 

the settings of the center pivot are changeable; each such arc is considered as an irrigation 

sector. The GA was assigned to find the minimum value of this objective by changing 

irrigation rates for each arc. A Gini coefficient of 0 means all arcs have the same soil 

moisture, and a Gini coefficient of 1 means one arc gets the entire available soil moisture.  

Equation 8 represents this concept as the objective function. 
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𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 8:                                   𝐺𝐼𝑁𝐼 =
2 ∑ 𝑖 × 𝑆𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒𝑖

𝑛
𝑖=1

𝑛 ∑ 𝑆𝑜𝑖𝑙 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒𝑖
𝑛
𝑖=1

−
𝑛 + 1

𝑛
 

4.3.3.2. Objective Two: Minimizing Crop Yield Reduction 

The second objective function was based on a yield function. FAO paper No. 66 

(Steduto et al., 2012) addressed the relationship between crop yield and water use in the 

late 1970s, proposing a simple equation where relative yield reduction is related to the 

corresponding relative reduction in evapotranspiration (ET). This relationship was utilized 

in the second objective function to calculate yield reduction among the 24 arcs in the farm. 

Then the GA was assigned to find the minimal yield reduction by changing irrigation rates 

for each arc.  

After receiving the results of the optimization module, the forecasting module 

allocated water through time across the area covered by the center pivot, considering the 

results from the previous period of irrigation and the operational capacity of the center 

pivot irrigation system. 

 

4.4. Results 

 

4.4.1. Soil Moisture Water Balance 

 

4.4.1.1. Root Zone Soil Moisture  

After an intensive trial-and-error selection procedure, a network architecture of 

one hidden layer and six neurons for the surface soil moisture model, and one hidden 

layer and seven neurons for the deep (root zone) soil moisture were chosen. A division 

set up of 60:20:20, with trainlm as the training function, worked best for both models. 
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Estimation of soil moisture produced good results with an R-square value in excess of 0.8 

for surface and 0.7 for deep soil moisture. Table 4.2, represents the components of the 

ANN model for surface and deep soil moisture estimation. 

 

Table. 4.2. Components of the ANN model for surface and deep soil moisture estimation. 

Artificial Neural Network for Top Soil Moisture 

Inputs Hidden 

Layer 

Neurons Division set up Training 

Function 

R-Square 

Field 

Measurements, 

RGB,NIR, Thermal 

1 6 60:20:20 trainlm 0.8 

Artificial Neural Network for Deep Soil Moisture 

Inputs Hidden 

Layer 

Neurons Division set up Training 

Function 

R-Square 

Field 

Measurements, 

RGB,NIR, Thermal 

1 7 60:20:20 trainlm 0.7 

 

 

4.4.1.2. Spatial Evapotranspiration  

Daily crop evapotranspiration values were calculated on a pixel-by-pixel basis. 

Figure 4.4 illustrates evapotranspiration values for three sample dates (September 2nd , 

September 17th and October 4th). 
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Fig. 4.4. Evapotranspiration map (mm/day). 

 

4.4.2. Current Water Management Simulation 

To verify that the model worked properly, the actual irrigation management 

condition was simulated using a water balance model approach. Figure 4.5.a. shows the 

results of this simulation for three sample arcs which best represent the modeling approach 

in the sense of different crop type and soil texture. Table 4.3 represents these results for the 

same three sample arcs. The ratios of the total volume of water in the root zone for the 

current irrigation approach and the water balance model is approximately 1, from which it 

can be concluded that the model is simulating the current approach with good accuracy. 

As can be expected from the field capacity map (Figure 4.3), for the same irrigation 

pattern, arc 9 holds a greater volume of water due to higher water holding capacity. This 

confirms the significance of soil texture type in irrigation scheduling. 

  

Table. 4.3. Comparison of volume of water in the root zone for current irrigation 
management and water balance simulation model for three sample arcs. 
 

Total Volume of Water Content (m3) Arc#9 (Oats) Arc#19 (Alfalfa) Arc#21 (Alfalfa) 
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Current Irrigation Approach 10967(m3) 8375(m3) 9182(m3) 

Water Balance Model Approach 10678(m3) 8740(m3) 8717(m3) 

Ratio 1.03 1.04 1.05 

 

 

4.4.3. Objective One: Maximizing Irrigation Uniformity  

The Gini coefficient was utilized to represent soil moisture uniformity among the 

24 arcs in the field. The GA found the minimum value of this coefficient by changing 

irrigation rates for each arc. Figure 4.5.b. shows the soil moisture content of the root zone 

during the growing cycle for the actual and optimized irrigation management schemes. The 

ratios of the total available soil moisture in the root zone for the actual irrigation application 

scheme followed by the farmer over that of the optimized condition are presented in Table 

4.4 for the same arcs. Generally these ratios show over-irrigation, and the differences are 

mainly due to crop and soil texture type changes. As illustrated in Table 4.4, these over-

irrigation ratios are 33%, 24% and 4% for arcs number 9, 14 and 21 respectively. The over-

irrigation ratios were averaged for the 24 arcs which yielded an average 20% of over-

irrigation for the entire field. 

 
Table. 4.4. Comparison of volume of water in the root zone for current and optimized 
irrigation management for three sample arcs (objective one). 
 

Total Volume of Water Content (m3) Arc # 9 (Oats) Arc # 14 (Alfalfa) Arc # 21 (Alfalfa) 

Current Irrigation Approach 36098(m3) 31544(m3) 28570(m3) 

Optimized Irrigation Approach 27101(m3) 25415(m3) 27443(m3) 

Ratio 1.33 1.24 1.04 
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4.4.4. Objective Two: Minimizing Yield Reduction  

In this case, the equation that describes the relationship between crop yield and 

water use is utilized as the objective function (Equation 2). The GA found the minimum 

value of this objective by changing irrigation rates for each arc. Figure 4.5.c. shows the soil 

moisture content of the root zone during the growing cycle for actual and optimized 

irrigation management schemes. The ratios of the total available soil moisture in the root 

zone for the actual irrigation scheme followed by the farmer over that of the optimized 

condition are presented in Table 4.5 for the same arcs illustrated earlier. Generally these 

ratios show over-irrigation (with yield reduction values close to zero) and the differences 

are again mainly due to crop and soil texture type changes. 

 

Table. 4.5. Comparison of volume of water in the root zone for current and optimized 
irrigation management for three sample arcs (objective two).  
 

Total Volume of Water Content 

(m3) 

Arc # 9 

(Oats) 

Arc # 14 

(Alfalfa) 

Arc # 21 

(Alfalfa) 

Current Irrigation Approach 36098(m3) 31544(m3) 28570(m3) 

Optimized Irrigation Approach 27788(m3) 26414(m3) 28383(m3) 

Ratio 1.30 1.19 1.01 

 

As illustrated in Table 4.5, these over-irrigations ratios are 30%, 19% and 1% for 

arcs number 9, 14 and 21 respectively. The over-irrigation ratios were averaged for the 24 

arcs which almost yielded an average 20% of over-irrigation for the entire field. 
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Fig. 4.5. (a) Comparison of volume of water in the root zone for current irrigation 
management and water balance simulation model, (b) Comparison of volume of water in 
the root zone for current and optimized irrigation management (objective one), (c) 
Comparison of volume of water in the root zone for current and optimized irrigation 
management(objective two). 
 

Fig. 4.6 illustrates the spatial distribution of soil water balance components in the 

field for both objective functions for a sample day in the growing cycle when the Landsat 

passed over the field. As the model runs and proceeds forward in terms of time (daily 

calculations of soil water balance components), it assigns a single value of soil moisture 

for each arc as well as an irrigation rate. Fig. 4.6 shows soil moisture and irrigation rate 

distributions on the 17th day are quite similar for both cases which is due to the fact that; 

1. Other components of the model such as evapotranspiration and losses are the same, 
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2.Both objectives are based on the concept of soil water balance. Also, the highest soil 

moisture values are presented in the north-east quarter where the dominant soil type is 

finer with higher water holding capacity that other quarters.  

 

 

 

Fig. 4.6. Spatial distribution of soil water balance components in the field for a sample day 
during the growing cycle (day 17 with Landsat overpass) for objectives one (A) and two 
(B). 
 

4.5. Conclusions 

This study shows the application of water allocation models to achieve more 

efficient water use in a pressurized irrigation system by use of satellite information, remote 

sensing models in agriculture, and data mining techniques based on a soil water balance 

approach. The models were applied to a center pivot for which two different optimization 
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objectives (water application uniformity and yield reduction minimization) were analyzed 

and compared against current irrigation schemes for the dates of September 2, 2012 to 

October 4, 2012. 

The results indicate that it is possible to address different actual crop water 

requirements within the field, given the assessment by the model of soil moisture for each 

subsector of the farm. These subsectors are the minimal area (or angle) for which the 

irrigation system can be individually programmed.  

The components of the soil moisture balance were modeled based on remote 

sensing models and field data. Soil moisture data and artificial neural networks were used 

to develop a customized model for soil moisture estimation that makes use of Landsat 

imagery to provide soil moisture maps at different depths. The calibration results of the 

soil moisture models shown in this study indicate good agreement between the model 

output and the field data. 

Actual crop evapotranspiration was calculated following the procedure by Rocha 

et al. (2010). Potential ET was calculated using the Penman-Monteith approach, while crop 

coefficients were obtained using NDVI-Kc for alfalfa and oats. Estimation between 

Landsat passes was made by spline interpolation techniques. 

When comparing the results obtained from each optimization objective, it was 

found that Objectives one and two provide almost the same water savings (up to 20%). 

This was expected since both objectives functioned based on the concept of soil water 

balance approach. Other data sources, such as geo-referenced crop harvest information, 

helped to customize the FAO 56 crop yield equation, which in return shows a different 

result. 



107 
 

From the analysis of the data collected for the center pivot field, the possible causes 

for the over-irrigation pattern detected in the optimization model results is mainly due to 

(1) misinformation about the soil type, (2) low cost of water, (3) desire for a simple program 

for the center pivot, and (4) lack of attention to the crop type. These possible causes are 

related to the lack of incentives for achieving more efficient water use.  

Keeping in mind the current over-irrigation condition and, in addition, the optimal 

solutions for the two objectives produced very similar irrigation scheduling, it is possible 

to present a simple setting for operation of the center pivot that can save significant water 

and adequately address both objectives. 

Still, there are some limitations that restrict the application of remotely sensed data 

in precision irrigation. Due to the large temporal changes in the field between two 

consecutive Landsat overpasses and the large pixel size of Landsat images, fine-scale 

objects are missed. This is a handicap that requires more convenient approaches. 

Methodologies for using high-resolution, multi-spectral imagery to improve the results 

might be a solution.  Further studies might also address other objectives, such as 

economical return and improved yield. 
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CHAPTER 5 

CONCLUSIONS 

5.1. General Conclusions 

 Remote sensing can provide information for many agricultural management 

applications. Some currently orbiting satellites provide opportunities of extracting data for 

free, and many more research opportunities are provided for affordable prices by using 

sensors aboard small aircraft. 

Consecutive Landsat over-passes provide unique imagery that can help monitor 

agricultural field conditions and crop development stage and site-specific real-time 

management. Although users benefit from the free Landsat imagery, they have to cope with 

some existing limitations. Landsat provides imagery from fixed spectral bands which are 

not necessarily appropriate for agricultural applications. In addition, coarse spatial 

resolution, inadequate overpasses to monitor variations in agricultural development, and 

long time periods between image acquisition and delivery to users are other handicaps. 

Aircraft-based sensors are designed to avoid these limitations but they still suffer from 

others. They are not free, the imagery is hard to mosaic and ortho-rectify, and can require 

difficult, site-specific calibration. In this study the application of remote sensing in 

agriculture was investigated at two different spatial scales: Landsat scale (30m by 30m) 

and AggieAir scale (0.15m by 0.15) and the advantages and disadvantages of each scale 

were discussed. 

This study presents a solution to the problem of optimally allocating irrigation 

water over agricultural areas to preserve scarce water resources and help farmers to 

potentially grow more lands, save on irrigation water expenses and enhance the quality of 
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the crops. Optimal irrigation water allocation models addressed crop types and growth 

stages, sensitivity to water stress, and crops water demand. 

Application of programmable irrigation systems can improve real-time irrigation 

water management of a center pivot irrigation system. Remote sensing data at Landsat 

resolution (30m by 30m pixel size) were used to estimate the components of a soil water 

balance model including surface and root zone soil moisture and evapotranspiration (ET) 

rates. Previously developed remote sensing models in agriculture provided us with a wealth 

of information on how to translate spectral reflectance from Landsat imagery to agricultural 

information. A non-linear regression model (in the form of Artificial Neural Networks 

(AANs)) was used to retrieve soil moisture values from remotely sensed data. Intensive 

ground-sampling supported the study in terms of modeling the current irrigation 

management status, evaluating irrigation loses and training, testing and validating the 

regression model. Putting all these components together provided a soil water balance 

model which was optimized using two different criteria to yield more efficient water use 

in the study area where it is equipped with a modern programmable, pressurized irrigation 

system. The experiment was designed to cover an entire growing cycle of alfalfa and was 

carried out on three dates in 2012; September 2nd and 18th and October 4th. The results 

indicate the possibility of presenting a simple setting that can significantly save water. 

More precisely, the model was optimized regarding two different objectives (maximizing 

irrigation uniformity and minimizing yield reduction) and illustrated that it is able to 

calculate optimal irrigation rate (based on each objective) for the subsectors of the study 

area for which the irrigation system can be individually programmed. The results from the 

soil moisture modeling approach using ANNs in this study indicate good agreement 
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between the model output and the field data. Actual crop evapotranspiration, potential crop 

ET and crop coefficient were calculated following a procedure that was published 

previously, Penman–Monteith approach and NDVI-Kc for alfalfa and oats, respectively. 

The results from optimization phase, including both objectives, show almost the same 

water saving amount (up to 20%).  This is expected because both objectives functioned 

based on the concept of soil water balance approach. Among the field experiments, soil 

texture analysis wiped out some questions about over-irrigation causes. The farmer was 

misinformed about the soil type and it negatively affected his decision making quality in 

terms on irrigation rate and scheduling. Desire for a simple irrigation pattern for the entire 

field that lacks the attention to crop type variation, is another reason for inefficient 

irrigation application. Generally, these factors are related to the lack of incentives for 

achieving more efficient water use. Other than the optimal solutions presented it is possible 

to construct a simple, single setting for operation of the center pivot that can save 

significant water and adequately address both objectives (Hassan-Esfahani et al., 2015a).  

 The limitations of applying remote sensing in agriculture could be due to its 

temporal scale. Landsat over-passes have sixteen days offset which includes large variation 

in terms of the growing stage of crops. Also, each Landsat pixel (30m by 30m) covers 

900m2 of the ground and potentially underestimates the heterogeneities within the footprint 

and degrades the quality of estimations which can be critical for regression models, 

retrieving algorithms, and validating the ground truthing data. This is a handicap that 

requires more convenient approaches. Methodologies for using high-resolution, multi-

spectral imagery to improve the results might be a solution. 
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This study also developed surface soil moisture estimations as a key piece of 

information in irrigation water management. High-resolution multi-spectral imagery in 

conjunction with data mining algorithms and ground-truthing data provided the required 

information to estimate spatially distributed surface soil moisture. The model is a site-and 

time-specific model and was calibrated using on-site information such as soil moisture 

measurements, soil texture, crop type information, and high resolution multi-spectral 

imagery. Although the calibrated ANNs model cannot be used for other study areas, the 

methodology, data collection procedure, and application of data mining algorithm offers 

new ideas to further studies.  

One of the limitations of remote sensing data is the available spectral bands are 

limited and might not be quite compatible with the research purpose.  In order to check the 

significance of each individual existing band in surface soil moisture estimations, an 

intensive modeling procedure examined all individual bands and all possible combinations 

of them as candidate inputs to the model. The thermal (infrared) and NIR bands contained 

the most significant information in the surface soil moisture estimations. 

In general, surface soil moisture estimations at the high-resolution AggieAir scale 

provides farmers with far more precise information in identifying stressed crops, hot and 

dry spots, and water holding capacity of the soil. With this information, farmers do not 

need to make decisions on irrigation scheduling only based on their visual perceptions or 

a few soil moisture samples averaged across the farm. It can be concluded that the 

application of data mining algorithms to AggieAir aerial imagery allows for quantification 

of actionable information for precision agriculture in terms of soil moisture values across 
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the field. The soil moisture maps that are produced can be further related to irrigation water 

management for scheduling and determination of application rates (see chapter 3). 

After estimating surface soil moisture at high spatial resolution, research was 

conducted to estimate root zone soil moisture as a key component in a soil water balance 

model that supports agricultural water management. A Bayesian-based model was applied 

to in-filed data of root zone soil moisture.  This model used surface soil moisture 

measurements from the previous model as boundary conditions for the calculations. The 

model output was presented as the spatially distributed root zone soil volumetric water 

content. The same methodology has been applied at this stage in terms of training, testing 

and validating the data mining algorithm. In the model development procedure, in-field 

conditions such as soil texture, crop type, growing stage and location of lateral at the time 

of imagery have been noted. Although this model is site-and time-specific, it offers insight 

into a process for identifying model inputs that contain the most information for estimating 

soil moisture. Also, using all the data (i.e. data for four different sampling dates) in 

modeling captures information about four different moisture states for each sample point; 

this lessens the limitations of the “time-specific” adjective of the model. Four different 

moisture states for each point is enough information to represent soil moisture variation in 

the temporal scale. The statistical matrices that have been applied to check the goodness of 

fit of the model indicate good accuracy in their geospatial estimation of soil moisture. 

Instead of visual perception of soil moisture by farmers, this study provides a means 

whereby farmers might gain information about actual soil moisture distribution over the 

farms, which could help in irrigation scheduling and enable greater precision in the 

application of irrigation water by identifying dry/wet spots. The significance of the thermal 
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(infrared) band and soil texture type are identified as the main conclusion of this study.  

Since soil texture type is the main parameter in determining soil water holding capacity, 

these results were expected and meaningful. 

In addition to individual spectral bands, vegetation indices were also used as model 

inputs to the neural net models.  The results show these indices could selectively improve 

the model performance statistics (see chapter 2). 

 

5.2. Future Work 

Further studies might generate the same sort of estimates using other data mining 

algorithms.  The root zone soil moisture results could be used to produce remotely sensed 

estimates of crop water requirements useful for prescriptive irrigation scheduling with the 

same resolution in time and space. Pixelwise estimation of root zone soil moisture could 

also be applied in a water balance model for forecasting short-term future conditions. 

Accurate high-resolution soil moisture data are needed for a range of agricultural 

and hydrologic activities. To improve the spatial resolution of soil moisture estimates 

derived from Landsat imagery (30 m resolution), a methodology to derive soil moisture 

estimates based on airborne imagery (15 cm resolution) has been implemented. These two 

sets of analgous information (at two different spatial scales, Landsat and AggieAir) could 

be compared. Also, these two sets could be used for further calculations on 

downscaling/upscaling issues. 
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