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ABSTRACT 

Computational Fluid Dynamics Simulations of Oscillating Wings 

and Comparison to Lifting-Line Solution 

by 

Megan Keddington 

Utah State University, 2015 

Major Professor: Dr. Warren F. Phillips 

Department: Mechanical and Aerospace Engineering 

 Computational fluid dynamics (CFD) analysis was performed in order to compare the solutions of 

oscillating wings with Prandtl’s lifting-line theory. Quasi-steady and steady-periodic simulations were 

completed using the CFD software Star-CCM+. The simulations were performed for a number of 

frequencies in a pure plunging setup. Additional simulations were then completed using a setup of 

combined pitching and plunging at multiple frequencies. Results from the CFD simulations were compared 

to the quasi-steady lifting-line solution in the form of the axial-force, normal-force, power, and thrust 

coefficients, as well as the efficiency obtained for each simulation. The mean values were evaluated for 

each simulation and compared to the quasi-steady lifting-line solution. It was found that as the frequency of 

oscillation increased, the quasi-steady lifting-line solution was decreasingly accurate in predicting 

solutions. 

 (350 pages) 
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PUBLIC ABSTRACT 

Computational Fluid Dynamics Simulations of Oscillating  

Wings and Comparison to Lifting-Line Theory 

Megan Keddington 

 

 Computational fluid dynamics (CFD) analysis was performed in order to compare the solutions of 

oscillating wings with Prandtl’s lifting-line theory. Quasi-steady and steady-periodic simulations were 

completed using the CFD software Star-CCM+. Quasi-steady simulations were completed for both two-

dimensional and three-dimensional setups. The steady-periodic simulations were only performed using a 

three-dimensional setup. The simulations were performed for nine separate frequencies in a pure plunging 

setup. An additional four simulations were then completed using a setup of combined pitching and 

plunging at four separate frequencies. Results from the CFD simulations were compared to the quasi-steady 

lifting-line solution in the form of the axial-force, normal-force, power, and thrust coefficients, as well as 

the efficiency obtained for each simulation. The mean values were evaluated for each simulation and 

compared to the quasi-steady lifting-line solution.  

It was found that as the frequency of oscillation increased, the quasi-steady lifting-line solution 

was decreasingly accurate in predicting solutions. It was also observed that the thrust was generated only 

by plunging, not pitching of the wing in the simulations. 
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α,LC  = wing lift slope 
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~

LC  = airfoil-section lift slope 

acmC  = section pitching moment coefficient about the airfoil aerodynamic center 

4/cmC  = section pitching moment coefficient about the airfoil quarter chord 

4/cmC  = mean section pitching moment coefficient about the quarter chord 

PC  = instantaneous section power-required coefficient 

PC  = mean section power-required coefficient 

APC  = mean available-power coefficient averaged over a complete flapping cycle 

fPC  = instantaneous flapping-power coefficient required to support the flapping rate 
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TC  = instantaneous thrust coefficient 
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yC  = instantaneous section normal-force coefficient 

yC  = mean section normal-force coefficient 

∞−0C  = coefficients in the Taylor series expansion given in Eq. (1.44) 
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cn = control coefficients in the decomposed Fourier-series solution to the lifting-line equation 

dn = plunging coefficients in the decomposed Fourier-series solution to the lifting-line equation 

en = plunging coefficients in the Fourier-series solution for induced drag 

F = real part of the complex Theodorsen function given in Eq. (1.5) 
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L = instantaneous section lift 
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CHAPTER I 

INTRODUCTION 

 Flapping flight is of particular interest due to the recent boom in Unmanned Aerial Vehicles (UAVs), 

and more specifically, Micro Air Vehicles (MAVs) [1]. The development of MAVs has been driven by 

commercial, research, government, and military purposes. These MAVs allow remote observation of 

hazardous environments that are inaccessible to ground vehicles [2]. Flapping flight could greatly increase 

the efficiency and use of these MAVs, resulting in a greater ability for tagging, targeting, and 

communications for the military personnel in particular. Recently, the primary mission for MAVs has been 

identified as surveillance. In order to perform well for surveillance, maneuverability and sustained flights 

are desired. Flapping flight has therefore been researched in order to produce the wing motion that is 

energy-efficient and capable of providing the required aerodynamic performance for MAV flight [3]. 

 Flapping flight is of interest because of the potential efficiency gained. Lift and propulsion can be 

combined into a single flapping motion, providing high efficiencies as well as keeping the vehicle at a 

lower weight [2]. A range of parameters has been discovered that contribute to this high propulsive 

efficiency [4], and great effort has been made to recreate the high efficiency of wildlife, such as fish and 

birds, in man-made machines [5]. 

 There have been many studies in the area of flapping flight. Studies have been developed for both two-

dimensional and three-dimensional models. In both of these areas, analytical, numerical, and experimental 

studies exist. 

A. Two-Dimensional Studies 

1. Analytical Studies 

 Knoller [6] and Betz [7] independently showed that thrust could be produced by flapping airfoils. Their 

studies focused on low frequency quasi-steady effects of flapping flight. Wagner [8] later focused on 

calculating the vorticity in the wake of an airfoil with non-uniform motion. 

 Theodore Theodorsen [9] was one of the first to study in depth oscillating airfoils. He used conformal 

mapping in order to produce his model. Expressions for the lift and pitching moment with three degrees of 

freedom were shown. However, the calculation for force in the streamwise direction was omitted. von 

Kármán and Burgers’ [10] work on general aerodynamic theory was later extended by Garrick [11] using 

Theodorsen’s model. Garrick was then able to present expressions for the propulsive efficiency and axial 

force of a flapping airfoil [11]. 



 

2 

 

 

 Several approximations were made, including that of a thin airfoil with small camber, small angles of 

attack, small-amplitude sinusoidal oscillations, and a planar wake with oscillating vorticity. However, 

reasonable results are obtained with conditions outside of these seemingly tight constraints.  

 For the case of both pitching and plunging, a thin symmetric airfoil of half chord b represented by the 

straight line shown in Fig. 1 was considered. A sinusoidal vertical displacement, h(t), is undergone at the 

dimensionless distance x/b=a aft of the half chord. This is referred to as the axis of rotation. The entire 

airfoil is also rotated with a small-angle sinusoidal rotation, α(t). Mean values of zero were assumed for 

both h and α , where h is positive downward, and α  is positive clockwise relative to the constant freestream 

velocity V.  

 

 
V

leading edge,  = 1x b / −

trailing edge,  = 1x b /

x

axis of rotation,  = x b a /

y

h

 

Fig. 1  Parameters used by Theodorsen [9] to describe plunging and pitching motion (from Hunsaker 

and Phillips [12] with permission). 

 

 The angle α  is time dependent, so the instantaneous downward displacement is different for each point 

on the chord line. For clarification of which point is considered, the symbol h will be subscripted. Q(t)  is 

defined such that VQ  is the instantaneous small-angle geometric angle of attack at the airfoil section 

three-quarter chord point. 
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Expressions for the complex lift and complex pitching moment were developed using potential flow and 

conformal mapping. These were shown to be 

 











+−+−=

V

b

V

ab

V

hb
kC

V

Q
bVtP a

222
)(2)(

2

2

2

2 αα
πρ

&&&&&

 (1.2) 

 



















−+










+−+








+=

V

ba

V

ba

V

hba
kC

V

Q
abVtM a

a

αα
πρ

&&&&&

4

1

2216

1

2
)(

2

1
2)(

2

22

2

22  (1.3) 



 

3 

 

 

where 

 )()()( kiGkFkC +=  (1.4) 

 
2

01
2

01

011011

)]()([)]()([

)]()()[()]()()[(
)(

kJkYkYkJ

kJkYkYkYkJkJ
kF

−++

−++
=  (1.5) 

 
2

01
2

01

0101

)]()([)]()([

)()()()(
)(

kJkYkYkJ

kJkJkYkY
kG

−++

+
−=  (1.6) 

 Vbk ω≡  (1.7) 

Equations (1.5) and (1.6) are fundamental for Theodorsen’s [9] theory.  

 Currently, convention is to describe moments and rotations about the section aerodynamic center of the 

airfoil. Using Theodorsen’s assumptions, the aerodynamic center is at the section quarter chord of the 

airfoil. Eqs. (1.1), (1.2), and (1.3) can then be transformed to  
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using the relations  

 α&&& bahh ac )21(4 +−=  (1.11) 

 bPaMM ac )21(4 ++=  (1.12) 

 Theodorsen [9] defined a phase shift between pitching and plunging as the angle between the 

downward plunging displacement and the pitching rotation at the point a, defined as x/b. However, due to 

current convention, the phase shift will be defined here as the angle between the pitching rotation, α(t), and 

the quarter-chord y-velocity component, )()( 4 thtV cy
&−= .  The position, velocity, and acceleration of the 

motion at the quarter-chord can then be found to be  
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The effects of mean lift and finite thickness can be added to the solution and the section lift coefficient is 

obtained to be 
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Equations (1.13) through (1.18) can be substituted into Eq. (1.19) to obtain 
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 VyAy ωω ≡ˆ  (1.21) 

 yAy ωαα ˆˆ ≡  (1.22) 

Observation of Eqs. (1.14) and (1.21) show that yω̂  is also the small-angle geometric angle-of-attack 

amplitude due to the aerodynamic-center plunging, as well as a reduced frequency based on the 

aerodynamic-center plunging amplitude. It can also be seen that yα̂  is a geometric angle-of-attack ratio at 

the aerodynamic center of the airfoil. For flapping flight, yα̂  is usually small due to the fact that thrust is 

only produced from plunging. When the upward quarter-chord y-velocity component is in phase with the 

pitching angle, the lift coefficient is  
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Adding the effects of finite thickness and camber, Eq. (1.10) can be used to obtain an expression for the 

quarter-chord moment. Applying Eq. (1.13) – (1.18) to this expression gives 
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Again, examining when the upward y-velocity component is in phase with the pitching angle, Eq. (1.23) 

becomes 
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 It is advantageous to define the amplitude ratios 
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in order to compare numerical and experimental results with Eqs. (1.23) and (1.25). Observing when the 

upward quarter-chord y-velocity component is in phase with the pitching angle, Eqs. (1.23) and (1.25) can 

be used to obtain  
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For low frequencies (k approaching zero), Eq. (1.28) predicts an amplitude ratio approaching the quasi-

steady solution of )ˆ1( yα− . However, for high frequencies (k approaching infinity), Eq. (1.28) predicts an 

infinite amplitude ratio. This is not realistic. For low frequencies, Eq. (1.29) predicts an amplitude ratio 

approaching the quasi-steady solution of zero. Again, for high frequencies, Eq. (1.29) predicts an 

unrealistic infinite amplitude ratio. 

 The instantaneous power coefficient is found using the small angle approximation to be  
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Applying previous equations for when the upward y-velocity component is in phase with the pitching 

angle, Eq. (1.30) becomes 
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The mean power coefficient can be found by integrating Eq. (1.31) over a complete cycle and dividing by 

the period. 
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For low frequencies, Eq. (1.32) approaches the quasi-steady solution. However, for high frequencies,  

Eq. (1.32) approaches the unrealistic value of infinity.  

 Garrick [11] later developed a solution for the mean section axial-force coefficient for when the 

upward y-velocity component is in phase with the pitching angle 
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For low frequencies, Eq. (1.33) approaches the quasi-steady solution. For high frequencies, Eq. (1.33) 

approaches an unrealistic value. The coefficient for the instantaneous propulsive power available is  
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Using Eqs. (1.32), (1.33), and (1.34), the efficiency when the upward y-velocity component is in phase with 

the pitching angle is found to be 
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For low frequencies, the efficiency approaches the quasi-steady solution of 1.0, while for high frequencies, 

the efficiency approaches 0.5. The results have correct behavior at low frequencies, but unrealistic values at 

high frequencies.  

 Other analytical studies have been performed in various aspects of flapping flight, such as the effect of 

wind gusts [13], pressure forces [14], and energy conservation [15]. Helicopters and hovering [16] have 

also been a large area of research. Brunton and Rowley [17] compared analytical models (including 
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Theodorsen’s presented earlier) and numerical simulations to test where the analytical models broke down. 

Glauert [18] calculated the damping moment of oscillating airfoils, while von Ellenrieder, Parker, and Soria 

[19] developed and discussed a hypothesis for proper selection of the Strouhal number. 

2. Experimental Studies 

 Katzmayr [20] was the first to experimentally show that the Knoller-Betz [6,7] model produces thrust. 

He produced a series of experiments, the first of which was the oscillation of an airfoil about an axis 

parallel to the span. He concluded that there was no improvement of the aerodynamic properties of an 

airfoil in this setup and in fact stated that periodic oscillations impair the aerodynamic properties. However, 

he then changed his experiment to oscillate the freestream while keeping the airfoil stationary. For his 

second experiment, he concluded that the oscillating freestream was extraordinarily favorable on airfoils 

[20]. 

 The examination of the effect of vortices in flapping flight has been a large area of interest in 

experimental studies [21–30]. These studies aim to uncover the physics involved in flapping flight [25], as 

well as to understand how the vortices effect the aerodynamic forces [22]. Studying the wake of an 

oscillating airfoil is another large area of interest [31–36]. These studies differ from the vorticity studies by 

examining the entirety of the wake, including jets [35] and asymmetric wakes [33].  

 Several aspects of flapping flight have been experimentally studied such as hover [37], take off [38], 

and stall [39]. Adding an oscillatory in-line motion has also been studied [40] in order to examine whether 

it is a limitation or improvement for the animals that utilize this technique. Other aspects of animal flight 

have been studied as well, including fins [41,42] and insect models [43,44]. Spawning from the imitation of 

animals, flexible flapping foils has also been studied in order to determine the effects on the aerodynamic 

properties [45–48].  

3. *umerical Studies 

 In a very recent study, Hunsaker and Phillips [12] performed a numerical simulation of Theodorsen’s 

[9] model using computational fluid dynamics (CFD). In order to be consistent with Theodorsen [9], an 

inviscid solver was used. Other components of the setup of these simulations were that second-order 

upwinding was used and the implicit unsteady solver was used with second-order temporal discretization.  

A constant fluid density of 1.225 kg/m
3
 and a freestream velocity of 14 m/s were chosen.  A von Kármán 

Trefftz airfoil with a maximum thickness of 15%, a chord length of 0.25 m, and a zero-lift angle of attack 

of −5.0 degrees was the airfoil used throughout their computations.  The analytical aerodynamic center of 
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the airfoil used is located at x/c = 0.2757 and y/c = 0.0061. The simulation used an overset grid over a 

background grid. The overset grid translated vertically (plunging) with motion described by )sin( tyA ω , 

while it also rotated about the airfoil aerodynamic center (pitching) with motion described by )cos( tA ωα . 

Structured C-grids were used and were setup as shown in Fig. 2. 

 

 

Fig. 2  Example coarse grid for computational fluid dynamics calculations (from Hunsaker and 

Phillips [12] with permission). 

 

In order to obtain two-dimensional results while using a three-dimensional solver, three identical grid 

planes in the z-direction were set with the two outer z-planes set as symmetry boundaries. Grid 

convergence was studied by producing three similar grids from an initial fine grid. A medium grid was 

generated from the fine grid by removing every other node, and the coarse grid was generated from the 

medium grid by again removing every other node. Accuracy was evaluated by comparing the solutions of 

16 steps in a quasi-steady flapping cycle to the analytical solution. In order to accomplish this, the overset 

grid was offset from the background grid by using the translation equation )sin( tyA ω , and the overset grid 

was given a steady translational velocity using )cos( tyA ωω . Values for yA  and ω were chosen to give 

geometric angles of attack ranging from -4.0 to 4.0 degrees. 

 The results of these 16 step cases compared to the analytical solution show grid convergence. The 

authors note that the increase in drag in the CFD solutions is due to numerical viscosity. For the lift and 

aerodynamic center pitching moment coefficients, the error was less than 0.5% of the mean values for the 

fine grid.  

 Transient CFD solutions were then obtained. 128 time steps per cycle for eight cycles using the same 

grid as the previous cases was determined to be both grid and time-step converged. The calculations used a 
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geometric angle of attack amplitude of °=− 29.4)ˆ1(ˆ yy αω  and mean lift coefficient of 614.0=LC . Birds in 

forward flight typically have a reduced frequency range between 015.0≅k  and 2.0≅k . The reduced 

frequency range of this study was 42.005.0 << k . 

 Values for the mean axial-force coefficient and mean power required coefficient were obtained and are 

shown in Figs. 3 and 4 compared to Theodorsen’s [9] model. The difference between the CFD and 

Theodorsen’s model increased with increasing reduced frequency, with the differences for the mean axial-

force coefficient ranging from -2.9% to 34% and for the mean power required coefficient ranging from -

1.2% to 24%. The author remarks that this is remarkable considering the constraining approximations used 

by Theodorsen [9]. 

 Hunsaker and Phillips [12] then propose an alternate approach for predicting the aerodynamic 

properties of a flapping airfoil using numerical solutions to experimental data to calibrate the frequency 

dependence of the unsteady aerodynamic coefficients. It is noted that this approach may be better for high 

flapping frequencies. To set up this new approach, a two-dimensional airfoil immersed in uniform flow and 

constant freestream velocity, V, is considered. Sinusoidal vertical displacement, yac(t), with a zero mean 

and positive upward orientation, of the airfoil’s aerodynamic center is combined with small-angle 

sinusoidal rotation, α(t), also about the airfoil’s aerodynamic center. The rotation α  has a mean value of α  

and is oriented such that it is positive clockwise relative to the freestream velocity,  which is approaching 

the airfoil from the left.  This allows the vertical position of the aerodynamic center to be expressed as 

 

 )sin()( tyty Aac ω=  (1.36) 

The normal-velocity component can then be shown to be 

 

 )cos()( tytV Ay ωω=  (1.37) 

The pitching angle is oscillating at the same frequency as the normal-velocity component, as well being in 

phase with the normal-velocity component. The pitching angle can then be expressed as 

 

 )cos()( tt A ωααα +=  (1.38) 

where the pitching amplitude is denoted as αA . Using the small-angle approximation, the total geometric 

angle of attack is then shown to be 

 

 )cos()ˆ1(ˆ)( tt yyg ωαωαα −−=  (1.39) 
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The lift coefficient can be written as  

 

 ])()([
~

)( 0, LigLL ttCtC αααα −+=  (1.40) 

where α,
~

LC  is the airfoil section lift slope, 0Lα  is the zero lift angle of attack, and α i(t) is the time-

dependent induced angle of attack. Eq. (1.39) can be applied to Eq. (1.40) with the result 

 

 ])()cos()ˆ1(ˆ[
~

)( 0, LiyyLL ttCtC ααωαωαα −+−−=  (1.41) 

The axial and normal component of lift are found to be 

 

 )]()cos(ˆ][)()cos()ˆ1(ˆ[
~

)( 0, ttttCtC iyLiyyLx αωωααωαωαα +−−+−−−=  (1.42) 

 ])()cos()ˆ1(ˆ[
~

)()( 0, LiyyLLy ttCtCtC ααωαωαα −+−−==  (1.43) 

utilizing the small angle approximation. 

 The instantaneous induced angle of attack can depend on the oscillating component of the geometric 

angle of attack and all of the time derivatives 
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In order to evaluate the time derivatives, 
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can be used. Using Eqs. (1.39) and (1.45) in Eq. (1.44), 

 

 )]sin()cos()[ˆ1(ˆ)( tBtAt yyi ωωαωα +−=  (1.46) 

is obtained, where 
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The coefficients A and B do not vary with time over the flapping cycle for this study. 

 Using Eq. (1.46) in (1.42), along with the trigonometric identities cos
2θ =[1+cos(2θ)]/2, 

sin
2θ =[1−cos(2θ)]/2, and cosθ sinθ =sin(2θ)/2, the following is obtained 

 

 )]2sin()2cos()[ˆ1(ˆ
~

)]sin()cos([ˆ)( 220
2

,11 tBtAACtBtACtC xxxyyLxxyLx ωωαωωωω α ++−−+=  (1.48) 

The same can be done to Eq. (1.43) to obtain 
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and  

 )(
~

0, LLL CC ααα −=  (1.51) 

 It can be seen that the seven coefficients, Ax0, Ax1, Bx1, Ax2, Bx2, Ay1, and By1, depend on the plunging 

frequency. For steady sinusoidal oscillations, however, they are Fourier coefficients and do not vary over 

the flapping cycle. The axial- and normal-force coefficients depend on at least one reduced frequency, yω̂ , 

as can be seen in Eqs. (1.42) and (1.43). It is expected that these force coefficients should depend on two 

reduced frequencies, the normal reduced frequency, yω̂ , and axial reduced frequency, 

 

 Vcx ωω ≡ˆ  (1.52) 

As the Fourier coefficients A and B are strong functions of yω̂ , it is expected that they will be strong 

functions of xω̂  as well. The authors note that xω̂  is simply twice the reduced frequency that Theodorsen [9] 

defined. 

 For quasi-steady sinusoidal oscillations, the Fourier coefficients approach the low-frequency limit of 

 

 0,1,0,21,0,1,21 1122110 ======= yyxxxxx BABABAA  (1.53) 



 

12 

 

 

while xω̂ , α i ,  A, and B all approach zero. 

 The instantaneous power coefficient for pitching and plunging motion is  

 

 
V

tcCtVtC

cV

tmtVtF
tC acmyyacyy

P

)()()()()()(
)(

3
2

1

α

ρ

α && −−
=

−−
≡  (1.54) 

Using the small angle approximation, assuming the pitching angle is in phase with the upward y-velocity 

component, and applying Eqs. (1.21), (1.22), (1.37), (1.38), (1.43), and (1.52), the expression for the 

instantaneous power required can be found to be 
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Equations (1.55) and (1.48) can be integrated over a cycle and divided by the period to obtain the mean 

required-power coefficient and the mean axial-force coefficient 
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Continuing to assume the pitching angle is in phase with the upward y-velocity component, the propulsive 

efficiency is obtained to be 

 

 ])1()[ˆ1(1 2 ABACC yPx −−−−=−= αη  (1.58) 

 In order to determine the time-dependent wake-induced angle of attack, values for the Fourier 

coefficients A and B must be found. It can be seen that in Eq. (1.56), the mean required-power coefficient is 

independent of the Fourier coefficient B. Therefore, the A coefficient can be found to be 
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A similar process can be utilized to find the B coefficient from Eqs. (1.57) and (1.59). 
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The wake-induced angle of attack can then be found from Eq. (1.46). 

 Using the CFD solutions previously described, xω̂  was varied from 0.10 to 0.84, while yω̂  was varied 

from 0.025 to 0.117, and yα̂  was varied from −0.2 to 0.2. The solutions from the calculations were then 

used with Eqs. (1.59) and (1.60) to evaluate the Fourier coefficients A and B. The results were used to 

obtain algebraic correlation equations, relating A and B to the parameters xω̂ , yω̂ , and yα̂ . Values for the 

Fourier coefficients A and B obtained from the CFD solutions were correlated accurately using the 

piecewise continuous functions 
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The coefficients found in Eqs. (1.61) and (1.62) were found by forcing continuity of the functions and their 

first derivatives at the transition points and minimizing the RMS difference between the CFD solutions and 

the functions. The results of the comparison between Eqs. (1.61) and (1.62) and the CFD solutions are 

shown in Figs. 3 and 4. The authors note that the fact that there is significantly more deviation in the B 

coefficient could be due to the difference in uncertainty in the CFD solutions for the mean axial force and 

the mean required power. Comparison of the mean axial-force coefficient, mean required-power 

coefficient, and propulsive efficiency of the CFD solutions to both the Hunsaker and Phillips [12] results 

and the Theodorsen [9] results are shown in Figs. 5–7. 
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Table 1.  Correlation coefficients for Eqs. (1.61) and (1.62). 

A15 = 97.29135 A23 = 0.546031 A30 = 0.587284 B15 = −544.4944 B23 = −14.76825  

A14 = −43.97278 A22 = −1.041703 A31 = 0.804087 B14 = 49.2633 B22 = 11.25173  

A13 = −17.06888 A21 = 0.961984 A32 = 2.611038 B13 = 109.3024 B21 = −2.75989  

A12 = 9.97222 A20 = 0.108206 B30 = −0.265167 B12 = −26.2319 B20 = −0.05111  

TA1 = 0.332091 TA2 = 0.728294 TB1 = 0.226322 TB2 = 0.300902    
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Fig. 3  Comparison between the CFD solutions and the correlation with Eq. (1.61) (from Hunsaker 

and Phillips [12] with permission). 
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Fig. 4  Comparison between the CFD solutions and the correlation with Eq. (1.62) (from Hunsaker 

and Phillips [12] with permission). 
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Fig. 5  Comparison of  the mean axial-force coefficient predicted from the CFD solutions, Eq. (1.57), 

and the model first presented by Theodorsen [9] (from Hunsaker and Phillips [12] with permission). 
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Fig. 6  Comparison of  the mean required-power coefficient predicted from the CFD solutions, Eq. 

(1.56), and the model first presented by Theodorsen [9] (from Hunsaker and Phillips [12] with 

permission). 
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Fig. 7  Comparison of  the propulsive efficiency predicted from the CFD solutions, Eq. (1.58), and the 

model first presented by Theodorsen [9] (from Hunsaker and Phillips [12] with permission). 
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It is noted that the correlations between the CFD solution and the Hunsaker and Phillips [12] results shows 

a noticeable improvement over the Theodorsen [9] model. 

 Hunsaker and Phillips [12] focused on the propulsive efficiency in their calculations, but other studies 

have focused on propulsive efficiency as well. Tuncer and Kaya [3] performed numerical calculations and 

found that efficiency was increased when plunging is decreased and pitching was increased. As was seen in 

Fig. 7, this was consistent with Hunsaker and Phillips’ [12] findings. Kaya and Tuncer [49] found that a 

nonsinusoidal flapping cycle gave more thrust, but reduced efficiency and that the efficiency increased the 

closer to sinusoidal the flapping cycle was. The examination of sinusoidal and nonsinusoidal flapping 

motions was also studied by Sarkar and Venkatraman [50]. Young and Lai [51] studied the effect of flow 

separation on thrust and efficiency and found that flow separation, and therefore efficiency, was partially 

controlled by reduced frequency as well as the flapping motion. 

 As was of interest in experimental studies, flexibility [52–57], hover [58–64], and stall [65,66] have 

been areas of interest in numerical studies as well. Vorticity [4, 67–73] and investigation into the wakes  

[2, 74–77] of oscillating airfoils also are large areas of numerical study. Several aspects of the flapping 

cycle have been numerically investigated such as the effect of frequency [78,79], chord thickness [80], 

pitching and plunging ratio [81], and general dynamics [82]. Bi-plane configurations [83–86] have also 

been studied numerically in order to determine aerodynamic properties in comparison to a single airfoil. 

 There are multiple ways to study flapping foils numerically. Studies have ranged from using CFD 

analysis [48, 87], Duhamel Superposition [88], Finite Element analysis [89], immersed boundary methods 

[90], panel codes [91,92], and vortex-lattice methods [93]. Studies have investigated the materials and 

structure requirements [94] and the effects of channel flow [95] and placement near solid walls [96] on the 

aerodynamic properties. 

 Several studies have combined both numerical and experimental solutions to produce results. These 

studies cover a wide range of subjects. Toomey and Eldredge [97] studied the effect of flexible airfoils, 

while Jones, Dohring, and Platzer [98] studied the wake of a flapping airfoil. Ground effect [99] and hover 

[100] have also been studied in a combination of numerical and experimental solutions. 

B. Three-Dimensional Studies 

1. Analytical Studies 

 There have been many three-dimensional analytical studies examining the aerodynamic properties of 

flapping flight. Multiple studies discuss the interest for flapping flight [101], the problems that need to be 
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solved in order to produce an accurate model [102], as well as a discussion of different approaches that 

have been taken [103] and overall summaries of existing work [104,105]. Hover is also a large area of 

interest in three-dimensional analytical studies [106–113], including the study of conversion from hover to 

forward flight [114] and studies specific to helicopters [106].  

 Nature has been examined extensively in order to learn more about the aerodynamic properties 

associated with oscillating wings. Birds [115], bats [116], and insects [117,118] have all been analytically 

investigated. An extensive effort has been made into examining different effects of the wing motion [119], 

including bending moments [120], efficiency [121], rotation timing [122], twist [123], vortices [124,125], 

and wake effects [126]. 

 Different techniques of modeling have been of large interest as well [127–139]. Many different 

approaches have been taken such as the continuous loading approach [131], a stream tube model [132], 

investigation into the effect of the Strouhal number [133], and adaptations of Prandtl’s Lifting Line Theory 

[5,134–139].  

 Prandtl’s classic lifting-line theory [140,141] shows that when the planform shape and other wing 

characteristics are known, the lift and drag of the wing can be found. Phillips [138] expanded this theory by 

breaking down the fundamental equation 
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and examining how each component of wing planform, washout distribution, surface deflection, and wing 

roll effects the lift and drag. Phillips has continued this examination to the application of flapping flight 

[134,135]. 

 Phillips [134,135] begins from Prandtl’s lifting-line theory’s fundamental equation, Eq. (1.63). 

Assuming a wing with no sweep or dihedral, and using a Fourier series, change of variables, 

 

 )/2(cos
1

bz−≡ −θ   (1.64) 

and the Kutta–Joukowski Law [142,143], Eq. (1.63) is solved and a lift coefficient is obtained as 

 

 1ARC AL π=   (1.65) 
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Downwash induced by the trailing vortex sheet causes the local section lift vectors to tilt aft, producing 

induced drag. Assuming no roll, the coefficient of induced drag is found to be 
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If a wing has geometric or aerodynamic twist, the Fourier coefficients have to be re-evaluated at each point 

along the semispan because of the varying angles of attack, as well as for each operating condition. Using a 

change of variables, a more efficient equation for the Fourier coefficients can be determined 
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Rigid-body roll produces a linearly varying plunging distribution function 

 

 )cos()(/2)( θθψψ =−= orbzz   (1.72) 

  A wing can be designed to decrease the amount of induced drag by including the optimum washout 

distribution. Information on how to do this, as well as prediction of rolling and yawing moments can be 

found in Phillips [138]. Aerodynamic forces depend on both translational and rotational acceleration and 

velocity components. The dependence on the acceleration components are for two reasons. The first reason 

is that as the surface of an object accelerates, some of the surrounding fluid accelerates as well, causing an 

equal and opposite force on the surface. If the weight of the object is much greater than the weight of the 

fluid, this force is small and can generally be ignored. The second reason is that the trailing vortex sheet has 
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a significant effect on the lift and drag. Therefore, the plunging acceleration has a significant effect on the 

lift and drag as well. There are two conditions that must be satisfied in order that the plunging acceleration 

and the effect it has on the trailing vortex sheet can be ignored. These two conditions are that the freestream 

airspeed must be high enough and that the rolling acceleration, along with the flapping frequency, must be 

low enough. This is because lifting-line solutions are quasi-steady solutions. In order to prevent boundary-

layer separation, the local section geometric angle of attack, and therefore the component of wind normal to 

the flight path, must be small. If this is small and below stall, the lift coefficient can be modeled as a linear 

function. This gives 

 

 ( ) ]ˆ[ 11101 pdcbaRC crootLAL ++Ω−−= δααπ  (1.73) 

Rotation about the roll axis causes a change in the section lift vector, which changes the component of lift 

parallel to the freestream. Therefore, Eq. (1.66) cannot be used to compute the induced drag when there is 

rotation about the roll axis. The total section induced drag is caused by the tilting of the local section lift 

vector aft by ∆αi and forward by ∆αp. The angular rotation rate about the roll axis is constant in rigid-body 

roll, positive on one semi-span and negative on the other in rigid-body flapping, and continuously varying 

for birds. How ∆αp varies in the spanwise direction is a product of the twist distribution and the 

dimensionless rotation rate. To obtain a function for the plunging distribution, it is assumed that the angular 

rotation rate distribution is constant across each semispan, and the flapping rate is spanwise symmetric 

about the midpoint. 

 

 ( )




>

<−
=

0

0

,/2

,/2

z

z

bz

bz
zψ  (1.74) 

From previous equations, an equation for induced drag as a function of the plunging distribution with 

rotation about the roll axis can be found. 
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In Eq. (1.75), if the third term can become negative enough, the entire induced drag becomes negative, 

therefore actually being induced thrust. This is how flapping wings get forward flight. Induced thrust 

cannot exist without plunging, but induced thrust also depends on variations in chord length, twist, and 

aileron deflection. The periodic flapping motion is very complex, including twist, sweep, and plunging. An 

ornithopter can be designed to deflect ailerons to achieve certain objectives. Lifting-line theory allows it to 

be seen what exactly contributes to lift and drag so that this machine could be designed. 

 If a planform is spanwise symmetric along with the washout, the a and b coefficients are zero and all 

odd c and d coefficients are zero as well. With this, a simplified expression for the coefficient of induced 

drag with aileron deflection and rigid-body roll can be found. 
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Using the small-angle approximation, we can find an equation for the rolling moment coefficient using the 

Fourier coefficients. An even simpler equation can be found if the planform and washout distribution are 

spanwise symmetric. An airplane quickly approaches a steady rolling rate when ailerons are deflected, 

caused by a net rolling moment of zero. This can be used to then simplify the coefficient of induced drag to 

see that the steady rigid-body roll causes no induced drag, but instantaneous roll before it reaches a steady 

rate increases induced drag. With no aileron deflection or roll, there is a set of equations for steady level 

flight. 
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Rigid-body roll, in the absence of aileron deflection, always contributes negative induced drag, or induced 

thrust. In steady rigid-body roll, the induced drag from the aileron deflection is balanced out exactly by the 

induced thrust from the rolling rate. The local section lift can be written using Fourier coefficients to be a 

function of planform shape, washout, aileron deflection, and roll. 
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Plotting each contribution to the section lift separately as a distribution, it can be seen that when the aileron 

deflection term is tilted through α∆p, it is exactly balanced by the rolling rate term. Using the small angle 

approximation, Eq. (1.83) can be taken to determine the component of induced drag caused by tilting the 

local section lift through α∆p. If there is a left aileron deflection and left roll, it can be seen that the aileron 

term and the roll term will exactly cancel out in Eq. (1.84). 
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Washout and aileron deflection only change the magnitude of the section lift vector, while rotation about 

the roll axis changes both the magnitude and direction by tilting the vector through α∆p. By comparing  

Eq. (1.66) and Eq. (1.71) it can be seen that Eq. (1.66) does not account for this tilting. However, it holds 

for steady rigid-body roll or no roll because the induced drag and induced thrust produced exactly cancel 

out. For spanwise symmetric wings, there is no net effect on lift, but a small effect on induced drag from 

aileron deflection. Normally, the aileron deflection and roll terms of induced drag cancel out, but a yawning 

moment is produced. As seen in the previous discussion, there is a way to create induced thrust from 

rotation about the roll axis. If there is periodic rocking with no aileron deflection, induced thrust can be 

produced. In nature, the difficulty of this problem is overcome by rotating the semi-spans in opposite 

directions, or flapping. 

 Unlike rigid-body roll, flapping causes parallel effects on both semi-spans, producing significant 

changes in the lift and induced drag. The two-dimensional downstroke is well understood, but the upstroke 
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is not. Knoller [6] and Betz [7] described it as having positive thrust on both the upstroke and the 

downstroke in their cycle, but this description does not work for birds where there is not significant 

buoyancy. It is frequently said that birds fold their wings or separate their feathers on the upstroke to 

minimize the negative aerodynamic lift, but this can only be sustained for a few seconds and in forward 

flight, this is not necessary. It is not reasonable to use potential-flow analysis for all forms of flapping 

flight, but Prandtl’s [140,141] lifting-line theory is a good way to analyze high-speed forward, or quasi-

steady, flapping flight. In pure plunging, where there is no rotation in pitch, an expression for both the 

mean lift coefficient and the instantaneous lift coefficient using the small angle approximation in Prandtl’s 

lifting-line theory can be found, as well as the observation that the periodic motion gives a mean flapping 

rate, p̂ , of zero. 

 ( ) ][ 101 Ω−−= baRC
rootLAL ααπ  (1.85) 

 pdRCC ALL ˆ1π+=  (1.86) 

Rather than having αroot and the washout remain fixed, it is more convenient to keep the lift coefficient 

fixed and let αroot and the washout vary over the cycle. After allowing the lift coefficient to remain fixed, an 

expression can be obtained for the induced drag coefficient. 
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An optimum value of washout as a function of the lift coefficient and rotation rate can be found. This is 

optimized over the entire cycle such that a flapping motion with maximum induced thrust results.  
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Equation (1.91) can be taken and made so there is optimum washout the entire cycle, yielding expressions 

for both the mean and instantaneous coefficient of induced drag. It can be rearranged to keep washout and 

the root aerodynamic angle of attack fixed, letting the coefficient of lift vary, and obtain and expression for 

the instantaneous drag coefficient. The mean induced drag coefficient has two components. The first is the 

same as induced drag without flapping. The second is parallel to the freestream and opposite the drag, 

causing induced thrust, as can be seen in Eq. (1.29). 
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where 
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On the downstroke, the local section lift vectors are tilted forward and the magnitude increases. On the 

upstroke, they are tilted aft and the magnitude decreases. This give induced thrust for pure plunging over a 

cycle. In order to get numerical results for the instantaneous drag coefficient, the plunging distribution 

function must be known. Assuming a small angle rotation about the midspan with no bending in the 

semispan, Fourier coefficients can be produced for this case. 

 When the left wing rolls up, the rolling moment is defined positive and an expression can be obtained 

for the left wing’s effect on the rolling moment coefficient using the small angle approximation. If there is 

no aileron deflection with spanwise symmetric planform shape, washout, and flapping, the left wing’s 

effect on the rolling moment coefficient can be simplified further. The left wing’s moment coefficient is the 

root bending moment coefficient, and from that a flapping power coefficient can be defined. This is done 

using the fact that the instantaneous power is two times the left wing moment times the flapping rate. 
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In order to maximize thrust, the Eq. (1.91) for optimum twist can be used in the flapping power coefficient. 

Keeping other variables fixed and letting the lift coefficient vary, an expression is found for the 

instantaneous flapping power coefficient in pure plunging. Seeing that under certain circumstances, the 

instantaneous power could be negative, an equation is obtained for the minimum possible mean flapping 

power coefficient. Finding the mean power available, simply the induced thrust times the freestream 

velocity, helps to find the ideal efficiency, showing that propulsive efficiency is independent of the flapping 

rate in pure plunging. 
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Phillips [134,135] finds that efficiencies of 95% or greater are possible with flapping flight. This is 

compared to traditional methods of propulsion that have a range of efficiency of 70-80% [144]. This shows 

that flapping flight has the potential to be much more efficient than traditional methods of propulsion.  

 If a rigid-semispan is considered, the washout and twist must remain constant. No bending can occur 

either. Using an elliptic planform shape in order to minimize induced drag without twist, yields solutions 

for the Fourier coefficients. Expressions can then be found for the lift coefficient, induced drag coefficient, 

and flapping power coefficient for small-angle flapping. 
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Looking at Eq. (1.101), it can be seen that in order to maintain steady periodic motion, the condition in  

Eq. (1.102) must be met. 
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Assuming a sinusoidal flapping cycle, as well as a washout of zero, and therefore an untwisted wing, it can 

be seen that the lift, drag, and flapping-power coefficients are dependent on the wing aspect ratio. A 

sinusoidal flapping cycle causes a slightly negative power coefficient for a part of the cycle. For ideal 

efficiency, this power is recovered, but if this power is not recovered, the mean flapping power coefficient 

rises and efficiency decreases to roughly the values of traditional aircraft propulsion.  

 Assumptions of elliptic planforms and rigid semispans are made, but these assumptions may not be 

realistic. Therefore, the Fourier coefficients must be found numerically. This can be done using N nodes 

clustered at the wing tips equally spaced in theta. At the wing tips, l’Hospital’s rule is used. Assuming 

characteristics of the wandering-albatross, 199 nodes, steady periodic flapping, a constant parasitic drag 

coefficient and a flight speed equal to the minimum dag airspeed without flapping, give a very good 

efficiency value. It can be seen that it is independent of wing twist and wing loading. These results are not 

optimized, but if the washout is optimized and the flapping rate changed, an increase in efficiency of 15% 

can be found. Recovering the power on the upstroke, an increase of another 15% can be obtained showing 

that significant increases in efficiency can be gained by careful design.  

2. Experimental Studies 

 Three-dimensional experimental studies have covered a wide range of subjects. Some have focused on 

the study of animals [145–151], including fish [148] and insects [149–151]. Others have focused on 

different configurations of flight, including bi-planes [152], tandem-wings [153,154], flat plates [155–157], 

and propellers [158]. Flexibility [159], hover [160–164], and the study of the wake [165–171] and vortices 

[172–179] of oscillating wings have all been areas of interest in experimental studies as well.  

 Experimental studies are extremely useful to investigating different designs [180–183], models [184], 

and methods [185] of flapping flight, as well as testing previously built ornithopters [186]. It is also helpful 

in examining the many aspects of the wings stroke [187], including the flexibility of the wings [159], the 
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flapping frequency [188,189], and transition to forward flight [190]. These experimental studies give 

insight into how to handle the aerodynamic forces [191], especially lift [192]. 

3. *umerical Studies 

 There have been many approaches and techniques used to numerically study oscillating wings such as 

computational fluid dynamics (CFD) [193–195] (including the study of the mesh [196]), efficient 

multiobjective evolutionary algorithm (e-MOEA) [197], Euler solutions [198], finite element [199], panel 

codes [200,201], shape morphing [202], and a strong-coupling approach [1]. Some of these techniques have 

been compared and contrasted in order to determine which purposes each technique is best suited for [203]. 

These different approaches have also been used to study a variety of subjects including energy extraction 

[204,205], stall [206], power [207], and thrust [208].  

 Many different aspects of flight have been numerically studied such as hover [209–221], ground effect 

[222], and wind gusts [223]. Aspects and configurations of the flying machine have also been studied 

including flexibility [224,225] and stretching [226] of the wings, bi-wing [227] and tandem-wing [228] 

configurations, flat plate modeling [229–231], and high-frequency flapping [232]. Butterflies [233], MAVs 

[234], and the high-altitude long endurance (HALE) aircraft [235] have also been studied numerically. 

 As has been studied both analytically and experimentally, the vortices [236–243] and wake [244] of 

oscillating wings are of high interest. All of these studies help to create more accurate models [245–247], 

better designs [248,249], and optimize aerodynamic properties [250]. The summary of many experimental 

studies can be seen in Rozhdestvensky and Ryzhov [251]. 

 One technique that has proven useful is an adaptation of Prandtl’s [140,141] lifting-line theory [252].  

A CFD validation of minimization of induced drag with wing twist using lifting-line theory has been 

accomplished by Phillips, Fugal, and Spall [253]. They show that the minimum induced drag for a tapered 

or rectangular wing occurs when 

 

 
bzR

bz
z

T /2)1(1

)/2(1
1)(

2

−−

−
−=ω  (1.103) 

describes the twist distribution and the total twist is specified by 
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Their results show that induced drag can be reduced significantly by implementing the appropriate twist. 

They do find, however, that because the minimization of induced drag varies with the lift coefficient, the 

optimization can only be done for a single operating condition when using fixed twist. On the other hand, if 

variable twist is used, then the wing twist could be varied and optimized with the changing lift coefficient.  

 A number of additional three-dimensional studies have utilized a combination of analytical, numerical, 

and experimental techniques. Numerical and experimental has been combined most often. These study a 

range of subjects, including flexibility of the wings [254,255], ground effect [256], modeling using a flat 

plate [257], and a general summary of past studies [258]. Numerical and analytical techniques were 

combined to study the flexibility of the wings [259], as well as modeling using a flat plate [260]. It is 

observed that most work for three-dimensional flapping flight has been done using experimental and 

numerical studies. A relatively little amount of research has been studied analytically. The present research 

is aimed to support future analytical work on three-dimensional flapping flight. 

C. Purpose of the Present Research 

 The work that will be presented here is a comparison of the propulsion theory presented by Phillips 

[134,135] with computational fluid dynamics (CFD). The purpose present research is to extend the CFD 

work of Hunsaker and Phillips [12] to a three-dimensional finite wing. These three-dimensional CFD 

results will be compared to results found using the quasi-steady lifting-line model presented by Phillips 

[134,135]. 

 There are many options of methods that could be used to compare to the work of Phillips [134,135]. A 

numerical study was decided to be the best option for this comparison. Both panel codes and CFD analysis 

options were considered. Panel codes are advantageous because they are very fast and inexpensive solvers. 

However, panel codes cannot grid resolve, approaching a single value as the grid is refined. This makes it 

so that panel codes can give incorrect solutions very easily and often. Computational fluid dynamics is 

advantageous because of the wide range of settings and conditions for which it can be used, as well as 

having the ability to grid resolve. However, CFD analysis can be slower than other methods of numerical 

analysis, as well as some software can be very expensive. Even with these disadvantages, it was chosen that 

CFD would be the best option for this study due to the grid resolution.  

 There are still areas of research missing from the body of work described earlier. The major thing that 

is still missing from this body of a work is a highly detailed analytical model of flapping flight. Multiple 

models have been presented, but none have yet to be highly detailed and that can accurately describe 
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oscillating wings. Many assumptions are made, such as rigid wings, pure plunging, or thin airfoils. A model 

with very few constraining assumptions is yet to be developed. 

 Lifting-line theory was chosen to be compared with CFD because this comparison has yet to be made 

for three-dimensional flapping flight. Phillips [134,135] presented an analytical model using lifting-line 

theory applied to flapping flight, but no comparison of this model with experimental or numerical study has 

yet to be presented. As described above, CFD was determined to be the best option to present this 

comparison. This comparison is needed because lifting-line theory is a steady-state solution, while flapping 

flight is an unsteady problem. Phillips [134,135] has proposed a quasi-steady solution based on Prandtl’s 

[140,141] steady-state lifting-line theory. This quasi-steady solution can be used to predict the propulsive 

thrust and required power from the plunging of the airfoil sections along the span of an oscillating finite 

wing. This model can be used for a wing with arbitrary time-dependent planform, twist distribution, control 

surface distribution, and plunging distribution. Applying a quasi-steady solution to an unsteady problem 

requires that a comparison be made either experimentally or numerically in order to observe how well the 

quasi-steady theory can accurately describe the unsteady problem. The work presented here will contribute 

to the body of work studying flapping flight by demonstrating the applicability of Prandtl’s [140,141] 

lifting-line theory as has been applied to oscillating wings by Phillips [134,135]. 

 The CFD grid generation software used by Hunsaker and Phillips [12] is capable of generating a three-

dimensional wing grid from a two-dimensional airfoil grid. However, this software is not capable of 

generating a three-dimensional grid that can be used to study flapping wings. Considerable adaptation 

would need to be made to the grid generation software in order to produce a grid that could be used to study 

flapping wings. Therefore, as a starting point for the extension of Hunsaker and Phillips’ [12] work, 

uniform sinusoidal plunging and pitching of a rigid rectangular wing with no twist or control surface 

deflection was chosen. This setup is consistent with both the grid generation software and the quasi-steady 

lifting-line model presented by Phillips [134,135]. 

 The main objective of this work is to evaluate the analytical model presented by Phillips [134,135] in 

the ability it has to predict the thrust, power, and efficiency of oscillating wings in certain circumstances. 

Although Phillips [134,135] presented a relatively general model, the analytical relations presented were 

for two special cases, rigid-body roll with aileron deflection and small-angle wing flapping with no 

semispan bending or control surface deflection. Therefore, additional analytical relations will be developed 

for the lift coefficient, drag coefficient, axial-force coefficient, normal-force coefficient, required-power 

coefficient, thrust coefficient, and propulsive efficiency. These analytical relations will be for the present 
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research’s special case of uniform sinusoidal plunging and pitching of a rigid wing with not twist or control 

surface deflection. 

 Study into how the model Phillips [134,135] presented differs from CFD and experimental results, 

especially at high frequencies, is of interest in the present work. In order to accomplish this objective, a 

range of simulations must be done to compare results to those predicted by Phillips [134,135]. These 

simulations must range in frequency of flapping and ratio of pitching to plunging, as well as fulfilling the 

requirements of quality CFD work such as being grid resolved, time step resolved, and cycle resolved.  

 Specific plunging and twist distributions were selected for this research. The twist distribution was 

selected to be a constant zero across the span for simplicity in later calculations. The plunging distribution 

of pure rigid-body plunging was studied extensively in four stages. First, a two-dimensional study was 

performed with steady-state assumptions. The analysis was then progressed to two-dimensional unsteady 

assumptions. Both of these analyses were compared to analytical conformal mapping results. Once that 

analysis was completed, three-dimensional analysis was carried out using steady-state settings. Finally, a 

three-dimensional analysis was completed using unsteady, time-varying settings. This progression allowed 

for comparison of the two-dimensional results to be compared to the analytical conformal mapping results 

at different stages and with different assumptions. The same could then be done for the comparison of the 

three-dimensional results to Phillips’ [134,135] model. The research was also completed in this order so 

that the ultimate goal of simulating three-dimensional unsteady conditions could be reached. Because 

lifting-line theory is a state-state solution, the steady-state simulations performed at the beginning must 

compare very closely to lifting-line theory. This then allowed the research to progress with the knowledge 

that simulations were being performed correctly. 

 Pure plunging was chosen as the plunging distribution for the majority of the research, as it is a natural 

starting point for this type of research. Full flapping, and especially mimicking of birds’ flapping is 

extremely complex. In order to start simply to eventually build up to a full flapping simulation in future 

research, pure plunging was decided to be the plunging distribution for the bulk of the present research.  

 Phillips [134,135] presentation of the decomposed Fourier coefficients an, bn, cn, and dn were shown 

earlier in Eqs. (1.68), (1.69), (1.70), and (1.71). They are shown here again for reference. 
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The present work does not include control surface deflection, therefore, the control surface distribution 

function χ(θ) and the Fourier coefficients cn are zero for the remainder of the work. In addition to the cases 

previously presented in Phillips [134,135], an additional special case will be presented. The special case 

considered will be uniform sinusoidal plunging and pitching of a rigid wing with no twist or control surface 

deflection. For this special case,  
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because the wing used in this research has no washout, and with the entire wing pitching and plunging, 

there is no washout caused from the flapping cycle. This washout distribution gives a result of the bn 

coefficients equal to zero. The plunging distribution for rigid-wing plunging is 

 

 1)( =θψ  (1.106) 

because the entire wing is pitching and plunging at the same time. There is no difference in how the wing is 

pitching and plunging across the span, and therefore the non-dimensional plunging distribution is  

Eq. (1.106). It is observed that nn da = with all even coefficients equal to zero. These distributions and 

coefficients will play a role in the analytical development for the special case of uniform sinusoidal 

plunging and pitching of a rigid wing with no twist or control surface deflection. 
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CHAPTER II 

COMPUTATIONAL FLUID DYNAMICS METHODOLOGY 

 The case that this research is focusing on is a starting point for the comparison between CFD solutions 

and the lifting-line solution presented by Philips [134,135]. This study is focused on an oscillating wing. 

Because this is just a starting point for the comparison, a simple case of plunging and pitching is studied. 

The plunging motion is defined using Eq. (1.36) 

 

 )sin()( tyty
Aac

ω=  (2.1) 

where yA is the plunging amplitude and ω is the frequency. The pitching motion is defined using Eq. (1.38) 

and noting that the mean angle of attack is equal to zero 

 

 )cos( t
A

ωαα =  (2.2) 

where αA is the pitching amplitude. These two equations help to define the motion as pure plunging, pure 

pitching, or a combination of both. In order to leave room for a case with some pitching to be analyzed in 

the future, both motions are specified. The period of the oscillation cycle is defined as ωπτ /2= . The period 

of the cycle can be changed in order to create different cycle times, or different frequencies.  

 In order to simulate the above case using CFD, a C-O grid about one semispan of a finite wing was 

used. As can be seen in Figs. 8–10, the i, j, and k directions are defined as shown. A radius of ten chord 

lengths was used based on past experience. A radius of 20 chord lengths was also tested and it was found 

that the results were unaffected by the additional radius length. 
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Fig. 8  Constant-i planes for a typical C-O grid (from Alley, Phillips, and Spall [262] with 

permission). 

 

 

 

 

 

 

Fig. 9  Constant-j planes for a typical C-O grid (from Alley, Phillips, and Spall [262] with 

permission). 
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Fig. 10. Constant-k planes for a typical C-O grid (from Alley, Phillips, and Spall [262] with 

permission). 

 

A. Software Selection 

 The CFD software to be used had to be selected before any research could be performed. The CFD 

software selection had multiple factors. The first factor considered was the familiarly with a specific CFD 

software package. As Star-CCM+ is the CFD software of choice for Utah State University, it is the 

software that is most familiar. Availability was another factor that was largely considered. Both Star-

CCM+ and CFL3D are available through Utah State University resources. Lastly, the motion specification 

is a major aspect in this research, and therefore, the CFD software chosen needed to be able to easily 

specify motion so that the steady-periodic and fully unsteady analyses could be performed. All of these 

factors were considered when choosing the CFD software. Ultimately, version 8.06 of Star-CCM+ [261] by 

CD-adapco was selected due to the familiarity, availability, and most importantly, the ease of use of the 

motion specification within the software. 

 A software selection for the grid generation then had to be determined. Although Star-CCM+ has the 

ability to create grids, it was decided that separate grid generation software would be used. This was 

because the geometry being used for this research was very specific and would not be changed throughout 

the research. Another reason for choosing separate grid generation software was because there was a 

thoroughly validated grid generation software available for this problem that would create the needed grids 

very accurately and allowing many user inputs. The grid generation software allowed the user to specify the 
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wing aspect ratio, taper ratio, design lift coefficient, and root airfoil cross section. This specific grid 

generation software has been used to produce results for multiple publications [12,253]. 

 The grid generation software allowed the user to create structured grids, while Star-CCM+ creates 

unstructured grids. Structured is advantageous because of the ability to specify the grid more evenly. Both 

structured and unstructured grids allow the clustering of nodes in specific areas, but a structured grid does 

this more efficiently and effectively. Unstructured grids are advantageous because it allows complex 

geometry to be simulated. However, in the present simulations, the geometry is relatively simple. Although 

there are advantages to both, it was determined to use a structured grid for the present research. This was 

because of the ability of the structured grid to cluster nodes in areas that were critical to this research.  

B. Grid Generation 

Once it was determined that a separate grid generation software was to be used, a grid then needed 

to be generated for the CFD work. The first step was to create a two-dimensional airfoil grid that was 

accurate when used in a generic quasi-steady CFD analysis. In order to know if the grid was accurate, an 

airfoil with a closed-form solution was chosen. Two airfoils were considered, a Joukowski airfoil and a von 

Kármán Trefftz airfoil. Ultimately, the von Kármán Trefftz airfoil was chosen due to the fact that a 

Joukowski airfoil has a zero trailing edge angle. Although this is not an issue for the CFD work, this airfoil 

is not desirable for experimental analysis. Future work may involve experimental analysis, and therefore, 

an airfoil with a finite trailing edge angle was desired. The original two-dimensional airfoil grid is of great 

importance to the accuracy of the research because of how the grid generation software works. A two-

dimensional grid is created with a root airfoil section, as seen in the top left-hand corner of Fig. 10. This 

two-dimensional root airfoil section is then duplicated and transformed to create additional planes. These 

planes are then connected and a three-dimensional grid is created.  

The grid was created for a von Kármán Trefftz airfoil with a maximum thickness of 15%, chord 

length of 0.25 meters, and a zero lift angle of attack of -5°. Nodes for the grid were clustered in four areas: 

near both the leading and the trailing edge of the airfoil in the chordwise direction, near the wing tip in the 

spanwise direction, and in the wake region, as shown in Figs. 11, 12, and 13. The software aligned the 

wake with the freestream, which was also aligned with the root angle of attack. The thick airfoil was 

chosen for ease of use in the CFD simulations. Many CFD software packages, including Star-CCM+, have 

difficulty solving the necessary equations when a thin airfoil is used and the thickness of the chosen airfoil 

allowed easier computations. Star-CCM+ does not have a two-dimensional solver, and therefore, the two-

dimensional grid had to be modified to a three-dimensional grid. It was chosen to have three planes in the k 
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direction and the outer planes were set as symmetry boundaries to simulate a two-dimensional solution 

while using the three-dimensional solver in Star-CCM+. Figure 14 shows this grid. 

 

 

 

 

 

Fig.  11  Example of a constant-i plane at the trailing edge of the wingtip and constant-j plane on the 

wing surface of a three-dimensional grid (from Alley, Phillips, and Spall [262] with permission). 

 

 

 

 

 

Fig. 12  Example of a constant-k plane at the base of the wing end cap and constant-j plane on the 

end cap surface of a three-dimensional grid (from Alley, Phillips, and Spall [262] with permission). 
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Fig. 13  Constant-k plane at the base of the wing end cap and constant-j plane on the wing surface 

near the leading edge of the three-dimensional coarse grid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14  Coarse grid for two-dimensional CFD calculations. 

 

 Once the two-dimensional grid had been created and validated as accurate, which will be shown in a 

later section, the grid then had to be converted to a three-dimensional grid. This was done using the grid 

generator and planes in the k direction were added to cover the entire span of the wing and the endcaps can 

be seen in Fig. 10. Grid resolution was then examined in order to determine the accuracy of the solution.  
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This grid resolution will be addressed in a following section. The wing was chosen as a rectangular wing 

with a taper ratio of 1, an aspect ratio, RA, of 8, a chord length, c, of 0.25 m, and a planform area, S, of 0.5 

m
2
. 

 After the three-dimensional grid was created, an overset grid was also created. This overset grid was 

created in order for the motion of the wing to be simulated against the original, hereafter referred to as the 

background, grid. This overset grid was produced by taking a center section of the background grid and 

overlaying it on top of the background grid. The size of the section taken was varied to determine the 

optimal overset grid. How large of a section needed was determined by varying the number of nodes in the 

i and j directions and running a quasi-steady case to determine the accuracy. The nodes in the i direction 

were varied from 9 to 49 in increments of eight, while the nodes in the j direction were varied from 41 to 

113, again in increments of eight. The results of each of these variations were then compared to the exact 

solution. This comparison will be shown in a later section. A two-dimensional view of the overset grid is 

shown in Fig. 15. 

 

 

 

 

 

 

 

 

 

Fig. 15  Overset grid compared to the background grid. 

 

 Normally, when a grid generation occurs, there is a hole in the grid where the geometry is. This was 

the case for the present research. However, an update to the grid generation software was made in order to 

cover the geometry of the airfoil for the background grid. The hole was still present for the overset grid, as 

was desired. This grid over the airfoil was very coarse, but the overset grid covered this hole during the 

CFD analysis so this was not an issue. 

Overset Grid 
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C. Quasi-Steady Setup 

 Once the background and overset grids had been produced, the quasi-steady cases could be set up and 

the CFD analysis could be carried out. The physics models used were that of constant density, inviscid, 

segregated flow, three-dimensional, steady flow, and gradients. The gradient method used was the Green-

Guass method. The constant density used was set at 1.225 kg/m
3
. The reference pressure used was 1 

atmosphere and the freestream velocity was 14 m/s in the x-direction. The overset grid velocity changed 

with each case, dependant upon the angle of attack of the simulation. The starting point velocity was 14 m/s 

in the x-direction at negative 4 degrees. 

 There were two regions used, a background region and a foreground region. The background region 

was a fluid region using the imported background grid from the grid generator described previously and the 

physics continuum as described in the previous paragraph. There were three boundaries in the background 

region. First was the farfield, which was set to be a velocity inlet with constant velocity as described above. 

The second boundary was the 1=i  plane, set to be a split outlet with a split ratio of 1. The final boundary 

in the background was the 1=k plane, which was set as a symmetry plane. As can be seen in Fig. 16, the 

red region is the farfield, set as a velocity inlet. The blue region seen in Fig. 17, where the farfield region is 

hidden, is the symmetry plane, and the green region is the split outlet region. The interface to the 

foreground region and the airfoil can be seen in Fig. 17 as well.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 16  Star-CCM+ farfield background region. 

 

 

Farfield 
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Fig. 17  Star-CCM+  symmetry plane and outlet background regions with the wing foreground 

region visible. 

 

 The foreground region was also a fluid region that used the physics continuum described above and 

used the imported overset grid from the grid generator. There were three boundaries as well. The first 

boundary was the wing, which was set to be a slip wall type. The second boundary was the overset grid, 

which was set as an overset mesh type and acts as the interface to the background grid. The final boundary 

was the 1=k  plane, set as a symmetry plane as in the background region. As seen in Fig. 18, the blue 

region is the symmetry plane and the grey region is the airfoil. The overset region cannot be seen. 

However, in Fig. 19, all regions in both the foreground and background can be seen. 

 

 

 

  

 

 

 

 

 

 

 

Fig. 18 Star-CCM+ foreground regions. 
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Fig.  19 Star-CCM+ foreground and background regions. 

 

 There was an interface created in order to correctly use the overset mesh in the foreground region. This 

interface was set to use the interpolation option of distance weighted in the physics conditions. It was also 

set as an overset mesh interface type to allow the motion of the overset grid to rotate and slide relative to 

the background grid. 

 There were two solvers used, the default partitioning, and also the segregated flow. The default 

partitioning method uses a per-region method and the default was not changed. The segregated flow solver 

for the velocity used a linear ramp for the under-relaxation factor and the under-relaxation factor was set to 

be 0.7. For the pressure, the under-relaxation factor was set to be 0.3, and a linear ramp was also used. The 

under-relaxation factors were periodically changed when the particular simulation was not converging well. 

Reducing the under-relaxation factors caused the solution to converge slower, but more effectively.  

D. Grid Convergence and Resolution 

 The Richardson Extrapolation [263] is a widely used and accepted method to extrapolate grid-resolved 

solution from multiple solutions that are not grid resolved. The Richardson Extrapolation requires three 

grids to be produced and the results from all of the grids are used together to produce a better estimate of 

the true solution. A summary of the Richardson Extrapolation and how it was used in the present research 

will be presented here. 

1. Richardson Extrapolation 

 The Richardson Extrapolation is a numerical method developed by Lewis Fry Richardson [263]. First, 

the average cell size, denoted as h, is computed as 
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where N is the number of cells and ∆Vi is the volume of the ith cell. The fine, intermediate, and coarse grids 

are represented by h1, h2, and h3 respectively. Ratios are defined as 
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Resulting from the way the grids were created, by halving the number of nodes in each direction of the next 

finest grid, the ratios are equal 

 23221 == rr  (2.6) 

The apparent order of convergence, denoted as p, is computed as 
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where 

 

 2332 φφε −=  (2.8) 

 1221 φφε −=  (2.9) 

and φ is the solution from the respective grids. The present research commonly used the lift coefficient as 

the solution. Therefore, the apparent order of convergence used was 
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where CL1, CL2, and CL3 represent the fine, medium and coarse grids respectively and  
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Note that because in the present research the ratios are constant and equal, 0)( =pq . 

The first grid resolution that needed to be done was for the two-dimensional background grid. In 

order to utilize the Richardson Extrapolation [263] as just described, a coarse, medium, and fine grid were 

generated. The fine grid was first created, with the medium grid being produced by removing every other 

node from the fine grid. The coarse grid was then created by removing every other node from the medium 

grid. The Richardson Extrapolation [263] could then be used to extrapolate a grid-resolved solution. The 

two-dimensional background grid was used the quasi-steady setup previously described to simulate cycles 

at angles of attack ranging from negative four to positive four. The angle of attack was changed by rotating 

the direction of the freestream velocity appropriately. Figure 20 shows the results from this study. As can 

be seen, the Richardson Extrapolation breaks down at the higher angles of attack. This may be due to the 

fact that the coarse grids could have separated flow due to numerical viscocity.  

 

Fig. 20  Comparison of two-dimensional coarse-, medium-, and fine-grids with Richardson 

Extrapolation to exact lift coefficient. 
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   The next grid that needed to be grid resolved was the three-dimensional grid that was created from 

the original two-dimensional grid. This was done using a coarse, medium, and fine grid and applying the 

Richardson Extrapolation as was described earlier. For perspective, the fine grid used had 12,096,000 cells, 

while the medium contained 1,512,000 cells, and the coarse grid contained 189,000 cells. The lift 

coefficient results from the quasi-steady cycle can be seen in Fig. 21. As can be seen, both the fine grid and 

the Richardson Extrapolation very closely follow the quasi-steady lifting-line solution. The error between 

the fine grid solution and the quasi-steady lifting-line solution was under 0.5%. From this, we can 

determine that when using the Richardson Extrapolation, the three-dimensional background grid is grid 

resolved. 

 

Fig. 21  Coarse-, medium-, and fine-grids compared to the quasi-steady lifting-line solution for the 

three-dimensional background grid. 

  

 The two-dimensional overset grid was the next grid that needed to be grid resolved. Due to the nature 

of the overset grid, it is possible to change the angle of attack of the airfoil in various ways. There were 

three options in how to vary the angle of attack. First, the direction of the freestream velocity could be 

changed to effectively change the angle of attack. Second, the overset grid could be physically rotated 

against the background grid. Lastly, a velocity could be imparted to the overset grid that would change the 

angle of attack. All three of these methods were tested, to evaluate the error associated with each method. 

This was determined by running a set of quasi-steady cases with each option and comparing the errors. 
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Determining if this method was accurate was critical due to the fact that this was the only possible method 

of changing the angle of attack for steady-periodic simulations in Star-CCM+. The results can be seen in 

Figs. 22 – 24 and the error in Fig. 25. It was noted that the error was extremely close for all three methods, 

which showed that all three methods of changing the angle of attack were equivalent. 

 

Fig. 22  Lift coefficient when rotating the overset grid. 

 

Fig. 23  Lift coefficient when rotating the freestream velocity. 
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Fig. 24  Lift coefficient when imparting a velocity to the overset grid. 

 

 

 

Fig. 25  Error for the Richardson Extrapolation for each angle of attack defining technique. 
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 The overset grid that was chosen had 89 nodes in the j direction, 25 nodes in the i direction, and 337 

nodes in the k direction. This gave a fine overset grid with 5,332,240 cells. This grid was determined to be 

the optimum grid for this research based on the results from the study described previously which varied 

the nodes in both the i and j directions. Figure 26 shows the comparison of the four overset grids that were 

the closest to the exact solution along with the overset grid chosen. Figures 27 and 28 show the lift and drag 

coefficients that were calculated from the overset grid chosen compared to the exact value. Figures 29 and 

30 show the error in the axial- and normal-force coefficients. It can be seen in these two figures that the 

Richardson Extrapolation solution has much more error than the fine grid, especially in the normal-force 

coefficient. Due to this fact, as well as the earlier indication that at higher angles of attack, the Richardson 

Extrapolation breaks down with separated flow, the choice was made to discontinue using the Richardson 

Extrapolation because the Richardson Extrapolation would not be as accurate. The fine grid would be 

sufficient for this study, as could also be seen in Figs. 20 and 21and therefore the fine grid was used 

throughout the remainder of the research, and assumed to give grid-resolved results. 

 

 

Fig. 26  Comparison of the error in the lift coefficient of the closest overset grids as well as the overset 

grid chosen, j=89, i=25. 
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Fig. 27  Lift coefficient of the coarse-, medium-, and fine-grid CFD solutions compared to Richardson 

Extrapolation solution. 

 

 

 

Fig. 28  Drag coefficient of the coarse-, medium-, and fine-grid CFD solutions compared to 

Richardson Extrapolation solution. 
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Fig. 29  Error in the axial-force coefficient of the coarse-, medium-, and fine-grid CFD solutions 

compared to Richardson Extrapolation solution. 

 

 

Fig. 30  Error in the normal-force coefficient of the course-,medium-, and fine-grid CFD solutions 

compared to Richardson Extrapolation Solution. 
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E. Steady-Periodic Case Setup 

 The quasi-steady case setup had to be updated to accommodate the next step of simulating a steady-

periodic problem. The first setting that needed to be changed was the physics model. Previously, the steady 

flow model had been used, therefore the physics model needed to be updated to the implicit unsteady 

setting. The segregated flow solver with a linear ramp was again utilized, but the relaxation factors were 

adjusted to 0.4 for velocity and 0.1 for pressure.  

 There were multiple field functions that needed to be added to the simulation and defined. The first of 

the field functions added was π, equaling 3.141592653589793. It was chosen to define π out to 16 digits 

because that is the accuracy of machine precision and any digits past 16 would be lost. The next field 

functions that were defined were Rτ and yα̂ . Rτ is a ratio of the period of each new case to the original -5° 

to 5° case that was simulated. As defined in the previous chapter, yα̂  is the ratio of pitching to plunging of 

the wing in the cycle. The period of the cycle, τ, is related to the frequency, ω, by 

 

 
ω
π

τ
2

=  (2.13) 

Using Eqs. (2.13) and (1.21), the reduced frequency in relation to the plunging amplitude, yω̂ , can be 

written as 
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For the present research, 0=α . Using Eqs. (2.14) and (1.39), it can be seen the amplitude of the total 

geometric angle of attack can be shown as 
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From Eq. (2.15), an original τ0 and 
0Ay can be defined. These were the original period and plunging 

amplitude from the -5° to 5° case that was simulated. 

 

 192848363965548.00 =τ seconds (2.16) 

 595461396263401.0
0
=Ay meters (2.17) 
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This amplitude was chosen to make the angle of attack large enough that the solutions are not dominated by 

the round off error, but small enough to keep the flow from separating. These constants give an amplitude 

that accomplishes this. Using the relations 

 

 )ˆ1(0 yR αττ τ −=  (2.18) 

 τRyy AA 0
=  (2.19) 

Which builds in the factor Rτ as the ratio of the new case in comparison to our original case, Eq. (2.15) 

becomes 
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Equations (2.18) and (2.19) were the equations used to define the field functions of τ and yA in the 

simulations. From Eq. (1.21) and (1.22), αA, which represents the amplitude of the pitching motion in the 

cycle, can be written as 
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Equation (2.21) was used to define the field function αA in the simulations. The next field function that was 

defined was named “MyPosition” and defined the position of the airfoil in the simulation. It was defined as 
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Three velocities were then described as field functions, a vertical velocity, a rotational velocity, and a 

translational velocity. The vertical, or normal, velocity was previously defined in Eq. (1.37). The time 

period, τ, has been substituted in for ω using Eq. (2.13) in Eq. (2.23) below. These field functions were 

expressed as 
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 [ ]00 yt VV =  (2.25) 

Lastly, a start velocity was determined to define what the initial velocity of the wing would be. 
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 All of the velocities specified in Eqs. (2.23) – (2.26) were using the reference frame specified by the 

background coordinates. However, an additional reference frame was needed in order to produce the 

correct results. This reference frame was set up as a rotating and translating reference frame and was 

attached to the overset mesh so that the airfoil could move against the background grid. The center of this 

reference frame was set as the aerodynamic center of the wing. This reference frame will be referred to as 

the overset reference frame.  

 A user defined vertex was defined in order to create the transient condition. This user defined vertex 

was specified as a linear displacement in the y-direction with the field function “MyPosition”. This was 

done by creating both a translational motion using the translation velocity described and a superposing 

rotation using the rotational velocity described. These were both again attached to the overset grid. This 

method of specifying motion was chosen because it allowed the pitching and plunging to be more easily 

specified than other methods of specifying motion.  

 In conjunction with the transient condition, a time step needed to be defined. The time step that was 

specified was defined as 128/τ , giving 128 time steps per period. As will be shown later, this was 

determined to be time-step resolved. In order to get a good sampling, three  periods were simulated so there 

was a total of 384 time steps taken. This was also tested to see if the analysis was cycle resolved and will be 

shown in the following section. The y-residual of each time step was required to resolve to not change by 

8101 −×  for 100 iterations before the simulation would move on to the next time step in the cycle. This 

assured that each time step was sufficiently converged. 

 The output of the CFD simulation was forces in the x and y directions, as well as a moment about the 

aerodynamic center. These forces were aligned with the background reference frame. The forces were then 

converted to axial- and normal-force coefficients using the following equations. 
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where S is the planform area of 0.50 m
2
. Once the axial- and normal-force coefficients were known, the 

power and thrust coefficients could then be calculated. The power and thrust coefficients are defined as 
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The power and thrust coefficient were effectively calculated using Eqs. (2.31) and (2.32). 
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 )(
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where Cx0 is the axial-force coefficient at the zero plunging velocity points in the cycle. This Cx0 term is 

included because it is the induced drag on the wing. 

 From Eqs. (1.21) and (2.19), the relation between Rτ and ω can be seen to be 
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From Eq. (2.33), it can be seen that ω, the frequency of the oscillation, will decrease as Rτ increases. This is 

because for a constant yα̂ , as is the case in the present research, yω̂ will be constant as well. Lifting-line 

theory has a small ω value, which gives a large Rτ value, and therefore, 0ˆ →= cx ωω . 

F. Steady-Periodic Convergence 

 The first thing that needed to be resolved was the time step. As mentioned previously, 128 time steps 

was ultimately chosen as sufficiently resolved. This was determined by beginning with a cycle with 32 time 

steps. This time step was doubled to 64, again to 128, and again to 256. When evaluating the results of each 

of these cycles, it was found that the difference in the mean efficiency result between 128 time steps and 

256 time steps was less than 0.26%, and therefore it was determined that the solution was sufficiently time-
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step resolved with 128 time steps. Figures 30 and 31 show the power and thrust coefficients of the two 

cycles compared. The efficiency is defined as the propulsive power available divided by the propulsive 

power required. This is effectively 

 

 
P

T

C

C
=η  (2.34) 

As can be seen in Figs. 31 and 32, the difference between the two cycles cannot be seen, and therefore, it 

can be determined that 128 time steps is time-step resolved. 

  

 

 

 

Fig. 31  Time step resolution shown with the comparison of the power coefficient using 0ˆ →xω and 

07492.0ˆ =yω . 
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Fig. 32  Time step resolution shown with the comparison of the thrust coefficient using 0ˆ →xω and 

07492.0ˆ =yω . 

 

 The next aspect of the steady-periodic case that needed to be resolved was the cycle. This was done by 

running the simulation out to eight cycles. Each cycle was compared to the previous cycle and the error was 

calculated. The mean efficiency error between the third and fourth cycle again was less than 0.30%, and 

therefore it was determined that the third cycle was resolved. For the remainder of the research, three cycles 

with 128 time steps per cycle was used. Figures 33 and 34 show the power and thrust coefficients of the 

two cycles compared. As can be seen in the figures, the difference between the two cycles cannot be seen, 

and therefore, it can be determined that three cycles is cycle resolved. 
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Fig. 33  Cycle resolution shown with the comparison of the power coefficient using 0ˆ →xω and 

07492.0ˆ =yω . 

  

Fig. 34  Cycle resolution shown with the comparison of the thrust coefficient using 0ˆ →xω and 

07492.0ˆ =yω . 
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difference in the solution. Therefore, residuals in the 1x10
-8
 level were determined to be acceptable. The 

simulations that resolved to this level were examined and it was found that all time steps had resolved to 

the acceptable level well within 2500 iterations. Consequently, each time step was given a maximum of 

2500 iterations to converge before moving on automatically to the next time step.  
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CHAPTER III 

RESULTS 

A. Quasi-Steady Results 

 The quasi-steady CFD analysis was completed first. The analysis was done using 128 steps per cycle, 

equally spaced in angle of attack. Each angle of attack corresponded to a specific point in the cycle. As τ is 

the period of the cycle, the results are shown in increments of τ
t  in order to show the cycle more clearly. 

The settings used in the quasi-steady analysis were described in a previous chapter. The exact solutions for 

the two-dimensional portion of the quasi-steady analysis were found using the conformal mapping solution 

for the von Kármán Trefftz airfoil.  

 A two-dimensional quasi-steady analysis was conducted first. This analysis included both a 

background and an overset grid, as described in the previous chapter. This was a large amplitude, low 

frequency simulation where 0ˆ →xω , 07492.0ˆ =yω , and 0.0ˆ =yα  and contained 16 steps per cycle. 

Figures 35 and 36 show the axial- and normal-force coefficients calculated from Eqs. (2.28) and (2.29), 

while Figs. 37 and 38 show the power and thrust coefficients calculated from Eqs. (2.32) and (2.33). Table 

2 shows the comparison of the mean values of the CFD and the exact solution. 

 In order to determine the thrust coefficient, the opposite of the axial-force coefficient was added to the 

average of the two axial-force coefficients at zero plunging velocity in the cycle, which correspond to 

25.0=τ
t  and 75.0=τ

t , as shown in Eqs. (3.1) and (3.2). The zero plunging velocity points in the cycle 

are equivalent to the induced drag for the wing. 
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The mean thrust coefficient is then given by 
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The mean value for the efficiency was obtained using Eq. (2.35), where the efficiency is equal to the 

propulsive power available divided by the power required. Therefore, the mean value for the efficiency 

becomes simply the mean propulsive power required divided by the mean power available. This is 

effectively 
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Fig. 35  Axial-force coefficient of the 2D quasi-steady cycle 0ˆ →xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared with the exact solution. 

 

 

Fig. 36  $ormal-force coefficient of the 2D quasi-steady cycle 0ˆ →xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared with the exact solution. 
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Fig. 37  Power coefficient of the 2D quasi-steady cycle 0ˆ →xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared with the exact solution. 

 

 

 

Fig.  38  Thrust coefficient of the 2D quasi-steady cycle 0ˆ →xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared with the exact solution. 
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Table 2  Mean values of 2D quasi-steady cycle 0ˆ →xω , 07492.0ˆ =yω , and 0.0ˆ =yα  compared with 

the exact solution 

 0ˆ →xω , 07492.0ˆ =yω , 0.0ˆ =yα  Exact Solution 

Mean Axial-Force Coefficient -0.013960167928051 -0.0146606046196942 

Mean Normal-Force Coefficient 0.615172026114394 0.629625942947288 

Mean Power Coefficient 0.0142933161790745 0.0146606046196942 

Mean Thrust Coefficient 0.0141730152357757 0.0146606046196942 

Mean Efficiency 0.991583412709015 1.0000000000000000 

 

 As can be seen in Figs. 35–38, the CFD analysis very closely follows the exact solution. The mean 

values in Table 2 are also very comparable. This is expected as this first case was a two-dimensional, quasi-

steady setup, as the exact solution is. 

  Next, a three-dimensional case was evaluated. A three-dimensional background grid with an 

overset grid was analyzed using the quasi-steady setup described in the previous chapter. In order to 

simulate a full cycle, 128 steps of the full cycle were evaluated separately as quasi-steady cases, as in the 

two-dimensional quasi-steady case. This was again a large amplitude, low frequency simulation where 

0ˆ →xω  and 07492.0ˆ =yω . However, the pitching amplitude ratio was varied and evaluated at three 

values. The first simulation used a pitching amplitude ratio of 0.0ˆ =yα . Figures 39 and 40 show the axial- 

and normal-force coefficients calculated using Eqs. (2.28) and (2.29), while Figs. 41 and 42 show the 

power and thrust coefficients calculated using Eqs. (2.32) and (2.33). Table 3 shows the comparison of the 

mean values of the CFD and the quasi-steady lifting-line solution.  

 The values for the quasi-steady lifting-line solution were found analytically. The angle of attack due to 

plunging is defined as 
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≡ −
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V y
p

1tanα  (3.4) 

As can be observed through observation of the airfoil geometry, the following is rotated through the angle 

of attack due to plunging,  

 

 )cos()sin( PDPLx CCC αα +−=  (3.5) 

The small angle approximation can be used to find 

 

 DPLx CCC +−= α  (3.6) 
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The small angle approximation can be used to show that 
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p −=α  (3.7) 

and Eq. (3.6) becomes 
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The coefficient of lift is found using Eq. (1.73), 

 

 ( ) ]ˆ[ 11101 pdcbaRC crootLAL ++Ω−−= δααπ  (3.9) 

For the present research, there is no control surface deflection or washout. As also discussed earlier, the d 

coefficients are equal to the a coefficients. In the present research, the root angle of attack is the same as 

the angle of attack across the entire span as well. Therefore, substituting Eq. (1.79) into Eq. (3.9), the 

following is obtained 

 

 ( )pCC LLL ˆ0, +−= ααα  (3.10) 

As p̂ is the wingtip plunging rate, 
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and α is the angle of attack due to pitching, as shown in Eq. (1.38) 
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Eq. (3.10) becomes 
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Using Eqs. (1.37) for the vertical velocity and (1.21) for the reduced frequency, Eq. (3.13) becomes                          
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For the present research, 0=α . Using Eq. (1.22) in Eq. (3.14), the following is obtained 
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From Eq. (1.78), the coefficient of drag can be found to be 
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As shown in Eqs. (1.81) and (1.82), 
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For the present research,  

 

 0=Ω  (3.19) 

 0=DLκ  (3.20) 

 0=ΩDκ  (3.21) 

Therefore, Eq. (3.16) becomes 
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Substituting in the previously determined equation for the lift coefficient, Eq. (3.15), and the equation for 

the wingtip plunging rate, Eq. (3.11), the following is produced 
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Using Eqs. (3.15) and (3.23) in Eq. (3.8) yields 
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The mean value is then found by integrating Eq. (3.24) 
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resulting in Eq. (3.26) 
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The same approach was taken to find the analytical solution for the mean normal-force coefficient. By 

observation of the airfoil, 

 

 )sin()cos( pDpLy CCC αα +=  (3.27) 

Using the small angle approximation for the both the normal-force coefficient and the plunging angle of 

attack, 

 

 Ly CC =  (3.28) 



 

64 

 

 

 

Using the coefficients of lift defined in Eq. (3.15), the normal-force coefficient is found to be 

 

 ( ) 







−







−−= 0,

2
cosˆ1ˆ

LyyLy

t
CC α

τ
π

αωα  (3.29) 

The mean value is then found by integrating Eq. (3.29) 
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which results in  
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The mean power coefficient could then be found using Eq. (2.32)  
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and substituting in Eq. (1.37) and (1.21) to find 
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The previously found equation for the normal-force coefficient, Eq. (3.29) can then be used in Eq. (3.33) to 

obtain 

 

 ( ) 







−+








=

τ
π

αω
τ
π

ωα αα
t

C
t

CC yyLyLLP

2
cosˆ1ˆ

2
cosˆ 22

,0,  (3.34) 

The mean value could then be found by integrating Eq. (3.34) 
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The integration in Eq. (3.35) results in 
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Lastly, the thrust coefficient was found by using Eq. (2.33)  
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where Cx0 is the axial-force coefficient at the points in the cycle with no plunging. Using Eqs. (3.8), (3.22) 

and recognizing that there is no plunging, 
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and after applying Eqs. (3.10), (3.12), and (1.22) 
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Substituting Eqs. (3.39) and Eq. (3.24) into Eq. (3.37), the following is obtained 
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The thrust coefficient is integrated to obtain the mean thrust coefficient  
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such that Eq. (3.42) is obtained when Eq. (3.40) is substituted in 
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The mean efficiency was then calculated using Eq. (3.3) and substituting Eqs. (3.36) and (3.42) 

 



 

66 

 

 

 

 
( ) ( )

A

yLD

R

C

π

ακ
η α ˆ11

1
, −+

−=  (3.43) 

 

Fig. 39  Axial-force coefficient of the 3D quasi-steady cycle 0ˆ →xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared with the quasi-steady lifting-line solution, Eq. (3.24). 

 

Fig. 40  $ormal-force coefficient of the 3D quasi-steady cycle 0ˆ →xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared with the quasi-steady lifting-line solution, Eq. (3.29). 
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Fig. 41  Power coefficient of the 3D quasi-steady cycle 0ˆ →xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared with the quasi-steady lifting-line solution, Eq. (3.34). 

 

 

Fig. 42  Thrust coefficient of the 3D quasi-steady cycle 0ˆ →xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared with the quasi-steady lifting-line solution, Eq. (3.40). 
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Table 3  Mean values of 3D quasi-steady cycle 0ˆ →xω , 07492.0ˆ =yω , and 0.0ˆ =yα  compared with 

the quasi-steady lifting-line solution 

 0ˆ →xω , 07492.0ˆ =yω , 0.0ˆ =yα  Quasi-Steady Lifting-Line 

Mean Axial-Force Coefficient -0.002708695331591 -0.002556914522526 

Mean Normal-Force Coefficient 0.458295820144760 0.461438397544391 

Mean Power Coefficient 0.014339674260158 0.014840559242373 

Mean Thrust Coefficient 0.011332766799852 0.011532618698595 

Mean Efficiency 0.790308524046427 0.777101355160974 

 

 As can be seen in Figs. 39–42, the CFD solutions closely follow the quasi-steady lifting-line solution. 

However, it is noticed that it differs more than the two-dimensional quasi-steady CFD differed from the 

exact conformal mapping solution.  

 The next simulation was completed with 0ˆ →xω , 09365.0ˆ =yω , and 2.0ˆ =yα . Again, 128 time 

steps were used in order to evaluate a full cycle. Figures 43 and 44 show the axial- and normal-force 

coefficients, calculated using Eqs. (2.28) and (2.29), while Figs. 45 and 46 show the power and thrust 

coefficients calculated using Eqs. (2.32) and (2.33). Table 4 shows the comparison of the mean values of 

the CFD and the quasi-steady lifting-line solution.  

 

Fig. 43  Axial-force coefficient of the 3D quasi-steady cycle 0ˆ →xω , 09365.0ˆ =yω , and 2.0ˆ =yα  

compared with the quasi-steady lifting-line solution, Eq. (3.24). 
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Fig. 44  $ormal-force coefficient of the 3D quasi-steady cycle 0ˆ →xω , 09365.0ˆ =yω , and 2.0ˆ =yα  

compared with the quasi-steady lifting-line solution, Eq. (3.29). 

 

 

 

Fig. 45  Power coefficient of the 3D quasi-steady cycle 0ˆ →xω , 09365.0ˆ =yω , and 2.0ˆ =yα  

compared with the quasi-steady lifting-line solution, Eq. (3.34). 
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Fig. 46  Thrust coefficient of the 3D quasi-steady cycle 0ˆ →xω , 09365.0ˆ =yω , and 2.0ˆ =yα  

compared with the quasi-steady lifting-line solution, Eq. (3.40). 

 

Table 4  Mean values of 3D quasi-steady cycle 0ˆ →xω , 09365.0ˆ =yω , and 2.0ˆ =yα  compared with 

the quasi-steady lifting-line solution 

 0ˆ →xω , 09365.0ˆ =yω , 2.0ˆ =yα  Quasi-Steady Lifting-Line 

Mean Axial-Force Coefficient -0.006266960080557 -0.006267054333119 

Mean Normal-Force Coefficient 0.458547645167638 0.461438397544391 

Mean Power Coefficient 0.017939885711920 0.018550699052966 

Mean Thrust Coefficient 0.014903433518451 0.015242758509188 

Mean Efficiency 0.830742946625847 0.821681084128779 

  

 As can be seen in Figs. 43–46, the CFD solutions very closely follow the quasi-steady lifting-line 

solution. This difference between the CFD and the quasi-steady lifting-line solution using 2.0ˆ =yα  is very 

comparable to the difference using 0.0ˆ =yα . 

 The final three-dimensional quasi-steady simulation was completed using 0ˆ →xω , 06243.0ˆ =yω , 

and 2.0ˆ −=yα . Figures 47 and 48 show the axial- and normal-force coefficients, calculated using Eqs. 

(2.28) and (2.29), while Figs. 49 and 50 show the power and thrust coefficients calculated using Eqs. (2.32) 

and (2.33). Table 5 shows the comparison of the mean values of the CFD and the quasi-steady lifting-line 

solution.  
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Fig. 47  Axial-force coefficient of the 3D quasi-steady cycle 0ˆ →xω , 06243.0ˆ =yω , and 2.0ˆ −=yα  

compared with the quasi-steady lifting-line solution, Eq. (3.24). 

 

 

 

 

Fig. 48  $ormal-force coefficient of the 3D quasi-steady cycle 0ˆ →xω , 06243.0ˆ =yω , and 2.0ˆ −=yα  

compared with the quasi-steady lifting-line solution, Eq. (3.29). 
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Fig. 49  Power coefficient of the 3D quasi-steady cycle 0ˆ →xω , 06243.0ˆ =yω , and 2.0ˆ −=yα  

compared with the quasi-steady lifting-line solution, Eq. (3.34). 

 

 

 

Fig. 50  Thrust coefficient of the 3D quasi-steady cycle 0ˆ →xω , 06243.0ˆ =yω , and 2.0ˆ −=yα  

compared with the quasi-steady lifting-line solution, Eq. (3.40). 
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Table 5  Mean values of 3D quasi-steady cycle 0ˆ →xω , 06243.0ˆ =yω , and 2.0ˆ −=yα  compared with 

the quasi-steady lifting-line solution 

 0ˆ →xω , 06243.0ˆ =yω , 2.0ˆ −=yα  Quasi-Steady Lifting-Line 

Mean Axial-Force Coefficient -0.000334324565370 -0.000083487982131 

Mean Normal-Force Coefficient 0.457753349264002 0.461438397544391 

Mean Power Coefficient 0.011927742884959 0.012367132701978 

Mean Thrust Coefficient 0.008958396033631 0.009059192158199 

Mean Efficiency 0.751055427672565 0.732521626193169 

 

 As can be seen in Figs. 47–50, the CFD solutions follow the quasi-steady lifting-line solution. 

However, it is noticed that it differs more than the previous three-dimensional quasi-steady CFD solution 

with a pitching amplitude ratio of 2.0ˆ =yα  and much more than the original solution with 0.0ˆ =yα . 

B. Steady-Periodic Results 

 The steady-periodic CFD was completed using the three-dimensional and overset grid. The setup for 

the steady-periodic analysis was described in the previous chapter. The reduced frequency, xω̂ , was varied 

in order to produce results showing how the solutions varied with these conditions. Both the pitching 

amplitude and reduced frequency yω̂  were held constant in order to hold a constant geometric angle of 

attack for all simulations. Each cycle shown was both cycle and time-step converged, as was discussed in a 

previous section. The cycles shown in the following results are all the third cycles of the applicable study.  

1. Pure Plunging  

 Pure plunging was studied first, as it is a simple case of the oscillating wings. Therefore, the pitching 

amplitude ratio, yα̂ , was equal to zero. The first analysis in pure plunging was done using 13414.0ˆ =xω , 

07492.0ˆ =yω , and 0.0ˆ =yα . This was the lowest frequency oscillation that was studied. First, the axial- 

and normal-force coefficients, as calculated in Eqs. (2.28) and (2.29) were compared to lifting-line theory, 

as shown in Figs. 51 and 52. Figures 53 and 54 show the power and thrust coefficients, which were 

calculated from the Eqs. (2.32) and (2.33). Table 6 shows the comparison of the mean values from the CFD 

analysis to the quasi-steady lifting-line solution. The mean values were found using the trapezoidal rule. 
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Fig. 51  Axial-force coefficient of oscillation cycle with 13414.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.24). 

 

 

Fig. 52  $ormal-force coefficient of oscillation cycle with 13414.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.29). 
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Fig. 53  Power coefficient of oscillation cycle with 13414.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.34). 

 

 

 

Fig. 54  Thrust coefficient of oscillation cycle with 13414.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.40). 
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Table 6  Mean values of oscillation cycle with 13414.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  compared 

to the quasi-steady lifting-line solution 

 13414.0ˆ =xω , 07492.0ˆ =yω ,  0.0ˆ =yα  Quasi-Steady Lifting-Line  

Mean Axial-Force Coefficient -0.00186072320976934 -0.002556914522526 

Mean Normal-Force Coefficient 0.457870601687481 0.461438397544391 

Mean Power Coefficient 0.0135636877863321 0.014840559242373 

Mean Thrust Coefficient 0.0104847946780306 0.011532618698595 

Mean Efficiency 0.773004719896013 0.777101355160974 

 

 As can be seen in Figs. 51–54 and Table 6, the solution with 13414.0ˆ =xω , 07492.0ˆ =yω , and 

0.0ˆ =yα  is quite close to the quasi-steady lifting-line solution. This is the lowest frequency oscillation 

studied, so it most closely resembles lifting-line theory for all the steady-periodic cases.  

 The next oscillation frequency that was studied was with  14905.0ˆ =xω , 07492.0ˆ =yω , and 

0.0ˆ =yα . As can be seen, the frequency of the oscillation was higher than the previous case. Figures 55 

and 56 show the axial- and normal-force coefficients calculated using Eqs. (2.28) and (2.29), while Figs. 57 

and 58 show the power and thrust coefficients calculated using Eqs. (2.32) and (2.33). Table 5 shows the 

comparison of the mean values from the CFD analysis to the quasi-steady lifting-line solution. 

 

 

Fig. 55  Axial-force coefficient of oscillation cycle with 14905.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.24). 
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Fig. 56  $ormal-force coefficient of oscillation cycle with 14905.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.29). 

 

 

Fig. 57  Power coefficient of oscillation cycle with 14905.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.34). 
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Fig. 58  Thrust coefficient of oscillation cycle with 14905.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.40). 

 

Table 7  Mean values of oscillation cycle with 14905.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  compared 

to the quasi-steady lifting-line solution 

 14905.0ˆ =xω , 07492.0ˆ =yω , 0.0ˆ =yα  Quasi-Steady Lifting-Line  

Mean Axial-Force Coefficient -0.00169275920625829 -0.002556914522526 

Mean Normal-Force Coefficient 0.45785913590994 0.461438397544391 

Mean Power Coefficient 0.0134201124741529 0.014840559242373 

Mean Thrust Coefficient 0.0103168306745195 0.011532618698595 

Mean Efficiency 0.768758882937066 0.777101355160974 

 

 As can be seen in Figs. 55–58 and Table 5, the CFD solution still closely follows the quasi-steady 

lifting-line solution. However, the solution has diverged more than the previous solution with a lower 

frequency oscillation.   

 The next oscillation frequency that was studied was with 16162.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα . 

As can be seen, the frequency of the oscillation was higher than the previous case. Figures 59 and 60 show 

the axial- and normal-force coefficients calculated using Eqs. (2.28) and (2.29), while Figs. 61 and 62 show 

the power and thrust coefficients calculated using Eqs. (2.32) and (2.33).  Table 6 shows the comparison of 

the mean values from the CFD analysis to the quasi-steady lifting-line solution. 
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Fig. 59  Axial-force coefficient of oscillation cycle with 16162.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.24). 

 

 

 

Fig. 60  $ormal-force coefficient of oscillation cycle with 16162.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.29). 
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Fig. 61  Power coefficient of oscillation cycle with 16162.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.34). 

 

 

 

Fig. 62  Thrust coefficient of oscillation cycle with 16162.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.40). 
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Table 8  Mean values of oscillation cycle with 16162.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  compared 

to the quasi-steady lifting-line solution 

 16162.0ˆ =xω , 07492.0ˆ =yω , 0.0ˆ =yα  Quasi-Steady Lifting-Line 

Mean Axial-Force Coefficient -0.0015426630597719 -0.002556914522526 

Mean Normal-Force Coefficient 0.457861112881205 0.461438397544391 

Mean Power Coefficient 0.0132937832852906 0.014840559242373 

Mean Thrust Coefficient 0.0101667345280332 0.011532618698595 

Mean Efficiency 0.764773602055217 0.777101355160974 

 

 It can be seen more clearly in Figs. 59–62 and Table 8 that the CFD solutions continue to diverge from 

the quasi-steady lifting-line solution with increasing frequency. The divergence is most clearly seen in the 

axial-force and thrust coefficients in Figs. 59 and 62. 

 The next oscillation frequency that was studied was with 19163.0ˆ =xω , 07492.0ˆ =yω , and 

0.0ˆ =yα . As can be seen, the frequency of the oscillation was higher than the previous case. Figures 63 

and 64 show the axial- and normal-force coefficients calculated using Eqs. (2.28) and (2.29), while Figs. 65 

and 66 show the power and thrust coefficients calculated using Eqs. (2.32) and (2.33). Table 9 shows the 

comparison of the mean values from the CFD analysis to the quasi-steady lifting-line solution. 

 

 

Fig. 63  Axial-force coefficient of oscillation cycle with 19163.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.24). 
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Fig. 64  $ormal-force coefficient of oscillation cycle with 19163.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.29). 

 

 

 

Fig. 65  Power coefficient of oscillation cycle with 19163.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.34). 
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Fig. 66  Thrust coefficient of oscillation cycle with 19163.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.40). 

 

Table 9  Mean values of oscillation cycle with 19163.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  compared 

to the quasi-steady lifting-line solution 

 19163.0ˆ =xω , 07492.0ˆ =yω , 0.0ˆ =yα  Quasi-Steady Lifting-Line 

Mean Axial-Force Coefficient -0.000977714879967232 -0.002556914522526 

Mean Normal-Force Coefficient 0.457815309776183 0.461438397544391 

Mean Power Coefficient 0.0128190718223785 0.014840559242373 

Mean Thrust Coefficient 0.0096017863482285 0.011532618698595 

Mean Efficiency 0.74902352379885 0.777101355160974 

 

 As seen in Figs. 63–66 and Table 9, and as has been previously observed, the CFD solutions with 

increasing frequency diverge further than the quasi-steady lifting-line solution. 

 The next oscillation frequency that was studied was with 20637.0ˆ =xω , 07492.0ˆ =yω , and 

0.0ˆ =yα . As can be seen, the frequency of the oscillation was higher than the previous case. Figures 67 

and 68 show the axial- and normal-force coefficients calculated using Eqs. (2.28) and (2.29), while Figs. 69 

and 70 show the power and thrust coefficients calculated using Eqs. (2.32) and (2.33). Table 10 shows the 

comparison of the mean values from the CFD analysis to the quasi-steady lifting-line solution. 
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Fig. 67  Axial-force coefficient of oscillation cycle with 20637.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.24). 

 

 

 

Fig. 68  $ormal-force coefficient of oscillation cycle with 20637.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.29). 
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Fig. 69  Power coefficient of oscillation cycle with 20637.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.34). 

 

 

 

Fig. 70  Thrust coefficient of oscillation cycle with 20637.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.40). 
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Table 10  Mean values of oscillation cycle with 20637.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  compared 

to the quasi-steady lifting-line solution 

 20637.0ˆ =xω , 07492.0ˆ =yω , 0.0ˆ =yα  Quasi-Steady Lifting-Line 

Mean Axial-Force Coefficient -0.000977714879967232 -0.002556914522526 

Mean Normal-Force Coefficient 0.457815309776183 0.461438397544391 

Mean Power Coefficient 0.0128190718223785 0.014840559242373 

Mean Thrust Coefficient 0.0096017863482285 0.011532618698595 

Mean Efficiency 0.74902352379885 0.777101355160974 

 

 As seen in Figs. 67–70 and Table 10, the CFD solution differs from the quasi-steady lifting-line 

solution more than previously for lower frequencies of oscillation. This is still most clearly seen in the 

axial-force and thrust coefficients, Figs. 67 and 70. 

 The next oscillation frequency that was studied was with 24841.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα . 

As can be seen, the frequency of the oscillation was higher than the previous case. Figures 71 and 72 show 

the axial- and normal-force coefficients calculated using Eqs. (2.28) and (2.29), while Figs. 73 and 74 show 

the power and thrust coefficients calculated using Eqs. (2.32) and (2.33). Table 11 shows the comparison of 

the mean values from the CFD analysis to the quasi-steady lifting-line solution. 

 

 

Fig. 71  Axial-force coefficient of oscillation cycle with 24841.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.24). 
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Fig. 72  $ormal-force coefficient of oscillation cycle with 24841.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.29). 

 

 

 

Fig. 73  Power coefficient of oscillation cycle with 24841.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.34). 
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Fig. 74  Thrust coefficient of oscillation cycle with 24841.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.40). 

 

Table 11  Mean values of oscillation cycle with 24841.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  compared 

to the quasi-steady lifting-line solution 

 24841.0ˆ =xω , 07492.0ˆ =yω , 0.0ˆ =yα  Quasi-Steady Lifting-Line 

Mean Axial-Force Coefficient -0.000464085694446977 -0.002556914522526 

Mean Normal-Force Coefficient 0.457765765121338 0.461438397544391 

Mean Power Coefficient 0.0123874307894113 0.014840559242373 

Mean Thrust Coefficient 0.00908815716270823 0.011532618698595 

Mean Efficiency 0.733659571319402 0.777101355160974 

 

 Figures 71–74 and Table 11 continue to support the trend that the CFD solution differs from the quasi-

steady lifting-line solution more when the frequency of the oscillation is increased. 

 The next oscillation frequency that was studied was with 29162.0ˆ =xω , 07492.0ˆ =yω , and 

0.0ˆ =yα . As can be seen, the frequency of the oscillation was higher than the previous case. Figures 75 

and 76 show the axial- and normal-force coefficients calculated using Eqs. (2.28) and (2.29), while Figs. 77 

and 78 show the power and thrust coefficients calculated using Eqs. (2.32) and (2.33). Table 12 shows the 

comparison of the mean values from the CFD analysis to the quasi-steady lifting-line solution. 
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Fig. 75  Axial-force coefficient of oscillation cycle with 29162.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.24). 

 

 

Fig. 76  $ormal-force coefficient of oscillation cycle with 29162.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.29). 
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Fig. 77  Power coefficient of oscillation cycle with 29162.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.34). 

 

 

Fig. 78  Thrust coefficient of oscillation cycle with 29162.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.40). 
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Table 12  Mean values of oscillation cycle with 29162.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  compared 

to the quasi-steady lifting-line theory 

 29162.0ˆ =xω , 07492.0ˆ =yω , 0.0ˆ =yα  Quasi-Steady Lifting-Line 

Mean Axial-Force Coefficient -8.19059326594574E-08 -0.002556914522526 

Mean Normal-Force Coefficient 0.457720039110048 0.461438397544391 

Mean Power Coefficient 0.0119933123013147 0.014840559242373 

Mean Thrust Coefficient 0.00862415337419392 0.011532618698595 

Mean Efficiency 0.719080197156925 0.777101355160974 

 

 As can be seen in Figs. 75–78 and Table 12, the CFD solution differs more than the previous frequency 

studied. This continues to show that increasing frequency produces solutions that differ increasingly from 

the quasi-steady lifting-line solution. 

 The next oscillation frequency that was studied was with 33536.0ˆ =xω , 07492.0ˆ =yω , and 

0.0ˆ =yα . As can be seen, the frequency of the oscillation was higher than the previous case. Figures 79 

and 80 show the axial- and normal-force coefficients calculated using Eqs. (2.28) and (2.29), while Figs. 81 

and 82 show the power and thrust coefficients calculated using Eqs. (2.32) and (2.33). Table 13 shows the 

comparison of the mean values from the CFD analysis to the quasi-steady lifting-line solution. 

 

 

Fig. 79  Axial-force coefficient of oscillation cycle with 33536.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.24). 
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Fig. 80  $ormal-force coefficient of oscillation cycle with 33536.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.29). 

 

 

 

Fig. 81  Power coefficient of oscillation cycle with 33536.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.34). 
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Fig. 82  Thrust coefficient of oscillation cycle with 33536.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.40). 

 

Table 13  Mean values of oscillation cycle with 33536.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  compared 

to the quasi-steady lifting-line solution 

 33536.0ˆ =xω , 07492.0ˆ =yω , 0.0ˆ =yα  Quasi-Steady Lifting-Line 

Mean Axial-Force Coefficient 0.000385261055126843 -0.002556914522526 

Mean Normal-Force Coefficient 0.457687814622568 0.461438397544391 

Mean Power Coefficient 0.0116557270524111 0.014840559242373 

Mean Thrust Coefficient 0.00823881041313441 0.011532618698595 

Mean Efficiency 0.706846546430594 0.777101355160974 

 

 As can be seen in Figs. 79–82, in particular Fig. 82, and Table 13, the CFD solution is diverging quite 

extensively from the quasi-steady lifting-line solution at the high frequency of 33536.0ˆ =xω .  

 The last analysis in pure plunging was done using 38327.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα . This 

was the highest frequency oscillation that was studied. Figures 83 and 84 show the axial- and normal-force 

coefficients calculated using Eqs. (2.28) and (2.29), while Figs. 85 and 86 show the power and thrust 

coefficients calculated using Eqs. (2.32) and (2.33).  Table 14 shows the comparison of the mean values 

from the CFD analysis to the quasi-steady lifting-line solution. 
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Fig. 83  Axial-force coefficient of oscillation cycle with 38327.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.24). 

 

 

Fig. 84  $ormal-force coefficient of oscillation cycle with 38327.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.29). 
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Fig. 85  Power coefficient of oscillation cycle with 38327.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.34). 

 

 

 

 

Fig. 86  Thrust coefficient of oscillation cycle with 38327.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.40). 
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Table 14  Mean values of oscillation cycle with 38327.0ˆ =xω , 07492.0ˆ =yω , and 0.0ˆ =yα  compared 

to the quasi-steady lifting-line solution 

 38327.0ˆ =xω , 07492.0ˆ =yω , 0.0ˆ =yα  Quasi-Steady Lifting-Line 

Mean Axial-Force Coefficient 0.000738117470188024 -0.002556914522526 

Mean Normal-Force Coefficient 0.457668135908796 0.461438397544391 

Mean Power Coefficient 0.011336641355661 0.014840559242373 

Mean Thrust Coefficient 0.00788595399807323 0.011532618698595 

Mean Efficiency 0.695616430887208 0.777101355160974 

 

 As can be seen in Figs. 83–86 and Table 14, this differed from the quasi-steady lifting-line solution the 

most from any of the previous CFD cases. As this was the highest frequency studied, this was expected, as 

the previous studied indicated that increasing frequency increasingly differs from the quasi-steady lifting-

line solution. 

2. Pitching and Plunging  

 Four cases were run for a combined pitching and plunging cycle. Two cases were run with a pitching 

amplitude of 2.0ˆ =yα  and reduced frequency of 09365.0ˆ =yω , and two additional cases were run with 

2.0ˆ −=yα , 06243.0ˆ =yω .  The yω̂ for each pitching amplitude was found by keeping the maximum 

geometric angle of attack constant. The first two cases were run with 2.0ˆ =yα , 09365.0ˆ =yω . 

i. Pitching Amplitude 2.0ˆ =yα , 09365.0ˆ =yω  

 The first analysis done was using 25797.0ˆ =xω , 09365.0ˆ =yω , and 2.0ˆ =yα . Figures 87 and 88 

show the axial- and normal-force coefficients calculated using Eqs. (2.28) and (2.29), while Figs. 89 and 90 

show the power and thrust coefficients calculated using Eqs. (2.32) and (2.33). Table 15 shows the 

comparison of the mean values from the CFD analysis to the quasi-steady lifting-line solution.  
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Fig. 87  Axial-force coefficient of oscillation cycle with  25797.0ˆ =xω , 09365.0ˆ =yω , and 2.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.24). 

 

 

 

Fig. 88  $ormal-force coefficient of oscillation cycle with 25797.0ˆ =xω , 09365.0ˆ =yω , and 2.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.29). 
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Fig. 89  Power coefficient of oscillation cycle with 25797.0ˆ =xω , 09365.0ˆ =yω , and 2.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.34). 

 

 

 

Fig. 90  Thrust coefficient of oscillation cycle with 25797.0ˆ =xω , 09365.0ˆ =yω , and 2.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.40). 
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Table 15  Mean values of oscillation cycle with 25797.0ˆ =xω , 09365.0ˆ =yω , and 2.0ˆ =yα  compared 

to the quasi-steady lifting-line solution 

 25797.0ˆ =xω , 09365.0ˆ =yω , 2.0ˆ =yα  Quasi-Steady Lifting-Line 

Mean Axial-Force Coefficient -0.00330159388136112 -0.006267054333119 

Mean Normal-Force Coefficient 0.458289344001795 0.461438397544391 

Mean Power Coefficient 0.015269024411449 0.018550699052966 

Mean Thrust Coefficient 0.0119256653496224 0.015242758509188 

Mean Efficiency 0.781036497700554 0.821681084128779 

 

 As can be seen in Figs. 87–90 and Table 15, the CFD solution closely follows the quasi-steady lifting-

line solution in the middle portion of the cycle. However, during the beginning and end of each cycle, the 

CFD solution differs quite extensively. It is also interesting to note that for the combined pitching and 

plunging, the normal-force coefficient differs more than the axial-force coefficient, as was the case in pure 

plunging. 

 The next oscillation frequency that was studied was with 47909.0ˆ =xω , 09365.0ˆ =yω , and 

2.0ˆ =yα . As can be seen, the frequency of the oscillation was higher than the previous case. Figures 91 

and 92 show the axial- and normal-force coefficients calculated using Eqs. (2.28) and (2.29), while Figs. 93 

and 94 show the power and thrust coefficients calculated using Eqs. (2.32) and (2.33). Table 16 shows the 

comparison of the mean values from the CFD analysis to the quasi-steady lifting-line solution.  

Fig. 91  Axial-force coefficient of oscillation cycle with  47909.0ˆ =xω , 09365.0ˆ =yω , and 2.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.24). 
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Fig. 92  $ormal-force coefficient of oscillation cycle with 47909.0ˆ =xω , 09365.0ˆ =yω , and 2.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.29). 

 

 

 

Fig. 93  Power coefficient of oscillation cycle with 47909.0ˆ =xω , 09365.0ˆ =yω , and 2.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.34). 
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Fig. 94  Thrust coefficient of oscillation cycle with 47909.0ˆ =xω , 09365.0ˆ =yω , and 2.0ˆ =yα  

compared to the quasi-steady lifting-line solution, Eq. (3.40). 

 

Table 16  Mean values of oscillation cycle with 47909.0ˆ =xω , 09365.0ˆ =yω , and 2.0ˆ =yα  compared 

to the quasi-steady lifting-line solution 

 47909.0ˆ =xω , 09365.0ˆ =yω , 2.0ˆ =yα  Quasi-Steady Lifting-Line 

Mean Axial-Force Coefficient -0.00112265642336803 -0.006267054333119 

Mean Normal-Force Coefficient 0.458148614203382 0.461438397544391 

Mean Power Coefficient 0.0132890173223486 0.018550699052966 

Mean Thrust Coefficient 0.00974672789162928 0.015242758509188 

Mean Efficiency 0.733442334764505 0.821681084128779 

 

 As can be seen in Figs. 91–94 and Table 16, this higher frequency case of combined pitching and 

plunging differs even more so from the quasi-steady lifting-line solution than the previous case. This higher 

frequency case differs not only at the beginning and end of the cycle, but all throughout the entire cycle. 

Again, the normal-force coefficient differs more than the axial-force coefficient for this case. However, the 

efficiencies are comparable for this case. 

ii. Pitching Amplitude 2.0ˆ −=yα , 06243.0ˆ =yω  

 The pitching amplitude yα̂ was then changed to be -0.2. The first case using this pitching amplitude 

used  17198.0ˆ =xω , 06243.0ˆ =yω , and 2.0ˆ −=yα . This was a lower frequency oscillation. Figures 95 

and 96 show the axial- and normal-force coefficients calculated using Eqs. (2.28) and (2.29), while Figs. 97 
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and 98 show the power and thrust coefficients calculated using Eqs. (2.32) and (2.33). Table 17 shows the 

comparison of the mean values from the CFD analysis to the quasi-steady lifting-line solution. 

 

Fig. 95  Axial-force coefficient of oscillation cycle with  17198.0ˆ =xω , 06243.0ˆ =yω , and 2.0ˆ −=yα  

compared to the quasi-steady lifting-line solution, Eq. (3.24). 

 

Fig. 96  $ormal-force coefficient of oscillation cycle with 17198.0ˆ =xω , 06243.0ˆ =yω , and 2.0ˆ −=yα  

compared to the quasi-steady lifting-line solution, Eq. (3.29). 
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Fig. 97  Power coefficient of oscillation cycle with 17198.0ˆ =xω , 06243.0ˆ =yω , and 2.0ˆ −=yα  

compared to the quasi-steady lifting-line solution, Eq. (3.34). 

 

 

 

Fig. 98  Thrust coefficient of oscillation cycle with 17198.0ˆ =xω , 06243.0ˆ =yω , and 2.0ˆ −=yα  

compared to the quasi-steady lifting-line solution, Eq. (3.40). 
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Table 17  Mean values of oscillation cycle with 17198.0ˆ =xω , 06243.0ˆ =yω , and 2.0ˆ −=yα  

compared to the quasi-steady lifting-line solution 

 17198.0ˆ =xω , 06243.0ˆ =yω , 2.0ˆ −=yα  Quasi-Steady Lifting-Line 

Mean Axial-Force Coefficient 0.000748896196075185 -0.000083487982131 

Mean Normal-Force Coefficient 0.457571483483341 0.461438397544391 

Mean Power Coefficient 0.0110089231760905 0.012367132701978 

Mean Thrust Coefficient 0.00787517527218607 0.009059192158199 

Mean Efficiency 0.715344738647067 0.732521626193169 

 

 As can be seen in Figs. 95–98 and Table 17, this particular combined pitching and plunging case very 

closely follows the quasi-steady lifting-line solution for normal-force and power coefficients. However, the 

axial-force and thrust coefficients differ significantly. It is also observed that as the previous combined 

pitching and plunging cases differed at the beginning and end of the cycle, this case differs most 

significantly in the middle of the cycle. It is also seen that the efficiency of the CFD cycle is much lower 

than the quasi-steady lifting-line solution. 

 The last oscillation frequency that was studied was with 31939.0ˆ =xω , 06243.0ˆ =yω , and 

2.0ˆ −=yα . As can be seen, the frequency of the oscillation was higher than the previous case. Figures 99 

and 100 show the axial- and normal-force coefficients calculated using Eqs. (2.28) and (2.29), while  

Figs. 101 and 102 show the power and thrust coefficients calculated using Eqs. (2.32) and (2.33). Table 18 

shows the comparison of the mean values from the CFD analysis to the quasi-steady lifting-line solution.  
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Fig. 99  Axial-force coefficient of oscillation cycle with  31939.0ˆ =xω , 06243.0ˆ =yω , and 2.0ˆ −=yα  

compared to the quasi-steady lifting-line solution, Eq. (3.24). 

 

 

 

 

Fig. 100  $ormal-force coefficient of oscillation cycle with 31939.0ˆ =xω , 06243.0ˆ =yω , and 

2.0ˆ −=yα  compared to the quasi-steady lifting-line solution, Eq. (3.29). 
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Fig. 101  Power coefficient of oscillation cycle with 31939.0ˆ =xω , 06243.0ˆ =yω , and 2.0ˆ −=yα  

compared to the quasi-steady lifting-line solution, Eq. (3.34). 

 

 

 

Fig. 102  Thrust coefficient of oscillation cycle with 31939.0ˆ =xω , 06243.0ˆ =yω , and 2.0ˆ −=yα  

compared to the quasi-steady lifting-line solution, Eq. (3.40). 

 

 

 

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  0.2  0.4  0.6  0.8  1

CFD

Quasi-Steady Lifting-Line

t/τ 

P
o

w
er

 C
o

ef
fi

ci
en

t 

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0  0.2  0.4  0.6  0.8  1

CFD

Quasi-Steady Lifting-Line

t/τ 

T
h

ru
st

 C
o

ef
fi

ci
en

t 



 

107 

 

 

 

Table 18  Mean values of oscillation cycle with 31939.0ˆ =xω , 06243.0ˆ =yω , and 2.0ˆ −=yα  

compared to the quasi-steady lifting-line solution 

 31939.0ˆ =xω , 06243.0ˆ =yω , 2.0ˆ −=yα  Quasi-Steady Lifting-Line 

Mean Axial-Force Coefficient 0.00214490249202726 -0.000083487982131 

Mean Normal-Force Coefficient 0.457396572013776 0.461438397544391 

Mean Power Coefficient 0.0098643594051854 0.012367132701978 

Mean Thrust Coefficient 0.006479168976234 0.009059192158199 

Mean Efficiency 0.656826126269091 0.732521626193169 

 

 As can be seen in Figs. 99–102 and Table 18, this CFD case differs very significantly from the quasi-

steady lifting-line solution in the axial-force and thrust coefficients. The difference is more severe than the 

previous case. It is also seen that the CFD efficiency is much lower than the quasi-steady lifting-line 

solution for this case.  

C. Mean Results 

 The mean values for each of the xω̂  values simulated for both pure plunging and combined pitching 

and plunging is shown in Figs. 103–107. The quasi-steady lifting-line solutions are also shown for 

comparison. 

 

Fig. 103  Comparison of the CFD mean axial-force coefficients with quasi-steady lifting-line theory. 
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Fig. 104  Comparison of the CFD mean normal-force coefficients with quasi-steady lifting-line 

theory. 

 

 

Fig. 105  Comparison of the CFD mean power coefficients with quasi-steady lifting-line theory. 
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Fig. 106  Comparison of the CFD mean thrust coefficients with the quasi-steady lifting-line theory. 

 

 

Fig. 107  Comparison of the CFD mean efficiency with the lifting-line theory. 
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pure plunging solutions.  In the pure plunging simulations, both yω̂  and yα̂ were held constant at 

07492.0ˆ =yω  and 0.0ˆ =yα . Therefore, the component that was varied was xω̂ . Consistently, for all pure 

plunging and pitching and plunging simulations run, the normal-force, power, and thrust coefficients were 

lower than that predicted by lifting-line theory, as was seen in Figs. 104–106. However, the axial-force 

coefficient was consistently higher than that predicted by lifting-line theory, as shown in Fig. 103. This is 

as expected. As the reduced frequency xω̂  is increased, the axial-force coefficient increases due to the 

addition of drag from the wake. This drag is increasing because the faster the oscillating of the wings, the 

more the wake has an effect on the drag. This effect is an increase in the drag. This also is the reason for the 

decreasing thrust, as was shown in Fig. 106. This can easily be seen in the definitions for the axial-force 

and thrust coefficients. As was shown in Eq. (2.28) and (2.31), the axial-force and thrust coefficients are 

dependent on the force in the x direction. However, the thrust and the axial-force coefficients are opposite 

in sign. This is due to the defined direction of each the axial-force and thrust coefficients. Therefore, when 

the axial-force coefficient increases, the thrust coefficient decreases.  

 As can be seen in Eq. (1.43), using the small angle approximation, the lift vector is in line with the 

normal-force vector. This lift vector is rotated through the angle of attack due to plunging and the induced 

angle of attack, but not through the angle of attack due to pitching. This can be seen by the observation that 

the lift vector is perpendicular to the relative wind. This is also seen in Eq. (3.27) very clearly. Due to this, 

thrust is generated by plunging, not pitching, of the wing.  
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CHAPTER IV 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

A. Conclusion 

 Computational fluid dynamic simulations were desired to be performed in order to compare the 

solutions of oscillating wings with quasi-steady lifting-line theory. The first thing that was completed was 

software selection. Software for both the CFD simulations and the grid generation needed to be chosen. 

Ultimately, Star-CCM+ was chosen as the CFD software. One of the main reasons for choosing Star-

CCM+ over other CFD software was its ability for easy motion specification, which was needed for this 

research. A separate grid generation software was chosen to create an acceptable grid. This software 

created a structured C-O grid that can be seen in Figs. 11–15. Nodes were clustered near the wing tip in the 

spanwise direction, at the leading and trailing edges of the airfoil in the chordwise direction, and in the 

wake region. A von Kármán Trefftz airfoil was chosen as the airfoil due to the fact that it has a closed-form 

solution. The grids created were a two-dimensional background grid, a three-dimensional background grid, 

and an overset grid. All of these grids were created using the grid generation software. 

 Grid convergence was then completed for the two-dimensional grid using quasi-steady simulations. 

The results from these simulations were then compared to the exact solution. When the difference between 

the two became acceptable, the grid was considered converged. Once grid convergence had been achieved 

for the two-dimensional grid, a grid convergence study was performed on the three-dimensional 

background grid. This was performed by comparing three-dimensional quasi-steady simulations to the 

quasi-steady lifting-line solution. These three-dimensional quasi-steady simulations were completed using 

128 time steps per cycle, evenly spaced in angle of attack. 

 Once the grids were sufficiently converged, steady-periodic simulations could then be set up and 

completed using the three-dimensional background and overset grids. These simulations were determined 

to be both time-step and cycle resolved through another convergence study. The steady-periodic 

simulations used 128 time steps per cycle, equally spaced in 
τ
t , and completed a total of three cycles. 

The setup enabled a wing to oscillate at a range of frequencies, xω̂ , and at multiple values of the pitching 

amplitude, yα̂ .  These simulations were run for ten different values of xω̂ using 0.0ˆ =yα , two values of 

xω̂ using 2.0ˆ =yα , and two additional values of xω̂ using 2.0ˆ −=yα , totaling 14 steady-periodic 

simulations. The yα̂  and yω̂  values were held constant while xω̂  was varied in order to keep a consistent 

maximum geometric angle of attack throughout all simulations performed. The simulations output values 
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for the forces in the x and y direction. These forces were converted to axial- and normal-force coefficients 

using Eqs. (2.28) and (2.29). Power and thrust coefficients were then calculated using Eqs. (2.32) and 

(2.33). Finally, the efficiency was computed using Eq. (3.3). The development for the quasi-steady lifting-

line solutions for the coefficients were presented and can be seen in Eqs. (3.24), (3.29), (3.34), (3.40), and 

(3.43). 

 The results for these simulations presented as the axial-force, normal-force, power, and thrust 

coefficients were compared against the quasi-steady lifting-line solution and were shown in Figs. 43–94. It 

can easily be seen that as the reduced frequency xω̂  increased, the quasi-steady lifting-line solution was 

decreasingly accurate in predicting the response. The mean values for each quasi-steady simulation were 

calculated and presented as a function of the reduced frequency xω̂  in Figs. 95–99. It was observed that the 

axial-force coefficient increased as a function of xω̂ , while the normal-force coefficient remained close to 

constant. This gave confidence that the CFD simulations were producing accurate results. Both the power 

and thrust coefficients decreased with xω̂ , as was expected. It was noticed through Eq. (3.29) that thrust 

was generated only by plunging, not pitching, of the wing. Using the small angle approximation, the lift 

vector is in line with the normal-force vector. This lift vector is rotated through the angle of attack due to 

plunging and the induced angle of attack, but not through the angle of attack due to pitching. This can be 

seen by the observation that the lift vector is perpendicular to the relative wind. Therefore, thrust is 

generated by plunging, not pitching, of the wing.  

 Also noticed was that the mean normal-force coefficient was constant for all values of yα̂ . As seen in 

Eq. (3.28), the normal-force coefficient is equal to the lift coefficient. Equation (3.29) shows that this lift is 

dependent on both the plunging and the pitching in the combined expression ( )yy αω ˆ1ˆ − . Using Eqs. (1.21) 

and (1.22), this expression can be shown to be  

 

 ( ) A
A

yy
V

y
α

ω
αω −=− ˆ1ˆ  (4.1) 

It can be seen that all values on the right hand side of Eq. (4.1) are constants. Therefore, the expression 

used in Eq. (3.29), ( )yy αω ˆ1ˆ − , is a constant value. The zero-lift angle of attack and the wing lift slope are 

also constant values. The only variant in Eq. (3.29) is the term ( )
τ

πt2cos . The mean value of the cosine is 

zero, and therefore, the mean value of the normal-force coefficient for all values of yα̂  is constant. This is 

also easily seen in Eq. (3.31). 
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B. Recommendations for Future Work 

 One of the first things that needs to be done in future work is the CFD study of additional xω̂ values 

for non-zero yα̂  values. This will provide a fuller set of data and a better trend could then be seen. 

Additional studies also need to be completed for more values of yα̂ to better identify the trend for each 

individual yα̂  during combined pitching and plunging. 

 Experimental studies mimicking and comparing to the present research would also be beneficial. A 

von Kármán Trefftz airfoil was chosen due to it having a finite trailing edge angle, as opposed to a 

Joukowski airfoil. This finite trailing edge angle allows for experimental studies to be performed. 

 Once more insight is gained into the properties of a simple setup, such as the one in the present 

research, additional simulations with an increased number of complicating factors need to be explored. This 

includes CFD analysis of wing setup with a more traditional flyer with two wings hinged in the center. As 

the nature of oscillating wings is better understood, a correction to Prandtl’s lifting-line theory to include 

the effects of oscillating wings could eventually be found. 
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APPENDIX A 

TWO DIMENSIONAL SCRIPTS 

 

Star-CCM+ Scripts  

 The following scripts were used to setup the simulations in Star-CCM+. These were in .java format. 

 

// STAR-CCM+ macro: Setup.java 
// Written by STAR-CCM+ 8.06.007 
package macro; 
 
import java.util.*; 
 
import star.material.*; 
import star.common.*; 
import star.base.neo.*; 
import star.base.report.*; 
import star.flow.*; 
import star.motion.*; 
import star.metrics.*; 
import star.segregatedflow.*; 
 
public class A_Setup extends StarMacro { 
 
  public void execute() { 
    execute0(); 
  } 
 
  private void execute0() { 
 
    Simulation simulation_0 =  
      getActiveSimulation(); 
 
    PhysicsContinuum physicsContinuum_0 =  
      ((PhysicsContinuum) 
simulation_0.getContinuumManager().getContinuum("Physics 1")); 
 
    physicsContinuum_0.enable(SteadyModel.class); 
 
    physicsContinuum_0.enable(SingleComponentGasModel.class); 
 
    physicsContinuum_0.enable(SegregatedFlowModel.class); 
 
    physicsContinuum_0.enable(ConstantDensityModel.class); 
 
    physicsContinuum_0.enable(InviscidModel.class); 
 
    SingleComponentGasModel singleComponentGasModel_0 =  
      
physicsContinuum_0.getModelManager().getModel(SingleComponentGasModel.c
lass); 
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    Gas gas_0 =  
      ((Gas) singleComponentGasModel_0.getMaterial()); 
 
    ConstantMaterialPropertyMethod constantMaterialPropertyMethod_0 =  
      ((ConstantMaterialPropertyMethod) 
gas_0.getMaterialProperties().getMaterialProperty(ConstantDensityProper
ty.class).getMethod()); 
 
    constantMaterialPropertyMethod_0.getQuantity().setValue(1.225); 
 
    GradientsModel gradientsModel_0 =  
      
physicsContinuum_0.getModelManager().getModel(GradientsModel.class); 
 
    
gradientsModel_0.getGradientMethodOption().setSelected(GradientMethodOp
tion.GAUSS_GRADIENTS); 
 
    Units units_0 =  
      ((Units) simulation_0.getUnitsManager().getObject("atm")); 
 
    
physicsContinuum_0.getReferenceValues().get(ReferencePressure.class).se
tUnits(units_0); 
 
    
physicsContinuum_0.getReferenceValues().get(ReferencePressure.class).se
tValue(1.0); 
 
    VelocityProfile velocityProfile_0 =  
      
physicsContinuum_0.getInitialConditions().get(VelocityProfile.class); 
 
    
velocityProfile_0.getMethod(ConstantVectorProfileMethod.class).getQuant
ity().setComponents(14.0, 0.0, 0.0); 
 
    Region region_0 =  
      simulation_0.getRegionManager().getRegion("Background"); 
 
    Boundary boundary_0 =  
      region_0.getBoundaryManager().getBoundary("Farfield"); 
 
    boundary_0.setBoundaryType(InletBoundary.class); 
 
    
boundary_0.getConditions().get(InletVelocityOption.class).setSelected(I
nletVelocityOption.COMPONENTS); 
 
    VelocityProfile velocityProfile_1 =  
      boundary_0.getValues().get(VelocityProfile.class); 
 
    
velocityProfile_1.getMethod(ConstantVectorProfileMethod.class).getQuant
ity().setComponents(14.0, 0.0, 0.0); 
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    Boundary boundary_1 =  
      region_0.getBoundaryManager().getBoundary("Outlet"); 
 
    boundary_1.setBoundaryType(OutletBoundary.class); 
 
    Boundary boundary_2 =  
      region_0.getBoundaryManager().getBoundary("Symmetry"); 
 
    boundary_2.setBoundaryType(SymmetryBoundary.class); 
 
    Region region_1 =  
      simulation_0.getRegionManager().getRegion("Foreground"); 
 
    Boundary boundary_3 =  
      region_1.getBoundaryManager().getBoundary("Overset"); 
 
    boundary_3.setBoundaryType(OversetMeshBoundary.class); 
 
    Boundary boundary_4 =  
      region_1.getBoundaryManager().getBoundary("Symmetry"); 
 
    boundary_4.setBoundaryType(SymmetryBoundary.class); 
 
    IndirectRegionInterface indirectRegionInterface_0 =  
      
simulation_0.getInterfaceManager().createIndirectRegionInterface(region
_0, region_1, "Overset Mesh"); 
 
    SegregatedFlowSolver segregatedFlowSolver_0 =  
      ((SegregatedFlowSolver) 
simulation_0.getSolverManager().getSolver(SegregatedFlowSolver.class)); 
 
    VelocitySolver velocitySolver_0 =  
      segregatedFlowSolver_0.getVelocitySolver(); 
 
    
velocitySolver_0.getRampCalculatorManager().getRampCalculatorOption().s
etSelected(RampCalculatorOption.LINEAR_RAMP); 
 
    LinearRampCalculator linearRampCalculator_0 =  
      ((LinearRampCalculator) 
velocitySolver_0.getRampCalculatorManager().getCalculator()); 
 
    linearRampCalculator_0.setEndIteration(1000); 
 
    PressureSolver pressureSolver_0 =  
      segregatedFlowSolver_0.getPressureSolver(); 
 
    
pressureSolver_0.getRampCalculatorManager().getRampCalculatorOption().s
etSelected(RampCalculatorOption.LINEAR_RAMP); 
 
    LinearRampCalculator linearRampCalculator_1 =  
      ((LinearRampCalculator) 
pressureSolver_0.getRampCalculatorManager().getCalculator()); 
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    linearRampCalculator_1.setEndIteration(1000); 
 
    StepStoppingCriterion stepStoppingCriterion_0 =  
      ((StepStoppingCriterion) 
simulation_0.getSolverStoppingCriterionManager().getSolverStoppingCrite
rion("Maximum Steps")); 
 
    stepStoppingCriterion_0.setMaximumNumberSteps(5000); 
 
    ResidualMonitor residualMonitor_0 =  
      ((ResidualMonitor) 
simulation_0.getMonitorManager().getMonitor("Y-momentum")); 
 
    MonitorIterationStoppingCriterion 
monitorIterationStoppingCriterion_0 =  
      residualMonitor_0.createIterationStoppingCriterion(); 
 
    ((MonitorIterationStoppingCriterionOption) 
monitorIterationStoppingCriterion_0.getCriterionOption()).setSelected(M
onitorIterationStoppingCriterionOption.ASYMPTOTIC); 
 
    MonitorIterationStoppingCriterionAsymptoticType 
monitorIterationStoppingCriterionAsymptoticType_0 =  
      ((MonitorIterationStoppingCriterionAsymptoticType) 
monitorIterationStoppingCriterion_0.getCriterionType()); 
 
    
monitorIterationStoppingCriterionAsymptoticType_0.getMaxWidth().setValu
e(1.0E-15); 
 
    
monitorIterationStoppingCriterionAsymptoticType_0.setNumberSamples(300)
; 
 
    LabCoordinateSystem labCoordinateSystem_0 =  
      
simulation_0.getCoordinateSystemManager().getLabCoordinateSystem(); 
 
    CartesianCoordinateSystem cartesianCoordinateSystem_0 =  
      
labCoordinateSystem_0.getLocalCoordinateSystemManager().createLocalCoor
dinateSystem(CartesianCoordinateSystem.class, "Cartesian"); 
 
    Coordinate coordinate_0 =  
      cartesianCoordinateSystem_0.getOrigin(); 
 
    Units units_1 =  
      ((Units) simulation_0.getUnitsManager().getObject("m")); 
 
    coordinate_0.setCoordinate(units_1, units_1, units_1, new 
DoubleVector(new double[] {0.0625, 0.0, 0.0})); 
 
    UserRotatingAndTranslatingReferenceFrame 
userRotatingAndTranslatingReferenceFrame_0 =  
      
simulation_0.get(ReferenceFrameManager.class).createReferenceFrame(User
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RotatingAndTranslatingReferenceFrame.class, "Rotating And 
Translating"); 
 
    ForceReport forceReport_0 =  
      simulation_0.getReportManager().createReport(ForceReport.class); 
 
    forceReport_0.setPresentationName("Fx"); 
 
    forceReport_0.setCoordinateSystem(cartesianCoordinateSystem_0); 
 
    Boundary boundary_5 =  
      region_1.getBoundaryManager().getBoundary("Airfoil"); 
 
    forceReport_0.getParts().setObjects(boundary_5); 
 
    ForceReport forceReport_1 =  
      simulation_0.getReportManager().createReport(ForceReport.class); 
 
    forceReport_1.setPresentationName("Fy"); 
 
    forceReport_1.getDirection().setComponents(0.0, 1.0, 0.0); 
 
    forceReport_1.setCoordinateSystem(cartesianCoordinateSystem_0); 
 
    forceReport_1.getParts().setObjects(boundary_5); 
 
    MomentReport momentReport_0 =  
      simulation_0.getReportManager().createReport(MomentReport.class); 
 
    momentReport_0.setPresentationName("Mz"); 
 
    momentReport_0.setCoordinateSystem(cartesianCoordinateSystem_0); 
 
    momentReport_0.getParts().setObjects(boundary_5); 
 
    simulation_0.getMonitorManager().createMonitorAndPlot(new 
NeoObjectVector(new Object[] {forceReport_0, forceReport_1, 
momentReport_0}), false, "%1$s Plot"); 
 
    ReportMonitor reportMonitor_0 =  
      ((ReportMonitor) simulation_0.getMonitorManager().getMonitor("Fx 
Monitor")); 
 
    MonitorPlot monitorPlot_0 =  
      simulation_0.getPlotManager().createMonitorPlot(new 
NeoObjectVector(new Object[] {reportMonitor_0}), "Fx Monitor Plot"); 
 
    ReportMonitor reportMonitor_1 =  
      ((ReportMonitor) simulation_0.getMonitorManager().getMonitor("Fy 
Monitor")); 
 
    MonitorPlot monitorPlot_1 =  
      simulation_0.getPlotManager().createMonitorPlot(new 
NeoObjectVector(new Object[] {reportMonitor_1}), "Fy Monitor Plot"); 
 
    ReportMonitor reportMonitor_2 =  
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      ((ReportMonitor) simulation_0.getMonitorManager().getMonitor("Mz 
Monitor")); 
 
    MonitorPlot monitorPlot_2 =  
      simulation_0.getPlotManager().createMonitorPlot(new 
NeoObjectVector(new Object[] {reportMonitor_2}), "Mz Monitor Plot"); 
  } 
} 
 
// STAR-CCM+ macro: blub.java 
package macro; 
 
import java.util.*; 
 
import star.common.*; 
import star.base.neo.*; 
 
public class B_AltCutting extends StarMacro { 
 
  public void execute() { 
    execute0(); 
  } 
 
  private void execute0() { 
 
    Simulation simulation_0 =  
      getActiveSimulation(); 
 
      for (Interface iface : 
simulation_0.get(InterfaceManager.class).getObjects()) { 
         if (iface instanceof IndirectRegionInterface) 
           { 
            System.out.println("interface: 
"+iface.getPresentationName()); 
            NeoSystemOut.println("interface: 
"+iface.getPresentationName()); 
             
            IndirectRegionInterface indirectInterface = 
(IndirectRegionInterface) iface; 
            indirectInterface.setUseAlternateHoleCutting(true); 
 
           } 
      } 
 
} 
} 
 
// STAR-CCM+ macro: AdjustFore.java 
// Written by STAR-CCM+ 8.06.007 
package macro; 
 
import java.util.*; 
 
import star.common.*; 
import star.base.neo.*; 
import star.flow.*; 
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import star.motion.*; 
 
public class C_AdjustFore extends StarMacro { 
 
  public void execute() { 
    execute0(); 
  } 
 
  private void execute0() { 
 
    double Vx=blank; //m/s 
    double Vy=blank; //m/s 
    double Vgridy=blank; //m/s 
    double dy=blank; //m 
    double rot_grid=blank; //rad 
 
    Simulation simulation_0 =  
      getActiveSimulation(); 
 
    Region region_0 =  
      simulation_0.getRegionManager().getRegion("Background"); 
 
    Boundary boundary_0 =  
      region_0.getBoundaryManager().getBoundary("Farfield"); 
 
    VelocityProfile velocityProfile_1 =  
      boundary_0.getValues().get(VelocityProfile.class); 
 
    
velocityProfile_1.getMethod(ConstantVectorProfileMethod.class).getQuant
ity().setComponents(Vx, Vy, 0.0); 
 
    Units units_2 =  
      simulation_0.getUnitsManager().getPreferredUnits(new 
IntVector(new int[] {0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0})); 
 
    Units units_1 =  
      simulation_0.getUnitsManager().getPreferredUnits(new 
IntVector(new int[] {0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0})); 
 
    Region region_1 =  
      simulation_0.getRegionManager().getRegion("Foreground"); 
 
    LabCoordinateSystem labCoordinateSystem_0 =  
      
simulation_0.getCoordinateSystemManager().getLabCoordinateSystem(); 
 
    CartesianCoordinateSystem cartesianCoordinateSystem_0 =  
      ((CartesianCoordinateSystem) 
labCoordinateSystem_0.getLocalCoordinateSystemManager().getObject("Cart
esian 1")); 
 
    simulation_0.getRepresentationManager().rotateMesh(new 
NeoObjectVector(new Object[] {region_1}), new DoubleVector(new double[] 
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{0.0, 0.0, 1.0}), new NeoObjectVector(new Object[] {units_1, units_1, 
units_1}), rot_grid, cartesianCoordinateSystem_0); 
 
    simulation_0.getRepresentationManager().translateMesh(new 
NeoObjectVector(new Object[] {region_1}), new DoubleVector(new double[] 
{0.0, dy, 0.0}), new NeoObjectVector(new Object[] {units_1, units_1, 
units_1}), cartesianCoordinateSystem_0); 
 
    UserRotatingAndTranslatingReferenceFrame 
userRotatingAndTranslatingReferenceFrame_0 =  
      ((UserRotatingAndTranslatingReferenceFrame) 
simulation_0.get(ReferenceFrameManager.class).getObject("Rotating And 
Translating")); 
 
    
userRotatingAndTranslatingReferenceFrame_0.getTranslationVelocity().set
Components(0.0, Vgridy, 0.0); 
 
    MotionSpecification motionSpecification_0 =  
      region_1.getValues().get(MotionSpecification.class); 
 
    
motionSpecification_0.setReferenceFrame(userRotatingAndTranslatingRefer
enceFrame_0); 
 
    simulation_0.getInterfaceManager().initialize(); 
  } 
} 
 
// STAR-CCM+ macro: D_SaveResults.java 
// Written by STAR-CCM+ 8.06.007 
package macro; 
 
import java.util.*; 
 
import star.common.*; 
import star.base.neo.*; 
import star.base.report.*; 
import star.flow.*; 
 
public class D_SaveResults extends StarMacro { 
 
  public void execute() { 
    execute0(); 
  } 
 
  private void execute0() { 
 
    Simulation simulation_0 =  
      getActiveSimulation(); 
 
    ForceReport forceReport_0 =  
      ((ForceReport) simulation_0.getReportManager().getReport("Fx")); 
 
    ForceReport forceReport_1 =  
      ((ForceReport) simulation_0.getReportManager().getReport("Fy")); 
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    MomentReport momentReport_0 =  
      ((MomentReport) simulation_0.getReportManager().getReport("Mz")); 
 
    simulation_0.getMonitorManager().createMonitorAndPlot(new 
NeoObjectVector(new Object[] {forceReport_0, forceReport_1, 
momentReport_0}), true, "Reports Plot"); 
 
 
 
    ReportMonitor reportMonitor_0 =  
      ((ReportMonitor) simulation_0.getMonitorManager().getMonitor("Fx 
Monitor 2")); 
 
    ReportMonitor reportMonitor_1 =  
      ((ReportMonitor) simulation_0.getMonitorManager().getMonitor("Fy 
Monitor 2")); 
 
    ReportMonitor reportMonitor_2 =  
      ((ReportMonitor) simulation_0.getMonitorManager().getMonitor("Mz 
Monitor 2")); 
 
    MonitorPlot monitorPlot_0 =  
      simulation_0.getPlotManager().createMonitorPlot(new 
NeoObjectVector(new Object[] {reportMonitor_0, reportMonitor_1, 
reportMonitor_2}), "Reports Plot"); 
 
 
//Take 1 step 
    simulation_0.getSimulationIterator().step(1); 
 
    monitorPlot_0.export(resolvePath("ReportResults.csv"), ","); 
 
    ResidualPlot residualPlot_0 =  
      ((ResidualPlot) 
simulation_0.getPlotManager().getPlot("Residuals")); 
 
    residualPlot_0.export(resolvePath("Residuals.csv"), ","); 
    residualPlot_0.encode(resolvePath("Result_Residuals.png"), "png", 
600, 600); 
  } 
} 
 

Fortran Scripts 

 The following script was written in the Fortran programming language in order to obtain results from 

multiple simulations. 

 

PROGRAM datamine 
    IMPLICIT NONE 
 
    CHARACTER*(20)::rec 
    CHARACTER(40):: fin,fout 
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    integer :: ts,icycle,i,ierror 
    real :: pi,Rtau,Tau,RPhia,PhiA,denom,divisor,chord,alpha_hat 
    real,allocatable,dimension(:,:):: time,Fx,Fy,Mz,Py 
 
    !---------- Set Defaults ------------ 
    pi = 3.1415926535897932384 
    divisor = 1.0 
    Rtau = 1.0 
    alpha_hat = 0.2 
    RPhia = 1.0 
    ts = 128 
    icycle = 8 
    denom = 0.5*1.225*14.0*14.0*0.25 
    chord = 0.25 
 
 
    write(*,*) 'Enter Divisor (',divisor,' ):' 
    read(5,'(a)') rec 
    if(rec .ne. ' ') read(rec,*) divisor 
 
    write(*,*) 'Enter Rtau (',Rtau,' ):' 
    read(5,'(a)') rec 
    if(rec .ne. ' ') read(rec,*) Rtau 
 
    write(*,*) 'Enter Alpha_hat (',alpha_hat,' ):' 
    read(5,'(a)') rec 
    if(rec .ne. ' ') read(rec,*) alpha_hat 
    Tau = Rtau*0.836396554819284/divisor*(1.0-alpha_hat) 
    PhiA = Rtau*0.139626340159546 
 
    write(*,*) 'Enter timesteps/cycle (',ts,' ):' 
    read(5,'(a)') rec 
    if(rec .ne. ' ') read(rec,*) ts 
 
    write(*,*) 'Enter desired cycle (',icycle,' ):' 
    read(5,'(a)') rec 
    if(rec .ne. ' ') read(rec,*) icycle 
     
    allocate(time(ts+1,3)) 
    allocate(Fx(ts+1,3)) 
    allocate(Fy(ts+1,3)) 
    allocate(Mz(ts+1,3)) 
    allocate(Py(ts+1,3)) 
         
 
    fin = 'input.txt' 
    write(*,*) 'Enter filename (',fin,' ):' 
    read(5,'(a)') rec 
    if(rec .ne. ' ') read(rec,*) fin 
    open(1,FILE=fin,status='old',iostat=ierror) 
    if(ierror.eq.0) then !Case completed successfully 
        read(1,*) !header line 
        do i=1,ts*(icycle-2)-1 
            read(1,*) 
        end do 
        do i=1,ts+1 
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            read(1,*) time(i,1), Fx(i,1), Fy(i,1), Mz(i,1), Py(i,1) 
        end do 
        time(1,2) = time(ts+1,1) 
        Fx(1,2) = Fx(ts+1,1) 
        Fy(1,2) = Fy(ts+1,1) 
        Mz(1,2) = Mz(ts+1,1) 
        Py(1,2) = Py(ts+1,1) 
        do i=2,ts+1 
            read(1,*) time(i,2), Fx(i,2), Fy(i,2), Mz(i,2), Py(i,2) 
        end do 
    end if 
    close(1) 
 
    time(:,3) = time(:,2) - time(:,1) 
    Fx(:,3) = Fx(:,2) - Fx(:,1) 
    Fy(:,3) = Fy(:,2) - Fy(:,1) 
    Mz(:,3) = Mz(:,2) - Mz(:,1) 
    Py(:,3) = Py(:,2) - Py(:,1) 
 
    
    fout = trim(adjustl(fin))//'_results.txt' 
    open(2,FILE=fout,status='replace') 
    write(2,*) '   Time(s)                  Fx(N)                    
Fy(N)                    Mz_ac(N-m)               & 
                  &MaxY(m)                  Time(s)                  Cx                       
Cy                       & 
                  &Y(m)                     abs(Delta_Cx)            
abs(Delta_Cy)            abs(Delta_Y)             & 
                  &abs(%_Delta_Cx)          abs(%_Delta_Cy)          & 
                  &Cm_ac                    abs(Delta_Cm_ac)         
abs(%_Delta_Cm_ac)' 
    do i=1,ts+1 
        write(2,'(17e25.15)') time(i,2), Fx(i,2), Fy(i,2), Mz(i,2), 
Py(i,2),& 
                             &time(i,2), Fx(i,2)/denom, 
Fy(i,2)/denom,PhiA*sin(2.0*pi*time(i,2)/Tau),& 
                             
&abs(Fx(i,3)/denom),abs(FY(i,3)/denom),abs(Py(i,3)),abs(Fx(i,3)/Fx(i,2)
),abs(Fy(i,3)/Fy(i,2)),& 
                             &-
Mz(i,2)/denom/chord,abs(Mz(i,3)/denom/chord),abs(Mz(i,3)/Mz(i,2)) 
    end do 
    close(2) 
    stop 
end program 
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APPENDIX B 

THREE DIMENSIONAL SCRIPTS 

 The following scripts were used to setup the simulations in Star-CCM+. These were in .java format. 

Quasi-Steady Setup 

// STAR-CCM+ macro: Setup_2.java 
// Written by STAR-CCM+ 8.06.007 
package macro; 
 
import java.util.*; 
 
import star.material.*; 
import star.common.*; 
import star.base.neo.*; 
import star.flow.*; 
import star.motion.*; 
import star.metrics.*; 
import star.segregatedflow.*; 
 
public class Setup_2 extends StarMacro { 
 
  public void execute() { 
    execute0(); 
  } 
 
  private void execute0() { 
 
    Simulation simulation_0 =  
      getActiveSimulation(); 
 
    PhysicsContinuum physicsContinuum_0 =  
      ((PhysicsContinuum) 
simulation_0.getContinuumManager().getContinuum("Physics 1")); 
 
    physicsContinuum_0.enable(SteadyModel.class); 
 
    physicsContinuum_0.enable(SingleComponentGasModel.class); 
 
    physicsContinuum_0.enable(SegregatedFlowModel.class); 
 
    physicsContinuum_0.enable(ConstantDensityModel.class); 
 
    physicsContinuum_0.enable(InviscidModel.class); 
 
    SingleComponentGasModel singleComponentGasModel_0 =  
      
physicsContinuum_0.getModelManager().getModel(SingleComponentGasModel.c
lass); 
 
    Gas gas_0 =  
      ((Gas) singleComponentGasModel_0.getMaterial()); 
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    ConstantMaterialPropertyMethod constantMaterialPropertyMethod_0 =  
      ((ConstantMaterialPropertyMethod) 
gas_0.getMaterialProperties().getMaterialProperty(ConstantDensityProper
ty.class).getMethod()); 
 
    constantMaterialPropertyMethod_0.getQuantity().setValue(1.225); 
 
    GradientsModel gradientsModel_0 =  
      
physicsContinuum_0.getModelManager().getModel(GradientsModel.class); 
 
    
gradientsModel_0.getGradientMethodOption().setSelected(GradientMethodOp
tion.GAUSS_GRADIENTS); 
 
    Units units_0 =  
      ((Units) simulation_0.getUnitsManager().getObject("atm")); 
 
    
physicsContinuum_0.getReferenceValues().get(ReferencePressure.class).se
tUnits(units_0); 
 
    
physicsContinuum_0.getReferenceValues().get(ReferencePressure.class).se
tValue(1.0); 
 
    VelocityProfile velocityProfile_0 =  
      
physicsContinuum_0.getInitialConditions().get(VelocityProfile.class); 
 
    
velocityProfile_0.getMethod(ConstantVectorProfileMethod.class).getQuant
ity().setComponents(14.0, 0.0, 0.0); 
 
    Region region_0 =  
      simulation_0.getRegionManager().getRegion("Background"); 
 
    Boundary boundary_0 =  
      region_0.getBoundaryManager().getBoundary("Farfield"); 
 
    boundary_0.setBoundaryType(InletBoundary.class); 
 
    Boundary boundary_1 =  
      region_0.getBoundaryManager().getBoundary("Outlet"); 
 
    boundary_1.setBoundaryType(OutletBoundary.class); 
 
    Boundary boundary_2 =  
      region_0.getBoundaryManager().getBoundary("Symmetry"); 
 
    boundary_2.setBoundaryType(SymmetryBoundary.class); 
 
    
boundary_0.getConditions().get(InletVelocityOption.class).setSelected(I
nletVelocityOption.COMPONENTS); 
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    VelocityProfile velocityProfile_1 =  
      boundary_0.getValues().get(VelocityProfile.class); 
 
    
velocityProfile_1.getMethod(ConstantVectorProfileMethod.class).getQuant
ity().setComponents(14.0, 0.0, 0.0); 
 
    Region region_1 =  
      simulation_0.getRegionManager().getRegion("Foreground"); 
 
    Boundary boundary_3 =  
      region_1.getBoundaryManager().getBoundary("Overset"); 
 
    boundary_3.setBoundaryType(OversetMeshBoundary.class); 
 
    Boundary boundary_4 =  
      region_1.getBoundaryManager().getBoundary("Symmetry"); 
 
    boundary_4.setBoundaryType(SymmetryBoundary.class); 
 
    SegregatedFlowSolver segregatedFlowSolver_0 =  
      ((SegregatedFlowSolver) 
simulation_0.getSolverManager().getSolver(SegregatedFlowSolver.class)); 
 
    VelocitySolver velocitySolver_0 =  
      segregatedFlowSolver_0.getVelocitySolver(); 
 
    
velocitySolver_0.getRampCalculatorManager().getRampCalculatorOption().s
etSelected(RampCalculatorOption.LINEAR_RAMP); 
 
    LinearRampCalculator linearRampCalculator_0 =  
      ((LinearRampCalculator) 
velocitySolver_0.getRampCalculatorManager().getCalculator()); 
 
    linearRampCalculator_0.setEndIteration(10000); 
 
    linearRampCalculator_0.setInitialRampValue(0.08); 
 
    PressureSolver pressureSolver_0 =  
      segregatedFlowSolver_0.getPressureSolver(); 
 
    
pressureSolver_0.getRampCalculatorManager().getRampCalculatorOption().s
etSelected(RampCalculatorOption.LINEAR_RAMP); 
 
    LinearRampCalculator linearRampCalculator_1 =  
      ((LinearRampCalculator) 
pressureSolver_0.getRampCalculatorManager().getCalculator()); 
 
    linearRampCalculator_1.setEndIteration(10000); 
 
    linearRampCalculator_1.setInitialRampValue(0.02); 
 
    velocitySolver_0.setUrf(0.4); 
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    pressureSolver_0.setUrf(0.1); 
 
// Alternate Hole Cutting 
   for (Interface iface : 
simulation_0.get(InterfaceManager.class).getObjects()) { 
         if (iface instanceof IndirectRegionInterface) 
           { 
            System.out.println("interface: 
"+iface.getPresentationName()); 
            NeoSystemOut.println("interface: 
"+iface.getPresentationName()); 
             
            IndirectRegionInterface indirectInterface = 
(IndirectRegionInterface) iface; 
            indirectInterface.setUseAlternateHoleCutting(true); 
  } 
} 
 
 
// Field Functions 
 
    //Pi 
    UserFieldFunction userFieldFunction_0 =  
      simulation_0.getFieldFunctionManager().createFieldFunction(); 
 
    userFieldFunction_0.setPresentationName("Pi"); 
 
    userFieldFunction_0.setFunctionName("Pi"); 
 
    userFieldFunction_0.setDefinition("3.141592653589793"); 
 
 
// These change for each run 
// --------------------------------------------------------------------
-----------------------------------   
                                                                                         
    //Divisor 
    UserFieldFunction userFieldFunction_D =  
      simulation_0.getFieldFunctionManager().createFieldFunction(); 
 
    userFieldFunction_D.setPresentationName("Divisor"); 
 
    userFieldFunction_D.setFunctionName("Divisor"); 
 
    userFieldFunction_D.setDefinition("1.0");  
// If this value = 1.0, then ag=4.29 
// If this value = 0.75, then ag=3.22 
// If this value = 1.25, then ag=5.37 
                                                                                               
    //Rtau 
    UserFieldFunction userFieldFunction_1 =  
      simulation_0.getFieldFunctionManager().createFieldFunction(); 
 
    userFieldFunction_1.setPresentationName("Rtau"); 
 
    userFieldFunction_1.setFunctionName("Rtau"); 
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    userFieldFunction_1.setDefinition("0.35"); 
//                                                                                                             
    //Alpha_hat 
    UserFieldFunction userFieldFunction_a =  
      simulation_0.getFieldFunctionManager().createFieldFunction(); 
 
    userFieldFunction_a.setPresentationName("Alpha_hat"); 
 
    userFieldFunction_a.setFunctionName("Alpha_hat"); 
 
    userFieldFunction_a.setDefinition("0.0"); 
     
 
 
    double rotategrid = 0.0; 
// This number comes from the excel sheet. 
                                                                                                              
// --------------------------------------------------------------------
---------------------------------------- 
 
 
    //Tau 
    UserFieldFunction userFieldFunction_2 =  
      simulation_0.getFieldFunctionManager().createFieldFunction(); 
 
    userFieldFunction_2.setPresentationName("Tau"); 
 
    userFieldFunction_2.setFunctionName("Tau"); 
 
    userFieldFunction_2.setDefinition("0.836396554819284*$Rtau*(1.0-
$Alpha_hat)/$Divisor"); 
 
    //PhiA 
    UserFieldFunction userFieldFunction_3 =  
      simulation_0.getFieldFunctionManager().createFieldFunction(); 
 
    userFieldFunction_3.setPresentationName("PhiA"); 
 
    userFieldFunction_3.setFunctionName("PhiA"); 
 
    userFieldFunction_3.setDefinition("$Rtau*0.139626340159546"); 
 
    //MyPosition 
    UserFieldFunction userFieldFunction_4 =  
      simulation_0.getFieldFunctionManager().createFieldFunction(); 
 
    userFieldFunction_4.setPresentationName("MyPosition"); 
 
    userFieldFunction_4.setFunctionName("MyPosition"); 
 
    userFieldFunction_4.setDefinition("$PhiA*sin(2.0*$Pi*$Time/$Tau)"); 
 
    //Alpha_A 
    UserFieldFunction userFieldFunction_6 =  
      simulation_0.getFieldFunctionManager().createFieldFunction(); 
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    userFieldFunction_6.setPresentationName("Alpha_A"); 
 
    userFieldFunction_6.setFunctionName("Alpha_A"); 
 
    
userFieldFunction_6.setDefinition("$Alpha_hat*$PhiA*2.0*$Pi/14.0/$Tau")
; 
 
    //VerticalVelocity 
    UserFieldFunction userFieldFunction_7 =  
      simulation_0.getFieldFunctionManager().createFieldFunction(); 
 
    userFieldFunction_7.setPresentationName("VerticalVelocity"); 
 
    userFieldFunction_7.setFunctionName("VerticalVelocity"); 
 
    
userFieldFunction_7.setDefinition("$PhiA*2.0*$Pi/$Tau*cos(2.0*$Pi*$Time
/$Tau)"); 
 
    //RotationalVelocity 
    UserFieldFunction userFieldFunction_8 =  
      simulation_0.getFieldFunctionManager().createFieldFunction(); 
 
    userFieldFunction_8.setPresentationName("RotationalVelocity"); 
 
    userFieldFunction_8.setFunctionName("RotationalVelocity"); 
 
    
userFieldFunction_8.setDefinition("2.0*$Pi*$Alpha_A/$Tau*sin(2.0*$Pi*$T
ime/$Tau)"); 
 
    //TranslationalVelocity 
    UserFieldFunction userFieldFunction_9 =  
      simulation_0.getFieldFunctionManager().createFieldFunction(); 
 
    userFieldFunction_9.setPresentationName("TranslationalVelocity"); 
 
    userFieldFunction_9.setFunctionName("TranslationalVelocity"); 
 
    
userFieldFunction_9.getTypeOption().setSelected(FieldFunctionTypeOption
.VECTOR); 
 
    userFieldFunction_9.setDefinition("[0.0, $VerticalVelocity, 0.0]"); 
 
    //StartVelocity 
    UserFieldFunction userFieldFunction_10 =  
      simulation_0.getFieldFunctionManager().createFieldFunction(); 
 
    userFieldFunction_10.setPresentationName("StartVelocity"); 
 
    userFieldFunction_10.setFunctionName("StartVelocity"); 
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userFieldFunction_10.getTypeOption().setSelected(FieldFunctionTypeOptio
n.VECTOR); 
 
    userFieldFunction_10.setDefinition("[0.0, $PhiA*2.0*$Pi/$Tau, 
0.0]"); 
 
   
//End of field functions 
 
    LabCoordinateSystem labCoordinateSystem_0 =  
      
simulation_0.getCoordinateSystemManager().getLabCoordinateSystem(); 
 
    CartesianCoordinateSystem cartesianCoordinateSystem_0 =  
      
labCoordinateSystem_0.getLocalCoordinateSystemManager().createLocalCoor
dinateSystem(CartesianCoordinateSystem.class, "Cartesian"); 
 
    Coordinate coordinate_0 =  
      cartesianCoordinateSystem_0.getOrigin(); 
 
    Units units_1 =  
      ((Units) simulation_0.getUnitsManager().getObject("m")); 
 
    coordinate_0.setCoordinate(units_1, units_1, units_1, new 
DoubleVector(new double[] {0.06891727606, 0.0015142592350, 0.0})); 
 
    UserRotatingAndTranslatingReferenceFrame 
userRotatingAndTranslatingReferenceFrame_0 =  
      
simulation_0.get(ReferenceFrameManager.class).createReferenceFrame(User
RotatingAndTranslatingReferenceFrame.class, "Rotating And 
Translating"); 
 
    Units units_2 =  
      simulation_0.getUnitsManager().getInternalUnits(new IntVector(new 
int[] {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 
0, 0, 0})); 
 
 
    
userRotatingAndTranslatingReferenceFrame_0.getTranslationVelocity().set
Definition("$$StartVelocity"); 
 
    IndirectRegionInterface indirectRegionInterface_0 =  
      
simulation_0.getInterfaceManager().createIndirectRegionInterface(region
_0, region_1, "Overset Mesh"); 
 
    
indirectRegionInterface_0.getConditions().get(OversetMeshInterpolationO
ption.class).setSelected(OversetMeshInterpolationOption.LINEAR); 
 
    MotionSpecification motionSpecification_0 =  
      region_1.getValues().get(MotionSpecification.class); 
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motionSpecification_0.setReferenceFrame(userRotatingAndTranslatingRefer
enceFrame_0); 
 
   StepStoppingCriterion stepStoppingCriterion_0 =  
      ((StepStoppingCriterion) 
simulation_0.getSolverStoppingCriterionManager().getSolverStoppingCrite
rion("Maximum Steps")); 
 
    stepStoppingCriterion_0.setMaximumNumberSteps(5000); 
 
    ResidualMonitor residualMonitor_0 =  
      ((ResidualMonitor) 
simulation_0.getMonitorManager().getMonitor("Y-momentum")); 
 
    MonitorIterationStoppingCriterion 
monitorIterationStoppingCriterion_0 =  
      residualMonitor_0.createIterationStoppingCriterion(); 
 
    ((MonitorIterationStoppingCriterionOption) 
monitorIterationStoppingCriterion_0.getCriterionOption()).setSelected(M
onitorIterationStoppingCriterionOption.ASYMPTOTIC); 
 
    MonitorIterationStoppingCriterionAsymptoticType 
monitorIterationStoppingCriterionAsymptoticType_0 =  
      ((MonitorIterationStoppingCriterionAsymptoticType) 
monitorIterationStoppingCriterion_0.getCriterionType()); 
 
    
monitorIterationStoppingCriterionAsymptoticType_0.getMaxWidth().setValu
e(1.0E-15); 
 
    
monitorIterationStoppingCriterionAsymptoticType_0.setNumberSamples(300)
; 
 
    ForceReport forceReport_0 =  
      simulation_0.getReportManager().createReport(ForceReport.class); 
 
    forceReport_0.setPresentationName("Fx"); 
 
    forceReport_0.setCoordinateSystem(cartesianCoordinateSystem_0); 
 
    Boundary boundary_5 =  
      region_1.getBoundaryManager().getBoundary("Airfoil"); 
 
    forceReport_0.getParts().setObjects(boundary_5); 
 
    ForceReport forceReport_1 =  
      simulation_0.getReportManager().createReport(ForceReport.class); 
 
    forceReport_1.setPresentationName("Fy"); 
 
    forceReport_1.getDirection().setComponents(0.0, 1.0, 0.0); 
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    forceReport_1.setCoordinateSystem(cartesianCoordinateSystem_0); 
 
    forceReport_1.getParts().setObjects(boundary_5); 
 
    MomentReport momentReport_0 =  
      simulation_0.getReportManager().createReport(MomentReport.class); 
 
    momentReport_0.setPresentationName("Mz"); 
 
    momentReport_0.setCoordinateSystem(cartesianCoordinateSystem_0); 
 
    momentReport_0.getParts().setObjects(boundary_5); 
 
    simulation_0.getMonitorManager().createMonitorAndPlot(new 
NeoObjectVector(new Object[] {forceReport_0, forceReport_1, 
momentReport_0}), false, "%1$s Plot"); 
 
    AutoSave autoSave_0 =  
      simulation_0.getSimulationIterator().getAutoSave(); 
 
    StarUpdate starUpdate_0 =  
      autoSave_0.getStarUpdate(); 
 
    
starUpdate_0.getUpdateModeOption().setSelected(StarUpdateModeOption.ITE
RATION); 
 
    IterationUpdateFrequency iterationUpdateFrequency_0 =  
      starUpdate_0.getIterationUpdateFrequency(); 
 
    iterationUpdateFrequency_0.setIterations(500); 
  } 
} 
 
// STAR-CCM+ macro: Reports.java 
// Written by STAR-CCM+ 8.06.007 
package macro; 
 
import java.util.*; 
 
import star.common.*; 
import star.base.neo.*; 
import star.base.report.*; 
 
public class Reports extends StarMacro { 
 
  public void execute() { 
    execute0(); 
  } 
 
  private void execute0() { 
 
    Simulation simulation_0 =  
      getActiveSimulation(); 
 
    ReportMonitor reportMonitor_0 =  
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      ((ReportMonitor) simulation_0.getMonitorManager().getMonitor("Fx 
Monitor")); 
 
    MonitorPlot monitorPlot_0 =  
      simulation_0.getPlotManager().createMonitorPlot(new 
NeoObjectVector(new Object[] {reportMonitor_0}), "Fx Monitor Plot"); 
 
    ReportMonitor reportMonitor_1 =  
      ((ReportMonitor) simulation_0.getMonitorManager().getMonitor("Fy 
Monitor")); 
 
    MonitorPlot monitorPlot_1 =  
      simulation_0.getPlotManager().createMonitorPlot(new 
NeoObjectVector(new Object[] {reportMonitor_1}), "Fy Monitor Plot"); 
 
    ReportMonitor reportMonitor_2 =  
      ((ReportMonitor) simulation_0.getMonitorManager().getMonitor("Mz 
Monitor")); 
 
    MonitorPlot monitorPlot_2 =  
      simulation_0.getPlotManager().createMonitorPlot(new 
NeoObjectVector(new Object[] {reportMonitor_2}), "Mz Monitor Plot"); 
  } 
} 

Steady-Periodic Setup 

// STAR-CCM+ macro: Steady_State_To_Transient.java 
// Written by STAR-CCM+ 8.06.007 
package macro; 
 
import java.util.*; 
 
import star.common.*; 
import star.base.neo.*; 
 
public class Steady_State_To_Transient extends StarMacro { 
 
  public void execute() { 
    execute0(); 
  } 
 
  private void execute0() { 
 
    Simulation simulation_0 =  
      getActiveSimulation(); 
 
    PhysicsContinuum physicsContinuum_0 =  
      ((PhysicsContinuum) 
simulation_0.getContinuumManager().getContinuum("Physics 1")); 
 
    SteadyModel steadyModel_0 =  
      physicsContinuum_0.getModelManager().getModel(SteadyModel.class); 
 
    physicsContinuum_0.disableModel(steadyModel_0); 
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    physicsContinuum_0.enable(ImplicitUnsteadyModel.class); 
 
    Units units_0 =  
      simulation_0.getUnitsManager().getInternalUnits(new IntVector(new 
int[] {0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0})); 
 
    ImplicitUnsteadySolver implicitUnsteadySolver_0 =  
      ((ImplicitUnsteadySolver) 
simulation_0.getSolverManager().getSolver(ImplicitUnsteadySolver.class)
); 
 
    implicitUnsteadySolver_0.getTimeStep().setDefinition("$Tau/128.0"); 
 
    
implicitUnsteadySolver_0.getTimeDiscretizationOption().setSelected(Time
DiscretizationOption.SECOND_ORDER); 
 
// Alternate Hole Cutting 
   for (Interface iface : 
simulation_0.get(InterfaceManager.class).getObjects()) { 
         if (iface instanceof IndirectRegionInterface) 
           { 
            System.out.println("interface: 
"+iface.getPresentationName()); 
            NeoSystemOut.println("interface: 
"+iface.getPresentationName()); 
             
            IndirectRegionInterface indirectInterface = 
(IndirectRegionInterface) iface; 
            indirectInterface.setUseAlternateHoleCutting(true); 
  } 
} 
  } 
} 

 
// STAR-CCM+ macro: Motion.java 
// Written by STAR-CCM+ 8.06.007 
package macro; 
 
import java.util.*; 
 
import star.common.*; 
import star.base.neo.*; 
import star.motion.*; 
 
public class Motion extends StarMacro { 
 
  public void execute() { 
    execute0(); 
  } 
 
  private void execute0() { 
 
    Simulation simulation_0 =  
      getActiveSimulation(); 
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    TranslatingMotion translatingMotion_0 =  
      
simulation_0.get(MotionManager.class).createMotion(TranslatingMotion.cl
ass, "Translation"); 
 
    Units units_0 =  
      simulation_0.getUnitsManager().getInternalUnits(new IntVector(new 
int[] {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 
0, 0, 0})); 
 
    
translatingMotion_0.getTranslationVelocity().setDefinition("$$Translati
onalVelocity"); 
 
    LabCoordinateSystem labCoordinateSystem_0 =  
      
simulation_0.getCoordinateSystemManager().getLabCoordinateSystem(); 
 
    CartesianCoordinateSystem cartesianCoordinateSystem_0 =  
      ((CartesianCoordinateSystem) 
labCoordinateSystem_0.getLocalCoordinateSystemManager().getObject("Cart
esian 1")); 
 
    
translatingMotion_0.getManagedCoordinateSystems().setObjects(cartesianC
oordinateSystem_0); 
 
    SuperposingRotatingMotion superposingRotatingMotion_0 =  
      
translatingMotion_0.getSuperposingMotionManager().createSuperposingMoti
on(SuperposingRotatingMotion.class, "Superposing Rotation"); 
 
    
superposingRotatingMotion_0.setCoordinateSystem(cartesianCoordinateSyst
em_0); 
 
    Units units_1 =  
      simulation_0.getUnitsManager().getInternalUnits(new IntVector(new 
int[] {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 
0, 0, 0})); 
 
    
superposingRotatingMotion_0.getRotationRate().setDefinition("$Rotationa
lVelocity"); 
 
    superposingRotatingMotion_0.getAxisDirection().setComponents(0.0, 
0.0, 1.0); 
 
    Region region_0 =  
      simulation_0.getRegionManager().getRegion("Foreground"); 
 
    MotionSpecification motionSpecification_0 =  
      region_0.getValues().get(MotionSpecification.class); 
 
    motionSpecification_0.setMotion(superposingRotatingMotion_0); 



 

152 

 

 

  } 
} 

 
// STAR-CCM+ macro: Stopping_Criteria.java 
// Written by STAR-CCM+ 8.06.007 
package macro; 
 
import java.util.*; 
 
import star.common.*; 
import star.base.neo.*; 
import star.base.report.*; 
import star.flow.*; 
 
public class Stopping_Criteria extends StarMacro { 
 
  public void execute() { 
    execute0(); 
  } 
 
  private void execute0() { 
 
    Simulation simulation_0 =  
      getActiveSimulation(); 
 
    InnerIterationStoppingCriterion innerIterationStoppingCriterion_0 =  
      ((InnerIterationStoppingCriterion) 
simulation_0.getSolverStoppingCriterionManager().getSolverStoppingCrite
rion("Maximum Inner Iterations")); 
 
    
innerIterationStoppingCriterion_0.setMaximumNumberInnerIterations(2500)
; 
 
    Units units_0 =  
      simulation_0.getUnitsManager().getInternalUnits(new IntVector(new 
int[] {0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0})); 
 
    PhysicalTimeStoppingCriterion physicalTimeStoppingCriterion_0 =  
      ((PhysicalTimeStoppingCriterion) 
simulation_0.getSolverStoppingCriterionManager().getSolverStoppingCrite
rion("Maximum Physical Time")); 
 
    
physicalTimeStoppingCriterion_0.getMaximumTime().setDefinition("$Tau*2.
5"); 
 
    StepStoppingCriterion stepStoppingCriterion_0 =  
      ((StepStoppingCriterion) 
simulation_0.getSolverStoppingCriterionManager().getSolverStoppingCrite
rion("Maximum Steps")); 
 
    stepStoppingCriterion_0.setMaximumNumberSteps(162000); 
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    MonitorIterationStoppingCriterion 
monitorIterationStoppingCriterion_0 =  
      ((MonitorIterationStoppingCriterion) 
simulation_0.getSolverStoppingCriterionManager().getSolverStoppingCrite
rion("Y-momentum Criterion")); 
 
    MonitorIterationStoppingCriterionAsymptoticType 
monitorIterationStoppingCriterionAsymptoticType_0 =  
      ((MonitorIterationStoppingCriterionAsymptoticType) 
monitorIterationStoppingCriterion_0.getCriterionType()); 
 
    
monitorIterationStoppingCriterionAsymptoticType_0.getMaxWidth().setValu
e(1.0E-8); 
 
    
monitorIterationStoppingCriterionAsymptoticType_0.setNumberSamples(100)
; 
 
    MaxReport maxReport_0 =  
      simulation_0.getReportManager().createReport(MaxReport.class); 
 
    maxReport_0.setPresentationName("MaxPosY"); 
 
    PrimitiveFieldFunction primitiveFieldFunction_0 =  
      ((PrimitiveFieldFunction) 
simulation_0.getFieldFunctionManager().getFunction("Position")); 
 
    LabCoordinateSystem labCoordinateSystem_0 =  
      
simulation_0.getCoordinateSystemManager().getLabCoordinateSystem(); 
 
    CartesianCoordinateSystem cartesianCoordinateSystem_0 =  
      ((CartesianCoordinateSystem) 
labCoordinateSystem_0.getLocalCoordinateSystemManager().getObject("Cart
esian 1")); 
 
    VectorComponentFieldFunction vectorComponentFieldFunction_0 =  
      ((VectorComponentFieldFunction) 
primitiveFieldFunction_0.getFunctionInCoordinateSystem(cartesianCoordin
ateSystem_0).getComponentFunction(1)); 
 
    maxReport_0.setScalar(vectorComponentFieldFunction_0); 
 
    VectorComponentFieldFunction vectorComponentFieldFunction_1 =  
      ((VectorComponentFieldFunction) 
primitiveFieldFunction_0.getComponentFunction(1)); 
 
    maxReport_0.setScalar(vectorComponentFieldFunction_1); 
 
    Region region_0 =  
      simulation_0.getRegionManager().getRegion("Foreground"); 
 
    Boundary boundary_0 =  
      region_0.getBoundaryManager().getBoundary("Airfoil"); 
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    maxReport_0.getParts().setObjects(boundary_0); 
 
    ForceReport forceReport_0 =  
      ((ForceReport) simulation_0.getReportManager().getReport("Fx")); 
 
    forceReport_0.setCoordinateSystem(labCoordinateSystem_0); 
 
    ForceReport forceReport_1 =  
      ((ForceReport) simulation_0.getReportManager().getReport("Fy")); 
 
    forceReport_1.setCoordinateSystem(labCoordinateSystem_0); 
 
    simulation_0.getMonitorManager().createMonitorAndPlot(new 
NeoObjectVector(new Object[] {maxReport_0}), true, "%1$s Plot"); 
 
    ReportMonitor reportMonitor_0 =  
      ((ReportMonitor) 
simulation_0.getMonitorManager().getMonitor("MaxPosY Monitor")); 
 
    MonitorPlot monitorPlot_0 =  
      simulation_0.getPlotManager().createMonitorPlot(new 
NeoObjectVector(new Object[] {reportMonitor_0}), "MaxPosY Monitor 
Plot"); 
 
    ReportMonitor reportMonitor_1 =  
      ((ReportMonitor) simulation_0.getMonitorManager().getMonitor("Fx 
Monitor")); 
 
    StarUpdate starUpdate_0 =  
      reportMonitor_1.getStarUpdate(); 
 
    
starUpdate_0.getUpdateModeOption().setSelected(StarUpdateModeOption.TIM
ESTEP); 
 
    ReportMonitor reportMonitor_2 =  
      ((ReportMonitor) simulation_0.getMonitorManager().getMonitor("Fy 
Monitor")); 
 
    StarUpdate starUpdate_1 =  
      reportMonitor_2.getStarUpdate(); 
 
    
starUpdate_1.getUpdateModeOption().setSelected(StarUpdateModeOption.TIM
ESTEP); 
 
    ReportMonitor reportMonitor_3 =  
      ((ReportMonitor) simulation_0.getMonitorManager().getMonitor("Mz 
Monitor")); 
     
    StarUpdate starUpdate_2 =  
      reportMonitor_3.getStarUpdate(); 
 
    
starUpdate_2.getUpdateModeOption().setSelected(StarUpdateModeOption.TIM
ESTEP); 
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  } 
} 
 
// STAR-CCM+ macro: Relaxation.java 
// Written by STAR-CCM+ 8.06.007 
package macro; 
 
import java.util.*; 
 
import star.common.*; 
import star.base.neo.*; 
import star.segregatedflow.*; 
 
public class Relaxation extends StarMacro { 
 
  public void execute() { 
    execute0(); 
  } 
 
  private void execute0() { 
 
    Simulation simulation_0 =  
      getActiveSimulation(); 
 
    SegregatedFlowSolver segregatedFlowSolver_0 =  
      ((SegregatedFlowSolver) 
simulation_0.getSolverManager().getSolver(SegregatedFlowSolver.class)); 
 
    VelocitySolver velocitySolver_0 =  
      segregatedFlowSolver_0.getVelocitySolver(); 
 
    velocitySolver_0.setUrf(0.4); 
 
    PressureSolver pressureSolver_0 =  
      segregatedFlowSolver_0.getPressureSolver(); 
 
    pressureSolver_0.setUrf(0.1); 
  } 
} 

 
// STAR-CCM+ macro: Reports.java 
// Written by STAR-CCM+ 8.06.007 
package macro; 
 
import java.util.*; 
 
import star.common.*; 
import star.base.neo.*; 
import star.base.report.*; 
 
public class Reports extends StarMacro { 
 
  public void execute() { 
    execute0(); 
  } 
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  private void execute0() { 
 
    Simulation simulation_0 =  
      getActiveSimulation(); 
 
    ReportMonitor reportMonitor_0 =  
      ((ReportMonitor) simulation_0.getMonitorManager().getMonitor("Fx 
Monitor")); 
 
    MonitorPlot monitorPlot_0 =  
      simulation_0.getPlotManager().createMonitorPlot(new 
NeoObjectVector(new Object[] {reportMonitor_0}), "Fx Monitor Plot"); 
 
    ReportMonitor reportMonitor_1 =  
      ((ReportMonitor) simulation_0.getMonitorManager().getMonitor("Fy 
Monitor")); 
 
    MonitorPlot monitorPlot_1 =  
      simulation_0.getPlotManager().createMonitorPlot(new 
NeoObjectVector(new Object[] {reportMonitor_1}), "Fy Monitor Plot"); 
 
    ReportMonitor reportMonitor_2 =  
      ((ReportMonitor) simulation_0.getMonitorManager().getMonitor("Mz 
Monitor")); 
 
    MonitorPlot monitorPlot_2 =  
      simulation_0.getPlotManager().createMonitorPlot(new 
NeoObjectVector(new Object[] {reportMonitor_2}), "Mz Monitor Plot"); 
  } 
} 
 
// STAR-CCM+ macro: Transient_Reports.java 
// Written by STAR-CCM+ 8.06.007 
package macro; 
 
import java.util.*; 
 
import star.common.*; 
import star.base.neo.*; 
import star.base.report.*; 
 
public class Transient_Reports extends StarMacro { 
 
  public void execute() { 
    execute0(); 
  } 
 
  private void execute0() { 
 
    Simulation simulation_0 =  
      getActiveSimulation(); 
 
    MonitorPlot monitorPlot_0 =  
      ((MonitorPlot) simulation_0.getPlotManager().getPlot("Reports 
Plot")); 
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    simulation_0.getPlotManager().deletePlots(new NeoObjectVector(new 
Object[] {monitorPlot_0})); 
 
    ReportMonitor reportMonitor_0 =  
      ((ReportMonitor) simulation_0.getMonitorManager().getMonitor("Fx 
Monitor 2")); 
 
    ReportMonitor reportMonitor_1 =  
      ((ReportMonitor) simulation_0.getMonitorManager().getMonitor("Fy 
Monitor 2")); 
 
    ReportMonitor reportMonitor_2 =  
      ((ReportMonitor) 
simulation_0.getMonitorManager().getMonitor("MaxPosY Monitor")); 
 
    ReportMonitor reportMonitor_3 =  
      ((ReportMonitor) simulation_0.getMonitorManager().getMonitor("Mz 
Monitor 2")); 
 
    MonitorPlot monitorPlot_1 =  
      simulation_0.getPlotManager().createMonitorPlot(new 
NeoObjectVector(new Object[] {reportMonitor_0, reportMonitor_1, 
reportMonitor_2, reportMonitor_3}), "Monitors Plot"); 
 
    monitorPlot_1.open(); 
 
    ReportMonitor reportMonitor_4 =  
      ((ReportMonitor) simulation_0.getMonitorManager().getMonitor("Fx 
Monitor")); 
 
    ReportMonitor reportMonitor_5 =  
      ((ReportMonitor) simulation_0.getMonitorManager().getMonitor("Fy 
Monitor")); 
 
    ReportMonitor reportMonitor_6 =  
      ((ReportMonitor) simulation_0.getMonitorManager().getMonitor("Mz 
Monitor")); 
 
    MonitorPlot monitorPlot_2 =  
      simulation_0.getPlotManager().createMonitorPlot(new 
NeoObjectVector(new Object[] {reportMonitor_4, reportMonitor_5, 
reportMonitor_2, reportMonitor_6}), "Monitors Plot"); 
  } 
} 
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 Keywords: 3-D, Numerical, Strong-Coupling Approach 
 Abstract: In this study, a fully-coupled approach is used to simulate three-dimensional highly-flexible 
flapping wings interacting with the surrounding fluid flow. In this approach, the elastic body and its interaction with the 
fluid are implemented as body/surface force terms. In this way, the fluid and solid can be solved by a combined and 
modified form of typical Navier-Stokes equations. The motion trajectory is defined similarly by adding another 
bodyforce term using direct-forcing type of Immersed Boundary method. The advantage of solving a combined fluid-
solid equation in a global Eulerian framework is that the solution of fluid, solid, and their interaction can be obtained in 
a monolithic manner and we avoid any sub-step iterations. The current extension of algorithm to three-dimensional 
configuration is based on our earlier work in two-dimensional setup. After extensive benchmarks in 2D and 3D, rigid 
and flexible cases, we eventually apply the algorithm on solving three-dimensional flexible flapping wings. 

[2] Young, J., “Numerical Simulation of the Unsteady Aerodynamics of Flapping Airfoils,” Ph.D. Dissertation, The 
University of New South Wales, at the Australian Defense Force Academy, May 2005.  

 Keywords: 2-D, Numerical, Wake 
 Abstract: There is currently a great deal of interest within the aviation community in the design of small, 
slow-flying but maneuverable uninhabited vehicles for reconnaissance, surveillance, and search and rescue operations 
in urban environments. Inspired by observation of birds, insects, fish and cetaceans, flapping wings are being actively 
studied in the hope that they may provide greater propulsive efficiencies than propellers and rotors at low Reynolds 
numbers for such Micro-Air Vehicles (MAVs). Researchers have posited the Strouhal number (combining flapping 
frequency, amplitude and forward speed) as the parameter controlling flapping wing aerodynamics in cruising flight, 
although there is conflicting evidence. This thesis explores the effect of flapping frequency and amplitude on forces and 
wake structures, as well as physical mechanisms leading to optimum propulsive efficiency. Two-dimensional rigid 
airfoils are considered at Reynolds number 2,000 – 40,000. A compressible Navier-Stokes simulation is combined with 
numerical and analytical potential flow techniques to isolate and evaluate the effect of viscosity, leading and trailing 
edge vortex separation, and wake vortex dynamics. The wake structures of a plunging airfoil are shown to be sensitive 
to the flapping frequency independent of the Strouhal number. For a given frequency, the wake of the airfoil exhibits 
‘vortex lock-in’ as the amplitude of motion is increased, in a manner analogous to an oscillating circular cylinder. This 
is caused by interaction between the flapping frequency and the ‘bluff-body’ vortex shedding frequency apparent even 
for streamlined airfoils at low Reynolds number. The thrust and propulsive efficiency of a plunging airfoil are also 
shown to be sensitive to the flapping frequency independent of Strouhal number. This dependence is the result of 
vortex shedding from the leading edge, and an interaction between the flapping frequency and the time for vortex 
formation, separation and convection over the airfoil surface. The observed propulsive efficiency peak for a pitching 
and plunging airfoil is shown to be the result of leading edge vortex shedding at low flapping frequencies (low Strouhal 
numbers), and high power requirements at large flapping amplitudes (high Strouhal numbers). The efficiency peak is 
governed by flapping frequency and amplitude separately, rather than the Strouhal number directly. 

[3] Tuncer, I., and Kaya, M., “Optimization of Flapping Airfoils for Maximum Thrust and Propulsive Efficiency,” 
AIAA Journal, Vol. 43, No. 11, 2005, pp. 2329–2336. 

 Keywords: 2-D, Numerical, Efficiency 
 Abstract: The thrust and/or propulsive efficiency of a single flapping airfoil is maximized by using a 
numerical optimization method based on the steepest ascent. The flapping motion of the airfoil is described by a 
combined sinusoidal plunge and pitching motion. Optimization parameters are taken to be the amplitude of the plunge 
and pitching motions and the phase shift between them at a fixed flapping frequency. Two-dimensional, unsteady, low-
speed, laminar, and turbulent flows are computed by using a Navier-Stokes solver on moving overset grids. 
Computations are performed in parallel in a computer cluster. The optimization data show that high thrust values may 
be obtained at the expense of propulsive efficiency. For a high propulsive efficiency, the effective angle of attack of the 
airfoil is reduced, and large-scale vortex formations at the leading edge are prevented. 
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B Fluids, Vol. 23, No. 2, 2004, pp. 255–278. 
 Keywords: 2-D, Numerical, Vortices 

 Abstract: The dynamics of the vortex structures generated by a foil in steady forward motion, plus a 
combination of harmonic heaving and pitching oscillations, is determined by means of the numerical solution of the 
vorticity equation. The force and the torque acting on the foil are also computed. The investigation extends a previous 
study of the phenomenon (J. Fluid Mech. 410 (2000) 323–341), where only heaving oscillations were considered. The 
pitching motion turns out to be the only means to produce thrust when the forward motion of the foil vanishes, i.e., for 
foils operating in the hovering mode. Moreover pitching oscillations added to the heaving motion of the foil produce 
much larger values of the thrust and better efficiencies. Results are obtained for many combinations of the parameters 
characterizing the phenomenon and the investigation allows us to identify the range of the parameters providing high 
propulsive efficiency. The numerical results agree well with previous experimental measurements and, in addition, 
allow access to the velocity and vorticity fields as functions of space and time, which in turn allows us to identify the 
underlying thrust production mechanisms more easily. 
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 Keywords: 3-D, Analytical, Lifting-Line, Vortices 
 Abstract: A lifting line theory of flapping wings in steady forward flight is presented in which the unsteady 
features of the flow are modelled. A detailed three-dimensional model of the vortex wake is used to evaluate the 
unsteadiness to first order. The method gives satisfactory agreement with well-known limiting cases. Relationships 
between the geometric and the kinematic parameters, and the forces and the power are predicted which are compatible 
with the limited experimental evidence. The theory is applied to the calculation of the power curve of specific birds. 
Important similarities and differences are observed between the present results and those of Pennycuick (1975) and 
Rayner (1979c). 
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 Abstract: The aerodynamic forces on an oscillating airfoil or airfoil-aileron combination of three independent 
degrees of freedom have been determined. The problem resolves itself into the solution of certain definite integrals, 
which have been identified as Bessel functions of the first and second kind and of zero and first order. The theory, 
being based on potential flow and the Kutta condition, is fundamentally equivalent to the conventional wing-section 
theory relating to the steady case. The air forces being known, the mechanism of aerodynamic instability has been 
analyzed in detail. An exact solution, involving potential flow and the adoption of the Kutta condition, has been arrived 
at. The solution is of a simple form and is expressed by means of an auxiliary parameter k. The mathematical treatment 
also provides a convenient cyclic arrangement permitting a uniform treatment of all subcases of two degrees of 
freedom. The flutter velocity, defined as the air velocity at which flutter starts, and which is treated as the unknown 
quantity, is determined as a function of a certain ratio of the frequencies in the separate degrees of freedom for any 
magnitudes and combinations of the airfoil-aileron parameters. For those interested solely or particularly in the 
numerical solutions Appendix I has been prepared. The routine procedure in solving numerical examples is put down 
detached from the theoretical background of the paper. It first is necessary to determine a certain number of constants 
pertaining to the case, then to perform a few routine calculations as indicated. The result is readily obtained in the form 
of a plot of flutter velocity against frequency for any values of the other parameters chosen. The numerical work of 
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calculating the constants is simplified by referring to a number of tables, which are included in Appendix I. A number 
of illustrative examples and experimental results are given in Appendix II. 

[10] von Kármán, T., and Burgers, J. M., “General Aerodynamic Theory — Perfect Fluids,” Aerodynamic Theory, 
edited by Durand, W. F., Vol. 2, Springer, Berlin, 1935, pp. 293–310. 

 Keywords: 2-D, Analytical 
 
[11] Garrick, I. E., “Propulsion of a Flapping and Oscillating Airfoil,” NACA TR-567, May 1936.  
 Keywords: 2-D, Analytical, Conformal Mapping 

 Abstract: Formulas are given for the propelling or drag force experience in a uniform air stream by an airfoil 
or an airfoil-aileron combination, oscillating in any of three degrees of freedom; vertical flapping, torsional oscillations 
about a fixed axis parallel to the span, and angular oscillations of the aileron about a hinge. 
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 Abstract: The thrust, required power, and propulsive efficiency of  a flapping airfoil as predicted by the well-
known Theodorsen model are compared with solutions obtained from grid-resolved inviscid computational fluid 
dynamics.  A straight-forward summary of Theodorsen’s flapping airfoil model is presented using updated terminology 
and symbols.  This shows that both axial and normal reduced frequencies are of  significant importance.  The axial 
reduced frequency is based on the chord length and the normal reduced frequency is based on the plunging amplitude.  
Computational fluid dynamics solutions are presented over the range of both reduced frequencies typically encountered 
in the forward flight of birds.  It is shown that computational results agree reasonably well with those predicted by 
Theodorsen’s model at low flapping frequencies.  An alternate model is also developed, which shows that the time-
dependent aerodynamic forces acting on a flapping airfoil can be related to two unknown Fourier coefficients.  The 
computational results are correlated with algebraic relations for these Fourier coefficients, which can be used to predict 
the thrust, required power, and propulsive efficiency for airfoils with sinusoidal pitching and plunging motion. 
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 Abstract: Unsteady-lift functions for wings of finite aspect ratio have been calculated by correcting the 
aerodynamic inertia and the angle of attack of the infinite wing. The calculations are based on the operational method. 
The starting lift of the finite wing is found to be only slightly less than that of the infinite wing; whereas the final lift 
may be considerably less. The theory indicates that the initial distribution of lift is similar to the final distribution. 
Curves showing the variation of lift after a sudden unit change in angle of attack, during penetration of a sharp-edge 
gust, and during a continuous oscillation are given. Operational equivalents of these functions have been devised to 
facilitate the calculation of lift under various conditions of motion. As an application of these formulas, the vertical 
accelerations of a loaded wing caused by penetrating a gust has been calculated. 
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 Keywords: 2-D, Analytical, Pressure 
 Abstract: Expressions are derived to relate the instantaneous pressure force on a flapping wing to the velocity 
field on a plane at the trailing edge and on a highly localized region around and near the wing, valid when the vortex 
sheet is thin. In its more practical version, the formalism is applicable to wings with close to two-dimensional geometry 
and has the advantage of not using spatial derivatives, but only a time derivative of a surface integral of the velocity. In 
the purely two-dimensional case, the expression obtained is used to justify a much simpler one that only requires the 
evaluation of the time derivative of the wing circulation. A comparison with a numerical simulation in a two-
dimensional case shows a good representation of the forces, even with the most simplified expression, when the 
condition of a thin wake is met. Other examples are shown in which the wake is not thin in order to explore the 
limitations of the formalism. It is found in these cases that the thrust is sometimes not so well reproduced, with a 
tendency to be overestimated, while the lift is generally better reproduced. Remarkably, the simpler expression 
reproduces rather acceptably the phase and amplitude of both thrust and lift in all cases. 
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 Keywords: 2-D, Analytical, Energy 
 Abstract: A new paradigm is presented for understanding flutter and flapping flight. The framework for the 
investigation is based on conservation of energy. Energy produced, energy lost and/or work done due to structural 
vibration, aerodynamic wake, and propulsion are taken into account. It is shown that there exist three types of modes in 
an aeroelastic system, namely 1) unstable mode producing drag (flutter mode), 2) stable mode producing drag, and 
3)stable mode producing thrust (flapping flight mode). The type of mode can be determined from the mode shape for a 
given reduced frequency. The regions (in the modal vector space) corresponding to the three types of modes are 
presented for a two-dimensional airfoil. It is shown that the flutter region is separate from the thrust-producing region 
and the boundaries of these regions are tangential to one another at a common neutral point. The neutral point 
corresponds to no energy transfer between the energy sources. The efficiency of flapping flight and occurrence of 
flutter is further investigated. Finally, the possibility of a limit-cycle oscillations due to constant thrust flight is 
presented. 
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 Keywords: 2-D, Analytical, Helicopters 
 Abstract: A solution for the flapping stability of a helicopter blade, including the influence of a periodic 
coefficients due to the rotor forward velocity, is obtained using the techniques of perturbation theory. 

[17] Brunton, S. L. and Rowley, C. W., “Modeling the Unsteady Aerodynamic Forces on Small-Scale Wings,” 
AIAA Paper 2009-1127, Jan. 2009.  

 Keywords: 2-D, Analytical, Theories 
 Abstract: The goal of this work is to develop low order dynamical systems models for the unsteady 
aerodynamic forces on small wings and to better understand the physical characteristics of unsteady laminar separation. 
Reduced order models for a fixed, high angle of attack flat plate are obtained through Galerkin projection of the 
governing Navier-Stokes equations onto POD modes. Projected models are compared with direct numerical simulation 
(DNS) to show that they preserve qualitative behavior such as coherent structures. It is shown that in flows with 
Reynolds number 100, even a two degree of freedom model is sufficient to capture high angle of attack laminar vortex 
shedding. Next, the classical theories of Theodorsen and Wagner are compared with DNS for a number of pitch and 
plunge maneuvers of varying Strouhal number, reduced frequency, pitch amplitude and center. In addition to 
determining when these theories break down, the flow field structures are investigated to determine how the theories 
break down. This is an important first step toward combining and extending classical unsteady aerodynamic models to 
include high angle of attack effects. Theodorsen's model for the lift of a sinusoidally pitching or plunging plate is 
shown to agree moderately well with DNS for reduced frequencies k<2.0. One major observation is that the classical 
aerodynamic models all begin to disagree when the effective angle of attack, either determined by Strouhal number in 
the plunging case or angle of attack excursion in the pitching case, exceeds the critical stall angle where vortex 
shedding and laminar separation become prominent. Velocity field and body force data for a flat plate are generated by 
2D direct numerical simulation using an immersed boundary method for Reynolds number 100-300, and regions of 
separated flow and wake structures are visualized using Finite Time Lyapunov Exponents (FTLE) fields , the range of 
which are Legrangian coherent structures. 
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 Keywords: 2-D, Analytical, Damping Moment 
 Abstract: In an interesting paper1, published early in 1925 in the Zeitschrift für angewandte Mathematik und 
Mechanik, Dr. H. Wagner has developed a method of calculating the lift and pitching moment of an aerofoil in 
accelerated motion. Dr. Wagner’s paper is confined mainly to linear motion at a constant angle of incidence, but 
towards the end of the paper the analysis is extended to include the effects of an angular velocity also. Towards the end 
of last year I became interested in the problem of an oscillating aerofoil and wished to calculate the aerodynamic 
damping moment experienced by the aerofoil, since certain wind tunnel experiments had suggested that this damping 
moment increased with the frequency of the oscillation. If the amplitude of the oscillation is small, Dr. Wagner’s 
equations may by applied directly to the problem of the oscillating aerofoil, and the following paper is a brief account 
of my calculations, full details of which are contained in two reports2 of the R. and M. Series. In passing I may mention 
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that I derived the expressions for the force and moment on the aerofoil by suitable transformations of the fundamental 
hydrodynamical equations on lines differing from those followed by Dr. Wagner, and so obtained an independent check 
on his equations. 
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and Fluid Science, Vol. 32, No. 8 2008, pp. 1578–1589. 
 Keywords: 2-D, Analytical, Strouhal Number 

 Abstract: Based on the results of two-dimensional flapping wing studies, the selection of Strouhal number for 
steady cruising is explored. The hypothesis that Strouhal number selection in natural flapping wing propulsion is a limit 
cycle process is proposed and the implications of this hypothesis for the design, control and 
computational/experimental modeling of freely flying systems are explored. It is suggested that the steady-state 
propulsive efficiency of man-made systems that use flapping propulsion must be designed-in, rather than actively 
controlled and that sensory feedback may be more important for control during maneuvering/acceleration and play only 
a minor role in the regulation of a flying/swimming system’s steady forward motion. A brief literature review of the 
structure of the flow around three-dimensional translating and revolving wings is also presented. In the case of 
translating wings the flow structure consists of a chain of interconnected vortex loops and has a strong Strouhal number 
dependence. For revolving wings the leading edge vortex is especially important for the development of lift and thrust. 
The stability of this leading edge vortex is strongly dependent on the development of a spanwise flow that creates a 
balance between the creation of vorticity at the leading edge of the wing and the transport of vorticity into the wake. 

[20] Katzmayr, R., “Effect of Periodic Changes of Angle of Attack on Behavior of Airfoils,” NACA TR-147, Oct. 
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Plunging and Pitching Motions,” AIAA Journal, Vol. 39, No. 7, 2001, pp. 1230–1239. 
 Keywords: 2-D, Experimental, Vortices 

 Abstract: Unsteady fluid dynamic forces acting on a two-dimensional wing in sinusoidal plunging and 
pitching motions in still water were measured. The measured fluid dynamic forces were larger than those estimated by 
quasi-steady analysis, where the effect of unsteady separated vortices on the fluid dynamic forces is not considered. 
Vortex capture is a phenomenon related to the larger fluid dynamic forces in wing motion that is similar to wing motion 
of real insects. By using the measured fluid dynamic forces, we identified combinations of plunging and pitching 
motions for maximum time-averaged thrust and for maximum efficiency. 

[22] Birch, J. M., and Dickinson, M. H., “The Influence of Wing-Wake Interactions on the Production of 
Aerodynamic Forces in Flapping Flight,” Journal of Experimental Biology, Vol. 206, July 2003, pp. 2257–2272. 

 Keywords: 2-D, Experimental, Vortices 
 Abstract: We used two-dimensional digital particle image velocimetry (DPIV) to visualize flow patterns 
around the flapping wing of a dynamically scaled robot for a series of reciprocating strokes starting from rest. The base 
of the wing was equipped with strain gauges so that the pattern of fluid motion could be directly compared with the 
time history of force production. The results show that the development and shedding of vortices throughout each 
stroke are highly stereotyped and influence force generation in subsequent strokes. When a wing starts from rest, it 
generates a transient force as the leading edge vortex (LEV) grows. This early peak, previously attributed to added-
mass acceleration, is not amenable to quasi-steady models but corresponds well to calculations based on the time 
derivative of the first moment of vorticity within a sectional slice of fluid. Forces decay to a stable level as the LEV 
reaches a constant size and remains attached throughout most of the stroke. The LEV grows as the wing supinates prior 
to stroke reversal, accompanied by an increase in total force. At stroke reversal, both the LEV and a rotational starting 
vortex (RSV) are shed into the wake, forming a counter-rotating pair that directs a jet of fluid towards the underside of 
the wing at the start of the next stroke. We isolated the aerodynamic influence of the wake by subtracting forces and 
flow fields generated in the first stroke, when the wake is just developing, from those produced during the fourth 
stroke, when the pattern of both the forces and wake dynamics has reached a limit cycle. This technique identified two 
effects of the wake on force production by the wing: an early augmentation followed by a small attenuation. The later 
decrease in force is consistent with the influence of a decreased aerodynamic angle of attack on translational forces 
caused by downwash within the wake and is well explained by a quasi-steady model. The early effect of the wake is not 
well approximated by a quasi-steady model, even when the magnitude and orientation of the instantaneous velocity 
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field are taken into account. Thus, the wake capture force represents a truly unsteady phenomenon dependent on 
temporal changes in the distribution and magnitude of vorticity during stroke reversal. 

[23] Lai, J. C., and Platzer, M. F., “Characteristics of a Plunging Airfoil at Zero Freestream Velocity,” AIAA Journal, 
Vol. 39, No. 3, 2001, pp. 531–534. 

 Keywords: 2-D, Experimental, Vortices 
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Reverse Bénard–von Kármán Vortex Street Produced by a Flapping Foil,” Journal of Fluid Mechanics, Vol. 622, Mar. 
2009, pp. 23–32. 

 Keywords: 2-D, Experimental, Vortices 
 Abstract: The vortex streets produced by a flapping foil of span to chord aspect ratio of 4:1 are studied in a 
hydrodynamic tunnel experiment. In particular, the mechanisms giving rise to the symmetry breaking of the reverse 
Bénard–von Kármán (BvK) vortex street that characterizes fishlike swimming and forward flapping flight are 
examined. Two-dimensional particle image velocimetry (PIV) measurements in the midplane perpendicular to the span 
axis of the foil are used to characterize the different flow regimes. The deflection angle of the mean jet flow with 
respect to the horizontal observed in the average velocity field is used as a measure of the asymmetry of the vortex 
street. Time series of the vorticity field are used to calculate the advection velocity of the vortices with respect to the 
free stream, defined as the phase velocity Uphase, as well as the circulation Γ of each vortex and the spacing ξ between 
consecutive vortices in the near wake. The observation that the symmetry-breaking results from the formation of a 
dipolar structure from each couple of counter-rotating vortices shed on each flapping period serves as the starting point 
to build a model for the symmetry-breaking threshold. A symmetry-breaking criterion based on the relation between 
the phase velocity of the vortex street and an idealized self-advection velocity of two consecutive counter-rotating 
vortices in the near wake is established. The predicted threshold for symmetry breaking accounts well for the deflected 
wake regimes observed in the present experiments and may be useful to explain other experimental and numerical 
observations of similar deflected propulsive vortex streets reported in the literature. 

[25] Milano, M., and Gharib, M., “Uncovering the Physics of Flapping Flat Plates with Artificial Evolution,” 
Journal of Fluid Mechanics, Vol. 534, July 2005, pp. 403–409. 

 Keywords: 2-D, Experimental, Vortices, Flat Plate 
 Abstract: We consider an experiment in which a rectangular flat plate is flapped with two degrees of freedom, 
and a genetic algorithm tunes its trajectory parameters so as to achieve maximum average lift force, thus evolving a 
population of trajectories all yielding optimal lift forces. We cluster the converged population by defining a dynamical 
formation number for a flapping flat plate, thus showing that optimal unsteady force generation is linked to the 
formation of a leading-edge vortex with maximum circulation. Force and digital particle image velocimetry 
measurements confirm this result. 

[26] Baik, Y. S., Bernal, L. P., Granlund, K., and Ol, M. V., “Unsteady Force Generation and Vortex Dynamics of 
Pitching and Plunging Aerofoils,” Journal of Fluid Mechanics, Vol. 709, Oct. 2012, pp. 37–68. 

 Keywords: 2-D, Experimental, Vortices 
 Abstract: Experimental studies of the flow topology, leading-edge vortex dynamics and unsteady force 
produced by pitching and plunging flat-plate aerofoils in forward flight at Reynolds numbers in the range 5000–20 000 
are described. We consider the effects of varying frequency and plunge amplitude for the same effective angle-of-
attack time history. The effective angle-of-attack history is a sinusoidal oscillation in the range -6 to 22 with mean of 8 
and amplitude of 14. The reduced frequency is varied in the range 0.314–1.0 and the Strouhal number range is 0.10–
0.48. Results show that for constant effective angle of attack, the flow evolution is independent of Strouhal number, 
and as the reduced frequency is increased the leading-edge vortex (LEV) separates later in phase during the 
downstroke. The LEV trajectory, circulation and area are reported. It is shown that the effective angle of attack and 
reduced frequency determine the flow evolution, and the Strouhal number is the main parameter determining the 
aerodynamic force acting on the aerofoil. At low Strouhal numbers, the lift coefficient is proportional to the effective 
angle of attack, indicating the validity of the quasi-steady approximation. Large values of force coefficients (-6) are 
measured at high Strouhal number. The measurement results are compared with linear potential flow theory and found 
to be in reasonable agreement. During the downstroke, when the LEV is present, better agreement is found when the 
wake effect is ignored for both the lift and drag coefficients. 
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[27] Chen, A. L., Jacob, J. D., and Savas, Ö., “Dynamics of Corotating Vortex Pairs in the Wakes of Flapped 
Airfoils,” Journal of Fluid Mechanics, Vol. 382, Mar. 1999, pp. 155–193. 

 Keywords: 2-D, Experimental, Vortices 
 Abstract: The behaviour of a pair of corotating vortices in the wake of a flapped airfoil is experimentally 
studied in a water towing tank. Reynolds numbers based on total circulation of the vortices range from 1.0×104 to 

6.4×104. Planar velocity vector fields and their gradients are derived from PIV images using an adaptive Lagrangian 

parcel tracking algorithm. Isovorticity surfaces are extracted from time series of planar vorticity data. The behaviour of 
the vortices is tracked by using various moments of both the probability density distribution and the spatial distribution 
of their streamwise vorticity. All vortices show a Lamb–Oseen circulation distribution when they are clearly 

identifiable. Further, vortices from the apless wing exhibit Lamb–Oseen velocity and vorticity distributions with slow 

growth. All corotating vortex pairs are observed to merge at about 0.8 orbit periods. First-order statistics of the flow 
field remain invariant during the merger. The higher-order moments of the vorticity distribution show strong time 
dependence, which implies three-dimensionality of the flow resulting from vortex stretching. The strengths of the 
individual vortices before merger are constant, and the total circulation before and after merger remains constant within 
the range of observations. The trajectory of the centre of vorticity remains unaffected by the merger process. The 
merger is preceded by a splitting of the weaker vortex into filaments which, depending on the relative strengths of the 
vortices, can occur in the radial direction, the axial direction, or a combination of the two. Mechanisms contributing to 
the merger dynamics are discussed. 

[28] Gopalkrishnan, R., Triantafyllou, M. S., Triantafyllou, G. S., and Barrett, D., “Active Vorticity Control in a 
Shear Flow Using a Flapping Foil,” Journal of Fluid Mechanics, Vol. 274, Sept. 1994, pp. 1–21. 

 Keywords: 2-D, Experimental, Vortices 
 Abstract: It is shown experimentally that free shear flows can be substantially altered through direct control 
of the large coherent vortices present in the flow. First, flow-visualization experiments are conducted in Kalliroscope 
fluid at Reynolds number 550. A foil is placed in the wake of a D-section cylinder, sufficiently far behind the cylinder 
so that it does not interfere with the vortex formation process. The foil performs a heaving and pitching oscillation at a 
frequency close to the Strouhal frequency of the cylinder, while cylinder and foil also move forward at constant speed. 
By varying the phase of the foil oscillation, three basic interaction modes are identified. (i) Formation of a street of 
pairs of counter-rotating vortices, each pair consisting of one vortex from the initial street of the cylinder and one 
vortex shed by the foil. The width of the wake is then substantially increased. (ii) Formation of a street of vortices with 
reduced or even reverse circulation compared to that of oncoming cylinder vortices, through repositioning of cylinder 
vortices by the foil and interaction with vorticity of the opposite sign shed from the trailing edge of the foil. (iii) 
Formation of a street of vortices with circulation increased through merging of cylinder vortices with vortices of the 
same sign shed by the foil. In modes (ii) and (iii) considerable repositioning of the cylinder vortices takes place 
immediately behind the foil, resulting in a regular or reverse Kármán street. The formation of these three interaction 
patterns is achieved only for specific parametric values; for different values of the parameters no dominant stable 
pattern emerges. Subsequently, the experiments are repeated in a different facility at larger scale, resulting in Reynolds 
number 20000, in order to obtain force and torque measurements. The purpose of the second set of experiments is to 
assess the impact of flow control on the efficiency of the oscillating foil, and hence investigate the possibility of energy 
extraction. It is found that the efficiency of the foil depends strongly on the phase difference between the oscillation of 
the foil and the arrival of cylinder vortices. Peaks in foil efficiency are associated with the formation of a street of 
weakened vortices and energy extraction by the foil from the vortices of the vortex street. 

[29] Lua, K. B., Lim, T. T., Yeo, K. S., and Oo, G. Y., “Wake-Structure Formation of a Heaving Two-Dimensional 
Elliptic Airfoil,” AIAA Journal, Vol. 45, No. 7, 2007, pp. 1571–1583. 

 Keywords: 2-D, Experimental, Vortices 
 Abstract: This paper is prompted by a recent numerical study (Lew, G. C., and Haj-Hariri, H., "Modelling 
Thrust Generation of a Two-Dimensional Heaving Airfoil in Viscous Flow," Journal of Fluid Mechanics, Vol. 492, 
Oct. 2003, pp. 339-362) that shows that for a two-dimensional elliptic airfoil undergoing prescribed heaving motion in 
a viscous fluid, both leading-edge vortices and trailing-edge vortices contributed to the formation of the wake 
structures. However, an earlier dye-visualization study (Lai, J. C. S., and Platzer, M. F., "Jet Characteristics of a 
Plunging Airfoil," AIAA Journal, Vol. 37, No. 12, 1999, pp. 1529-1537) on a heaving NACA 0012 airfoil appears to 
show that the wake structures were derived from trailing-edge vortices only. The dissimilarity in the two studies 
remains unclear because there is no corresponding experimental data on a 2-D heaving elliptic airfoil. In this study, 
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digital particle image velocimetry technique was used to investigate the wake-structure formation of a 2-D elliptic 
airfoil undergoing simple harmonic heaving motion. For the range of flow conditions investigated here, our results 
show that the type of wake structures produced is controlled by when and how the leading-edge vortices interact with 
the trailing-edge vortices. 

[30] Pitt Ford, C. W., and Babinsky, H., “Lift and the Leading-Edge Vortex,” Journal of Fluid Mechanics, Vol. 720, 
Apr. 2013, pp. 280–313. 

 Keywords: 2-D, Experimental, Vortices 
 Abstract: Flapping wings often feature a leading-edge vortex (LEV) that is thought to enhance the lift 
generated by the wing. Here the lift on a wing featuring a leading-edge vortex is considered by performing experiments 
on a translating flat-plate aerofoil that is accelerated from rest in a water towing tank at a fixed angle of attack of 15°. 
The unsteady flow is investigated with dye flow visualization, particle image velocimetry (PIV) and force 
measurements. Leading- and trailing-edge vortex circulation and position are calculated directly from the velocity 
vectors obtained using PIV. In order to determine the most appropriate value of bound circulation, a two-dimensional 
potential flow model is employed and flow fields are calculated for a range of values of bound circulation. In this way, 
the value of bound circulation is selected to give the best fit between the experimental velocity field and the potential 
flow field. Early in the trajectory, the value of bound circulation calculated using this potential flow method is in 
accordance with Kelvin’s circulation theorem, but differs from the values predicted by Wagner’s growth of bound 
circulation and the Kutta condition. Later the Kutta condition is established but the bound circulation remains small; 
most of the circulation is contained instead in the LEVs. The growth of wake circulation can be approximated by 
Wagner’s circulation curve. Superimposing the non-circulatory lift, approximated from the potential flow model, and 
Wagner’s lift curve gives a first-order approximation of the measured lift. Lift is generated by inertial effects and the 
slow buildup of circulation, which is contained in shed vortices rather than bound circulation. 

[31] Anderson, J. M., Streitlien, K., Barrett, D. S., and Triantafyllou M. S., “Oscillating Foils of High Propulsive 
Efficiency,” Journal of Fluid Mechanics, Vol. 360, Apr. 1998, pp. 41–72. 

 Keywords: 2-D, Experimental, Wake 
 Abstract: Thrust-producing harmonically oscillating foils are studied through force and power measurements, 
as well as visualization data, to classify the principal characteristics of the flow around and in the wake of the foil. 
Visualization data are obtained using digital particle image velocimetry at Reynolds number 1100, and force and power 
data are measured at Reynolds number 40 000. The experimental results are compared with theoretical predictions of 
linear and nonlinear inviscid theory and it is found that agreement between theory and experiment is good over a 
certain parametric range, when the wake consists of an array of alternating vortices and either very weak or no leading-
edge vortices form. High propulsive efficiency, as high as 87%, is measured experimentally under conditions of 
optimal wake formation. Visualization results elucidate the basic mechanisms involved and show that conditions of 
high efficiency are associated with the formation on alternating sides of the foil of a moderately strong leading-edge 
vortex per half-cycle, which is convected downstream and interacts with trailing-edge vorticity, resulting eventually in 
the formation of a reverse Kármán street. The phase angle between transverse oscillation and angular motion is the 
critical parameter affecting the interaction of leading-edge and trailing-edge vorticity, as well as the efficiency of 
propulsion. 

[32] Schnipper, T., Andersen, A., and Bohr, T., “Vortex Wakes of a Flapping Foil,” Journal of Fluid Mechanics, 
Vol. 633, Aug. 2009, pp. 411–423. 

 Keywords: 2-D, Experimental, Wake 
 Abstract: We present an experimental study of a symmetric foil performing pitching oscillations in a 
vertically flowing soap film. By varying the frequency and amplitude of the oscillation we visualize a variety of wakes 
with up to 16 vortices per oscillation period, including von Kármán vortex street, inverted von Kármán vortex street, 2P 
wake, 2P+2S wake and novel wakes ranging from 4P to 8P. We map out the wake types in a phase diagram spanned by 
the width-based Strouhal number and the dimensionless amplitude. We follow the time evolution of the vortex 
formation near the round leading edge and the shedding process at the sharp trailing edge in detail. This allows us to 
identify the origins of the vortices in the 2P wake, to understand that two distinct 2P regions are present in the phase 
diagram due to the timing of the vortex shedding at the leading edge and the trailing edge and to propose a simple 
model for the vorticity generation. We use the model to describe the transition from 2P wake to 2S wake with 
increasing oscillation frequency and the transition from the von Kármán wake, typically associated with drag, to the 
inverted von Kármán wake, typically associated with thrust generation. 
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[33] von Ellenrieder, K. D., and Pothos, S., “PIV Measurements of the Asymmetric Wake of a Two Dimensional 
Heaving Hydrofoil,” Experiments in Fluids, Vol. 44, No. 5, 2008, pp. 733–745. 

 Keywords: 2-D, Experimental, Wake 
 Abstract: Particle image velocimetry is used to examine the flow behind a two-dimensional heaving hydrofoil 
of NACA 0012 cross section, operating with heave amplitude to chord ratio of 0.215 at Strouhal numbers between 
0.174 and 0.781 and a Reynolds number of 2,700. The measurements show that for Strouhal numbers larger than 0.434, 
the wake becomes deflected such that the average velocity profile is asymmetric about the mean heave position of the 
hydrofoil. The deflection angle of the wake, which is related to the average lift and drag on the hydrofoil, is found to lie 
between 13° and 18°. An examination of the swirl strength of the vortices generated by the hydrofoil motion reveal that 
the strongest vortices, which are created at the higher Strouhal numbers, dissipate most rapidly. 

[34] Koochesfahani, M. M., “Vortical Patterns in the Wake of an Oscillating Airfoil,” AIAA Journal, Vol. 27, No. 9, 
1989, pp. 1200–1205. 

 Keywords: 2-D, Experimental, Wake 
 Abstract: The vortical flow patterns in the wake of a NACA 0012 airfoil pitching at small amplitudes are 
studied in a low-speed water channel. It is shown that a great deal of control can be exercised on the structure of the 
wake by the control of the frequency, amplitude, and also the shape of the oscillation waveform. An important 
observation in this study is the existence of an axial flow in the cores of the wake vortices. Estimates of the magnitude 
of the axial flow suggest a linear dependence on the oscillation frequency and amplitude. 

[35] Lai, J. C., and Platzer, M. F., “Jet characteristics of a plunging airfoil,” AIAA Journal, Vol. 37, No. 12, 1999, 
pp. 1529–1537. 

 Keywords: 2-D, Experimental, Wake 
 Abstract: Water-tunnel tests of a NACA 0012 airfoil that was oscillated sinusoidally in plunge are described. 
The flowfield downstream of the airfoil was explored by dye flow visualization and single-component laser Doppler 
velocimetry (LDV) measurements for a range of freestream speeds, frequencies, and amplitudes of oscillation. The dye 
visualizations show that the vortex patterns generated by the plunging airfoil change from drag-producing wake flows 
to thrust-producing jet flows as soon as the ratio of maximum plunge velocity to freestream speed, i.d., the 
nondimensional plunge velocity, exceeds approximately 0.4. The LDV measurements show that the nondimensional 
plunge velocity is the appropriate parameter to collapse the maximum streamwise velocity data covering a 
nondimensional plunge velocity range from 0.18 to 9.3. The maximum streamwise velocity at a given streamwise 
distance downstream starts to exceed the freestream speed as soon as the nondimensional plunge velocity exceeds 0.25. 
Furthermore, this maximum jet velocity has been shown to be a linear function of the nondimensional plunge velocity. 

[36] Bratt, J. B., “Flow Patterns in the Wake of an Oscillating Airfoil,” Aeronautical Research Council R&M-2773, 
Mar. 1953, pp. 17–24. 

 Keywords: 2-D, Experimental, Wake 
 
 
[37] Freymuth, P., “Thrust Generation by an Airfoil in Hover Modes,” Experiments in Fluids, Vol. 9, No. 1, 1990, 

pp. 17–24. 
 Keywords: 2-D, Experimental, Hover 

 Abstract: A small airfoil is operated in combined harmonic plunging and pitching motions to generate thrust 
in a still air environment. By full utilization of dynamic stall vortices large thrust coefficients were attained. The 
vortical signature of thrust is a simple vortex street with the character of a jet stream. 

[38] Dickinson, M. H., and Goetz, K. G., “Unsteady Aerodynamic Performance of Model Wings at Low Reynolds 
Numbers,” Journal of Experimental Biology, Vol. 174, Jan. 1993, pp. 45–64. 

 Keywords: 2-D, Experimental, Take-off 
 Abstract: The synthesis of a comprehensive theory of force production in insect flight is hindered in part by 
the lack of precise knowledge of unsteady forces produced by wings. Data are especially sparse in the intermediate 
Reynolds number regime (10<Re<1000) appropriate for the flight of small insects. This paper attempts to fill this 
deficit by quantifying the time-dependence of aerodynamic forces for a simple yet important motion, rapid acceleration 
from rest to a constant velocity at a fixed angle of attack. The study couples the measurement of lift and drag on a two-
dimensional model with simultaneous flow visualization. The results of these experiments are summarized below. 1. At 
angles of attack below 13.5°, there was virtually no evidence of a delay in the generation of lift, in contrast to similar 
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studies made at higher Reynolds numbers. 2. At angles of attack above 13.5°, impulsive movement resulted in the 
production of a leading edge vortex that stayed attached to the wing for the first 2 chord lengths of travel, resulting in 
an 80 % increase in lift compared to the performance measured 5 chord lengths later. It is argued that this increase is 
due to the process of detached vortex lift, analogous to the method of force production in delta-wing aircraft. 3. As the 
initial leading edge vortex is shed from the wing, a second vortex of opposite vorticity develops from the trailing edge 
of the wing, correlating with a decrease in lift production. This pattern of alternating leading and trailing edge vortices 
generates a von Karman street, which is stable for at least 7.5 chord lengths of travel. 4. Throughout the first 7.5 chords 
of travel the model wing exhibits a broad lift plateau at angles of attack up to 54°, which is not significantly altered by 
the addition of wing camber or surface projections. 5. Taken together, these results indicate how the unsteady process 
of vortex generation at large angles of attack might contribute to the production of aerodynamic forces in insect flight. 
Because the fly wing typically moves only 2–4 chord lengths each half-stroke, the complex dynamic behavior of 
impulsively started wing profiles is more appropriate for models of insect flight than are steady-state approximations. 

[39] Maresca, C., Favier, D. and Rebont, J., “Experiments on an Aerofoil at High Angle of Incidence in Longitudinal 
Oscillations,” Journal of Fluid Mechanics, Vol. 92, June 1979, pp. 671–690. 

 Keywords: 2-D, Experimental, Stall 
 Abstract: Details of flow visualization, aerodynamic forces and pitching moment, static pressure and skin 
friction measurements have been carried out on a symmetrical aerofoil at fixed angle of incidence in longitudinal 
oscillations parallel to the uniform airstream of a wind-tunnel. This investigation shows weak unsteady effects at 
incidences below that of static stall. For higher incidences, strong unsteady effects appear and depend on the frequency 
and amplitude of the oscillations. The measurements indicate an overshoot of the instantaneous lift and drag which is 
explained by a strong vortex shedding process occurring during the dynamic stall encountered by the aerofoil in 
decelerated motion, as observed for profiles oscillating in pitch through stall. When the aerofoil is going forward in 
accelerated motion dynamic reattachment may be observed at very high incidence over a short part of the period of 
oscillation. Dynamic stall and dynamic reattachment contribute to a favourable effect of unsteadiness on the mean lift 
coefficient, which increases as compared to the steady state one, and which is expressed through an empirical formula 
involving incidence, frequency and amplitude of oscillations. At given incidence, optimization of this feature is 
achieved by matching the frequency and the amplitude of oscillation, respectively with the frequency linked with the 
highest peak of energy in the wake, and with the distance between two consecutive vortices in the mean wake when 
modelled as a von Kármán's vortex street. 

[40] Izraelevitz, J. S., and Triantafyllou, M. S., “Adding In-Line Motion and Model-Based Optimization Offers 
Exceptional Force Control Authority in Flapping Foils,” Journal of Fluid Mechanics, Vol. 742, Mar. 2014, pp. 5–34. 

 Keywords: 2-D, Experimental, In-Line Motion 
 Abstract: We study experimentally the effect of adding an in-line oscillatory motion to the oscillatory 
heaving and pitching motion of flapping foils that use a power downstroke. We show that far from being a limitation 
imposed by the muscular structure of certain animals, in-line motion can be a powerful means to either substantially 
augment the mean lift, or reduce oscillatory lift and increase thrust; propulsive efficiency can also be increased. We 
also show that a model-based optimization scheme that is used to drive an iterative sequence of experimental runs 
provides exceptional ability for flapping foils to tightly vector and keep the force in a desired direction, hence 
improving performance in locomotion and manoeuvring. Flow visualization results, using particle image velocimetry, 
establish the connection of distinct wake patterns with flapping modes associated with high lift forces, or modes of high 
thrust and low lift forces. 

[41] Alben, S., “Flapping Propulsion Using a Fin Ray,” Journal of Fluid Mechanics, Vol. 705, Aug. 2012, pp. 149–
164. 

 Keywords: 2-D, Experimental, Fins 
 Abstract: We calculate optimal driving motions for a fin ray in a two-dimensional inviscid fluid, which is a 
model for caudal fin locomotion. The driving is sinusoidal in time, and consists of heaving, pitching and a less-studied 
motion called ‘shifting’. The optimal phases of shifting relative to heaving and pitching for maximum thrust power and 
efficiency are calculated. The optimal phases undergo jumps at resonant combinations of fin ray bending and shear 
moduli, and are nearly constant in regions between resonances. In two examples, pitching- and heaving-based motions 
converge with the addition of optimal shifting. Shifting provides an order-one increase in output power and efficiency. 
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[42] Bandyopadhyay, P. R., Beal, D. N., Hrubes, J. D., and Mangalam, A., “Relationship of Roll and Pitch 
Oscillations in a Fin Flapping at Transitional to High Reynolds Numbers,” Journal of Fluid Mechanics, Vol. 702, July 
2012, pp. 298–331. 

 Keywords: 2-D, Experimental, Fins 
 Abstract: Hydrodynamic effects of the relationship between the roll and pitch oscillations in low-aspect-ratio 
fins, with a laminar section and a rounded leading edge, flapping at transitional to moderately high Reynolds numbers, 
are considered. The fin is hinged at one end and its roll amplitude is large. Also examined is how this relationship is 
affected by spanwise twist, which alters the pitch oscillation amplitude and its phase relative to the roll motion. Force, 
efficiency and surface hot-film-anemometry measurements, and flow visualization are carried out in a tow tank. A fin 
of an abstracted penguin-wing planform and a NACA 0012 cross-section is used, and the chord Reynolds number 
varies from 3558 to 150 000 based on total speed. The fin is forced near the natural shedding frequency. Strouhal 
number and pitch amplitude are directly related when thrust is produced, and efficiency is maximized in narrow 
combinations of Strouhal number and pitch amplitude when oscillation of the leading-edge stagnation point is minimal. 
Twist makes the angle of attack uniform along the span and enhances thrust by up to 24 %, while maintaining high 
efficiency. Only 5 % of the power required to roll is spent to pitch, and yet roll and pitch are directly related. During 
hovering, dye visualization shows that a diffused leading-edge vortex is produced in rigid fins, which enlarges along 
the span; however, twist makes the vortex more uniform and the fin in turn requires less power to roll. Low-order phase 
maps of the measurements of force oscillation versus its derivative are modelled as due to van der Pol oscillators; the 
higher-order maps show trends in the sub-regimes of the transitional Reynolds number. Fin oscillation imparts a 
chordwise fluid motion, yielding a Stokes wave in the near-wall vorticity layer. When the roll and pitch oscillations are 
directly related, the wave is optimized: causing vorticity lift-up as the fin is decelerated at the roll extremity; the 
potential energy at the stagnation point is converted into kinetic energy; a vortex is produced as the lifted vorticity is 
wrapped around the leading edge; and free-stream reattachment keeps the vortex trapped. When the twist oscillation is 
phased along the span, this vortex becomes self-preserving at all amplitudes of twist, indicating the most stable (low-
bandwidth) tuned nature. 

[43] Sane, S. P., and Dickinson, M. H., “The Control of Flight Force by a Flapping Wing: Lift and Drag 
Production,” Journal of Experimental Biology, Vol. 204, Aug. 2001, pp. 2607–2626. 

 Keywords: 2-D, Experimental, Insect 
 Abstract: We used a dynamically scaled mechanical model of the fruit fly Drosophila melanogaster to study 
how changes in wing kinematics influence the production of unsteady aerodynamic forces in insect flight. We 
examined 191 separate sets of kinematic patterns that differed with respect to stroke amplitude, angle of attack, flip 
timing, flip duration and the shape and magnitude of stroke deviation. Instantaneous aerodynamic forces were 
measured using a two-dimensional force sensor mounted at the base of the wing. The influence of unsteady rotational 
effects was assessed by comparing the time course of measured forces with that of corresponding translational quasi-
steady estimates. For each pattern, we also calculated mean stroke-averaged values of the force coefficients and an 
estimate of profile power. The results of this analysis may be divided into four main points. (i) For a short, symmetrical 
wing flip, mean lift was optimized by a stroke amplitude of 180° and an angle of attack of 50°. At all stroke amplitudes, 
mean drag increased monotonically with increasing angle of attack. Translational quasi-steady predictions better 
matched the measured values at high stroke amplitude than at low stroke amplitude. This discrepancy was due to the 
increasing importance of rotational mechanisms in kinematic patterns with low stroke amplitude. (ii) For a 180° stroke 
amplitude and a 45° angle of attack, lift was maximized by short-duration flips occurring just slightly in advance of 
stroke reversal. Symmetrical rotations produced similarly high performance. Wing rotation that occurred after stroke 
reversal, however, produced very low mean lift. (iii) The production of aerodynamic forces was sensitive to changes in 
the magnitude of the wing’s deviation from the mean stroke plane (stroke deviation) as well as to the actual shape of 
the wing tip trajectory. However, in all examples, stroke deviation lowered aerodynamic performance relative to the no 
deviation case. This attenuation was due, in part, to a trade-off between lift and a radially directed component of total 
aerodynamic force. Thus, while we found no evidence that stroke deviation can augment lift, it nevertheless may be 
used to modulate forces on the two wings. Thus, insects might use such changes in wing kinematics during steering 
maneuvers to generate appropriate force moments. (iv) While quasi-steady estimates failed to capture the time course 
of measured lift for nearly all kinematic patterns, they did predict with reasonable accuracy stroke-averaged values for 
the mean lift coefficient. However, quasi-steady estimates grossly underestimated the magnitude of the mean drag 
coefficient under all conditions. This discrepancy was due to the contribution of rotational effects that steady-state 
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estimates do not capture. This result suggests that many prior estimates of mechanical power based on wing kinematics 
may have been grossly underestimated. 

[44] Seshadri, P., Benedict, M., and Chopra, I., “Understanding Micro Air Vehicle Flapping-Wing Aerodynamics 
Using Force and Flowfield Measurements,” Journal of Aircraft, Vol. 50, No. 4, 2013, pp. 1070–1087. 

 Keywords: 2-D, Experimental, Insect 
 Abstract: Experimental studies were conducted by flapping a rigid rectangular wing with a mechanism that is 
capable of emulating complex insect wing kinematics, including figure-of-eight motions, in order to explore the 
fundamental unsteady flow on a flapping wing at micro-air-vehicle-scale Reynolds numbers. Force and moment 
measurements were obtained from a miniature six-component force transducer installed at the wing root. The wing was 
flapped in air and vacuum at the same frequency, and wing kinematics, and the resultant forces, were subtracted in 
order to obtain the pure aerodynamic forces. In the first part of this paper, the forces produced on the wing undergoing 
single-degree-of-freedom fixed-pitch pure flapping motions (no pitching or out-of-the-plane coning motions) were 
determined for a variety of pitch angles. The unsteady aerodynamic coefficients measured during these tests were 
almost six times the steady-state values measured in the wind tunnel. Flow visualization and particle image velocimetry 
tests were also conducted, which showed that the key reason for the force increase on the flapping wing is due to a 
strong leading-edge vortex for which the strength varied throughout the flapping cycle. In the second part of this paper, 
complete three-degree-of-freedom (flapping, pitching, and coning) insect wing kinematics were investigated for 
different pitching and coning variations. The aerodynamic forces obtained in these tests were compared with 
coefficients obtained from the single-degree-of-freedom flapping tests and wind-tunnel tests. 

[45] Heathcote, S. and Gursul, I., “Flexible Flapping Airfoil Propulsion at Low Reynolds Numbers,” AIAA Journal, 
Vol. 45, No. 5, 2007, pp. 1066–1079. 

 Keywords: 2-D, Experimental, Flexibility 
 Abstract: Water tunnel experiments on chordwise-flexible airfoils heaving with constant amplitude have been 
carried out for Reynolds numbers of 9,000 to 27,000. A degree of flexibility was found to increase both thrust 
coefficient and propulsive efficiency. Measurements of the flow field revealed stronger trailing-edge vortices 
corresponding to higher thrust coefficients, and weaker leading-edge vortices corresponding to higher efficiencies. By 
analogy with a rigid airfoil in coupled heave and pitch, thrust coefficient and propulsive efficiency were found to be 
functions of the Strouhal number and pitch phase angle. Propulsive efficiency peaks at a pitch phase angle of 95-100 
deg (consistent with experimental and computational simulations of rigid airfoils in coupled heave and pitch), and a 
Strouhal number of 0.29, which lies in the middle of the range observed in nature. Thrust peaks at pitch phase angles in 
the region of 110-120 deg, but at higher Strouhal numbers. The results suggest the effect of chordwise flexibility is 
beneficial for purely heaving airfoils at low Reynolds numbers. 

[46] Yang, L. J., Ko, A. F., and Hsu, C. K., “Wing Stiffness on Light Flapping Micro Aerial Vehicles,” Journal of 

Aircraft, Vol. 49, No. 2, 2012, pp. 423–431. 
 Keywords: 2-D, Experimental, Flexibility  

 Abstract: In an effort to develop micro aerial vehicles of 10-cm-span with a successful flight record, this 
study aims to investigate the influences of wing configuration and foil stiffness on the aerodynamic forces via wind-
tunnel testing. These wings with the same wing skeleton structures are made of polyethylene, 
polyethyleneterephthalate, and polyxylene (parylene). The foil thickness ranges from 17 to 43 micrometers, which 
corresponds to the varying stiffness of the membrane. The tests showed that the lift coefficients have little importance 
with the wing foil thickness. Inspection on the relations between power consumption and the flexural stiffness of tested 
flapping wings reveals that the larger lift force and greater power consumption is associated with the 35 and 43 
micrometer thick parylene. Therefore, the present study demonstrated that the flight test of a micro aerial vehicle with 
the vest wing foil of 24 micrometer thick PET resulted in the longest endurance time of 8 min. Several innovative 
aspects of developing this work are also summarized. 

[47] Heathcote, S., and Gursul, I., “Jet Switching Phenomenon for a Periodically Plunging Airfoil,” Physics of 

Fluids, Vol. 19, No. 2, 2007, pp. 027104-1–027104-12. 
 Keywords: 2-D, Experimental, Flexibility 

 Abstract: An experimental investigation has been carried out on rigid and flexible airfoils oscillating in still 
fluid. It was found that the vortex pairs generated by the oscillating airfoil move at an angle to the chordwise direction. 
The deflection angle of the induced jet was observed to change periodically in time. The switching period was found to 
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increase with increasing airfoil stiffness and to decrease with increasing heave frequency and increasing amplitude. 
Over the range of frequency, amplitude, and stiffness tested, the switching period was found to be two orders of 
magnitude greater than the heave period. The development of the vorticity field for upward and downward deflected 
jets, as well as the transition between the two modes, was captured with the particle image velocimetry measurements. 
The deflection of the jet, and thus the jet switching effect, was found to diminish with increasing free stream velocity 
(decreasing Strouhal number). 

[48] Marais, C., Thiria, B., Wesfreid, J. E., and Godoy-Diana, R., “Stabilizing Effect of Flexibility in the Wake of a 
Flapping Foil,” Journal of Fluid Mechanics, Vol. 710, Nov. 2012, pp. 659–669. 

 Keywords: 2-D, Experimental, Flexibility 
 Abstract: The wake of a flexible foil undergoing pitching oscillations in a low-speed hydrodynamic tunnel is 
used to examine the effect of chordwise foil flexibility in the dynamical features of flapping-based propulsion. We 
compare the regime transitions in the wake with respect to the case of a rigid foil and show that foil flexibility inhibits 
the symmetry breaking of the reverse Bénard–von Kármán wake reported in the literature. A momentum balance 
calculation shows the average thrust to be up to three times greater for the flexible foil than for the rigid foil. We 
explain both of these observations by analyzing the vortex dynamics in the very near wake. 

[49] Kaya, M., and Tuncer, I. H., “Nonsinusoidal Path Optimization of a Flapping Airfoil,” AIAA Journal, Vol. 45, 
No. 8, 2007, pp. 2075–2082. 

 Keywords: 2-D, Numerical, Efficiency, Optimization 
 Abstract: The path of a flapping airfoil undergoing a combined, nonsinusoidal pitching and plunging motion 
is optimized for maximum thrust and/or propulsive efficiency. The nonsinusoidal, periodic flapping motion is described 
using nonuniform rational B splines. A gradient based algorithm is then employed for the optimization of the 
nonuniform rational B-spline parameters. Unsteady, low speed laminar flows are computed using a Navier-Stokes 
solver in a parallel computing environment. The numerical evaluation of the gradient vector components, which 
requires unsteady flow solutions, is also performed in parallel. It is shown that the thrust generation may significantly 
be increased in comparison to the sinusoidal flapping motion. For a maximum thrust generation, the airfoil stays at 
about a constant angle of attack during the upstroke and the downstroke, and may reach very high effective angle of 
attack values. The pitching motion mostly occurs at the minimum and maximum plunge positions. 

[50] Sarkar S., and Venkatraman, K., “Numerical Simulation of Incompressible Viscous Flow Past a Heaving 
Airfoil,” International Journal for (umerical Methods in Fluids, Vol. 51, No. 1, 2006, pp. 1–29. 

 Keywords: 2-D, Numerical, Sinusoidal vs Non Sinusoidal 
 Abstract: Numerical simulations of a heaving airfoil undergoing non-sinusoidal motions in an incompressible 
viscous flow is presented. In particular, asymmetric sinusoidal motions, constant heave rate oscillations, and sinusoidal 
motions with a quiescent gap, are considered. The wake patterns, thrust force coefficients, and propulsive efficiency at 
various values of non-dimensional heave velocity are computed. These have been compared with those of 
corresponding sinusoidal heaving motions of the airfoil. It is shown that for a given non-dimensional heave velocity 
and reduced frequency of oscillation, asymmetric sinusoidal motions give better thrust and propulsive efficiencies in 
comparison to pure harmonic motion. On the other hand, constant rate heave motion do not compare favourably with 
harmonic motion. A train of sinusoidal pulses separated by a quiescent gap compares favourably with a pure sinusoidal 
motion, but with the notable exception that the quiescent gap induces a discontinuity that induces large impulses to the 
wake pattern. 

[51] Young, J., and Lai, J. C. S., “Mechanisms Influencing the Efficiency of Oscillating Airfoil Propulsion,” AIAA 

Journal, Vol. 45, No. 7, 2007, pp. 1695–1702. 
 Keywords: 2-D, Numerical, Efficiency 

 Abstract: A NACA 0012 airfoil undergoing pitching and plunging motion at Re=20,000-40,000 was 
simulated using a two-dimensional Navier-Stokes flow solver. Results were compared with experimental 
measurements in the literature and those from an inviscid analytical method and an unsteady panel method code. 
Although the peak in propulsive efficiency with Strouhal number demonstrated in the experimental results was 
predicted by the inviscid methods, it was found to be significantly modified by leading-edge vortex shedding and 
viscous drag at low Strouhal numbers. The occurrence and influence of vortex shedding is controlled by both the 
motion of the airfoil (amplitudes and phases of plunging and pitching) and the flapping frequency, which limits the 
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time available for vortex formation and convection over the airfoil surface. Thus, Strouhal number alone is insufficient 
to characterize the efficiency of flapping-foil propulsion. 

[52] Lee, K. B., Kim, J. H., and Kim, C., “Aerodynamic Effects of Structural Flexibility in Two-Dimensional Insect 
Flapping Flight,” Journal of Aircraft, Vol. 48, No. 3, 2011, pp. 894–909. 

 Keywords: 2-D, Numerical, Flexibility 
 Abstract: Interaction between a flexible flapping wing and the ambient fluid is of considerable importance in 
realistic flapping flight. In this paper, two-dimensional fluid-structure interaction simulations are conducted to examine 
realistic flow features of insects' flapping motion and to investigate aerodynamic change due to structural flexibility of 
insect wings under a forward-flight condition. Three types of airfoils are considered to reflect structural deformation. 
Compared with earlier studies regarding two-dimensional rigid-airfoil simulations, the same key physical phenomena 
and flow patterns could be observed in the flexible case. For example, lift is mainly generated during downstroke by 
effective angle of attack and leading-edge vortex, while a large amount of thrust is impulsively generated at the end of 
the upstroke by vortex pairing and vortex staying. On the other hand, the quantitative aspect of flowfields is somewhat 
different. Structural deformation does affect aerodynamic force generation pattern, and thus structural flexibility has a 
significant impact on aerodynamic performance. Aerodynamic force coefficient and propulsive efficiency are enhanced 
compared with the case of a rigid airfoil. In addition, numerical simulations are performed to inspect effects of 
aerodynamic parameters such as the Reynolds number and reduced frequency. From extensive numerical comparisons, 
it is observed that key physical phenomena such as vortex pairing and vortex staying are still observed in other flow 
conditions.  

[53] Miao, J. M., Sun, W. H., and Tai, C. H., “Numerical Analysis on Aerodynamic Force Generation of Biplane 
Counter-Flapping Flexible Airfoils,” Journal of Aircraft, Vol. 46, No. 5, 2009, pp. 1785–1794. 

 Keywords: 2-D, Numerical, Flexibility 
 Abstract: This study explores the effect of chordwise flexible deformation on unsteady aerodynamic 
characteristics for biplane counter-flapping dual NACA 0014 airfoils with various combinations of Reynolds number 
and reduced frequency. Unsteady laminar viscous flows over duel rigid and flexible airfoils executing counter-plunge 
motion are computed with time-dependent two-dimensional laminar Reynolds-averaged Navier-Stokes equations 
coupled with conformal hybrid meshes. The tested Reynolds number with an airfoil characteristic chord length is 10^2, 
10^2, and 10^4, and the reduced frequency ranges from 0.5 to 3.5. The dynamic mesh technique is applied to illustrate 
the flapping deformation modes of the flexible airfoils. To investigate the influence of the chordwise flexure extent on 
the aerodynamic performance of the flapping airfoils, the present study considers various different curvature 
deformations of flapping foils with flexture extent ranging from 0 to 0.3 times the chord length at 0.05 intervals. The 
visualized particle-tracing paths clearly revealed the formation and evolution of leading-edge vortices along the body of 
the flexible airfoil as it undergoes biplane counter-plunge motion. The generation of thrust-indicative wake structure or 
the drag-indicated wake structure behind the flexible airfoils depended on the degree of flexure extent of the airfoil at a 
fixed range of reduced frequency. The thrust force for each airfoil with biplane counter-flapping mode will be enhanced 
6.32% more than that for a rigid single flapping airfoil. Present results show that flexible airfoils with flexure extent 
0.25 times the chord length in counter-plunge flapping motion could get maximum propulsive efficiency and produce 
about 64.65% more than that of a biplane rigid airfoils. The outcome indicates that appropriate flexible biplane flapping 
flight could not only increase the thrust force, but also boost the propulsive performance. 

[54] Yang, T., Wei, M., and Zhao, H., “Numerical Study of Flexible Flapping Wing Propulsion,” AIAA Journal, Vol. 
48, No. 12, 2010, pp. 2909–2915. 

 Keywords: 2-D, Numerical, Flexibility 
 Abstract: In this study, a strong-coupling approach is applied to simulate highly flexible flapping wings 
interacting with fluid flows. Here, the fluid motion, solid motion, and their interaction are solved together by a single 
set of equations of motion on a fixed Eulerian mesh. To provide necessary flapping mechanism, control cells are 
implemented in solid area (i.e., the wing) as "skeleton." The moving trajectory of the skeleton is therefore prescribed by 
a conventional direct-forcing type of immersed boundary method, while the rest of the wing moves passively through 
elasticity and fluid-structure interaction. This is combined algorithm is then used to study the propulsion characteristics 
of flexible flapping wings with different elastic moduli and at different flapping frequencies and amplitudes. A two-
dimensional NACA 0012 airfoil is chosen as a model wing, and it is under active plunging defined by control cells and 
corresponding passive pitching motion. With different elastic moduli and at different flapping frequencies and 
amplitudes. A two-dimensional NACA 0012 airfoil is chosen as a model wing, and it is under active plunging defined 



 

172 

 

 

by control cells and corresponding passive pitching motion. With different input parameters, very large different wake 
structures can be observed. As a result, the coupled plunging-pitching motion can be either drag-producing or thrust-
producing. Finally, passive pitching angle theta and nominal angle of attach alpha for flexible wings are defined to 
characterize the flapping motion. It is found that theta needs to be greater than 0.26 and alpha needs to be greater than 
0.3 to generate thrust instead of drag for the flapping motion within the current parametric matrix. 

[55] Zhu, Q., “Numerical Simulation of a Flapping Foil with Chordwise or Spanwise Flexibility,” AIAA Journal, 
Vol. 45, No. 10, 2007, pp. 2448–2457. 

 Keywords: 2-D, Numerical, Flexibility 
 Abstract: Motivated by the discovery that living creatures may be able to enhance their locomotion capability 
through passive or active deformations of their wings or fins, we carry out a fully coupled fluid-structure interaction 
study to investigate the flapping motion of a foil with either chordwise or spanwise flexibility. We employ a fluid-
structure interaction model, which accounts for fluid dynamics using the boundary-element method and structural 
dynamics using a two-dimensional nonlinear thin-plate model. With this approach, we numerically investigate the 
effect of structural deformation on the performance of the foil when it is immersed in two different fluids, a low-density 
fluid (e.g. air) in which the deformation is determined primarily by the inertia of the foil, and a high-density fluid (e.g. 
water), in which the fluid loading has a significant impact. In the first scenario, we find that the chordwise flexibility 
reduces both the thrust and the propulsion efficiency and the spanwise flexibility increases the thrust without efficiency 
reduction within a small range of structural parameters. In the second scenario, we find that the chordwise flexibility 
increases the efficiency. The spanwise flexibility, on the other hand, compromises the performance of the foil by 
diminishing both the thrust and the efficiency. Possible applications of these findings and their relation to designs in 
aquatic animals are discussed. 

[56] Lian, Y., and Shyy, W., “Laminar-Turbulent Transition of a Low Reynolds Number Rigid or Flexible Airfoil,” 
AIAA Paper 2006-3051, June 2006.  

 Keywords: 2-D, Numerical, Flexibility 
 Abstract: Laminar-turbulent transition can affect the aerodynamic performance of low Reynolds number 
flyers, such as micro air vehicles that operate at the Reynolds number of 10^4-10^5. To gain better understanding of 
the fluid physics and the associated aerodynamics characteristics, we coupled a Navier-Stokes solver, the eN transition 
model, and a Reynolds-averaged two-equation closure to study the low Reynolds number flow characterized with the 
laminar separation bubble and transition. A new intermittency function suitable for low Reynolds number transitional 
flow incurred by laminar separation is proposed and tested. With the method, we investigate the performance of a rigid 
airfoil and a flexible airfoil, mounted with a flexible membrane structure on the upper surface, using SD7003 as the 
configuration. Good agreement is obtained between the prediction and experimental measurements regarding the 
transition location, aerodynamic coefficients, and overall flow structures. We also examine the impact of a gust on the 
transition process and airfoil performance. We further investigate the effect of the flexible surface on the transition. We 
find that the self-excited flexible surface vibration affects the separation and transition positions; however, the time-
averaged lift and drag coefficients are close to those of the rigid airfoil. 

[57] Gulcat, U., “Propulsive Force of a Flexible Flapping Thin Airfoil,” Journal of Aircraft, Vol. 46, No. 2, 2009, 
pp. 465–473. 

 Keywords: 2-D, Numerical, Flexibility 
 Abstract: The propulsive force generated by the leading-edge suction of a flapping thin airfoil can be 
obtained using unsteady aerodynamic notions based on the potential flow theory. Because the potential theory fails to 
predict the viscous forces, for flapping airfoils, in general there exists a net propulsive force generation. For low 
Reynolds numbers and for oscillations at low reduced frequencies, however, the viscous forces overcome the 
propulsive forces to give a net force against the flight direction. In the case of higher Reynolds numbers, flapping with 
large amplitudes, and high frequencies, the leading-edge suction force generated by the airfoil overcomes the viscous 
forces. In this study, the critical Reynolds number, the amplitude, and the reduced frequency values that yield the net 
propulsive force for an oscillating airfoil are predicted with unsteady viscous-inviscid interaction. The airfoil motions 
are modeled as 1) a thin rigid plate in vertical oscillation, that is, a heaving-plunging motion; 2) a flexibly cambered 
airfoil whose camber is changing periodically; and 3) the heaving-plunging motion of a flexibly cambered airfoil. The 
leading-edge suction force for all cases is predicted by means of the well-known Blasius theorem, and the time 
dependent surface velocity distribution of the airfoil is determined by unsteady aerodynamic considerations. This 
surface velocity distribution is used as the edge velocity of the unsteady boundary layer to predict the viscous effects. 
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The coefficient of the propulsive force predicted with the present method agrees well with the values given in the 
literature up to the effective angles of attack at which the dynamic stall takes place. 

[58] Blondeaux, P., Guglielmini, L., and Triantafyllou, M. S., “Chaotic Flow Generated by an Oscillating Foil,” 
AIAA Journal, Vol. 43, No. 4, 2005, pp. 918–921. 

 Keywords: 2-D, Numerical, Hover 
 
[59] Eldredge, J. D., Toomey, J., and Medina, A., “On the Roles of Chord-wise Flexibility in a Flapping Wing with 

Hovering Kinematics,” Journal of Fluid Mechanics, Vol. 659, Sep. 2010, pp. 94–115. 
 Keywords: 2-D, Numerical, Hover 

 Abstract: The aerodynamic performance of a flapping two-dimensional wing section with simplified chord-
wise flexibility is studied computationally. Bending stiffness is modelled by a torsion spring connecting two or three 
rigid components. The leading portion of the wing is prescribed with kinematics that are characteristic of biological 
hovering, and the aft portion responds passively. Coupled simulations of the Navier–Stokes equations and the wing 
dynamics are conducted for a wide variety of spring stiffnesses and kinematic parameters. Performance is assessed by 
comparison of the mean lift, power consumption and lift per unit power, with those from an equivalent rigid wing, and 
two cases are explored in greater detail through force histories and vorticity snapshots. From the parametric survey, 
four notable mechanisms are identified through which flexible wings behave differently from rigid counterparts. Rigid 
wings consistently require more power than their flexible counterparts to generate the same kinematics, as passive 
deflection leads to smaller drag and torque penalties. Aerodynamic performance is degraded in very flexible wings 
undergoing large heaving excursions, caused by a premature detachment of the leading-edge vortex. However, a mildly 
flexible wing has consistently good performance over a wide range of phase differences between pitching and heaving 
– in contrast to the relative sensitivity of a rigid wing to this parameter – due to better accommodation of the shed 
leading-edge vortex into the wake during the return stroke, and less tendency to interact with previously shed trailing-
edge vortices. Furthermore, a flexible wing permits lift generation even when the leading portion remains nearly 
vertical, as the wing passively deflects to create an effectively smaller angle of attack, similar to the passive pitching 
mechanism recently identified for rigid wings. It is found that an effective pitch angle can be defined that accounts for 
wing deflection to align the results with those of the equivalent rigid wing. 

[60] Wang, Z. J., “Two Dimensional Mechanism for Insect Hovering,” Physical Review Letters, Vol. 85, No. 10, 
2000, pp. 2216–2219. 

 Keywords: 2-D, Numerical, Hover 
 Abstract: Resolved computation of two dimensional insect hovering shows for the first time that a two 
dimensional hovering motion can generate enough lift to support a typical insect weight. The computation reveals a two 
dimensional mechanism of creating a downward dipole jet of counter rotating vortices, which are formed from leading 
and trailing edge vortices. The vortex dynamics further elucidates the role of the phase relation between the wing 
translation and rotation in lift generation and explains why the instantaneous forces can reach a periodic state after only 
a few strokes. The model predicts the lower limits in Reynolds number and amplitude above which the averaged forces 
are sufficient. 

[61] Kurtulus, D. F., Farcy, A., and Alemdaroglu, N., “Unsteady Aerodynamics of Flapping Airfoil in Hovering 
Flight at Low Reynolds Numbers,” AIAA Paper 2005-1356, Jan. 2005.  

 Keywords: 2-D, Numerical, Hover 
 Abstract: The major aim of flapping motion research is based on the understanding of the relation between 
the temporal and the spatial changes of the wake structure and the resulting instantaneous aerodynamic forces over the 
flapping wings. The essential physics of non-steady airfoil problems can be observed from simplified two-dimensional 
experiments, and the interpretations of the behavior can be supported by theoretical or numerical models. The aim of 
this study is to find optimum parameters to generate maximum lift during this motion, by using numerical methods and 
analytical models. A great number of cases are investigated involving the changes in the parameters such as angle of 
attack, location of start of change of incidence, location of start of change of velocity, axis of rotation, and Re number. 
In addition to the instantaneous aerodynamic forces, pressure distributions and vorticity contours, the average lift and 
drag coefficient values are also calculated. Positive lift values along the motion are obtained for angle of attack greater 
than 30 deg. The vortices shed during the flapping motion generate the lift. A modelization program is developed by 
use of Duhamel integral in order to compare with DNS results. 
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[62] Kurtulus, D. F., Farcy, A., and Alemdaroglu, N., “Aerodynamic Characteristics of Flapping Motion in Hover,” 
Experiments in Fluids, Vol. 44, No. 1,  2008, pp. 23–26. 

 Keywords: 2-D, Numerical, Hover 
 Abstract: The aim of the present work is to understand the aerodynamic phenomena and the vortex topology 
of an unsteady flapping motion by means of numerical and experimental methods. Instead of the use of real insect/bird 
wing geometries and kinematics which are highly complex and difficult to imitate by an exact modeling, a simplified 
model is used in order to understand the unsteady aerodynamics and vortex formation mechanisms during the different 
phases of the flapping motion. The flow is assumed to be laminar with a Reynolds number of 1,000. Direct numerical 
simulations, laser sheet visualizations and particle image velocimetry (PIV) measurements are performed for the 
phenomenological analysis of the flow. The vortex dynamics and their identification are put in evidence with PIV 
measurements by considering velocity magnitude, streamlines, second invariant of velocity gradient (Q-criteria), 
vorticity contours and Eulerian accelerations. 

[63] Tang, J., Viieru, D., and Shyy, W., “Effects of Reynolds Number and Flapping Kinematics on Hovering 
Aerodynamics,” AIAA Journal, Vol. 46, No. 4, 2008, pp. 967–976. 

 Keywords: 2-D, Numerical, Hover 
 Abstract: Motivated by our interest in micro and biological air vehicles, Navier-Stokes simulations for fluid 
flow around a hovering elliptic airfoil have been conducted to investigate the effects of Reynolds number, reduced 
frequency, and flapping kinematics on the flow structure and aerodynamics. The Reynolds number investigated ranges 
from 75 to 1700, and the reduced frequency from 0.36 to 2.0. Two flapping modes are studied, namely, the "water-
treading" hovering mode, and the normal hovering mode. Although the delayed-stall mechanisms is found to be 
responsible for generating the maximum lift peaks in both hovering modes, the wake-capturing mechanism is identified 
only in the normal hovering mode. In addition to the strong role played by the kinematics, the Reynolds number's role 
has also been clearly identified. In the low Reynolds number regime, O(100), the viscosity dissipates the vortex 
structures quickly and leads to essentially symmetric flow structure and aerodynamics force between the forward stroke 
and backward strokes. At higher Reynolds numbers (300 and larger), the history effect is influential, resulting in 
distinctly asymmetric phenomena between the forward and backward strokes. 

[64] Yin, B., and Luo, H., “Effect of Wing Inertia on Hovering Performance of Flexible Flapping Wings,” Physics of 

Fluids, Vol. 22, No. 11, 2010, pp. 111902-1–111902-10. 
 Keywords: 2-D, Numerical, Hover 

 Abstract: Insect wings in flight typically deform under the combined aerodynamic force and wing inertia; 
whichever is dominant depends on the mass ratio defined as m∗=ρsh/(ρfc), where ρsh is the surface density of the 
wing, ρf is the density of the air, and c is the characteristic length of the wing. To study the differences that the wing 
inertia makes in the aerodynamic performance of the deformable wing, a two-dimensional numerical study is applied to 
simulate the flow-structure interaction of a flapping wing during hovering flight. The wing section is modeled as an 
elastic plate, which may experience nonlinear deformations while flapping. The effect of the wing inertia on lift 
production, drag resistance, and power consumption is studied for a range of wing rigidity. It is found that both inertia-
induced deformation and flow-induced deformation can enhance lift of the wing. However, the flow-induced 
deformation, which corresponds to the low-mass wing, produces less drag and leads to higher aerodynamic power 
efficiency. In addition, the wing deformation has a significant effect on the unsteady vortices around the wing. The 
implication of the findings on insect flight is discussed. 

[65] Isogai, K., Shinmoto, Y., and Watanabe, Y., “Effects of Dynamic Stall on Propulsive Efficiency and Thrust of 
Flapping Airfoil,” AIAA Journal, Vol. 37, No. 10, 1999, pp. 1145–1151. 

 Keywords: 2-D, Numerical, Stall 
 Abstract: Numerical simulations of dynamic stall phenomena around an airfoil oscillating in a coupled mode, 
in which the pitching and heaving oscillations have some phase difference, have been performed with a Navier-Stokes 
code. The propulsive efficiency and the thrust have been calculated for various combinations of the phase difference 
and the reduced frequency for two different amplitude ratios. The effects of the dynamic stall phenomena on the 
behaviors of the propulsive efficiency and thrust are discussed in detail by examination of each flow pattern obtained. 
Highest efficiency has been observed for the case in which the pitching oscillation advances 90 degrees ahead of the 
heaving oscillation and the reduced frequency is at some optimum value, for which there appears no appreciable flow 
separation in spite of large-amplitude oscillations. For phase angles and reduced frequency other than this best 
condition, efficiency is rapidly degraded by the occurrence of the large-scale leading-edge separation. 
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[66] Tuncer, I. H., Walz, R., and Platzer, M. F., “A Computational Study of the Dynamic Stall of a Flapping 
Airfoil,” AIAA Paper 1998-2519, June 1998.  

 Keywords: 2-D, Numerical, Stall 
 Abstract: The dynamic stall boundaries of a NACA 0012 airfoil oscillating in either the pure plunge mode or 
in the combined pitch and plunge mode is computed using a thin-layer Navier-Stokes solver. Unsteady flowfields are 
computed at the free-stream Mach number of 0.3, the Reynolds number of 10^6, and the Baldwin-Lomax turbulence 
model is employed. It is found that a pure plunge oscillation leads to dynamic stall as soon as the non-dimensional 
plunge velocity exceeds the approximate value of 0.35. In addition, the power extraction capability of the airfoil 
operating in the wingmill mode is studied by computing the dynamic stall boundary for a combined pitch and plunge 
motion at the reduced frequency values of 0.1, 0.25, and 0.5. 

[67] Zheng, Z. C., and Wei, Z., “Study of Mechanisms and Factors that Influence the Formation of Vortical Wake of 
a Heaving Airfoil,” Physics of Fluids, Vol. 24, No. 10, 2012, pp. 103601-1–103601-12. 

 Keywords: 2-D, Numerical, Vortices 
 Abstract: A two-dimensional numerical study is performed to investigate the relation between the direction of 
a deflected wake and the vortex pairing mechanisms. The deflection angle can be correlated with two effective phase 
velocities defined to represent the trends of symmetry breaking and symmetry holding, respectively. The deflection 
angle increases with the strength of the vortex pairs, which is associated with the heaving amplitude, frequency, and the 
free stream Reynolds number. Furthermore, not only the influence of Strouhal number but also those of the two 
heaving motion components – amplitude and frequency – are studied individually under different Reynolds numbers. 
The study shows that the deflection angle consistently increases with the difference between the symmetry-breaking 
phase velocity and symmetry-holding phase velocity. 

[68] Liang, C. L., Ou, K., Premasuthan, S., Jameson, A., and Wang, Z. J., “High-order accurate simulations of 
unsteady flow past plunging and pitching airfoils,” Computers & Fluids, Vol. 40, No. 1, 2011, pp. 236–248. 

 Keywords: 2-D, Numerical, Vortices 
 Abstract: This paper presents simulations of unsteady flow past plunging and pitching airfoils using a high-
order spectral difference (SD) method. Both third-order and fourth-order SD methods are employed on unstructured 
quadrilateral grids for the plunging airfoil at a low Reynolds number. The vortex shedding pattern of an airfoil in an 
oscillating plunge motion becomes asymmetric at a sufficiently high frequency. The SD method is able to capture this 
effect and reveal a fine structure that closely replicates the experimental photograph. Interestingly, our simulations also 
predict that the degree of this asymmetry increases with Reynolds number. Unsteady flow at a higher Reynolds number 
past a pitching airfoil is studied using the fifth-order SD method. Our predictions show very good agreements with the 
available experimental data. The developed high-order accurate SD algorithms could enable high-order accurate 
simulations of unsteady flow past flapping Micro-Air-Vehicles (MAVs). 

[69] Dong, H., Mittal, R., and Najjar, F. M., “Wake Topology and Hydrodynamic Performance of Low-Aspect-Ratio 
Flapping Foils,” Journal of Fluid Mechanics, Vol. 566, Nov. 2006, pp. 309–343. 

 Keywords: 2-D, Numerical, Vortices, Thrust 
 Abstract: Numerical simulations are used to investigate the effect of aspect ratio on the wake topology and 
hydrodynamic performance of thin ellipsoidal flapping foils. The study is motivated by the quest to understand the 
hydrodynamics of fish pectoral fins. The simulations employ an immersed boundary method that allows us to simulate 
flows with complex moving boundaries on fixed Cartesian grids. A detailed analysis of the vortex topology shows that 
the wake of low-aspect-ratio flapping foils is dominated by two sets of interconnected vortex loops that evolve into 
distinct vortex rings as they convect downstream. The flow downstream of these flapping foils is characterized by two 
oblique jets and the implications of this characteristic on the hydrodynamic performance are examined. Simulations are 
also used to examine the thrust and propulsive efficiency of these foils over a range of Strouhal and Reynolds numbers 
as well as pitch-bias angles. 

[70] Pan, Y., Dong, X., Zhu, Q., and Yue, D. K. P., “Boundary-Element Method for the Prediction of Performance 
of Flapping Foils with Leading-edge Separation,” Journal of Fluid Mechanics, Vol. 698, May 2012, pp. 446–467. 

 Keywords: 2-D, Numerical, Vortices 
 Abstract: A numerical model based on a boundary-element method is developed to predict the performance 
of flapping foils for the general cases where vorticities are shed near the leading edge as well as from the trailing edge. 
The shed vorticities are modelled as desingularized thin shear layers which propagate with the local flow velocity. 
Special treatments are developed to model the unsteady and alternating leading-edge separation (LES), which is a main 
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element of difficulty for theoretical and numerical analyses of general flapping foils. The present method is compared 
with existing experiments where it is shown that the inclusion of LES significantly improves the prediction of thrust 
and efficiency, obtaining excellent agreement with measurements over a broad range of flapping frequencies (Strouhal 
number) and motion amplitudes (maximum angle of attack). It is found that the neglect of LES leads to substantial 
over-prediction of the thrust (and efficiency). The effects of LES on thrust generation in terms of the circulation around 
the foil, the steady and unsteady thrust components, and the vortex-induced pressure on the foil are elucidated. The 
efficiency and robustness of the method render it suitable for design optimization which generally requires large 
numbers of performance evaluations. To illustrate this, we present a sample problem of designing the flapping motion, 
with the inclusion of higher harmonic components, to maximize the efficiency under specified thrust. When optimal 
higher harmonic motions are included, the performance of the flapping foil is appreciably improved, mitigating the 
adverse effects of LES vortex on the performance. 

[71] Ramesh, K., Gopalarathnam, A., Granlund, K., Ol, M. V., and Edwards, J. R., “Discrete-Vortex Method with 
Novel Shedding Criterion for Unsteady Aerofoil Flows with Intermittent Leading-Edge Vortex Shedding,” Journal of 

Fluid Mechanics, Vol. 751, July 2014, pp. 500–538. 
 Keywords: 2-D, Numerical, Vortices 

 Abstract: Unsteady aerofoil flows are often characterized by leading-edge vortex (LEV) shedding. While 
experiments and high-order computations have contributed to our understanding of these flows, fast low-order methods 
are needed for engineering tasks. Classical unsteady aerofoil theories are limited to small amplitudes and attached 
leading-edge flows. Discrete-vortex methods that model vortex shedding from leading edges assume continuous 
shedding, valid only for sharp leading edges, or shedding governed by ad-hoc criteria such as a critical angle of attack, 
valid only for a restricted set of kinematics. We present a criterion for intermittent vortex shedding from rounded 
leading edges that is governed by a maximum allowable leading-edge suction. We show that, when using unsteady thin 
aerofoil theory, this leading-edge suction parameter (LESP) is related to the A0 term in the Fourier series representing 
the chordwise variation of bound vorticity. Furthermore, for any aerofoil and Reynolds number, there is a critical value 
of the LESP, which is independent of the motion kinematics. When the instantaneous LESP value exceeds the critical 
value, vortex shedding occurs at the leading edge. We have augmented a discrete-time, arbitrary-motion, unsteady thin 
aerofoil theory with discrete-vortex shedding from the leading edge governed by the instantaneous LESP. Thus, the use 
of a single empirical parameter, the critical-LESP value, allows us to determine the onset, growth, and termination of 
LEVs. We show, by comparison with experimental and computational results for several aerofoils, motions and 
Reynolds numbers, that this computationally inexpensive method is successful in predicting the complex flows and 
forces resulting from intermittent LEV shedding, thus validating the LESP concept. 

[72] Zhu, Q., and Peng, Z., “Mode Coupling and Flow Energy Harvesting by a Flapping Foil,” Physics of Fluids, 
Vol. 21, No. 3, 2009, pp. 033601-1–033601-10. 

 Keywords: 2-D, Numerical, Vortices 
 Abstract: As demonstrated in recent studies, the bioinspired flapping foils are capable of harvesting kinetic 
energy from incoming wind or current. A practical measure to achieve this is via the coupling between different modes 
in a system with multiple degrees of freedom. A typical scenario includes external activation of one motion mode and 
extracting the mechanical energy from other modes that follow. In this study we create a numerical model based upon 
the Navier–Stokes equations to investigate the performance of such a system in low Reynolds numbers. The effects of 
both the mechanical design and the operational parameters are examined. Specifically, we concentrate on the vorticity 
control mechanisms involved in the process, and demonstrate that through vortex-body interactions energy of the 
leading-edge vortices can be partially recovered to enhance the energy harvesting capacity. 

[73] Lee, J., Kim, J., and Kim, C., “Numerical Study on the Unsteady-Force-Generation Mechanism of Insect 
Flapping Motion,” AIAA Journal, Vol. 46, No. 7, 2008, pp. 1835–1848. 

 Keywords: 2-D, Numerical, Vortices 
 Abstract: Detailed numerical simulations are conducted to investigate aerodynamic characteristics of 
unsteady-force generation by a two-dimensional flapping motion under a forward-flight condition. A realistic wing 
trajectory called the figure-eight motion is extracted from a blowfly's tethered flight under freestream. Computed 
results show complex vortical flowfields that exhibit very interesting and distinctive unsteady characteristics. Lift is 
mainly generated during downstroke motion by a high effective angle of attack due to translational and lagging motion. 
On the other hand, a large amount of thrust is abruptly generated at the end of upstroke motion. Vortical structure in the 
wake and the pressure field shows that vortex-pairing and vortex-staying mechanisms can be presented as strong 
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evidence for the abrupt large thrust generation, which is fundamentally different from the inverse Karman vortex that is 
used to explain thrust generation by sinusoidal oscillating airfoil. Additional numerical simulations are conducted to 
examine the effects of motion components of figure-eight motion. From numerical results and comparisons, it is 
observed that wing rotational motion at the end of upstroke is crucial in generating the pairing and staying of vortices, 
which eventually leads to the abrupt thrust generation. 

[74] Tuncer, I. H., and Platzer, M. F., “Computational Study of Flapping Airfoil Aerodynamics,” Journal of Aircraft, 
Vol. 37, No. 2, 2000, pp. 514–520. 

 Keywords: 2-D, Numerical, Wake 
 Abstract: Unsteady, viscous, low-speed flows over a NACA 0012 airfoil oscillated in plunge and/or pitch at 
various reduced frequency, amplitude, and phase shift are computed. Vortical wake formations, boundary-layer flows 
at the leading edge, the formation of leading-edge vortices and their downstream convection are presented in terms of 
unsteady particle traces. Flow separation characteristics and thrust-producing wake profiles are identified. Computed 
results compare well with water tunnel flow visualization and force data and other computational data. The maximum 
propulsive efficiency is obtained for cases where the flow remains mostly attached over the airfoil oscillated in a 
combined pitch and plunge. 

[75] Young, J., and Lai, J. C. S., “Oscillation Frequency and Amplitude Effects on the Wake of a Plunging Airfoil,” 
AIAA Journal, Vol. 42, No. 10, 2004, pp. 2042–2052. 

 Keywords: 2-D, Numerical, Wake 
 Abstract: The flow over a NACA 0012 airfoil, oscillated sinusoidally in plunge, is simulated numerically 
using a compressible two-dimensional Navier-Stokes solver at a Reynolds number of 2x10^4. The wake of the airfoil is 
visualized using a numerical particle tracing method. Close agreement is obtained between numerically simulated wake 
structures and experimental wake visualizations in the literature, when the flow is assumed to be fully laminar. The 
wake structures, and the lift and thrust of the airfoil are shown to be strongly dependent on both the Strouhal number 
and the reduced frequency k of the plunge oscillation at this Reynolds number. Leading-edge separation appears to 
dominate the generation of aerodynamic forces for reduced frequencies below approximately k=4 but becomes 
secondary for higher frequencies. Wake structures appear to be controlled primarily by trailing-edge effects at all 
frequencies tested up to k=20. Aerodynamic force results obtained at this Reynolds number show marked differences 
from those predicted by potential flow analyses at low plunge frequency and high amplitude but are similar and high 
frequency and low amplitude, consistent with the effect of leading-edge separation. 

[76] Young, J., and Lai, J. C. S., “Vortex Lock-in Phenomenon in the Wake of a Plunging Airfoil,” AIAA Journal, 
Vol. 45, No. 2, 2007, pp. 485–490. 

 Keywords: 2-D, Numerical, Wake 
 Abstract: The flow over a NACA 0012 airfoil, oscillated sinusoidally in plunge, is simulated numerically 
using a two-dimensional Navier-Stokes solver at a Reynolds number of 20,000. The wake of the airfoil is visualized 
using a numerical particle tracing method for high reduced frequencies (1.0<k<10.0) and small nondimensional 
amplitudes (h<0.1). Anomalous vortex shedding modes (involving multiple vortices shed per half-cycle of airfoil 
motion) observed experimentally in the literature are reproduced numerically and are shown to be the result of 
interaction between the plunging frequency and a natural bluff-body shedding frequency. This results in a vortex lock-
in phenomenon analogous to that seen for oscillating cylinders. However, the lock-in boundary is not symmetric about 
the natural shedding frequency, due to the sharp trailing edge forcing the flow to separate at the trailing edge on the 
windward side of the airfoil for the majority of the plunge cycle at higher frequencies and amplitudes. 

[77] Zhu, Q., “Optimal Frequency for Flow Energy Harvesting of a Flapping Foil,” Journal of Fluid Mechanics, 
Vol. 675, May 2011, pp. 495–517. 

 Keywords: 2-D, Numerical, Wake 
 Abstract: Inspired by the correlation between the propulsion efficiency of a flapping foil propeller and 
stability of the wake behind it (which leads to the optimal Strouhal number for propulsion), we numerically simulated a 
heaving/pitching foil in energy harvesting regime, and investigated the relation between wake stability and the energy 
harvesting efficiency. The base flow is computed using a Navier–Stokes algorithm and the stability analysis is 
performed via the Orr–Sommerfeld equation. The wake is found to be convectively unstable and the frequency of the 
most unstable mode fw is determined. The case when fw ~ f coincides with maximum energy harvesting efficiency of the 
system (f is the frequency of foil oscillation), suggesting that flow energy extraction is closely related to efficient 
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evolution of the wake. This occurs at a frequency of f ~ 0.15 (f is normalized by the chord length and the flow speed), 
under the constraint that there is significant vortex shedding from the leading edge at sufficiently large effective angles 
of attack. Indeed, this ‘foil–wake resonance’ is usually associated with multi-vortex shedding from the leading edge. 
Furthermore, detailed examination of energy extractions from the heaving and the pitching motions indicates that near 
the optimal performance point the average energy extraction from the pitching motion is close to zero. This suggests 
the feasibility of achieving high-efficient energy harvesting through a simple fully passive system we proposed earlier 
in which no activation is needed. 

[78] Lewin, G. C., and Haj-Hariri, H., “Modelling Thrust Generation of a Two-Dimensional Heaving Airfoil in a 
Viscous Flow,” Journal of Fluid Mechanics, Vol. 492, Oct. 2003, pp. 339–362. 

 Keywords: 2-D, Numerical, Frequency 
 Abstract: A numerical model for two-dimensional flow around an airfoil undergoing prescribed heaving 
motions in a viscous flow is presented. The model is used to examine the flow characteristics and power coefficients of 
a symmetric airfoil heaving sinusoidally over a range of frequencies and amplitudes. Both periodic and aperiodic 
solutions are found. Additionally, some flows are asymmetric in that the upstroke is not a mirror image of the 
downstroke. For a given Strouhal number – defined as the product of dimensionless frequency and heave amplitude – 
the maximum efficiency occurs at an intermediate heaving frequency. This is in contrast to ideal flow models, in which 
efficiency increases monotonically as frequency decreases. In accordance with Wang (2000), the separation of the 
leading-edge vortices at low heaving frequencies leads to diminished thrust and efficiency. At high frequencies, the 
efficiency decreases similarly to inviscid theory. Interactions between leading- and trailing-edge vortices are 
categorized, and the effects of this interaction on efficiency are discussed. Additionally, the efficiency is related to the 
proximity of the heaving frequency to the frequency of the most spatially unstable mode of the average velocity profile 
of the wake; the greatest efficiency occurs when the two frequencies are nearly identical. The importance of viscous 
effects for low-Reynolds-number flapping flight is discussed. 

[79] Wang, Z. J., “Vortex Shedding and Frequency Selection in Flapping Flight,” Journal of Fluid Mechanics, Vol. 
410, May 2000, pp. 323–341. 

 Keywords: 2-D, Numerical, Frequency 
 Abstract: Motivated by our interest in unsteady aerodynamics of insect flight, we devise a computational tool 
to solve the Navier–Stokes equation around a two-dimensional moving wing, which mimics biological locomotion. The 
focus of the present work is frequency selection in forward flapping flight. We investigate the time scales associated 
with the shedding of the trailing- and leading-edge vortices, as well as the corresponding time-dependent forces. We 
present a generic mechanism of the frequency selection as a result of unsteady aerodynamics. 

[80] Zhang, X., Ni, S., Wang, S., and He, G., “Effects of Geometric Shape on the Hydrodynamics of a Self-Propelled 
Flapping Foil,” Physics of Fluids, Vol. 21, No. 10, 2009, pp. 103302-1–103302-7. 

 Keywords: 2-D, Numerical, Chord Thickness 
 Abstract: The hydrodynamics of a free flapping foil is studied numerically. The foil undergoes a forced 
vertical oscillation and is free to move horizontally. The effect of chord-thickness ratio is investigated by varying this 
parameter while fixing other ones such as the Reynolds number, the density ratio, and the flapping amplitude. Three 
different flow regimes have been identified when we increase the chord-thickness ratio, i.e., left-right symmetry, back-
and-forth chaotic motion, and unidirectional motion with staggered vortex street. It is observed that the chord-thickness 
ratio can affect the symmetry-breaking bifurcation, the arrangement of vortices in the wake, and the terminal velocity 
of the foil. The similarity in the symmetry-breaking bifurcation of the present problem to that of a flapping body under 
constraint is discussed. A comparison between the dynamic behaviors of an elliptic foil and a rectangular foil at various 
chord-thickness ratios is also presented. 

[81] Gopalan, H., and Povitsky, A., “Lift Enhancement of Flapping Airfoils by Generalized Pitching Motion,” 
Journal of Aircraft, Vol. 47, No. 6, 2010, pp. 1884–1897. 

 Keywords: 2-D, Numerical, Pitch/Plunge 
 Abstract: The pitching and plunging motions of airfoils have received a lot of attention recently, due to the 
increased interest in the design of micro air vehicles. The use of combined pitch-plunge motion with phase difference 
between them has often been used for the generation of thrust and lift. These aerodynamic forces could be significantly 
enhanced under similar operating conditions by using generalized pitch motion with variable center of wing rotation. 
The current study investigated the flowfield and aerodynamic forces for this generalized pitching motion. Two-
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dimensional rigid airfoils were taken as prototypes of micro air vehicle wings. First, the computational results were 
compared with the available measurements for an SD 7003 airfoil in pure-pitch and pure-plunge motions at Re=10,000. 
Good agreement was observed between the numerical computations and the experimental results in terms of 
streamwise velocity, location of the vorticity contours, and wake profiles. Next, the pure-pitch case was considered 
with the stationary centers of rotation located at different positions along the chord of the airfoil. It was found that the 
maximum value of the computed average coefficient of lift was obtained when the pitching axis was positioned at 
either the leading edge or the trailing edge. The generalized pitching motion computations were performed next. It was 
observed that a phase difference of 90 deg between the pitching motion and the motion of the axis caused a twofold 
increase of the mean coefficient of lift compared to the pitching about leading edge and combined pitch-plunge motion 
with a 90 deg phase difference. The stability of the leading-edge vortex was found to be responsible for the 
enhancement of lift by reduction in pressure at the upper surface of the airfoil. However, thrust force was not generated 
by applying the generalized pitching alone, whereas it was generated by the combined pitch-plunge motion. Finally a 
generalized pitching motion combined with a superimposed plunging motion was studied. It was found that for this 
motion, thrust was generated and the generated lift was higher than that for the generalized pitching motion. This result 
may help in the use of superposition of kinematic motions of wings to produce the desired amount of lift and thrust. 

[82] Lu, X. Y., and Liao, Q., “Dynamic Responses of a Two-Dimensional Flapping Foil Motion,” Physics of Fluids, 
Vol. 18, No. 9, 2006, pp. 098104-1–098104-4. 

 Keywords: 2-D, Numerical, Dynamics 
 Abstract: The investigation of a flapping foil, which is used as a basic mode of the flapping-based locomotion 
in insects, birds, and fish, is performed by solving the Navier-Stokes equations numerically. In this Brief 
Communication we provide insight into the understanding of dynamics of a flapping foil. A critical flapping Reynolds 
number based on the flapping frequency and amplitude, above which a forward flapping movement occurs, is 
predicted. The dynamics of the flapping foil are analyzed in two dynamic responses, i.e., an oscillatory movement and 
a steady movement, which depend on the density ratio between the foil and the surrounded fluid. The steady movement 
response is related to the forward flapping motion. The Strouhal number that governs a vortex shedding for the forward 
flapping foil is calculated and lies in the range where flying and swimming animals will be likely to tune for high 
propulsive efficiency. 

[83] Tuncer, I. H., and Platzer, M. F., “Thrust Generation Due to Airfoil Flapping,” AIAA Journal, Vol. 34, No. 2, 
1996, pp. 324–331. 

 Keywords: 2-D, Numerical, Biplane 
 Abstract: Thrust generation on a single flapping airfoil and a flapping/stationary airfoil combination in 
tandem is studied parametrically. A multiblock Navier-Stokes solver is employed to compute unsteady flowfields. The 
unsteady flow-field around a single flapping airfoil is also computed by an unsteady potential flow code. The numerical 
solutions predict thrust generation in flapping airfoils and a significant augmentation of thrust in flapping/stationary 
airfoil combined in tandem. The propulsive efficiency is found to be a strong function of reduced frequency and the 
amplitude of the flapping motion. At a flapping amplitude of 0.40 chord lengths and a reduced frequency of 0.10, the 
propulsive efficiency of a single NACA 0012 airfoil was computed to be more than 70%. For the airfoil combination in 
tandem, the propulsive efficiency was augmented more than 40% at a reduced frequency of 0.75 and a flapping 
amplitude of 0.20 chord lengths when the airfoils are separated by about two chord lengths. 

 
[84] Tuncer, I. H., and Kaya, M., “Thrust Generation Caused by Flapping Airfoils in a Biplane Configuration,” 

Journal of Aircraft, Vol. 40, No. 2, 2003, pp. 509–515. 
 Keywords: 2-D, Numerical, Biplane 
 Abstract: Unsteady, viscous flows over flapping airfoils in a biplane configuration are computed on moving 

overset grids. The overset grid solutions are obtained in parallel in a distributed memory environment. Unsteady 
flowfields are described by particle traces. Time-averaged thrust values are obtained from the integration of the 
unsteady drag coefficient. It is shown that airfoils in a biplane configuration and oscillating in a combined pitch and 
plunge motion with a proper phase shift between them produce 20-40% more thrust than a single flapping airfoil. 
Turbulence in the flow further augments the thrust generation. For a maximum thrust at a given flapping frequency, an 
optimization of the flapping motion parameters is needed. 

 
[85] Kaya, M., Tuncer, I. H., Jones, K. D., and Platzer, M. F., “Optimization of Flapping Motion Parameters for Two 

Airfoils in a Biplane Configuration,” Journal of Aircraft, Vol. 46, No. 2, 2009, pp. 583–592. 



 

180 

 

 

 Keywords: 2-D, Numerical, Biplane 
 Abstract: Flapping motion parameters of airfoils in a biplane configuration are optimized for maximum thrust 
and/or propulsive efficiency. Unsteady, viscous flowfields over airfoils flapping in a combined plunge and pitch are 
computed with a parallel flow solver on moving and deforming overset grids. The amplitudes of the sinusoidal pitch 
and plunge motions and the phase shift between them are optimized for a range of flapping frequencies. A gradient-
based optimization algorithm is implemented in a parallel computing environment. The deforming overset grids 
employed remove the restriction on the flapping motion of airfoils, and improve the optimization results obtained 
earlier. In the Strouhal number range 0.17>Sr<0.25, an airfoil in a biplane configuration produces more thrust than a 
single airfoil. Yet, at a higher Strouhal number, the airfoil in a biplane configuration produced less thrust at a 
significantly lower efficiency than a single flapping airfoil. 

[86] Tay, W. B., Bijl, H., and van Oudheusden, B. W., “Biplane and Tail Effects in Flapping Flight,” AIAA Journal, 
Vol. 51, No. 9, 2013, pp. 2133–2146. 

 Keywords: 2-D, Numerical, Biplane 
 Abstract: A numerical investigation is performed on the interference effects in single or biplane flapping 
airfoil propulsion in the presence of a stationary downstream tail. At a Reynolds number of 1000, this corresponds to 
the regime of small micro aerial vehicles. The objective of this study is to provide insight into the complex wing–tail 
interaction effects occurring in flapping-wing propulsion configurations. The effect of the relative distance between the 
airfoils, as well as the positioning and incidence angle of the tail, is investigated. Adding a tail behind a single flapping 
airfoil increases the efficiency and average thrust by up to 10 and 25%, respectively. For the biplane flapping airfoils 
without tail, overall efficiency and average thrust per airfoil increase up to 17 and 126%, respectively, with respect to 
the single airfoil due to the formation of a strong momentum jet. The effect of adding a tail behind the biplane flapping 
airfoils depends on the tail’s orientation and location. Increasing the incidence angle of the tail generates higher lift, 
although at the expense of decreased efficiency and thrust. Lastly, shifting the vertical position of the tail to have it 
coincide with the middle heaving position of the leading top airfoil gives the best overall performance. 

[87] Choi, J. S., Kim, J. W., Park, G. J., and Lee, D. H., “Kinematic Optimization of a Flapping Motion for 
Maneuverability and Sustainability Flights,” Journal of Aircraft, Vol. 50, No. 4, 2013, pp. 1027–1037. 

 Keywords: 2-D, Numerical, CFD, Kinematics 
 Abstract: The design of a biomimetic micro air vehicle with flapping wings is an essential challenge in the 
military/civilian field to conduct various missions. The success of a micro-air-vehicle flight is strongly related to the 
maneuverability and sustainability of an unsteady aerodynamic performance of the flapping motion. Appropriate 
flapping kinematics need to be established that are amenable to various flight purposes under a fluctuating 
environment. In this research, kinematics of flapping motion are determined by the study of aerodynamic performance 
of a flapping airfoil for appropriate maneuverability and sustainability. The flapping motion of an airfoil is formulated 
by a combined sinusoidal plunging and pitching motion in various angles of the stroke plane. The optimization process 
is carried out to determine the efficient motions based on a well-defined surrogate model that is made from the results 
of two-dimensional computational-fluid-dynamics analysis. The kriging method and genetic algorithm are used for the 
kinematic-optimization problems. The optimization results present appropriate flapping motions for forward flight, 
hovering flight, and high-thrust flight, respectively. The numerical results of the optimized cases show how the 
unsteady aerodynamic mechanisms efficiently maximize lift and thrust-force generation. 

[88] Leishman, J. G., “Unsteady Lift of a Flapped Airfoil by Indicial Concepts,” Journal of Aircraft, Vol. 31, No. 2, 
1994, pp. 288–297. 

 Keywords: 2-D, Numerical, Duhamel Superposition 
 Abstract: A practical method is described for computing the unsteady lift on an airfoil due to arbitrary motion 
of a trailing-edge flap. The result for the incompressible case is obtained in state-space form by means of Duhamel 
superposition and employing an improved exponential approximation to Wagner's indicial lift function. For subsonic 
compressible flow, the indicial lift at small values of time due to impulsive trailing-edge flap deflection is obtained 
from linear theory in conjunction with the aerodynamic reciprocal theorems. These results are used with experimental 
results for the oscillating case to obtain complete exponential approximations for the indicial response due to impulsive 
flap deflection. The final result for the unsteady lift due to an arbitrary flap motion in subsonic flow is obtained in state-
space form. Numerical results and comparisons with experimental data are shown. 
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[89] Ramamurti, R., and Sandberg, W., “Simulation of Flow about Flapping Airfoils Using Finite Element 
Incompressible Flow Solver,” AIAA Journal, Vol. 39, No. 2, 2001, pp. 253–260. 

 Keywords: 2-D, Numerical, Finite Element 
 Abstract: A finite element flow solver based on unstructured grids is employed for studying the unsteady 
flow past oscillating airfoils. The viscous flow past a NACA 0012 airfoil at various pitching frequencies is simulated. 
The variation of the force coefficient with reduced frequency is compared to experimental and other numerical studies. 
The effect of variation of the amplitude of the pitching motion on the force coefficient shows that the critical parameter 
for thrust generation is not the reduced frequency but the Strouhal number based on the maximum excursion of the 
trailing edge. The flow about the airfoil in a combined pitching and heaving motion, a mode found in many insects, is 
also simulated. The effects of varying the phase angle between the pitch and the heave motions is studied. The thrust 
coefficient was compared with experimental studies and good agreement is obtained. It is found that the maximum 
thrust coefficient is obtained for when the pitch motion leads the heave motion for 120 deg and maximum propulsive 
efficiency occurs at a phase angle of 90 deg. 

[90] Zhu, L., and Peskin, C. S., “Simulation of a Flapping Flexible Filament in a Flowing Soap Film by the 
Immersed Boundary Method,” Journal of Computational Physics, Vol. 179, No. 2, 2002, pp. 452–468. 

 Keywords: 2-D, Numerical, Immersed Boundary 
 Abstract: This paper reports the computer simulation of a flapping flexible filament in a flowing soap film 
using the immersed boundary method. Our mathematical formulation includes filament mass and elasticity, gravity, air 
resistance, and the two wires that bound the flowing soap film. The incompressible viscous Navier–Stokes equations, 
which are used to describe the motion of the soap film and filament in our formulation, are discretized on a fixed 
uniform Eulerian lattice while the filament equations are discretized on a moving Lagrangian array of points which do 
not necessarily coincide with the fixed Eulerian mesh points of the fluid computation. The interaction between the 
filament and the soap film is handled by a smoothed approximation to the Dirac delta function. This delta function 
approximation is used not only to interpolate the fluid velocity and to apply force to the fluid (as is commonly done in 
immersed boundary computations), but also to handle the mass of the filament, which is represented in our calculation 
as delta function layer of fluid mass density supported along the immersed filament. Because of this nonuniform 
density, we need to use a multigrid method for solving the discretized fluid equations. This replaces the FFT-based 
method that is commonly used in the uniform-density case. Our main results are as follows. (i) The sustained flapping 
of the filament only occurs when filament mass is included in the formulation of the model; within a certain range of 
mass, the more the mass of the filament, the bigger the amplitude of the flapping. (ii) When the length of filament is 
short enough (below some critical length), the filament always approaches its straight (rest) state, in which the filament 
points downstream; but when the length is larger, the system is bistable, which means that it can settle into either state 
(rest state or sustained flapping) depending on the initial conditions. This numerical result we observed in computer 
simulation is the same as that of the laboratory experiment even though the Reynolds number of the computations is 
lower than that of the laboratory experiment by two orders of magnitude. 

[91] Platzer, M. F., Neace, K. S., and Pang, K. C., “Aerodynamic Analysis of Flapping Wing Propulsion,” AIAA 
Paper 1993-0484, Jan. 1993. 

 Keywords: 2-D, Numerical, Panel Code 
 Abstract: In this paper a panel code is described which allows the systematic study of the thrust and lift 
characteristics produced by oscillating airfoils and airfoil combinations in incompressible inviscid flow. Results are 
presented for plunging or pitching airfoils and airfoil combinations. An assessment is made of the propulsive 
efficiencies and of the interference effects. Comparisons with flat-plate theory and with experiments by Schmidt, 
Mckinney and DeLaurier, and Freymuth show favorable agreement.  

[92] Jones, K. D., and Platzer, M. F., “Time-Domain Analysis of Low-Speed Airfoil Flutter,” AIAA Journal, Vol. 34, 
No. 5, 1996,  pp. 1027–1033. 

 Keywords: 2-D, Numerical, Panel Code 
 Abstract: A time-domain aeroelastic analysis code is described for single airfoils and two-foil systems in 
incompressible, inviscid flow. Flow solutions are obtained using a time-stepping panel code, and airfoil motions are 
computed using a two-degree-of-freedom spring/mass model. The time-stepping aeroelastic code is evaluated through 
comparisons with several classical frequency-domain studies for single-degree-of-freedom pitching motion. Results 
show excellent agreement with past studies and provide a look into the evolution of the motion in time. Additionally, 
using a two-foil system, it is shown that flutter of a trailing airfoil can be controlled by proper oscillation and phasing 
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of a leading airfoil. Three applications of the aeroelastic code are presented, including a feedback loop to actively 
stabilize flutter of a trailing airfoil, simulations of wake interference in rotary-wing flowfields, and simulations of 
flutter in ground effect. 

[93] Hall, K. C., and Hall, S. R., “A Rational Engineering Analysis of the Efficiency of Flapping Flight,” Fixed and 

Flapping Wing Aerodynamics for Micro Air Vehicles, AIAA, Danvers, MA, 2001, pp. 249–274. 
 Keywords: 2-D, Numerical, Vortex-Lattice 
  
[94] Chae, E. J., Akcabay, D. T., and Young, Y. L., “Dynamic Response and Stability of a Flapping Foil in a Dense 

and Viscous Fluid,” Physics of Fluids, Vol. 25, No. 10, 2013, pp. 104106-1–104106-27. 
 Keywords: 2-D, Numerical, Structure 

 Abstract: It is important to understand and accurately predict the static and dynamic response and stability of 
flexible hydro/aero lifting bodies to ensure their structural safety, to facilitate the design/optimization of new/existing 
concepts, and to test the feasibility of using advanced materials. The present study investigates the influence of solid-
to-fluid added mass ratio ( √µb ) and viscous effects on the fluid-structure interaction (FSI) response and stability of a 
flapping foil in incompressible and turbulent flows using a recently presented efficient and stable numerical algorithm 
in time-domain, which couples an unsteady Reynolds Average Navier-Stokes solver with a two degrees-of freedom 
structural model. The new numerical coupling method is able to stably and accurately simulate the FSI behavior of 
light foils in dense fluids: a limit which is known to be numerically difficult to study with classical FSI coupling 
methods. The studied FSI responses include static/dynamic divergence and flutter instabilities, which are compared 
with inviscid, linear potential theory predictions obtained with both time and frequency domain formulations, as well as 
with several published experimental data. In general, the results show that the critical reduced flutter velocities and 
reduced divergence velocities both decrease as √µb decreases, and are captured with good accuracy using the 
viscous FSI solver for a wide range of relative mass ratios that are typical to air/hydrofoils. The comparative analyses 
showed that the classic frequency-domain linear potential theory is severely unconservative for predicting the flutter 
velocity for cases with √µb<3 : this includes the typical operating conditions of most marine and biomedical lifting 
devices, where the fluid forces are comparable to the solid forces, and strong nonlinear interactions may develop. In 
addition, the viscous FSI solver is shown to correctly predict the experimentally reported critical divergence speed of a 
light foil in a dense fluid for a case where the classical potential theory predicts an infinite divergence speed as the 
foil's elastic axis (E.A.) coincided with the aerodynamic center. The results show that static/dynamic divergence will 
occur before flutter for light hydrofoils with an E.A. downstream of the center of pressure. However, for high solid-to-
fluid added mass ratios ( √µb>2 ), flutter tends to occur prior to divergence. In addition, in between the regions 
governed by static divergence ( √µb<1 ) and flutter ( √µb>2 ), there is a dynamic divergence region, where the 
foil deformations oscillate with an increasing mean amplitude, and the oscillation frequency decreases toward zero as 
the deformation increases; this region could only be captured by using a viscous FSI solver. 

[95] Battaglia, F., Kulkarni, A. K., Feng, J., and Merkle, C. L., “Simulations of Planar Flapping Jets in Confined 
Channels,” AIAA Journal, Vol. 36, No. 8, 1998, pp. 1425–1431. 

 Keywords: 2-D, Numerical, Channel Flow 
 Abstract: Computational analyses are used to provide a more complete understanding of the mechanisms that 
contribute to the development of oscillating planar jets. The geometry considered is a two-dimensional jet exhausting 
into a blind channel, whose open end is opposite to the initial direction such that the jet must turn through 180 degrees 
to exit. The resulting flowfields exhibit three distinct characters that depend on the channel expansion ratio and the 
Reynolds number. At low Reynolds numbers the flow is steady and symmetric. A symmetry-breaking bifurcation at 
intermediate Reynolds numbers produces steady asymmetric flows. A Hopf bifurcation at higher Reynolds numbers 
yields unsteady flows. Predicted critical Reynolds numbers and oscillation frequencies are presented for different 
expansion ratios. Solutions are obtained from the time-dependent Navier-Stokes equations by means of an 
incompressible formulation based on dual-time stepping via artificial compressibility. 

[96] Wu, J., Qiu, Y. L., Shu, C., and Zhao, N., “Pitching-Motion-Activated Flapping Foil Near Solid Walls for 
Power Extraction: A Numerical Investigation,” Physics of Fluids, Vol. 26, No. 8, 2014, pp. 083601-1–083601-19. 

 Keywords: 2-D, Numerical, Power 
 Abstract: A numerical investigation on the power extraction of a pitching-motion-activated flapping foil near 
solid walls is performed by using an immersed boundary-lattice Boltzmann method in this study. The flapping motions 
of the foil include a forced pitching component and an induced plunging component. The foil is placed either near a 
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solid wall or between two parallel plane walls. Compared to previous work on the flapping foil for power extraction, 
the effect of the walls is first considered in this work. At a Reynolds number of 1100 and with the position of the foil 
pitching axis at third chord, the influences of the mechanical parameters (such as damping coefficient and spring 
constant) of the foil, the amplitude and frequency of the pitching motion and the clearance between the foil pitching 
axis and the wall on the power extraction performance of the flapping foil are systematically evaluated. Compared to 
the situation of free stream, the power extraction performance of the foil near the wall is improved. For given amplitude 
and frequency, as the clearance decreases the net power extraction efficiency improves. Moreover, as the foil is placed 
near one wall, there is a transverse shift to the plunging motion that consequently weakens the improvement of net 
power extraction efficiency. In contrast, the shift can be significantly eliminated as the foil is placed between two walls, 
which can further improve the net power extraction efficiency. In addition, it is found that the efficiency improvement 
is essentially from the increased power extraction, which is due to the generation of high lift force. 

[97] Toomey, J., and Eldredge, J. D., “Numerical and Experimental Study of the Fluid Dynamics of a Flapping Wing 
with Low Order Flexibility,” Physics of Fluids, Vol. 20, No. 7, 2008, pp. 073603-1–073603-10. 

 Keywords: 2-D, Numerical and Experimental, Flexibility 
 Abstract: A simple canonical problem for understanding the role of flexibility in flapping wing flight is 
investigated numerically and experimentally. The problem consists of a two-dimensional two-component wing 
structure connected by a single hinge with a damped torsion spring. One component of the wing is driven with hovering 
flapping wing kinematics, while the other component responds passively to the fluid dynamic and inertial/elastic 
forces. Numerical simulations are carried out with the viscous vortex particle method with strongly coupled body 
dynamics. The experiments are conducted in a water tank with suspended particles for flow visualization. The system is 
analyzed in several different kinematic test cases that are designed to span a broad parametric range of flapping. Hinge 
deflection is used as the primary metric for comparison; the agreement between computation and experiment is very 
good in all cases. The trajectories of shed vortices are also compared, again with favorable agreement. Fluid forces and 
moments are computed in the numerical simulation at two different Reynolds numbers. It is found that the rate and 
timing of wing rotation primarily controls the generation of lift; in contrast, the translational acceleration has little 
effect. Likewise, kinematics with rotation transition well separated from translation transition are captured utilizing 
rotation-only kinematics. Reynolds number has little effect on the wing deflection but does influence the mean lift 
generated by the wing. 

[98] Jones, K. D., Dohring, C. M., and Platzer, M. F., “Experimental and Computational Investigation of the 
Knoller-Betz Effect,” AIAA Journal, Vol. 36, No. 7, 1998, pp. 1240–1246. 

 Keywords: 2-D, Numerical and Experimental, Wake 
 Abstract: The ability of a sinusoidally plunging airfoil to produce thrust, known as the Knoller-Betz or 
Katzmayr effect, is investigated experimentally and numerically. Water-tunnel experiments are performed providing 
flow visualization and laser Doppler velocimetry data of the unsteady wakes formed by the plunging foils. Vortical 
structures and time-averaged velocity profiles in the wake are compared with numerical computations from a 
previously developed inviscid, unsteady panel code that utilizes a nonlinear wake model. Qualitative and quantitative 
comparisons are excellent over a broad range of reduced frequencies and Strouhal numbers, indicating that the 
formation and evolution of the thrust-indicative wake structures are primarily inviscid phenomena. Results at Strouhal 
numbers greater than about 1.0 (based on plunge amplitude) demonstrate nonsymmetric, deflected wake patterns, 
where both an average thrust and an average lift are produced. These highly nonlinear wake formations are generated 
reproducibly, both experimentally and numerically. 

[99] Quinn, D. B., Moored, K. W., Dewey, P. A., and Smits, A. J., “Unsteady Propulsion Near a Solid Boundary,” 
Journal of Fluid Mechanics, Vol. 742, Mar. 2014, pp. 152–170. 

 Keywords: 2-D, Numerical and Experimental, Ground Effect 
 Abstract: Experimental and computational results are presented on an aerofoil undergoing pitch oscillations 
in ground effect, that is, close to a solid boundary. The time-averaged thrust is found to increase monotonically as the 
mean position of the aerofoil approaches the boundary while the propulsive efficiency stays relatively constant, 
showing that ground effect can enhance thrust at little extra cost for a pitching aerofoil. Vortices shed into the wake 
form pairs rather than vortex streets, so that in the mean a momentum jet is formed that angles away from the 
boundary. The time-averaged lift production is found to have two distinct regimes. When the pitching aerofoil is 
between 0.4 and 1 chord lengths from the ground, the lift force pulls the aerofoil towards the ground. In contrast, for 
wall proximities between 0.25 and 0.4 chord lengths, the lift force pushes the aerofoil away from the ground. Between 



 

184 

 

 

these two regimes there is a stable equilibrium point where the time-averaged lift is zero and thrust is enhanced by 
approximately 40%. 

[100] Wang, Z. J., Birch, J. M., and Dickinson, M. H., “Unsteady Forces and Flows in Low Reynolds Number 
Hovering Flight: Two-Dimensional Computations vs Robotic Wing Experiments,” Journal of Experimental Biology, 
Vol. 207, Jan. 2004, pp. 449–460. 

 Keywords: 2-D and 3-D, Numerical and Experimental, Hover 
 Abstract: We compare computational, experimental and quasi-steady forces in a generic hovering wing 
undergoing sinusoidal motion along a horizontal stroke plane. In particular, we investigate unsteady effects and 
compare two-dimensional (2D) computations and three-dimensional (3D) experiments in several qualitatively different 
kinematic patterns. In all cases, the computed drag compares well with the experiments. The computed lift agrees in the 
cases in which the sinusoidal changes in angle of attack are symmetrical or advanced with respect to stroke positions, 
but lags behind the measured 3D lift in the delayed case. In the range of amplitudes studied here, 3–5 chords, the force 
coefficients have a weak dependence on stroke amplitude. As expected, the forces are sensitive to the phase between 
stroke angle and angle of attack, a result that can be explained by the orientation of the wing at reversal. This 
dependence on amplitude and phase suggests a simple maneuver strategy that could be used by a flapping wing device. 
In all cases the unsteady forces quickly reach an almost periodic state with continuous flapping. The fluid forces are 
dominated by the pressure contribution. The force component directly proportional to the linear acceleration is smaller 
by a factor proportional to the ratio of wing thickness and stroke amplitude; its net contribution is zero in hovering. The 
ratio of wing inertia and fluid force is proportional to the product of the ratio of wing and fluid density and the ratio of 
wing thickness and stroke amplitude; it is negligible in the robotic wing experiment, but need not be in insect flight. To 
identify unsteady effects associated with wing acceleration, and coupling between rotation and translation, as well as 
wake capture, we examine the difference between the unsteady forces and the estimates based on translational 
velocities, and compare them against the estimate of the coupling between rotation and translation, which have simple 
analytic forms for sinusoidal motions. The agreement and disagreement between the computed forces and experiments 
offer further insight into when the 3D effects are important. A main difference between a 3D revolving wing and a 2D 
translating wing is the absence of vortex shedding by a revolving wing over a distance much longer than the typical 
stroke length of insects. No doubt such a difference in shedding dynamics is responsible in part for the differences in 
steady state force coefficients measured in 2D and 3D. On the other hand, it is unclear whether such differences would 
have a significant effect on transient force coefficients before the onset of shedding. While the 2D steady state force 
coefficients under predict 3D forces, the transient 2D forces measured prior to shedding are much closer to the 3D 
forces. In the cases studied here, the chord is moving between 3 to 5 chords, typical of hovering insect stroke length, 
and the flow does not appear to separate during each stroke in the cases of advanced and symmetrical rotation. In these 
cases, the wing reverses before the leading edge vortex would have time to separate even in 2D. This suggests that the 
time scale for flow separation in these strokes is dictated by the flapping frequency, which is dimensionally 
independent. In such cases, the 2D unsteady forces turn out to be good approximations of 3D experiments. 

[101] Ho, S., Nassef, H., Pornsinsirirak, N., Tai, Y. C., and Ho, C. M., “Unsteady Aerodynamics and Flow Control 
for Flapping Wing Flyers,” Progress in Aerospace Sciences, Vol. 39, No. 8, 2003, pp. 635–681. 

 Keywords: 3-D, Analytical, Discussion, Design/Control 
 Abstract: The creation of micro air vehicles (MAVs) of the same general sizes and weight as natural fliers has 
spawned renewed interest in flapping wing flight. With a wingspan of approximately 15 cm and a flight speed of a few 
meters per second, MAVs experience the same low Reynolds number (104–105) flight conditions as their biological 
counterparts. In this flow regime, rigid fixed wings drop dramatically in aerodynamic performance while flexible 
flapping wings gain efficacy and are the preferred propulsion method for small natural fliers. Researchers have long 
realized that steady-state aerodynamics does not properly capture the physical phenomena or forces present in flapping 
flight at this scale. Hence, unsteady flow mechanisms must dominate this regime. Furthermore, due to the low flight 
speeds, any disturbance such as gusts or wind will dramatically change the aerodynamic conditions around the MAV. 
In response, a suitable feedback control system and actuation technology must be developed so that the wing can 
maintain its aerodynamic efficiency in this extremely dynamic situation; one where the unsteady separated flow field 
and wing structure are tightly coupled and interact nonlinearly. For instance, birds and bats control their flexible wings 
with muscle tissue to successfully deal with rapid changes in the flow environment. Drawing from their example, 
perhaps MAVs can use lightweight actuators in conjunction with adaptive feedback control to shape the wing and 
achieve active flow control. This article first reviews the scaling laws and unsteady flow regime constraining both 
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biological and man-made fliers. Then a summary of vortex dominated unsteady aerodynamics follows. Next, 
aeroelastic coupling and its effect on lift and thrust are discussed. Afterwards, flow control strategies found in nature 
and devised by man to deal with separated flows are examined. Recent work is also presented in using 
microelectromechanical systems (MEMS) actuators and angular speed variation to achieve active flow control for 
MAVs. Finally, an explanation for aerodynamic gains seen in flexible versus rigid membrane wings, derived from an 
unsteady three-dimensional computational fluid dynamics model with an integrated distributed control algorithm, is 
presented. 

[102] von Holst, and Küchemann, D., “Biological and Aerodynamical Problems of Animal Flight,” Journal of the 

Royal Aeronautical Society, Vol. 46, Jan. 1942, pp. 39–56. 
 Keywords: 3-D, Analytical, Discussion 
 
[103] Ansari, S. A., Zbikowski, R., and Knowles, K., “Aerodynamic Modelling of Insect-like Flapping Flight for 

Micro Air Vehicles,” Progress in Aerospace Sciences, Vol. 42, No. 2, 2006, pp. 129–172. 
 Keywords: 3-D, Analytical, Discussion 

 Abstract: Insect-like flapping flight offers a power-efficient and highly maneuverable basis for a micro air 
vehicle capable of indoor flight. The development of such a vehicle requires a careful wing aerodynamic design. This is 
particularly true since the flapping wings will be responsible for lift, propulsion and maneuvers, all at the same time. It 
sets the requirement for an aerodynamic tool that will enable study of the parametric design space and converge on one 
(or more) preferred configurations. In this respect, aerodynamic modelling approaches are the most attractive, 
principally due to their ability to iterate rapidly through various design configurations. In this article, we review the 
main approaches found in the literature, categorizing them into steady-state, quasi-steady, semi-empirical and fully 
unsteady methods. The unsteady aerodynamic model of Ansari et al. seems to be the most satisfactory to date and is 
considered in some detail. Finally, avenues for further research in this field are suggested. 

[104] Brown, R. J. H., “The flight of birds: II. Wing Function in Relation to Flight Speed,” Journal of Experimental 

Biology, Vol. 30, Mar, 1953, pp. 90–103. 
 Keywords: 3-D, Analytical, Summary 

 Abstract: 1. The changes in the form of the wing movement of different birds with change of air speed are 
described. 2. The aerodynamic properties of various configurations of the wing are discussed. 3. Reconciliation of 
various contradictory accounts in the literature is attempted. 4. Improvements in photographic methods are described. 

[105] Platzer, M. F., Jones, K. D., Young, J., and Lai, J. C. S., “Flapping-Wing Aerodynamics: Progress and 
Challenges,” AIAA Journal, Vol. 46, No. 9, 2008, pp. 2136–2149. 

 Keywords: 3-D, Analytical, Summary 
 Abstract: It is the objective of this paper to review recent developments in the understanding and prediction 
of flapping-wing aerodynamics. To this end, several flapping-wing configurations are considered. First, the problem of 
single flapping wings is treated with special emphasis on the dependence of thrust, lift, and propulsive efficiency on 
flapping mode, amplitude, frequency, and wing shape. Second, the problem of hovering flight is studied for single 
flapping wings. Third, the aerodynamic phenomena and benefits produced by the flapping-wing interactions on tandem 
wings or biplane configurations are discussed. Such interactions occur on dragonflies or on a recently developed micro 
air vehicle. The currently available two- and three-dimensional inviscid and viscous flapping-wing flow solutions are 
presented. It is shown that the results are strongly dependent on flapping frequency, amplitude, and Reynolds number. 
These findings are substantiated by comparison with the available experimental data. 

[106] Chen, R. T. N., “Effects of Primary Rotor Parameters on Flapping Dynamics,” NASA-TP-1431, Jan. 1980.  
 Keywords: 3-D, Analytical, Helicopters 

 Abstract: The effects of flapping dynamics of four main rotor design features that influence the agility, 
stability, and operational safety of helicopters are studied. The parameters include flapping hinge offset, flapping hinge 
restraint, pitch-flap coupling, and blade lock number. First, the flapping equations of motion are derived that explicitly 
contain the design parameters. The dynamic equations are then developed for the tip-path plane, and the influence of 
individual and combined variations in the design parameters determined. The steady state flapping response is 
examined with respect to control input and aircraft angular rate which leads to a feedforward control law for control 
decoupling through cross feed, and a feedback control law to decouple the steady state flapping response. The 
condition for achieving perfect decoupling of the flapping response due to aircraft pitch and roll rates without using 
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feedback control is also found for the hover case. It is indicated that the frequency of the regressing flapping mode of 
the rotor system can become low enough to require consideration in the assessment of handling characteristics.  

[107] Ellington, C. P., “The Aerodynamics of Hovering Insect Flight. V. A Vortex Theory,” Philosophical 

Transactions of the Royal Society of London, Vol. 305, No. 1122, 1984, pp. 115–144. 
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Production,” Journal of Experimental Biology, Vol. 59, Aug. 1973, pp. 169–230. 
 Keywords: 3-D, Analytical, Hover 

 Abstract: 1. On the assumption that steady-state aerodynamics applies, simple analytical expressions are 
derived for the average lift coefficient, Reynolds number, the aerodynamic power, the moment of inertia of the wing 
mass and the dynamic efficiency in animals which perform normal hovering with horizontally beating wings. 2. The 
majority of hovering animals, including large lamellicorn beetles and sphingid moths, depend mainly on normal 
aerofoil action. However, in some groups with wing loading less than 10 N m-2 (1 kgf m-2), non-steady aerodynamics 
must play a major role, namely in very small insects at low Reynolds number, in true hover-flies (Syrphinae), in large 
dragonflies (Odonata) and in many butterflies (Lepidoptera Rhopalocera). 3. The specific aerodynamic power ranges 
between 1.3 and 4.7 WN-1 (11-40 cal h-1 gf-1) but power output does not vary systematically with size, inter alia 
because the lift/drag ratio deteriorates at low Reynolds number. 4. Comparisons between metabolic rate, aerodynamic 
power and dynamic efficiency show that the majority of insects require and depend upon an effective elastic system in 
the thorax which counteracts the bending moments caused by wing inertia. 5. The free flight of a very small chalcid 
wasp Encarsia formosa has been analyzed by means of slow-motion films. At this low Reynolds number (10-20), the 
high lift co-efficient of 2 or 3 is not possible with steady-state aerodynamics and the wasp must depend almost entirely 
on non-steady flow patterns. 6. The wings of Encarsia are moved almost horizontally during hovering, the body being 
vertical, and there are three unusual phases in the wing stroke: the clap, the fling and the flip. In the clap the wings are 
brought together at the top of the morphological upstroke. In the fling, which is a pronation at the beginning of the 
morphological downstroke, the opposed wings are flung open like a book, hinging about their posterior margins. In the 
flip, which is a supination at the beginning of the morphological upstroke, the wings are rapidly twisted through about 
180°. 7. The fling is a hitherto undescribed mechanism for creating lift and for setting up the appropriate circulation 
over the wing in anticipation of the downstroke. In the case of Encarsia the calculated and observed wing velocities at 
which lift equals body weight are in agreement, and lift is produced almost instantaneously from the beginning of the 
downstroke and without any Wagner effect. The fling mechanism seems to be involved in the normal flight of 
butterflies and possibly of Drosophila and other small insects. Dimensional and other considerations show that it could 
be a useful mechanism in birds and bats during take-off and in emergencies. 8. The flip is also believed to be a means 
of setting up an appropriate circulation around the wing, which has hitherto escaped attention; but its operation is less 
well understood. It is not confined to Encarsia but operates in other insects, not only at the beginning of the upstroke 
(supination) but also at the beginning of the downstroke where a flip (pronation) replaces the clap and fling of Encarsia. 
A study of freely flying hover-flies strongly indicates that the Syrphinae (and Odonata) depend almost entirely upon the 
flip mechanism when hovering. In the case of these insects a transient circulation is presumed to be set up before the 
translation of the wing through the air, by the rapid pronation (or supination) which affects the stiff anterior margin 
before the soft posterior portions of the wing. In the flip mechanism vortices of opposite sense must be shed, and a 
Wagner effect must be present. 9. In some hovering insects the wing twistings occur so rapidly that the speed of 
propagation of the elastic torsional wave from base to tip plays a significant role and appears to introduce beneficial 
effects. 10. Non-steady periods, particularly flip effects, are present in all flapping animals and they will modify and 
become superimposed upon the steady-state pattern as described by the mathematical model presented here. However, 
the accumulated evidence indicates that the majority of hovering animals conform reasonably well with that model. 11. 
Many new types of analysis are indicated in the text and are now open for future theoretical and experimental research. 

[109] Ansari, S. A., Knowles, K., and Zbikowski, R., “Insectlike Flapping Wings in the Hover Part I: Effect of Wing 
Kinematics,” Journal of Aircraft, Vol. 45, No. 6, 2008, pp. 1945–1954. 

 Keywords: 3-D, Analytical, Hover 
 Abstract: The aerodynamic design of a flapping-wing micro air vehicle requires a careful study of the wing-
design space to ascertain the best combination of parameters. Here, such wing design for hovering insectlike flapping 
flight is studied using a nonlinear unsteady aerodynamic model developed by the authors. The work is characterized, in 
particular, by the insights it provides into flapping-wing flows and the use it makes of these insights for aerodynamic 
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design. This is the first of a two-part paper. The effects of wing kinematics on the aerodynamic performance of such 
flapping wings are investigated in this part by varying one parameter at a time; the effects of wing geometry are 
considered in part 2. It is found here that there are benefits in increasing flapping frequency and stroke amplitude and in 
advancing wing pitching rotation. Other important trends are also identified and practical considerations are noted. 
When possible, comparisons are also drawn with quasi-steady expectations and discrepancies are explained. 

[110] Ansari, S. A., Knowles, K., and Zbikowski, R., “Insectlike Flapping Wings in the Hover Part II: Effect of 
Wing Geometry,” Journal of Aircraft, Vol. 45, No. 6, 2008, pp. 1976–1990. 

 Keywords: 3-D, Analytical, Hover 
 Abstract: The aerodynamic design of a flapping-wing micro air vehicle requires a careful study of the wing-
design space to ascertain the best combination of parameters. A nonlinear unsteady aerodynamic model developed by 
the authors is used to make such a study for hovering insectlike flapping wings. The work is characterized, in 
particular, by the insights it provides into flapping-wing flows and the use of these insights for aerodynamic design. 
The effects of wing geometry on the aerodynamic performance of such flapping wings are investigated by comparing 
the influence on a number of synthetic planform shapes while varying only one parameter at a time. Best performance 
appears to be for wing shapes that have nearly straight leading edges and more area outboard, where flow velocities are 
higher. Other important trends are also identified and practical considerations are noted. When possible, comparisons 
are also drawn with quasi-steady expectations and discrepancies are explained. 

[111] Ansari, S. A., Zbikowski, R., and Knowles, K., “Nonlinear Unsteady Aerodynamic Model for Insect-like 
Flapping Wings in the Hover Part 1: Methodology and Analysis,” Proceedings of the Institute of Mechanical 

Engineering, Part G: Journal of Aerospace Engineering, Vol. 220, No. 2,  2006, pp. 61–83. 
 Keywords: 3-D, Analytical, Hover 

 Abstract: The essence of this two-part paper is the analytical, aerodynamic modelling of insect-like flapping 
wings in the hover for micro air vehicle applications. A key feature of such flapping-wing flows is their unsteadiness 
and the formation of a leading-edge vortex in addition to the conventional wake shed from the trailing edge. What 
ensues is a complex interaction between the shed wakes which, in part, determines the forces and moments on the 
wing. In an attempt to describe such a flow, two-novel coupled, non-linear, wake-integral equations are developed in 
this first part of the paper, and these form the foundation upon which the rest of the work stands. The circulation-based 
model thus developed is unsteady and inviscid in nature and essentially two-dimensional. It is converted to a ‘quasi-
three-dimensional’ model using a blade-element-type method, but with radial chords. The main results from the model 
are force and moment data for the flapping wing and are derived as part of this article using the method of impulses. 
These forces and moments have been decomposed into constituent elements. The governing equations developed in the 
study are exact, but do not have a closed analytic form. Therefore, solutions are found by numerical methods. These are 
described in the second part of this paper. 

[112] Gogulapati, A., Friedmann, P. P., Kheng, E., and Shyy, Wei, “Approximate Aeroelastic Modeling of Flapping 
Wings in Hover,” AIAA Journal, Vol. 51, No. 3, 2013, pp. 567–583. 

 Keywords: 3-D, Analytical, Hover 
 Abstract: A nonlinear aeroelastic model suitable for flexible insectlike flapping wings in hover is presented. 
The aeroelastic model is obtained by coupling a nonlinear structural dynamic model based on MARC, with a potential-
flow-based approximate aerodynamic model that consists of leading-edge vortices and a wake model. The aeroelastic 
response is obtained using an updated Lagrangian method. The paper describes validation studies conducted on the 
structural dynamic model, aerodynamic comparisons, and aeroelastic studies conducted on isotropic and anisotropic 
Zimmerman wings. The results demonstrate the suitability of MARC for modeling anisotropic wings undergoing 
insectlike wing kinematics. For the aeroelastic cases considered, the approximate model shows acceptable agreement 
with computational-fluid-dynamics-based and experimental results. The approximate model captured several important 
trends correctly. 

[113] Zbikowski, R., “On Aerodynamic Modelling of an Insect-like Flapping Wing in Hover for Micro Air 
Vehicles,” Philosophical Transactions of the Royal Society of London, Series A: Mathematical and Physical Sciences, 
Vol. 360, No. 1791, 2002, pp. 273–290. 

 Keywords: 3-D, Analytical, Hover 
 Abstract: This theoretical paper discusses recent advances in the fluid dynamics of insect and micro air 
vehicle (MAV) flight and considers theoretical analyses necessary for their future development. The main purpose is to 
propose a new conceptual framework and, within this framework, two analytic approaches to aerodynamic modelling 
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of an insect–like flapping wing in hover in the context of MAVs. The motion involved is periodic and is composed of 
two half–cycles (downstroke and upstroke) which, in hover, are mirror images of each other. The downstroke begins 
with the wing in the uppermost and rearmost position and then sweeps forward while pitching up and plunging down. 
At the end of the half–cycle, the wing flips, so that the leading edge points backwards and the wing's lower surface 
becomes its upper side. The upstroke then follows by mirroring the downstroke kinematics and executing them in the 
opposite direction. Phenomenologically, the interpretation of the flow dynamics involved, and adopted here, is based 
on recent experimental evidence obtained by biologists from insect flight and related mechanical models. It is assumed 
that the flow is incompressible, has low Reynolds number and is laminar, and that two factors dominate: (i) forces 
generated by the bound leading–edge vortex, which models flow separation; and (ii) forces due to the attached part of 
the flow generated by the periodic pitching, plunging and sweeping. The first of these resembles the analogous 
phenomenon observed on sharp–edged delta wings and is treated as such. The second contribution is similar to the 
unsteady aerodynamics of attached flow on helicopter rotor blades and is interpreted accordingly. Theoretically, the 
fluid dynamic description is based on: (i) the superposition of the unsteady contributions of wing pitching, plunging 
and sweeping; and (ii) adding corrections due to the bound leading–edge vortex and wake distortion. Viscosity is 
accounted for indirectly by imposing the Kutta condition on the trailing edge and including the influence of the vortical 
structure on the leading edge. Mathematically, two analytic approaches are proposed. The first derives all the quantities 
of interest from the notion of circulation and leads to tractable integral equations. This is an application of the von 
Kármán–Sears unsteady wing theory and its nonlinear extensions due to McCune and Tavares; the latter can account 
for the bound leading–edge vortex and wake distortion. The second approach uses the velocity potential as the central 
concept and leads to relatively simple ordinary differential equations. It is a combination of two techniques: (i) 
unsteady aerodynamic modelling of attached flow on helicopter rotor blades; and (ii) Polhamus's leading edge suction 
analogy. The first of these involves both frequency–domain (Theodorsen style) and time–domain (indicial) methods, 
including the effects of wing sweeping and returning wake. The second is a nonlinear correction accounting for the 
bound leading–edge vortex. Connections of the proposed framework with control engineering and aeroelasticity are 
pointed out. 

[114] Gogulapati, A., and Friedmann, P. P., “Approximate Aerodynamic and Aeroelastic Modeling of Flapping 
Wings in Forward Flight,” AIAA Journal, Vol. 52, No. 1, 2014, pp. 212–218. 
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bat Plecotus auritus,” Journal of Experimental Biology, Vol. 65, Aug. 1976, pp. 179–212. 
 Keywords: 3-D, Analytical, Animals 

 Abstract: The kinematics, aerodynamics, and energetics of Plecotus auritus in slow horizontal flight, 2–35 m 
s-1, are analyzed. At this speed the inclination of the stroke path is ca. 58 degrees to the horizontal, the stroke angle ca. 
91 degrees, and the stroke frequency ca. 11-9 Hz. A method, based on steady-state aerodynamic and momentum 
theories, is derived to calculate the lift and drag coefficients as averaged over the whole wing the whole wing-stroke for 
horizontal flapping flight. This is a further development of Pennycuick's (1968) and Weis-Fogh's (1972) expressions 
for calculating the lift coefficient. The lift coefficient obtained varies between 1-4 and 1-6, the drag coefficient between 
0-4 and 1-2, and the lift/drag ratio between 1-2 and 4-0. The corresponding, calculated, total specific mechanical power 
output of the wing muscles varies between 27-0 and 40-4 W kg-1 body mass. A maximum estimate of mechanical 
efficiency is 0–26. The aerodynamic efficiency varies between 0–07 and 0–10. The force coefficient, total mechanical 
power output, and mechanical and aerodynamic efficiencies are all plausible, demonstrating that the slow flapping 
flight of Plecotus is thus explicable by steady-state aerodynamics. The downstroke is the power stroke for the vertical 
upward forces and the upstroke for the horizontal forward forces. 

[117] Osborne, M. F. M., “Aerodynamics of Flapping Flight with Application to Insects,” Journal of Experimental 

Biology, Vol. 28, June 1951, pp. 221–245. 
 Keywords: 3-D, Analytical, Insects 

 Abstract: 1. General formulae are derived giving the lift, thrust and power when the wing motion is specified. 
The formulae are applied to twenty-five insects for which quantitative data are available. Average values for lift and 
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drag coefficients, CL and CD, are derived by equating the weight to the vertical force and the thrust to the horizontal 
drag of the body. 2. The large drag and lift coefficients obtained for insect flight are attributed to acceleration effects. 
There is a distinct correlation between (C2L,+ C2)D)½ and the ratio of the flapping velocity of the wings to the linear 
velocity of flight. When this ratio and therefore the accelerations are small, the force coefficients do not exceed those to 
be expected for flat plates. Owing to the nature of the assumptions and approximations made, the values derived for 
CD, CL and CD/CL are minimum values. 3. Other characteristics of insect flight are discussed. In general, insects fly in 
such a way as to minimize the mechanical power required. In most, but not all cases, the useful force is the one 
perpendicular rather than parallel to the relative wind. The wing tips should move in a figure 8, the down beat should 
be slower than the upbeat, and the majority of the necessary force must be supplied on the down beat.  4. Figures are 
given using the data from the twenty-five insects considered, showing average relations between power, specific power, 
mass, acceleration forces, force coefficients and geometrical dimensions. The power per gram, the ‘wasted power’, and 
the force coefficients all increase as the importance of the acceleration forces increases.  5. When plotted as functions 
of mass, quantities involving the power show much less dispersion than quantities involving the geometrical 
dimensions. This is taken to mean that despite the diversity of insect form, as ‘power plants’, they are all essentially 
similar. 6. A table of the observed or adopted flight parameters (frequency of beating, mass, wing area, velocity of 
flight, amplitude and orientation of wing motion) is appended.  

[118] Wootton, R. J., and Kukalova-Peck, J., “Flight Adaptations in Palaeozoic Palaeoptera,” Biological Reviews of 

the Cambridge Philosophical Society, Vol. 75, No. 1, 2000, pp. 129–167. 
 Keywords: 3-D, Analytical, Insects 

 Abstract: The use of available morphological characters in the interpretation of the flight of insects known 
only as fossils is reviewed, and the principles are then applied to elucidating the flight performance and techniques of 
Palaeozoic palaeopterous insects. Wing-loadings and pterothorax mass/total mass ratios are estimated and aspect ratios 
and shape-descriptors are derived for a selection of species, and the functional significance of wing characters 
discussed. Carboniferous and Permian ephemeropteroids (‘mayflies’) show major differences from modern forms in 
morphology and presumed flight ability, whereas Palaeozoic odonatoids (‘dragonflies’) show early adaptation to aerial 
predation on a wide size-range of prey, closely paralleling modern dragonflies and damselflies in shape and wing 
design but lacking some performance-related structural refinements. The extensive adaptive radiation in form and flight 
technique in the haustellate orders Palaeodictyoptera, Megasecoptera, Diaphanopterodea and Permothemistida is 
examined and discussed in the context of Palaeozoic ecology. 

[119] Dickinson, M. H., Lehmann, F. O., and Sane, S. P., “Wing Rotation and the Aerodynamic Basis of Insect 
Flight,” Science, Vol. 284, June 1999, pp. 1954–1960. 

 Keywords: 3-D, Analytical, Wing Motion 
 Abstract: The enhanced aerodynamic performance of insects results from an interaction of three distinct yet 
interactive mechanisms: delayed stall, rotational circulation, and wake capture. Delayed stall functions during the 
translational portions of the stroke, when the wings sweep through the air with a large angle of attack. In contrast, 
rotational circulation and wake capture generate aerodynamic forces during stroke reversals, when the wings rapidly 
rotate and change direction. In addition to contributing to the lift required to keep an insect aloft, these two rotational 
mechanisms provide a potent means by which the animal can modulate the direction and magnitude of flight forces 
during steering maneuvers. A comprehensive theory incorporating both translational and rotational mechanisms may 
explain the diverse patterns of wing motion displayed by different species of insects. 

[120] Klemin, A., “Rotor Bending Moments in a Plane of Flapping,” Journal of the Aeronautical Sciences, Vol. 9, 
No. 11, 1942, pp. 411–418. 

 Keywords: 3-D, Analytical, Bending Moments 
 Abstract: The present paper, a problem in autogiro rotor stress analysis, can be outlined as follows: 1. 
Calculation of the characteristics of a typical autogiro employed for illustrative purposes. 2. Derivation of formulas for 
bending moments in the plane of flapping taking into account the effects of the weight of the blade, centrifugal force, 
inertia forces in flapping and aerodynamic thrust. 3. Examination of the effect of the azimuth angle on bending 
moments at a given point on the blade. 4. Effect of variations in (mu), the tip speed ratio, on the bending moment at a 
given point on the blade. 5. Examination of the effect of the ratio r/R on bending moments. 6. Formulas for the 
centrifugal relief of bending moments. 7. Comparison of bending moments obtained by the use of empirical formulas 
available hitherto. 
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 Abstract: Unsteady aerodynamics of a rigid flapping wing at a Reynolds number of 10,000 for forward flight 
with an advance ratio of 0.5 is analyzed. A spiral leading-edge vortex with a strong spanwise flow along its core is 
formed during the downstroke, resulting in a peak lift and thrust. A negative spanwise flow formed due to the tip vortex 
prevents the removal of vorticity from the leading-edge vortex, leading to instability and separation of the leading-edge 
vortex. Analysis of different rotation timings shows that supination results in the leading-edge vortex formation near 
the base and its strength depends on the flapping velocity. A stronger vortex is formed for advanced rotation and it 
generates high lift. Delayed rotation affects thrust production during translation and results in low propulsive 
efficiency. Analysis of rotation duration shows that shorter rotation results in high instantaneous lift values, whereas 
continuous long-duration rotation results in high thrust and propulsive efficiency. Analysis of different angles of attack 
show that a moderate angle of attack, which results in a high thrust-to-lift ratio and complete shedding of the leading-
edge vortex at the end of translation, is required for high propulsive efficiency. 

[123] Truong, T. Q., Phan, V. H., Park, H. C., and Ko, J. H., “Effect of Wing Twisting on Aerodynamic Performance 
of Flapping Wing System,” AIAA Journal, Vol. 51, No. 7, 2013, pp. 1612–1620. 

 Keywords: 3-D, Analytical, Twist 
 Abstract: In this paper, a simple but effective design for implementing a negative wing twist in a beetle-
mimicking wing system is presented. The effectiveness of the design in terms of force generation and power 
consumption is confirmed by both experiment and calculation. An unsteady blade-element-theory model is used to 
estimate the aerodynamic forces produced by two different wing kinematics of a flapping-wing system. The model was 
first validated with the measurement data and two three-dimensional computational-fluid-dynamics results from the 
literature. The difference between the estimated average lift and the measured lift is 5.6%, which proves that the 
unsteady blade-element-theory model provides reasonable aerodynamic force estimation. The time history of the 
current estimation is also close to the measured data and is in between the two computational-fluid-dynamics results. 
The forces generated by the flapping wings with and without wing twist are estimated using the unsteady blade-element 
theory to investigate effect of the wing twist on the force generation. The result shows that the flapping-wing system 
with wing twist produces a 9.5% larger average vertical force or thrust while consuming 37% less power than the 
flapping-wing system without wing twist. The measured thrust by the swing test also shows 13.2% increase for the 
flapping wing with wing twist. Thus, by the estimation and measurement, it is confirmed that the wing twist improves 
the thrust generation. 

[124] Li, G. J., and Lu, X. Y., “Force and Power of Flapping Plates in a Fluid,” Journal of Fluid Mechanics, Vol. 
712, Dec. 2012, pp. 598–613. 

 Keywords: 3-D, Analytical, Vortices 
 Abstract: The force and power of flapping plates are studied by vortex dynamic analysis. Based on the 
dynamic analysis of the numerical results of viscous flow past three-dimensional flapping plates, it is found that the 
force and power are strongly dominated by the vortical structures close to the body. Further, the dynamics of the 
flapping plate is investigated in terms of viscous vortex-ring model. It is revealed that the model can reasonably reflect 
the essential properties of the ring-like vortical structure in the wake, and the energy of the plate transferred to the flow 
for the formation of each vortical structure possesses a certain relation. Moreover, simplified formulae for the thrust 
and efficiency are proposed and verified to be reliable by the numerical solutions and experimental measurements of 
animal locomotion. The results obtained in this study provide physical insight into the understanding of the dynamic 
mechanisms relevant to flapping locomotion.  
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June 1979, pp. 17–54. 

 Keywords: 3-D, Analytical, Vortices 
 Abstract: The mechanics of lift and thrust generation by flying animals are studied by considering the 
distribution of vorticity in the wake. As wake generation is not continuous, the momentum jet theory, which has 
previously been used, is not satisfactory, and the vortex theory is a more realistic model. The vorticity shed by the 
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wings in the course of each powered stroke deforms into a small-cored vortex ring; the wake is a chain of such rings. 
The momentum of each ring sustains and propels the animal; induced power is calculated as the rate of increase of 
wake kinetic energy. A further advantage of the vortex theory is that lift and induced drag coefficients are not required; 
estimated instantaneous values of these coefficients are generally too large for steady state aerodynamic theory to be 
appropriate to natural flapping flight. The vortex theory is applied to hovering of insects and to avian forward flight. A 
simple expression for induced power in hovering is found. Induced power is always greater than simple momentum jet 
estimates, and the discrepancy becomes substantial as body mass increases. In hovering the wake is composed of a 
stack of horizontal, coaxial, circular vortex rings. In forward flight of birds the rings are elliptic; they are neither 
horizontal nor coaxial because the momentum of each ring balances the vector sum of parasite and profile drag and the 
bird's weight. Total power consumption as a function of flight velocity is calculated and compared for several species. 
Power reduction is one of the major factors influencing the choice of flight style. A large body of data is used to obtain 
an approximate scaling between stroke period and the body mass for birds. Together with relations between other 
morphological parameters, this is used to estimate the variation of flight speed and power with body mass for birds, and 
on this basis deviations from allometric scaling can be related to flight proficiency and to the use of such strategies as 
the bounding flight of small passerines. 

[126] Michelson, I., “Flapping Propulsion Wake Analysis,” AIAA Journal, Vol. 1. No. 11, 1963, pp. 2658–2659. 
 Keywords: 3-D, Analytical, Wake 
 
[127] DeLaurier, J. D., “An aerodynamic model for flapping-wing flight,” Aeronautical Journal, Vol. 97, Apr. 1993, 

pp. 125–130. 
 Keywords: 3-D, Analytical, Model 

 Abstract: A design-oriented model for the unsteady aerodynamics of a flapping wing has been developed 
using a modified strip theory approach. Within this constraint, vortex-wake effects are accounted for as well as partial 
leading edge suction and post stall behavior. Also, the contributions of sectional mean angle of attack, camber, and 
friction drag are added, which allows this model to be used for the calculation of the average lift, as well as the thrust, 
power required, and propulsive efficiency of a flapping wing in equilibrium flight. An example of such calculations is 
presented in the performance prediction of a mechanical flying pterosaur replica. 

[128] Deng, X., Schenato, L., Wu, W. C., and Sastry, S. S., “Flapping Flight for Biomimetic Robotic Insects: Part I - 
System Modeling,” IEEE Transactions on Robotics, Vol. 22, No. 4, 2006, pp. 776–788. 

 Keywords: 3-D, Analytical, Dynamic Models 
 Abstract: This paper presents the mathematical modeling of flapping flight inch-size micro aerial vehicles 
(MAVs), namely micromechanical flying insects (MFIs). The target robotic insects are electromechanical devices 
propelled by a pair of independent flapping wings to achieve sustained autonomous flight, thereby mimicking real 
insects. In this paper, we describe the system dynamic models which include several elements that are substantially 
different from those present in fixed or rotary wing MAVs. These models include the wing-thorax dynamics, the 
flapping flight aerodynamics at a low Reynolds number regime, the body dynamics, and the biomimetic sensory system 
consisting of ocelli, halteres, magnetic compass, and optical flow sensors. The mathematical models are developed 
based on biological principles, analytical models, and experimental data. They are presented in the Virtual Insect Flight 
Simulator (VIFS) and are integrated together to give a realistic simulation for MFI and insect flight. VIFS is a software 
tool intended for modeling flapping flight mechanisms and for testing and evaluating the performance of different flight 
control algorithms. 

[129] Orlowski, C. T., and Girard, A. R., “Longitudinal Flight Dynamics of Flapping-Wing Micro Air Vehicles,” 
Journal of Guidance, Control, and Dynamics, Vol. 35, No. 4, 2012, pp. 1115–1131. 

 Keywords: 3-D, Analytical, Dynamics 
 Abstract: The multibody flight dynamics of flapping-wing micro air vehicles are inherently complex. 
Stability analyses and control algorithms are best applied to equations of motion in first-order form. This paper presents 
a method for approximating the first-order equations of motion for a flapping-wing micro air vehicle. The first-order 
equations of motion are derived from a coupled, multibody representation of the system. The first-order equations are 
analyzed using an approximation method called quarter-cycle averaging. The quarter-cycle averaging method is 
necessary because the classical averaging techniques are not available. The quarter-cycle approximation method is 
applied to representations of hovering flight and forward flight. The method enables the calculation of equilibrium 
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points for the averaged system. For both flight regimes, the quarter-cycle approximation method provides an order of 
magnitude improvement in accuracy when compared to local averaging. 

[130] Shyy, W., Berg, M., and Ljungqvist, D., “Flapping and Flexible Wings for Biological and Micro Air 
Vehicles,” Progress in Aerospace Sciences, Vol. 35, No. 5, 1999, pp. 455–505. 

 Keywords: 3-D, Analytical, MAV Modeling 
 Abstract: Micro air vehicles (MAVs) with wing spans of 15 cm or less, and flight speed of 30–60 kph are of 
interest for military and civilian applications. There are two prominent features of MAV flight: (i) low Reynolds 
number (104–105), resulting in unfavorable aerodynamic conditions to support controlled flight, and (ii) small physical 
dimensions, resulting in certain favorable scaling characteristics including structural strength, reduced stall speed, and 
low inertia. Based on observations of biological flight vehicles, it appears that wing motion and flexible airfoils are two 
key attributes for flight at low Reynolds number. The small size of MAVs corresponds in nature to small birds, which 
do not glide like large birds, but instead flap with considerable change of wing shape during a single flapping cycle. 
With flapping and flexible wings, birds overcome the deteriorating aerodynamic performance under steady flow 
conditions by employing unsteady mechanisms. In this article, we review both biological and aeronautical literatures to 
present salient features relevant to MAVs. We first summarize scaling laws of biological and micro air vehicles 
involving wing span, wing loading, vehicle mass, cruising speed, flapping frequency, and power. Next we discuss 
kinematics of flapping wings and aerodynamic models for analyzing lift, drag and power. Then we present issues 
related to low Reynolds number flows and airfoil shape selection. Recent work on flexible structures capable of 
adjusting the airfoil shape in response to freestream variations is also discussed. 

[131] Lan, C. E., “The Unsteady Quasi-Vortex-Lattice Method with Applications to Animal Propulsion,” Journal of 

Fluid Mechanics, Vol. 93, Aug. 1979, pp. 747–765. 
 Keywords: 3-D, Analytical, Continuous Loading Approach 

 Abstract: In the early theoretical study of aquatic animal propulsion either the two-dimensional theory or the 
large aspect-ratio theory has been generally used. Only recently has the unsteady lifting-surface theory with the 
continuous loading approach been applied to the study of this problem by Chopra & Kambe (1977). Since it is well 
known that the continuous loading approach is difficult to extend to general configurations, a new quasi-continuous 
loading method, applicable to general configurations and yet accurate enough for practical applications, is developed in 
this paper. The method is an extension of the steady version of Lan (1974) and is particularly suitable for predicting the 
unsteady lead-edge suction during harmonic motion. The method is applied to the calculation of the propulsive 
efficiency and thrust for some swept and rectangular planforms by varying the phase angles between the pitching and 
heaving motions. It is found that with the pitching axis passing through the trailing edge of the root chord and the 
reduced frequency k equal to 0·75 the rectangular planform is quite sensitive in performance to the phase angles and 
may produce drag instead of thrust. These characteristics are not shared by the swept planforms simulating the lunate 
tails. In addition, when the pitching leads the heaving motion by 90°, the phase angle for nearly maximum efficiency, 
the planform inclination caused by pitching contributes to the propulsive thrust over a large portion of the swept 
planform, while, for the rectangular planform, only drag is produced from the planform normal force at k = 0·75. It is 
also found that the maximum thrust is not produced with maximum efficiency for all planforms considered. The theory 
is then applied to the study of dragonfly aerodynamics. It is shown that the aerodynamically interacting tandem wings 
of the dragonfly can produce high thrust with high efficiency if the pitching is in advance of the flapping and the 
hindwing leads the forewing with some optimum phase angle. The responsible mechanism allows the hindwing to 
extract wake energy from the forewing. 

[132] Liu, T., “Time-Area-Averaged Momentum Stream Tube Model for Flapping Flight,” Journal of Aircraft, Vol. 
44, No. 2, 2007, pp. 459–466. 

 Keywords: 3-D, Analytical, Stream Tube Model, Lifting-line 
 Abstract: This paper formulates a time-area-averaged momentum stream tube model to provide the useful 
functional relations for the cruise velocity, power, and propulsive efficiency in forward flapping flight. This model is a 
direct generalization of the classical actuator disk theory by taking into account the effects of the unsteadiness and 
spatial nonuniformity of velocity in a momentum stream tube. It is found that the functional relation for the time-area-
averaged power required in flapping flight is almost the same as that given by the classical lifting-line theory for a fixed 
wing. The flapping span efficiency is introduced, and its physical meaning and significant role in the power relation are 
interpreted. The flapping propulsive efficiency is related to the flapping span efficiency, normalized total fluctuating 
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kinetic energy, and wing aspect ratio. The use of this model to fit the collected data for birds allows estimating the 
flapping span efficiency, parasite, and induced drag coefficients and propulsive efficiency. 

[133] Taylor, G. K., Nudds, R. L., and Thomas, A. L. R., “Flying and Swimming Animals Cruise at a Strouhal 
Number Tuned for High Power Efficiency,” (ature, Vol. 425, Oct. 2003, pp. 707–711. 

 Keywords: 3-D, Analytical, Strouhal Number 
 Abstract: Dimensionless numbers are important in biomechanics because their constancy can imply dynamic 
similarity between systems, despite possible differences in medium or scale1. A dimensionless parameter that describes 
the tail or wing kinematics of swimming and flying animals is the Strouhal number1, St = fA/U, which divides stroke 
frequency (f) and amplitude (A) by forward speed (U)2, 3, 4, 5, 6, 7, 8. St is known to govern a well-defined series of vortex 
growth and shedding regimes for airfoils undergoing pitching and heaving motions6, 8. Propulsive efficiency is high 
over a narrow range of St and usually peaks within the interval 0.2 < St < 0.4 (refs 3–8). Because natural selection is 
likely to tune animals for high propulsive efficiency, we expect it to constrain the range of St that animals use. This 
seems to be true for dolphins2, 3, 4, 5, sharks3, 4, 5 and bony fish3, 4, 5, which swim at 0.2 < St < 0.4. Here we show that 
birds, bats and insects also converge on the same narrow range of St, but only when cruising. Tuning cruise kinematics 
to optimize St therefore seems to be a general principle of oscillatory lift-based propulsion. 

[134] Phillips, W. F., “Analytical Decomposition of Wing Roll and Flapping Using Lifting-Line Theory,” AIAA 
Paper 2013-2918, June 2013.  

 Keywords: 3-D, Analytical, Lifting-line 
 Abstract: A decomposed Fourier-series solution to Prandtl’s classical lifting-line theory is used to examine 
the effects of rigid-body roll and small-angle wing flapping on the lift, induced-drag, and power coefficients developed 
by a finite wing. This solution shows that, if the flapping rate for any wing is large enough, the mean induced drag 
averaged over a complete flapping cycle will be negative, that is, the wing flapping produces net induced thrust. For 
quasi-steady flapping in pure plunging, the solution predicts that wing flapping has no net effect on the mean lift. A 
significant advantage of this analytical solution over commonly used numerical methods is the utility provided for 
optimizing wing-flapping cycles. The analytical solution involves five time-dependent functions that could all be 
optimized to maximize thrust, propulsive efficiency, and/or other performance measures. Results show that, by 
optimizing only one of these five functions, propulsive efficiencies exceeding 90% can be attained. For the case of an 
elliptic planform with linear twist, closed-form relations are presented for the decomposed Fourier coefficients and the 
flapping rate that produces mean induced thrust that balances the mean drag in the absence of wing flapping. 

[135] Phillips, W. F., “Analytical Decomposition of Wing Roll and Flapping Using Lifting-Line Theory,” Journal of 

Aircraft, Vol. 51, No. 3, 2014, pp. 761–778. 
 Keywords: 3-D, Analytical, Lifting-line 

 Abstract: A decomposed Fourier-series solution to Prandtl’s classical lifting-line theory is used to examine 
the effects of rigid-body roll and small-angle wing flapping on the lift, induced-drag, and power coefficients developed 
by a finite wing. This solution shows that, if the flapping rate for any wing is large enough, the mean induced drag 
averaged over a complete flapping cycle will be negative, that is, the wing flapping produces net induced thrust. For 
quasi-steady flapping in pure plunging, the solution predicts that wing flapping has no net effect on the mean lift. A 
significant advantage of this analytical solution over commonly used numerical methods is the utility provided for 
optimizing wing-flapping cycles. The analytical solution involves five time-dependent functions that could all be 
optimized to maximize thrust, propulsive efficiency, and/or other performance measures. Results show that, by 
optimizing only one of these five functions, propulsive efficiencies exceeding 90% can be attained. For the case of an 
elliptic planform with linear twist, closed-form relations are presented for the decomposed Fourier coefficients and the 
flapping rate that produces mean induced thrust that balances the mean drag in the absence of wing flapping. 

[136] Phillips, W. F., Miller, R. A., and Hunsaker, D. F., “Decomposed Lifting-Line Predictions and Optimization 
for Propulsive Efficiency of Flapping Wings,” AIAA Paper 2013-2921, June 2013.  

 Keywords: 3-D, Analytical, Lifting-line 
 Abstract: A decomposed Four series solution to Prandtl's classical lifting-line theory is used to predict the lift, 
inducted-thrust, and power coefficients developed by a flapping wing. A significant advantage of this quasi-steady 
analytical solution over commonly used numerical methods is the utility provided for optimizing wing flapping cycles. 
The analytical solution involves five time-dependent functions that could all be optimized to maximize thrust, 
propulsive efficiency, and/or other performance measures. Results show that by optimizing only two of these five 
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functions, propulsive efficiencies exceeding 97% can be obtained. Results are presented for untwisted rectangular 
wings in pure plunging, rectangular wings with linear washout and the minimum-power washout magnitude, and 
rectangular wings with the minimum-power washout distribution and magnitude. 

[137] Phillips, W. F., “Lifting-Line Analysis for Twisted Wings and Washout-Optimized Wings,” Journal of 

Aircraft, Vol. 41, No. 1, 2004, pp. 128–136. 
 Keywords: 3-D, Analytical, Lifting-line 

 Abstract: A more practical form of the analytical solution for the effects of geometric and aerodynamic twist 
(washout) on the low-Mach-number performance of a finite wing of arbitrary planform is presented. This infinite series 
solution is based on Prandtl's classical lifting-line theory and the Fourier coefficients are presented in a form that only 
depends on wing geometry. The solution shows that geometric and aerodynamic washout do not affect the lift slope for 
a wing of any planform shape. This solution also shows that any wing with washout always produces induced drag at 
zero lift. Expect for the special case of an elliptic planform, washout can be used to reduce the induced drag for a wing 
producing finite lift. A relation describing the optimum spanwise distribution of washout for a wing of arbitrary 
planform is presented. If this optimum washout distribution is used, a wing of any planform shape can be designed for a 
given lift coefficient to produce induced drag at the same minimum level as an elliptic wing with the same aspect ratio 
and no washout. 

[138] Phillips, W. F., “Incompressible Flow over Finite Wings,” Mechanics of Flight, 2nd ed., Wiley, Hoboken, NJ, 
2010, pp. 46–94. 

 Keywords: 3-D, Analytical, Lifting-line 
 
[139] Phillips, W. F., Alley, N. R., and Goodrich, W. D., “Lifting-Line Analysis of Roll Control and Variable 

Twist,” Journal of Aircraft, Vol. 41, No. 5, 2004, pp. 1169–1176. 
 Keywords: 3-D, Analytical, Lifting-line 

 Abstract: A more practical form of an analytical solution that can be used to predict the roll response for a 
wing of arbitrary planform with arbitrary spanwise variation of control surface deflection and wing twist is presented. 
This infinite series solution is based on Prandtl's classical lifting-line theory, and the Fourier coefficients are presented 
in a form that depends only on wing geometry. The solution can be used to predict rolling and yawing moments as well 
as the lift and induced rag, which result from control surface deflection, rolling rate, and wing twist. The analytical 
solution can be applied to wings with conventional ailerons or to wings utilizing wing-warping control. The method is 
also applied to full-span twisting control surfaces, named "twisterons," which can be simultaneously used to provide 
roll control, high-lift, and minimum induced drag. 

[141] Prandtl, L., “Tragflügel Theorie,” (achricten von der Gesellschaft der Wissenschaften zu Göttingen, 
Geschäeftliche Mitteilungen, Klasse, 1918, pp. 451–477.  
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Amis des Sciences (aturales, Vol. 13, No. 2, 1906,  pp. 261–284. 
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Aircraft Stability Derivatives,” Journal of Aircraft, Vol. 40, No. 6, 2003, pp. 1107–1114. 
 Keywords: 3-D, Analytical, Propeller 

 Abstract: Running propellers can have a profound effect on the trim and static stability of an airplane. The 
method most commonly used for determining propeller stability derivatives is based on blade element theory with the 
axial component of induced velocity taken to be that predicted from classical propeller momentum theory. The induced 
flow predicted from propeller momentum theory is not consistent with the actual induced flow in the vicinity of a 
rotating propeller. In the present paper an alternative method for predicting propeller stability derivatives is proposed. 
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This method is based on blade element theory with the induced velocity predicted from propeller vortex theory. Results 
are compared with other analytical predictions and experimental data for specific propeller blade geometry.  

[145] Lighthill, M. J., “Aerodynamic Aspects of Animal Flight,” Bulletin of the Institute of Mathematics and its 

Applications, Vol. 10, No. 3 1974, pp. 369–393. 
 Keywords: 3-D, Experimental, Animals 

 Abstract: A lecture or a course of lectures on ‘Aircraft’ would put approximately equal emphasis on 
aerodynamic, structural and power-plant aspects; whereas lectures on ‘Aerodynamics of Aircraft’ would concentrate 
principally on aerodynamic matters while referring to just the basic elements of what limitations are imposed by 
structural and power-plant considerations. Similarly this lecture on the ‘Aerodynamic Aspects of Animal Flight’ will 
concentrate on the aerodynamic forces, and the resulting dynamic interactions, between the movements of a flying 
animal relative to the air and the associated air movements; and include only brief references to fundamental limitations 
imposed by the strength and stiffness of the skeleton of the animal and other structural considerations, or by the power-
plant capabilities of the animal’s musculature and metabolism. Equally it will give only a highly condensed account 
(see section on Evolution) of the biologically fundamental questions of how systems for animal flight evolved in 
response to environmental demands and opportunities. 

[146] Pennycuick, C. J., “Power Requirements for Horizontal Flight in the Pigeon, Columba Livia,” Journal of 

Experimental Biology, Vol. 49, Dec. 1968, pp. 527–555. 
 Keywords: 3-D, Experimental, Animals 

 Abstract: 1. Certain measurements made on pigeons flying horizontally in a wind-tunnel are described. 2. A 
method, based on helicopter theory, for calculating the power required to fly at any given speed is explained. Induced, 
profile and parasite power are calculated separately. 3. It is concluded that the pigeon can fly horizontally without 
incurring an oxygen debt at speeds from 3 to 16 m./sec. The minimum power speed is 8-9 m./sec. The maximum 
continuous power output is estimated to be 10.5 W., and the corresponding oxygen consumption about 170 ml./min. 
The maximum (sprint) power is estimated to be 20.4 W., from observations of vertical climb after take-off. 4. The 
estimated best lift: drag ratio in horizontal flight is 5.9, giving a range of 11.8 km./g. of fat oxidized for a 400 g. pigeon. 
5. It is argued from considerations of structural strength that the early part of the downstroke is used mainly to impart 
angular velocity to the wing, and that air loads are only developed after most of the angular acceleration has taken 
place. The tension in the pectoralis insertion may exceed 60% of the breaking tension in fast horizontal flight. 6. The 
power calculation was repeated for the ruby-throated hummingbird, using published data. Estimated best range is about 
900 km./g. of fat oxidized, achieved at 9 m./sec. The corresponding effective lift/drag ratio is 4.1. 7. The variation of 
power required and power available with size is considered, and the effect on hovering and take-off performance of 
different birds deduced. 8. Performance estimates for the pigeon and ruby-throated hummingbird are very poor by 
engineering standards, but consistent with these birds' known abilities, and are in general agreement with estimates of 
effective lift/drag ratio derived from published data on other species. 

[147] Saharon, D., and Luttges, M., “Three-Dimensional Flow Produced by a Pitching-Plunging Model Dragonfly 
Wing,” AIAA Paper 1987-0121, Jan. 1987.  

 Keywords: 3-D, Experimental, Dragonfly 
 
[148] Childress, S., and Dudley, R., “Transition from Ciliary to Flapping Mode in a Swimming Mollusc: Flapping 

Flight as a Bifurcation in Reω,” Journal of Fluid Mechanics, Vol. 498, Jan. 2004, pp. 257–288. 
 Keywords: 3-D, Experimental, Fish 

 Abstract: From observations of swimming of the shell-less pteropod mollusc Clione antarctica we compare 
swimming velocities achieved by the organism using ciliated surfaces alone with velocities achieved by the same 
organism using a pair of flapping wings. Flapping dominates locomotion above a swimming Reynolds number Re in 
the range 5–20. We test the hypothesis that Re≈5–20 marks the onset of ‘flapping flight’ in these organisms. We 

consider the proposition that forward, reciprocal flapping flight is impossible for locomoting organisms whose motion 
is fully determined by a body length L and a frequency ω below some finite critical value of the Reynolds 
number Reω=ωL2/ν. For a self-similar family of body shapes, the critical Reynolds number should depend only upon 
the geometry of the body and the cyclic movement used to locomote. We give evidence of such a critical Reynolds 
number in our data, and study the bifurcation in several simplified theoretical models. We argue further that this 
bifurcation marks the departure of natural locomotion from the low Reynolds number or Stokesian realm and its entry 
into the high Reynolds number or Eulerian realm. This occurs because the equilibrium swimming or flying 
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speed Uf obtained at the instability is determined by the mechanics of a viscous fluid at a value of Ref=UfL/ν that is not 
small. 

[149] Whitney, J. P., and Wood, R. J., “Aeromechanics of Passive Rotation in Flapping Flight,” Journal of Fluid 

Mechanics, Vol. 660, Oct. 2010, pp. 197–220. 
 Keywords: 3-D, Experimental, Insect 

 Abstract: Flying insects and robots that mimic them flap and rotate (or ‘pitch’) their wings with large angular 
amplitudes. The reciprocating nature of flapping requires rotation of the wing at the end of each stroke. Insects or 
flapping-wing robots could achieve this by directly exerting moments about the axis of rotation using auxiliary muscles 
or actuators. However, completely passive rotational dynamics might be preferred for efficiency purposes, or, in the 
case of a robot, decreased mechanical complexity and reduced system mass. Herein, the detailed equations of motion 
are derived for wing rotational dynamics, and a blade-element model is used to supply aerodynamic force and moment 
estimates. Passive-rotation flapping experiments with insect-scale mechanically driven artificial wings are conducted to 
simultaneously measure aerodynamic forces and three-degree-of-freedom kinematics (flapping, rotation and out-of-
plane deviation), allowing a detailed evaluation of the blade-element model and the derived equations of motion. 
Variations in flapping kinematics, wing-beat frequency, stroke amplitude and torsional compliance are made to test the 
generality of the model. All experiments showed strong agreement with predicted forces and kinematics, without 
variation or fitting of model parameters. 

[150] Cloupeau, M., Devillers, J. and & Devezeaux, D., “Direct Measurements of Instantaneous Lift in Desert 
Locust; Comparison with Jensen's Experiments on Detached Wings,” Journal of Experimental Biology, Vol. 80, June 
1979, pp. 1–15. 

 Keywords: 3-D, Experimental, Insect 
 Abstract: Instantaneous values of lift in the locust Schistocerca gregaria, flying in a wind tunnel, were 
measured by means of a piezo-electric probe. The airflow velocity was adjusted to be equal to that which would have 
been experienced by the freely flying insect. In order to obtain the true aerodynamic forces, the inertial forces must be 
subtracted from the gross forces measured. These inertial forces were calculated from the movement of the centre of 
gravity and from the mass of the different wing sections. The lift curves obtained have a shape similar to the curves 
deduced by Jensen from measurements on isolated wings in steady flows, but an approximately doubled amplitude. 
These amplitude differences appear to be caused by the existence of significant unsteady effects. 

[151] Sane, S. P., and Dickinson, M. H., “The Aerodynamic Effects of Wing Rotation and a Revised Quasi-Steady 
Model of Flapping Flight,” Journal of Experimental Biology, Vol. 205, Jan. 2002, pp. 1087–1096. 

 Keywords: 3-D, Experimental, Insect 
 Abstract: We used a dynamically scaled model insect to measure the rotational forces produced by a flapping 
insect wing. A steadily translating wing was rotated at a range of constant angular velocities, and the resulting 
aerodynamic forces were measured using a sensor attached to the base of the wing. These instantaneous forces were 
compared with quasi-steady estimates based on translational force coefficients. Because translational and rotational 
velocities were constant, the wing inertia was negligible, and any difference between measured forces and estimates 
based on translational force coefficients could be attributed to the aerodynamic effects of wing rotation. By factoring 
out the geometry and kinematics of the wings from the rotational forces, we determined rotational force coefficients for 
a range of angular velocities and different axes of rotation. The measured coefficients were compared with a 
mathematical model developed for two-dimensional motions in inviscid fluids, which we adapted to the three-
dimensional case using blade element theory. As predicted by theory, the rotational coefficient varied linearly with the 
position of the rotational axis for all angular velocities measured. The coefficient also, however, varied with angular 
velocity, in contrast to theoretical predictions. Using the measured rotational coefficients, we modified a standard 
quasi-steady model of insect flight to include rotational forces, translational forces and the added mass inertia. The 
revised model predicts the time course of force generation for several different patterns of flapping kinematics more 
accurately than a model based solely on translational force coefficients. By subtracting the improved quasi-steady 
estimates from the measured forces, we isolated the aerodynamic forces due to wake capture. 

[152] Warkentin, J., and DeLaurier, J., “Experimental Aerodynamic Study of Tandem Flapping Membrane Wings,” 
Journal of Aircraft, Vol. 44, No. 5, 2007, pp. 1653–1661. 

 Keywords: 3-D, Experimental, Biplane 
 Abstract: A systematic series of wind-tunnel tests was conducted on an ornithopter configuration consisting 
of two sets of symmetrically flapping wings, located one behind the other in tandem. It was discovered that the tandem 
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arrangement can give thrust and efficiency increases over a single set of flapping wings for certain relative phase angles 
and longitudinal spacing between the wing sets. In particular, close spacing on the order of 1 chord length is generally 
best, and phase angles of approximately 0 +- 50 deg give the highest thrusts and propulsive efficiencies. Asymmetrical 
flapping was also studied, which consists of the two sets of wings rocking relative to one another 180 deg out of phase. 
It was found that the performance of such an arrangement is poor, relative to the best performing symmetrical tandem 
flapping. 

[153] Saharon, D., and Luttges, M., “Visualization of Unsteady Separated Flow Produced by Mechanically Driven 
Dragonfly Wing Kinematics Model,” AIAA Paper 1988-0569, Jan. 1988.  

 Keywords: 3-D, Experimental, Tandem-Wing 
 Abstract: Visualizations of three-dimensional unsteady separated flow produced by mechanically modeled 

dragonfly wing kinematics were obtained using wing motions that closely resemble those of live dragonflies. Tandem 
wing effects were gauged by individual effects of fore and aft wings tested alone. The effects of altered wing motions 
were studied by small changes in wing beat frequency. Full tandem wing models were used for these tests. Vortex 
structures produce by the mechanical model wings were quite similar to those elicited by the tethered dragonflies in the 
wing tunnel tests. The characteristic eight major vortex structure produced by the tandem wings during each wing beat 
cycle could be traced to similar structure produced about each wing tested individually. Wing-vortex interactions were 
evaluated in terms of initiation, development, and utilization. Changing parameter combinations altered the observed 
interactions between flow and wings largely due to differences in flow structure interference. Much of the interference 
was detrimental to maximized flow – wing interactions. And, constructive interference was limited to a narrow range of 
parameter combinations where the resulting flow fields were typically characterized by downwash pattern of 
streaklines. The delineated multi-oscillating wing beat cycle may be a comprehensive model of lift enhancement 
mechanisms used by many insect. The mechanism would enable many insects to use unsteady separated flows. 
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Controlling the Produced Flows,” AIAA Paper 1989-0832, Jan. 1989.  
 Keywords: 3-D, Experimental, Tandem-Wing 
 Abstract: Visualizations of three-dimensional unsteady separated flow produced by a mechanically driven 

dragonfly wing kinematics model were collected and analyzed. Tandem wing effects were evaluated by comparison 
with effects produced by fore and aft wings tested individually. The effects of wing kinematics were studied with an 
emphasis on changes in the phase relations between fore and aft wings. Vortex structures produced by the mechanical 
model were quite similar to those elicited from tethered dragonflies in wind tunnel tests. The eight kinematic elements 
of the model wing beat were short lived such that each yielded a specific transitional flow structure. Fore and aft wing 
phase differences produced flow structures that interacted, one with another, in differing wings. Flow interactions were 
either constructive or destructive and yielded different wing-flow interaction. Constructive flow interactions were 
evaluated in terms of integrating and fusing of vortex structures. Destructive flow interactions were evaluated in terms 
of vortex disruption, splitting, and deflecting. The net results of these interactions were to enhance lift and thrust as 
seen in downwash and downstream flow structures.  

 
[155] Ozen, C. A., and Rockwell, D., “Control of Vortical Structures on a Flapping Wing Via a Sinusoidal Leading-

Edge,” Physics of Fluids, Vol. 22, No. 2, 2010, pp. 021701-1–021701-3. 
 Keywords: 3-D, Experimental, Flat Plate 

 Abstract: The flow structure generated by a flapping wing in the form of a plate is fundamentally altered if 
the leading-edge has a sinusoidal shape. It is possible to attenuate both the positive and negative spanwise flows along 
the plate surface, as well as the onset and development of large-scale concentrations of positive and negative 
streamwise vorticities at inboard locations. These alterations of the inboard flow structure have an insignificant 
influence on the structure of the tip vortex. 

 [156] Hong, Y., and Altman, A., “Lift from Spanwise Flow in Simple Flapping Wings,” Journal of Aircraft, Vol. 
45, No. 3, 2008, pp. 1206–1216. 

 Keywords: 3-D, Experimental, Flat Plate 
 Abstract: Spanwise flow contributes to lift in thin flat-plate zero-pitch-angle flapping wings in quiescent air. 
It is reasonable to maintain only the kinematics and mechanical complexity absolutely necessary in developing 
flapping-wing micro air vehicles. This study continues the quantification of the lift generated from a flapping motion of 
absolute minimum complexity thought to be capable of generating lift. A flapping-wing micro air vehicle with 
rectangular planform wings fabricated in-house (semispan aspect ratios from 1.5 to 4.0) was used to quantify the 
contributions to lift from flow along the span of wings at numerous points throughout the flapping cycle under a variety 
of operating conditions (3-6 Hz and Reynolds number of 6,000 - 15,000). These experiments were performed for 
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several aspect ratios for flat-plate and spanwise-cambered wings. The lift force was quantified experimentally using a 
force transducer and a high-speed camera. Digital particle image velocimetry was used to determine the lift 
contributions of spanwise flow to the total measured lift. Additionally, the presence of spanwise camber was shown to 
affect the transient lift behavior. 

[157] Peng, D., and Milano, M., “Lift Generation with Optimal Elastic Pitching for a Flapping Plate,” Journal of 

Fluid Mechanics, Vol. 717, Feb. 2013, pp. R1-1–R1-13. 
 Keywords: 3-D, Experimental, Flat Plate 

 Abstract: The lift-generating capabilities of a translating and passively pitching rectangular plate are assessed 
experimentally. The plate pitch dynamics are generated by a rotational spring, and a genetic algorithm isolates a set of 
spring parameters maximizing the average lift. Our experiments identified a range of parameters that produce kinematic 
trajectories associated with optimal lift production. The stroke length and the dynamic response of the spring at the 
driving frequency are revealed to play crucial roles in the generation of such trajectories. Measurements taken with 
digital particle image velocimetry are used to analyze the results. 

[158] Schmidt, W., “Der Wellpropeller, ein Neuer Antrieb fuer Wasser-Land-, und Luftfahrzeuge,” Zeitschrift fur 

Flugwissenschaften, Vol. 13, Oct. 1965, pp. 427–479. 
 Keywords: 3-D, Experimental, Propeller 

 
[159] Heathcote, S., Wang, Z., and Gursul, I., “Effect of Spanwise Flexibility on Flapping Wing Propulsion,” 

Journal of Fluids and Structures, Vol. 24, No. 2, 2008, pp. 182–199. 
 Keywords: 3-D, Experimental, Flexibility 

 Abstract: A water tunnel study of the effect of spanwise flexibility on the thrust, lift and propulsive efficiency 
of a rectangular wing oscillating in pure heave has been performed. The thrust and lift forces were measured with a 
force balance, and the flow field was measured with a Particle Image Velocimetry system. Introducing a degree of 
spanwise flexibility was found to be beneficial. For Strouhal numbers greater than 0.2, a degree of spanwise flexibility 
was found to yield a small increase in thrust coefficient, and a small decrease in power-input requirement, resulting in 
higher efficiency. In this case, a moderately stronger trailing-edge vortex system was observed. Introducing a far 
greater degree of spanwise flexibility, however, was found to be detrimental. A large phase delay of the wing tip 
displacement was observed, leading to the root and tip moving in opposite directions for a significant portion of the 
flapping stroke. Vorticity of opposing sign was observed to be shed from the root and tip, resulting in a weak and 
fragmented vorticity pattern. The thrust coefficient was observed to be significantly reduced, and the efficiency 
diminished. It is noted that the range of Strouhal numbers for which spanwise flexibility was found to offer benefits 
overlaps the range found in nature, of 0.2<Sr<0.4. From a design aspect, flexibility may benefit flapping-wing Micro 
Air Vehicles both aerodynamically and in the inherent lightness of flexible structures. 

[160] Ellington, C. P., and Usherwood, J. R.,  “Lift and Drag Characteristics of Rotary and Flapping Wings,” Fixed 

and Flapping Wing Aerodynamics for Micro Air Vehicles, AIAA, Danvers, MA, 2001, pp. 231–248. 
 Keywords: 3-D, Experimental, Hover 
 
[161] Heathcote, S., Martin, D., and Gursul, I., “Flexible Flapping Airfoil Propulsion at Zero Freestream Velocity,” 

AIAA Journal, Vol. 42, No. 11, 2004, pp. 2196–2204. 
 Keywords: 3-D, Experimental, Hover 

 Abstract: Thrust generation for an airfoil plunging at zero freestream velocity, the case relevant to hovering 
birds and insects, has been studied. The objective was to investigate the effect of airfoil stiffness. Particle image 
velocimetry and force measurements were taken for three airfoils of relative bending stiffness 1:8:512 in a water tank. 
The deformation of the flexible airfoils produces an angle of attack that varies periodically with a phase angle with 
respect to the plunging motion. Amplitude and phase of this combined plunging/pitching motion play a major role in 
the flowfield and thrust generation. Vortex pairs or alternating vortex streets were observed depending on the amplitude 
and phase lag of the trailing edge. The strength of the vortices, their lateral spacing, and the time-averaged velocity of 
the induced jet were found to depend on the airfoil flexibility, plunge frequency, and amplitude. Direct force 
measurements confirmed that at high plunge frequencies the thrust coefficient of the airfoil with intermediate stiffness 
was greatest, although the least stiff airfoil can generate larger thrust at low frequencies. It is suggested that there is an 
optimum airfoil stiffness for a given plunge frequency and amplitude. The thrust/input-power ratio was found to be 
greater for the flexible airfoils than for the rigid airfoil. 
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[162] Norberg, R. A., “Hovering Flight of the Dragonfly Aeschna Juncea: Kinematics and Aerodynamics,” 
Swimming and Flying in (ature, Plenum Press, New York, 1975, pp. 763–781. 

 Keywords: 3-D, Experimental, Hover 
 Abstract: The kinematics of free unimpeded hovering flight of Aeschna juncea L. was analyzed from films 
taken in the field with 80 frames sec−1, and from still pictures taken with a motorized camera. The body is held almost 
horizontal, and the wing stroke plane is tilted 60° relative to the horizontal. In these respects the dragonfly differs 
strongly from most other hovering animals. The wing beats essentially in the same plane on the downstroke and 
upstroke. All wings are strongly supinated (pitched-up) during the upstroke. The stroke angle is ca. 60° and the wing 
beat frequency ca. 36 Hz. Average, minimum force coefficients were calculated with use of steady-state aerodynamic 
theory. Calculations were made under several alternative assumptions and gave lift coefficients of 3.5 to 6.1, which are 
all far too large to be explainable with steady-state aerodynamics. At least 60% of the force generated in hovering flight 
are due to non-steady-state aerodynamics. The pitching rotations of the wings at top and bottom of the stroke are 
believed to contribute much force, although the exact mechanism is not clear. At the leading edge of the wing of 
dragonflies there is a unique morphological arrangement, the node. It permits elastic tension of the leading edge and 
seems to be an adaptation permitting strong wing twistings. The node may also function as a shock absorber. 

[163] Sunada, S., Hatayama, Y., and Tokutake, H., “Pitch, Roll, and Yaw Damping of a Flapping Wing,” AIAA 

Journal, Vol. 48, No. 6, 2010, pp. 1261–1265. 
 Keywords: 3-D, Experimental, Hover 
 
[164] Tarascio, M. J., Ramasamy, M., Chopra, I., and Leishman, J. G., “Flow Visualization of Micro Air Vehicle 

Scaled Insect-Based Flapping Wings,” Journal of Aircraft, Vol. 42, No. 2, 2005, pp. 385–390. 
 Keywords: 3-D, Experimental, Hover 

 Abstract: A flow-visualization experiment was conducted on an insect-based flapping-wing mechanism. This 
enabled greater understanding and insight to be gained on the unsteady aerodynamic phenomena that are responsible 
for the enhanced lift of wing operating at low Reynolds numbers in hovering flapping flight. Flow-visualization images 
were acquired with a strobbed laser sheet to illuminate the flow, which was seeded with a mineral oil fog. The general 
flowfield structure was found to consist of a folded wake, with a relatively large starting vortex and the end of each 
half-stroke. A large flow recirculation region was generated in the plane of flapping, which was centered around the 
two extreme flapping displacements. These general flowfield features were enhanced by detailed observations of the 
local flowfield around the wing section. One observation was the presence of multiple vortices on the top surface of the 
wing as it underwent translation. Furthermore, the local flowfield images clearly showed the growth of the leading-
edge vortex as a function of span and identified the presence of separated flow on the outboard regions of the wing. 
These experimental results were supported by a free vortex modeling of the wake developments. The model was found 
to predict similar wake flowfield dynamics to that found in the experiments. This research has contributed to a better 
understanding of the unsteady aerodynamic mechanisms that are responsible for the enhanced lift of insect-based 
flapping wings in hover. 

[165] Goldschmidt, V. W., and Bradshaw, P., “Flapping of a Plane Jet,” Physics of Fluids, Vol. 16, No. 3, 1973, pp. 
397. 

 Keywords: 3-D, Experimental, Wake 
 Abstract: Correlations of the instantaneous velocity fluctuations on opposite sides of a subsonic plane jet 
have been measured. These indicate that there is a measurable flapping of the jet. The frequency of the flapping is 
estimated by taking the correlation with one signal delayed in time. 

[166] Shinde, S. Y., and Arakeri, J. H., “Flexibility in Flapping Foil Suppresses Meandering of Induced Jet in 
Absence of Free Stream,” Journal of Fluid Mechanics, Vol. 757, Oct. 2014, pp. 231–250. 

 Keywords: 3-D, Experimental, Wake 
 Abstract: Thrust-generating flapping foils are known to produce jets inclined to the free stream at high 

Strouhal numbers St=fA/U∞, where f is the frequency and A is the amplitude of flapping and U∞ is the free-stream 

velocity. Our experiments, in the limiting case of St→∞ (zero free-stream speed), show that a purely oscillatory 
pitching motion of a chordwise flexible foil produces a coherent jet composed of a reverse Bénard–Kármán vortex 
street along the centerline, albeit over a specific range of effective flap stiffnesses. We obtain flexibility by attaching a 
thin flap to the trailing edge of a rigid NACA0015 foil; length of flap is 0.79c where c is rigid foil chord length. It is the 
time-varying deflections of the flexible flap that suppress the meandering found in the jets produced by a pitching rigid 
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foil for zero free-stream condition. Recent experiments (Marais et al., J. Fluid Mech., vol. 710, 2012, p. 659) have also 
shown that the flexibility increases the St at which non-deflected jets are obtained. Analyzing the near-wake vortex 
dynamics from flow visualization and particle image velocimetry (PIV) measurements, we identify the mechanisms by 
which flexibility suppresses jet deflection and meandering. A convenient characterization of flap deformation, caused 
by fluid–flap interaction, is through a non-dimensional ‘effective stiffness’, EI∗=8EI/(ρV2TEmaxsfc3f/2), representing 
the inverse of the flap deflection due to the fluid-dynamic loading; here, EI is the bending stiffness of flap, ρ is fluid 
density, VTEmax is the maximum velocity of rigid foil trailing edge, sf is span and cf is chord length of the flexible 
flap. By varying the amplitude and frequency of pitching, we obtain a variation in EI∗ over nearly two orders of 
magnitude and show that only moderate EI∗ (0.1≲EI∗≲1) generates a sustained, coherent, orderly jet. Relatively ‘stiff’ 
flaps (EI∗≳1), including the extreme case of no flap, produce meandering jets, whereas highly ‘flexible’ flaps 
(EI∗≲0.1) produce spread-out jets. Obtained from the measured mean velocity fields, we present values of thrust 
coefficients for the cases for which orderly jets are observed. 

[167] Hu, H., Clemons, L. and Igarashi, H., “An Experimental Study of the Unsteady Vortex Structures in the Wake 
of a Root-Fixed Flapping wing,” Experiments in Fluids, Vol. 51, No. 2, 2011, pp. 347–359. 

 Keywords: 3-D, Experimental, Wake 
 Abstract: An experimental study was conducted to characterize the evolution of the unsteady vortex 
structures in the wake of a root-fixed flapping wing with the wing size, stroke amplitude, and flapping frequency within 
the range of insect characteristics for the development of novel insect-sized nano-air-vehicles (NAVs). The 
experiments were conducted in a low-speed wing tunnel with a miniaturized piezoelectric wing (i.e., chord 
length, C = 12.7 mm) flapping at a frequency of 60 Hz (i.e., f = 60 Hz). The non-dimensional parameters of the 
flapping wing are chord Reynolds number of Re = 1,200, reduced frequency of k = 3.5, and non-dimensional flapping 
amplitude at wingtip h = A/C = 1.35. The corresponding Strouhal number (Str) is 0.33, which is well within the optimal 
range of 0.2 < Str < 0.4 used by flying insects and birds and swimming fishes for locomotion. A digital particle image 
velocimetry (PIV) system was used to achieve phased-locked and time-averaged flow field measurements to quantify 
the transient behavior of the wake vortices in relation to the positions of the flapping wing during the upstroke and 
down stroke flapping cycles. The characteristics of the wake vortex structures in the chordwise cross planes at different 
wingspan locations were compared quantitatively to elucidate underlying physics for a better understanding of the 
unsteady aerodynamics of flapping flight and to explore/optimize design paradigms for the development of novel 
insect-sized, flapping-wing-based NAVs. 

[168] Kokshaysky, N. V., “Tracing the Wake of a Flying Bird,” (ature, Vol. 279, May 1979, pp. 146–148. 
 Keywords: 3-D, Experimental, Wake 

 Abstract: Study of the classical problem concerning “the way of an eagle in the air”, when applied to flapping 
bird flight, offers many difficulties. All dynamic interactions between an object and a fluid medium in which it moves 
are ciphered in the structure of its wake, but the wake behind a flying bird is difficult to work with because it is an 
invisible and very short-lived formation; moreover, its structure must be complicated as the bird's wings are working in 
a constantly changing manner. I report here the results of wake visualization experiments carried out during short 
flights of a chaffinch (Fringilla coelebs) and a brambling (F. montifringilla) in enclosures. The general configuration of 
a wake is given, but no measurements have been made: in general, to extract some quantitative information from the 
wake structure, a more precisely documented picture of the dynamics of its formation is needed. 

[169] Ren, W., Hu, H., Liu, H., and Wu, J. C., “An Experimental Investigation on the Asymmetric Wake Formation 
of an Oscillating Airfoil,” AIAA Paper 2013-0794, Jan. 2013.  

 Keywords: 3-D, Experimental, Wake 
 Abstract: Bio-inspired aerodynamic designs have been mutually promoted by the studies on flapping wings in 
the past decades. Among the tons of researches topics, the wake formation/structure of an oscillating airfoil is more 
attractive, and it results in the development of both numerical methods and flow diagnostics techniques. In this paper, 
wake formation behind a sinusoidally pitching NACA 0012 has been studied with PIV measurements. The evolution of 
wake structures with increasing Strouhal number was reproduced successfully. With further experiments, the effect of 
Strouhal number, the amplitude and mean value of AOA on the asymmetric wake formation were also investigated. 
Results showed that the distance between vortex street became larger with increasing amplitude, while mean strength 
of vortices declined. Besides, the asymmetric wake formation was strongly dependent on the mean. Specifically, based 
on our experiments, the direction of wake asymmetry was changed at alpha_bar=5 deg and St=0.37. 
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[170] Spedding, G. R., “The Wake of a Kestrel (Falco Tinnunculus) in Flapping Flight,” Journal of Experimental 

Biology, Vol. 127, Jan. 1987, pp. 59–78. 
 Keywords: 3-D, Experimental, Wake 

 Abstract: The structure of the wake behind a kestrel in medium-speed flight down a 36 m length of corridor 
was analyzed qualitatively and quantitatively by stereophotogrammetry of multiple flash photographs of the motion of 
small soap-covered helium bubbles. The wake consists of a pair of continuous, undulating trailing vortices. The 
upstroke is therefore aerodynamically active and the circulation appears to remain constant along the wing whose 
geometry is altered during the course of the wingstroke. It is argued that the flight kinematics, and so the wake 
structure, of the kestrel may be typical of flapping flight at medium speeds and a flight model based on this wake 
geometry is presented. Rough estimates of the rate of momentum generated in the wake balance the weight almost 
exactly and a direct estimate of the induced power requirement from the wake measurements is obtained. The 
significance of these results for the various alternative aerodynamic descriptions and energetic predictions of models of 
flapping animal flight is briefly assessed. 

[171] von Ellenrieder, K. D., Parker, K, and Soria, J., “Flow Structures Behind a Heaving and Pitching Finite-Span 
Wing,” Journal of Fluid Mechanics, Vol. 490, Sep. 2003, pp. 129–138. 

 Keywords: 3-D, Experimental, Wake 
 Abstract: The three-dimensional structure of the flow behind a heaving and pitching finite-span wing is 
investigated using dye flow visualization at a Reynolds number of 164. Phase-locked image sequences, which are 
obtained from two orthogonal views, are combined to create a set of composite images that give an overall sense of the 
three-dimensional structure of the flow. A model of the vortex system behind the wing is constructed from the image 
sequences. Variations of the Strouhal number, pitch amplitude and heave/pitch phase angle are qualitatively shown to 
affect the structure of the wake. 

[172] Bandyopadhyay, P. R., and Leinhos, H. A., “Propulsion Efficiency of Bodies Appended with Multiple 
Flapping Fins: When More Is Less,” Physics of Fluids, Vol. 25, No. 4, 2013, pp. 041902-1–041902-23. 

 Keywords: 3-D, Experimental, Vortices 
 Abstract: Underwater animals propel themselves by flapping their pectoral and caudal fins in a narrow range 
of frequencies, given by Strouhal number St, to produce transitional vortex jets (St is generally expressed non-
dimensionally as the product of flapping frequency and stroke (arc) length divided by forward speed). The organized 
nature of the selection of St and of the vortex jet is thought to maximize hydrodynamic efficiency, although the exact 
mechanism is not known. Our recent Stuart-Landau equation models, which have self-regulation properties, indicate 
that the fin and its jet vortices couple. Temporal maps of forces in single isolated fins show a bimodal behavior in 
certain ranges of the transitional Reynolds number; this behavior bears resemblance to neural bifurcation properties that 
owe their origin to the self-regulation mechanism. In view of our theoretical and biorobotic evidence of self-regulation 
in single flapping fins, we explore if this property is altered in a fin-appended body, the goal being to understand how 
the narrow selection of St, self-regulation, and maximization of hydrodynamic efficiency are related. Swimming 
vehicles of 1-m scale have been built where a rigid cylindrical body is appended with six flapping fins, three at each 
end. The fins are rigid, have a rounded leading edge and a laminar section (NACA 0012), and are hinged at one end. 
The planform is an abstracted version of the penguin wing; it has low aspect ratio and a chord Reynolds number that 
varies in the transitional range from 10 000 to 60 000. The fin geometry, Reynolds number range, and the nonflexible 
nature of the main body are in common with those in penguins, and the length and displacement volume are similar to 
those of sharks. The maximum hydrodynamic efficiency of the fin-appended body (0.40) is lower than that of the single 
fin (0.57), but is close to that of a fish using several fins. The propulsion density (kW/m3 of displacement volume) of 
the fin-appended cylinder is similar to that of a cruising shark. If we allow comparison of electrical versus 
thermal measurements, the total efficiency of the fin-appended body is similar to that of the damselfly and dragonfly, 
which are also based on vortex propulsion. The fin force fluctuations are modeled by a van der 
Pol oscillator. Measured phase maps of force fluctuation versus its time derivative correlate with the Strouhal numbers. 
Until stabilization, the maximum hydrodynamic efficiency of the fin-appended body increases with fin Reynolds 
number in a staircase pattern whose boundaries correlate with similar transitional sub-regimes in single fins, including 
the bimodal sub-regimes, thereby relating efficiency with the self-regulating jet vortex oscillators. At low Reynolds 
numbers, the peak of hydrodynamic efficiency remains flat over a wide range of St, becoming steeper at 
higher Reynolds numbers with the maximum occurring at lower values of St. The modeling shows that for self-
regulation, future biorobotic design should focus on the reduction of structural damping and on a fin-body assembly 
that has reciprocal energetic interaction with the shed vortex. 
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[173] Wood, C. J., and Kirmani, S. F. A., “Visualization of Heaving Aerofoil Wakes Including the Effect of a Jet 
Flap,” Journal of Fluid Mechanics, Vol. 41, Apr. 1970, pp. 627–640. 

 Keywords: 3-D, Experimental, Vortices 
 Abstract: Theoretical solutions exist for the flow about aerofoils in various modes of unsteady motion. This is 
also true for aerofoils whose lift is augmented by a jet flap. A common feature of these theories is the assumption of 
small amplitude displacements from the mean path and the generation of a continuous vortex sheet wake. However, in 
practice when the motion is oscillatory and of finite amplitude, an alternating trail of individual vortices is often found. 
The present visual investigation includes the measurement of some vortex street parameters associated with heaving 
aerofoils. The results are compared with those of conventional thin aerofoil theory in order to assess the significance of 
this departure from the conventional small displacement flow model. 

[174] Birch, J. M., Dickson, W. B., and Dickinson, M. H., “Force Production and Flow Structure of the Leading 
Edge Vortex on Flapping Wings at High and Low Reynolds Numbers,” Journal of Experimental Biology, Vol. 207, 
Mar. 2004, pp. 1063–1072. 

 Keywords: 3-D, Experimental, Vortices 
 Abstract: The elevated aerodynamic performance of insects has been attributed in part to the generation and 
maintenance of a stable region of vorticity known as the leading edge vortex (LEV). One explanation for the stability of 
the LEV is that spiraling axial flow within the vortex core drains energy into the tip vortex, forming a leading-edge 
spiral vortex analogous to the flow structure generated by delta wing aircraft. However, whereas spiral flow is a 
conspicuous feature of flapping wings at Reynolds numbers (Re) of 5000, similar experiments at Re=100 failed to 
identify a comparable structure. We used a dynamically scaled robot to investigate both the forces and the flows 
created by a wing undergoing identical motion at Re of∼ 120 and ∼1400. In both cases, motion at constant angular 
velocity and fixed angle of attack generated a stable LEV with no evidence of shedding. At Re=1400, flow 
visualization indicated an intense narrow region of spanwise flow within the core of the LEV, a feature conspicuously 
absent at Re=120. The results suggest that the transport of vorticity from the leading edge to the wake that permits 
prolonged vortex attachment takes different forms at different Re.  

[175] Hong, Y., and Altman, A., “Streamwise Vorticity in Simple Mechanical Flapping Wings,” Journal of Aircraft, 
Vol. 44, No. 5, 2007, pp. 1588–1597. 

 Keywords: 3-D, Experimental, Vortices 
 Abstract: The presence of streamwise vorticity in the vicinity of the wing tip contributes to lift in thin flat 
plate zero pitch angle flapping wings in quiescent air. In creating flapping wing micro air vehicles it is desirable to 
maintain only the mechanical and kinematic complexity absolutely necessary to artificially duplicate flapping wing 
flight. This study quantifies the lift generated from a flapping motion of absolute minimum complexity thought to be 
capable of generating lift. Using a flapping wing micro air vehicle with wings fabricated in-house, streamwise vortices 
were identified along the span of wings of various aspect ratios and at numerous different points throughout the 
flapping cycle under a variety of operating conditions. The lift generated by the flapping mechanism was quantified 
experimentally using a force transducer and a high speed camera. Digital particle image velocimetry was used to 
determine the contributions of streamwise vorticity to the total measured lift. Further evidence was found of the 
importance of the relationship between wing span and flapping frequency in the nature of the formation and shedding 
of vortices. 

[176] Parker, K., Soria, J., and von Ellenrieder, K., “Thrust Measurements from a Finite-Span Flapping Wing,” AIAA 

Journal, Vol. 45, No. 1, 2007, pp. 58–70. 
 Keywords: 3-D, Experimental, Vortices 

 Abstract: The thrust per unit length behind a flapping NACA 0030 airfoil with an aspect ratio of three is 
measured and presented. Aspects of the evolution of vorticity behind the thrust-producing wing are discussed based on 
quantitative experiments. Multiple planes of stereoscopic particle image velocimetry measurements are conducted at 
several locations along the span of the wing at a Strouhal number of 0.35. Of particular interest is the effect of wingtip 
vortices on the structure of the flow behind the oscillating wing. Wing kinematics is responsible for the flow structure 
in the 2-D airfoil case. Here, the spanwise distribution of vorticity is found to be dominated, in the large scale, by a 
single pair of intense counter-rotating vortices. Each member of the large-scale vortex pair is constituted by two smaller 
corotating vortices that constructively merge in the initial stages of flow separation. Toward the wingtips, three-
dimensional effects are more significant. The spatiotemporal variations of transverse and spanwise vorticity in these 
regions suggest sever local flow deformation. Measurements reveal that flow morhpology is highly complex and three-
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dimensional, unlike any previously observed 2-D wing-based vortex sheets. Furthermore, using 2-D particle image 
velocimetry data, a sinusoidal variation in thrust force, 90 deg out of phase with the airfoil motion, is measured in the 
midspan region of the airfoil. The largest measured thrust occurs at the maximum angles of attack, corresponding to the 
creation of strong leading-edge vortices. 

[177] Parker, K., von Ellenrieder, K. D., and Soria, J., “Using Stereo Multigrid DPIV (SMDPIV) Measurements to 
Investigate the Vertical Skeleton Behind a Finite-Span Flapping Wing,” Experiments in Fluids, Vol. 39, No. 2, 2005, 
pp. 281–298. 

 Keywords: 3-D, Experimental, Vortices 
 Abstract: The structure of the flow behind wings with finite span (3D) is significantly more complex than the 
flow behind infinite span (2D) wings. It has been shown that the presence of wingtip vortices behind finite span wings 
significantly modifies the geometry of the wake flow. It is felt that this modification alters the dynamics of interaction 
between leading and trailing edge vorticity in a manner that affects the ability of 2D flapping wings to produce thrust. 
A model of the mean flow skeleton has been proposed from qualitative flow visualization experiments. An 
unambiguous quantitative representation of the actual flow is required for comparison to the proposed model. To 
accomplish this full 3D 3C velocity is required in the volume behind the 3D flapping wing. It is proposed to use 
stereoscopic multigrid digital particle image velocimetry (SMDPIV) measurements to investigate this unsteady 
oscillatory flow. This paper reports preliminary SMDPIV measurements along the plane of a symmetrical NACA-
profile wing at a Strouhal number of 0.35. Phase averaged measurements are used to investigate the complex flow 
topology and the influence of the forcing flow on the evolution of the large scale structure of a jet-flow. This paper 
focuses on optimizing the SMDPIV experimental methodology applied to liquid flows. By refining the 2D 3C 
technique, the 3D topology of the flow can be investigated with a high degree of accuracy and repeatability. 
Preliminary results show that the flow is characterized by two pairs of coherent structures of positive and negative 
vorticity. The arrangement of these structures in the flow is controlled by the motion of the wing. Vorticity of opposite 
rotation is shed at the extreme heave and pitch positions of the aerofoil to set up a thrust indicative vortex street in 
support of the suggested topological model. 

[178] Ramasamy, M., and Leishman, J. G., “Phase-Locked Particle Image Velocimetry Measurements of a Flapping 
Wing,” Journal of Aircraft, Vol. 43, No. 5, 2006, pp. 1867–1876. 

 Keywords: 3-D, Experimental, Vortices 
 Abstract: The unsteady aerodynamics of a biomimetic inspired flapping-wing mechanism has been analyzed 
by performing detailed phase-locked diagnostics of its flow field. Flow visualization and particle image velocimetry 
results have shown the presence of a shed dynamic stall vortex that spans across most of  the wing span. The shedding 
of this type of leading-edge vortex was accompanied by the formation of another leading-edge vortex before the first 
vortex reached the midchord, resulting in multiple shedding leading-edge vortices on the top surface of the wing during 
each wing stroke. A strong startling vortex was also formed at the trailing edge of the wing during the early part of its 
translational stroke. This vortex continuously gained strength from shed vorticity as the wing accelerated into its stroke. 
The startling vortex remained close to the trailing edge until the wing reached midstroke. A pair of vortices that 
continuously trailed from the root and tip of the wing were identified, both of which induced a significant downwash 
velocity over the wing surface. These trailed vortices were found to exhibit a contracting wake structure as they 
convected into the wake below the wing, consistent with an increase in slipstream velocity. The evolution of the tip and 
root vortex pair showed rapid diffusive characteristics with an increase in time (wake age). 

[179] Triantaflyllou, M. S., Techet, A. H. and Hover, F. S., “Review of Experimental Work in Biomimetic Foils,” 
IEEE Journal of Oceanic Engineering, Vol. 29, No. 3, 2004, pp. 585–594. 

 Keywords: 3-D, Experimental, Vortices 
 Abstract: Significant progress has been made in understanding some of the basic mechanisms of force 
production and flow manipulation in oscillating foils for underwater use. Biomimetic observations, however, show that 
there is a lot more to be learned, since many of the functions and details of fish fins remain unexplored. This review 
focuses primarily on experimental studies on some of the, at least partially understood, mechanisms, which include 1) 
the formation of streets of vortices around and behind two- and three-dimensional propulsive oscillating foils; 2) the 
formation of vortical structures around and behind two- and three-dimensional foils used for maneuvering, hovering, or 
fast-starting; 3) the formation of leading-edge vortices in flapping foils, under steady flapping or transient conditions; 
4) the interaction of foils with oncoming, externally generated vorticity; multiple foils, or foils operating near a body or 
wall. 
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[180] Grauer, J., Ulrich, E., Hubbard, J., Pines, D., and Humbert J. S., “Testing and System Identification of an 
Ornithopter in Longitudinal Flight,” Journal of Aircraft, Vol. 48, No. 2, 2011, pp. 660–667. 

 Keywords: 3-D, Experimental, Design 
 Abstract: There is currently a large effort underway to understand the flight dynamics of avian-based 
flapping-wing vehicles, or ornithopters, as they represent a critical intersection between existing biological flyers and 
the need for small aerial robots to conduct a variety of mission scenarios. Efforts to model the flight dynamics of these 
vehicles for feedback control have been complicated by a number of factors including nonlinear flight motions, 
unsteady aerodynamics at low Reynolds numbers, and limited sensor payload capacity. This paper presents data for a 
0.45 kg ornithopter research planform, flown in straight and level mean flight. A visual tracking system was employed 
to follow retroreflective markers on the ornithopter and reconstruct state measurements. A multibody model of the 
flight dynamics was used to investigate the spacial distribution of kinematic variables over the duration of a wing 
stroke, and system identification techniques were employed to extract models for the lift, thrust, and pitching moment 
coefficients. Two methods of parameter estimation showed good results for relatively simple aerodynamic models that 
can be used for feedback control. 

[181] Lin, C. S., Hwu, C., and Young, W. B., “The Thrust and Lift of an Ornithopter's Membrane Wings with 
Simple Flapping Motion,” Aerospace Science and Technology, Vol. 10, No. 2, 2006, pp. 111–119. 

 Keywords: 3-D, Experimental, Design 
 Abstract: Human beings flying with the help of aircrafts of various kinds have been able to fly for about one 
century. Although the flapping wings of animals served as an inspiration to pioneers of human flight, we don't really 
understand how they work. In this study, we employ the concept of four-bar linkage to design a flapping mechanism 
which simulates a flapping motion of a bird. Wind tunnel tests were performed to measure the lift and thrust of the 
mechanical membrane flapping wing under different frequency, speed, and angle of attack. It is observed that the 
flexibility of the wing structure will affect the thrust and lift force due to its deformation at high flapping frequency. 
The lift force will increase with the increase of the flapping frequency under the corresponding flying speed. For the 
same flapping frequency, the flying speed can be increased by decrease of the angle of attack with the trade of losing 
some lift force. An angle of attack is necessary in a simple flapping motion in order to derive a lift force. The flapping 
motion generates the thrust to acquire the flying speed. The flying speed and angle of attack combine to generate the 
lift force for flying. 

[182] Yang, L. J., Hsu, C. K., Han, H. C., and Miao, J. M., “Light Flapping Micro Aerial Vehicle Using Electrical-
Discharge Wire-Cutting Technique,” Journal of Aircraft, Vol. 46, No. 5, 2009, pp. 1866–1874. 

 Keywords: 3-D, Experimental, Design 
 Abstract: Electrical-discharge wire cutting is a promising technique that provides flexibility and lightness for 
a flapping micro aerial vehicle. Electrical-discharge wire cutting is used to fabricate the high-aspect-ratio structure of 
the four-bar linkage gear transmission module made of aluminum-alloy 7075. Aluminum-alloy 7075 has excellent 
specific strength (yield strength/density) good for durability of the transmission module in a micro aerial vehicle's tuff 
operation. A new flapping micro aerial vehicle of 21.6 cm wing span consequently has a minimum body mass of 5.9 g 
after installing the transmission module and a flexible wing frame made of carbon fibers and polyethylene terephthalate 
film. This micro aerial vehicle can endure a flight time of 6 min 7 s with the wingbeat frequency of 10-20 Hz. The lift 
and thrust coefficients of the micro aerial vehicle have been investigated through wind-tunnel testing. The proposed 
flapping micro aerial vehicle also exhibits the improved characteristic in the scaling law with respect to wingbeat 
frequency versus body mass. 

[183] Zdunich, P., Bilyk, D., MacMaster, M., Loewen, D., DeLaurier, J., Kornbluh, R., Low, T., Stanford, S., and 
Holeman, D., “Development and Testing of the Mentor Flapping-Wing Micro Air Vehicle,” Journal of Aircraft, Vol. 
44, No. 5, 2007, pp. 1701–1711. 

 Keywords: 3-D, Experimental, Design and Development 
 Abstract: In 1997 the Defense Advanced Research Projects Agency initiated a program to explore the 
possibility of micro air vehicles for the purpose of individually portable surveillance systems for close-range 
operations. The various contractors approached the problem in several ways, such as developing tiny fixed-wing 
airplanes, rotary-wing aircraft, and ornithopters mimicking animal flight. This paper describes one such flapping-wing 
aircraft, which drew upon the clap-fling phenomenon that is exploited by many flying animals and insects for lift 
generation. Essentially this aircraft was a mechanical simulation of hummingbird flight, though with two sets of wings 
to eliminate the unbalanced side-to-side flapping forces. Two flying demonstration models were built, one with an 
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internal-combustion engine and another with an electric motor. In both cases, these incorporated a drive train to reduce 
the high rpm rotary shaft motion to lower-frequency oscillation for flapping. Also required was a programmable logic 
board for stabilization. Successful hovering flight was achieved with both models, and initial studies of transition to 
horizontal flight were also explored. 

[184] Archer, R. D., Sapuppo, J. and Betteridge, D. S., “Propulsion Characteristics of Flapping Wings,” 
Aeronautical Journal, Vol. 83, Sep. 1979, pp. 355–371. 

 Keywords: 3-D, Experimental, Dominant Parameters, Model 
 Abstract: In moving from the realm of stationary wing flight towards the complexity of flapping wing flight 
as evolved in birds, we wish to introduce the simplest means of flapping as a first step in an attempt to simplify as 
much as possible our wind tunnel model and also to confine our attention to the dominant thrust producing mechanism. 
Our model half wings flap only in the plane normal to flight. The flapping motion is sinusoidal with time and 
symmetrical about the mid position. No wing bending was allowed. The wing section shape had no camber and also 
was rigid in shape but free to twist in torsion about its shear center. However, the model root support was fixed and 
therefore could not simulate vertical plunging of a bird associated with ideal elliptic span loading. Our models were of 
simple construction such that aeroelastic response generated an unspecified but substantial spanwise twist, which 
varied in time with the flapping velocity. 

[185] Yeo, D., Atkins, E. M., Bernal, L. P., and Shyy, W., “Experimental Characterization of Lift on a Rigid 
Flapping Wing,” Journal of Aircraft, Vol. 50, No. 6, 2013, pp. 1806–1821. 

 Keywords: 3-D, Experimental, Methods, Comparison 
 Abstract: Measurements of aerodynamic forces over flapping wings are challenging due to unsteady 
flowfields and rapidly changing structural loads. This represents an important limitation to the aerodynamic data 
currently available to researchers working on the aerodynamics of bioinspired flapping wings. This paper proposes the 
use of pressure-based instrumentation for flapping-wing testing and documents the comparison of two experimental 
methods to measure the aerodynamic lift generated during the stroke of a rigid flapping wing. The first approach uses a 
force transducer to measure the forces in air and vacuum, and the second approach uses pressure measurements taken 
on the surfaces of the wing. The results from both methods are used to validate each other and provide experimental 
data for a test case with easily simulated conditions. This paper describes the design of the test hardware required, 
including a custom flap stand, flap mechanics, and instrumented wing construction techniques. A series of flap tests 
were conducted with pressures measured only in air and force measurements taken both in air and in a vacuum. The 
data are evaluated with respect to noise, repeatability, and expected scaling trends. The pressure sensor and force 
transducer measurement strategies are compared based on their accuracy and flexibility. 

[186] Jones, K. D., Bradshaw, C. J., Papadopoulos, J., and Platzer, M. F., “Bio-Inspired Design of Flapping-Wing 
Micro Air Vehicles,” Aeronautical Journal, Vol. 109, Aug. 2005, pp. 385–393. 

 Keywords: 3-D, Experimental, MAV Test  
 Abstract: The development and flight testing of flapping-wing propelled, radio-controlled micro air vehicles 
are described. The unconventional vehicles consist of a low aspect ratio fixed-wing with a trailing pair of higher aspect 
ratio flapping wings which flap in counterphase. The symmetric flapping-wing pair provides a mechanically and 
aerodynamically balanced platform, increases efficiency by emulating flight in ground effect, and suppresses stall over 
the main wing by entraining flow. The models weigh as little as 11g, with a 23cm span and 18cm length and will fly for 
about 20 minutes on a rechargeable battery. Stable flight at speeds between 2 and 5ms-1 has been demonstrated, and the 
models are essentially stall-proof while under power. The static-thrust figure of merit for the device is 60% higher than 
propellers with a similar scale and disk loading. 

[187] Dickinson, M. H., “The Effects of Wing Rotation on Unsteady Aerodynamic Performance at Low Reynolds 
Numbers,” Journal of Experimental Biology, Vol. 192, July 1994, pp. 179–206. 

 Keywords: 3-D, Experimental, Wing Stroke 
 Abstract: The downstroke-to-upstroke transition of many insects is characterized by rapid wing rotation. The 
aerodynamic consequences of these rapid changes in angle of attack have been investigated using a mechanical model 
dynamically scaled to the Reynolds number appropriate for the flight of small insects such as Drosophila. Several 
kinematic parameters of the wing flip were examined, including the speed and axis of rotation, as well as the duration 
and angle of attack during the wing stroke preceding rotation. Alteration of these kinematic parameters altered force 
generation during the subsequent stroke in a variety of ways. 1. When the rotational axis was close to the trailing edge, 
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the model wing could capture vorticity generated during rotation and greatly increase aerodynamic performance. This 
vortex capture was most clearly manifested by the generation of lift at an angle of attack of 0 deg. Lift at a 0 deg angle 
of attack was also generated following rotation about the leading edge, but only if the downstroke angle was large 
enough to generate a von Karman street. The lift may be due to an alteration in the effective angle of attack caused by 
the inter-vortex stream in the downstroke wake. 2. The maximum lift attained (over all angles of attack) was 
substantially elevated if the wing translated backwards through a wake generated by the previous stroke. Transient lift 
coefficient values of nearly 4 were obtained when the wing translated back through a von Karman street generated at a 
76.5 deg angle of attack. This effect might also be explained by the influence of the inter-vortex stream, which 
contributes a small component to fluid velocity in the direction of translation. 3. The growth of lift with angle of attack 
was significantly elevated following a 7.5 chord stroke with a 76.5 deg angle of attack, although it was relatively 
constant under all other kinematic conditions. 4. The results also indicate the discrepancies between transient and time-
averaged measures of performance that arise when unsteady mechanisms are responsible for force generation. 
Although the influence of wing rotation was strong during the first few chords of translation, averaging the 
performance over as little as 6.5 chords of motion greatly attenuated the effects of rotation. 5. Together, these modeling 
results suggest that the unsteady mechanisms generated by simple wing flips could provide an important source for the 
production of aerodynamic forces in insect flight. Furthermore, the extreme sensitivity to small variations in almost all 
kinematic parameters could provide a foundation for understanding the aerodynamic mechanisms underlying active 
flight control. 

[188] Vandenberghe, N., Zhang, J., and Childress, S., “Symmetry Breaking Leads to Forward Flapping Flight,” 
Journal of Fluid Mechanics, Vol. 506, May 2004, pp. 147–155. 

 Keywords: 3-D, Experimental, Frequency 
 Abstract: Flapping flight is ubiquitous in Nature, yet cilia and flagella, not wings, prevail in the world of 
micro-organisms. This paper addresses this dichotomy. We investigate experimentally the dynamics of a wing, flapped 
up and down and free to move horizontally. The wing begins to move forward spontaneously as a critical frequency is 
exceeded, indicating that ‘flapping flight’ occurs as a symmetry-breaking bifurcation from a pure flapping state with 

no horizontal motion. A dimensionless parameter, the Reynolds number based on the flapping frequency, characterizes 
the point of bifurcation. Above this bifurcation, we observe that the forward speed increases linearly with the flapping 
frequency. Visualization of the flow field around the heaving and plunging foil shows a symmetric pattern below 
transition. Above threshold, an inverted von Kármán vortex street is observed in the wake of the wing. The results of 
our model experiment, namely the critical Reynolds number and the behavior above threshold, are consistent with 
observations of the flapping-based locomotion of swimming and flying animals. 

[189] Birnbaum, W.,  “Das ebene Problem des Schlagenden Fluegels,” Zeitschrift fuer Angewandte Mathematik und 

Mechanik, Vol. 4, No. 4, 1924, pp. 277–292. 
 Keywords: 3-D, Experimental, Reduced Frequency 
 
[190] Vandenberghe, N., Childress, S., and Zhang, J., “On Unidirectional Flight of a Free Flapping Wing,” Physics 

of Fluids, Vol. 18, No. 1, 2006, pp. 014102-1–014102-8. 
 Keywords: 3-D, Experimental, Forward Flight 

 Abstract: We study the dynamics of a rigid, symmetric wing that is flapped vertically in a fluid. The motion 
of the wing in the horizontal direction is not constrained. Above a critical flapping frequency, forward flight arises as 
the wing accelerates to a terminal state of constant speed. We describe a number of measurements which supplement 
our previous work. These include (a) a study of the initial transition to forward flight near the onset of the instability, 
(b) the separate effects of flapping amplitude and frequency, (c) the effect of wing thickness, (d) the effect of 
asymmetry of the wing planform, and (e) the response of the wing to an added resistance. Our results emphasize the 
robustness of the mechanisms determining the forward-flight speed as observed in our previous study. 

[191] Lua, K. B., Lim, T. T., and Yeo, K. S., “Scaling of Aerodynamic Forces of Three-Dimensional Flapping 
Wings,” AIAA Journal, Vol. 52, No. 5, 2014, pp. 1095–1101. 

 Keywords: 3-D, Experimental, Velocity Scaling 
 
[192] Fejtek, I. and Nehera, J., “Experimental Study of Flapping Wing Lift and Propulsion,” Aeronautical Journal, 
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[193] Batina, J. T., “Unsteady Euler Algorithm with Unstructured Dynamic Mesh for Complex-Aircraft 
Aerodynamic Analysis,” AIAA Journal, Vol. 29, No. 3, 1991, pp. 327–333. 

 Keywords: 3-D, Numerical, CFD 
 Abstract: An Euler solution algorithm is presented for unsteady aerodynamic analysis of complex-aircraft 
configurations. The flow solver involves a multistage Runge-Kutta time-stepping scheme that uses a finite-volume 
spatial discretization on an unstructured grid made up of tetrahedra. A significant contribution of the research is the 
development and implementation of a moving mesh algorithm that is employed for problems involving static or 
dynamic deformation of the aircraft. The mesh algorithm is a general procedure that can treat realistic motions and 
deformations of complex-aircraft configurations. Steady and unsteady results are presented for a supersonic fighter 
configuration to demonstrate applications of the Euler solver and dynamic mesh algorithm. The unsteady flow results 
were obtained for the aircraft oscillating harmonically in a complete-vehicle bending mode. Effects of the angle of 
attack and reduced frequency on instantaneous pressures and force responses were investigated. The paper presents 
descriptions of the Euler solver and dynamic mesh algorithm along with results that assess the capability. 

[194] Roget, B., Sitaraman, J., Harmon, R., Grauer, J., Hubbard, J., and Humbert, S., “Computational Study of 
Flexible Wing Ornithopter Flight,” Journal of Aircraft, Vol. 46, No. 6, 2009, pp. 2016–2031. 

 Keywords: 3-D, Numerical, CFD 
 Abstract: This paper presents the development and evaluation of a computational fluid dynamics based 
methodology to predict the aerodynamic forces produced by a flexible flapping wing. The computational fluid 
dynamics analysis code solves the compressible Reynolds-averaged form of the Navier-Stokes equations on structured 
curvilinear grids. A grid deformation algorithm is devised that deforms the body-conforming volume grid at each time 
step consistent with the measured wing motions. This algorithm is based on geometric considerations and is both 
computationally efficient and capable of handling very large deformations. This methodology is validated using 
experimental data obtained from a test on an ornithopter with flexible wings. Test data include measurements of  the 
wing surface deformations as well as the generated forces in the horizontal and vertical directions. Correlation with test 
data shows good agreement with measured vertical force and satisfactory agreement with measured horizontal force at 
low flapping frequencies. However, the prediction accuracy degrades with an increase in flapping frequency. Evidence 
of resonance in the vehicle system was detected from the analysis of the experimental data. Unmodeled inertial effects 
from the vehicle body and support mounts may be one of the contributors to disagreement between the data and 
analysis. 

[195] Shkarayev, S., Maniar, G., and Shekhovtsov, A. V., “Experimental and Computational Modeling of the 
Kinematics and Aerodynamics of Flapping Wing,” Journal of Aircraft, Vol. 50, No. 6, 2013, pp. 1734–1747. 

 Keywords: 3-D, Numerical, CFD 
 Abstract: High-speed videography is used in measuring the kinematic and deformation parameters of the 
flapping wing. Based on these data, a theoretical analysis of the underlying physics is performed using computational 
fluid dynamics simulations. The time varying of the pitching angle in the chordwise directions exhibits a significant 
second harmonic. Results suggest the mechanics of membrane deformations during a flapping cycle is analogous to the 
buckling of a bistable structure. Noticeably, with an increase in the freestream speed, the downstroke duration 
increases. The solution to the three-dimensional fluid dynamics problem is constructed using two-dimensional solutions 
obtained for several sections of the wing by the improved discrete vortex method. The inertial component is dominant 
in the normal force coefficient, and hence, added mass is the main mechanism in aerodynamic force production for the 
studied problem. A normal component of the acceleration of the wing’s trailing edge taken with a negative sign is 
introduced as a kinematic parameter that is essential in flapping-wing aerodynamics. The results show a satisfactory 
agreement in trends of the acceleration and force coefficients. From the analysis of kinematical changes, it follows that 
synchronization of acceleration and of the pitching angle is important for achieving maximum values of the vertical 
force coefficients. 

[196] Cizmas, P., and Gargoloff, J., “Mesh Generation and Deformation Algorithm for Aeroelasticity Simulations,” 
Journal of Aircraft, Vol. 45, No. 3, 2008, pp. 1062–1066. 
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 Abstract: The aim of this work is to present a method to find and analyze maximum propulsive efficiency 
kinematics for a birdlike flapping-wing unmanned aerial vehicle using multiobjective evolutionary optimization and 
data-mining tools. For the sake of clarity and simplicity, simple geometry (rectangular wings with the same profile 
along the span) and simple kinematics (symmetrical harmonic dihedral motion) are used. In addition, it is assumed that 
the birdlike aerial vehicle (for which the span and surface area are, respectively, 1 m and 0.15 m2) is in horizontal 
motion at low cruise speed (6 m/s). The aerodynamic performances of the flapping-wing vehicle are evaluated with a 
semi-empirical flight physics model and the problem is solved using an efficient multiobjective evolutionary algorithm 
called e-MOEA. Groups of attractive solutions are defined on the Pareto surface, and the most efficient solutions within 
these groups are characterized. Given the high dimensionality of the Pareto surface in the kinematic parameters space, 
data-mining techniques are used to conduct the study. First, it is shown that these groups can be qualified versus the 
whole Pareto surface by accurate mathematical relations on the kinematic parameters. Second, the inner structure of 
each group is studied and highly accurate mathematical relations are found on the optimized parameters describing the 
most efficient solutions. 

[198] Neef, M. F., and Hummel, D., “Euler Solutions for a Finite-Span Flapping Wing,” Fixed and Flapping Wing 

Aerodynamics for Micro Air Vehicles, AIAA, Danvers, MA, 2001, pp. 429–451. 
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[199] Ramamurti, R., and Sandberg, W. C., “Computational Study of 3-D Flapping Foil Flows,” AIAA Paper 2001-

0605, Jan. 2001.  
 Keywords: 3-D, Numerical, Finite Element 

 Abstract: A finite element flow solver based on unstructured grids is employed for studying the unsteady 
flow past oscillating wings. In order to understand the basis of lift and thrust generation mechanisms, we have 
performed computational studies on the flapping wing of the fruit fly, Drosophila. The computational model is based 
on the experimental setup of Dickinson et al. Computations are performed for various phase angles between the 
rotation and translation motions and the time history of the unsteady forces are compared with the experiments. Good 
agreement is obtained for the thrust and drag forces. Also, a grid refinement study is performed to validate the 
computational results. The unsteady flow is discussed in detail. 

[200] Smith, M., “Simulating Moth Wing Aerodynamics: Towards the Development of Flapping-Wing 
Technology,” AIAA Journal, Vol. 34, No. 7, 1996, pp. 1348–1355. 

 Keywords: 3-D, Numerical, Panel Code 
 Abstract: The mechanization of flapping-wing flight is addressed. A tethered moth's flapping wings are 
simulated using an unsteady aerodynamic panel method and accounts for wing flexibility using a finite element model. 
The resultant simulation code delineates both the aerodynamic and inertial forces acting on flapping, flexible wings 
undergoing arbitrary motion in the presence of large-scale vortices and establishes the importance of including the 
wake in the unsteady analysis of flapping flexible wings. A switching pattern is discovered where the magnitude and 
direction of the aerodynamic force are decoupled, thereby pointing to a means whereby control is achieved. Overall, 
important groundwork necessary for the establishment of the principles of flapping-wing flight is laid, leading to the 
development of a highly agile, alternative flight technology. 

[201] Teng, N. H., “The Development of a Computer Code for the Numerical Solution of Unsteady Inviscid and 
Incompressible Flow Over an Airfoil,” M.S. Thesis, Naval Postgraduate School, Monterey, CA, June 1987.  

 Keywords: 3-D, Numerical, Panel Code 
 Abstract: A numerical technique is formulated, in a computer program U2DIIF, for the solution of flow over 
an airfoil executing an arbitrary unsteady motion in an inviscid and incompressible medium. The technique extends the 
well-known Panel Methods for steady flow into solving a non-linear unsteady flow problem arising from the 
continuous vortex shedding into the trailing wake due to the unsteady motion of the airfoil. Numerous case-runs are 
presented to verify U2DIIF computer code against other theoretical and/or numerical methods as well as in cases where 
limited experimental data are obtainable in literatures. These case-runs include airfoils undergoing a step change or a 
modified ramp change of angle-of-attack, airfoils executing harmonic oscillation in pitching and plunging motions and 
airfoils penetrating a sharp edge gust. 

[202] Stanford, B. K., and Beran, P. S., “Analytical Sensitivity Analysis of an Unsteady Vortex-Lattice Method for 
Flapping-Wing Optimization,” Journal of Aircraft, Vol. 47, No. 2, 2010, pp. 647–662. 
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 Abstract: This work considers the design optimization of a flapping wing in forward flight with active shape 
morphing, aimed at maximizing propulsive efficiency under lift and thrust constraints. This is done with an inviscid 
three-dimensional unsteady vortex-lattice method, for which the moderate level of fidelity is offset by a relatively 
inexpensive computational cost. The design is performed with a gradient-based optimization, where gradients are 
computed with an analytical sensitivity analysis. Wake terms provide the only connection between the forces generated 
at disparate time steps and must be included to compute the derivative of the aerodynamic state at a time step with 
respect to the wing shape at all previous steps. The cyclic wing morphing, superimposed upon the flapping motions, is 
defined by a series of spatial and temporal approximation. The generalized coordinates of a finite number of twisting 
and bending modes are approximated by cubic splines. The amplitudes at the control points provide design variables; 
increasing the number of variables (providing the wing morphing with a greater degree of spatial and temporal 
freedom) is seen to provide increasingly superior designs, with little increase in computational cost. 

[203] Fitzgerald, T., Valdez, M., and Balachandran, B., “A comparison of computational models for fluid-structure 
interaction studies of flexible flapping wing systems,” AIAA Paper 2011-1115, Jan. 2011.  

 Keywords: 3-D, Numerical, Comparison 
 Abstract: In this article, the authors examine two computational approaches that can be used to study the 
motions of flexible flapping systems. For illustration, a fully coupled interaction of a fluid system with a flapping 
profile performing harmonic flapping kinematics is studied. In one approach, the fluid model is based on the Navier-
Stokes equations for viscous incompressible flow, where all spatio-temporal scales are directly resolved by means of 
Direct Numerical Simulations (DNS). In the other approach, the fluid model is an inviscid, potential flow model, based 
on the unsteady vortex lattice method (UVLM). In the UVLM model, the focus is on the vortex structures and the fluid 
dynamics is treated as a problem of vortex kinematics, whereas with the DNS model, the focus is on forming a detailed 
picture of the flapping physics. The UVLM based approach, although coarse from a modeling standpoint, is 
computationally inexpensive compared to the DNS based approach. This comparative study is motivated by the 
hypothesis that flapping related phenomena are primarily determined by vortex interactions and viscous effects plays a 
secondary role, which could mean that a UVLM based approach could be suitable for design purposes, and/or 
constructing a predictive tool. In most of the cases studied in this work, the UVLM based approach produces a good 
approximation for Cl/Cd. Apart from comparisons of the aerodynamic loads, comparisons are also made of the features 
of the system dynamics generated by using the two computational approaches. Limitations of both approaches are also 
discussed. 

[204] Deng, J., Caulfield, C. P., and Shao, X., “Effect of Aspect Ratio on the Energy Extraction Efficiency of Three-
Dimensional Flapping Foils,” Physics of Fluids, Vol. 26, No. 4, 2014, pp. 043102-1–043102-24. 

 Keywords: 3-D, Numerical, Energy 
 Abstract: Numerical simulations are used to investigate the effect of variation of the aspect ratio and the 
structure of pitching motions on the energy extraction efficiency and wake topology of flapping foils. The central aim 
is to predict the energy extraction performance and efficiency of a flapping-foil-based energy harvesting system (EHS) 
in realistic working conditions with finite aspect ratios. A sinusoidal heaving motion is imposed upon the foil, as well 
as both a sinusoidal pitching motion and a variety of trapezoidal-like periodic pitching motions. The simulations 
employ a finite-volume method with body-fitted moving grids, allowing the capture of flow structure near the foil 
surface. A detailed analysis of the hydrodynamic performance shows two peaks per periodic cycle in the lift force time 
histories or equivalently, the energy extraction time histories. The first primary peak corresponds to an effective angle 
of attack around 15.4°, indicating good attachment of the flow on the foil surface without significant flow separation. 
The secondary peak corresponds to a leading edge vortex (LEV) travelling on the foil surface. The shape of the LEV is 
altered markedly as the aspect ratio varies, and consequently the secondary peak in the lift force time history is strongly 
affected by the effects of three-dimensionality for foils with smaller aspect ratios. By examining the relationship 
between energy extraction efficiency and aspect ratio, a critical aspect ratio of AR = 4 is identified for sinusoidal 
pitching motions, below which the three-dimensional low-aspect-ratio characteristics dominate the flow evolution. 
Therefore, the compromise between higher energy extraction efficiency and lower costs of manufacturing and 
installation suggests that an aspect ratio around AR = 4 is the most appropriate choice for a real EHS. Furthermore, 
although trapezoidal-like pitching motions are known to improve the efficiency in flows restricted to two dimensions, 
particularly for non-optimal angle of attack, the efficiency of such flows is even more strongly affected by three-
dimensional motions, with substantial efficiency loss even for AR = 8. This suggests that the implementation of 
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efficiency improvement strategies obtained by two-dimensional studies should be treated with caution when extended 
to real three-dimensional flows. 

[205] Tucker, V. A., “Bird Metabolism During Flight, Evaluation of a Theory,” Journal of Experimental Biology, 
Vol. 58, June 1973, pp. 689–709. 

 Keywords: 3-D, Numerical, Energy 
 1. Pennycuick's (1969) theory for the energetic requirements of avian flight predicts the metabolic rates of 
budgerigars and laughing gulls flying level at intermediate speeds in a wind tunnel with an accuracy of 10% or better. 
However, its predictions appear to be low for most birds with masses less than 0·1 kg and high for most birds with 
masses greater than 0·5 kg. 2. Four modifications are made to Pennycuick's theory: (1) a different computation of 
induced power; (2) a different estimate of equivalent flat plate area that includes Reynolds number effects, and is based 
on additional measurements; (3) a different estimate of profile power that includes Reynolds number effects; and (4) 
the addition of power terms for respiration and circulation. These modifications improve the agreement between the 
theoretical predictions and existing measurements for flying birds and bats. 3. The metabolic rates of birds and bats in 
level flight at various speeds can be estimated by the modified theory if body mass alone is measured. Improved 
estimates can be made if wing span is measured as well. In the latter case the theory predicts measured values with a 
mean absolute error of 8·3%. 4. The results of the modified theory are presented by approximate equations that can be 
solved quickly for metabolic rate and flight speed with a slide rule. 

[206] Spentzos, A., Barakos, G. N., Badcock, K. J., Richards, B. E., Coton, F. N., Galbraith, R. A. McD., Berton, E., 
and Favier, D., “Computational Fluid Dynamics Study of Three-Dimensional Dynamic Stall of Various Planform 
Shapes,” Journal of Aircraft, Vol. 44, No. 4, 2007, pp. 1118–1128. 

 Keywords: 3-D, Numerical, Stall 
 Abstract: Numerical simulation of 3D dynamic stall has been undertaken using computational fluid 
dynamics. As a first step, validation calculations have been performed for cases in which experimental data were 
available. Although the amount and quality of the experimental data available for 3D dynamic stall does not match 
what is available for 2D cases, the computational fluid dynamics was found capable of predicting this complex 3D flow 
with good accuracy. Once confidence on the computational fluid dynamics method was established, further calculations 
were conducted for several wing planforms. The calculations revealed the detailed structure of the 3D dynamic stall 
vortex and its interaction with the tip vortex. Remarkably, strong similarities in the flow topology were identified for 
wings of very different planforms. 

[207] Hall, K. C., Pigott, S. A., and Hall, S. R., “Power Requirements for Large-Amplitude Flapping Flight,” 
Journal of Aircraft, Vol. 35, No. 3, 1998, pp. 352–361. 

 Keywords: 3-D, Numerical, Power 
 Abstract: In this paper, a method is presented for computing the circulation distribution along the span of a 
flapping wing that minimizes the power required to generate a prescribed lift and thrust. The power is composed of 
three parts: useful thrust power, induced power, and profile power. Here, the thrust and induced power are expressed in 
terms of the Kelvin impulse and kinetic energy associated with the sheet of trailing and shed vorticity left behind the 
flapping wing. The profile power is computed using a quasisteady approximation of the two-dimensional viscous drag 
polar at each spanwise station of the wing. A variational principle, which is essentially the viscous extension of the 
well-known Betz criterion for optimal propellers, is discretized using a vortex-lattice model of the wake, and the 
optimum solution is computed numerically. The present method is used to analyze a conventional propeller as well as a 
rigid wing in forward-flight flapping about a hinge point on the longitudinal axis. 
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Journal, Vol. 52, No. 1, 2014, pp. 203–206. 
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 Abstract: The distribution of vorticity in the wake of a hovering bird or insect is considered. The wake is 
modelled by a chain of coaxial small-cored circular vortex rings stacked one upon another; each member of the chain is 
generated by a single wing-stroke. Circulation is determined by the animal's weight and the time for which a single ring 
must provide lift; ring size is calculated from the circulation distribution on the animal's wing. The theory is equally 
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applicable to birds and insects, although the mechanism of ring formation differs. This approach avoids the use of lift 
and drag coefficients and is not bound by the constraints of steady-state aerodynamics; it gives a wake configuration in 
agreement with experimental observations. The classical momentum jet approach has steady momentum flux in the 
wake, and is difficult to relate to the wing motions of a hovering bird or insect; the vortex wake can be related to the 
momentum jet, but adjacent vortex elements are disjoint and momentum flux is periodic. The evolution of the wake 
starting from rest is considered by releasing vortex rings at appropriate time intervals and allowing them to interact in 
their own velocity fields. The resulting configuration depends on the feathering parameter f (which depends on the 
animal's morphology); f increases with body size. At the lower end of the wake rings coalesce to form a single large 
vortex, which breaks away from the rest of the wake at intervals. Wake contraction depends on f; the minimum areal 
contraction of one-half (as in momentum-jet theory) occurs only in the limit f [rightward arrow] 0, but values 
calculated for smaller insects of just over one-half suggest that the momentum jet may be a good approximation to the 
wake when f is small. Induced power in hovering is calculated as the limit of the mean rate of increase of wake kinetic 
energy as time progresses. It can be related to the classical momentum-jet induced power by a simple conversion factor. 
For an insect or hummingbird the usual momentum-jet estimate may be between 10 and 15% too low, but for a bird it 
may be as much as 50% too low. This suggests that few, if any, birds are able to sustain aerobic hovering, and that as 
small a value of f as possible would be necessary if the bird were to hover. Tip losses (energy cost of the vortex-ring 
wake compared with the equivalent momentum jet) are negligible for insects, but can be in the range 15–20% for birds. 

[210] Ansari, S. A., Zbikowski, R., and Knowles, K., “Nonlinear Unsteady Aerodynamic Model for Insect-like 
Flapping Wings in the Hover Part 2: Implementation and Validation,” Proceedings of the Institute of Mechanical 

Engineering, Part G: Journal of Aerospace Engineering, Vol. 220, No. 3,  2006, pp. 169–186. 
 Keywords: 3-D, Numerical, Hover 

 Abstract: The essence of this two-part paper is the analytical, aerodynamic modelling of insect-like flapping 
wings in the hover for micro-air-vehicle applications. A key feature of such flapping-wing flows is their unsteadiness 
and the formation of a leading-edge vortex in addition to the conventional wake shed from the trailing edge. What 
ensues is a complex interaction between the shed wakes, which, in part, determines the forces and moments on the 
wing. In an attempt to describe such a flow, two novel coupled, non-linear, wake integral equations were developed in 
the first part of the paper. The governing equations derived were exact, but did not have a closed analytical form. 
Solutions were, therefore, to be found by numerical methods and implemented in Fortran. This is the theme of the 
second part of the paper. The problem is implemented by means of vortex methods, whereby discrete point vortices are 
used to represent the wing and its wake. A number of numerical experiments are run to determine the best values for 
numerical parameters. The calculation is performed using a time-marching algorithm and the evolution of the wakes is 
tracked. In this way, both flow field and force data are generated. The model is then validated against existing 
experimental data and very good agreement is found both in terms of flow field representation and force prediction. 
The temporal accuracy of the simulations is also noteworthy, implying that the underlying flow features are well 
captured, especially the unsteadiness. The model also shows the similarity between two-dimensional and three-
dimensional flows for insect-like flapping wings at low Reynolds numbers of the order of Re ε 200. 

[211] Gogulapati, A., Friedmann, P. P., and Martins, J. R. R. A., “Optimization of Flexible Flapping-Wing 
Kinematics in Hover,” AIAA Journal, Vol. 52, No. 10, 2014, pp. 2342–2354. 

 Keywords: 3-D, Numerical, Hover 
 Abstract: Hover-capable flapping-wing micro air vehicles are well suited for missions in confined spaces. 
The best design practices for flapping wings and their kinematics are largely unknown, especially for flexible wings. 
To address this issue, numerical optimization is applied to the design of the kinematics and structural sizing of a 
flapping wing using a surrogate-based approach. The surrogates are generated using kriging interpolation of the time-
averaged thrust generated and power required by the wings. The thrust and power data are computed using a nonlinear 
approximate aeroelastic model developed in previous studies by the authors. A numerical optimization algorithm is 
used to identify designs that produce the desired combination of thrust and power. The design variables consist of 
parameters describing the flap–pitch kinematics and the stiffness of the flexible wings. A trend study of thrust and 
power indicate that the phase angle between flap and pitch motions significantly affects the wing performance when the 
stroke amplitudes and the frequency are fixed. Smaller amounts of pitch actuation produced peak thrust in flexible 
wings when compared to the rigid wings. Several flexible configurations produce higher thrust when compared to the 
best thrust-producing rigid configuration. However, rigid wings have higher propulsive efficiency when compared to 
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flexible wings for the same amount of generated thrust. Thus, the actual design of a flapping wing will depend on the 
relative importance given to thrust production and propulsive efficiency. 

[212] Isogai, K., and Shinmoto, Y., “Study on Aerodynamic Mechanism of Hovering Insects,” AIAA Paper 2001-
2470, June 2001.  
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Fluid Mechanics, Vol. 702, July 2012, pp. 102–125. 
 Keywords: 3-D, Numerical, Hover 

 Abstract: This paper aims at understanding the influence of three-dimensional effects in hovering flapping 
flight. Numerical simulations at a Reynolds number of 1000 are performed to compare two types of flapping 
kinematics whose plunging phase is characterized by either a rectilinear translation or a revolving motion. In this way, 
we are able to isolate the three-dimensional effects induced by the free end condition from that induced by the spanwise 
incident velocity gradient (and the associated implicit Coriolis and centrifugal effects). In the rectilinear translation 
case, the analysis of the wake and of the aerodynamic loads reveals that the wingspan can be compartmented into three 
distinct regions whether it is predominantly subjected to an unstable two-dimensional flow, a stable three-dimensional 
flow or both two-dimensional and three-dimensional effects. It is found that this partitioning exhibits common features 
for three different aspect ratios of the wing. In conjunction with the previous results of Ringuette, Milano & Gharib (J. 

Fluid Mech., vol. 581, 2007, pp. 453–468), this suggests that the influence of the tip vortex over the wingspan is driven 
by a characteristic length scale. In addition, this length scale matches the position of the connecting point between 
leading and tip vortices observed in the revolving case, providing insight into the connecting process. In both 
translating and revolving cases, leading edge vortex attachment and strong spanwise velocities are found to be strongly 
correlated phenomena. Spanwise velocities (that mostly confine at the periphery of the vortices), together with 
downward velocities, do not only affect the leading edge vortex but also act as an inhibitor for the trailing edge vortex 
growth. As a consequence, cross-wake interactions between leading and trailing edge vortices are locally limited, hence 
contributing to flow stabilization. 

[214] Kweon, J., and Choi, H., “Sectional Lift Coefficient of a Flapping wing in Hovering Motion,” Physics of 

Fluids, Vol. 22, No. 7, 2010, pp. 071703-1–071703-4. 
 Keywords: 3-D, Numerical, Hover 

 Abstract: We investigate the behavior of sectional lift coefficient of a flapping wing of a fruit-fly in hovering 
motion. Through three-dimensional numerical simulations, we show that during the stroke, the sectional lift coefficient 
significantly varies in time as well as in the spanwise direction owing to complex interactions between the wing and 
vortices in the wake. However, the time-averaged sectional lift force coefficient is inversely proportional to the 
spanwise distance from the rotation center except very near the wing-tip region. This is because the wing-tip vortex 
significantly decreases the lift force on the wing-tip region during and after midstroke. 

[215] Liu, H., Ellington, C. P., Kawachi, K., Van Den Berg, C., and Willmott, A. P., “A Computational Fluid 
Dynamic Study of Hawk-Moth Hovering,” Journal of Experimental Biology, Vol. 201, Feb. 1998, pp. 461–477. 

 Keywords: 3-D, Numerical, Hover 
 Abstract: A computational fluid dynamic (CFD) modelling approach is used to study the unsteady 
aerodynamics of the flapping wing of a hovering hawkmoth. We use the geometry of a Manduca sexta-based robotic 
wing to define the shape of a three-dimensional 'virtual' wing model and 'hover' this wing, mimicking accurately the 
three-dimensional movements of the wing of a hovering hawkmoth. Our CFD analysis has established an overall 
understanding of the viscous and unsteady flow around the flapping wing and of the time course of instantaneous force 
production, which reveals that hovering flight is dominated by the unsteady aerodynamics of both the instantaneous 
dynamics and also the past history of the wing. <P> A coherent leading-edge vortex with axial flow was detected 
during translational motions of both the up- and downstrokes. The attached leading-edge vortex causes a negative 
pressure region and, hence, is responsible for enhancing lift production. The axial flow, which is derived from the 
spanwise pressure gradient, stabilizes the vortex and gives it a characteristic spiral conical shape. <P> The leading-edge 
vortex created during previous translational motion remains attached during the rotational motions of pronation and 
supination. This vortex, however, is substantially deformed due to coupling between the translational and rotational 
motions, develops into a complex structure, and is eventually shed before the subsequent translational motion. <P> 
Estimation of the forces during one complete flapping cycle shows that lift is produced mainly during the downstroke 
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and the latter half of the upstroke, with little force generated during pronation and supination. The stroke plane angle 
that satisfies the horizontal force balance of hovering is 23.6 degrees, which shows excellent agreement with observed 
angles of approximately 20-25 degrees . The time-averaged vertical force is 40 % greater than that needed to support 
the weight of the hawkmoth. 

[216] Rosenfeld, N. C., and Wereley, N. M., “Time-Periodic Stability of a Flapping Insect Wing Structure in 
Hover,” Journal of Aircraft, Vol. 46, No. 2, 2009, pp. 450–464. 

 Keywords: 3-D, Numerical, Hover 
 Abstract: The wings of insectlike flapping-wing micro air vehicles experience time-periodic inertial 
stiffnesses during flapping motion. By modeling the wing structure as a thin beam, a linear time-periodic assumed-
model analysis is developed. The equations of motion of a flapping wing undergoing out-of-plane bending and torsion 
are derived. The homogeneous assumed-model equations are nondimensionalized. It is shown that the nondimensional 
strain stiffness varies with the ratio of the wing's nonrotating natural frequencies to the flapping frequency, whereas the 
nondimensional, time-periodic inertial stiffnesses vary with the amplitudes of flapping and feathering motion. The 
parametric stability of a representative wing is assessed by applying Floquet analysis to the nondimensional equations 
of motion, and a scalable stability diagram is presented. Parametric instabilities of the wing structure, caused by time-
periodic stiffnesses, are characterized and plotted in the time domain. The effects of important structural design 
properties on parametric stability are examined. 

[217] Stanford, B., Kurdi, M., Beran, P., and McClung, A., “Shape, Structure, and Kinematic Parameterization of a 
Power-Optimal Hovering Wing,” Journal of Aircraft, Vol. 49, No. 6, 2012, pp. 1687–1699. 

 Keywords: 3-D, Numerical, Hover 
 Abstract: In this paper, we investigate the aeroelastic hovering motions of a highly flexible flapping wing. It 
is desired to parameterize the wing shape, structural composition, and kinematic hovering motions, and then minimize 
the peak power required during the stroke, subject to trim and mechanical failure constraints. The aeroelastic model 
couples a nonlinear three-dimensional beam model to a quasi-steady blade element aerodynamic model, which is then 
solved in an implicit time-marching manner until the response becomes time-periodic. Sub-iterations are used within 
each time step to accommodate various physical nonlinearities. Gradients of the response with respect to the disparate 
design variables are computed analytically for optimization. Power-optimal flapping configurations are found to exploit 
interdependencies among the three types of design variables to effectively tailor the aeroelastic response. 

[218] Sun, M., and Tang, J., “Unsteady Aerodynamic Force Generation by a Model Fruit Fly Wing in Flapping 
Motion,” Journal of Experimental Biology, Vol. 205, Jan. 2002, pp. 55–77. 

 Keywords: 3-D, Numerical, Hover 
 Abstract: A computational fluid-dynamic analysis was conducted to study the unsteady aerodynamics of a 
model fruit fly wing. The wing performs an idealized flapping motion that emulates the wing motion of a fruit fly in 
normal hovering flight. The Navier–Stokes equations are solved numerically. The solution provides the flow and 
pressure fields, from which the aerodynamic forces and vorticity wake structure are obtained. Insights into the unsteady 
aerodynamic force generation process are gained from the force and flow-structure information. Considerable lift can 
be produced when the majority of the wing rotation is conducted near the end of a stroke or wing rotation precedes 
stroke reversal (rotation advanced), and the mean lift coefficient can be more than twice the quasi-steady value. Three 
mechanisms are responsible for the large lift: the rapid acceleration of the wing at the beginning of a stroke, the 
absence of stall during the stroke and the fast pitching-up rotation of the wing near the end of the stroke. When half the 
wing rotation is conducted near the end of a stroke and half at the beginning of the next stroke (symmetrical rotation), 
the lift at the beginning and near the end of a stroke becomes smaller because the effects of the first and third 
mechanisms above are reduced. The mean lift coefficient is smaller than that of the rotation-advanced case, but is still 
80 % larger than the quasi-steady value. When the majority of the rotation is delayed until the beginning of the next 
stroke (rotation delayed), the lift at the beginning and near the end of a stroke becomes very small or even negative 
because the effect of the first mechanism above is cancelled and the third mechanism does not apply in this case. The 
mean lift coefficient is much smaller than in the other two cases. 

[219] Young, J., Lai, J. C. S., and Germain, C., “Numerical Simulation and Parameter Variation of Insect Wing 
Motion based on Dragonfly Hovering,” AIAA Paper 2006-0038, Jan. 2006.  
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 Abstract: The flapping motion of a wing based on the hind-wing of the Aeschna juncea dragonfly is 
simulated using a 3D incompressible Navier Stokes solver. The performance of the wing is investigated by variation of 
a number of kinematic parameters. Flapping amplitudes of between 10 deg to 60 deg (half-angle) and frequencies of 1 
to 300 Hz are considered, resulting in a Reynolds number range of 100 to 50,000. The flapping amplitude observed for 
Aeschna juncea is shown to maximize the ratio of mean vertical force produced to power required. 

[220] Zheng, L., Hedrick, T. L., and Mittal, R., “A Multi-Fidelity Modelling Approach for Evaluation and 
Optimization of Wing Stroke Aerodynamics in Flapping Flight,” Journal of Fluid Mechanics, Vol. 721, Apr. 2013, pp. 
118–154. 

 Keywords: 3-D, Numerical, Hover 
 Abstract: The aerodynamics of hovering flight in a hawkmoth (Manduca sexta) are examined using a 
computational modelling approach which combines a low-fidelity blade-element model with a high-fidelity Navier–
Stokes-based flow solver. The focus of the study is on understanding the optimality of the hawkmoth-inspired 
wingstrokes with respect to lift generation and power consumption. The approach employs a tight coupling between the 
computational models and experiments; the Navier–Stokes model is validated against experiments, and the blade-
element model is calibrated with the data from the Navier–Stokes modelling. In the first part of the study, blade-
element and Navier–Stokes modelling are used concurrently to assess the predictive capabilities of the blade-element 
model. Comparisons between the two modelling approaches also shed insights into specific flow features and 
mechanisms that are lacking in the lower-fidelity model. Subsequently, we use blade-element modelling to explore a 
large kinematic parameter space of the flapping wing, and Navier–Stokes modelling is used to assess the performance 
of the wing-stroke identified as optimal by the blade-element parameter survey. This multi-fidelity optimization study 
indicates that even within a parameter space constrained by the animal’s natural flapping amplitude and frequency, it is 
relatively easy to synthesize a wing stroke that exceeds the aerodynamic performance of the hawkmoth wing stroke. 
Within the prescribed constraints, the optimal wing stroke closely approximates the condition of normal hover, and the 
implications of these findings on hawkmoth flight capabilities as well as on the issue of biomimetic versus bioinspired 
design of flapping wing micro-aerial vehicles, are discussed. 

[221] Isogai, K., Fujishoro, S., Saitoh, T., Yamamoto, M., Yamasaki, M., and Matsubara, M., “Unsteady Three-
Dimensional Viscous Flow Simulation of a Dragonfly Hovering,” AIAA Journal, Vol. 42, No. 10, 2004, pp. 2053–
2059. 

 Keywords: 3-D, Numerical, Hover 
 Abstract: To clarify the basic aerodynamic mechanisms of the hovering flight of the dragonfly, numerical 
simulations of the unsteady viscous flow around a tandem wing configuration have been performed using a three-
dimensional Navier-Stokes codes. The flow simulations are conducted for Anax parthenope julius as a typical 
dragonfly model. The total lifting force and specific necessary power predicted by the present simulation show close 
agreement with those observed experimentally for the present dragonfly model. The present code is further validated by 
comparing the results of the simulation with the experimental values of total lift and stroke-plane angle obtained using 
a robot. 

[222] Su, J. Y., Tang, J. H., Wang, C. H., and Yang, J. T., “A Numerical Investigation on the Ground Effect of a 
Flapping-Flying Bird,” Physics of Fluids, Vol. 25, No. 9, 2013, pp. 093101-1–093101-13. 

 Keywords: 3-D, Numerical, Ground Effect 
 Abstract: The flight of a small bird under the influence of the ground effect is numerically investigated with a 
complete three-dimensional model including the bird's body and wings. The flight mode is not the conventional steady 
gliding flight but an unsteady flight consisting of flapping, twisting, and folding motions. As the bird approaches the 
ground, the average lift force gradually increases while the average drag force decreases. At a particular distance, the 
average lift force increases by approximately 47%, whereas the average drag force decreases by nearly 20%, relative to 
the absence of the ground effect. Because of the ground, the improved aerodynamic performance in flapping flight is 
much more significant than in steady flight, in which the modification of the lift-drag ratio is typically less than 10%. 
On the basis of the flow field, regardless of the presence or absence of the ground, there exists no evidence for an 
obstruction of a wing-tip vortex, which is a remarkable phenomenon and accounts for the improved performance in 
steady flight. The extent of the region of high pressure beneath the wing in the near-ground case seems to surpass that 
in the far-ground case, accounting for the greater lift and thrust forces in the near-ground case. This air cushion beneath 
the wing, known as the cram effect, is the dominant factor of the ground effect on a flapping bird. 
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[223] Viswanath, K., and Tafti, D. K., “Effect of Frontal Gusts on Forward Flapping Flight,” AIAA Journal, Vol. 48, 
No. 9, 2010, pp. 2049–2062. 

 Keywords: 3-D, Numerical, Gusts 
 Abstract: The response of a rigid flapping wing in forward flight, at Re=10,000, subjected to frontal gusts has 
been investigated. The phasing and duration of the gusts and their impact on the various unsteady mechanisms are 
analyzed within a single flapping cycle. The gust is characterized by a step function with integral length scale much 
larger than that of the physical dimension of the micro air vehicle and with time scale much smaller than the flapping 
time period. The instantaneous lift and thrust profiles were observed to be influenced by a combination of the effective 
angle of attack, wing rotation, and the leading-edge vortices on the wing surface that increased the lift and thrust, 
illustrating the importance of the leading-edge vortex dynamics to force production. The effect of the gust is observed 
to be diminished when it occurs during rapid supination of the wing. The lift and thrust profiles are found to react in a 
similar fashion for gusts applied during the downstroke, whereas they experienced opposite effects during the upstroke. 
During the upstroke, force characteristics are shown to primarily react to effective angle-of-attack changes more than to 
changes in flow structures. 

[224] Hua, R. N., Zhu, L., and Lu, X. Y., “Locomotion of a Flapping Flexible Plate,” Physics of Fluids, Vol. 25, No. 
12, 2013, pp. 121901-1–121901-17. 

 Keywords: 3-D, Numerical, Flexibility 
 Abstract: The locomotion of a flapping flexible plate in a viscous incompressible stationary fluid is 
numerically studied by an immersed boundary-lattice Boltzmann method for the fluid and a finite element method for 
the plate. When the leading-edge of the flexible plate is forced to heave sinusoidally, the entire plate starts to move 
freely as a result of the fluid-structure interaction. Mechanisms underlying the dynamics of the plate are elucidated. 
Three distinct states of the plate motion are identified and can be described as forward, backward, and irregular. Which 
state to occur depends mainly on the heaving amplitude and the bending rigidity of the plate. In the forward motion 
regime, analysis of the dynamic behaviors of the flapping flexible plate indicates that a suitable degree of flexibility can 
improve the propulsive performance. Moreover, there exist two kinds of vortex streets in the downstream of the plate 
which are normal and deflected wake. Further the forward motion is compared with the flapping-based locomotion of 
swimming and flying animals. The results obtained in the present study are found to be consistent with the relevant 
observations and measurements and can provide some physical insights into the understanding of the propulsive 
mechanisms of swimming and flying animals. 

[225] Kang, C. K., Aono, H., Cesnik, C. E. S., and Shyy, W., “Effects of Flexibility on the Aerodynamic 
Performance of Flapping Wings,” Journal of Fluid Mechanics, Vol. 689, Dec. 2011, pp. 32–74. 

 Keywords: 3-D, Numerical, Flexibility 
 Abstract: Effects of chordwise, spanwise, and isotropic flexibility on the force generation and propulsive 
efficiency of flapping wings are elucidated. For a moving body immersed in viscous fluid, different types of forces, as a 
function of the Reynolds number, reduced frequency (k), and Strouhal number (St), acting on the moving body are 
identified based on a scaling argument. In particular, at the Reynolds number regime of  O(10^3-10^4) and the reduced 
frequency of O(1), the added mass force, related to the acceleration of the wing, is important. Based on the order of 
magnitude and energy balance arguments, a relationship between the propulsive force and the maximum relative wing-
tip deformation parameter (gamma) is established. The parameter depends on the density ratio, St, k, natural and 
flapping frequency ratio, and flapping amplitude. The lift generation, and the propulsive efficiency can be deduced by 
the same scaling procedures. It seems that the maximum propulsive force is obtained when flapping near the resonance, 
whereas the optimal propulsive efficiency is reached when flapping at about half of the natural frequency; both are 
supported by the reported studies. The established scaling relationships can offer direct guidance for micro air vehicle 
design and performance analysis. 

[226] Wang, S., Zhang, X., He, G., and Liu, T., “Lift Enhancement by Dynamically Changing Wingspan in Forward 
Flapping Flight,” Physics of Fluids, Vol. 26, No. 6, 2014, pp. 061903-1–061903-19. 

 Keywords: 3-D, Numerical, Stretching Wing 
 Abstract: Dynamically stretching and retracting wingspan has been widely observed in the flight of birds and 
bats, and its effects on the aerodynamic performance particularly lift generation are intriguing. The rectangular flat-
plate flapping wing with a sinusoidally stretching and retracting wingspan is proposed as a simple model for 
biologically inspired dynamic morphing wings. Numerical simulations of the low-Reynolds-number flows around the 
flapping morphing wing are conducted in a parametric space by using the immersed boundary method. It is found that 
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the instantaneous and time-averaged lift coefficients of the wing can be significantly enhanced by dynamically 
changing wingspan in a flapping cycle. The lift enhancement is caused by both changing the lifting surface area and 
manipulating the flow structures responsible to the vortex lift generation. The physical mechanisms behind 
the lift enhancement are explored by examining the three-dimensional flow structures around the flapping wing. 

[227] Rakotomamonjy, T., Ouladsine, M., and Le Moing, T., “Modelization and Kinematics Optimization for a 
Flapping-Wing Microair Vehicle,” Journal of Aircraft, Vol. 44, No. 1, 2007, pp. 217–231. 

 Keywords: 3-D, Numerical, Bi-wing 
 Abstract: OSCAB, a flight-dynamics-oriented simulation model of a flapping-wing micro air vehicle, is 
presented here. This concept is based on flapping flight performed in nature by insects or hummingbirds. The model 
features two independent wings and integrates the aerodynamic forces computed along each wing to determine the 
global motion of the micro air vehicle with respect to an inertial reference frame. A comparison between our simulation 
model and previous experimental measurements is presented, showing that it can reproduce the influence of the wing 
rotation phasing on the total lift. An optimization of the flapping kinematics of the wing has also been conducted to 
maximize the mean lift. A neural network has been designed to reproduce various function shapes modeling the wing 
movements. The parameters of this network have been optimized with a genetic algorithm to avoid local extrema. 
Results show a lift gain from 30 to 40%, corroborating previous experiments.  

[228] Broering, T. M., Yongsheng, L., and Henshaw, W., “Numerical Investigation of Energy Extraction in a 
Tandem Flapping Wing Configuration,” AIAA Journal, Vol. 50, No. 11, 2012, pp. 2295–2307. 

 Keywords: 3-D, Numerical, Tandem-Wing 
 Abstract: A number of flying insects make use of tandem-wing configurations, suggesting that such a setup 
may have potential advantages over a single wing at low Reynolds numbers. Dragonflies, which are fast and highly 
maneuverable, demonstrate well the potential performance of such a design. In this paper, a tandem-wing flapping 
configuration is simulated at a Reynolds number of 10,000 using an incompressible Navier-Stokes solver and an 
overlapping grid method. The flapping motion consists of a simple sinusoidal pitch and plunge motion with a spacing 
of one chord length between both wings. The arrangement was tested at a Strouhal number of 0.3 for three different 
phase angles: 0, 90, and 180 deg. The aerodynamics of the hind wing was compared in detail to a single wing, with the 
same geometry and undergoing the same flapping kinematics, to determine the effect of vortex shedding from the 
forewing on the hindwing, as well as how the phase angle affects the interaction. The average lift, thrust, and power 
coefficients and the average efficiency of the fore-and hindwings were compared with a single wing to determine how 
the tandem-wing interaction affects performance. The results show that adjusting the phase angle allows the tandem 
wing to change the flight mode. At 0 deg phase lag, the tandem wing produces high thrust at high propulsive efficiency, 
but low lift efficiency. Switching to 90/180 deg phase lag decreases the thrust production and propulsive efficiency but 
greatly increases the lift efficiency. At 90/180 deg, the power coefficient is much lower than at 0 deg due to the 
hindwing extracting energy from the wake of the forewing. 

[229] Viswanath, K., and Tafti, D. K., “Effect of Stroke Deviation on Forward Flapping Flight,” AIAA Journal, Vol. 
51, No. 1, 2013, pp. 145–160. 

 Keywords: 3-D, Numerical, Flat Plate 
 Abstract: The performance of a rigid, thin surface flat-plate flapping wing in forward flight, at Re=10,000 
using different stroke deviation trajectories, has been investigated to assess the different capabilities that such 
kinematics might offer. The instantaneous lift and thrust profiles were observed to be influenced by a combination of 
the leading-edge vortex and the trailing-edge vortex structures existing in the flow at any given time. Unlike regular no-
deviation flapping cycles, the trailing-edge vortex is shown to be significant for out-of-plane trajectories. Both 
clockwise and anticlockwise variations for trajectory choice are analyzed for their efficacy as an improved kinematic 
choice over a no-deviation base case. The power requirements for the different cases, based on the fluid torques, are 
used as an index of the cost of performance across all cases. The anticlockwise eight-cycle deviation is shown to be 
very complex with high power costs albeit having better performance. The clockwise O cycle holds promise with being 
used as a viable stroke deviation trajectory for forward flight over the base case. 
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Flapping Plate,” Physics of Fluids, Vol. 23, No. 7, 2011, pp. 073601-1–073601-17. 
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 Abstract: The laminar flow over a stationary circular cylinder with a flapping plate is simulated in this study 
to investigate the flow characteristics by using our recently developed boundary condition-enforced immersed 
boundary-lattice Boltzmann method [Wu and Shu, J. Comput. Phys.228, 1963 (2009); Wu et al., Int. J. Numer. 
Methods Fluids62, 327 (2010); Wu and Shu, Comm. Comp. Phys.7, 793 (2010)]. The purpose of this work is to study 
the flow control behind a bluff body by an alternative way different from the rotationally oscillating motion. The idea is 
in fact from the tadpole locomotion, where the bluff head-body is modeled by a circular cylinder, and the thin tail is 
simplified by a rigid plate with flapping motion. In this work, only the laminar flow is considered and thus the 
Reynolds number is chosen as 100. Similar to the case of rotationally oscillating cylinder, the flow wake behind the 
cylinder and flapping plate is strongly affected by the flapping amplitude and frequency of plate. On the other hand, 
because of the existence of flapping plate, the length of plate can also modify the flow structures. Due to flapping 
motion of plate, some typical flow patterns and drag reduction are found, and two different vortex interaction modes, 
known as constructive interaction and destructive interaction, are observed. 

[231] Zhang, J., Liu, N. S., and Lu, X. Y., “Locomotion of a Passively Flapping Flat Plate,” Journal of Fluid 

Mechanics, Vol. 659, Sep. 2010, pp. 43–68. 
 Keywords: 3-D, Numerical, Flat Plate 

 Abstract: Locomotion of a passively flapping flat plate has been studied numerically by means of a 
multiblock lattice Boltzmann method. A flexible plate is modelled by a rigid plate with a torsion spring acting about the 
pivot at the leading edge of the plate. A dynamic model of this kind is called a lumped-torsional-flexibility model. 
When the leading edge is forced to heave sinusoidally, the plate pitches passively and propels itself in the horizontal 
direction as a result of the fluid–plate interaction. We have investigated various aspects of the mechanics behind the 
behavior of the flapping plate, including the periodic- and non-periodic-flow states, the spontaneous motion of the 
plate, vortical structure and how they compare to similar propulsion systems in animals. In the periodic-flow regime, 
two dynamical responses of the passively pitching plate (forward and backward movements) are observed. Which 
movement will occur depends only on the frequency ratio F of the natural frequency of the system and the heaving 
frequency associated with the lumped torsional flexibility. It is found that the plate will select the forward movement 
when F > 1 and the backward movement when F ≤ 1. In the forward-movement regime, analysis of the dynamical 
behaviors and propulsive properties of the passively pitching plate indicates that the torsional flexibility can remarkably 
improve the propulsive performance. In addition, four kinds of vortex structures in the near wake are identified, which 
mainly depend on the forward speed of the plate. Finally the forward movement is compared to the flapping-based 
locomotion of swimming and flying animals. The results obtained in this study are consistent with the observations and 
measurements of swimming and flying animals; thus, they may provide physical insights into understanding of the 
propulsive mechanisms of the flapping wings and fins of animals. 

[232] Fritz, T. E., and Long, L. N., “Object-Oriented Unsteady Vortex Lattice Method for Flapping Flight,” Journal 

of Aircraft, Vol. 41, No. 6, 2004, pp. 1275–1290. 
 Keywords: 3-D, Numerical, High-frequency 

 Abstract: The unsteady vortex lattice method is used to model the oscillating plunging, pitching, twisting, and 
flapping motions of a finite-aspect-ratio wing. Its potential applications include design and analysis of small unmanned 
air vehicles and in the study of the high-frequency flapping flight of birds and other small flyers. The results are 
verified by theory and, in the plunging and pitching cases, by experimental data. The model includes free-wake 
relaxation, vortex stretching, and vortex dissipation effects and is implemented using object-oriented computing 
techniques. The results show that the method is capable of accurately simulating many of the features of complex 
flapping flight. 

[233] Yokoyama, N., Senda, K., Iima, M., and Hirai, N., “Aerodynamic Forces and Vortical Structures in Flapping 
Butterfly's Forward Flight,” Physics of Fluids, Vol. 25, No. 2, 2013, pp. 021902-1–021902-24. 

 Keywords: 3-D, Numerical, Butterfly 
 Abstract: Forward flights of a bilaterally symmetrically flapping butterfly modeled as a four-link rigid-body 
system consisting of a thorax, an abdomen, and left and right wings are numerically simulated. The joint motions of the 
butterflies are adopted from experimental observations. Three kinds of the simulations, distinguished by ways to 
determine the position and attitude of the thorax, are carried out: a tethered simulation, a prescribed simulation, and 
free-flight simulations. The upward and streamwise forces as well as the wake structures in the tethered simulation, 
where the thorax of the butterfly is fixed, reasonably agree with those in the corresponding tethered experiment. In the 
prescribed simulation, where the thoracic trajectories as well as the joint angles are given by those observed in a free-
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flight experiment, it is confirmed that the butterfly can produce enough forces to achieve the flapping flights. 
Moreover, coherent vortical structures in the wake and those on the wings are identified. The generation of 
the aerodynamic forces due to the vortical structures are also clarified. In the free-flight simulation, where only the joint 
angles are given as periodic functions of time, it is found that the free flight is longitudinally unstable because the 
butterfly cannot maintain the attitude in a proper range. Focusing on the abdominal mass, which largely varies owing to 
feeding and metabolizing, we have shown that the abdominal motion plays an important role in periodic flights. The 
necessity of control of the thoracic attitude for periodic flights and maneuverability is also discussed. 

[234] Ramamurti, R., Sandberg, W., Valana, P., Kellogg, J., and Cylinder, D., “Computational Fluid Dynamics 
Study of Unconventional Air Vehicle Configurations,” Aeronautical Journal, Vol. 109, July 2005. pp. 337–347. 

 Keywords: 3-D, Numerical, MAV 
 Abstract: Two unconventional micro air vehicles developed by the Naval Research Laboratory are described. 
One of the vehicles employs flapping wings which is inspired by the flight of birds or insects but does not copy it 
directly. The second vehicle is a stop-rotor hybrid vehicle employing a pair of single blade, rotary/fixed wing panels, 
attached at their roots to separate coaxial shafts. An unstructured grid based incompressible flow solver, called feflo, is 
used to simulate the flow past these novel configurations in order to determine the flight characteristics of these 
vehicles 

[235] Ashraf, M. A., Young, J., Lai, J.C.S., and Platzer, M. F., “Aerodynamic Analysis of Flapping-Wing Propellers 
For HALE Aircraft,” AIAA Paper 2009-0092, Jan. 2009.  

 Keywords: 3-D, Numerical, HALE Aircraft 
 Abstract: In a paper presented at the 26th Congress of the International Council of the Aeronautical Sciences, 
we proposed to apply the flapping-wing propellers and turbines which we developed for micro air vehicles and 
hydropower generators to the development of high-altitude long-endurance (HALE) vehicles and flying electric 
generators. Aerodynamic analyses using Navier-Stokes calculations at a Reynolds number of 1,000,000 are presented 
here to assess the feasibility and advantages of using flapping-wing propellers for HALE aircraft. A range of values has 
been examined for various parameters including oscillation frequency, plunge amplitude, pitch amplitude, angle of 
incidence and separation between the main wing and the trailing airfoils. Results show that while a reasonable lift 
coefficient can be achieved with the main wing, the propulsive efficiency of a HALE aircraft with trailing airfoils 
executing pure plunge motion is only in the vicinity of 1 percent. By employing combined pitch-plunge motions for the 
trailing airfoils, the overall thrust and efficiency are increased by at least 10 times and 25 times respectively within the 
range of parameter values examined. 

[236] Liu H., and Kawachi, K.,  “Leading-Edge Vortices of Flapping and Rotary Wings at Low Reynolds Number,” 
Fixed and Flapping Wing Aerodynamics for Micro Air Vehicles, AIAA, Danvers, MA, 2001, pp. 275–285. 

 Keywords: 3-D, Numerical, Vortices, Flapping vs Rotary 
  
[237] Blondeaux, P., Fornarelli, F., Guglielmini, L., Triantafyllou, M. S., and Verzicco, R., “Numerical Experiments 

on Flapping Foils Mimicking Fish-like Locomotion,” Physics of Fluids, Vol. 17, No. 11, 2005, pp. 113601-1–113601-
12. 

 Keywords: 3-D, Numerical, Vortices 
 Abstract: The results of numerical experiments aimed at investigating the topology of the vortex structures 
shed by an oscillating foil of finite span are described. The motion of the foil and its geometry are chosen to mimic the 
tail of a fish using the carangiform swimming. The numerical results have been compared with the flow visualizations 
of Freymuth [J. Fluids Eng.111, 217 (1989)] and those of von Ellenrieder et al. [J. Fluid Mech.490, 129 (2003)]. The 
results show that a vortex ring is shed by the oscillating foil every half a cycle. The dynamics of the vortex rings 
depends on the Strouhal number St. For relatively small values of St, the interaction between adjacent rings is weak and 
they are mainly convected downstream by the free stream. On the other hand, for relatively large values of St, a strong 
interaction among adjacent rings takes place and the present results suggest the existence of reconnection phenomena, 
which create pairs of longitudinal counter-rotating vortices. 

[238] Chandar, D. D. J., and Damodaran, M., “Computation of Unsteady Low Reynolds Number Free-Flight 
Aerodynamics of Flapping Wings,” Journal of Aircraft, Vol. 47, No. 1, 2010, pp. 141–150. 

 Keywords: 3-D, Numerical, Vortices 
 Abstract: The observation that thrust is produced when a wing flaps above a particular reduced frequency at 
low Reynolds numbers has been associated with the formation of a reverse Karman vortex street. Through experiments, 
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numerical computations, and analytical methods, scientists have been able to explain thrust generation in birds and 
insects. This has increased the interest in the development of micro aerial vehicles. There is, however, a paucity of 
experimental or computational studies that explain the basic mechanism of thrust generation from the viewpoint of the 
surrounding vortical structures and the effect of these vortices on free flight when the wing is accelerating in the 
direction of thrust. In the present work, three-dimensional free-flight computations are carried out on flapping wings 
that have rectangular planforms composed of NACA 0012 and an elliptical airfoil section, respectively, to demonstrate 
that thrust is generated as a result of vortex asymmetry. Based on the computed vortex dynamics, it is also shown that 
the relative convection rates of positive and negative vorticity are a key parameter involved in thrust generation. 
Numerical computations are performed using the unsteady three-dimensional Navier-Stokes solver composite grid 
incompressible Navier-Stokes, which is based on the Overture framework for overlapping grids. Comparative analysis 
with existing experimental/computational data is also presented. 

[239] Harbig, R. R., Sheridan, J., and Thompson, M. C., “The Role of Advance Ratio and Aspect Ratio in 
Determining Leading-Edge Vortex Stability for Flapping Flight,” Journal of Fluid Mechanics, Vol. 751, July 2014, pp. 
71–105. 

 Keywords: 3-D, Numerical, Vortices 
 Abstract: The effects of advance ratio and the wing’s aspect ratio on the structure of the leading-edge vortex 
(LEV) that forms on flapping and rotating wings under insect-like flight conditions are not well understood. However, 
recent studies have indicated that they could play a role in determining the stable attachment of the LEV. In this study, 
a numerical model of a flapping wing at insect Reynolds numbers is used to explore the effects of these parameters on 
the characteristics and stability of the LEV. The word ‘stability’ is used here to describe whether the LEV was attached 
throughout the stroke or if it was shed. It is demonstrated that increasing the advance ratio enhances vorticity 
production at the leading edge during the downstroke, and this results in more rapid growth of the LEV for non-zero 
advance ratios. Increasing the wing aspect ratio was found to have the effect of shortening the wing’s chord length 
relative to the LEV’s size. These two effects combined determine the stability of the LEV. For high advance ratios and 
large aspect ratios, the LEV was observed to quickly grow to envelop the entire wing during the early stages of the 
downstroke. Continued rotation of the wing resulted in the LEV being eventually shed as part of a vortex loop that 
peels away from the wing’s tip. The shedding of the LEV for high-aspect-ratio wings at non-zero advance ratios leads 
to reduced aerodynamic performance of these wings, which helps to explain why a number of insect species have 
evolved to have low-aspect-ratio wings. 

[240] Rayner, J. M. V., “A Vortex Theory of Animal Flight. Part 2. The Forward Flight of Birds,” Journal of Fluid 

Mechanics, Vol. 91, Apr. 1979, pp. 731–763. 
 Keywords: 3-D, Numerical, Vortices 

 Abstract: The vortex wake of a bird in steady forward flight is modelled by a chain of elliptical vortex rings, 
each generated by a single downstroke. The shape and inclination of each ring are determined by the downstroke 
geometry, and the size of each ring by the wing circulation; the momentum of the ring must overcome parasitic and 
profile drags and the bird's weight for the duration of a stroke period. From the equation of motion it is possible to 
determine exactly the kinematics of the wing-stroke for any flight velocity. This approach agrees more readily with the 
nature of the wing-stroke than the classical actuator disk and momentum-jet theory; it also dispenses with lift and 
induced drag coefficients and is not bound by the constraints of steady-state aerodynamics. The induced power is 
calculated as the mean rate of increase of wake kinetic energy. The remaining components of the flight power (parasite 
and profile) are calculated by traditional methods; there is some consideration of different representations of body 
parasite drag. The lift coefficient required for flight is also calculated; for virtually all birds the lift coefficient in slow 
flight and hovering is too large to be consistent with steady-state aerodynamics. A bird is concerned largely to reduce 
its power consumption on all but the shortest flights. The model suggests that there are a number of ways in which 
power reduction can be achieved. These various strategies are in good agreement with observation. 

[241] Shyy, W., Aono, H., Chimakurthi, S. K., Trizila, P., Kang, C. K., Cesnik, C. E. S., Liu, H., “Recent Progress in 
Flapping Wing Aerodynamics and Aeroelasticity,” Progress in Aerospace Sciences, Vol. 46, No. 7, 2010, pp. 284–327. 

 Keywords: 3-D, Numerical, Vortices 
 Abstract: Micro air vehicles (MAVs) have the potential to revolutionize our sensing and information 
gathering capabilities in areas such as environmental monitoring and homeland security. Flapping wings with suitable 
wing kinematics, wing shapes, and flexible structures can enhance lift as well as thrust by exploiting large-scale 
vortical flow structures under various conditions. However, the scaling invariance of both fluid dynamics and structural 
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dynamics as the size changes is fundamentally difficult. The focus of this review is to assess the recent progress in 
flapping wing aerodynamics and aeroelasticity. It is realized that a variation of the Reynolds number (wing sizing, 
flapping frequency, etc.) leads to a change in the leading edge vortex (LEV) and spanwise flow structures, which 
impacts the aerodynamic force generation. While in classical stationary wing theory, the tip vortices (TiVs) are seen as 
wasted energy, in flapping flight, they can interact with the LEV to enhance lift without increasing the power 
requirements. Surrogate modeling techniques can assess the aerodynamic outcomes between two- and three-
dimensional wing. The combined effect of the TiVs, the LEV, and jet can improve the aerodynamics of a flapping 
wing. Regarding aeroelasticity, chordwise flexibility in the forward flight can substantially adjust the projected area 
normal to the flight trajectory via shape deformation, hence redistributing thrust and lift. Spanwise flexibility in the 
forward flight creates shape deformation from the wing root to the wing tip resulting in varied phase shift and effective 
angle of attack distribution along the wing span. Numerous open issues in flapping wing aerodynamics are highlighted. 

[242] Smith, M., Wilkin, P., and Williams, M., “The advantages of an unsteady panel method in modelling the 
aerodynamic forces on rigid flapping wings,” Journal of Experimental Biology, Vol. 199, May 1996, pp. 1073–1083. 

 Keywords: 3-D, Numerical, Vortices 
 Abstract: This paper responds to research into the aerodynamics of flapping wings and to the problem of the 
lack of an adequate method which accommodates large-scale trailing vortices. A comparative review is provided of 
prevailing aerodynamic methods, highlighting their respective limitations as well as strengths. The main advantages of 
an unsteady aerodynamic panel method are then introduced and illustrated by modelling the flapping wings of a 
tethered sphingid moth and comparing the results with those generated using a quasi-steady method. The improved 
correlations of the aerodynamic forces and the resultant graphics clearly demonstrate the advantages of the unsteady 
panel method (namely, its ability to detail the trailing wake and to include dynamic effects in a distributed manner). 

[243] Wang, X. X., and Wu, Z. N., “Stroke-Averaged Lift Forces Due to Vortex Rings and Their Mutual Interactions 
for a Flapping Flight Model,” Journal of Fluid Mechanics, Vol. 654, July 2010, pp. 453–472. 

 Keywords: 3-D, Numerical, Vortices 
 Abstract: The stroke-averaged lift forces due to various vortex rings and their mutual interactions are studied 
using a flapping flight vortex model (Rayner, J. Fluid Mech., vol. 91, 1979, p. 697; Ellington, Phil. Trans. R. Soc. 

Lond. B, vol. 305, 1984b, p. 115). The vortex system is decomposed into the wing plane (wing-linked) vortex ring, a 
loop closed by the bound vortex and (arc-shaped) trailing vortex and the wake (the vortex rings shed previously). Using 
the vorticity moment theory (Wu, AIAA J., vol. 19, 1981, p. 432) we are able to identify the roles of vortex rings in lift 
production or reduction and express the lift as function of areal contraction or expansion of vortex rings. The wake 
vortex rings induce areal contraction of the trailing vortex, which should decrease the lift, but this decrease is exactly 
compensated by the inducing effect of the trailing arc on the wake. The wake reduces the lift through inducing a 
downwash velocity on the wing plane. The lift force is shown to drop to a minimum at the second half stroke, and then 
increases to an asymptotic value slightly below the lift at the first half stroke, in such a way following the experimental 
observation of Birch & Dickinson ((ature, vol. 412, 2001, p. 729). The existence of the negative peak of lift is due to 
the first shed vortex ring which, just at the second half stroke, lies in the close vicinity to the wing plane, leading to a 
peak of the wing plane downwash velocity. 

[244] Zhu, Q., Wolfgang, M. J., Yue, D. K. P., and Triantafyllou, M. S., “Three-Dimensional Flow Structures and 
Vorticity Control in Fish-like Swimming,” Journal of Fluid Mechanics, Vol. 468, Oct. 2002, pp. 1–28. 

 Keywords: 3-D, Numerical, Wake 
 Abstract: We employ a three-dimensional, nonlinear inviscid numerical method, in conjunction with 
experimental data from live fish and from a fish-like robotic mechanism, to establish the three-dimensional features of 
the flow around a fish-like body swimming in a straight line, and to identify the principal mechanisms of vorticity 
control employed in fish-like swimming. The computations contain no structural model for the fish and hence no recoil 
correction. First, we show the near-body flow structure produced by the travelling-wave undulations of the bodies of a 
tuna and a giant danio. As revealed in cross-sectional planes, for tuna the flow contains dominant features resembling 
the flow around a two-dimensional oscillating plate over most of the length of the fish body. For the giant danio, on the 
other hand, a mixed longitudinal–transverse structure appears along the hind part of the body. We also investigate the 
interaction of the body-generated vortices with the oscillating caudal fin and with tail-generated vorticity. Two distinct 
vorticity interaction modes are identified: the first mode results in high thrust and is generated by constructive pairing 
of body-generated vorticity with same-sign tail-generated vorticity, resulting in the formation of a strong thrust wake; 
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the second corresponds to high propulsive efficiency and is generated by destructive pairing of body-generated 
vorticity with opposite-sign tail-generated vorticity, resulting in the formation of a weak thrust wake. 

[245] Vest, M., and Katz, J., “Unsteady Aerodynamic Model of Flapping Wings,” AIAA Journal, Vol. 34, No. 7, 
1996, pp. 1435–1440. 

 Keywords: 3-D, Numerical, Model 
 Abstract: Propulsive forces can be generated with flapping or heaving wing traveling through a fluid, as 
demonstrated in animal flight. To examine the flowfield around variable geometry bodies, with specific application to 
the unsteady flow associated with flapping wings, an unsteady, three-dimensional, incompressible, potential flow 
model was developed. The problem is formulated in an inertial reference frame such that the body moves through an 
otherwise quiescent fluid. Results were compared with the limited experimental results available and analytical 
methods. In one case the model was applied to a flapping wing in a wind tunnel at high advance ratios (J=4.31) where 
the computed average lift and thrust were within the error bounds of the experimental data. The model was also applied 
to high-frequency flapping flight (J=0.76) of a pigeon flying in a wind tunnel, where the predicted lift matched the 
weight of the bird. 

[246] Liu, H., “Computational Biological Fluid Dynamics: Digitizing and Visualizing Animal Swimming and 
Flying,” Integrative and Comparative Biology, Vol. 42, No. 5, 2002, pp. 1050–1059. 

 Keywords: 3-D, Numerical, Modeling 
 Abstract: Characterized by complex geometry and complicated dynamic process, biological fluid dynamics in 
swimming and flying is usually of large scale vortex flows with four-dimensional nature, namely, spatial three-
dimensional and one-dimensional in time. Conventional theories for understanding power and energetics in swimming 
and flying rely exclusively on the consistent potential flow formulation in qualitatively analyzing the physics as well as 
the observations and measurements in visualizing the flows so as to support the theories. In the present paper we 
address a new paradigm of the so-called, simulation-based biological fluid dynamics that can digitize and visualize 
swimming and flying by using computational mechanical modeling of the biological fluid dynamics through faithful 
reconstruction of morphology and realistic representation of kinematics of an individual object. We demonstrate an 
integrated computational system as a baseline for the simulation-based biological fluid dynamics, which involves four 
subsystems of the morphological modeling, the kinematic modeling, the computational fluid dynamic modeling, and 
the post-processing for visualization. Applications of a realistic model of insect flapping flight and an extensive study 
on the Micro Air Vehicle are then presented and discussed. 

[247] Brunton, S. L., Rowley, C. W., and Williams, D. R., “Reduced-Order Unsteady Aerodynamic Models at Low 
Reynolds Numbers,” Journal of Fluid Mechanics, Vol. 724, June 2013, pp. 203–233. 

 Keywords: 2-D and 3-D, Numerical, Models 
 Abstract: In this paper we develop reduced-order models for the unsteady lift on a pitching and plunging 
aerofoil over a range of angles of attack. In particular, we analyze the pitching and plunging dynamics for two cases: a 
two-dimensional flat plate at Re= 100 using high-fidelity direct numerical simulations and a three-dimensional NACA 
0006 aerofoil at Re= 65,000 using wind-tunnel measurements. Models are obtained at various angles of attack and they 
are verified against measurements using frequency response plots and large-amplitude maneuvers. These models 
provide a low-dimensional balanced representation of the relevant unsteady fluid dynamics. In simulations, flow 
structures are visualized using finite-time Lyapunov exponents. A number of phenomenological trends are observed, 
both in the data and in the models. As the base angle of attack increases, the boundary layer begins to separate, 
resulting in a decreased quasi-steady lift coefficient slope and a delayed relaxation to steady state at low frequencies. 
This extends the low-frequency range of motions that excite unsteady effects, meaning that the quasi-steady 
approximation is not valid until lower frequencies than are predicted by Theodorsen’s classical inviscid model. In 
addition, at small angles of attack, the lift coefficient rises to the steady-state value after a step in angle, while at larger 
angles of attack, the lift coefficient relaxes down to the steady-state after an initially high lift state. Flow visualization 
indicates that this coincides with the formation and convection of vortices at the leading edge and trailing edge. As the 
angle of attack approaches the critical angle for vortex shedding, the poles and zeroes of the model approach the 
imaginary axis in the complex plane, and some zeroes cross into the right half plane. This has significant implications 
for active flow control, which are discussed. These trends are observed in both simulations and wind-tunnel data. 

[248] Isogai, K., and Harino, Y., “Optimum Aeroelastic Design of a Flapping Wing,” Journal of Aircraft, Vol. 44, 
No. 6, 2007, pp. 2040–2048. 
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 Keywords: 3-D, Numerical, Design, Optimization 
 Abstract: A method is presented for the optimum aeroelastic design of a flapping wing employing a lifting-
surface theory as an aerodynamic tool and the complex method as the optimization algorithm. The method is applied to 
the optimum design of a flapping wing of a Kite Hawk unmanned air vehicle and the optimum thickness distribution of 
the main spar is determined. As a result of the optimization, a high propulsive efficiency of 75% is attained considering 
only dihedral flapping of the main spar. By evaluating the viscous effect for this optimum design using a three-
dimensional Navier-Stokes code, the effectiveness of the design is confirmed. 

[249] Willis, D. J., and Persson, P. O., “Multiple-Fidelity Computational Framework for the Design of Efficient 
Flapping Wings,” AIAA Journal, Vol. 52, No. 12, 2014, pp. 2840–2854. 

 Keywords: 3-D, Numerical, Design 
 Abstract: A multiple-fidelity computational framework is presented for designing energetically efficient 
flapping wings. The goal of this design process is to achieve specific aerodynamics characteristics, namely prescribed 
lift and thrust coefficients at low energetic cost. The wing kinematics (flapping frequency, flapping amplitude) and the 
resulting optimal wake-circulation distribution (wake circulation/vorticity strength and wake shape) are determined 
using a low-order, wake-only, energetics method. A quasi-inverse, doublet-lattice method is used to determine the 
detailed flapping-wing geometry corresponding to the optimal wake. Because of the efficiency of potential flow 
approximations, the wake-only method and quasi-inverse, doublet-lattice method tools can explore a large number of 
wing kinematics and wing-morphing strategies efficiently; however, only a handful of those wing designs will achieve 
the desired performance in the physical low-Reynolds-number, viscous-flow regime. Thus, a high-order, discontinuous 
Galerkin, Navier–Stokes method is employed at the end of the process to assess which candidate wing designs meet the 
original design criteria in real fluids. 

[250] Hall, K. C., and Hall, S. R., “Minimum Induced Power Requirements for Flapping Flight,” Journal of Fluid 

Mechanics, Vol. 323, Sep. 1996, pp. 285–315. 
 Keywords: 3-D, Numerical, Optimization, Circulation 

 Abstract: The Betz criterion for minimum induced loss is used to compute the optimal circulation distribution 
along the span of flapping wings in fast forward flight. In particular, we consider the case where flapping motion is 
used to generate both lift (weight support) and thrust. The Betz criterion is used to develop two different numerical 
models of flapping. In the first model, which applies to small-amplitude harmonic flapping motions, the optimality 
condition is reduced to a one-dimensional integral equation which we solve numerically. In the second model, which 
applies to large-amplitude periodic flapping motions, the optimal circulation problem is reduced to solving for the flow 
over an infinitely long wavy sheet translating through an inviscid fluid at rest at infinity. This three-dimensional flow 
problem is solved using a vortex-lattice technique. Both methods predict that the induced power required to produce 
thrust decreases with increasing flapping amplitude and frequency. Using the large-amplitude theory, we find that the 
induced power required to produce lift increases with flapping amplitude and frequency. Therefore, an optimum 
flapping amplitude exists when the flapping motion of wings must simultaneously produce lift and thrust. 

[251] Rozhdestvensky, K. V., and Ryzhov, V. A., “Aerohydrodynamics of Flapping-wing Propulsors,” Progress in 

Aerospace Sciences, Vol. 39, No. 8, 2003, pp. 585–633. 
 Keywords: 3-D, Numerical, Summary 

 Abstract: It is the objective of this survey to review research and development results of flapping-wing 
propulsors and of vehicles equipped with them. Given the complex and multi-disciplinary character of the problem, a 
wide range of questions is considered in order to provide a general idea of the state-of-the-art. The main attention is 
directed at the aerohydrodynamics of flapping-wing propulsors. The major relevant mathematical models and the 
corresponding numerical results are presented together with the experimental data obtained up to the present time. 
Also, the physical and the design factors are discussed, which affect the aerohydrodynamic characteristics of flapping 
wings and that therefore have to be accounted for in the modern mathematical models. Experimental data and 
numerical modeling results are compared to determine domains of validity of the latter for the aerohydrodynamic 
design of full-scale air and marine vehicles. Also, existing engineering solutions for vehicles with flapping-wing 
propulsors are presented and prospective directions for future investigations are outlined. 

[252] Phillips, W. F., and Snyder, D. O., “Modern Adaptation of Prandtl’s Classic Lifting-Line Theory,” Journal of 

Aircraft, Vol. 37, No. 4, 2000, pp. 662–670. 
 Keywords: 3-D, Numerical, Lifting-line 
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 Abstract: The classical solution to Prandtl''s well-known lifting-line theory applies only to a single lifting 
surface with no sweep and no dihedral. However, Prandtl's original model of a finite lifting surface has much broader 
applicability. A general numerical lifting-line method based on Prandtl's model is presented. Whereas classical lifting-
line theory is based on applying the two-dimensional Kutta-Joukowski law to a three-dimensional flow, the present 
method is based on a fully three-dimensional vortex lifting law. The method can be used for systems of lifting surfaces 
with arbitrary camber, sweep, and dihedral. The accuracy realized from this method is shown to be comparable to that 
obtained from numerical panel methods and inviscid computational fluid dynamics solutions, but at a small fraction of 
the computational cost. 

[253] Phillips, W. F., Fugal, S. R., and Spall, R. E., “Minimizing Induced Drag with Wing Twist, Computational-
Fluid-Dynamics Validation,” Journal of Aircraft, Vol. 43, No. 2, 2006, pp. 437–444. 

 Keywords: 3-D, Numerical, Lifting-line 
 Abstract: A more practical analytical solution for the effects of wing twist on the performance of a finite wing 
of arbitrary planform has recently been presented. This infinite series solution is based on Prandtl's classical lifting-line 
theory, and the Fourier coefficients are presented in a form that depends only on wing geometry. Except for the special 
case of an elliptic planform, this solution shows that, if properly chosen, wing twist can be used to reduce the induced 
drag for a wing producing finite lift. A relation for the optimum twist distribution on a wing of arbitrary planform was 
presented. If this optimum twist distribution is used, the new solution predicts that a wing of any planform can be 
designed for a given lift coefficient to produce induced drag at the same minimum level as an elliptic wing having the 
same aspect ratio and no twist. In the present paper, results predicted from this new lifting-line solution are compared 
with results predicted from computational-fluid-dynamics (CFD) solutions. In all cases, the CFD solutions showed that 
the drag reduction achieved with optimum twist was equal to or greater than that predicted by lifting-line theory. 
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Mechanics, Vol. 757, Oct. 2014, pp. 599–612. 
 Keywords: 3-D, Numerical and Experimental, Flexibility 

 Abstract: Wing or fin flexibility can dramatically affect the performance of flying and swimming animals. 
Both laboratory experiments and numerical simulations have been used to study these effects, but analytical results are 
notably lacking. Here, we develop small-amplitude theory to model a flapping wing that pitches passively due to a 
combination of wing compliance, inertia and fluid forces. Remarkably, we obtain a class of exact solutions describing 
the wing’s emergent pitching motions, along with expressions for how thrust and efficiency are modified by 
compliance. The solutions recover a range of realistic behaviors and shed new light on how flexibility can aid 
performance, the importance of resonance, and the separate roles played by wing and fluid inertia. The simple robust 
estimates afforded by our theory may prove valuable even in situations where details of the flapping motion and wing 
geometry differ. 
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 Keywords: 3-D, Numerical and Experimental, Flexibility 
 Abstract: To better understand the role of wing and fin flexibility in flapping locomotion, we study through 
experiment and numerical simulation a freely moving wing that can “pitch” passively as it is actively heaved in a fluid. 
We observe a range of flapping frequencies corresponding to large horizontal velocities, a regime of underperformance 
relative to a clamped (nonpitching) flapping wing, and a surprising, hysteretic regime in which the flapping wing can 
move horizontally in either direction (despite left/right symmetry being broken by the specific mode of pitching). The 
horizontal velocity is shown to peak when the flapping frequency is near the immersed system’s resonant frequency. 
Unlike for the clamped wing, we find that locomotion is achieved by vertically flapped symmetric wings with even the 
slightest pitching flexibility, and the system exhibits a continuous departure from the Stokesian regime. The phase 
difference between the vertical heaving motion and consequent pitching changes continuously with the flapping 
frequency, and the direction reversal is found to correspond to a critical phase relationship. Finally, we show a 
transition from coherent to chaotic motion by increasing the wing’s aspect ratio, and then a return to coherence for 
flapping bodies with circular cross section. 
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 Abstract: An experimental and numerical investigation of flapping-wing propulsion in ground effect is 
undertaken. Flying in ground effect is shown to have substantial performance advantages both in thrust and efficiency. 
To gain the performance advantage without requiring flight in the proximity of the ground, a bi-plane configuration is 
designed, providing increased performance as well as inherent balanced mechanical and aerodynamic loading. A high 
aspect-ratio experimental model is tested both qualitatively and quantitatively, using a smoke-wire for flow 
visualization, laser Doppler velocimetry for unsteady flow measurements, and a direct approach for thrust 
measurement. The configuration is simulated numerically using a two-dimensional, unsteady, inviscid panel code with 
a deforming wake model, and a two-dimensional, unsteady, compressible Navier-Stokes solver. The Navier-Stokes 
solver is used with a three-block, deforming grid, and it is run on a Beowulf Linux parallel cluster. Direct comparisons 
of thrust are made, as well as qualitative comparisons of the vortical wake structures produced by the wing-flapping. A 
strong Reynolds-number dependence is shown, reducing or eliminating the benefits of wake-interference at Reynolds 
numbers on the order of 10,000. 

[257] Isaac, K. M., Rolwes, J., and Colozza, A., “Aerodynamics of a Flapping and Pitching Wing Using Simulations 
and Experiments,” AIAA Journal, Vol. 46, No. 6, 2008, pp. 1505–1515. 

 Keywords: 3-D, Numerical and Experimental, Flat Plate 
 Abstract: Computational fluid dynamics simulation results for a thin cambered plate airfoil, and flow 
visualization and force measurements from experiments conducted in water on a flapping-and-pitching thin flat-plate 
wing of semi-elliptic planform at low Reynolds numbers are reported. Time-varying force data, measured using a force 
transducer, provide a means to understand the mechanisms that lead to enhanced performance observed in insect flight 
compared with fixed-wing aerodynamics. Experimental uncertainties associated with low-level (~1 N) fluid dynamic 
force measurements on flapping-and-pitching wings, including inertia effects, are addressed. A previously proposed 
pitching mode in which the leading-edge and trailing-edge switch roles to allow using cambered airfoils is shown to be 
feasible. A vortex-trapping model is proposed to explain the aerodynamic advantages of switching. The present results 
also support the authors' proposed idea that an optimum reduced flapping frequency might exist. The study has 
applications in micro air vehicle development. 
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 Abstract: We present a new formulation of the motion of a flexible body with a vortex-sheet wake and use it 
to study propulsive forces generated by a flexible body pitched periodically at the leading edge in the small-amplitude 
regime. We find that the thrust power generated by the body has a series of resonant peaks with respect to rigidity, the 
highest of which corresponds to a body flexed upwards at the trailing edge in an approximately one-quarter-wavelength 
mode of deflection. The optimal efficiency approaches 1 as rigidity becomes small and decreases to 30–50% 
(depending on pitch frequency) as rigidity becomes large. The optimal rigidity for thrust power increases from 
approximately 60 for large pitching frequency to ∞ for pitching frequency 0.27. Subsequent peaks in response have 
power-law scalings with respect to rigidity and correspond to higher-wavenumber modes of the body. We derive the 
power-law scalings by analyzing the fin as a damped resonant system. In the limit of small driving frequency, solutions 
are self-similar at the leading edge. In the limit of large driving frequency, we find that the distribution of resonant 

rigidities ~k
−5, corresponding to fin shapes with wavenumber k. The input power and output power are proportional to 

rigidity (for small-to-moderate rigidity) and to pitching frequency (for moderate-to-large frequency). We compare these 
results with the range of rigidity and flapping frequency for the hawkmoth forewing and the bluegill sunfish pectoral 
fin. 
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Plate in a Uniform Flow with Applications to Energy Harvesting by Fluid-Structure Interaction,” Physics of Fluids, 
Vol. 25, No. 9, 2013, pp. 097105-1–097105-17. 

 Keywords: 3-D, Numerical and Analytical, Flat Plate 
 Abstract: Linear stability analysis of an elastically anchored flat plate in a uniform flow is investigated both 
analytically and numerically. The analytical formulation explicitly takes into account the effect of the wake on the plate 
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by means of Theodorsen's theory. Three different parameters non-trivially rule the observed dynamics: mass density 
ratio between plate and fluid, spring elastic constant, and distance between the plate center of mass and the spring 
anchor point on the plate. We found relationships between these parameters which rule the transition between stable 
equilibrium and fluttering. The shape of the resulting marginal curve has been successfully verified by high Reynolds 
number numerical simulations. Finally, the limiting case corresponding to a simply supported rigid rod is 
also analyzed and the resulting flapping instability traced back to a simple resonance condition. Our findings are of 
interest in applications related to energy harvesting by fluid-structure interaction, a problem that has recently attracted a 
great deal of attention. The main aim in that context is to identify the optimal 
physical/geometrical system configuration leading to large sustained motion, which is the source of energy one aims to 
extract. 
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 Keywords: CFD, Twist 
 Abstract: A method is presented that allows one to predict the maximum lift coefficient for a finite wing from 

knowledge of wing geometry and maximum airfoil section lift coefficient. This approach applies to wings of arbitrary 
planform and includes the effects of twist and sweep. The method uses a correlation obtained from grid-resolved 
computational fluid dynamics solutions for 25 different wing geometries. These wings had aspect ratios ranging from 4 
to 20, taper ratios from 0.5 to 1.0, quarter-chord sweep angles from 0 to 30 deg, and linear geometric washout ranging 
from 0 to 8 deg. For this range of parameters, the ratio of maximum wing lift coefficient to maximum airfoil section lift 
coefficient varied from about 0.70 to 0.98, with high-aspect-ratio tapered wings producing the highest values and low-
aspect-ratio wings with washout and sweep producing the lowest values. 
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 Abstract: The object of this paper is to develop methods whereby the differential equations of physics may be 

applied more freely than hitherto in the approximate form of difference equations to problems concerning irregular 
bodies. 
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APPENDIX D 

TABLES OF DATA USED FOR PLOTTING 

 

Table 17 Data Used to Create Figure 20 

Angle of Attack Coarse Grid Medium Grid Fine Grid 
Richardson 

Extrapolation 
Exact Solution 

-4 0.198844737 0.164328605 0.128062865 -0.29124951 0.123207501 

-3 0.284253681 0.263272244 0.249186297 0.219325849 0.246377472 

-2 0.391582551 0.379087117 0.371129953 0.356736847 0.369472394 

-1 0.501704388 0.495990689 0.493283117 0.490807121 0.492454772 

0 0.61105882 0.61463145 0.615532119 0.615835718 0.615287142 

1 0.713524042 0.733767847 0.73785432 0.738887951 0.737932091 

2 0.818623901 0.849541883 0.859448506 0.864125006 0.860352258 

3 0.919778415 0.961488063 0.979515528 0.99329624 0.982510353 

4 0 1.07020671 1.099188994 1.100005509 1.104369167 

 

Table 18 Data Used to Create Figure 21 

Angle of Attack Coarse Grid Medium Grid Fine Grid 
Richardson 

Extrapolation 
Exact Solution 

-4 0.184164878 0.141775344 0.127285452 0.119760015 0.123207501 

-3 0.283965154 0.257390317 0.248830726 0.244763804 0.246377472 

-2 0.388702698 0.375808657 0.370761929 0.367516301 0.369472394 

-1 0.498332116 0.495173137 0.493029918 0.488507791 0.492454772 

0 0.60924072 0.614786963 0.615367896 0.615435864 0.615287142 

1 0.717252852 0.733914618 0.73732534 0.738203236 0.737932091 

2 0.826889562 0.851222664 0.858787836 0.862201007 0.860352258 

3 0.923283375 0.966340119 0.979467398 0.985225119 0.982510353 

4 1.009884644 1.078051166 1.09879856 1.107876212 1.104369167 

 

Table 19 Data Used to Create Figure 22 

Angle of Attack Coarse Grid Medium Grid Fine Grid 
Richardson 

Extrapolation 
Exact Solution 

-5 0.130895251 0.030655507 0.006398202 -0.001345914 0 

-4 0.184000442 0.141234468 0.126551872 0.118875492 0.123207501 

-3 0.283987208 0.25698372 0.248283662 0.244148316 0.246377472 

-2 0.389279931 0.375988971 0.370866955 0.367655396 0.369472394 

-1 0.499274452 0.496069319 0.493857842 0.488935986 0.492454772 

0 0.610560026 0.616097163 0.616692308 0.61676398 0.615287142 

1 0.718482052 0.735117998 0.738637289 0.73958154 0.737932091 

2 0.827010819 0.851418784 0.859212865 0.862869306 0.860352258 

3 0.920172361 0.964454416 0.97777692 0.983509855 0.982510353 

4 1.004468033 1.07249584 1.093348956 1.102566875 1.104369167 
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5 1.084108288 1.17405956 1.205868922 1.223271782 1.225891578 

 

Table 20 Data Used to Create Figure 23 

Angle of Attack Coarse Grid Medium Grid Fine Grid 
Richardson 

Extrapolation 
Exact Solution 

-5 0.122463826 0.03091994 0.006428571 -0.002517061 0 

-4 0.183900485 0.141357622 0.126918408 0.119499765 0.123207501 

-3 0.283853229 0.257211462 0.248666193 0.244631068 0.246377472 

-2 0.389106723 0.376134546 0.371088019 0.367874727 0.369472394 

-1 0.499238336 0.496052751 0.493912455 0.489530066 0.492454772 

0 0.610560026 0.616097163 0.616692308 0.61676398 0.615287142 

1 0.718617043 0.735301215 0.738741378 0.739634968 0.737932091 

2 0.827733683 0.852098045 0.859710165 0.863169068 0.860352258 

3 0.92278993 0.965905086 0.979081081 0.984879735 0.982510353 

4 1.00726049 1.075302434 1.096078263 1.105210283 1.104369167 

5 1.087911728 1.178508559 1.21057776 1.228149521 1.225891578 

 

Table 21 Data Used to Create Figure 24 

Angle of Attack Coarse Grid Medium Grid Fine Grid 
Richardson 

Extrapolation 
Exact Solution 

-5 0.122426065 0.03091994 0.006428571 -0.002522102 0 

-4 0.183900485 0.141357622 0.126918408 0.119499765 0.123207501 

-3 0.283853229 0.257211462 0.248666193 0.244631068 0.246377472 

-2 0.389106723 0.376134546 0.371088019 0.367874727 0.369472394 

-1 0.499238336 0.496052751 0.493912455 0.489530066 0.492454772 

0 0.610560026 0.616097163 0.616692308 0.61676398 0.615287142 

1 0.718617043 0.735301215 0.738741378 0.739634968 0.737932091 

2 0.827733683 0.852098045 0.859710165 0.863169068 0.860352258 

3 0.92278993 0.965905086 0.979081081 0.984879735 0.982510353 

4 1.00726049 1.075302434 1.096078263 1.105210283 1.104369167 

5 1.087911728 1.178508559 1.21057776 1.228149521 1.225891578 

 

Table 22 Data Used to Create Figure 25 

Angle of Attack Rotate Grid Rotate Freestream Translate Grid 

-5 0.001345914 0.002517061 0.002522102 

-4 0.004332009 0.003707736 0.003707736 

-3 0.002229156 0.001746404 0.001746404 

-2 0.001816998 0.001597668 0.001597668 

-1 0.003518786 0.002924706 0.002924706 

0 -0.001476837 -0.001476837 -0.001476837 

1 -0.001649449 -0.001702878 -0.001702878 
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2 -0.002517048 -0.002816811 -0.002816811 

3 -0.000999501 -0.002369382 -0.002369382 

4 0.001802292 -0.000841116 -0.000841116 

5 0.002619796 -0.002257943 -0.002257943 

 

Table 23 Data Used to Create Figure 26  

Angle of Attack j=89, i=25 j=89, i=33 j=89, i=17 j=97, i=25 j=81, i=25 

-4 -0.00164436 -0.00297 0.00126 -0.00162 -0.00168 

-3 -0.00048379 -0.00166 0.002496 -0.00054 -0.00058 

-2 -0.00026521 -0.00102 0.002766 -0.0002 -0.00023 

-1 1.52286E-05 -0.00092 0.002261 -7.8E-05 -0.00011 

0 -0.0008792 -0.0014 0.00072 -0.00098 -0.00094 

1 -0.00125681 -0.00153 -0.00035 -0.00138 -0.00143 

2 -0.0025204 -0.00186 -0.00224 -0.0024 -0.0025 

3 -0.00260331 -0.0017 -0.00371 -0.0027 -0.00287 

4 -0.00283714 -0.00087 -0.00659 -0.00267 -0.003 

3 -0.00163275 -0.00072 -0.00221 -0.00146 -0.00156 

2 -0.0010199 -0.0009 -0.00056 -0.00095 -0.00102 

1 -0.00045626 -0.00077 -0.00049 -0.00041 -0.00048 

0 -0.00033924 -0.00068 0.001076 -0.0003 -0.00035 

-1 0.000279398 -0.00064 0.001633 0.000303 0.000266 

-2 0.00021425 -0.00092 0.003046 0.000217 0.00022 

-3 -0.00045464 -0.00169 0.002706 -0.00041 -0.00043 

 

Table 24 Data Used to Create Figure 27  

Angle of Attack Coarse Grid Medium Grid Fine Grid 
Richardson 

Extrapolation 

Exact 

Solution 

-4 0.180325 0.139166 0.124852 0.11722 0.123208 

-3 0.278333 0.254987 0.246861 0.242523 0.246377 

-2 0.383523 0.374036 0.369738 0.366176 0.369472 

-1 0.496868 0.492806 0.49244 0.492403 0.492455 

0 0.607382 0.614677 0.616166 0.616548 0.615287 

1 0.71879 0.733762 0.739189 0.742275 0.737932 

2 0.825602 0.854021 0.862873 0.866877 0.860352 

3 0.925071 0.970963 0.985114 0.991423 0.98251 

4 1.018486 1.086525 1.107206 1.116238 1.104369 

3 0.926227 0.970579 0.984143 0.990119 0.98251 

2 0.829979 0.853953 0.861372 0.864696 0.860352 

1 0.713433 0.734526 0.738388 0.739254 0.737932 
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0 0.603197 0.613424 0.615626 0.616231 0.615287 

-1 0.492378 0.49383 0.492175 0.4803 0.492455 

-2 0.387183 0.374358 0.369258 0.365891 0.369472 

-3 0.278336 0.255182 0.246832 0.242122 0.246377 

 

Table 25 Data Used to Create Figure 28  

Angle of Attack Coarse Grid Medium Grid Fine Grid 
Richardson 

Extrapolation 

Exact 

Solution 

-4 0.010845 0.002215 0.000385 -0.00011 0 

-3 0.008471 0.001639 0.000282 -5.5E-05 0 

-2 0.006616 0.001296 0.00023 -3.6E-05 0 

-1 0.005247 0.001194 0.000215 -9.7E-05 0 

0 0.005033 0.001059 0.000221 -4E-06 0 

1 0.005093 0.001248 0.000275 -5.4E-05 0 

2 0.006182 0.001391 0.000338 4.09E-05 0 

3 0.007791 0.001886 0.0005 7.49E-05 0 

4 0.009747 0.002464 0.000594 -5.3E-05 0 

3 0.007691 0.001868 0.000463 1.67E-05 0 

2 0.005959 0.001312 0.00032 5.05E-05 0 

1 0.005218 0.001171 0.00025 -2.2E-05 0 

0 0.004948 0.001132 0.000205 -9.2E-05 0 

-1 0.005348 0.001148 0.000205 -6.7E-05 0 

-2 0.006515 0.001272 0.000228 -3.1E-05 0 

-3 0.007966 0.001675 0.0003 -8.6E-05 0 

 

Table 26 Data Used to Create Figure 29  

Angle of Attack Coarse Grid Medium Grid Fine Grid 
Richardson 

Extrapolation 

-4 -0.0148 -0.00332 -0.0005 0.000525 

-3 -0.01013 -0.00209 -0.00031 0.000257 

-2 -0.0071 -0.00145 -0.00024 0.000151 

-1 -0.00532 -0.0012 -0.00021 9.78E-05 

0 -0.00503 -0.00106 -0.00022 4.02E-06 

1 -0.00543 -0.00132 -0.00025 0.00013 

2 -0.00739 -0.00161 -0.00025 0.000187 

3 -0.01079 -0.00249 -0.00036 0.000392 

4 -0.01571 -0.0037 -0.00039 0.000881 

3 -0.01063 -0.00249 -0.00038 0.000382 

2 -0.00702 -0.00153 -0.00028 0.000101 

1 -0.00565 -0.00123 -0.00024 4.49E-05 
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0 -0.00495 -0.00113 -0.00021 9.2E-05 

-1 -0.00535 -0.00117 -0.0002 0.000279 

-2 -0.00713 -0.00144 -0.00022 0.000156 

-3 -0.00963 -0.00213 -0.00032 0.000308 

 

Table 27 Data Used to Create Figure 30  

Angle of Attack Coarse Grid Medium Grid Fine Grid 
Richardson 

Extrapolation 

-4 -0.05622 -0.01576 -0.00161 0.005966 

-3 -0.03147 -0.00851 -0.00047 0.003847 

-2 -0.01381 -0.00452 -0.00026 0.003293 

-1 -0.00432 -0.00033 1.9E-05 4.98E-05 

0 0.007905 0.00061 -0.00088 -0.00126 

1 0.01905 0.004148 -0.00126 -0.00434 

2 0.034513 0.006279 -0.00253 -0.00652 

3 0.056953 0.011433 -0.00263 -0.0089 

4 0.084994 0.017629 -0.00287 -0.01184 

3 0.055803 0.011818 -0.00165 -0.0076 

2 0.030147 0.006349 -0.00103 -0.00434 

1 0.024405 0.003385 -0.00046 -0.00132 

0 0.012091 0.001863 -0.00034 -0.00094 

-1 0.00017 -0.00135 0.000283 0.012152 

-2 -0.01747 -0.00484 0.000222 0.003578 

-3 -0.0315 -0.0087 -0.00044 0.004245 

 

Table 28 128 Time Steps Data Used to Create Figure 31 – 32 

Angle of Attack Power Coefficient Thrust Coefficient 

-4.27954 -0.01147 -0.00222 

-4.26413 -0.01138 -0.00223 

-4.23848 -0.01129 -0.00181 

-4.20265 -0.01121 -0.00195 

-4.15674 -0.01118 -0.00175 

-4.10083 -0.01117 -0.00155 

-4.03507 -0.0112 -0.00186 

-3.95961 -0.01121 -0.00155 

-3.87463 -0.01127 -0.00185 

-3.78032 -0.0113 -0.00176 

-3.67691 -0.01132 -0.00192 

-3.56464 -0.01139 -0.00207 
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-3.44377 -0.0114 -0.00206 

-3.31459 -0.01142 -0.00242 

-3.17741 -0.01139 -0.00243 

-3.03256 -0.01133 -0.00258 

-2.88037 -0.01123 -0.00291 

-2.72121 -0.01108 -0.00291 

-2.55546 -0.01086 -0.00307 

-2.38352 -0.01059 -0.00326 

-2.20579 -0.01024 -0.00331 

-2.02272 -0.0098 -0.00336 

-1.83473 -0.00929 -0.00338 

-1.64229 -0.00868 -0.0034 

-1.44586 -0.00797 -0.00331 

-1.24591 -0.00716 -0.00318 

-1.04292 -0.00624 -0.00302 

-0.8374 -0.00522 -0.00276 

-0.62984 -0.00408 -0.00243 

-0.42075 -0.00283 -0.00208 

-0.21063 -0.00147 -0.00162 

-3.7E-13 -2.7E-15 -0.0011 

0.210631 0.00158 -0.0005 

0.42075 0.003266 0.000174 

0.629843 0.005055 0.000894 

0.837403 0.006939 0.001775 

1.042924 0.008914 0.002674 

1.245906 0.010971 0.003625 

1.445857 0.013104 0.004661 

1.642292 0.015305 0.005783 

1.834734 0.017563 0.006858 

2.02272 0.019866 0.008185 

2.205794 0.022197 0.009401 

2.383515 0.024562 0.010775 

2.555457 0.026934 0.011994 

2.721206 0.029295 0.013434 

2.880366 0.031644 0.014837 

3.032556 0.033979 0.016161 

3.177413 0.036244 0.017604 

3.314592 0.038465 0.019023 

3.443768 0.040627 0.020341 

3.564635 0.042664 0.021755 

3.676908 0.044699 0.02307 
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3.78032 0.046531 0.024382 

3.874629 0.048268 0.02566 

3.959613 0.04992 0.026667 

4.035073 0.051331 0.027994 

4.100832 0.052698 0.028732 

4.156736 0.053816 0.029913 

4.202654 0.054818 0.030936 

4.23848 0.055665 0.031309 

4.26413 0.056245 0.032318 

4.279544 0.056752 0.032485 

4.284686 0.056945 0.033151 

4.279544 0.056997 0.033617 

4.26413 0.056922 0.033554 

4.23848 0.05657 0.034086 

4.202654 0.056044 0.033679 

4.156736 0.055377 0.033527 

4.100832 0.054449 0.033431 

4.035073 0.05341 0.032854 

3.959613 0.052202 0.032441 

3.874629 0.050769 0.032035 

3.78032 0.049212 0.031152 

3.676908 0.047541 0.030272 

3.564635 0.045666 0.029381 

3.443768 0.043696 0.028427 

3.314592 0.041643 0.027181 

3.177413 0.039463 0.026044 

3.032556 0.037198 0.024854 

2.880366 0.034859 0.023568 

2.721206 0.03245 0.022101 

2.555457 0.030013 0.020675 

2.383515 0.02754 0.019207 

2.205794 0.025039 0.017704 

2.02272 0.022537 0.016176 

1.834734 0.020046 0.0147 

1.642292 0.017574 0.013202 

1.445857 0.015143 0.011655 

1.245906 0.012756 0.01016 

1.042924 0.010427 0.008697 

0.837403 0.008166 0.007253 

0.629843 0.005985 0.005841 

0.42075 0.003892 0.004512 
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0.210631 0.001894 0.003233 

5.38E-13 4.7E-15 0.002006 

-0.21063 -0.00178 0.00085 

-0.42075 -0.00346 -0.00022 

-0.62984 -0.00501 -0.00122 

-0.8374 -0.00644 -0.00217 

-1.04292 -0.00774 -0.00302 

-1.24591 -0.00893 -0.00377 

-1.44586 -0.00999 -0.00446 

-1.64229 -0.01093 -0.00505 

-1.83473 -0.01174 -0.00555 

-2.02272 -0.01245 -0.00586 

-2.20579 -0.01303 -0.00622 

-2.38352 -0.01351 -0.00651 

-2.55546 -0.0139 -0.00675 

-2.72121 -0.01418 -0.00688 

-2.88037 -0.01437 -0.00689 

-3.03256 -0.01449 -0.0068 

-3.17741 -0.01452 -0.00673 

-3.31459 -0.0145 -0.00655 

-3.44377 -0.01443 -0.00636 

-3.56464 -0.01429 -0.00623 

-3.67691 -0.0141 -0.00598 

-3.78032 -0.01391 -0.00568 

-3.87463 -0.01368 -0.0054 

-3.95961 -0.01343 -0.00491 

-4.03507 -0.01319 -0.0046 

-4.10083 -0.01293 -0.00438 

-4.15674 -0.01265 -0.00401 

-4.20265 -0.01243 -0.00366 

-4.23848 -0.01218 -0.00345 

-4.26413 -0.01199 -0.0029 

-4.27954 -0.01178 -0.00288 

-4.28469 -0.0116 -0.00255 

 

Table 29 256 Time Steps Data Used to Create Figure 31 – 32 

Angle of Attack Power Coefficient Thrust Coefficient 

-4.27312 -0.01144 -0.00234 

-4.26413 -0.01136 -0.00212 

-4.25258 -0.01134 -0.00196 
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-4.23848 -0.0113 -0.00182 

-4.22183 -0.01124 -0.00191 

-4.20265 -0.01124 -0.00201 

-4.18095 -0.0112 -0.00178 

-4.15674 -0.01119 -0.00173 

-4.13002 -0.01117 -0.00157 

-4.10083 -0.0112 -0.00162 

-4.06918 -0.01121 -0.00196 

-4.03507 -0.01119 -0.00165 

-3.99855 -0.01122 -0.00161 

-3.95961 -0.01122 -0.00158 

-3.9183 -0.01125 -0.00175 

-3.87463 -0.01129 -0.00191 

-3.82863 -0.01128 -0.0017 

-3.78032 -0.01131 -0.00178 

-3.72974 -0.01132 -0.00178 

-3.67691 -0.01134 -0.00207 

-3.62186 -0.01138 -0.00202 

-3.56464 -0.01139 -0.00197 

-3.50526 -0.01141 -0.00206 

-3.44377 -0.01141 -0.00205 

-3.3802 -0.01142 -0.00234 

-3.31459 -0.01143 -0.00241 

-3.24698 -0.01141 -0.00235 

-3.17741 -0.0114 -0.00244 

-3.10592 -0.01138 -0.00251 

-3.03256 -0.01134 -0.00264 

-2.95736 -0.0113 -0.00283 

-2.88037 -0.01124 -0.00281 

-2.80163 -0.01117 -0.00286 

-2.72121 -0.01109 -0.00293 

-2.63913 -0.01099 -0.003 

-2.55546 -0.01087 -0.0031 

-2.47023 -0.01074 -0.00321 

-2.38352 -0.0106 -0.00323 

-2.29535 -0.01043 -0.00328 

-2.20579 -0.01024 -0.0033 

-2.1149 -0.01004 -0.00334 

-2.02272 -0.00981 -0.00335 

-1.92931 -0.00956 -0.00337 

-1.83473 -0.00929 -0.00342 
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-1.73904 -0.009 -0.0034 

-1.64229 -0.00868 -0.00337 

-1.54454 -0.00834 -0.00335 

-1.44586 -0.00797 -0.00331 

-1.34629 -0.00758 -0.00325 

-1.24591 -0.00716 -0.00321 

-1.14476 -0.00672 -0.00309 

-1.04292 -0.00625 -0.003 

-0.94045 -0.00575 -0.00284 

-0.8374 -0.00522 -0.00277 

-0.73385 -0.00467 -0.00259 

-0.62984 -0.00408 -0.00245 

-0.52546 -0.00347 -0.00226 

-0.42075 -0.00283 -0.00206 

-0.31579 -0.00217 -0.00186 

-0.21063 -0.00147 -0.00162 

-0.10535 -0.00075 -0.00137 

-3.1E-13 -2.3E-15 -0.00109 

0.105348 0.000777 -0.0008 

0.210631 0.001581 -0.0005 

0.315787 0.002411 -0.00016 

0.42075 0.003268 0.000175 

0.525456 0.00415 0.000541 

0.629843 0.005057 0.000942 

0.733846 0.005988 0.001323 

0.837403 0.006942 0.001774 

0.940449 0.00792 0.002131 

1.042924 0.008919 0.002707 

1.144763 0.009938 0.003148 

1.245906 0.010977 0.003674 

1.346291 0.012034 0.004152 

1.445857 0.01311 0.004688 

1.544544 0.014201 0.005219 

1.642292 0.01531 0.00578 

1.739041 0.016432 0.006372 

1.834734 0.017567 0.006966 

1.929313 0.018714 0.007432 

2.02272 0.019874 0.008176 

2.114898 0.021036 0.00883 

2.205794 0.02221 0.009399 

2.29535 0.023382 0.010086 
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2.383515 0.024564 0.010766 

2.470235 0.025751 0.011447 

2.555457 0.026943 0.011956 

2.639131 0.028128 0.012786 

2.721206 0.029305 0.013466 

2.801634 0.030484 0.014103 

2.880366 0.031647 0.014866 

2.957355 0.032814 0.015633 

3.032556 0.033987 0.016051 

3.105923 0.03513 0.016969 

3.177413 0.036254 0.017603 

3.246983 0.037372 0.018312 

3.314592 0.038458 0.01912 

3.3802 0.039566 0.01964 

3.443768 0.040645 0.020317 

3.505259 0.041667 0.021123 

3.564635 0.042684 0.021686 

3.621863 0.043666 0.022488 

3.676908 0.044684 0.023131 

3.729737 0.045652 0.023718 

3.78032 0.046543 0.024409 

3.828627 0.047421 0.024952 

3.874629 0.048247 0.02573 

3.9183 0.049127 0.0262 

3.959613 0.049932 0.026674 

3.998545 0.050651 0.027305 

4.035073 0.051359 0.027903 

4.069175 0.051998 0.028575 

4.100832 0.052688 0.028765 

4.130024 0.053305 0.029256 

4.156736 0.053818 0.029895 

4.180951 0.054334 0.030338 

4.202654 0.05476 0.030993 

4.221835 0.055311 0.031202 

4.23848 0.055674 0.031276 

4.252581 0.055961 0.031818 

4.26413 0.056259 0.032169 

4.273119 0.056481 0.032698 

4.279544 0.056739 0.032524 

4.2834 0.056896 0.032717 

4.284686 0.056929 0.033164 
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4.2834 0.057019 0.033309 

4.279544 0.056971 0.033762 

4.273119 0.056986 0.033476 

4.26413 0.056878 0.033608 

4.252581 0.056791 0.033647 

4.23848 0.056596 0.03408 

4.221835 0.056292 0.033957 

4.202654 0.056051 0.033782 

4.180951 0.055704 0.033543 

4.156736 0.055375 0.03349 

4.130024 0.054935 0.03349 

4.100832 0.054454 0.033268 

4.069175 0.053927 0.033361 

4.035073 0.053399 0.032789 

3.998545 0.052804 0.032663 

3.959613 0.052197 0.032403 

3.9183 0.05149 0.032124 

3.874629 0.050784 0.031912 

3.828627 0.049987 0.031688 

3.78032 0.049192 0.031216 

3.729737 0.048385 0.03063 

3.676908 0.047514 0.030285 

3.621863 0.046631 0.02981 

3.564635 0.045656 0.029359 

3.505259 0.044694 0.02885 

3.443768 0.043681 0.028332 

3.3802 0.042669 0.027922 

3.314592 0.041624 0.027147 

3.246983 0.040553 0.026596 

3.177413 0.039448 0.026013 

3.105923 0.038326 0.025376 

3.032556 0.037188 0.024762 

2.957355 0.036023 0.024187 

2.880366 0.03485 0.023521 

2.801634 0.033655 0.022855 

2.721206 0.032436 0.022117 

2.639131 0.031228 0.021325 

2.555457 0.030004 0.020665 

2.470235 0.028765 0.019904 

2.383515 0.027522 0.019207 

2.29535 0.026283 0.018419 
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2.205794 0.025031 0.017686 

2.114898 0.023779 0.016909 

2.02272 0.022527 0.016147 

1.929313 0.021283 0.015412 

1.834734 0.02004 0.014619 

1.739041 0.018798 0.013909 

1.642292 0.017567 0.013152 

1.544544 0.016345 0.012402 

1.445857 0.015135 0.011654 

1.346291 0.013934 0.010879 

1.245906 0.012749 0.010131 

1.144763 0.011577 0.009392 

1.042924 0.01042 0.008652 

0.940449 0.009281 0.007946 

0.837403 0.008161 0.007221 

0.733846 0.007062 0.006537 

0.629843 0.005981 0.005828 

0.525456 0.004924 0.005164 

0.42075 0.003889 0.004485 

0.315787 0.002878 0.003843 

0.210631 0.001893 0.003205 

0.105348 0.000933 0.002585 

9.4E-13 8.2E-15 0.001988 

-0.10535 -0.00091 0.001404 

-0.21063 -0.00178 0.000837 

-0.31579 -0.00263 0.000284 

-0.42075 -0.00345 -0.00024 

-0.52546 -0.00424 -0.00078 

-0.62984 -0.005 -0.00125 

-0.73385 -0.00573 -0.00175 

-0.8374 -0.00643 -0.00218 

-0.94045 -0.0071 -0.00262 

-1.04292 -0.00774 -0.00301 

-1.14476 -0.00834 -0.00342 

-1.24591 -0.00892 -0.00379 

-1.34629 -0.00947 -0.00414 

-1.44586 -0.00998 -0.00447 

-1.54454 -0.01047 -0.00477 

-1.64229 -0.01092 -0.00505 

-1.73904 -0.01134 -0.00532 

-1.83473 -0.01173 -0.0055 
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-1.92931 -0.0121 -0.00569 

-2.02272 -0.01243 -0.00586 

-2.1149 -0.01274 -0.00607 

-2.20579 -0.01302 -0.00624 

-2.29535 -0.01327 -0.00638 

-2.38352 -0.01351 -0.00655 

-2.47023 -0.01371 -0.00665 

-2.55546 -0.01388 -0.00672 

-2.63913 -0.01404 -0.00677 

-2.72121 -0.01417 -0.00698 

-2.80163 -0.01427 -0.00686 

-2.88037 -0.01436 -0.0068 

-2.95736 -0.01443 -0.00686 

-3.03256 -0.01447 -0.00678 

-3.10592 -0.0145 -0.00677 

-3.17741 -0.01451 -0.00674 

-3.24698 -0.0145 -0.00667 

-3.31459 -0.0145 -0.00649 

-3.3802 -0.01446 -0.00648 

-3.44377 -0.01442 -0.00636 

-3.50526 -0.01435 -0.00633 

-3.56464 -0.01428 -0.0062 

-3.62186 -0.01418 -0.00613 

-3.67691 -0.0141 -0.0059 

-3.72974 -0.014 -0.00575 

-3.78032 -0.01391 -0.00579 

-3.82863 -0.01379 -0.00559 

-3.87463 -0.01366 -0.00527 

-3.9183 -0.01355 -0.00505 

-3.95961 -0.01341 -0.00499 

-3.99855 -0.01331 -0.00474 

-4.03507 -0.01318 -0.00461 

-4.06918 -0.01306 -0.00452 

-4.10083 -0.01291 -0.00432 

-4.13002 -0.01277 -0.00417 

-4.15674 -0.01265 -0.004 

-4.18095 -0.01255 -0.00378 

-4.20265 -0.01242 -0.0037 

-4.22183 -0.01231 -0.00358 

-4.23848 -0.01216 -0.00344 

-4.25258 -0.01209 -0.00299 
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-4.26413 -0.01199 -0.00302 

-4.27312 -0.01186 -0.00293 

-4.27954 -0.0118 -0.00288 

-4.2834 -0.01168 -0.00264 

-4.28469 -0.0116 -0.00257 

 

Table 30 3 Cycles Steps Data Used to Create Figure 33 – 34 

Angle of Attack Power Coefficient Thrust Coefficient 

-4.27954 -0.01147 -0.00222 

-4.26413 -0.01138 -0.00223 

-4.23848 -0.01129 -0.00181 

-4.20265 -0.01121 -0.00195 

-4.15674 -0.01118 -0.00175 

-4.10083 -0.01117 -0.00155 

-4.03507 -0.0112 -0.00186 

-3.95961 -0.01121 -0.00155 

-3.87463 -0.01127 -0.00185 

-3.78032 -0.0113 -0.00176 

-3.67691 -0.01132 -0.00192 

-3.56464 -0.01139 -0.00207 

-3.44377 -0.0114 -0.00206 

-3.31459 -0.01142 -0.00242 

-3.17741 -0.01139 -0.00243 

-3.03256 -0.01133 -0.00258 

-2.88037 -0.01123 -0.00291 

-2.72121 -0.01108 -0.00291 

-2.55546 -0.01086 -0.00307 

-2.38352 -0.01059 -0.00326 

-2.20579 -0.01024 -0.00331 

-2.02272 -0.0098 -0.00336 

-1.83473 -0.00929 -0.00338 

-1.64229 -0.00868 -0.0034 

-1.44586 -0.00797 -0.00331 

-1.24591 -0.00716 -0.00318 

-1.04292 -0.00624 -0.00302 

-0.8374 -0.00522 -0.00276 

-0.62984 -0.00408 -0.00243 

-0.42075 -0.00283 -0.00208 

-0.21063 -0.00147 -0.00162 

-3.7E-13 -2.7E-15 -0.0011 
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0.210631 0.00158 -0.0005 

0.42075 0.003266 0.000174 

0.629843 0.005055 0.000894 

0.837403 0.006939 0.001775 

1.042924 0.008914 0.002674 

1.245906 0.010971 0.003625 

1.445857 0.013104 0.004661 

1.642292 0.015305 0.005783 

1.834734 0.017563 0.006858 

2.02272 0.019866 0.008185 

2.205794 0.022197 0.009401 

2.383515 0.024562 0.010775 

2.555457 0.026934 0.011994 

2.721206 0.029295 0.013434 

2.880366 0.031644 0.014837 

3.032556 0.033979 0.016161 

3.177413 0.036244 0.017604 

3.314592 0.038465 0.019023 

3.443768 0.040627 0.020341 

3.564635 0.042664 0.021755 

3.676908 0.044699 0.02307 

3.78032 0.046531 0.024382 

3.874629 0.048268 0.02566 

3.959613 0.04992 0.026667 

4.035073 0.051331 0.027994 

4.100832 0.052698 0.028732 

4.156736 0.053816 0.029913 

4.202654 0.054818 0.030936 

4.23848 0.055665 0.031309 

4.26413 0.056245 0.032318 

4.279544 0.056752 0.032485 

4.284686 0.056945 0.033151 

4.279544 0.056997 0.033617 

4.26413 0.056922 0.033554 

4.23848 0.05657 0.034086 

4.202654 0.056044 0.033679 

4.156736 0.055377 0.033527 

4.100832 0.054449 0.033431 

4.035073 0.05341 0.032854 

3.959613 0.052202 0.032441 

3.874629 0.050769 0.032035 
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3.78032 0.049212 0.031152 

3.676908 0.047541 0.030272 

3.564635 0.045666 0.029381 

3.443768 0.043696 0.028427 

3.314592 0.041643 0.027181 

3.177413 0.039463 0.026044 

3.032556 0.037198 0.024854 

2.880366 0.034859 0.023568 

2.721206 0.03245 0.022101 

2.555457 0.030013 0.020675 

2.383515 0.02754 0.019207 

2.205794 0.025039 0.017704 

2.02272 0.022537 0.016176 

1.834734 0.020046 0.0147 

1.642292 0.017574 0.013202 

1.445857 0.015143 0.011655 

1.245906 0.012756 0.01016 

1.042924 0.010427 0.008697 

0.837403 0.008166 0.007253 

0.629843 0.005985 0.005841 

0.42075 0.003892 0.004512 

0.210631 0.001894 0.003233 

5.38E-13 4.7E-15 0.002006 

-0.21063 -0.00178 0.00085 

-0.42075 -0.00346 -0.00022 

-0.62984 -0.00501 -0.00122 

-0.8374 -0.00644 -0.00217 

-1.04292 -0.00774 -0.00302 

-1.24591 -0.00893 -0.00377 

-1.44586 -0.00999 -0.00446 

-1.64229 -0.01093 -0.00505 

-1.83473 -0.01174 -0.00555 

-2.02272 -0.01245 -0.00586 

-2.20579 -0.01303 -0.00622 

-2.38352 -0.01351 -0.00651 

-2.55546 -0.0139 -0.00675 

-2.72121 -0.01418 -0.00688 

-2.88037 -0.01437 -0.00689 

-3.03256 -0.01449 -0.0068 

-3.17741 -0.01452 -0.00673 

-3.31459 -0.0145 -0.00655 
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-3.44377 -0.01443 -0.00636 

-3.56464 -0.01429 -0.00623 

-3.67691 -0.0141 -0.00598 

-3.78032 -0.01391 -0.00568 

-3.87463 -0.01368 -0.0054 

-3.95961 -0.01343 -0.00491 

-4.03507 -0.01319 -0.0046 

-4.10083 -0.01293 -0.00438 

-4.15674 -0.01265 -0.00401 

-4.20265 -0.01243 -0.00366 

-4.23848 -0.01218 -0.00345 

-4.26413 -0.01199 -0.0029 

-4.27954 -0.01178 -0.00288 

-4.28469 -0.0116 -0.00255 

 

Table 31 4 Cycles Data Used to Create Figure 33 – 34 

Angle of Attack Power Coefficient Thrust Coefficient 

-4.27312 -0.01144 -0.00234 

-4.26413 -0.01136 -0.00212 

-4.25258 -0.01134 -0.00196 

-4.23848 -0.0113 -0.00182 

-4.22183 -0.01124 -0.00191 

-4.20265 -0.01124 -0.00201 

-4.18095 -0.0112 -0.00178 

-4.15674 -0.01119 -0.00173 

-4.13002 -0.01117 -0.00157 

-4.10083 -0.0112 -0.00162 

-4.06918 -0.01121 -0.00196 

-4.03507 -0.01119 -0.00165 

-3.99855 -0.01122 -0.00161 

-3.95961 -0.01122 -0.00158 

-3.9183 -0.01125 -0.00175 

-3.87463 -0.01129 -0.00191 

-3.82863 -0.01128 -0.0017 

-3.78032 -0.01131 -0.00178 

-3.72974 -0.01132 -0.00178 

-3.67691 -0.01134 -0.00207 

-3.62186 -0.01138 -0.00202 

-3.56464 -0.01139 -0.00197 

-3.50526 -0.01141 -0.00206 
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-3.44377 -0.01141 -0.00205 

-3.3802 -0.01142 -0.00234 

-3.31459 -0.01143 -0.00241 

-3.24698 -0.01141 -0.00235 

-3.17741 -0.0114 -0.00244 

-3.10592 -0.01138 -0.00251 

-3.03256 -0.01134 -0.00264 

-2.95736 -0.0113 -0.00283 

-2.88037 -0.01124 -0.00281 

-2.80163 -0.01117 -0.00286 

-2.72121 -0.01109 -0.00293 

-2.63913 -0.01099 -0.003 

-2.55546 -0.01087 -0.0031 

-2.47023 -0.01074 -0.00321 

-2.38352 -0.0106 -0.00323 

-2.29535 -0.01043 -0.00328 

-2.20579 -0.01024 -0.0033 

-2.1149 -0.01004 -0.00334 

-2.02272 -0.00981 -0.00335 

-1.92931 -0.00956 -0.00337 

-1.83473 -0.00929 -0.00342 

-1.73904 -0.009 -0.0034 

-1.64229 -0.00868 -0.00337 

-1.54454 -0.00834 -0.00335 

-1.44586 -0.00797 -0.00331 

-1.34629 -0.00758 -0.00325 

-1.24591 -0.00716 -0.00321 

-1.14476 -0.00672 -0.00309 

-1.04292 -0.00625 -0.003 

-0.94045 -0.00575 -0.00284 

-0.8374 -0.00522 -0.00277 

-0.73385 -0.00467 -0.00259 

-0.62984 -0.00408 -0.00245 

-0.52546 -0.00347 -0.00226 

-0.42075 -0.00283 -0.00206 

-0.31579 -0.00217 -0.00186 

-0.21063 -0.00147 -0.00162 

-0.10535 -0.00075 -0.00137 

-3.1E-13 -2.3E-15 -0.00109 

0.105348 0.000777 -0.0008 

0.210631 0.001581 -0.0005 
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0.315787 0.002411 -0.00016 

0.42075 0.003268 0.000175 

0.525456 0.00415 0.000541 

0.629843 0.005057 0.000942 

0.733846 0.005988 0.001323 

0.837403 0.006942 0.001774 

0.940449 0.00792 0.002131 

1.042924 0.008919 0.002707 

1.144763 0.009938 0.003148 

1.245906 0.010977 0.003674 

1.346291 0.012034 0.004152 

1.445857 0.01311 0.004688 

1.544544 0.014201 0.005219 

1.642292 0.01531 0.00578 

1.739041 0.016432 0.006372 

1.834734 0.017567 0.006966 

1.929313 0.018714 0.007432 

2.02272 0.019874 0.008176 

2.114898 0.021036 0.00883 

2.205794 0.02221 0.009399 

2.29535 0.023382 0.010086 

2.383515 0.024564 0.010766 

2.470235 0.025751 0.011447 

2.555457 0.026943 0.011956 

2.639131 0.028128 0.012786 

2.721206 0.029305 0.013466 

2.801634 0.030484 0.014103 

2.880366 0.031647 0.014866 

2.957355 0.032814 0.015633 

3.032556 0.033987 0.016051 

3.105923 0.03513 0.016969 

3.177413 0.036254 0.017603 

3.246983 0.037372 0.018312 

3.314592 0.038458 0.01912 

3.3802 0.039566 0.01964 

3.443768 0.040645 0.020317 

3.505259 0.041667 0.021123 

3.564635 0.042684 0.021686 

3.621863 0.043666 0.022488 

3.676908 0.044684 0.023131 

3.729737 0.045652 0.023718 
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3.78032 0.046543 0.024409 

3.828627 0.047421 0.024952 

3.874629 0.048247 0.02573 

3.9183 0.049127 0.0262 

3.959613 0.049932 0.026674 

3.998545 0.050651 0.027305 

4.035073 0.051359 0.027903 

4.069175 0.051998 0.028575 

4.100832 0.052688 0.028765 

4.130024 0.053305 0.029256 

4.156736 0.053818 0.029895 

4.180951 0.054334 0.030338 

4.202654 0.05476 0.030993 

4.221835 0.055311 0.031202 

4.23848 0.055674 0.031276 

4.252581 0.055961 0.031818 

4.26413 0.056259 0.032169 

4.273119 0.056481 0.032698 

4.279544 0.056739 0.032524 

4.2834 0.056896 0.032717 

4.284686 0.056929 0.033164 

4.2834 0.057019 0.033309 

4.279544 0.056971 0.033762 

4.273119 0.056986 0.033476 

4.26413 0.056878 0.033608 

4.252581 0.056791 0.033647 

4.23848 0.056596 0.03408 

4.221835 0.056292 0.033957 

4.202654 0.056051 0.033782 

4.180951 0.055704 0.033543 

4.156736 0.055375 0.03349 

4.130024 0.054935 0.03349 

4.100832 0.054454 0.033268 

4.069175 0.053927 0.033361 

4.035073 0.053399 0.032789 

3.998545 0.052804 0.032663 

3.959613 0.052197 0.032403 

3.9183 0.05149 0.032124 

3.874629 0.050784 0.031912 

3.828627 0.049987 0.031688 

3.78032 0.049192 0.031216 
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3.729737 0.048385 0.03063 

3.676908 0.047514 0.030285 

3.621863 0.046631 0.02981 

3.564635 0.045656 0.029359 

3.505259 0.044694 0.02885 

3.443768 0.043681 0.028332 

3.3802 0.042669 0.027922 

3.314592 0.041624 0.027147 

3.246983 0.040553 0.026596 

3.177413 0.039448 0.026013 

3.105923 0.038326 0.025376 

3.032556 0.037188 0.024762 

2.957355 0.036023 0.024187 

2.880366 0.03485 0.023521 

2.801634 0.033655 0.022855 

2.721206 0.032436 0.022117 

2.639131 0.031228 0.021325 

2.555457 0.030004 0.020665 

2.470235 0.028765 0.019904 

2.383515 0.027522 0.019207 

2.29535 0.026283 0.018419 

2.205794 0.025031 0.017686 

2.114898 0.023779 0.016909 

2.02272 0.022527 0.016147 

1.929313 0.021283 0.015412 

1.834734 0.02004 0.014619 

1.739041 0.018798 0.013909 

1.642292 0.017567 0.013152 

1.544544 0.016345 0.012402 

1.445857 0.015135 0.011654 

1.346291 0.013934 0.010879 

1.245906 0.012749 0.010131 

1.144763 0.011577 0.009392 

1.042924 0.01042 0.008652 

0.940449 0.009281 0.007946 

0.837403 0.008161 0.007221 

0.733846 0.007062 0.006537 

0.629843 0.005981 0.005828 

0.525456 0.004924 0.005164 

0.42075 0.003889 0.004485 

0.315787 0.002878 0.003843 
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0.210631 0.001893 0.003205 

0.105348 0.000933 0.002585 

9.4E-13 8.2E-15 0.001988 

-0.10535 -0.00091 0.001404 

-0.21063 -0.00178 0.000837 

-0.31579 -0.00263 0.000284 

-0.42075 -0.00345 -0.00024 

-0.52546 -0.00424 -0.00078 

-0.62984 -0.005 -0.00125 

-0.73385 -0.00573 -0.00175 

-0.8374 -0.00643 -0.00218 

-0.94045 -0.0071 -0.00262 

-1.04292 -0.00774 -0.00301 

-1.14476 -0.00834 -0.00342 

-1.24591 -0.00892 -0.00379 

-1.34629 -0.00947 -0.00414 

-1.44586 -0.00998 -0.00447 

-1.54454 -0.01047 -0.00477 

-1.64229 -0.01092 -0.00505 

-1.73904 -0.01134 -0.00532 

-1.83473 -0.01173 -0.0055 

-1.92931 -0.0121 -0.00569 

-2.02272 -0.01243 -0.00586 

-2.1149 -0.01274 -0.00607 

-2.20579 -0.01302 -0.00624 

-2.29535 -0.01327 -0.00638 

-2.38352 -0.01351 -0.00655 

-2.47023 -0.01371 -0.00665 

-2.55546 -0.01388 -0.00672 

-2.63913 -0.01404 -0.00677 

-2.72121 -0.01417 -0.00698 

-2.80163 -0.01427 -0.00686 

-2.88037 -0.01436 -0.0068 

-2.95736 -0.01443 -0.00686 

-3.03256 -0.01447 -0.00678 

-3.10592 -0.0145 -0.00677 

-3.17741 -0.01451 -0.00674 

-3.24698 -0.0145 -0.00667 

-3.31459 -0.0145 -0.00649 

-3.3802 -0.01446 -0.00648 

-3.44377 -0.01442 -0.00636 
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-3.50526 -0.01435 -0.00633 

-3.56464 -0.01428 -0.0062 

-3.62186 -0.01418 -0.00613 

-3.67691 -0.0141 -0.0059 

-3.72974 -0.014 -0.00575 

-3.78032 -0.01391 -0.00579 

-3.82863 -0.01379 -0.00559 

-3.87463 -0.01366 -0.00527 

-3.9183 -0.01355 -0.00505 

-3.95961 -0.01341 -0.00499 

-3.99855 -0.01331 -0.00474 

-4.03507 -0.01318 -0.00461 

-4.06918 -0.01306 -0.00452 

-4.10083 -0.01291 -0.00432 

-4.13002 -0.01277 -0.00417 

-4.15674 -0.01265 -0.004 

-4.18095 -0.01255 -0.00378 

-4.20265 -0.01242 -0.0037 

-4.22183 -0.01231 -0.00358 

-4.23848 -0.01216 -0.00344 

-4.25258 -0.01209 -0.00299 

-4.26413 -0.01199 -0.00302 

-4.27312 -0.01186 -0.00293 

-4.27954 -0.0118 -0.00288 

-4.2834 -0.01168 -0.00264 

-4.28469 -0.0116 -0.00257 

 

Table 32 CFD Data Used to Create Figures 35 – 38  

τ
t  Cx Cy CP CT 

0.058443 0.009093 0.124521 -0.00871 -0.00888 

0.126703 0.013201 0.246508 -0.01292 -0.01299 

0.17283 0.013134 0.369504 -0.0129 -0.01292 

0.212577 0.008809 0.492361 -0.00859 -0.0086 

0.25 0.000221 0.616166 0 -7.7E-06 

0.287423 -0.01263 0.739081 0.012901 0.012838 

0.32717 -0.02978 0.862359 0.030114 0.029989 

0.373297 -0.05106 0.98379 0.051558 0.05127 

0.441557 -0.07664 1.104551 0.077238 0.076855 

0.558443 -0.07664 1.104551 0.077238 0.076855 
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0.626703 -0.05104 0.982819 0.051507 0.051256 

0.67283 -0.02974 0.860859 0.030062 0.029955 

0.712577 -0.01264 0.73828 0.012887 0.01285 

0.75 0.000205 0.615626 0 7.69E-06 

0.787423 0.008795 0.492097 -0.00859 -0.00858 

0.82717 0.013115 0.369025 -0.01289 -0.0129 

0.873297 0.013217 0.246478 -0.01292 -0.013 

0.941557 0.009093 0.124521 -0.00871 -0.00888 

 

Table 33 Lifting-Line Data Used to Create Figures 35 – 38  

τ
t  Cx Cy CP CT 

0.058443 0.008702 0.124447 -0.0087 -0.0087 

0.068069 0.009319 0.136697 -0.00932 -0.00932 

0.076556 0.009893 0.14895 -0.00989 -0.00989 

0.08425 0.010425 0.161205 -0.01042 -0.01042 

0.091354 0.010913 0.173462 -0.01091 -0.01091 

0.097996 0.011359 0.185721 -0.01136 -0.01136 

0.104266 0.011762 0.197982 -0.01176 -0.01176 

0.110228 0.012123 0.210246 -0.01212 -0.01212 

0.115931 0.01244 0.222511 -0.01244 -0.01244 

0.121413 0.012715 0.234778 -0.01272 -0.01272 

0.126703 0.012947 0.247046 -0.01295 -0.01295 

0.131825 0.013136 0.259316 -0.01314 -0.01314 

0.136799 0.013283 0.271587 -0.01328 -0.01328 

0.141642 0.013386 0.28386 -0.01339 -0.01339 

0.146367 0.013447 0.296134 -0.01345 -0.01345 

0.150987 0.013465 0.308408 -0.01347 -0.01347 

0.155513 0.013441 0.320684 -0.01344 -0.01344 

0.159952 0.013373 0.33296 -0.01337 -0.01337 

0.164313 0.013263 0.345238 -0.01326 -0.01326 

0.168604 0.013109 0.357515 -0.01311 -0.01311 

0.17283 0.012913 0.369794 -0.01291 -0.01291 

0.176997 0.012675 0.382072 -0.01267 -0.01267 

0.181111 0.012393 0.394351 -0.01239 -0.01239 

0.185175 0.012069 0.40663 -0.01207 -0.01207 

0.189195 0.011701 0.418909 -0.0117 -0.0117 

0.193174 0.011291 0.431188 -0.01129 -0.01129 

0.197116 0.010838 0.443467 -0.01084 -0.01084 
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0.201024 0.010342 0.455746 -0.01034 -0.01034 

0.204901 0.009804 0.468024 -0.0098 -0.0098 

0.208751 0.009222 0.480301 -0.00922 -0.00922 

0.212577 0.008598 0.492578 -0.0086 -0.0086 

0.21638 0.007931 0.504854 -0.00793 -0.00793 

0.220163 0.007221 0.51713 -0.00722 -0.00722 

0.223929 0.006468 0.529404 -0.00647 -0.00647 

0.227681 0.005673 0.541677 -0.00567 -0.00567 

0.231419 0.004834 0.553949 -0.00483 -0.00483 

0.235148 0.003953 0.56622 -0.00395 -0.00395 

0.238868 0.003029 0.578489 -0.00303 -0.00303 

0.242582 0.002062 0.590757 -0.00206 -0.00206 

0.246292 0.001052 0.603023 -0.00105 -0.00105 

0.25 0 0.615287 0 0 

0.253708 -0.0011 0.62755 0.001095 0.001095 

0.257418 -0.00223 0.63981 0.002233 0.002233 

0.261132 -0.00341 0.652068 0.003414 0.003414 

0.264852 -0.00464 0.664325 0.004638 0.004638 

0.268581 -0.0059 0.676578 0.005904 0.005904 

0.272319 -0.00721 0.68883 0.007214 0.007214 

0.276071 -0.00857 0.701079 0.008566 0.008566 

0.279837 -0.00996 0.713325 0.009961 0.009961 

0.28362 -0.0114 0.725568 0.011398 0.011398 

0.287423 -0.01288 0.737809 0.012878 0.012878 

0.291249 -0.0144 0.750046 0.014402 0.014402 

0.295099 -0.01597 0.762281 0.015968 0.015968 

0.298976 -0.01758 0.774512 0.017576 0.017576 

0.302884 -0.01923 0.78674 0.019228 0.019228 

0.306826 -0.02092 0.798964 0.020922 0.020922 

0.310805 -0.02266 0.811185 0.022658 0.022658 

0.314825 -0.02444 0.823402 0.024438 0.024438 

0.318889 -0.02626 0.835616 0.02626 0.02626 

0.323003 -0.02813 0.847825 0.028125 0.028125 

0.32717 -0.03003 0.860031 0.030033 0.030033 

0.331396 -0.03198 0.872232 0.031983 0.031983 

0.335687 -0.03398 0.88443 0.033976 0.033976 

0.340048 -0.03601 0.896622 0.036012 0.036012 

0.344487 -0.03809 0.908811 0.03809 0.03809 

0.349013 -0.04021 0.920995 0.040211 0.040211 
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0.353633 -0.04238 0.933174 0.042375 0.042375 

0.358358 -0.04458 0.945348 0.044581 0.044581 

0.363201 -0.04683 0.957518 0.04683 0.04683 

0.368175 -0.04912 0.969682 0.049122 0.049122 

0.373297 -0.05146 0.981842 0.051456 0.051456 

0.378587 -0.05383 0.993996 0.053833 0.053833 

0.384069 -0.05625 1.006145 0.056252 0.056252 

0.389772 -0.05871 1.018288 0.058714 0.058714 

0.395734 -0.06122 1.030426 0.061219 0.061219 

0.402004 -0.06377 1.042558 0.063766 0.063766 

0.408646 -0.06636 1.054684 0.066355 0.066355 

0.41575 -0.06899 1.066805 0.068987 0.068987 

0.423444 -0.07166 1.078919 0.071662 0.071662 

0.431931 -0.07438 1.091027 0.074379 0.074379 

0.441557 -0.07714 1.103129 0.077138 0.077138 

0.453018 -0.07994 1.115225 0.07994 0.07994 

0.468247 -0.08278 1.127314 0.082785 0.082785 

0.475781 -0.08567 1.139397 0.085672 0.085672 

0.49085 -0.0886 1.151473 0.088601 0.088601 

0.50915 -0.0886 1.151473 0.088601 0.088601 

0.524219 -0.08567 1.139397 0.085672 0.085672 

0.531753 -0.08278 1.127314 0.082785 0.082785 

0.546982 -0.07994 1.115225 0.07994 0.07994 

0.558443 -0.07714 1.103129 0.077138 0.077138 

0.568069 -0.07438 1.091027 0.074379 0.074379 

0.576556 -0.07166 1.078919 0.071662 0.071662 

0.58425 -0.06899 1.066805 0.068987 0.068987 

0.591354 -0.06636 1.054684 0.066355 0.066355 

0.597996 -0.06377 1.042558 0.063766 0.063766 

0.604266 -0.06122 1.030426 0.061219 0.061219 

0.610228 -0.05871 1.018288 0.058714 0.058714 

0.615931 -0.05625 1.006145 0.056252 0.056252 

0.621413 -0.05383 0.993996 0.053833 0.053833 

0.626703 -0.05146 0.981842 0.051456 0.051456 

0.631825 -0.04912 0.969682 0.049122 0.049122 

0.636799 -0.04683 0.957518 0.04683 0.04683 

0.641642 -0.04458 0.945348 0.044581 0.044581 

0.646367 -0.04238 0.933174 0.042375 0.042375 

0.650987 -0.04021 0.920995 0.040211 0.040211 
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0.655513 -0.03809 0.908811 0.03809 0.03809 

0.659952 -0.03601 0.896622 0.036012 0.036012 

0.664313 -0.03398 0.88443 0.033976 0.033976 

0.668604 -0.03198 0.872232 0.031983 0.031983 

0.67283 -0.03003 0.860031 0.030033 0.030033 

0.676997 -0.02813 0.847825 0.028125 0.028125 

0.681111 -0.02626 0.835616 0.02626 0.02626 

0.685175 -0.02444 0.823402 0.024438 0.024438 

0.689195 -0.02266 0.811185 0.022658 0.022658 

0.693174 -0.02092 0.798964 0.020922 0.020922 

0.697116 -0.01923 0.78674 0.019228 0.019228 

0.701024 -0.01758 0.774512 0.017576 0.017576 

0.704901 -0.01597 0.762281 0.015968 0.015968 

0.708751 -0.0144 0.750046 0.014402 0.014402 

0.712577 -0.01288 0.737809 0.012878 0.012878 

0.71638 -0.0114 0.725568 0.011398 0.011398 

0.720163 -0.00996 0.713325 0.009961 0.009961 

0.723929 -0.00857 0.701079 0.008566 0.008566 

0.727681 -0.00721 0.68883 0.007214 0.007214 

0.731419 -0.0059 0.676578 0.005904 0.005904 

0.735148 -0.00464 0.664325 0.004638 0.004638 

0.738868 -0.00341 0.652068 0.003414 0.003414 

0.742582 -0.00223 0.63981 0.002233 0.002233 

0.746292 -0.0011 0.62755 0.001095 0.001095 

0.75 0 0.615287 0 0 

0.753708 0.001052 0.603023 -0.00105 -0.00105 

0.757418 0.002062 0.590757 -0.00206 -0.00206 

0.761132 0.003029 0.578489 -0.00303 -0.00303 

0.764852 0.003953 0.56622 -0.00395 -0.00395 

0.768581 0.004834 0.553949 -0.00483 -0.00483 

0.772319 0.005673 0.541677 -0.00567 -0.00567 

0.776071 0.006468 0.529404 -0.00647 -0.00647 

0.779837 0.007221 0.51713 -0.00722 -0.00722 

0.78362 0.007931 0.504854 -0.00793 -0.00793 

0.787423 0.008598 0.492578 -0.0086 -0.0086 

0.791249 0.009222 0.480301 -0.00922 -0.00922 

0.795099 0.009804 0.468024 -0.0098 -0.0098 

0.798976 0.010342 0.455746 -0.01034 -0.01034 

0.802884 0.010838 0.443467 -0.01084 -0.01084 
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0.806826 0.011291 0.431188 -0.01129 -0.01129 

0.810805 0.011701 0.418909 -0.0117 -0.0117 

0.814825 0.012069 0.40663 -0.01207 -0.01207 

0.818889 0.012393 0.394351 -0.01239 -0.01239 

0.823003 0.012675 0.382072 -0.01267 -0.01267 

0.82717 0.012913 0.369794 -0.01291 -0.01291 

0.831396 0.013109 0.357515 -0.01311 -0.01311 

0.835687 0.013263 0.345238 -0.01326 -0.01326 

0.840048 0.013373 0.33296 -0.01337 -0.01337 

0.844487 0.013441 0.320684 -0.01344 -0.01344 

0.849013 0.013465 0.308408 -0.01347 -0.01347 

0.853633 0.013447 0.296134 -0.01345 -0.01345 

0.858358 0.013386 0.28386 -0.01339 -0.01339 

0.863201 0.013283 0.271587 -0.01328 -0.01328 

0.868175 0.013136 0.259316 -0.01314 -0.01314 

0.873297 0.012947 0.247046 -0.01295 -0.01295 

0.878587 0.012715 0.234778 -0.01272 -0.01272 

0.884069 0.01244 0.222511 -0.01244 -0.01244 

0.889772 0.012123 0.210246 -0.01212 -0.01212 

0.895734 0.011762 0.197982 -0.01176 -0.01176 

0.902004 0.011359 0.185721 -0.01136 -0.01136 

0.908646 0.010913 0.173462 -0.01091 -0.01091 

0.91575 0.010425 0.161205 -0.01042 -0.01042 

0.923444 0.009893 0.14895 -0.00989 -0.00989 

0.931931 0.009319 0.136697 -0.00932 -0.00932 

0.941557 0.008702 0.124447 -0.0087 -0.0087 

 

Table 34  CFD Data Used to Create Figures 39 – 42  

τ
t  Cx Cy CP CT 

0 0.006465 0.07681 -0.00575 0.002159 

0.007813 0.006494 0.077265 -0.00578 0.00213 

0.015625 0.006583 0.078627 -0.00586 0.002042 

0.023438 0.006728 0.080893 -0.006 0.001896 

0.03125 0.006929 0.084056 -0.00618 0.001695 

0.039063 0.007181 0.088108 -0.0064 0.001443 

0.046875 0.007481 0.09304 -0.00667 0.001144 

0.054688 0.007824 0.098849 -0.00697 0.0008 

0.0625 0.008206 0.105519 -0.0073 0.000418 

0.070313 0.008619 0.113029 -0.00766 5.49E-06 
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0.078125 0.009056 0.121359 -0.00802 -0.00043 

0.085938 0.00951 0.130501 -0.00839 -0.00089 

0.09375 0.009975 0.140448 -0.00875 -0.00135 

0.101563 0.010441 0.151156 -0.0091 -0.00182 

0.109375 0.010896 0.16257 -0.00942 -0.00227 

0.117188 0.011334 0.174672 -0.0097 -0.00271 

0.125 0.011748 0.187477 -0.00993 -0.00312 

0.132813 0.012131 0.200969 -0.01011 -0.00351 

0.140625 0.012471 0.215103 -0.01022 -0.00385 

0.148438 0.012758 0.229813 -0.01026 -0.00413 

0.15625 0.012984 0.245055 -0.0102 -0.00436 

0.164063 0.01314 0.260811 -0.01005 -0.00452 

0.171875 0.013222 0.277075 -0.00979 -0.0046 

0.179688 0.01322 0.293781 -0.00941 -0.0046 

0.1875 0.013127 0.310869 -0.00891 -0.0045 

0.195313 0.012938 0.32831 -0.00829 -0.00431 

0.203125 0.012649 0.346094 -0.00753 -0.00402 

0.210938 0.012256 0.36416 -0.00663 -0.00363 

0.21875 0.011754 0.382453 -0.00559 -0.00313 

0.226563 0.011142 0.400939 -0.00441 -0.00252 

0.234375 0.010419 0.419576 -0.00308 -0.00179 

0.242188 0.009583 0.43831 -0.00161 -0.00096 

0.25 0.008636 0.457105 1.47E-17 -1.2E-05 

0.257813 0.00758 0.475919 0.00175 0.001044 

0.265625 0.006418 0.494705 0.003633 0.002206 

0.273438 0.005153 0.51341 0.005644 0.003471 

0.28125 0.00379 0.531989 0.007776 0.004834 

0.289063 0.002335 0.550394 0.01002 0.006289 

0.296875 0.000796 0.568577 0.012366 0.007828 

0.304688 -0.00082 0.586501 0.014803 0.009445 

0.3125 -0.00251 0.604122 0.017321 0.011129 

0.320313 -0.00425 0.621386 0.019905 0.012873 

0.328125 -0.00604 0.638256 0.022542 0.014666 

0.335938 -0.00787 0.6547 0.025217 0.016496 

0.34375 -0.00973 0.670663 0.027916 0.018353 

0.351563 -0.0116 0.686121 0.030622 0.020225 

0.359375 -0.01347 0.701035 0.03332 0.022099 

0.367188 -0.01534 0.715365 0.035993 0.023963 

0.375 -0.01718 0.72907 0.038624 0.025805 

0.382813 -0.01899 0.742122 0.041198 0.027612 

0.390625 -0.02075 0.754491 0.043696 0.029372 
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0.398438 -0.02245 0.766146 0.046105 0.031073 

0.40625 -0.02408 0.777053 0.048407 0.032703 

0.414063 -0.02563 0.787185 0.050586 0.03425 

0.421875 -0.02708 0.796521 0.05263 0.035702 

0.429688 -0.02843 0.805037 0.054524 0.037051 

0.4375 -0.02966 0.812715 0.056255 0.038285 

0.445313 -0.03077 0.819535 0.057812 0.039396 

0.453125 -0.03175 0.825477 0.059183 0.040376 

0.460938 -0.03259 0.830529 0.06036 0.041218 

0.46875 -0.03329 0.834679 0.061334 0.041915 

0.476563 -0.03384 0.837918 0.062099 0.042462 

0.484375 -0.03423 0.840238 0.062649 0.042856 

0.492188 -0.03447 0.841631 0.06298 0.043094 

0.5 -0.03455 0.842096 0.063091 0.043173 

0.507813 -0.03447 0.841631 0.06298 0.043094 

0.515625 -0.03423 0.840238 0.062649 0.042856 

0.523438 -0.03384 0.837918 0.062099 0.042462 

0.53125 -0.03329 0.834679 0.061334 0.041915 

0.539063 -0.03259 0.830529 0.06036 0.041218 

0.546875 -0.03175 0.825477 0.059183 0.040376 

0.554688 -0.03077 0.819535 0.057812 0.039396 

0.5625 -0.02966 0.812715 0.056255 0.038285 

0.570313 -0.02843 0.805037 0.054524 0.037051 

0.578125 -0.02708 0.796521 0.05263 0.035702 

0.585938 -0.02563 0.787185 0.050586 0.03425 

0.59375 -0.02408 0.777053 0.048407 0.032703 

0.601563 -0.02245 0.766146 0.046105 0.031073 

0.609375 -0.02075 0.754491 0.043696 0.029372 

0.617188 -0.01899 0.742122 0.041198 0.027612 

0.625 -0.01718 0.72907 0.038624 0.025805 

0.632813 -0.01534 0.715365 0.035993 0.023963 

0.640625 -0.01347 0.701035 0.03332 0.022099 

0.648438 -0.0116 0.686121 0.030622 0.020225 

0.65625 -0.00973 0.670663 0.027916 0.018353 

0.664063 -0.00787 0.6547 0.025217 0.016496 

0.671875 -0.00604 0.638256 0.022542 0.014666 

0.679688 -0.00425 0.621386 0.019905 0.012873 

0.6875 -0.00251 0.604122 0.017321 0.011129 

0.695313 -0.00082 0.586501 0.014803 0.009445 

0.703125 0.000796 0.568577 0.012366 0.007828 

0.710938 0.002335 0.550394 0.01002 0.006289 
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0.71875 0.00379 0.531989 0.007776 0.004834 

0.726563 0.005153 0.51341 0.005644 0.003471 

0.734375 0.006418 0.494705 0.003633 0.002206 

0.742188 0.00758 0.475919 0.00175 0.001044 

0.75 0.008636 0.457105 -1E-17 -1.2E-05 

0.757813 0.009583 0.43831 -0.00161 -0.00096 

0.765625 0.010419 0.419576 -0.00308 -0.00179 

0.773438 0.011142 0.400939 -0.00441 -0.00252 

0.78125 0.011754 0.382453 -0.00559 -0.00313 

0.789063 0.012256 0.36416 -0.00663 -0.00363 

0.796875 0.012649 0.346094 -0.00753 -0.00402 

0.804688 0.012938 0.32831 -0.00829 -0.00431 

0.8125 0.013127 0.310869 -0.00891 -0.0045 

0.820313 0.01322 0.293781 -0.00941 -0.0046 

0.828125 0.013222 0.277075 -0.00979 -0.0046 

0.835938 0.01314 0.260811 -0.01005 -0.00452 

0.84375 0.012984 0.245055 -0.0102 -0.00436 

0.851563 0.012758 0.229813 -0.01026 -0.00413 

0.859375 0.012471 0.215103 -0.01022 -0.00385 

0.867188 0.012131 0.200969 -0.01011 -0.00351 

0.875 0.011748 0.187477 -0.00993 -0.00312 

0.882813 0.011334 0.174672 -0.0097 -0.00271 

0.890625 0.010896 0.16257 -0.00942 -0.00227 

0.898438 0.010441 0.151156 -0.0091 -0.00182 

0.90625 0.009975 0.140448 -0.00875 -0.00135 

0.914063 0.00951 0.130501 -0.00839 -0.00089 

0.921875 0.009056 0.121359 -0.00802 -0.00043 

0.929688 0.008619 0.113029 -0.00766 5.49E-06 

0.9375 0.008206 0.105519 -0.0073 0.000418 

0.945313 0.007824 0.098849 -0.00697 0.0008 

0.953125 0.007481 0.09304 -0.00667 0.001144 

0.960938 0.007181 0.088108 -0.0064 0.001443 

0.96875 0.006929 0.084056 -0.00618 0.001695 

0.976563 0.006728 0.080893 -0.006 0.001896 

0.984375 0.006583 0.078627 -0.00586 0.002042 

0.992188 0.006494 0.077265 -0.00578 0.00213 

1 0.006465 0.07681 -0.00575 0.002159 
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Table 35  Lifting-Line Data Used to Create Figures 39 – 42  

τ
t  Cx Cy CP CT 

0 0.00507 0.065276 -0.00489 0.003906 

0.007813 0.005103 0.065753 -0.00492 0.003873 

0.015625 0.0052 0.067184 -0.00501 0.003776 

0.023438 0.005359 0.069564 -0.00516 0.003616 

0.03125 0.00558 0.072888 -0.00536 0.003396 

0.039063 0.005858 0.077148 -0.00561 0.003118 

0.046875 0.006189 0.082335 -0.0059 0.002787 

0.054688 0.006568 0.088434 -0.00624 0.002408 

0.0625 0.00699 0.095432 -0.00661 0.001986 

0.070313 0.007447 0.103312 -0.007 0.001529 

0.078125 0.007933 0.112054 -0.0074 0.001042 

0.085938 0.00844 0.121639 -0.00782 0.000535 

0.09375 0.00896 0.132041 -0.00823 1.52E-05 

0.101563 0.009485 0.143238 -0.00862 -0.00051 

0.109375 0.010004 0.155201 -0.00899 -0.00103 

0.117188 0.010509 0.167901 -0.00932 -0.00153 

0.125 0.010991 0.181309 -0.00961 -0.00202 

0.132813 0.01144 0.195392 -0.00983 -0.00246 

0.140625 0.011848 0.210116 -0.00999 -0.00287 

0.148438 0.012204 0.225445 -0.01006 -0.00323 

0.15625 0.012501 0.241342 -0.01005 -0.00353 

0.164063 0.01273 0.25777 -0.00993 -0.00375 

0.171875 0.012882 0.274689 -0.0097 -0.00391 

0.179688 0.012951 0.292057 -0.00936 -0.00398 

0.1875 0.01293 0.309834 -0.00888 -0.00395 

0.195313 0.012813 0.327975 -0.00828 -0.00384 

0.203125 0.012594 0.346439 -0.00753 -0.00362 

0.210938 0.012269 0.365179 -0.00665 -0.00329 

0.21875 0.011836 0.384151 -0.00561 -0.00286 

0.226563 0.01129 0.403309 -0.00443 -0.00231 

0.234375 0.010632 0.422608 -0.0031 -0.00166 

0.242188 0.00986 0.442 -0.00162 -0.00088 

0.25 0.008976 0.461438 -2.1E-18 -1.2E-18 

0.257813 0.00798 0.480877 0.001768 0.000996 

0.265625 0.006876 0.500269 0.003674 0.0021 

0.273438 0.005668 0.519568 0.005712 0.003308 

0.28125 0.00436 0.538726 0.007874 0.004616 

0.289063 0.002959 0.557698 0.010153 0.006017 

0.296875 0.00147 0.576438 0.012537 0.007505 
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0.304688 -9.7E-05 0.594902 0.015016 0.009073 

0.3125 -0.00173 0.613043 0.017577 0.01071 

0.320313 -0.00343 0.63082 0.020207 0.012408 

0.328125 -0.00518 0.648188 0.022893 0.014157 

0.335938 -0.00697 0.665107 0.025618 0.015946 

0.34375 -0.00879 0.681534 0.028368 0.017764 

0.351563 -0.01062 0.697432 0.031127 0.019598 

0.359375 -0.01246 0.712761 0.033877 0.021438 

0.367188 -0.01429 0.727485 0.036603 0.023269 

0.375 -0.0161 0.741568 0.039286 0.025081 

0.382813 -0.01788 0.754975 0.041911 0.026859 

0.390625 -0.01962 0.767676 0.04446 0.028593 

0.398438 -0.02129 0.779639 0.046917 0.03027 

0.40625 -0.0229 0.790835 0.049265 0.031877 

0.414063 -0.02443 0.801238 0.051489 0.033403 

0.421875 -0.02586 0.810822 0.053575 0.034837 

0.429688 -0.02719 0.819565 0.055508 0.036169 

0.4375 -0.02841 0.827445 0.057275 0.037389 

0.445313 -0.02951 0.834443 0.058863 0.038487 

0.453125 -0.03048 0.840542 0.060263 0.039456 

0.460938 -0.03131 0.845728 0.061464 0.040289 

0.46875 -0.032 0.849989 0.062459 0.040979 

0.476563 -0.03255 0.853313 0.06324 0.041521 

0.484375 -0.03294 0.855693 0.063801 0.041911 

0.492188 -0.03317 0.857124 0.06414 0.042146 

0.5 -0.03325 0.857601 0.064253 0.042225 

0.507813 -0.03317 0.857124 0.06414 0.042146 

0.515625 -0.03294 0.855693 0.063801 0.041911 

0.523438 -0.03255 0.853313 0.06324 0.041521 

0.53125 -0.032 0.849989 0.062459 0.040979 

0.539063 -0.03131 0.845728 0.061464 0.040289 

0.546875 -0.03048 0.840542 0.060263 0.039456 

0.554688 -0.02951 0.834443 0.058863 0.038487 

0.5625 -0.02841 0.827445 0.057275 0.037389 

0.570313 -0.02719 0.819565 0.055508 0.036169 

0.578125 -0.02586 0.810822 0.053575 0.034837 

0.585938 -0.02443 0.801238 0.051489 0.033403 

0.59375 -0.0229 0.790835 0.049265 0.031877 

0.601563 -0.02129 0.779639 0.046917 0.03027 

0.609375 -0.01962 0.767676 0.04446 0.028593 

0.617188 -0.01788 0.754975 0.041911 0.026859 
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0.625 -0.0161 0.741568 0.039286 0.025081 

0.632813 -0.01429 0.727485 0.036603 0.023269 

0.640625 -0.01246 0.712761 0.033877 0.021438 

0.648438 -0.01062 0.697432 0.031127 0.019598 

0.65625 -0.00879 0.681534 0.028368 0.017764 

0.664063 -0.00697 0.665107 0.025618 0.015946 

0.671875 -0.00518 0.648188 0.022893 0.014157 

0.679688 -0.00343 0.63082 0.020207 0.012408 

0.6875 -0.00173 0.613043 0.017577 0.01071 

0.695313 -9.7E-05 0.594902 0.015016 0.009073 

0.703125 0.00147 0.576438 0.012537 0.007505 

0.710938 0.002959 0.557698 0.010153 0.006017 

0.71875 0.00436 0.538726 0.007874 0.004616 

0.726563 0.005668 0.519568 0.005712 0.003308 

0.734375 0.006876 0.500269 0.003674 0.0021 

0.742188 0.00798 0.480877 0.001768 0.000996 

0.75 0.008976 0.461438 6.35E-18 3.52E-18 

0.757813 0.00986 0.442 -0.00162 -0.00088 

0.765625 0.010632 0.422608 -0.0031 -0.00166 

0.773438 0.01129 0.403309 -0.00443 -0.00231 

0.78125 0.011836 0.384151 -0.00561 -0.00286 

0.789063 0.012269 0.365179 -0.00665 -0.00329 

0.796875 0.012594 0.346439 -0.00753 -0.00362 

0.804688 0.012813 0.327975 -0.00828 -0.00384 

0.8125 0.01293 0.309834 -0.00888 -0.00395 

0.820313 0.012951 0.292057 -0.00936 -0.00398 

0.828125 0.012882 0.274689 -0.0097 -0.00391 

0.835938 0.01273 0.25777 -0.00993 -0.00375 

0.84375 0.012501 0.241342 -0.01005 -0.00353 

0.851563 0.012204 0.225445 -0.01006 -0.00323 

0.859375 0.011848 0.210116 -0.00999 -0.00287 

0.867188 0.01144 0.195392 -0.00983 -0.00246 

0.875 0.010991 0.181309 -0.00961 -0.00202 

0.882813 0.010509 0.167901 -0.00932 -0.00153 

0.890625 0.010004 0.155201 -0.00899 -0.00103 

0.898438 0.009485 0.143238 -0.00862 -0.00051 

0.90625 0.00896 0.132041 -0.00823 1.52E-05 

0.914063 0.00844 0.121639 -0.00782 0.000535 

0.921875 0.007933 0.112054 -0.0074 0.001042 

0.929688 0.007447 0.103312 -0.007 0.001529 

0.9375 0.00699 0.095432 -0.00661 0.001986 
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0.945313 0.006568 0.088434 -0.00624 0.002408 

0.953125 0.006189 0.082335 -0.0059 0.002787 

0.960938 0.005858 0.077148 -0.00561 0.003118 

0.96875 0.00558 0.072888 -0.00536 0.003396 

0.976563 0.005359 0.069564 -0.00516 0.003616 

0.984375 0.0052 0.067184 -0.00501 0.003776 

0.992188 0.005103 0.065753 -0.00492 0.003873 

1 0.00507 0.065276 -0.00489 0.003906 

 

Table 36  CFD Data Used to Create Figures 43 – 46  

τ
t  Cx Cy CP CT 

0 0.007948 0.077209 -0.00723 0.000688 

0.007813 0.007984 0.077664 -0.00726 0.000652 

0.015625 0.008092 0.079025 -0.00737 0.000544 

0.023438 0.00827 0.08128 -0.00753 0.000367 

0.03125 0.008514 0.084427 -0.00775 0.000123 

0.039063 0.00882 0.088459 -0.00804 -0.00018 

0.046875 0.009184 0.093375 -0.00837 -0.00055 

0.054688 0.009601 0.099171 -0.00874 -0.00097 

0.0625 0.010063 0.105823 -0.00916 -0.00143 

0.070313 0.010558 0.113285 -0.00959 -0.00192 

0.078125 0.011081 0.121578 -0.01004 -0.00244 

0.085938 0.011624 0.130707 -0.0105 -0.00299 

0.09375 0.012176 0.140608 -0.01095 -0.00354 

0.101563 0.012725 0.151286 -0.01138 -0.00409 

0.109375 0.013256 0.162651 -0.01177 -0.00462 

0.117188 0.01376 0.174721 -0.01212 -0.00512 

0.125 0.014228 0.187492 -0.01242 -0.00559 

0.132813 0.014649 0.200919 -0.01264 -0.00601 

0.140625 0.015007 0.214923 -0.01277 -0.00637 

0.148438 0.015298 0.229527 -0.0128 -0.00666 

0.15625 0.015506 0.244695 -0.01273 -0.00687 

0.164063 0.015625 0.26041 -0.01254 -0.00699 

0.171875 0.015642 0.276636 -0.01221 -0.00701 

0.179688 0.015548 0.293331 -0.01175 -0.00691 

0.1875 0.015332 0.310483 -0.01113 -0.0067 

0.195313 0.014989 0.32804 -0.01035 -0.00635 

0.203125 0.014514 0.345867 -0.0094 -0.00588 

0.210938 0.013898 0.363937 -0.00828 -0.00526 

0.21875 0.013139 0.382248 -0.00698 -0.0045 
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0.226563 0.012235 0.400763 -0.00551 -0.0036 

0.234375 0.011182 0.41944 -0.00385 -0.00255 

0.242188 0.009981 0.438237 -0.00201 -0.00134 

0.25 0.008636 0.457105 1.84E-17 0 

0.257813 0.007141 0.47591 0.002187 0.001495 

0.265625 0.00551 0.494694 0.004541 0.003127 

0.273438 0.003744 0.513408 0.007055 0.004893 

0.28125 0.00185 0.53201 0.00972 0.006786 

0.289063 -0.00016 0.550448 0.012526 0.008799 

0.296875 -0.00229 0.568668 0.01546 0.010922 

0.304688 -0.00451 0.586654 0.018509 0.013142 

0.3125 -0.00682 0.604435 0.021662 0.015455 

0.320313 -0.00921 0.621821 0.024899 0.017843 

0.328125 -0.01166 0.638801 0.028201 0.020293 

0.335938 -0.01415 0.655294 0.03155 0.022789 

0.34375 -0.01667 0.671201 0.034923 0.025309 

0.351563 -0.01921 0.686637 0.038306 0.027842 

0.359375 -0.02174 0.701472 0.041676 0.03038 

0.367188 -0.02427 0.715791 0.045018 0.032908 

0.375 -0.02677 0.729532 0.048311 0.035406 

0.382813 -0.02922 0.742613 0.051531 0.037854 

0.390625 -0.0316 0.755034 0.05466 0.040238 

0.398438 -0.0339 0.766703 0.057673 0.042538 

0.40625 -0.0361 0.77765 0.060555 0.044741 

0.414063 -0.03819 0.7878 0.063282 0.046829 

0.421875 -0.04015 0.797167 0.065841 0.048791 

0.429688 -0.04198 0.805705 0.068211 0.050612 

0.4375 -0.04364 0.813408 0.070379 0.052278 

0.445313 -0.04514 0.82026 0.072328 0.05378 

0.453125 -0.04647 0.82623 0.074046 0.055104 

0.460938 -0.0476 0.831322 0.075522 0.056241 

0.46875 -0.04855 0.835538 0.076746 0.057189 

0.476563 -0.0493 0.838826 0.077707 0.057933 

0.484375 -0.04983 0.841179 0.078399 0.058468 

0.492188 -0.05015 0.842592 0.078815 0.058791 

0.5 -0.05026 0.843063 0.078954 0.058899 

0.507813 -0.05015 0.842592 0.078815 0.058791 

0.515625 -0.04983 0.841179 0.078399 0.058468 

0.523438 -0.0493 0.838826 0.077707 0.057933 

0.53125 -0.04855 0.835538 0.076746 0.057189 

0.539063 -0.0476 0.831322 0.075522 0.056241 
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0.546875 -0.04647 0.82623 0.074046 0.055104 

0.554688 -0.04514 0.82026 0.072328 0.05378 

0.5625 -0.04364 0.813408 0.070379 0.052278 

0.570313 -0.04198 0.805705 0.068211 0.050612 

0.578125 -0.04015 0.797167 0.065841 0.048791 

0.585938 -0.03819 0.7878 0.063282 0.046829 

0.59375 -0.0361 0.77765 0.060555 0.044741 

0.601563 -0.0339 0.766703 0.057673 0.042538 

0.609375 -0.0316 0.755034 0.05466 0.040238 

0.617188 -0.02922 0.742613 0.051531 0.037854 

0.625 -0.02677 0.729532 0.048311 0.035406 

0.632813 -0.02427 0.715791 0.045018 0.032908 

0.640625 -0.02174 0.701472 0.041676 0.03038 

0.648438 -0.01921 0.686637 0.038306 0.027842 

0.65625 -0.01667 0.671201 0.034923 0.025309 

0.664063 -0.01415 0.655294 0.03155 0.022789 

0.671875 -0.01166 0.638801 0.028201 0.020293 

0.679688 -0.00921 0.621821 0.024899 0.017843 

0.6875 -0.00682 0.604435 0.021662 0.015455 

0.695313 -0.00451 0.586654 0.018509 0.013142 

0.703125 -0.00229 0.568668 0.01546 0.010922 

0.710938 -0.00016 0.550448 0.012526 0.008799 

0.71875 0.00185 0.53201 0.00972 0.006786 

0.726563 0.003744 0.513408 0.007055 0.004893 

0.734375 0.00551 0.494694 0.004541 0.003127 

0.742188 0.007141 0.47591 0.002187 0.001495 

0.75 0.008636 0.457105 -1.3E-17 0 

0.757813 0.009981 0.438237 -0.00201 -0.00134 

0.765625 0.011182 0.41944 -0.00385 -0.00255 

0.773438 0.012235 0.400763 -0.00551 -0.0036 

0.78125 0.013139 0.382248 -0.00698 -0.0045 

0.789063 0.013898 0.363937 -0.00828 -0.00526 

0.796875 0.014514 0.345867 -0.0094 -0.00588 

0.804688 0.014989 0.32804 -0.01035 -0.00635 

0.8125 0.015332 0.310483 -0.01113 -0.0067 

0.820313 0.015548 0.293331 -0.01175 -0.00691 

0.828125 0.015642 0.276636 -0.01221 -0.00701 

0.835938 0.015625 0.26041 -0.01254 -0.00699 

0.84375 0.015506 0.244695 -0.01273 -0.00687 

0.851563 0.015298 0.229527 -0.0128 -0.00666 

0.859375 0.015007 0.214923 -0.01277 -0.00637 
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0.867188 0.014649 0.200919 -0.01264 -0.00601 

0.875 0.014228 0.187492 -0.01242 -0.00559 

0.882813 0.01376 0.174721 -0.01212 -0.00512 

0.890625 0.013256 0.162651 -0.01177 -0.00462 

0.898438 0.012725 0.151286 -0.01138 -0.00409 

0.90625 0.012176 0.140608 -0.01095 -0.00354 

0.914063 0.011624 0.130707 -0.0105 -0.00299 

0.921875 0.011081 0.121578 -0.01004 -0.00244 

0.929688 0.010558 0.113285 -0.00959 -0.00192 

0.9375 0.010063 0.105823 -0.00916 -0.00143 

0.945313 0.009601 0.099171 -0.00874 -0.00097 

0.953125 0.009184 0.093375 -0.00837 -0.00055 

0.960938 0.00882 0.088459 -0.00804 -0.00018 

0.96875 0.008514 0.084427 -0.00775 0.000123 

0.976563 0.00827 0.08128 -0.00753 0.000367 

0.984375 0.008092 0.079025 -0.00737 0.000544 

0.992188 0.007984 0.077664 -0.00726 0.000652 

1 0.007948 0.077209 -0.00723 0.000688 

 

Table 37 Lifting-Line Data Used to Create Figures 43 – 46  

τ
t  Cx Cy CP CT 

0 0.006293 0.065276 -0.00611 0.002683 

0.007813 0.006333 0.065753 -0.00615 0.002643 

0.015625 0.006452 0.067184 -0.00626 0.002524 

0.023438 0.006648 0.069564 -0.00644 0.002327 

0.03125 0.006919 0.072888 -0.00669 0.002057 

0.039063 0.007259 0.077148 -0.00701 0.001716 

0.046875 0.007665 0.082335 -0.00738 0.001311 

0.054688 0.008128 0.088434 -0.0078 0.000848 

0.0625 0.008641 0.095432 -0.00826 0.000335 

0.070313 0.009196 0.103312 -0.00875 -0.00022 

0.078125 0.009784 0.112054 -0.00925 -0.00081 

0.085938 0.010395 0.121639 -0.00977 -0.00142 

0.09375 0.011017 0.132041 -0.01028 -0.00204 

0.101563 0.01164 0.143238 -0.01077 -0.00266 

0.109375 0.012251 0.155201 -0.01124 -0.00328 

0.117188 0.012839 0.167901 -0.01165 -0.00386 

0.125 0.013392 0.181309 -0.01201 -0.00442 

0.132813 0.013898 0.195392 -0.01229 -0.00492 

0.140625 0.014344 0.210116 -0.01248 -0.00537 
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0.148438 0.01472 0.225445 -0.01258 -0.00574 

0.15625 0.015012 0.241342 -0.01256 -0.00604 

0.164063 0.015212 0.25777 -0.01241 -0.00624 

0.171875 0.015307 0.274689 -0.01213 -0.00633 

0.179688 0.01529 0.292057 -0.01169 -0.00631 

0.1875 0.015151 0.309834 -0.0111 -0.00618 

0.195313 0.014882 0.327975 -0.01035 -0.00591 

0.203125 0.014478 0.346439 -0.00942 -0.0055 

0.210938 0.013931 0.365179 -0.00831 -0.00496 

0.21875 0.013239 0.384151 -0.00702 -0.00426 

0.226563 0.012399 0.403309 -0.00554 -0.00342 

0.234375 0.011408 0.422608 -0.00388 -0.00243 

0.242188 0.010267 0.442 -0.00203 -0.00129 

0.25 0.008976 0.461438 -2.6E-18 -1.7E-18 

0.257813 0.007538 0.480877 0.00221 0.001438 

0.265625 0.005958 0.500269 0.004592 0.003018 

0.273438 0.00424 0.519568 0.00714 0.004736 

0.28125 0.002391 0.538726 0.009843 0.006584 

0.289063 0.00042 0.557698 0.012691 0.008555 

0.296875 -0.00166 0.576438 0.015671 0.01064 

0.304688 -0.00385 0.594902 0.018769 0.012826 

0.3125 -0.00613 0.613043 0.021971 0.015104 

0.320313 -0.00848 0.63082 0.025259 0.01746 

0.328125 -0.0109 0.648188 0.028616 0.01988 

0.335938 -0.01338 0.665107 0.032023 0.022351 

0.34375 -0.01588 0.681534 0.03546 0.024856 

0.351563 -0.0184 0.697432 0.038909 0.02738 

0.359375 -0.02093 0.712761 0.042347 0.029907 

0.367188 -0.02344 0.727485 0.045754 0.03242 

0.375 -0.02593 0.741568 0.049108 0.034902 

0.382813 -0.02836 0.754975 0.052389 0.037337 

0.390625 -0.03073 0.767676 0.055575 0.039708 

0.398438 -0.03302 0.779639 0.058646 0.041999 

0.40625 -0.03522 0.790835 0.061581 0.044193 

0.414063 -0.0373 0.801238 0.064362 0.046275 

0.421875 -0.03926 0.810822 0.066969 0.048231 

0.429688 -0.04107 0.819565 0.069385 0.050046 

0.4375 -0.04273 0.827445 0.071593 0.051707 

0.445313 -0.04423 0.834443 0.073579 0.053203 

0.453125 -0.04555 0.840542 0.075329 0.054522 

0.460938 -0.04668 0.845728 0.07683 0.055655 
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0.46875 -0.04762 0.849989 0.078074 0.056594 

0.476563 -0.04836 0.853313 0.079049 0.057331 

0.484375 -0.04889 0.855693 0.079751 0.057861 

0.492188 -0.04921 0.857124 0.080175 0.058181 

0.5 -0.04931 0.857601 0.080316 0.058288 

0.507813 -0.04921 0.857124 0.080175 0.058181 

0.515625 -0.04889 0.855693 0.079751 0.057861 

0.523438 -0.04836 0.853313 0.079049 0.057331 

0.53125 -0.04762 0.849989 0.078074 0.056594 

0.539063 -0.04668 0.845728 0.07683 0.055655 

0.546875 -0.04555 0.840542 0.075329 0.054522 

0.554688 -0.04423 0.834443 0.073579 0.053203 

0.5625 -0.04273 0.827445 0.071593 0.051707 

0.570313 -0.04107 0.819565 0.069385 0.050046 

0.578125 -0.03926 0.810822 0.066969 0.048231 

0.585938 -0.0373 0.801238 0.064362 0.046275 

0.59375 -0.03522 0.790835 0.061581 0.044193 

0.601563 -0.03302 0.779639 0.058646 0.041999 

0.609375 -0.03073 0.767676 0.055575 0.039708 

0.617188 -0.02836 0.754975 0.052389 0.037337 

0.625 -0.02593 0.741568 0.049108 0.034902 

0.632813 -0.02344 0.727485 0.045754 0.03242 

0.640625 -0.02093 0.712761 0.042347 0.029907 

0.648438 -0.0184 0.697432 0.038909 0.02738 

0.65625 -0.01588 0.681534 0.03546 0.024856 

0.664063 -0.01338 0.665107 0.032023 0.022351 

0.671875 -0.0109 0.648188 0.028616 0.01988 

0.679688 -0.00848 0.63082 0.025259 0.01746 

0.6875 -0.00613 0.613043 0.021971 0.015104 

0.695313 -0.00385 0.594902 0.018769 0.012826 

0.703125 -0.00166 0.576438 0.015671 0.01064 

0.710938 0.00042 0.557698 0.012691 0.008555 

0.71875 0.002391 0.538726 0.009843 0.006584 

0.726563 0.00424 0.519568 0.00714 0.004736 

0.734375 0.005958 0.500269 0.004592 0.003018 

0.742188 0.007538 0.480877 0.00221 0.001438 

0.75 0.008976 0.461438 7.94E-18 5.11E-18 

0.757813 0.010267 0.442 -0.00203 -0.00129 

0.765625 0.011408 0.422608 -0.00388 -0.00243 

0.773438 0.012399 0.403309 -0.00554 -0.00342 

0.78125 0.013239 0.384151 -0.00702 -0.00426 
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0.789063 0.013931 0.365179 -0.00831 -0.00496 

0.796875 0.014478 0.346439 -0.00942 -0.0055 

0.804688 0.014882 0.327975 -0.01035 -0.00591 

0.8125 0.015151 0.309834 -0.0111 -0.00618 

0.820313 0.01529 0.292057 -0.01169 -0.00631 

0.828125 0.015307 0.274689 -0.01213 -0.00633 

0.835938 0.015212 0.25777 -0.01241 -0.00624 

0.84375 0.015012 0.241342 -0.01256 -0.00604 

0.851563 0.01472 0.225445 -0.01258 -0.00574 

0.859375 0.014344 0.210116 -0.01248 -0.00537 

0.867188 0.013898 0.195392 -0.01229 -0.00492 

0.875 0.013392 0.181309 -0.01201 -0.00442 

0.882813 0.012839 0.167901 -0.01165 -0.00386 

0.890625 0.012251 0.155201 -0.01124 -0.00328 

0.898438 0.01164 0.143238 -0.01077 -0.00266 

0.90625 0.011017 0.132041 -0.01028 -0.00204 

0.914063 0.010395 0.121639 -0.00977 -0.00142 

0.921875 0.009784 0.112054 -0.00925 -0.00081 

0.929688 0.009196 0.103312 -0.00875 -0.00022 

0.9375 0.008641 0.095432 -0.00826 0.000335 

0.945313 0.008128 0.088434 -0.0078 0.000848 

0.953125 0.007665 0.082335 -0.00738 0.001311 

0.960938 0.007259 0.077148 -0.00701 0.001716 

0.96875 0.006919 0.072888 -0.00669 0.002057 

0.976563 0.006648 0.069564 -0.00644 0.002327 

0.984375 0.006452 0.067184 -0.00626 0.002524 

0.992188 0.006333 0.065753 -0.00615 0.002643 

1 0.006293 0.065276 -0.00611 0.002683 

 

Table 38 CFD Data Used to Create Figures 47 – 50 

τ
t  Cx Cy CP CT 

0 0.005473 0.076478 -0.00477 0.003151 

0.007813 0.005498 0.076932 -0.0048 0.003126 

0.015625 0.005573 0.078295 -0.00486 0.003051 

0.023438 0.005697 0.080561 -0.00498 0.002927 

0.03125 0.005868 0.083729 -0.00513 0.002756 

0.039063 0.006084 0.087788 -0.00532 0.00254 

0.046875 0.006342 0.092734 -0.00554 0.002282 

0.054688 0.006638 0.098582 -0.0058 0.001986 

0.0625 0.006968 0.105293 -0.00607 0.001657 
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0.070313 0.007325 0.112843 -0.00637 0.001299 

0.078125 0.007705 0.121216 -0.00667 0.000919 

0.085938 0.008102 0.130411 -0.00698 0.000523 

0.09375 0.008508 0.140398 -0.00729 0.000116 

0.101563 0.008918 0.151145 -0.00758 -0.00029 

0.109375 0.009323 0.162605 -0.00785 -0.0007 

0.117188 0.009715 0.17473 -0.00808 -0.00109 

0.125 0.01009 0.187549 -0.00828 -0.00147 

0.132813 0.010442 0.20103 -0.00843 -0.00182 

0.140625 0.010763 0.215162 -0.00852 -0.00214 

0.148438 0.011045 0.229865 -0.00855 -0.00242 

0.15625 0.01128 0.245086 -0.0085 -0.00266 

0.164063 0.011462 0.260798 -0.00837 -0.00284 

0.171875 0.011585 0.277028 -0.00815 -0.00296 

0.179688 0.011646 0.293742 -0.00784 -0.00302 

0.1875 0.011637 0.310835 -0.00743 -0.00301 

0.195313 0.011553 0.328275 -0.0069 -0.00293 

0.203125 0.011391 0.34606 -0.00627 -0.00277 

0.210938 0.011148 0.364132 -0.00552 -0.00252 

0.21875 0.01082 0.382428 -0.00466 -0.0022 

0.226563 0.010406 0.40092 -0.00367 -0.00178 

0.234375 0.009903 0.419571 -0.00257 -0.00128 

0.242188 0.009313 0.438297 -0.00134 -0.00069 

0.25 0.008636 0.457105 1.22E-17 -1.2E-05 

0.257813 0.007869 0.475864 0.001458 0.000755 

0.265625 0.007018 0.494593 0.003027 0.001606 

0.273438 0.006087 0.51324 0.004702 0.002537 

0.28125 0.005078 0.531761 0.006477 0.003546 

0.289063 0.003996 0.550113 0.008345 0.004628 

0.296875 0.002846 0.568239 0.010299 0.005778 

0.304688 0.001634 0.586102 0.012328 0.00699 

0.3125 0.000368 0.603664 0.014423 0.008256 

0.320313 -0.00095 0.620885 0.016574 0.009572 

0.328125 -0.0023 0.637713 0.018769 0.010927 

0.335938 -0.00369 0.654016 0.020992 0.012313 

0.34375 -0.00509 0.669809 0.023234 0.013716 

0.351563 -0.00651 0.68514 0.025482 0.015132 

0.359375 -0.00793 0.699932 0.027723 0.016553 

0.367188 -0.00935 0.714195 0.029945 0.017971 

0.375 -0.01075 0.727828 0.032132 0.019374 

0.382813 -0.01213 0.740822 0.034271 0.020753 
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0.390625 -0.01347 0.75315 0.036349 0.022099 

0.398438 -0.01478 0.764763 0.038351 0.023401 

0.40625 -0.01603 0.775638 0.040265 0.024652 

0.414063 -0.01722 0.785733 0.042078 0.025839 

0.421875 -0.01833 0.795045 0.043777 0.026954 

0.429688 -0.01937 0.803537 0.045352 0.02799 

0.4375 -0.02032 0.811212 0.046792 0.028939 

0.445313 -0.02117 0.818006 0.048086 0.029796 

0.453125 -0.02193 0.823957 0.049228 0.030552 

0.460938 -0.02258 0.829036 0.050209 0.031201 

0.46875 -0.02311 0.833196 0.051021 0.031737 

0.476563 -0.02353 0.836433 0.051657 0.032156 

0.484375 -0.02384 0.83876 0.052116 0.03246 

0.492188 -0.02402 0.840146 0.052391 0.032642 

0.5 -0.02408 0.840608 0.052483 0.032703 

0.507813 -0.02402 0.840146 0.052391 0.032642 

0.515625 -0.02384 0.83876 0.052116 0.03246 

0.523438 -0.02353 0.836433 0.051657 0.032156 

0.53125 -0.02311 0.833196 0.051021 0.031737 

0.539063 -0.02258 0.829036 0.050209 0.031201 

0.546875 -0.02193 0.823957 0.049228 0.030552 

0.554688 -0.02117 0.818006 0.048086 0.029796 

0.5625 -0.02032 0.811212 0.046792 0.028939 

0.570313 -0.01937 0.803537 0.045352 0.02799 

0.578125 -0.01833 0.795045 0.043777 0.026954 

0.585938 -0.01722 0.785733 0.042078 0.025839 

0.59375 -0.01603 0.775638 0.040265 0.024652 

0.601563 -0.01478 0.764763 0.038351 0.023401 

0.609375 -0.01347 0.75315 0.036349 0.022099 

0.617188 -0.01213 0.740822 0.034271 0.020753 

0.625 -0.01075 0.727828 0.032132 0.019374 

0.632813 -0.00935 0.714195 0.029945 0.017971 

0.640625 -0.00793 0.699932 0.027723 0.016553 

0.648438 -0.00651 0.68514 0.025482 0.015132 

0.65625 -0.00509 0.669809 0.023234 0.013716 

0.664063 -0.00369 0.654016 0.020992 0.012313 

0.671875 -0.0023 0.637713 0.018769 0.010927 

0.679688 -0.00095 0.620885 0.016574 0.009572 

0.6875 0.000368 0.603664 0.014423 0.008256 

0.695313 0.001634 0.586102 0.012328 0.00699 

0.703125 0.002846 0.568239 0.010299 0.005778 
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0.710938 0.003996 0.550113 0.008345 0.004628 

0.71875 0.005078 0.531761 0.006477 0.003546 

0.726563 0.006087 0.513239 0.004702 0.002537 

0.734375 0.007018 0.494593 0.003027 0.001606 

0.742188 0.007869 0.475864 0.001458 0.000755 

0.75 0.008636 0.457105 -8.7E-18 -1.2E-05 

0.757813 0.009313 0.438297 -0.00134 -0.00069 

0.765625 0.009903 0.419571 -0.00257 -0.00128 

0.773438 0.010406 0.40092 -0.00367 -0.00178 

0.78125 0.01082 0.382428 -0.00466 -0.0022 

0.789063 0.011148 0.364132 -0.00552 -0.00252 

0.796875 0.011391 0.34606 -0.00627 -0.00277 

0.804688 0.011553 0.328275 -0.0069 -0.00293 

0.8125 0.011637 0.310835 -0.00743 -0.00301 

0.820313 0.011646 0.293742 -0.00784 -0.00302 

0.828125 0.011585 0.277028 -0.00815 -0.00296 

0.835938 0.011462 0.260798 -0.00837 -0.00284 

0.84375 0.01128 0.245086 -0.0085 -0.00266 

0.851563 0.011045 0.229865 -0.00855 -0.00242 

0.859375 0.010763 0.215162 -0.00852 -0.00214 

0.867188 0.010442 0.20103 -0.00843 -0.00182 

0.875 0.01009 0.187549 -0.00828 -0.00147 

0.882813 0.009715 0.17473 -0.00808 -0.00109 

0.890625 0.009323 0.162605 -0.00785 -0.0007 

0.898438 0.008918 0.151145 -0.00758 -0.00029 

0.90625 0.008508 0.140398 -0.00729 0.000116 

0.914063 0.008102 0.130411 -0.00698 0.000523 

0.921875 0.007705 0.121216 -0.00667 0.000919 

0.929688 0.007325 0.112843 -0.00637 0.001299 

0.9375 0.006968 0.105293 -0.00607 0.001657 

0.945313 0.006638 0.098582 -0.0058 0.001986 

0.953125 0.006342 0.092734 -0.00554 0.002282 

0.960938 0.006084 0.087788 -0.00532 0.00254 

0.96875 0.005868 0.083729 -0.00513 0.002756 

0.976563 0.005697 0.080561 -0.00498 0.002927 

0.984375 0.005573 0.078295 -0.00486 0.003051 

0.992188 0.005498 0.076932 -0.0048 0.003126 

1 0.005473 0.076478 -0.00477 0.003151 
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Table 39 Lifting-Line Data Used to Create Figures 47 – 50  

τ
t  Cx Cy CP CT 

0 0.004255 0.065276 -0.00408 0.004721 

0.007813 0.004283 0.065753 -0.0041 0.004693 

0.015625 0.004365 0.067184 -0.00417 0.004611 

0.023438 0.0045 0.069564 -0.0043 0.004476 

0.03125 0.004687 0.072888 -0.00446 0.004288 

0.039063 0.004923 0.077148 -0.00467 0.004052 

0.046875 0.005205 0.082335 -0.00492 0.003771 

0.054688 0.005528 0.088434 -0.0052 0.003447 

0.0625 0.005889 0.095432 -0.0055 0.003087 

0.070313 0.006281 0.103312 -0.00583 0.002695 

0.078125 0.006699 0.112054 -0.00617 0.002276 

0.085938 0.007138 0.121639 -0.00651 0.001838 

0.09375 0.00759 0.132041 -0.00685 0.001386 

0.101563 0.008048 0.143238 -0.00718 0.000928 

0.109375 0.008506 0.155201 -0.00749 0.00047 

0.117188 0.008956 0.167901 -0.00777 2E-05 

0.125 0.00939 0.181309 -0.008 -0.00041 

0.132813 0.009802 0.195392 -0.00819 -0.00083 

0.140625 0.010183 0.210116 -0.00832 -0.00121 

0.148438 0.010527 0.225445 -0.00838 -0.00155 

0.15625 0.010827 0.241342 -0.00837 -0.00185 

0.164063 0.011075 0.25777 -0.00827 -0.0021 

0.171875 0.011265 0.274689 -0.00808 -0.00229 

0.179688 0.011392 0.292057 -0.0078 -0.00242 

0.1875 0.011449 0.309834 -0.0074 -0.00247 

0.195313 0.011433 0.327975 -0.0069 -0.00246 

0.203125 0.011338 0.346439 -0.00628 -0.00236 

0.210938 0.011161 0.365179 -0.00554 -0.00219 

0.21875 0.0109 0.384151 -0.00468 -0.00192 

0.226563 0.010551 0.403309 -0.00369 -0.00158 

0.234375 0.010115 0.422608 -0.00259 -0.00114 

0.242188 0.009589 0.442 -0.00135 -0.00061 

0.25 0.008976 0.461438 -1.8E-18 -8.2E-19 

0.257813 0.008275 0.480877 0.001473 0.000701 

0.265625 0.007488 0.500269 0.003061 0.001487 

0.273438 0.00662 0.519568 0.00476 0.002356 

0.28125 0.005672 0.538726 0.006562 0.003303 

0.289063 0.004651 0.557698 0.00846 0.004325 

0.296875 0.00356 0.576438 0.010447 0.005416 
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0.304688 0.002406 0.594902 0.012513 0.00657 

0.3125 0.001195 0.613043 0.014647 0.00778 

0.320313 -6.5E-05 0.63082 0.016839 0.00904 

0.328125 -0.00137 0.648188 0.019077 0.010342 

0.335938 -0.0027 0.665107 0.021348 0.011677 

0.34375 -0.00406 0.681534 0.02364 0.013036 

0.351563 -0.00543 0.697432 0.025939 0.01441 

0.359375 -0.00682 0.712761 0.028231 0.015791 

0.367188 -0.00819 0.727485 0.030502 0.017169 

0.375 -0.00956 0.741568 0.032739 0.018533 

0.382813 -0.0109 0.754975 0.034926 0.019874 

0.390625 -0.01221 0.767676 0.03705 0.021183 

0.398438 -0.01347 0.779639 0.039097 0.02245 

0.40625 -0.01469 0.790835 0.041054 0.023666 

0.414063 -0.01585 0.801238 0.042908 0.024821 

0.421875 -0.01693 0.810822 0.044646 0.025908 

0.429688 -0.01794 0.819565 0.046256 0.026918 

0.4375 -0.01887 0.827445 0.047729 0.027843 

0.445313 -0.0197 0.834443 0.049053 0.028677 

0.453125 -0.02044 0.840542 0.050219 0.029413 

0.460938 -0.02107 0.845728 0.05122 0.030045 

0.46875 -0.02159 0.849989 0.052049 0.030569 

0.476563 -0.02201 0.853313 0.0527 0.030981 

0.484375 -0.0223 0.855693 0.053168 0.031278 

0.492188 -0.02248 0.857124 0.05345 0.031456 

0.5 -0.02254 0.857601 0.053544 0.031516 

0.507813 -0.02248 0.857124 0.05345 0.031456 

0.515625 -0.0223 0.855693 0.053168 0.031278 

0.523438 -0.02201 0.853313 0.0527 0.030981 

0.53125 -0.02159 0.849989 0.052049 0.030569 

0.539063 -0.02107 0.845728 0.05122 0.030045 

0.546875 -0.02044 0.840542 0.050219 0.029413 

0.554688 -0.0197 0.834443 0.049053 0.028677 

0.5625 -0.01887 0.827445 0.047729 0.027843 

0.570313 -0.01794 0.819565 0.046256 0.026918 

0.578125 -0.01693 0.810822 0.044646 0.025908 

0.585938 -0.01585 0.801238 0.042908 0.024821 

0.59375 -0.01469 0.790835 0.041054 0.023666 

0.601563 -0.01347 0.779639 0.039097 0.02245 

0.609375 -0.01221 0.767676 0.03705 0.021183 

0.617188 -0.0109 0.754975 0.034926 0.019874 
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0.625 -0.00956 0.741568 0.032739 0.018533 

0.632813 -0.00819 0.727485 0.030502 0.017169 

0.640625 -0.00682 0.712761 0.028231 0.015791 

0.648438 -0.00543 0.697432 0.025939 0.01441 

0.65625 -0.00406 0.681534 0.02364 0.013036 

0.664063 -0.0027 0.665107 0.021348 0.011677 

0.671875 -0.00137 0.648188 0.019077 0.010342 

0.679688 -6.5E-05 0.63082 0.016839 0.00904 

0.6875 0.001195 0.613043 0.014647 0.00778 

0.695313 0.002406 0.594902 0.012513 0.00657 

0.703125 0.00356 0.576438 0.010447 0.005416 

0.710938 0.004651 0.557698 0.00846 0.004325 

0.71875 0.005672 0.538726 0.006562 0.003303 

0.726563 0.00662 0.519568 0.00476 0.002356 

0.734375 0.007488 0.500269 0.003061 0.001487 

0.742188 0.008275 0.480877 0.001473 0.000701 

0.75 0.008976 0.461438 5.29E-18 2.46E-18 

0.757813 0.009589 0.442 -0.00135 -0.00061 

0.765625 0.010115 0.422608 -0.00259 -0.00114 

0.773438 0.010551 0.403309 -0.00369 -0.00158 

0.78125 0.0109 0.384151 -0.00468 -0.00192 

0.789063 0.011161 0.365179 -0.00554 -0.00219 

0.796875 0.011338 0.346439 -0.00628 -0.00236 

0.804688 0.011433 0.327975 -0.0069 -0.00246 

0.8125 0.011449 0.309834 -0.0074 -0.00247 

0.820313 0.011392 0.292057 -0.0078 -0.00242 

0.828125 0.011265 0.274689 -0.00808 -0.00229 

0.835938 0.011075 0.25777 -0.00827 -0.0021 

0.84375 0.010827 0.241342 -0.00837 -0.00185 

0.851563 0.010527 0.225445 -0.00838 -0.00155 

0.859375 0.010183 0.210116 -0.00832 -0.00121 

0.867188 0.009802 0.195392 -0.00819 -0.00083 

0.875 0.00939 0.181309 -0.008 -0.00041 

0.882813 0.008956 0.167901 -0.00777 2E-05 

0.890625 0.008506 0.155201 -0.00749 0.00047 

0.898438 0.008048 0.143238 -0.00718 0.000928 

0.90625 0.00759 0.132041 -0.00685 0.001386 

0.914063 0.007138 0.121639 -0.00651 0.001838 

0.921875 0.006699 0.112054 -0.00617 0.002276 

0.929688 0.006281 0.103312 -0.00583 0.002695 

0.9375 0.005889 0.095432 -0.0055 0.003087 
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0.945313 0.005528 0.088434 -0.0052 0.003447 

0.953125 0.005205 0.082335 -0.00492 0.003771 

0.960938 0.004923 0.077148 -0.00467 0.004052 

0.96875 0.004687 0.072888 -0.00446 0.004288 

0.976563 0.0045 0.069564 -0.0043 0.004476 

0.984375 0.004365 0.067184 -0.00417 0.004611 

0.992188 0.004283 0.065753 -0.0041 0.004693 

1 0.004255 0.065276 -0.00408 0.004721 

 

Table 40 CFD Data Used to Create Figures 51 – 54  

τ
t  Cx Cy CP CT 

0.005208 0.007641 0.095441 -0.00715 0.000983 

0.010417 0.007557 0.094858 -0.00709 0.001067 

0.015625 0.007471 0.094356 -0.00704 0.001153 

0.020833 0.007498 0.094715 -0.00704 0.001126 

0.026042 0.007497 0.095298 -0.00704 0.001127 

0.03125 0.007509 0.095914 -0.00705 0.001115 

0.036458 0.007526 0.097368 -0.0071 0.001098 

0.041667 0.007584 0.099029 -0.00717 0.00104 

0.046875 0.007672 0.100953 -0.00724 0.000952 

0.052083 0.007789 0.103377 -0.00733 0.000835 

0.057292 0.007896 0.106265 -0.00745 0.000728 

0.0625 0.00804 0.109393 -0.00757 0.000584 

0.067708 0.008212 0.112929 -0.00771 0.000412 

0.072917 0.008384 0.116808 -0.00785 0.00024 

0.078125 0.008577 0.121093 -0.008 4.74E-05 

0.083333 0.008786 0.125739 -0.00816 -0.00016 

0.088542 0.009016 0.130693 -0.00832 -0.00039 

0.09375 0.009234 0.135966 -0.00847 -0.00061 

0.098958 0.009477 0.141682 -0.00863 -0.00085 

0.104167 0.00973 0.147621 -0.00877 -0.00111 

0.109375 0.009932 0.154017 -0.00892 -0.00131 

0.114583 0.010229 0.160577 -0.00905 -0.0016 

0.119792 0.010465 0.167602 -0.00916 -0.00184 

0.125 0.010704 0.174793 -0.00926 -0.00208 

0.130208 0.010925 0.182457 -0.00934 -0.0023 

0.135417 0.0112 0.190305 -0.0094 -0.00258 

0.140625 0.011383 0.198455 -0.00943 -0.00276 

0.145833 0.011603 0.20681 -0.00943 -0.00298 

0.151042 0.011805 0.215556 -0.00941 -0.00318 
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0.15625 0.011991 0.224418 -0.00934 -0.00337 

0.161458 0.012078 0.233673 -0.00924 -0.00345 

0.166667 0.012308 0.243091 -0.00911 -0.00368 

0.171875 0.012374 0.252769 -0.00893 -0.00375 

0.177083 0.012465 0.262683 -0.0087 -0.00384 

0.182292 0.012464 0.272739 -0.00843 -0.00384 

0.1875 0.012553 0.283039 -0.00812 -0.00393 

0.192708 0.012548 0.293575 -0.00775 -0.00392 

0.197917 0.012501 0.304287 -0.00733 -0.00388 

0.203125 0.012393 0.315117 -0.00685 -0.00377 

0.208333 0.012277 0.326068 -0.00632 -0.00365 

0.213542 0.012094 0.337195 -0.00574 -0.00347 

0.21875 0.011905 0.348451 -0.00509 -0.00328 

0.223958 0.011685 0.359851 -0.00439 -0.00306 

0.229167 0.011434 0.371371 -0.00363 -0.00281 

0.234375 0.011105 0.382982 -0.00281 -0.00248 

0.239583 0.010726 0.394665 -0.00193 -0.0021 

0.244792 0.010308 0.40642 -0.001 -0.00168 

0.25 0.009849 0.418228 -4.5E-15 -0.00122 

0.255208 0.009343 0.430078 0.001054 -0.00072 

0.260417 0.00879 0.441957 0.002166 -0.00017 

0.265625 0.008194 0.453844 0.003333 0.00043 

0.270833 0.007553 0.465742 0.004555 0.001071 

0.276042 0.006862 0.477632 0.005829 0.001762 

0.28125 0.00613 0.489512 0.007155 0.002494 

0.286458 0.005347 0.501341 0.008529 0.003277 

0.291667 0.004522 0.513138 0.00995 0.004102 

0.296875 0.003674 0.524896 0.011416 0.00495 

0.302083 0.002788 0.536568 0.012922 0.005836 

0.307292 0.001877 0.548153 0.014466 0.006747 

0.3125 0.000919 0.559699 0.016047 0.007705 

0.317708 -4.8E-05 0.571065 0.017658 0.008672 

0.322917 -0.0011 0.582343 0.019297 0.00972 

0.328125 -0.00215 0.593526 0.020962 0.010778 

0.333333 -0.00325 0.604515 0.022646 0.011878 

0.338542 -0.00428 0.615297 0.024343 0.012901 

0.34375 -0.0054 0.626061 0.026059 0.014025 

0.348958 -0.00658 0.636512 0.027777 0.0152 

0.354167 -0.00769 0.64691 0.029505 0.016312 

0.359375 -0.00884 0.656957 0.031225 0.017468 

0.364583 -0.01002 0.666892 0.032944 0.018642 
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0.369792 -0.01116 0.676564 0.034651 0.01978 

0.375 -0.01233 0.686074 0.036347 0.020951 

0.380208 -0.0135 0.695194 0.038015 0.022127 

0.385417 -0.01465 0.704234 0.039669 0.023278 

0.390625 -0.01576 0.712879 0.041287 0.024385 

0.395833 -0.01694 0.721323 0.042875 0.025565 

0.401042 -0.01803 0.729376 0.044419 0.026652 

0.40625 -0.01911 0.737323 0.045932 0.027732 

0.411458 -0.02021 0.744873 0.047391 0.028834 

0.416667 -0.02125 0.752068 0.048797 0.029869 

0.421875 -0.02224 0.758989 0.05015 0.030868 

0.427083 -0.02323 0.765607 0.051445 0.031851 

0.432292 -0.02419 0.771891 0.052676 0.032809 

0.4375 -0.02507 0.777758 0.053835 0.033695 

0.442708 -0.02591 0.783235 0.05492 0.034529 

0.447917 -0.02676 0.788581 0.055946 0.035382 

0.453125 -0.02751 0.793438 0.056886 0.036132 

0.458333 -0.02821 0.797886 0.057742 0.036833 

0.463542 -0.02887 0.801995 0.058517 0.037496 

0.46875 -0.02952 0.805914 0.05922 0.038144 

0.473958 -0.03013 0.809188 0.059816 0.038753 

0.479167 -0.03054 0.812189 0.06033 0.039164 

0.484375 -0.03087 0.814743 0.060748 0.039492 

0.489583 -0.0314 0.817259 0.061099 0.04002 

0.494792 -0.03161 0.819108 0.061336 0.040235 

0.5 -0.03191 0.820134 0.061446 0.040539 

0.505208 -0.03206 0.821867 0.061543 0.040688 

0.510417 -0.03215 0.82207 0.061459 0.040773 

0.515625 -0.03218 0.822412 0.06132 0.040804 

0.520833 -0.03222 0.822951 0.061129 0.040848 

0.526042 -0.03215 0.822019 0.060764 0.040774 

0.53125 -0.03195 0.820912 0.060322 0.040569 

0.536458 -0.03172 0.820233 0.059848 0.04034 

0.541667 -0.03155 0.818277 0.059218 0.040169 

0.546875 -0.03106 0.816423 0.058534 0.039688 

0.552083 -0.03078 0.813921 0.057744 0.039408 

0.557292 -0.03023 0.811207 0.056881 0.038854 

0.5625 -0.02972 0.80775 0.055911 0.038339 

0.567708 -0.02914 0.804671 0.054913 0.037762 

0.572917 -0.02856 0.80038 0.053782 0.03718 

0.578125 -0.02771 0.796271 0.052614 0.036329 
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0.583333 -0.0271 0.791547 0.051359 0.035725 

0.588542 -0.02623 0.786572 0.050044 0.034854 

0.59375 -0.02535 0.781237 0.048667 0.033976 

0.598958 -0.02453 0.775514 0.047229 0.033157 

0.604167 -0.02351 0.769377 0.045731 0.03213 

0.609375 -0.02258 0.76302 0.04419 0.031207 

0.614583 -0.02158 0.756336 0.042604 0.030199 

0.619792 -0.02046 0.749274 0.040972 0.029085 

0.625 -0.01944 0.742023 0.039311 0.028064 

0.630208 -0.01832 0.734171 0.037601 0.026941 

0.635417 -0.01722 0.726403 0.035884 0.025846 

0.640625 -0.016 0.717877 0.034121 0.02462 

0.645833 -0.01487 0.709555 0.032362 0.023499 

0.651042 -0.0137 0.700674 0.030577 0.022321 

0.65625 -0.0125 0.691639 0.028789 0.021122 

0.661458 -0.0113 0.682116 0.026987 0.01992 

0.666667 -0.0101 0.672773 0.025203 0.018723 

0.671875 -0.0089 0.662974 0.023415 0.01752 

0.677083 -0.00771 0.652939 0.021636 0.016335 

0.682292 -0.00654 0.642731 0.019874 0.015162 

0.6875 -0.00535 0.632194 0.018126 0.013975 

0.692708 -0.00416 0.621561 0.016404 0.012782 

0.697917 -0.00304 0.61089 0.014712 0.011659 

0.703125 -0.00191 0.60001 0.013049 0.010539 

0.708333 -0.00078 0.588863 0.011419 0.009406 

0.713542 0.000253 0.577661 0.009828 0.008371 

0.71875 0.001327 0.566347 0.008278 0.007297 

0.723958 0.002333 0.554895 0.006772 0.006292 

0.729167 0.003329 0.543342 0.005313 0.005295 

0.734375 0.004273 0.531645 0.003904 0.004351 

0.739583 0.005181 0.519908 0.002548 0.003443 

0.744792 0.006055 0.508092 0.001246 0.002569 

0.75 0.006886 0.496239 3.01E-15 0.001738 

0.755208 0.007677 0.484347 -0.00119 0.000947 

0.760417 0.00843 0.472427 -0.00231 0.000194 

0.765625 0.009139 0.46051 -0.00338 -0.00051 

0.770833 0.009802 0.448544 -0.00439 -0.00118 

0.776042 0.010424 0.436642 -0.00533 -0.0018 

0.78125 0.010966 0.424735 -0.00621 -0.00234 

0.786458 0.011482 0.412857 -0.00702 -0.00286 

0.791667 0.011903 0.40103 -0.00778 -0.00328 
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0.796875 0.01234 0.389156 -0.00846 -0.00372 

0.802083 0.012702 0.377466 -0.00909 -0.00408 

0.807292 0.013017 0.365962 -0.00966 -0.00439 

0.8125 0.013348 0.354467 -0.01016 -0.00472 

0.817708 0.013587 0.343096 -0.01061 -0.00496 

0.822917 0.013769 0.331892 -0.011 -0.00514 

0.828125 0.013939 0.320653 -0.01132 -0.00531 

0.833333 0.013956 0.30972 -0.0116 -0.00533 

0.838542 0.01408 0.298988 -0.01183 -0.00546 

0.84375 0.014123 0.288289 -0.012 -0.0055 

0.848958 0.014123 0.27789 -0.01213 -0.0055 

0.854167 0.014057 0.267608 -0.01221 -0.00543 

0.859375 0.013944 0.257622 -0.01224 -0.00532 

0.864583 0.013908 0.247666 -0.01223 -0.00528 

0.869792 0.013725 0.238256 -0.0122 -0.0051 

0.875 0.013592 0.228731 -0.01212 -0.00497 

0.880208 0.013366 0.219641 -0.01201 -0.00474 

0.885417 0.013181 0.210832 -0.01188 -0.00456 

0.890625 0.012975 0.202239 -0.01171 -0.00435 

0.895833 0.012675 0.193908 -0.01153 -0.00405 

0.901042 0.012456 0.18588 -0.01132 -0.00383 

0.90625 0.012159 0.178135 -0.0111 -0.00353 

0.911458 0.0119 0.170648 -0.01086 -0.00328 

0.916667 0.01161 0.163589 -0.01061 -0.00299 

0.921875 0.011238 0.156763 -0.01036 -0.00261 

0.927083 0.011075 0.150275 -0.0101 -0.00245 

0.932292 0.010657 0.144053 -0.00983 -0.00203 

0.9375 0.010421 0.13838 -0.00958 -0.0018 

0.942708 0.01012 0.132809 -0.00931 -0.0015 

0.947917 0.009855 0.12772 -0.00906 -0.00123 

0.953125 0.009525 0.122884 -0.00881 -0.0009 

0.958333 0.009349 0.118572 -0.00858 -0.00073 

0.963542 0.009002 0.114324 -0.00834 -0.00038 

0.96875 0.008815 0.110971 -0.00815 -0.00019 

0.973958 0.008604 0.10738 -0.00794 2.03E-05 

0.979167 0.008357 0.104348 -0.00775 0.000267 

0.984375 0.008186 0.102116 -0.00761 0.000438 

0.989583 0.008058 0.099729 -0.00746 0.000566 

0.994792 0.00784 0.097984 -0.00734 0.000784 

1 0.007821 0.096503 -0.00723 0.000803 
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Table 41 CFD Data Used to Create Figures 55 – 58  

τ
t  Cx Cy CP CT 

0.005208 0.007864 0.099074 -0.00742 0.00076 

0.010417 0.00771 0.098395 -0.00736 0.000914 

0.015625 0.007773 0.097856 -0.0073 0.000851 

0.020833 0.007716 0.09802 -0.00728 0.000908 

0.026042 0.007644 0.098417 -0.00728 0.00098 

0.03125 0.007609 0.09903 -0.00728 0.001015 

0.036458 0.007735 0.100387 -0.00732 0.000889 

0.041667 0.007747 0.101941 -0.00738 0.000877 

0.046875 0.007808 0.103821 -0.00744 0.000816 

0.052083 0.007902 0.106025 -0.00752 0.000722 

0.057292 0.008032 0.108696 -0.00762 0.000592 

0.0625 0.008142 0.111842 -0.00774 0.000482 

0.067708 0.008303 0.115177 -0.00786 0.000321 

0.072917 0.008459 0.118987 -0.008 0.000165 

0.078125 0.008641 0.123101 -0.00813 -1.7E-05 

0.083333 0.008833 0.127593 -0.00828 -0.00021 

0.088542 0.009056 0.132424 -0.00843 -0.00043 

0.09375 0.009258 0.13763 -0.00857 -0.00063 

0.098958 0.009486 0.143117 -0.00872 -0.00086 

0.104167 0.009737 0.148977 -0.00886 -0.00111 

0.109375 0.009955 0.155141 -0.00899 -0.00133 

0.114583 0.010204 0.161648 -0.00911 -0.00158 

0.119792 0.010452 0.16847 -0.00921 -0.00183 

0.125 0.010645 0.175652 -0.00931 -0.00202 

0.130208 0.010923 0.183008 -0.00937 -0.0023 

0.135417 0.011143 0.19074 -0.00942 -0.00252 

0.140625 0.011328 0.198729 -0.00945 -0.0027 

0.145833 0.011577 0.207 -0.00944 -0.00295 

0.151042 0.011709 0.215571 -0.00941 -0.00308 

0.15625 0.011953 0.224352 -0.00934 -0.00333 

0.161458 0.012009 0.233398 -0.00923 -0.00339 

0.166667 0.012233 0.242665 -0.00909 -0.00361 

0.171875 0.012287 0.252179 -0.00891 -0.00366 

0.177083 0.012422 0.26196 -0.00868 -0.0038 

0.182292 0.01242 0.271901 -0.00841 -0.0038 

0.1875 0.012496 0.282014 -0.00809 -0.00387 

0.192708 0.012446 0.292385 -0.00772 -0.00382 

0.197917 0.012406 0.302933 -0.0073 -0.00378 

0.203125 0.012396 0.313627 -0.00682 -0.00377 
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0.208333 0.012266 0.324469 -0.00629 -0.00364 

0.213542 0.012105 0.335482 -0.00571 -0.00348 

0.21875 0.011908 0.346666 -0.00507 -0.00328 

0.223958 0.011697 0.357904 -0.00437 -0.00307 

0.229167 0.011395 0.369228 -0.00361 -0.00277 

0.234375 0.011089 0.380652 -0.0028 -0.00246 

0.239583 0.010726 0.392193 -0.00192 -0.0021 

0.244792 0.010316 0.40379 -0.00099 -0.00169 

0.25 0.009878 0.415436 -2.6E-15 -0.00125 

0.255208 0.009393 0.427136 0.001047 -0.00077 

0.260417 0.008848 0.438886 0.002151 -0.00022 

0.265625 0.008268 0.450673 0.00331 0.000356 

0.270833 0.007663 0.462472 0.004523 0.000961 

0.276042 0.006968 0.47428 0.005788 0.001656 

0.28125 0.006296 0.486049 0.007104 0.002328 

0.286458 0.005537 0.49782 0.008469 0.003087 

0.291667 0.004734 0.509505 0.00988 0.00389 

0.296875 0.003887 0.521158 0.011334 0.004737 

0.302083 0.003086 0.532741 0.01283 0.005538 

0.307292 0.002152 0.544208 0.014362 0.006472 

0.3125 0.001208 0.555689 0.015932 0.007416 

0.317708 0.000262 0.566995 0.017532 0.008362 

0.322917 -0.00081 0.578168 0.019159 0.009434 

0.328125 -0.00176 0.589301 0.020813 0.010387 

0.333333 -0.00288 0.600223 0.022485 0.011505 

0.338542 -0.00386 0.610985 0.024173 0.012479 

0.34375 -0.00505 0.621619 0.025874 0.013676 

0.348958 -0.00609 0.632065 0.027583 0.014714 

0.354167 -0.00727 0.642331 0.029296 0.015891 

0.359375 -0.00834 0.652411 0.031009 0.016963 

0.364583 -0.00954 0.662312 0.032718 0.01816 

0.369792 -0.01067 0.671956 0.034415 0.019299 

0.375 -0.0118 0.681334 0.036095 0.020421 

0.380208 -0.01298 0.690529 0.03776 0.021599 

0.385417 -0.01409 0.699486 0.039401 0.022712 

0.390625 -0.01523 0.708104 0.04101 0.023856 

0.395833 -0.01636 0.716511 0.042589 0.024985 

0.401042 -0.01745 0.724725 0.044136 0.026069 

0.40625 -0.01853 0.732504 0.045631 0.027159 

0.411458 -0.0196 0.740021 0.047083 0.028226 

0.416667 -0.02062 0.747275 0.048486 0.029244 
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0.421875 -0.02166 0.754237 0.049836 0.030287 

0.427083 -0.02261 0.760815 0.051123 0.031236 

0.432292 -0.02355 0.76709 0.052349 0.032173 

0.4375 -0.02443 0.772916 0.0535 0.033055 

0.442708 -0.02533 0.778678 0.054601 0.033954 

0.447917 -0.02612 0.783936 0.055617 0.034747 

0.453125 -0.02689 0.788839 0.056556 0.035511 

0.458333 -0.02765 0.793329 0.057412 0.036274 

0.463542 -0.02832 0.797339 0.058177 0.036941 

0.46875 -0.02884 0.801709 0.058911 0.037469 

0.473958 -0.02949 0.804956 0.059503 0.038111 

0.479167 -0.02999 0.807675 0.059995 0.038611 

0.484375 -0.03046 0.810379 0.060423 0.039081 

0.489583 -0.03071 0.813428 0.060813 0.039331 

0.494792 -0.0311 0.815028 0.061031 0.039719 

0.5 -0.03141 0.816191 0.06115 0.040036 

0.505208 -0.03154 0.818091 0.06126 0.040168 

0.510417 -0.03171 0.818205 0.06117 0.040335 

0.515625 -0.03169 0.818934 0.06106 0.040314 

0.520833 -0.03165 0.819206 0.060851 0.040275 

0.526042 -0.03183 0.818527 0.060506 0.040457 

0.53125 -0.03148 0.81819 0.060122 0.040105 

0.536458 -0.03134 0.81645 0.059572 0.039968 

0.541667 -0.03109 0.81556 0.059021 0.039714 

0.546875 -0.03083 0.813333 0.058312 0.039459 

0.552083 -0.03033 0.811214 0.057552 0.038953 

0.557292 -0.02996 0.808334 0.05668 0.038587 

0.5625 -0.02945 0.805641 0.055765 0.038075 

0.567708 -0.02889 0.801752 0.054714 0.037513 

0.572917 -0.02818 0.798355 0.053646 0.036807 

0.578125 -0.02762 0.794139 0.052473 0.036241 

0.583333 -0.02688 0.789523 0.051227 0.035503 

0.588542 -0.02598 0.784774 0.04993 0.0346 

0.59375 -0.02531 0.7795 0.048559 0.033929 

0.598958 -0.02434 0.773944 0.047133 0.032962 

0.604167 -0.02342 0.768172 0.04566 0.032043 

0.609375 -0.02251 0.76178 0.044119 0.031137 

0.614583 -0.02151 0.755344 0.042548 0.03013 

0.619792 -0.02041 0.748296 0.040919 0.029034 

0.625 -0.01943 0.741171 0.039265 0.028059 

0.630208 -0.01831 0.733641 0.037574 0.026939 
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0.635417 -0.01721 0.725944 0.035861 0.025831 

0.640625 -0.01605 0.71769 0.034112 0.02467 

0.645833 -0.01495 0.709482 0.032359 0.023569 

0.651042 -0.01374 0.700663 0.030577 0.022366 

0.65625 -0.0126 0.69189 0.028799 0.021228 

0.661458 -0.0114 0.682643 0.027008 0.020029 

0.666667 -0.01019 0.673202 0.025219 0.018813 

0.671875 -0.00903 0.663711 0.023441 0.01765 

0.677083 -0.00784 0.653759 0.021664 0.016463 

0.682292 -0.00666 0.643801 0.019907 0.015287 

0.6875 -0.00551 0.633499 0.018163 0.014132 

0.692708 -0.00434 0.623006 0.016442 0.012966 

0.697917 -0.00319 0.612266 0.014745 0.011812 

0.703125 -0.00208 0.601568 0.013083 0.010704 

0.708333 -0.00097 0.590633 0.011453 0.009591 

0.713542 0.000103 0.579624 0.009861 0.008521 

0.71875 0.001142 0.568415 0.008308 0.007482 

0.723958 0.002163 0.557096 0.006799 0.006461 

0.729167 0.003166 0.545677 0.005336 0.005458 

0.734375 0.00412 0.534129 0.003922 0.004504 

0.739583 0.005039 0.522565 0.002561 0.003585 

0.744792 0.005916 0.510902 0.001252 0.002708 

0.75 0.006755 0.499172 5.55E-15 0.001869 

0.755208 0.007553 0.487395 -0.00119 0.001071 

0.760417 0.008306 0.475593 -0.00233 0.000318 

0.765625 0.009013 0.463793 -0.00341 -0.00039 

0.770833 0.009678 0.451922 -0.00442 -0.00105 

0.776042 0.010311 0.440085 -0.00537 -0.00169 

0.78125 0.010881 0.428247 -0.00626 -0.00226 

0.786458 0.011352 0.416454 -0.00709 -0.00273 

0.791667 0.011832 0.404694 -0.00785 -0.00321 

0.796875 0.012283 0.393018 -0.00855 -0.00366 

0.802083 0.012665 0.381519 -0.00919 -0.00404 

0.807292 0.013035 0.369926 -0.00976 -0.00441 

0.8125 0.013335 0.358528 -0.01028 -0.00471 

0.817708 0.013619 0.34721 -0.01074 -0.005 

0.822917 0.013781 0.336152 -0.01114 -0.00516 

0.828125 0.013951 0.324996 -0.01148 -0.00533 

0.833333 0.014025 0.314112 -0.01177 -0.0054 

0.838542 0.014167 0.303315 -0.012 -0.00554 

0.84375 0.014216 0.292742 -0.01219 -0.00559 
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0.848958 0.014188 0.282474 -0.01233 -0.00556 

0.854167 0.014215 0.272121 -0.01241 -0.00559 

0.859375 0.014065 0.262187 -0.01246 -0.00544 

0.864583 0.01404 0.252295 -0.01246 -0.00542 

0.869792 0.013889 0.242814 -0.01244 -0.00526 

0.875 0.013783 0.233456 -0.01237 -0.00516 

0.880208 0.013526 0.224375 -0.01227 -0.0049 

0.885417 0.013382 0.215459 -0.01214 -0.00476 

0.890625 0.013174 0.206963 -0.01199 -0.00455 

0.895833 0.012912 0.19853 -0.0118 -0.00429 

0.901042 0.012676 0.190533 -0.0116 -0.00405 

0.90625 0.012435 0.18283 -0.01139 -0.00381 

0.911458 0.012059 0.175365 -0.01116 -0.00343 

0.916667 0.011875 0.168216 -0.01091 -0.00325 

0.921875 0.011591 0.161289 -0.01066 -0.00297 

0.927083 0.011197 0.154819 -0.0104 -0.00257 

0.932292 0.011032 0.148739 -0.01015 -0.00241 

0.9375 0.010658 0.142704 -0.00988 -0.00203 

0.942708 0.0104 0.137346 -0.00963 -0.00178 

0.947917 0.010078 0.132075 -0.00937 -0.00145 

0.953125 0.009888 0.127374 -0.00913 -0.00126 

0.958333 0.009553 0.122644 -0.00888 -0.00093 

0.963542 0.009284 0.11896 -0.00868 -0.00066 

0.96875 0.009078 0.11477 -0.00843 -0.00045 

0.973958 0.008914 0.111606 -0.00825 -0.00029 

0.979167 0.008546 0.108522 -0.00806 7.8E-05 

0.984375 0.008487 0.10586 -0.00789 0.000137 

0.989583 0.008303 0.103799 -0.00776 0.000321 

0.994792 0.008074 0.101761 -0.00762 0.00055 

1 0.008067 0.100233 -0.00751 0.000557 

 

Table 42 CFD Data Used to Create Figures 59 – 62  

τ
t  Cx Cy CP CT 

0.005208 0.008054 0.102307 -0.00766 0.00057 

0.010417 0.007901 0.10167 -0.0076 0.000723 

0.015625 0.008019 0.100972 -0.00753 0.000605 

0.020833 0.007834 0.100937 -0.0075 0.00079 

0.026042 0.007765 0.101296 -0.00749 0.000859 

0.03125 0.007888 0.102197 -0.00751 0.000736 

0.036458 0.007882 0.102874 -0.00751 0.000742 
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0.041667 0.007827 0.104508 -0.00756 0.000797 

0.046875 0.007938 0.106488 -0.00763 0.000686 

0.052083 0.008051 0.108583 -0.0077 0.000573 

0.057292 0.008131 0.111109 -0.00779 0.000493 

0.0625 0.008257 0.114013 -0.00789 0.000367 

0.067708 0.008379 0.11744 -0.00801 0.000245 

0.072917 0.00854 0.121045 -0.00813 8.42E-05 

0.078125 0.008705 0.125115 -0.00827 -8.1E-05 

0.083333 0.008917 0.129482 -0.0084 -0.00029 

0.088542 0.009104 0.134146 -0.00853 -0.00048 

0.09375 0.009307 0.139259 -0.00868 -0.00068 

0.098958 0.009522 0.144639 -0.00881 -0.0009 

0.104167 0.009748 0.150404 -0.00894 -0.00112 

0.109375 0.009955 0.156467 -0.00906 -0.00133 

0.114583 0.010215 0.162852 -0.00917 -0.00159 

0.119792 0.010446 0.169521 -0.00927 -0.00182 

0.125 0.010651 0.176566 -0.00935 -0.00203 

0.130208 0.010905 0.18385 -0.00942 -0.00228 

0.135417 0.0111 0.191484 -0.00946 -0.00248 

0.140625 0.01132 0.199377 -0.00948 -0.0027 

0.145833 0.011507 0.20747 -0.00946 -0.00288 

0.151042 0.011728 0.215874 -0.00942 -0.0031 

0.15625 0.011851 0.224578 -0.00935 -0.00323 

0.161458 0.012021 0.233443 -0.00924 -0.0034 

0.166667 0.012161 0.242644 -0.00909 -0.00354 

0.171875 0.012235 0.25205 -0.0089 -0.00361 

0.177083 0.012391 0.261658 -0.00867 -0.00377 

0.182292 0.012354 0.271478 -0.00839 -0.00373 

0.1875 0.012407 0.281536 -0.00807 -0.00378 

0.192708 0.012451 0.291729 -0.0077 -0.00383 

0.197917 0.012402 0.30216 -0.00728 -0.00378 

0.203125 0.012294 0.312732 -0.0068 -0.00367 

0.208333 0.012259 0.323439 -0.00627 -0.00364 

0.213542 0.012069 0.334351 -0.00569 -0.00344 

0.21875 0.011883 0.345354 -0.00505 -0.00326 

0.223958 0.011655 0.356469 -0.00435 -0.00303 

0.229167 0.0114 0.367743 -0.0036 -0.00278 

0.234375 0.011095 0.379071 -0.00278 -0.00247 

0.239583 0.010765 0.390487 -0.00191 -0.00214 

0.244792 0.010354 0.401967 -0.00099 -0.00173 

0.25 0.009927 0.413522 -7.8E-16 -0.0013 
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0.255208 0.009449 0.425134 0.001042 -0.00082 

0.260417 0.008905 0.436788 0.00214 -0.00028 

0.265625 0.008358 0.448466 0.003293 0.000266 

0.270833 0.007753 0.460134 0.0045 0.000871 

0.276042 0.007117 0.471841 0.005759 0.001507 

0.28125 0.006416 0.483479 0.007067 0.002208 

0.286458 0.005666 0.495103 0.008423 0.002958 

0.291667 0.004858 0.506759 0.009827 0.003766 

0.296875 0.00413 0.518348 0.011273 0.004494 

0.302083 0.003225 0.529823 0.01276 0.005399 

0.307292 0.002334 0.541246 0.014284 0.00629 

0.3125 0.001462 0.552545 0.015842 0.007163 

0.317708 0.000515 0.563825 0.017434 0.008109 

0.322917 -0.00056 0.574939 0.019052 0.009182 

0.328125 -0.00148 0.585957 0.020695 0.010106 

0.333333 -0.00256 0.596793 0.022356 0.011184 

0.338542 -0.0036 0.607545 0.024037 0.012224 

0.34375 -0.00464 0.618061 0.025726 0.013262 

0.348958 -0.00581 0.62854 0.02743 0.01443 

0.354167 -0.00687 0.638741 0.029133 0.015495 

0.359375 -0.00801 0.648694 0.030832 0.016639 

0.364583 -0.0091 0.658572 0.032533 0.017728 

0.369792 -0.01027 0.668173 0.034221 0.018898 

0.375 -0.01139 0.677521 0.035893 0.020011 

0.380208 -0.01253 0.68668 0.037549 0.021156 

0.385417 -0.01365 0.695558 0.03918 0.022271 

0.390625 -0.01478 0.704243 0.040786 0.023405 

0.395833 -0.01588 0.712622 0.042358 0.024502 

0.401042 -0.01699 0.72069 0.04389 0.025617 

0.40625 -0.01804 0.728508 0.045382 0.026663 

0.411458 -0.01911 0.736091 0.046833 0.027737 

0.416667 -0.02016 0.743328 0.04823 0.02878 

0.421875 -0.02114 0.750241 0.049572 0.02976 

0.427083 -0.0221 0.756833 0.050855 0.030722 

0.432292 -0.02302 0.762987 0.052069 0.031644 

0.4375 -0.02394 0.769121 0.053237 0.032569 

0.442708 -0.02481 0.774742 0.054325 0.033438 

0.447917 -0.02566 0.780009 0.055338 0.03428 

0.453125 -0.02634 0.784798 0.056266 0.034965 

0.458333 -0.02703 0.789445 0.057131 0.035658 

0.463542 -0.02784 0.793904 0.057927 0.036468 
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0.46875 -0.02849 0.797531 0.058604 0.037114 

0.473958 -0.02883 0.801393 0.05924 0.037456 

0.479167 -0.02948 0.804057 0.059726 0.038103 

0.484375 -0.03007 0.806827 0.060158 0.038698 

0.489583 -0.03017 0.809789 0.060541 0.038798 

0.494792 -0.03063 0.81157 0.060772 0.039253 

0.5 -0.03097 0.812748 0.060892 0.039594 

0.505208 -0.03101 0.81467 0.061004 0.039639 

0.510417 -0.03139 0.81508 0.060936 0.040019 

0.515625 -0.03118 0.815775 0.060825 0.039804 

0.520833 -0.03133 0.815677 0.060589 0.039951 

0.526042 -0.03131 0.816068 0.060324 0.039931 

0.53125 -0.03124 0.814694 0.059865 0.039864 

0.536458 -0.03092 0.813927 0.059388 0.039544 

0.541667 -0.03076 0.812447 0.058796 0.03938 

0.546875 -0.03048 0.810868 0.058136 0.039104 

0.552083 -0.0301 0.808416 0.057353 0.03872 

0.557292 -0.02959 0.80607 0.056521 0.038218 

0.5625 -0.02918 0.802881 0.055574 0.037805 

0.567708 -0.02863 0.799941 0.054591 0.037251 

0.572917 -0.02801 0.795876 0.053479 0.036631 

0.578125 -0.02731 0.791965 0.052329 0.035931 

0.583333 -0.02665 0.787869 0.05112 0.035275 

0.588542 -0.02596 0.782814 0.049805 0.03458 

0.59375 -0.02501 0.777745 0.04845 0.033636 

0.598958 -0.02418 0.772465 0.047043 0.032802 

0.604167 -0.02336 0.766512 0.045561 0.031988 

0.609375 -0.02236 0.760488 0.044044 0.030989 

0.614583 -0.02136 0.75408 0.042477 0.029987 

0.619792 -0.02042 0.747284 0.040863 0.029042 

0.625 -0.01935 0.740265 0.039217 0.027976 

0.630208 -0.01826 0.732798 0.037531 0.026879 

0.635417 -0.01717 0.725176 0.035823 0.025793 

0.640625 -0.01608 0.717151 0.034086 0.024705 

0.645833 -0.01493 0.708953 0.032335 0.02355 

0.651042 -0.01379 0.700488 0.030569 0.022416 

0.65625 -0.01258 0.69162 0.028788 0.021201 

0.661458 -0.01146 0.682612 0.027007 0.02008 

0.666667 -0.01029 0.673463 0.025228 0.018918 

0.671875 -0.00907 0.663819 0.023445 0.017692 

0.677083 -0.00793 0.654215 0.021679 0.016552 
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0.682292 -0.00676 0.644235 0.01992 0.015386 

0.6875 -0.00561 0.634091 0.01818 0.01423 

0.692708 -0.00441 0.623659 0.016459 0.013035 

0.697917 -0.00331 0.613308 0.01477 0.011931 

0.703125 -0.0022 0.602661 0.013107 0.010825 

0.708333 -0.00108 0.591829 0.011476 0.009708 

0.713542 -1.9E-05 0.58087 0.009882 0.008643 

0.71875 0.001067 0.569818 0.008329 0.007557 

0.723958 0.002044 0.558649 0.006818 0.00658 

0.729167 0.003044 0.547313 0.005352 0.00558 

0.734375 0.003992 0.535899 0.003935 0.004632 

0.739583 0.004904 0.52442 0.00257 0.00372 

0.744792 0.005785 0.512852 0.001257 0.002839 

0.75 0.00663 0.501224 1.91E-15 0.001994 

0.755208 0.007436 0.489545 -0.0012 0.001188 

0.760417 0.008198 0.477843 -0.00234 0.000426 

0.765625 0.008917 0.466133 -0.00342 -0.00029 

0.770833 0.009595 0.454404 -0.00444 -0.00097 

0.776042 0.010248 0.44266 -0.0054 -0.00162 

0.78125 0.010786 0.431001 -0.0063 -0.00216 

0.786458 0.011353 0.419319 -0.00713 -0.00273 

0.791667 0.01182 0.407688 -0.00791 -0.0032 

0.796875 0.012263 0.396045 -0.00861 -0.00364 

0.802083 0.012633 0.384479 -0.00926 -0.00401 

0.807292 0.012967 0.37317 -0.00985 -0.00434 

0.8125 0.013337 0.36171 -0.01037 -0.00471 

0.817708 0.013571 0.350525 -0.01084 -0.00495 

0.822917 0.013838 0.339347 -0.01124 -0.00521 

0.828125 0.01396 0.328532 -0.0116 -0.00534 

0.833333 0.014159 0.317532 -0.0119 -0.00553 

0.838542 0.014195 0.30688 -0.01214 -0.00557 

0.84375 0.014223 0.296372 -0.01234 -0.0056 

0.848958 0.014316 0.285977 -0.01248 -0.00569 

0.854167 0.014261 0.275858 -0.01258 -0.00564 

0.859375 0.014246 0.265926 -0.01264 -0.00562 

0.864583 0.01413 0.256091 -0.01265 -0.00551 

0.869792 0.014016 0.246598 -0.01263 -0.00539 

0.875 0.013878 0.237259 -0.01257 -0.00525 

0.880208 0.013747 0.228234 -0.01248 -0.00512 

0.885417 0.013518 0.219291 -0.01235 -0.00489 

0.890625 0.013345 0.210747 -0.01221 -0.00472 
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0.895833 0.013093 0.202573 -0.01204 -0.00447 

0.901042 0.012834 0.194429 -0.01184 -0.00421 

0.90625 0.012569 0.186714 -0.01163 -0.00394 

0.911458 0.012407 0.179302 -0.01141 -0.00378 

0.916667 0.012009 0.171994 -0.01116 -0.00339 

0.921875 0.011745 0.165273 -0.01092 -0.00312 

0.927083 0.011531 0.158778 -0.01067 -0.00291 

0.932292 0.011174 0.152421 -0.0104 -0.00255 

0.9375 0.010911 0.146709 -0.01015 -0.00229 

0.942708 0.010581 0.141033 -0.00989 -0.00196 

0.947917 0.010384 0.135997 -0.00965 -0.00176 

0.953125 0.010066 0.130929 -0.00939 -0.00144 

0.958333 0.009769 0.126548 -0.00916 -0.00114 

0.963542 0.009541 0.122451 -0.00893 -0.00092 

0.96875 0.009359 0.118601 -0.00872 -0.00074 

0.973958 0.009047 0.114955 -0.0085 -0.00042 

0.979167 0.008839 0.112297 -0.00834 -0.00021 

0.984375 0.008655 0.109238 -0.00814 -3.1E-05 

0.989583 0.008586 0.107128 -0.00801 3.84E-05 

0.994792 0.008231 0.105185 -0.00788 0.000393 

1 0.008288 0.103511 -0.00776 0.000336 

 

Table 43 CFD Data Used to Create Figures 63 – 66  

τ
t  Cx Cy CP CT 

0.007812 0.008509 0.110001 -0.00823 0.000115 

0.015625 0.008374 0.109047 -0.00813 0.00025 

0.023437 0.008221 0.10869 -0.00806 0.000403 

0.03125 0.008266 0.109572 -0.00805 0.000358 

0.039062 0.00825 0.111024 -0.00807 0.000374 

0.046875 0.008329 0.113311 -0.00812 0.000295 

0.054687 0.008386 0.116538 -0.00822 0.000238 

0.0625 0.008534 0.120446 -0.00834 9E-05 

0.070312 0.008722 0.125143 -0.00848 -9.8E-05 

0.078125 0.008931 0.13075 -0.00864 -0.00031 

0.085937 0.009169 0.137087 -0.00881 -0.00055 

0.09375 0.009444 0.144187 -0.00898 -0.00082 

0.101562 0.009752 0.152051 -0.00915 -0.00113 

0.109375 0.010048 0.160595 -0.0093 -0.00142 

0.117187 0.01036 0.169931 -0.00943 -0.00174 

0.125 0.010684 0.179937 -0.00953 -0.00206 
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0.132812 0.010988 0.190567 -0.00959 -0.00236 

0.140625 0.011289 0.201883 -0.0096 -0.00266 

0.148437 0.011551 0.213744 -0.00954 -0.00293 

0.15625 0.011789 0.226282 -0.00942 -0.00316 

0.164062 0.012007 0.23926 -0.00922 -0.00338 

0.171875 0.012183 0.252852 -0.00893 -0.00356 

0.179687 0.012232 0.266933 -0.00855 -0.00361 

0.1875 0.012355 0.281488 -0.00807 -0.00373 

0.195312 0.012315 0.296407 -0.00748 -0.00369 

0.203125 0.012235 0.311783 -0.00678 -0.00361 

0.210937 0.012096 0.327484 -0.00596 -0.00347 

0.21875 0.011822 0.343541 -0.00502 -0.0032 

0.226562 0.011491 0.359815 -0.00396 -0.00287 

0.234375 0.011099 0.376338 -0.00276 -0.00247 

0.242187 0.010581 0.393067 -0.00145 -0.00196 

0.25 0.009993 0.409971 -3.9E-15 -0.00137 

0.257812 0.009309 0.427003 0.00157 -0.00068 

0.265625 0.008499 0.444094 0.003261 0.000125 

0.273437 0.007636 0.461211 0.00507 0.000988 

0.28125 0.006653 0.478333 0.006992 0.001971 

0.289062 0.005559 0.495462 0.00902 0.003065 

0.296875 0.004454 0.512459 0.011145 0.00417 

0.304687 0.003207 0.529352 0.013361 0.005417 

0.3125 0.001874 0.546005 0.015655 0.006751 

0.320312 0.000557 0.562534 0.01802 0.008067 

0.328125 -0.00095 0.57877 0.020441 0.009571 

0.335937 -0.00244 0.594753 0.022908 0.01106 

0.34375 -0.00397 0.610311 0.025404 0.01259 

0.351562 -0.00556 0.625668 0.027924 0.014179 

0.359375 -0.0072 0.640482 0.030442 0.015829 

0.367187 -0.00883 0.654987 0.032955 0.017451 

0.375 -0.01048 0.668881 0.035436 0.019103 

0.382812 -0.01212 0.682346 0.037879 0.020744 

0.390625 -0.01376 0.695276 0.040267 0.022389 

0.398437 -0.01541 0.707608 0.042582 0.02403 

0.40625 -0.01695 0.719331 0.044811 0.025579 

0.414062 -0.01848 0.730407 0.046938 0.027105 

0.421875 -0.01999 0.740852 0.048952 0.028614 

0.429687 -0.02142 0.750689 0.050843 0.030043 

0.4375 -0.02274 0.759737 0.052588 0.031361 

0.445312 -0.024 0.767999 0.054176 0.032629 
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0.453125 -0.02521 0.77546 0.055597 0.033837 

0.460937 -0.02629 0.782534 0.056872 0.034912 

0.46875 -0.02721 0.788456 0.057937 0.035834 

0.476562 -0.02792 0.793604 0.058815 0.036545 

0.484375 -0.0288 0.798215 0.059516 0.03742 

0.492187 -0.02929 0.801869 0.060005 0.037915 

0.5 -0.0298 0.804168 0.06025 0.038426 

0.507812 -0.03017 0.806596 0.060359 0.038792 

0.515625 -0.03016 0.807493 0.060207 0.038788 

0.523437 -0.03026 0.80765 0.059855 0.038888 

0.53125 -0.0303 0.807294 0.059322 0.038922 

0.539062 -0.02989 0.805997 0.058577 0.038515 

0.546875 -0.02956 0.803255 0.05759 0.038184 

0.554687 -0.02908 0.800601 0.056476 0.037703 

0.5625 -0.02841 0.796452 0.055129 0.037037 

0.570312 -0.02756 0.791631 0.053616 0.036185 

0.578125 -0.02676 0.786346 0.051958 0.035386 

0.585937 -0.02566 0.779671 0.050104 0.034288 

0.59375 -0.02452 0.772649 0.048132 0.033142 

0.601562 -0.02332 0.76489 0.046029 0.031943 

0.609375 -0.02203 0.756078 0.043788 0.030659 

0.617187 -0.02047 0.746808 0.041458 0.029098 

0.625 -0.01914 0.736732 0.03903 0.027761 

0.632812 -0.0175 0.725976 0.036527 0.026124 

0.640625 -0.01589 0.714604 0.033965 0.024509 

0.648437 -0.01426 0.702589 0.031357 0.022886 

0.65625 -0.01256 0.689993 0.02872 0.021184 

0.664062 -0.01085 0.676838 0.02607 0.019473 

0.671875 -0.0091 0.663078 0.023418 0.017724 

0.679687 -0.00744 0.64897 0.020789 0.016064 

0.6875 -0.00567 0.63424 0.018184 0.01429 

0.695312 -0.004 0.619188 0.015629 0.012625 

0.703125 -0.00235 0.60379 0.013132 0.010975 

0.710937 -0.00073 0.587961 0.010704 0.009355 

0.71875 0.000847 0.571778 0.008357 0.007777 

0.726562 0.002341 0.555389 0.006106 0.006283 

0.734375 0.003783 0.53875 0.003956 0.004841 

0.742187 0.005149 0.521905 0.001919 0.003475 

0.75 0.006426 0.50491 4.74E-15 0.002198 

0.757812 0.00762 0.4878 -0.00179 0.001004 

0.765625 0.008726 0.470621 -0.00346 -0.0001 
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0.773437 0.009734 0.453425 -0.00498 -0.00111 

0.78125 0.010634 0.436251 -0.00638 -0.00201 

0.789062 0.011464 0.419056 -0.00763 -0.00284 

0.796875 0.012219 0.402027 -0.00874 -0.0036 

0.804687 0.012799 0.385202 -0.00972 -0.00417 

0.8125 0.013323 0.368486 -0.01056 -0.0047 

0.820312 0.013761 0.351932 -0.01127 -0.00514 

0.828125 0.01402 0.335747 -0.01186 -0.0054 

0.835937 0.01429 0.319755 -0.01232 -0.00567 

0.84375 0.014408 0.30418 -0.01266 -0.00578 

0.851562 0.014497 0.288956 -0.0129 -0.00587 

0.859375 0.014434 0.27407 -0.01303 -0.00581 

0.867187 0.014356 0.259731 -0.01307 -0.00573 

0.875 0.014237 0.24584 -0.01302 -0.00561 

0.882812 0.013903 0.232487 -0.01291 -0.00528 

0.890625 0.013776 0.219642 -0.01272 -0.00515 

0.898437 0.013367 0.207333 -0.01248 -0.00474 

0.90625 0.01301 0.195773 -0.0122 -0.00439 

0.914062 0.012704 0.184787 -0.01187 -0.00408 

0.921875 0.012249 0.174326 -0.01152 -0.00363 

0.929687 0.011815 0.16476 -0.01116 -0.00319 

0.9375 0.01147 0.155829 -0.01079 -0.00285 

0.945312 0.011011 0.147443 -0.0104 -0.00239 

0.953125 0.010576 0.140294 -0.01006 -0.00195 

0.960937 0.010229 0.133231 -0.00968 -0.0016 

0.96875 0.009881 0.127475 -0.00937 -0.00126 

0.976562 0.009472 0.122538 -0.00908 -0.00085 

0.984375 0.009209 0.117962 -0.0088 -0.00058 

0.992187 0.008935 0.114689 -0.00858 -0.00031 

1 0.008764 0.111847 -0.00838 -0.00014 

 

Table 44 CFD Data Used to Create Figures 67 – 70  

τ
t  Cx Cy CP CT 

0.007812 0.008747 0.114038 -0.00853 -0.00012 

0.015625 0.008593 0.113013 -0.00843 3.07E-05 

0.023437 0.008473 0.11251 -0.00834 0.000151 

0.03125 0.008474 0.113352 -0.00833 0.00015 

0.039063 0.008461 0.114787 -0.00834 0.000163 

0.046875 0.008521 0.116687 -0.00837 0.000103 

0.054687 0.008537 0.119894 -0.00846 8.74E-05 
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0.0625 0.008679 0.12378 -0.00857 -5.5E-05 

0.070312 0.008843 0.128417 -0.0087 -0.00022 

0.078125 0.009071 0.133799 -0.00884 -0.00045 

0.085938 0.00928 0.140043 -0.009 -0.00066 

0.09375 0.009523 0.146962 -0.00915 -0.0009 

0.101562 0.009825 0.15468 -0.00931 -0.0012 

0.109375 0.01011 0.163086 -0.00945 -0.00149 

0.117187 0.010417 0.172204 -0.00956 -0.00179 

0.125 0.010698 0.182052 -0.00964 -0.00207 

0.132813 0.010998 0.19251 -0.00969 -0.00237 

0.140625 0.011276 0.203661 -0.00968 -0.00265 

0.148437 0.011552 0.215326 -0.00961 -0.00293 

0.15625 0.011785 0.227655 -0.00948 -0.00316 

0.164062 0.011979 0.240449 -0.00926 -0.00335 

0.171875 0.012119 0.253867 -0.00897 -0.00349 

0.179688 0.012247 0.267718 -0.00858 -0.00362 

0.1875 0.012277 0.282021 -0.00809 -0.00365 

0.195312 0.012301 0.296812 -0.00749 -0.00368 

0.203125 0.012192 0.311956 -0.00678 -0.00357 

0.210937 0.012008 0.327469 -0.00596 -0.00338 

0.21875 0.011797 0.343272 -0.00502 -0.00317 

0.226563 0.011491 0.359384 -0.00395 -0.00287 

0.234375 0.011101 0.375732 -0.00276 -0.00248 

0.242187 0.0106 0.392259 -0.00144 -0.00198 

0.25 0.010012 0.408965 -9.4E-16 -0.00139 

0.257812 0.009327 0.42579 0.001565 -0.0007 

0.265625 0.008546 0.442666 0.003251 7.8E-05 

0.273438 0.007697 0.459608 0.005053 0.000927 

0.28125 0.00675 0.476535 0.006965 0.001874 

0.289062 0.005721 0.493426 0.008983 0.002903 

0.296875 0.004564 0.510245 0.011097 0.00406 

0.304687 0.003348 0.526923 0.0133 0.005276 

0.3125 0.002096 0.543479 0.015582 0.006528 

0.320313 0.000719 0.559763 0.017931 0.007905 

0.328125 -0.00068 0.575819 0.020337 0.009301 

0.335937 -0.00216 0.591693 0.02279 0.010783 

0.34375 -0.00371 0.607109 0.02527 0.01233 

0.351562 -0.00524 0.622332 0.027775 0.013862 

0.359375 -0.00683 0.63698 0.030276 0.015458 

0.367188 -0.00847 0.651307 0.03277 0.017089 

0.375 -0.01005 0.665134 0.035237 0.018678 
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0.382812 -0.01172 0.678494 0.037665 0.020345 

0.390625 -0.01332 0.691338 0.040039 0.021946 

0.398437 -0.01492 0.703543 0.042337 0.023544 

0.40625 -0.01644 0.715216 0.044554 0.025068 

0.414063 -0.01801 0.726218 0.046668 0.026633 

0.421875 -0.0195 0.736721 0.048679 0.028124 

0.429687 -0.02086 0.746288 0.050545 0.029488 

0.4375 -0.02216 0.755285 0.05228 0.030788 

0.445312 -0.02341 0.763557 0.053863 0.032031 

0.453125 -0.02467 0.771345 0.055302 0.033295 

0.460937 -0.0257 0.778025 0.056544 0.034327 

0.46875 -0.02662 0.783953 0.057606 0.03524 

0.476562 -0.02736 0.789216 0.058489 0.035989 

0.484375 -0.02824 0.793951 0.059198 0.036863 

0.492187 -0.02872 0.797546 0.059681 0.037346 

0.5 -0.02925 0.799918 0.059931 0.037875 

0.507812 -0.02955 0.802585 0.060059 0.038179 

0.515625 -0.02971 0.80321 0.059888 0.038333 

0.523437 -0.02976 0.803616 0.059557 0.038388 

0.53125 -0.02966 0.803677 0.059056 0.038288 

0.539062 -0.02957 0.801737 0.058267 0.038198 

0.546875 -0.02907 0.799615 0.057329 0.037692 

0.554687 -0.02857 0.796924 0.056217 0.037195 

0.5625 -0.02809 0.792951 0.054887 0.03671 

0.570312 -0.02718 0.788454 0.053401 0.035808 

0.578125 -0.02633 0.782728 0.051719 0.034959 

0.585937 -0.02538 0.77697 0.04993 0.034009 

0.59375 -0.02424 0.769682 0.047947 0.032861 

0.601562 -0.023 0.761903 0.045849 0.031629 

0.609375 -0.02174 0.75379 0.043656 0.030359 

0.617187 -0.02042 0.74434 0.041321 0.029045 

0.625 -0.01883 0.734444 0.038909 0.027455 

0.632812 -0.01732 0.72404 0.03643 0.025945 

0.640625 -0.01581 0.712696 0.033874 0.024439 

0.648437 -0.01413 0.700987 0.031286 0.022754 

0.65625 -0.01246 0.688552 0.02866 0.021086 

0.664062 -0.01077 0.675627 0.026023 0.019399 

0.671875 -0.00911 0.662127 0.023385 0.017737 

0.679687 -0.00737 0.648187 0.020763 0.015991 

0.6875 -0.0057 0.633738 0.01817 0.014325 

0.695312 -0.00399 0.618827 0.015619 0.012613 
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0.703125 -0.00238 0.603625 0.013128 0.011 

0.710937 -0.00079 0.588057 0.010705 0.009414 

0.71875 0.000783 0.572133 0.008363 0.007841 

0.726562 0.002309 0.555879 0.006111 0.006315 

0.734375 0.003731 0.539518 0.003962 0.004893 

0.742187 0.005096 0.522921 0.001922 0.003528 

0.75 0.006379 0.506124 4.45E-15 0.002245 

0.757812 0.007579 0.489196 -0.0018 0.001045 

0.765625 0.008686 0.472245 -0.00347 -6.2E-05 

0.773437 0.009697 0.455278 -0.005 -0.00107 

0.78125 0.010634 0.438222 -0.00641 -0.00201 

0.789062 0.011451 0.42127 -0.00767 -0.00283 

0.796875 0.01215 0.404425 -0.0088 -0.00353 

0.804687 0.012751 0.38771 -0.00979 -0.00413 

0.8125 0.013339 0.371121 -0.01064 -0.00471 

0.820312 0.013727 0.354799 -0.01137 -0.0051 

0.828125 0.014115 0.338705 -0.01196 -0.00549 

0.835937 0.01433 0.322905 -0.01244 -0.00571 

0.84375 0.014459 0.307413 -0.0128 -0.00583 

0.851562 0.014573 0.292279 -0.01304 -0.00595 

0.859375 0.014546 0.277724 -0.0132 -0.00592 

0.867187 0.01446 0.263337 -0.01325 -0.00584 

0.875 0.014292 0.249619 -0.01322 -0.00567 

0.882812 0.014202 0.236345 -0.01312 -0.00558 

0.890625 0.013826 0.223473 -0.01294 -0.0052 

0.898437 0.013552 0.211467 -0.01273 -0.00493 

0.90625 0.013276 0.199846 -0.01245 -0.00465 

0.914062 0.012847 0.188814 -0.01213 -0.00422 

0.921875 0.012459 0.178635 -0.0118 -0.00383 

0.929687 0.012069 0.168942 -0.01144 -0.00345 

0.9375 0.011722 0.160013 -0.01108 -0.0031 

0.945312 0.01119 0.151717 -0.0107 -0.00257 

0.953125 0.01088 0.144492 -0.01036 -0.00226 

0.960937 0.010532 0.137585 -0.01 -0.00191 

0.96875 0.010027 0.13164 -0.00967 -0.0014 

0.976562 0.009794 0.126702 -0.00939 -0.00117 

0.984375 0.009485 0.122273 -0.00912 -0.00086 

0.992187 0.009146 0.11876 -0.00889 -0.00052 

1 0.009018 0.11596 -0.00869 -0.00039 
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Table 45 CFD Data Used to Create Figures 71 – 74  

τ
t  Cx Cy CP CT 

0.007812 0.009384 0.125318 -0.00938 -0.00076 

0.015625 0.009157 0.12433 -0.00927 -0.00053 

0.023437 0.009223 0.123689 -0.00917 -0.0006 

0.03125 0.008997 0.12411 -0.00912 -0.00037 

0.039062 0.008961 0.125358 -0.00911 -0.00034 

0.046875 0.009063 0.12758 -0.00915 -0.00044 

0.054687 0.009067 0.129955 -0.00917 -0.00044 

0.0625 0.009091 0.133861 -0.00927 -0.00047 

0.070312 0.009318 0.138245 -0.00936 -0.00069 

0.078125 0.009409 0.1433 -0.00947 -0.00078 

0.085937 0.009588 0.149208 -0.00959 -0.00096 

0.09375 0.009855 0.155765 -0.0097 -0.00123 

0.101562 0.010062 0.163081 -0.00981 -0.00144 

0.109375 0.01031 0.171246 -0.00992 -0.00169 

0.117187 0.010553 0.179911 -0.00999 -0.00193 

0.125 0.010859 0.189342 -0.01003 -0.00223 

0.132812 0.011069 0.199355 -0.01003 -0.00244 

0.140625 0.011331 0.21004 -0.00998 -0.00271 

0.148437 0.01159 0.221233 -0.00987 -0.00297 

0.15625 0.011719 0.233089 -0.0097 -0.00309 

0.164062 0.011963 0.245428 -0.00945 -0.00334 

0.171875 0.012052 0.258287 -0.00912 -0.00343 

0.179687 0.012172 0.271635 -0.0087 -0.00355 

0.1875 0.012182 0.285485 -0.00819 -0.00356 

0.195312 0.012182 0.299666 -0.00756 -0.00356 

0.203125 0.01208 0.314283 -0.00684 -0.00346 

0.210937 0.011941 0.32923 -0.00599 -0.00332 

0.21875 0.011699 0.344489 -0.00504 -0.00307 

0.226562 0.011413 0.360037 -0.00396 -0.00279 

0.234375 0.011033 0.375812 -0.00276 -0.00241 

0.242187 0.010542 0.391779 -0.00144 -0.00192 

0.25 0.009996 0.407907 -4.4E-15 -0.00137 

0.257812 0.009356 0.424155 0.001559 -0.00073 

0.265625 0.008601 0.440486 0.003235 2.28E-05 

0.273437 0.007785 0.456865 0.005022 0.000839 

0.28125 0.006908 0.473247 0.006917 0.001716 

0.289062 0.005908 0.489602 0.008913 0.002716 

0.296875 0.00486 0.505888 0.011002 0.003764 

0.304687 0.003661 0.522062 0.013177 0.004963 
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0.3125 0.002483 0.538029 0.015426 0.006141 

0.320312 0.00116 0.553895 0.017743 0.007464 

0.328125 -0.00016 0.569451 0.020112 0.008785 

0.335937 -0.00159 0.58477 0.022524 0.010212 

0.34375 -0.00299 0.599795 0.024966 0.011612 

0.351562 -0.00455 0.614515 0.027426 0.013175 

0.359375 -0.00604 0.628802 0.029887 0.014667 

0.367187 -0.00756 0.642751 0.03234 0.016184 

0.375 -0.00916 0.656155 0.034762 0.017784 

0.382812 -0.01067 0.669139 0.037146 0.019298 

0.390625 -0.01223 0.681484 0.039468 0.020852 

0.398437 -0.01377 0.693598 0.041739 0.022398 

0.40625 -0.0153 0.704984 0.043917 0.023929 

0.414062 -0.01673 0.715656 0.04599 0.025355 

0.421875 -0.01815 0.725841 0.04796 0.02677 

0.429687 -0.01956 0.735247 0.049797 0.028185 

0.4375 -0.02073 0.743956 0.051496 0.029359 

0.445312 -0.0221 0.752569 0.053088 0.03072 

0.453125 -0.02322 0.759635 0.054462 0.031843 

0.460937 -0.0241 0.766657 0.055718 0.032724 

0.46875 -0.02514 0.772224 0.056745 0.033763 

0.476562 -0.02613 0.777435 0.057616 0.034751 

0.484375 -0.02655 0.782392 0.058336 0.035172 

0.492187 -0.02726 0.785845 0.058806 0.035884 

0.5 -0.02781 0.788234 0.059056 0.036434 

0.507812 -0.02799 0.790951 0.059188 0.036609 

0.515625 -0.02848 0.791846 0.059041 0.037106 

0.523437 -0.02822 0.792393 0.058725 0.036843 

0.53125 -0.02831 0.791836 0.058186 0.036937 

0.539062 -0.02811 0.791362 0.057513 0.036736 

0.546875 -0.02794 0.788686 0.056545 0.036568 

0.554687 -0.02731 0.786434 0.055477 0.035935 

0.5625 -0.02679 0.782289 0.054149 0.035419 

0.570312 -0.02604 0.778551 0.05273 0.034667 

0.578125 -0.0254 0.773155 0.051086 0.034024 

0.585937 -0.02429 0.76739 0.049314 0.032917 

0.59375 -0.02326 0.760702 0.047388 0.031885 

0.601562 -0.0222 0.753237 0.045328 0.030819 

0.609375 -0.02093 0.745461 0.043173 0.029558 

0.617187 -0.0196 0.736507 0.040886 0.02822 

0.625 -0.01826 0.726911 0.03851 0.026884 
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0.632813 -0.01668 0.716975 0.036074 0.025308 

0.640625 -0.01525 0.706374 0.033574 0.023872 

0.648437 -0.01372 0.694867 0.031012 0.022342 

0.65625 -0.01211 0.682987 0.028429 0.020732 

0.664062 -0.01043 0.670584 0.025829 0.019049 

0.671875 -0.00877 0.657679 0.023228 0.017391 

0.679687 -0.00717 0.644221 0.020636 0.015791 

0.6875 -0.00558 0.630342 0.018073 0.014204 

0.695313 -0.00386 0.616026 0.015549 0.012489 

0.703125 -0.00229 0.601379 0.013079 0.010912 

0.710937 -0.00073 0.586376 0.010675 0.009357 

0.71875 0.000797 0.570986 0.008346 0.007827 

0.726562 0.002273 0.555337 0.006105 0.006352 

0.734375 0.003673 0.539535 0.003962 0.004951 

0.742187 0.005022 0.523452 0.001924 0.003602 

0.75 0.006289 0.507242 3.72E-15 0.002335 

0.757812 0.007478 0.490905 -0.0018 0.001146 

0.765625 0.008594 0.474483 -0.00348 3E-05 

0.773438 0.009611 0.458095 -0.00504 -0.00099 

0.78125 0.010554 0.44161 -0.00645 -0.00193 

0.789062 0.0114 0.425168 -0.00774 -0.00278 

0.796875 0.012163 0.408862 -0.00889 -0.00354 

0.804687 0.012775 0.392741 -0.00991 -0.00415 

0.8125 0.013387 0.376633 -0.0108 -0.00476 

0.820312 0.013814 0.360781 -0.01156 -0.00519 

0.828125 0.014105 0.345146 -0.01219 -0.00548 

0.835938 0.014437 0.3298 -0.0127 -0.00581 

0.84375 0.014663 0.314828 -0.0131 -0.00604 

0.851563 0.014831 0.300192 -0.0134 -0.00621 

0.859375 0.014759 0.285706 -0.01358 -0.00613 

0.867187 0.014696 0.271995 -0.01369 -0.00607 

0.875 0.01471 0.258572 -0.0137 -0.00609 

0.882812 0.014505 0.245586 -0.01363 -0.00588 

0.890625 0.014262 0.233126 -0.0135 -0.00564 

0.898438 0.014044 0.221345 -0.01332 -0.00542 

0.90625 0.013651 0.209934 -0.01308 -0.00503 

0.914063 0.013401 0.199314 -0.01281 -0.00478 

0.921875 0.013105 0.1892 -0.0125 -0.00448 

0.929688 0.012608 0.179614 -0.01216 -0.00398 

0.9375 0.01222 0.17126 -0.01185 -0.0036 

0.945312 0.011914 0.162789 -0.01148 -0.00329 
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0.953125 0.011586 0.155616 -0.01116 -0.00296 

0.960937 0.011044 0.148844 -0.01082 -0.00242 

0.96875 0.01076 0.143319 -0.01053 -0.00214 

0.976563 0.010431 0.137872 -0.01022 -0.00181 

0.984375 0.010223 0.13369 -0.00997 -0.0016 

0.992188 0.009749 0.130206 -0.00974 -0.00112 

1 0.009703 0.127296 -0.00954 -0.00108 

 

Table 46 CFD Data Used to Create Figures 75 – 78  

τ
t  Cx Cy CP CT 

0.007813 0.009937 0.135736 -0.01016 -0.00131 

0.015625 0.009771 0.134692 -0.01004 -0.00115 

0.023438 0.009718 0.134222 -0.00995 -0.00109 

0.03125 0.009525 0.134339 -0.00987 -0.0009 

0.039063 0.009584 0.135848 -0.00987 -0.00096 

0.046875 0.009399 0.137626 -0.00987 -0.00078 

0.054688 0.009605 0.140549 -0.00991 -0.00098 

0.0625 0.00949 0.143632 -0.00994 -0.00087 

0.070313 0.009766 0.148163 -0.01003 -0.00114 

0.078125 0.009746 0.152923 -0.0101 -0.00112 

0.085938 0.00996 0.158825 -0.01021 -0.00134 

0.09375 0.010138 0.16508 -0.01028 -0.00151 

0.101563 0.010301 0.172233 -0.01036 -0.00168 

0.109375 0.010558 0.179974 -0.01042 -0.00193 

0.117188 0.01075 0.188426 -0.01046 -0.00213 

0.125 0.010986 0.197539 -0.01047 -0.00236 

0.132813 0.011193 0.207327 -0.01043 -0.00257 

0.140625 0.011425 0.217575 -0.01034 -0.0028 

0.148438 0.011608 0.228486 -0.0102 -0.00298 

0.15625 0.011798 0.239947 -0.00999 -0.00317 

0.164063 0.011894 0.251868 -0.0097 -0.00327 

0.171875 0.012063 0.264314 -0.00933 -0.00344 

0.179688 0.012087 0.277267 -0.00888 -0.00346 

0.1875 0.012133 0.290625 -0.00833 -0.00351 

0.195313 0.012097 0.304396 -0.00768 -0.00347 

0.203125 0.011981 0.318528 -0.00693 -0.00336 

0.210938 0.011808 0.332991 -0.00606 -0.00318 

0.21875 0.011582 0.347799 -0.00508 -0.00296 

0.226563 0.011303 0.362833 -0.00399 -0.00268 

0.234375 0.01092 0.378093 -0.00278 -0.0023 

0.242188 0.010446 0.393565 -0.00145 -0.00182 
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0.25 0.009924 0.409181 2.48E-15 -0.0013 

0.257813 0.009311 0.424927 0.001562 -0.00069 

0.265625 0.008585 0.440772 0.003237 3.9E-05 

0.273438 0.007791 0.456593 0.005019 0.000833 

0.28125 0.006944 0.472434 0.006905 0.00168 

0.289063 0.005994 0.488286 0.008889 0.00263 

0.296875 0.004952 0.504028 0.010962 0.003672 

0.304688 0.003834 0.519695 0.013117 0.00479 

0.3125 0.002656 0.535191 0.015345 0.005968 

0.320313 0.001447 0.550469 0.017633 0.007177 

0.328125 0.00015 0.565639 0.019977 0.008474 

0.335938 -0.00117 0.580458 0.022358 0.009797 

0.34375 -0.0026 0.595002 0.024766 0.011222 

0.351563 -0.00404 0.609231 0.02719 0.012668 

0.359375 -0.00545 0.623047 0.029613 0.014072 

0.367188 -0.00697 0.636437 0.032022 0.015591 

0.375 -0.00844 0.649581 0.034413 0.017063 

0.382813 -0.00996 0.662174 0.036759 0.018587 

0.390625 -0.01145 0.674285 0.039051 0.020069 

0.398438 -0.01292 0.685746 0.041267 0.021547 

0.40625 -0.01434 0.696869 0.043411 0.022962 

0.414063 -0.01581 0.707055 0.045437 0.024436 

0.421875 -0.01708 0.71711 0.047383 0.025709 

0.429688 -0.01852 0.725951 0.049167 0.027144 

0.4375 -0.01969 0.735253 0.050893 0.02831 

0.445313 -0.02097 0.742555 0.052381 0.029594 

0.453125 -0.02189 0.750255 0.05379 0.03051 

0.460938 -0.02304 0.7561 0.054951 0.031662 

0.46875 -0.02383 0.762272 0.056013 0.032456 

0.476563 -0.02487 0.767342 0.056868 0.033497 

0.484375 -0.02529 0.771754 0.057543 0.033917 

0.492188 -0.02597 0.775385 0.058023 0.034593 

0.5 -0.02656 0.777545 0.058255 0.035184 

0.507813 -0.02668 0.779943 0.058364 0.035307 

0.515625 -0.02716 0.781508 0.05827 0.035782 

0.523438 -0.0271 0.781317 0.057904 0.035726 

0.53125 -0.02695 0.781504 0.057426 0.035575 

0.539063 -0.02692 0.780042 0.056691 0.035546 

0.546875 -0.02659 0.77885 0.05584 0.035214 

0.554688 -0.02635 0.775448 0.054702 0.034973 

0.5625 -0.02559 0.772668 0.053483 0.034211 

0.570313 -0.02499 0.767728 0.051997 0.033613 



 

300 

 

 

0.578125 -0.02422 0.763305 0.050435 0.032842 

0.585938 -0.0233 0.757692 0.048691 0.031928 

0.59375 -0.02247 0.751152 0.046793 0.03109 

0.601563 -0.02121 0.744007 0.044773 0.029832 

0.609375 -0.02006 0.736446 0.042651 0.028685 

0.617188 -0.01878 0.727619 0.040392 0.027401 

0.625 -0.01751 0.718602 0.03807 0.026138 

0.632813 -0.0161 0.709116 0.035679 0.024722 

0.640625 -0.01457 0.698545 0.033202 0.023197 

0.648437 -0.01312 0.687608 0.030688 0.02174 

0.65625 -0.01161 0.67593 0.028135 0.020238 

0.664063 -0.00994 0.664087 0.025579 0.018567 

0.671875 -0.00836 0.651536 0.023011 0.016979 

0.679688 -0.00679 0.63863 0.020457 0.015418 

0.6875 -0.00521 0.625217 0.017926 0.013839 

0.695312 -0.00363 0.611301 0.015429 0.012256 

0.703125 -0.0021 0.597142 0.012987 0.010726 

0.710938 -0.00056 0.582613 0.010606 0.009183 

0.71875 0.000951 0.567746 0.008298 0.007673 

0.726563 0.002405 0.552579 0.006075 0.006219 

0.734375 0.003776 0.53727 0.003945 0.004848 

0.742187 0.005092 0.521763 0.001918 0.003532 

0.75 0.006351 0.506058 -3.6E-15 0.002273 

0.757813 0.007533 0.490246 -0.0018 0.001091 

0.765625 0.008629 0.474407 -0.00348 -5.3E-06 

0.773438 0.009645 0.45851 -0.00504 -0.00102 

0.78125 0.010603 0.442523 -0.00647 -0.00198 

0.789062 0.011463 0.426641 -0.00777 -0.00284 

0.796875 0.012263 0.410851 -0.00894 -0.00364 

0.804688 0.012849 0.395251 -0.00998 -0.00422 

0.8125 0.013437 0.379539 -0.01088 -0.00481 

0.820312 0.013839 0.364174 -0.01167 -0.00521 

0.828125 0.014249 0.349086 -0.01233 -0.00562 

0.835937 0.01456 0.334171 -0.01287 -0.00594 

0.84375 0.014869 0.319755 -0.01331 -0.00625 

0.851563 0.014986 0.305437 -0.01363 -0.00636 

0.859375 0.01498 0.291644 -0.01386 -0.00636 

0.867187 0.015002 0.278035 -0.01399 -0.00638 

0.875 0.014974 0.265145 -0.01405 -0.00635 

0.882813 0.014769 0.252562 -0.01402 -0.00614 

0.890625 0.014586 0.240425 -0.01392 -0.00596 

0.898438 0.014438 0.229059 -0.01378 -0.00581 
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0.90625 0.014189 0.21802 -0.01358 -0.00557 

0.914062 0.01378 0.207506 -0.01333 -0.00516 

0.921875 0.013439 0.197833 -0.01307 -0.00482 

0.929688 0.013166 0.18892 -0.0128 -0.00454 

0.9375 0.01279 0.179943 -0.01246 -0.00417 

0.945313 0.012521 0.172418 -0.01216 -0.0039 

0.953125 0.011962 0.165064 -0.01183 -0.00334 

0.960937 0.01167 0.159006 -0.01156 -0.00305 

0.96875 0.011353 0.152828 -0.01123 -0.00273 

0.976563 0.011067 0.148257 -0.01099 -0.00244 

0.984375 0.010716 0.143761 -0.01072 -0.00209 

0.992188 0.010351 0.140483 -0.01051 -0.00173 

1 0.010314 0.137647 -0.01031 -0.00169 

 

Table 47 CFD Data Used to Create Figures 79 – 82  

τ
t  Cx Cy CP CT 

0.007812 0.010386 0.144752 -0.01083 -0.00176 

0.015625 0.010385 0.143882 -0.01073 -0.00176 

0.023437 0.010003 0.14344 -0.01063 -0.00138 

0.03125 0.010164 0.143781 -0.01057 -0.00154 

0.039062 0.009825 0.144785 -0.01052 -0.0012 

0.046875 0.010055 0.147079 -0.01054 -0.00143 

0.054687 0.009792 0.14958 -0.01055 -0.00117 

0.0625 0.010063 0.153232 -0.01061 -0.00144 

0.070312 0.009938 0.157037 -0.01064 -0.00131 

0.078125 0.010247 0.162016 -0.01071 -0.00162 

0.085937 0.010147 0.167636 -0.01077 -0.00152 

0.09375 0.01047 0.173951 -0.01084 -0.00185 

0.101562 0.010514 0.18093 -0.01089 -0.00189 

0.109375 0.010764 0.188466 -0.01092 -0.00214 

0.117187 0.010927 0.196769 -0.01092 -0.0023 

0.125 0.011108 0.205551 -0.01089 -0.00248 

0.132812 0.011353 0.215156 -0.01083 -0.00273 

0.140625 0.011486 0.225136 -0.0107 -0.00286 

0.148437 0.011673 0.235769 -0.01052 -0.00305 

0.15625 0.011801 0.246993 -0.01028 -0.00318 

0.164062 0.011929 0.258633 -0.00996 -0.00331 

0.171875 0.012017 0.270773 -0.00956 -0.00339 

0.179687 0.01203 0.283342 -0.00908 -0.00341 

0.1875 0.012093 0.29641 -0.0085 -0.00347 
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0.195312 0.012007 0.309818 -0.00782 -0.00338 

0.203125 0.011902 0.323578 -0.00704 -0.00328 

0.210937 0.01171 0.33765 -0.00615 -0.00309 

0.21875 0.011481 0.352014 -0.00515 -0.00286 

0.226562 0.011164 0.366671 -0.00403 -0.00254 

0.234375 0.01081 0.381498 -0.0028 -0.00219 

0.242187 0.01036 0.396554 -0.00146 -0.00174 

0.25 0.009819 0.411745 -1.5E-15 -0.00119 

0.257812 0.009197 0.427032 0.00157 -0.00057 

0.265625 0.008513 0.442403 0.003249 0.000111 

0.273437 0.007763 0.457781 0.005033 0.000861 

0.28125 0.006904 0.473212 0.006917 0.00172 

0.289062 0.005992 0.488572 0.008894 0.002632 

0.296875 0.004974 0.503837 0.010958 0.00365 

0.304687 0.003932 0.519082 0.013102 0.004692 

0.3125 0.002743 0.534095 0.015313 0.005881 

0.320312 0.001617 0.548952 0.017585 0.007007 

0.328125 0.000347 0.563562 0.019904 0.008277 

0.335937 -0.00096 0.577969 0.022262 0.009579 

0.34375 -0.00231 0.591967 0.02464 0.010934 

0.351562 -0.00367 0.605891 0.027041 0.012293 

0.359375 -0.00512 0.619349 0.029438 0.013749 

0.367187 -0.00658 0.632232 0.03181 0.015207 

0.375 -0.00794 0.645073 0.034174 0.016567 

0.382812 -0.00944 0.657038 0.036474 0.018068 

0.390625 -0.01084 0.668912 0.03874 0.019462 

0.398437 -0.01229 0.679931 0.040917 0.020912 

0.40625 -0.01371 0.690579 0.04302 0.022335 

0.414062 -0.01499 0.700648 0.045025 0.023614 

0.421875 -0.01648 0.71011 0.04692 0.025099 

0.429687 -0.01763 0.71947 0.048728 0.026256 

0.4375 -0.01895 0.727237 0.050338 0.027575 

0.445312 -0.01991 0.735423 0.051878 0.028531 

0.453125 -0.02117 0.741605 0.05317 0.02979 

0.460937 -0.02193 0.74841 0.054392 0.030551 

0.46875 -0.02312 0.753271 0.055352 0.031746 

0.476562 -0.02363 0.759369 0.056277 0.032251 

0.484375 -0.02456 0.7625 0.056853 0.033188 

0.492187 -0.02476 0.766758 0.057378 0.033382 

0.5 -0.02543 0.76866 0.057589 0.034056 

0.507812 -0.02588 0.770421 0.057652 0.0345 
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0.515625 -0.02602 0.772513 0.057599 0.034641 

0.523437 -0.0262 0.772013 0.057214 0.034826 

0.53125 -0.02588 0.772017 0.056729 0.034505 

0.539062 -0.02592 0.770638 0.056007 0.034549 

0.546875 -0.02556 0.768922 0.055128 0.034183 

0.554687 -0.02519 0.766721 0.054086 0.033814 

0.5625 -0.02491 0.762678 0.052791 0.033533 

0.570312 -0.02399 0.759001 0.051406 0.032614 

0.578125 -0.02332 0.754187 0.049833 0.031944 

0.585937 -0.0225 0.748021 0.04807 0.031127 

0.59375 -0.02144 0.742328 0.046243 0.030065 

0.601562 -0.02043 0.735366 0.044253 0.029056 

0.609375 -0.01944 0.727727 0.042146 0.028061 

0.617187 -0.0181 0.719226 0.039927 0.026722 

0.625 -0.01679 0.71047 0.037639 0.025418 

0.632812 -0.01541 0.701068 0.035274 0.024035 

0.640625 -0.01399 0.690726 0.03283 0.022619 

0.648437 -0.0126 0.679968 0.030347 0.021223 

0.65625 -0.01106 0.669034 0.027848 0.019682 

0.664062 -0.00955 0.657426 0.025322 0.01817 

0.671875 -0.00795 0.64505 0.022782 0.01657 

0.679687 -0.00641 0.632505 0.020261 0.015037 

0.6875 -0.00488 0.619427 0.01776 0.0135 

0.695312 -0.00337 0.605879 0.015293 0.011993 

0.703125 -0.00181 0.59198 0.012875 0.010438 

0.710937 -0.00032 0.577957 0.010521 0.008945 

0.71875 0.001169 0.563504 0.008236 0.007455 

0.726562 0.002571 0.548761 0.006033 0.006053 

0.734375 0.003942 0.533874 0.003921 0.004682 

0.742187 0.005238 0.51877 0.001907 0.003386 

0.75 0.00647 0.503534 2.52E-15 0.002154 

0.757812 0.007632 0.488178 -0.00179 0.000992 

0.765625 0.008721 0.472744 -0.00347 -9.7E-05 

0.773437 0.009744 0.457295 -0.00503 -0.00112 

0.78125 0.010672 0.441779 -0.00646 -0.00205 

0.789062 0.011541 0.42638 -0.00776 -0.00292 

0.796875 0.0123 0.411178 -0.00894 -0.00368 

0.804687 0.012979 0.395884 -0.00999 -0.00435 

0.8125 0.013537 0.38076 -0.01092 -0.00491 

0.820312 0.013965 0.365882 -0.01172 -0.00534 

0.828125 0.014439 0.351207 -0.0124 -0.00581 
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0.835937 0.014711 0.336656 -0.01297 -0.00609 

0.84375 0.014996 0.322591 -0.01343 -0.00637 

0.851562 0.015172 0.308872 -0.01379 -0.00655 

0.859375 0.015175 0.295337 -0.01404 -0.00655 

0.867187 0.015181 0.282201 -0.0142 -0.00656 

0.875 0.015224 0.269767 -0.01429 -0.0066 

0.882812 0.015164 0.257638 -0.0143 -0.00654 

0.890625 0.014937 0.245827 -0.01424 -0.00631 

0.898437 0.014685 0.234619 -0.01412 -0.00606 

0.90625 0.014424 0.224051 -0.01396 -0.0058 

0.914062 0.014155 0.214294 -0.01377 -0.00553 

0.921875 0.013957 0.20443 -0.01351 -0.00533 

0.929687 0.013532 0.195587 -0.01325 -0.00491 

0.9375 0.013348 0.187559 -0.01298 -0.00472 

0.945312 0.012757 0.179801 -0.01268 -0.00413 

0.953125 0.01245 0.173166 -0.01242 -0.00383 

0.960937 0.012221 0.166846 -0.01213 -0.0036 

0.96875 0.011815 0.161299 -0.01185 -0.00319 

0.976562 0.011573 0.156732 -0.01162 -0.00295 

0.984375 0.011144 0.152547 -0.01137 -0.00252 

0.992187 0.010999 0.149263 -0.01117 -0.00237 

1 0.010705 0.146399 -0.01097 -0.00208 

 

Table 48 CFD Data Used to Create Figures 83 – 86  

τ
t  Cx Cy CP CT 

0.007812 0.010841 0.153322 -0.01147 -0.00222 

0.015625 0.010851 0.152568 -0.01138 -0.00223 

0.023437 0.010436 0.152395 -0.01129 -0.00181 

0.03125 0.010577 0.152595 -0.01121 -0.00195 

0.039062 0.010369 0.153852 -0.01118 -0.00175 

0.046875 0.01017 0.155829 -0.01117 -0.00155 

0.054687 0.010488 0.158757 -0.0112 -0.00186 

0.0625 0.010171 0.162017 -0.01121 -0.00155 

0.070312 0.010477 0.166385 -0.01127 -0.00185 

0.078125 0.010381 0.171027 -0.0113 -0.00176 

0.085937 0.010548 0.176199 -0.01132 -0.00192 

0.09375 0.010698 0.182872 -0.01139 -0.00207 

0.101562 0.010689 0.189483 -0.0114 -0.00206 

0.109375 0.011047 0.197143 -0.01142 -0.00242 

0.117187 0.01105 0.205188 -0.01139 -0.00243 
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0.125 0.011202 0.213908 -0.01133 -0.00258 

0.132812 0.011531 0.223241 -0.01123 -0.00291 

0.140625 0.011531 0.233039 -0.01108 -0.00291 

0.148437 0.011695 0.243406 -0.01086 -0.00307 

0.15625 0.011888 0.254324 -0.01059 -0.00326 

0.164062 0.011933 0.265778 -0.01024 -0.00331 

0.171875 0.011989 0.277613 -0.0098 -0.00336 

0.179687 0.012001 0.289883 -0.00929 -0.00338 

0.1875 0.012021 0.302596 -0.00868 -0.0034 

0.195312 0.011929 0.315723 -0.00797 -0.00331 

0.203125 0.011809 0.329149 -0.00716 -0.00318 

0.210937 0.011643 0.342872 -0.00624 -0.00302 

0.21875 0.01138 0.356916 -0.00522 -0.00276 

0.226562 0.01105 0.37116 -0.00408 -0.00243 

0.234375 0.010705 0.385573 -0.00283 -0.00208 

0.242187 0.010247 0.400206 -0.00147 -0.00162 

0.25 0.009724 0.414969 -2.7E-15 -0.0011 

0.257812 0.009123 0.429837 0.00158 -0.0005 

0.265625 0.00845 0.444801 0.003266 0.000174 

0.273437 0.00773 0.459788 0.005055 0.000894 

0.28125 0.006849 0.474766 0.006939 0.001775 

0.289062 0.00595 0.489666 0.008914 0.002674 

0.296875 0.005 0.504445 0.010971 0.003625 

0.304687 0.003964 0.519167 0.013104 0.004661 

0.3125 0.002842 0.533802 0.015305 0.005783 

0.320312 0.001766 0.548272 0.017563 0.006858 

0.328125 0.000439 0.562485 0.019866 0.008185 

0.335937 -0.00078 0.576284 0.022197 0.009401 

0.34375 -0.00215 0.590088 0.024562 0.010775 

0.351562 -0.00337 0.603492 0.026934 0.011994 

0.359375 -0.00481 0.616356 0.029295 0.013434 

0.367187 -0.00621 0.628919 0.031644 0.014837 

0.375 -0.00754 0.641379 0.033979 0.016161 

0.382812 -0.00898 0.652885 0.036244 0.017604 

0.390625 -0.0104 0.664154 0.038465 0.019023 

0.398437 -0.01172 0.675121 0.040627 0.020341 

0.40625 -0.01313 0.684871 0.042664 0.021755 

0.414062 -0.01445 0.695566 0.044699 0.02307 

0.421875 -0.01576 0.704213 0.046531 0.024382 

0.429687 -0.01704 0.712674 0.048268 0.02566 

0.4375 -0.01804 0.721195 0.04992 0.026667 
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0.445312 -0.01937 0.727671 0.051331 0.027994 

0.453125 -0.02011 0.735023 0.052698 0.028732 

0.460937 -0.02129 0.740486 0.053816 0.029913 

0.46875 -0.02231 0.746005 0.054818 0.030936 

0.476562 -0.02269 0.751103 0.055665 0.031309 

0.484375 -0.02369 0.754346 0.056245 0.032318 

0.492187 -0.02386 0.758393 0.056752 0.032485 

0.5 -0.02453 0.760059 0.056945 0.033151 

0.507812 -0.02499 0.76167 0.056997 0.033617 

0.515625 -0.02493 0.763427 0.056922 0.033554 

0.523437 -0.02546 0.763318 0.05657 0.034086 

0.53125 -0.02505 0.762686 0.056044 0.033679 

0.539062 -0.0249 0.761965 0.055377 0.033527 

0.546875 -0.02481 0.759444 0.054449 0.033431 

0.554687 -0.02423 0.757142 0.05341 0.032854 

0.5625 -0.02382 0.754156 0.052202 0.032441 

0.570312 -0.02341 0.749597 0.050769 0.032035 

0.578125 -0.02253 0.744792 0.049212 0.031152 

0.585937 -0.02165 0.739803 0.047541 0.030272 

0.59375 -0.02076 0.733058 0.045666 0.029381 

0.601562 -0.0198 0.726113 0.043696 0.028427 

0.609375 -0.01856 0.719026 0.041643 0.027181 

0.617187 -0.01742 0.710877 0.039463 0.026044 

0.625 -0.01623 0.702145 0.037198 0.024854 

0.632812 -0.01494 0.692829 0.034859 0.023568 

0.640625 -0.01348 0.682735 0.03245 0.022101 

0.648437 -0.01205 0.672471 0.030013 0.020675 

0.65625 -0.01058 0.661624 0.02754 0.019207 

0.664062 -0.00908 0.650077 0.025039 0.017704 

0.671875 -0.00755 0.638118 0.022537 0.016176 

0.679687 -0.00608 0.625779 0.020046 0.0147 

0.6875 -0.00458 0.612966 0.017574 0.013202 

0.695312 -0.00303 0.599941 0.015143 0.011655 

0.703125 -0.00154 0.586498 0.012756 0.01016 

0.710937 -7.3E-05 0.572778 0.010427 0.008697 

0.71875 0.001371 0.558694 0.008166 0.007253 

0.726562 0.002783 0.544395 0.005985 0.005841 

0.734375 0.004112 0.529923 0.003892 0.004512 

0.742187 0.005391 0.515238 0.001894 0.003233 

0.75 0.006618 0.500418 4.7E-15 0.002006 

0.757812 0.007774 0.485488 -0.00178 0.00085 
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0.765625 0.008843 0.470481 -0.00346 -0.00022 

0.773437 0.009843 0.455475 -0.00501 -0.00122 

0.78125 0.010797 0.440392 -0.00644 -0.00217 

0.789062 0.011646 0.425354 -0.00774 -0.00302 

0.796875 0.01239 0.410505 -0.00893 -0.00377 

0.804687 0.013082 0.395673 -0.00999 -0.00446 

0.8125 0.013675 0.381122 -0.01093 -0.00505 

0.820312 0.014174 0.366577 -0.01174 -0.00555 

0.828125 0.014488 0.352392 -0.01245 -0.00586 

0.835937 0.014841 0.338333 -0.01303 -0.00622 

0.84375 0.015137 0.324608 -0.01351 -0.00651 

0.851562 0.015374 0.311364 -0.0139 -0.00675 

0.859375 0.015504 0.298402 -0.01418 -0.00688 

0.867187 0.015509 0.285683 -0.01437 -0.00689 

0.875 0.015425 0.273435 -0.01449 -0.0068 

0.882812 0.015355 0.261573 -0.01452 -0.00673 

0.890625 0.015178 0.2504 -0.0145 -0.00655 

0.898437 0.014986 0.239834 -0.01443 -0.00636 

0.90625 0.014855 0.229432 -0.01429 -0.00623 

0.914062 0.014601 0.219422 -0.0141 -0.00598 

0.921875 0.014307 0.210561 -0.01391 -0.00568 

0.929687 0.014024 0.202007 -0.01368 -0.0054 

0.9375 0.013533 0.193957 -0.01343 -0.00491 

0.945312 0.013222 0.18698 -0.01319 -0.0046 

0.953125 0.013002 0.180312 -0.01293 -0.00438 

0.960937 0.012634 0.174038 -0.01265 -0.00401 

0.96875 0.012287 0.169201 -0.01243 -0.00366 

0.976562 0.012076 0.164406 -0.01218 -0.00345 

0.984375 0.011529 0.160846 -0.01199 -0.0029 

0.992187 0.0115 0.157441 -0.01178 -0.00288 

1 0.011178 0.154819 -0.0116 -0.00255 

 

Table 49 Lifting-Line Data Used to Create Figures 51 – 86  

τ
t  Cx Cy CP CT 

0 0.00507 0.065276 -0.00489 0.003906 

0.007813 0.005103 0.065753 -0.00492 0.003873 

0.015625 0.0052 0.067184 -0.00501 0.003776 

0.023438 0.005359 0.069564 -0.00516 0.003616 

0.03125 0.00558 0.072888 -0.00536 0.003396 

0.039063 0.005858 0.077148 -0.00561 0.003118 
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0.046875 0.006189 0.082335 -0.0059 0.002787 

0.054688 0.006568 0.088434 -0.00624 0.002408 

0.0625 0.00699 0.095432 -0.00661 0.001986 

0.070313 0.007447 0.103312 -0.007 0.001529 

0.078125 0.007933 0.112054 -0.0074 0.001042 

0.085938 0.00844 0.121639 -0.00782 0.000535 

0.09375 0.00896 0.132041 -0.00823 1.52E-05 

0.101563 0.009485 0.143238 -0.00862 -0.00051 

0.109375 0.010004 0.155201 -0.00899 -0.00103 

0.117188 0.010509 0.167901 -0.00932 -0.00153 

0.125 0.010991 0.181309 -0.00961 -0.00202 

0.132813 0.01144 0.195392 -0.00983 -0.00246 

0.140625 0.011848 0.210116 -0.00999 -0.00287 

0.148438 0.012204 0.225445 -0.01006 -0.00323 

0.15625 0.012501 0.241342 -0.01005 -0.00353 

0.164063 0.01273 0.25777 -0.00993 -0.00375 

0.171875 0.012882 0.274689 -0.0097 -0.00391 

0.179688 0.012951 0.292057 -0.00936 -0.00398 

0.1875 0.01293 0.309834 -0.00888 -0.00395 

0.195313 0.012813 0.327975 -0.00828 -0.00384 

0.203125 0.012594 0.346439 -0.00753 -0.00362 

0.210938 0.012269 0.365179 -0.00665 -0.00329 

0.21875 0.011836 0.384151 -0.00561 -0.00286 

0.226563 0.01129 0.403309 -0.00443 -0.00231 

0.234375 0.010632 0.422608 -0.0031 -0.00166 

0.242188 0.00986 0.442 -0.00162 -0.00088 

0.25 0.008976 0.461438 -2.1E-18 -1.2E-18 

0.257813 0.00798 0.480877 0.001768 0.000996 

0.265625 0.006876 0.500269 0.003674 0.0021 

0.273438 0.005668 0.519568 0.005712 0.003308 

0.28125 0.00436 0.538726 0.007874 0.004616 

0.289063 0.002959 0.557698 0.010153 0.006017 

0.296875 0.00147 0.576438 0.012537 0.007505 

0.304688 -9.7E-05 0.594902 0.015016 0.009073 

0.3125 -0.00173 0.613043 0.017577 0.01071 

0.320313 -0.00343 0.63082 0.020207 0.012408 

0.328125 -0.00518 0.648188 0.022893 0.014157 

0.335938 -0.00697 0.665107 0.025618 0.015946 

0.34375 -0.00879 0.681534 0.028368 0.017764 

0.351563 -0.01062 0.697432 0.031127 0.019598 

0.359375 -0.01246 0.712761 0.033877 0.021438 
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0.367188 -0.01429 0.727485 0.036603 0.023269 

0.375 -0.0161 0.741568 0.039286 0.025081 

0.382813 -0.01788 0.754975 0.041911 0.026859 

0.390625 -0.01962 0.767676 0.04446 0.028593 

0.398438 -0.02129 0.779639 0.046917 0.03027 

0.40625 -0.0229 0.790835 0.049265 0.031877 

0.414063 -0.02443 0.801238 0.051489 0.033403 

0.421875 -0.02586 0.810822 0.053575 0.034837 

0.429688 -0.02719 0.819565 0.055508 0.036169 

0.4375 -0.02841 0.827445 0.057275 0.037389 

0.445313 -0.02951 0.834443 0.058863 0.038487 

0.453125 -0.03048 0.840542 0.060263 0.039456 

0.460938 -0.03131 0.845728 0.061464 0.040289 

0.46875 -0.032 0.849989 0.062459 0.040979 

0.476563 -0.03255 0.853313 0.06324 0.041521 

0.484375 -0.03294 0.855693 0.063801 0.041911 

0.492188 -0.03317 0.857124 0.06414 0.042146 

0.5 -0.03325 0.857601 0.064253 0.042225 

0.507813 -0.03317 0.857124 0.06414 0.042146 

0.515625 -0.03294 0.855693 0.063801 0.041911 

0.523438 -0.03255 0.853313 0.06324 0.041521 

0.53125 -0.032 0.849989 0.062459 0.040979 

0.539063 -0.03131 0.845728 0.061464 0.040289 

0.546875 -0.03048 0.840542 0.060263 0.039456 

0.554688 -0.02951 0.834443 0.058863 0.038487 

0.5625 -0.02841 0.827445 0.057275 0.037389 

0.570313 -0.02719 0.819565 0.055508 0.036169 

0.578125 -0.02586 0.810822 0.053575 0.034837 

0.585938 -0.02443 0.801238 0.051489 0.033403 

0.59375 -0.0229 0.790835 0.049265 0.031877 

0.601563 -0.02129 0.779639 0.046917 0.03027 

0.609375 -0.01962 0.767676 0.04446 0.028593 

0.617188 -0.01788 0.754975 0.041911 0.026859 

0.625 -0.0161 0.741568 0.039286 0.025081 

0.632813 -0.01429 0.727485 0.036603 0.023269 

0.640625 -0.01246 0.712761 0.033877 0.021438 

0.648438 -0.01062 0.697432 0.031127 0.019598 

0.65625 -0.00879 0.681534 0.028368 0.017764 

0.664063 -0.00697 0.665107 0.025618 0.015946 

0.671875 -0.00518 0.648188 0.022893 0.014157 

0.679688 -0.00343 0.63082 0.020207 0.012408 
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0.6875 -0.00173 0.613043 0.017577 0.01071 

0.695313 -9.7E-05 0.594902 0.015016 0.009073 

0.703125 0.00147 0.576438 0.012537 0.007505 

0.710938 0.002959 0.557698 0.010153 0.006017 

0.71875 0.00436 0.538726 0.007874 0.004616 

0.726563 0.005668 0.519568 0.005712 0.003308 

0.734375 0.006876 0.500269 0.003674 0.0021 

0.742188 0.00798 0.480877 0.001768 0.000996 

0.75 0.008976 0.461438 6.35E-18 3.52E-18 

0.757813 0.00986 0.442 -0.00162 -0.00088 

0.765625 0.010632 0.422608 -0.0031 -0.00166 

0.773438 0.01129 0.403309 -0.00443 -0.00231 

0.78125 0.011836 0.384151 -0.00561 -0.00286 

0.789063 0.012269 0.365179 -0.00665 -0.00329 

0.796875 0.012594 0.346439 -0.00753 -0.00362 

0.804688 0.012813 0.327975 -0.00828 -0.00384 

0.8125 0.01293 0.309834 -0.00888 -0.00395 

0.820313 0.012951 0.292057 -0.00936 -0.00398 

0.828125 0.012882 0.274689 -0.0097 -0.00391 

0.835938 0.01273 0.25777 -0.00993 -0.00375 

0.84375 0.012501 0.241342 -0.01005 -0.00353 

0.851563 0.012204 0.225445 -0.01006 -0.00323 

0.859375 0.011848 0.210116 -0.00999 -0.00287 

0.867188 0.01144 0.195392 -0.00983 -0.00246 

0.875 0.010991 0.181309 -0.00961 -0.00202 

0.882813 0.010509 0.167901 -0.00932 -0.00153 

0.890625 0.010004 0.155201 -0.00899 -0.00103 

0.898438 0.009485 0.143238 -0.00862 -0.00051 

0.90625 0.00896 0.132041 -0.00823 1.52E-05 

0.914063 0.00844 0.121639 -0.00782 0.000535 

0.921875 0.007933 0.112054 -0.0074 0.001042 

0.929688 0.007447 0.103312 -0.007 0.001529 

0.9375 0.00699 0.095432 -0.00661 0.001986 

0.945313 0.006568 0.088434 -0.00624 0.002408 

0.953125 0.006189 0.082335 -0.0059 0.002787 

0.960938 0.005858 0.077148 -0.00561 0.003118 

0.96875 0.00558 0.072888 -0.00536 0.003396 

0.976563 0.005359 0.069564 -0.00516 0.003616 

0.984375 0.0052 0.067184 -0.00501 0.003776 

0.992188 0.005103 0.065753 -0.00492 0.003873 

1 0.00507 0.065276 -0.00489 0.003906 
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Table 50 CFD Data Used to Create Figures 87 – 90  

τ
t  Cx Cy CP CT 

0.007812 0.012161 0.129973 -0.01216 -0.00354 

0.015625 0.011906 0.128309 -0.01196 -0.00328 

0.023437 0.011726 0.127472 -0.01181 -0.0031 

0.03125 0.011681 0.127054 -0.01167 -0.00306 

0.039062 0.011528 0.127801 -0.01161 -0.0029 

0.046875 0.011529 0.128968 -0.01156 -0.00291 

0.054687 0.011547 0.131273 -0.01158 -0.00292 

0.0625 0.011614 0.134087 -0.0116 -0.00299 

0.070312 0.0117 0.137887 -0.01167 -0.00308 

0.078125 0.011843 0.142452 -0.01177 -0.00322 

0.085937 0.012041 0.147618 -0.01186 -0.00342 

0.09375 0.012249 0.153498 -0.01195 -0.00362 

0.101562 0.012465 0.16028 -0.01206 -0.00384 

0.109375 0.012699 0.167706 -0.01214 -0.00408 

0.117187 0.012956 0.175819 -0.0122 -0.00433 

0.125 0.013201 0.184537 -0.01222 -0.00458 

0.132812 0.013423 0.193981 -0.0122 -0.0048 

0.140625 0.013627 0.20408 -0.01212 -0.005 

0.148437 0.013793 0.214751 -0.01198 -0.00517 

0.15625 0.013977 0.226011 -0.01176 -0.00535 

0.164062 0.01405 0.237808 -0.01145 -0.00543 

0.171875 0.014118 0.250132 -0.01104 -0.00549 

0.179687 0.014043 0.262943 -0.01053 -0.00542 

0.1875 0.014015 0.276326 -0.0099 -0.00539 

0.195312 0.013804 0.290058 -0.00915 -0.00518 

0.203125 0.013592 0.304244 -0.00827 -0.00497 

0.210937 0.0132 0.318812 -0.00725 -0.00458 

0.21875 0.012729 0.333688 -0.0061 -0.00411 

0.226562 0.0122 0.348851 -0.00479 -0.00358 

0.234375 0.011565 0.364309 -0.00334 -0.00294 

0.242187 0.010816 0.380033 -0.00175 -0.00219 

0.25 0.009917 0.395893 -7.3E-16 -0.00129 

0.257812 0.008921 0.41193 0.001893 -0.0003 

0.265625 0.007809 0.428068 0.003929 0.000815 

0.273437 0.006562 0.444316 0.006106 0.002062 

0.28125 0.005245 0.460533 0.008414 0.003379 

0.289062 0.003819 0.476805 0.01085 0.004805 

0.296875 0.0023 0.493016 0.013403 0.006324 

0.304687 0.000623 0.509173 0.016065 0.008001 
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0.3125 -0.00112 0.52524 0.018824 0.009746 

0.320312 -0.00294 0.541039 0.021664 0.011564 

0.328125 -0.00481 0.556784 0.02458 0.013434 

0.335937 -0.00675 0.572158 0.027548 0.015371 

0.34375 -0.00878 0.587346 0.03056 0.017407 

0.351562 -0.01087 0.60227 0.0336 0.019492 

0.359375 -0.01294 0.616805 0.036646 0.021563 

0.367187 -0.01503 0.630969 0.039683 0.023658 

0.375 -0.0172 0.644689 0.042693 0.025826 

0.382812 -0.01926 0.658031 0.045662 0.027883 

0.390625 -0.02141 0.670738 0.048557 0.030035 

0.398437 -0.02347 0.683139 0.051387 0.032093 

0.40625 -0.02549 0.694939 0.054114 0.034113 

0.414062 -0.02748 0.706064 0.056717 0.0361 

0.421875 -0.02938 0.716595 0.059186 0.038007 

0.429687 -0.03106 0.726654 0.061519 0.039679 

0.4375 -0.03291 0.735999 0.063681 0.041533 

0.445312 -0.03449 0.744752 0.06567 0.043113 

0.453125 -0.03596 0.752318 0.067422 0.044589 

0.460937 -0.03733 0.759761 0.069021 0.045956 

0.46875 -0.03857 0.766586 0.070413 0.047189 

0.476562 -0.03953 0.77207 0.071523 0.048153 

0.484375 -0.04047 0.777179 0.072434 0.049098 

0.492187 -0.04125 0.780724 0.073028 0.049879 

0.5 -0.0418 0.785186 0.073534 0.050423 

0.507812 -0.04213 0.787807 0.073691 0.050752 

0.515625 -0.04238 0.789284 0.073562 0.051007 

0.523437 -0.04257 0.790582 0.073238 0.051197 

0.53125 -0.04217 0.790888 0.072645 0.050798 

0.539062 -0.0419 0.790049 0.071772 0.050524 

0.546875 -0.04167 0.789391 0.070745 0.050295 

0.554687 -0.04072 0.786962 0.069392 0.049343 

0.5625 -0.03986 0.783423 0.067784 0.048489 

0.570312 -0.03898 0.780737 0.066098 0.047607 

0.578125 -0.03776 0.775374 0.064041 0.046385 

0.585937 -0.03627 0.770542 0.061896 0.044894 

0.59375 -0.03506 0.764388 0.059522 0.043684 

0.601562 -0.03324 0.757795 0.057003 0.041861 

0.609375 -0.0316 0.74987 0.054286 0.040221 

0.617187 -0.02967 0.742039 0.051491 0.038291 

0.625 -0.02784 0.733174 0.048552 0.036465 
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0.632812 -0.02574 0.723307 0.045491 0.034361 

0.640625 -0.02354 0.71324 0.042375 0.032165 

0.648437 -0.0215 0.702619 0.039198 0.030124 

0.65625 -0.01925 0.690956 0.035951 0.027875 

0.664062 -0.01697 0.679145 0.032699 0.025591 

0.671875 -0.01467 0.666557 0.029427 0.023293 

0.679687 -0.01244 0.653676 0.026174 0.021066 

0.6875 -0.01013 0.640064 0.022939 0.018752 

0.695312 -0.00792 0.626355 0.019762 0.016548 

0.703125 -0.00567 0.611962 0.016637 0.014289 

0.710937 -0.00349 0.597218 0.01359 0.012112 

0.71875 -0.00144 0.582295 0.010639 0.01006 

0.726562 0.00063 0.567051 0.007792 0.007994 

0.734375 0.002621 0.55133 0.005061 0.006003 

0.742187 0.004487 0.535608 0.002461 0.004137 

0.75 0.006252 0.519678 4.37E-15 0.002372 

0.757812 0.007931 0.503553 -0.00231 0.000693 

0.765625 0.009477 0.487337 -0.00447 -0.00085 

0.773437 0.010918 0.471047 -0.00647 -0.00229 

0.78125 0.012241 0.454719 -0.00831 -0.00362 

0.789062 0.013432 0.438436 -0.00998 -0.00481 

0.796875 0.014516 0.422193 -0.01148 -0.00589 

0.804687 0.015406 0.406005 -0.01281 -0.00678 

0.8125 0.016212 0.389909 -0.01397 -0.00759 

0.820312 0.016915 0.374078 -0.01498 -0.00829 

0.828125 0.017483 0.358447 -0.01582 -0.00886 

0.835937 0.017928 0.343019 -0.01652 -0.0093 

0.84375 0.018318 0.327848 -0.01706 -0.00969 

0.851562 0.018442 0.313098 -0.01747 -0.00982 

0.859375 0.018576 0.298569 -0.01774 -0.00995 

0.867187 0.018598 0.284533 -0.0179 -0.00997 

0.875 0.018599 0.270861 -0.01794 -0.00997 

0.882812 0.018326 0.257737 -0.01788 -0.0097 

0.890625 0.018242 0.244916 -0.01773 -0.00962 

0.898437 0.017849 0.232889 -0.01752 -0.00922 

0.90625 0.01749 0.221122 -0.01722 -0.00887 

0.914062 0.017191 0.210174 -0.01688 -0.00857 

0.921875 0.016721 0.199646 -0.01649 -0.0081 

0.929687 0.016246 0.189762 -0.01607 -0.00762 

0.9375 0.015822 0.180653 -0.01563 -0.0072 

0.945312 0.015355 0.172094 -0.01517 -0.00673 
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0.953125 0.014841 0.164217 -0.01472 -0.00622 

0.960937 0.014413 0.157179 -0.01428 -0.00579 

0.96875 0.0139 0.150771 -0.01385 -0.00528 

0.976562 0.013535 0.145239 -0.01345 -0.00491 

0.984375 0.013092 0.140034 -0.01305 -0.00447 

0.992187 0.012789 0.136022 -0.01272 -0.00417 

1 0.012479 0.133034 -0.01246 -0.00386 

 

Table 51 CFD Data Used to Create Figures 91 – 94  

τ
t  Cx Cy CP CT 

0.007812 0.015223 0.172001 -0.01609 -0.0066 

0.015625 0.015047 0.170727 -0.01591 -0.00642 

0.023437 0.014752 0.169665 -0.01572 -0.00613 

0.03125 0.014525 0.169961 -0.01561 -0.0059 

0.039062 0.01441 0.170193 -0.01546 -0.00579 

0.046875 0.014288 0.171136 -0.01534 -0.00566 

0.054687 0.014246 0.173124 -0.01527 -0.00562 

0.0625 0.013953 0.175989 -0.01523 -0.00533 

0.070312 0.014231 0.179104 -0.01516 -0.00561 

0.078125 0.014018 0.182964 -0.01511 -0.00539 

0.085937 0.014135 0.187534 -0.01506 -0.00551 

0.09375 0.014133 0.192939 -0.01502 -0.00551 

0.101562 0.014144 0.19866 -0.01494 -0.00552 

0.109375 0.014316 0.205035 -0.01484 -0.00569 

0.117187 0.014243 0.212218 -0.01473 -0.00562 

0.125 0.01441 0.219835 -0.01456 -0.00579 

0.132812 0.014388 0.228174 -0.01435 -0.00576 

0.140625 0.01443 0.236948 -0.01408 -0.00581 

0.148437 0.014473 0.246344 -0.01374 -0.00585 

0.15625 0.014413 0.256125 -0.01333 -0.00579 

0.164062 0.014362 0.266374 -0.01283 -0.00574 

0.171875 0.014291 0.27716 -0.01224 -0.00567 

0.179687 0.014095 0.288383 -0.01155 -0.00547 

0.1875 0.013944 0.30001 -0.01075 -0.00532 

0.195312 0.013611 0.312032 -0.00984 -0.00499 

0.203125 0.013267 0.324354 -0.00882 -0.00464 

0.210937 0.012856 0.337097 -0.00767 -0.00423 

0.21875 0.012383 0.350093 -0.0064 -0.00376 

0.226562 0.011769 0.363325 -0.00499 -0.00314 

0.234375 0.011056 0.376822 -0.00346 -0.00243 
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0.242187 0.010342 0.390401 -0.00179 -0.00172 

0.25 0.009482 0.404244 -3E-15 -0.00086 

0.257812 0.008539 0.418187 0.001922 8.49E-05 

0.265625 0.007507 0.432253 0.003968 0.001117 

0.273437 0.006374 0.446358 0.006134 0.00225 

0.28125 0.005161 0.460503 0.008414 0.003463 

0.289062 0.00385 0.474699 0.010802 0.004774 

0.296875 0.002511 0.488849 0.01329 0.006113 

0.304687 0.000948 0.502866 0.015866 0.007676 

0.3125 -0.00054 0.516754 0.01852 0.009168 

0.320312 -0.00217 0.530495 0.021242 0.010792 

0.328125 -0.00387 0.543991 0.024016 0.012497 

0.335937 -0.00555 0.557617 0.026847 0.014174 

0.34375 -0.00733 0.570966 0.029708 0.015953 

0.351562 -0.0091 0.583658 0.032561 0.017727 

0.359375 -0.01106 0.596165 0.035419 0.019682 

0.367187 -0.0129 0.608691 0.038282 0.021523 

0.375 -0.01461 0.620779 0.041109 0.02323 

0.382812 -0.01645 0.632109 0.043863 0.025079 

0.390625 -0.01867 0.643111 0.046557 0.027292 

0.398437 -0.02 0.654202 0.04921 0.028627 

0.40625 -0.02195 0.66402 0.051706 0.030573 

0.414062 -0.02382 0.673684 0.054116 0.032443 

0.421875 -0.02512 0.683216 0.056429 0.033746 

0.429687 -0.02715 0.691452 0.058539 0.035771 

0.4375 -0.02838 0.699989 0.060565 0.037005 

0.445312 -0.02983 0.707555 0.06239 0.038453 

0.453125 -0.03129 0.714045 0.063992 0.039914 

0.460937 -0.03205 0.720841 0.065485 0.040672 

0.46875 -0.03369 0.726019 0.066687 0.042311 

0.476562 -0.03419 0.731348 0.067751 0.042817 

0.484375 -0.03518 0.735154 0.068517 0.043802 

0.492187 -0.03592 0.738684 0.069096 0.044546 

0.5 -0.03623 0.742414 0.069529 0.044851 

0.507812 -0.0368 0.74496 0.069683 0.045424 

0.515625 -0.03681 0.746501 0.069575 0.045434 

0.523437 -0.03701 0.746984 0.069199 0.045631 

0.53125 -0.03682 0.747218 0.068634 0.04544 

0.539062 -0.03659 0.746968 0.067859 0.045211 

0.546875 -0.03639 0.745692 0.066828 0.045012 

0.554687 -0.03555 0.743971 0.065601 0.044177 
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0.5625 -0.0348 0.741354 0.064144 0.043423 

0.570312 -0.03398 0.737707 0.062455 0.0426 

0.578125 -0.03288 0.734051 0.060628 0.041509 

0.585937 -0.03174 0.729831 0.058626 0.040363 

0.59375 -0.0309 0.724536 0.056419 0.039526 

0.601562 -0.02904 0.718227 0.054026 0.037666 

0.609375 -0.02756 0.712122 0.051553 0.036187 

0.617187 -0.02586 0.704416 0.048881 0.034479 

0.625 -0.02432 0.696592 0.04613 0.032942 

0.632812 -0.0224 0.688833 0.043323 0.031019 

0.640625 -0.02058 0.68014 0.040409 0.029209 

0.648437 -0.01869 0.670346 0.037398 0.027313 

0.65625 -0.01673 0.66038 0.03436 0.025356 

0.664062 -0.01464 0.650284 0.031309 0.023268 

0.671875 -0.01255 0.639175 0.028218 0.021172 

0.679687 -0.01044 0.627881 0.025141 0.019068 

0.6875 -0.00838 0.616312 0.022088 0.017009 

0.695312 -0.00642 0.604326 0.019067 0.015043 

0.703125 -0.00442 0.591553 0.016082 0.013047 

0.710937 -0.00237 0.578918 0.013174 0.010991 

0.71875 -0.00039 0.565981 0.010341 0.009013 

0.726562 0.001503 0.552699 0.007595 0.007121 

0.734375 0.003345 0.539214 0.00495 0.005279 

0.742187 0.005159 0.525456 0.002415 0.003465 

0.75 0.006819 0.511577 4.69E-15 0.001805 

0.757812 0.008405 0.49761 -0.00229 0.000219 

0.765625 0.009941 0.483449 -0.00444 -0.00132 

0.773437 0.011343 0.469352 -0.00645 -0.00272 

0.78125 0.01267 0.455117 -0.00832 -0.00405 

0.789062 0.013867 0.440945 -0.01003 -0.00524 

0.796875 0.014902 0.426882 -0.01161 -0.00628 

0.804687 0.015964 0.412729 -0.01302 -0.00734 

0.8125 0.016857 0.398671 -0.01429 -0.00823 

0.820312 0.017636 0.384981 -0.01542 -0.00901 

0.828125 0.018259 0.371333 -0.01639 -0.00964 

0.835937 0.018843 0.357878 -0.01723 -0.01022 

0.84375 0.019194 0.344929 -0.01795 -0.01057 

0.851562 0.019535 0.331833 -0.01851 -0.01091 

0.859375 0.019796 0.319208 -0.01896 -0.01117 

0.867187 0.020082 0.306889 -0.0193 -0.01146 

0.875 0.020191 0.294963 -0.01953 -0.01157 
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0.882812 0.020096 0.283847 -0.0197 -0.01147 

0.890625 0.019983 0.272596 -0.01973 -0.01136 

0.898437 0.019948 0.261704 -0.01969 -0.01132 

0.90625 0.019588 0.251946 -0.01962 -0.01096 

0.914062 0.019278 0.242167 -0.01945 -0.01065 

0.921875 0.019293 0.232846 -0.01923 -0.01067 

0.929687 0.018811 0.224613 -0.01902 -0.01019 

0.9375 0.018474 0.21635 -0.01872 -0.00985 

0.945312 0.018235 0.208751 -0.01841 -0.00961 

0.953125 0.017647 0.202461 -0.01814 -0.00902 

0.960937 0.017299 0.195747 -0.01778 -0.00867 

0.96875 0.01697 0.190163 -0.01747 -0.00835 

0.976562 0.016611 0.185728 -0.01721 -0.00799 

0.984375 0.016262 0.180869 -0.01686 -0.00764 

0.992187 0.015868 0.177884 -0.01664 -0.00724 

1 0.015599 0.174732 -0.01636 -0.00697 

 

Table 52 Lifting-Line Data Used to Create Figures 87 – 94  

τ
t  Cx Cy CP CT 

0 0.006293 0.065276 -0.00611 0.002683 

0.007813 0.006333 0.065753 -0.00615 0.002643 

0.015625 0.006452 0.067184 -0.00626 0.002524 

0.023438 0.006648 0.069564 -0.00644 0.002327 

0.03125 0.006919 0.072888 -0.00669 0.002057 

0.039063 0.007259 0.077148 -0.00701 0.001716 

0.046875 0.007665 0.082335 -0.00738 0.001311 

0.054688 0.008128 0.088434 -0.0078 0.000848 

0.0625 0.008641 0.095432 -0.00826 0.000335 

0.070313 0.009196 0.103312 -0.00875 -0.00022 

0.078125 0.009784 0.112054 -0.00925 -0.00081 

0.085938 0.010395 0.121639 -0.00977 -0.00142 

0.09375 0.011017 0.132041 -0.01028 -0.00204 

0.101563 0.01164 0.143238 -0.01077 -0.00266 

0.109375 0.012251 0.155201 -0.01124 -0.00328 

0.117188 0.012839 0.167901 -0.01165 -0.00386 

0.125 0.013392 0.181309 -0.01201 -0.00442 

0.132813 0.013898 0.195392 -0.01229 -0.00492 

0.140625 0.014344 0.210116 -0.01248 -0.00537 

0.148438 0.01472 0.225445 -0.01258 -0.00574 

0.15625 0.015012 0.241342 -0.01256 -0.00604 
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0.164063 0.015212 0.25777 -0.01241 -0.00624 

0.171875 0.015307 0.274689 -0.01213 -0.00633 

0.179688 0.01529 0.292057 -0.01169 -0.00631 

0.1875 0.015151 0.309834 -0.0111 -0.00618 

0.195313 0.014882 0.327975 -0.01035 -0.00591 

0.203125 0.014478 0.346439 -0.00942 -0.0055 

0.210938 0.013931 0.365179 -0.00831 -0.00496 

0.21875 0.013239 0.384151 -0.00702 -0.00426 

0.226563 0.012399 0.403309 -0.00554 -0.00342 

0.234375 0.011408 0.422608 -0.00388 -0.00243 

0.242188 0.010267 0.442 -0.00203 -0.00129 

0.25 0.008976 0.461438 -2.6E-18 -1.7E-18 

0.257813 0.007538 0.480877 0.00221 0.001438 

0.265625 0.005958 0.500269 0.004592 0.003018 

0.273438 0.00424 0.519568 0.00714 0.004736 

0.28125 0.002391 0.538726 0.009843 0.006584 

0.289063 0.00042 0.557698 0.012691 0.008555 

0.296875 -0.00166 0.576438 0.015671 0.01064 

0.304688 -0.00385 0.594902 0.018769 0.012826 

0.3125 -0.00613 0.613043 0.021971 0.015104 

0.320313 -0.00848 0.63082 0.025259 0.01746 

0.328125 -0.0109 0.648188 0.028616 0.01988 

0.335938 -0.01338 0.665107 0.032023 0.022351 

0.34375 -0.01588 0.681534 0.03546 0.024856 

0.351563 -0.0184 0.697432 0.038909 0.02738 

0.359375 -0.02093 0.712761 0.042347 0.029907 

0.367188 -0.02344 0.727485 0.045754 0.03242 

0.375 -0.02593 0.741568 0.049108 0.034902 

0.382813 -0.02836 0.754975 0.052389 0.037337 

0.390625 -0.03073 0.767676 0.055575 0.039708 

0.398438 -0.03302 0.779639 0.058646 0.041999 

0.40625 -0.03522 0.790835 0.061581 0.044193 

0.414063 -0.0373 0.801238 0.064362 0.046275 

0.421875 -0.03926 0.810822 0.066969 0.048231 

0.429688 -0.04107 0.819565 0.069385 0.050046 

0.4375 -0.04273 0.827445 0.071593 0.051707 

0.445313 -0.04423 0.834443 0.073579 0.053203 

0.453125 -0.04555 0.840542 0.075329 0.054522 

0.460938 -0.04668 0.845728 0.07683 0.055655 

0.46875 -0.04762 0.849989 0.078074 0.056594 

0.476563 -0.04836 0.853313 0.079049 0.057331 
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0.484375 -0.04889 0.855693 0.079751 0.057861 

0.492188 -0.04921 0.857124 0.080175 0.058181 

0.5 -0.04931 0.857601 0.080316 0.058288 

0.507813 -0.04921 0.857124 0.080175 0.058181 

0.515625 -0.04889 0.855693 0.079751 0.057861 

0.523438 -0.04836 0.853313 0.079049 0.057331 

0.53125 -0.04762 0.849989 0.078074 0.056594 

0.539063 -0.04668 0.845728 0.07683 0.055655 

0.546875 -0.04555 0.840542 0.075329 0.054522 

0.554688 -0.04423 0.834443 0.073579 0.053203 

0.5625 -0.04273 0.827445 0.071593 0.051707 

0.570313 -0.04107 0.819565 0.069385 0.050046 

0.578125 -0.03926 0.810822 0.066969 0.048231 

0.585938 -0.0373 0.801238 0.064362 0.046275 

0.59375 -0.03522 0.790835 0.061581 0.044193 

0.601563 -0.03302 0.779639 0.058646 0.041999 

0.609375 -0.03073 0.767676 0.055575 0.039708 

0.617188 -0.02836 0.754975 0.052389 0.037337 

0.625 -0.02593 0.741568 0.049108 0.034902 

0.632813 -0.02344 0.727485 0.045754 0.03242 

0.640625 -0.02093 0.712761 0.042347 0.029907 

0.648438 -0.0184 0.697432 0.038909 0.02738 

0.65625 -0.01588 0.681534 0.03546 0.024856 

0.664063 -0.01338 0.665107 0.032023 0.022351 

0.671875 -0.0109 0.648188 0.028616 0.01988 

0.679688 -0.00848 0.63082 0.025259 0.01746 

0.6875 -0.00613 0.613043 0.021971 0.015104 

0.695313 -0.00385 0.594902 0.018769 0.012826 

0.703125 -0.00166 0.576438 0.015671 0.01064 

0.710938 0.00042 0.557698 0.012691 0.008555 

0.71875 0.002391 0.538726 0.009843 0.006584 

0.726563 0.00424 0.519568 0.00714 0.004736 

0.734375 0.005958 0.500269 0.004592 0.003018 

0.742188 0.007538 0.480877 0.00221 0.001438 

0.75 0.008976 0.461438 7.94E-18 5.11E-18 

0.757813 0.010267 0.442 -0.00203 -0.00129 

0.765625 0.011408 0.422608 -0.00388 -0.00243 

0.773438 0.012399 0.403309 -0.00554 -0.00342 

0.78125 0.013239 0.384151 -0.00702 -0.00426 

0.789063 0.013931 0.365179 -0.00831 -0.00496 

0.796875 0.014478 0.346439 -0.00942 -0.0055 
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0.804688 0.014882 0.327975 -0.01035 -0.00591 

0.8125 0.015151 0.309834 -0.0111 -0.00618 

0.820313 0.01529 0.292057 -0.01169 -0.00631 

0.828125 0.015307 0.274689 -0.01213 -0.00633 

0.835938 0.015212 0.25777 -0.01241 -0.00624 

0.84375 0.015012 0.241342 -0.01256 -0.00604 

0.851563 0.01472 0.225445 -0.01258 -0.00574 

0.859375 0.014344 0.210116 -0.01248 -0.00537 

0.867188 0.013898 0.195392 -0.01229 -0.00492 

0.875 0.013392 0.181309 -0.01201 -0.00442 

0.882813 0.012839 0.167901 -0.01165 -0.00386 

0.890625 0.012251 0.155201 -0.01124 -0.00328 

0.898438 0.01164 0.143238 -0.01077 -0.00266 

0.90625 0.011017 0.132041 -0.01028 -0.00204 

0.914063 0.010395 0.121639 -0.00977 -0.00142 

0.921875 0.009784 0.112054 -0.00925 -0.00081 

0.929688 0.009196 0.103312 -0.00875 -0.00022 

0.9375 0.008641 0.095432 -0.00826 0.000335 

0.945313 0.008128 0.088434 -0.0078 0.000848 

0.953125 0.007665 0.082335 -0.00738 0.001311 

0.960938 0.007259 0.077148 -0.00701 0.001716 

0.96875 0.006919 0.072888 -0.00669 0.002057 

0.976563 0.006648 0.069564 -0.00644 0.002327 

0.984375 0.006452 0.067184 -0.00626 0.002524 

0.992188 0.006333 0.065753 -0.00615 0.002643 

1 0.006293 0.065276 -0.00611 0.002683 

 

Table 53 CFD Data Used to Create Figures 95 – 98  

τ
t  Cx Cy CP CT 

0.007812 0.006788 0.103687 -0.00647 0.001836 

0.015625 0.006718 0.103215 -0.00641 0.001906 

0.023437 0.006692 0.103477 -0.00639 0.001933 

0.03125 0.00666 0.104586 -0.0064 0.001964 

0.039062 0.00667 0.106453 -0.00645 0.001954 

0.046875 0.006721 0.109368 -0.00653 0.001903 

0.054688 0.006831 0.112967 -0.00664 0.001793 

0.0625 0.007003 0.117476 -0.00678 0.001621 

0.070313 0.0072 0.122677 -0.00692 0.001424 

0.078125 0.0074 0.128785 -0.00709 0.001224 

0.085938 0.007642 0.135618 -0.00726 0.000983 
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0.09375 0.007912 0.14324 -0.00744 0.000712 

0.101563 0.008228 0.151603 -0.0076 0.000396 

0.109375 0.008501 0.160711 -0.00776 0.000123 

0.117188 0.00882 0.170585 -0.00789 -0.0002 

0.125 0.009147 0.181073 -0.00799 -0.00052 

0.132813 0.009482 0.1923 -0.00806 -0.00086 

0.140625 0.009784 0.204069 -0.00808 -0.00116 

0.148438 0.010087 0.216471 -0.00805 -0.00146 

0.15625 0.010337 0.229488 -0.00796 -0.00171 

0.164063 0.010618 0.242997 -0.0078 -0.00199 

0.171875 0.010798 0.25711 -0.00757 -0.00217 

0.179688 0.011005 0.271609 -0.00725 -0.00238 

0.1875 0.011134 0.286652 -0.00685 -0.00251 

0.195313 0.011218 0.30204 -0.00635 -0.00259 

0.203125 0.011209 0.31786 -0.00576 -0.00259 

0.210938 0.01119 0.334 -0.00507 -0.00257 

0.21875 0.011106 0.350447 -0.00427 -0.00248 

0.226563 0.010943 0.367156 -0.00336 -0.00232 

0.234375 0.01071 0.384067 -0.00235 -0.00209 

0.242188 0.010391 0.40117 -0.00123 -0.00177 

0.25 0.01 0.4184 1.75E-15 -0.00138 

0.257813 0.009519 0.435722 0.001335 -0.00089 

0.265625 0.008993 0.453101 0.002773 -0.00037 

0.273438 0.00838 0.470499 0.00431 0.000244 

0.28125 0.007692 0.487856 0.005942 0.000932 

0.289063 0.00692 0.505159 0.007663 0.001704 

0.296875 0.00606 0.522333 0.009467 0.002564 

0.304688 0.005167 0.539388 0.011345 0.003457 

0.3125 0.004189 0.556212 0.013289 0.004435 

0.320313 0.003158 0.572769 0.01529 0.005466 

0.328125 0.002078 0.589188 0.017341 0.006546 

0.335938 0.000918 0.605155 0.019424 0.007706 

0.34375 -0.00022 0.620806 0.021534 0.008849 

0.351563 -0.00145 0.63604 0.023656 0.010072 

0.359375 -0.00271 0.650918 0.025782 0.011334 

0.367188 -0.00394 0.665253 0.027893 0.012568 

0.375 -0.00525 0.679181 0.029984 0.013871 

0.382813 -0.00651 0.692519 0.032037 0.015137 

0.390625 -0.00778 0.705292 0.034039 0.016405 

0.398438 -0.00905 0.717418 0.035977 0.017672 

0.40625 -0.01027 0.728876 0.037838 0.018899 
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0.414063 -0.01151 0.739932 0.039625 0.02013 

0.421875 -0.01267 0.750081 0.041301 0.02129 

0.429688 -0.01375 0.75945 0.042864 0.022372 

0.4375 -0.01482 0.768224 0.044313 0.023444 

0.445313 -0.0159 0.776603 0.045653 0.024526 

0.453125 -0.01679 0.783613 0.046818 0.02541 

0.460938 -0.01761 0.789862 0.047837 0.026234 

0.46875 -0.01836 0.795819 0.048732 0.026987 

0.476563 -0.01906 0.80064 0.049447 0.027682 

0.484375 -0.01964 0.804612 0.049994 0.028267 

0.492188 -0.02018 0.807937 0.050383 0.028804 

0.5 -0.02057 0.810633 0.050612 0.029199 

0.507813 -0.02079 0.811593 0.05061 0.029412 

0.515625 -0.02098 0.812459 0.050481 0.029602 

0.523438 -0.02101 0.812509 0.05018 0.029634 

0.53125 -0.02108 0.811347 0.049683 0.029705 

0.539063 -0.02082 0.809212 0.049009 0.029448 

0.546875 -0.02051 0.806709 0.048198 0.029135 

0.554688 -0.02031 0.803067 0.047208 0.028935 

0.5625 -0.01967 0.798672 0.046069 0.028293 

0.570313 -0.01918 0.793284 0.044773 0.027805 

0.578125 -0.0185 0.787558 0.043365 0.027126 

0.585938 -0.01772 0.780317 0.041788 0.026344 

0.59375 -0.01686 0.772882 0.040122 0.025481 

0.601563 -0.01594 0.764535 0.03834 0.02456 

0.609375 -0.01498 0.755225 0.036449 0.0236 

0.617188 -0.01386 0.745577 0.034491 0.022483 

0.625 -0.01269 0.734809 0.03244 0.021316 

0.632813 -0.0116 0.723693 0.030343 0.020225 

0.640625 -0.01029 0.711773 0.028192 0.018914 

0.648438 -0.00909 0.699359 0.026011 0.017711 

0.65625 -0.00777 0.686161 0.023801 0.016399 

0.664063 -0.0065 0.67262 0.02159 0.015124 

0.671875 -0.00515 0.658451 0.019379 0.013772 

0.679688 -0.00388 0.643808 0.017186 0.012501 

0.6875 -0.00255 0.628694 0.015021 0.011175 

0.695313 -0.00129 0.613221 0.012898 0.009915 

0.703125 -3.7E-05 0.597365 0.010827 0.008661 

0.710938 0.001188 0.581069 0.008815 0.007436 

0.71875 0.002395 0.564593 0.006877 0.006229 

0.726563 0.003529 0.547859 0.005019 0.005095 
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0.734375 0.004607 0.530849 0.003249 0.004017 

0.742188 0.005633 0.513695 0.001574 0.002991 

0.75 0.00659 0.496389 -4.8E-15 0.002034 

0.757813 0.007475 0.478985 -0.00147 0.001149 

0.765625 0.008291 0.461574 -0.00282 0.000333 

0.773438 0.009028 0.444042 -0.00407 -0.0004 

0.78125 0.009696 0.426621 -0.0052 -0.00107 

0.789063 0.010261 0.409289 -0.00621 -0.00164 

0.796875 0.010755 0.392057 -0.00711 -0.00213 

0.804688 0.0112 0.374966 -0.00789 -0.00258 

0.8125 0.011548 0.358138 -0.00856 -0.00292 

0.820313 0.011845 0.341489 -0.00912 -0.00322 

0.828125 0.012007 0.325138 -0.00957 -0.00338 

0.835938 0.012139 0.309066 -0.00992 -0.00351 

0.84375 0.012183 0.29345 -0.01018 -0.00356 

0.851563 0.012191 0.278204 -0.01035 -0.00357 

0.859375 0.012101 0.263313 -0.01043 -0.00348 

0.867188 0.011939 0.249024 -0.01044 -0.00331 

0.875 0.011868 0.23523 -0.01038 -0.00324 

0.882813 0.011524 0.221813 -0.01026 -0.0029 

0.890625 0.011289 0.209274 -0.0101 -0.00266 

0.898438 0.011028 0.197034 -0.00988 -0.0024 

0.90625 0.010683 0.185487 -0.00963 -0.00206 

0.914063 0.010322 0.174732 -0.00936 -0.0017 

0.921875 0.009979 0.164595 -0.00906 -0.00135 

0.929688 0.009673 0.155014 -0.00875 -0.00105 

0.9375 0.009228 0.146497 -0.00845 -0.0006 

0.945313 0.008876 0.138501 -0.00814 -0.00025 

0.953125 0.008585 0.131414 -0.00785 3.89E-05 

0.960938 0.008193 0.124844 -0.00756 0.000431 

0.96875 0.007928 0.119375 -0.00731 0.000696 

0.976563 0.007644 0.114765 -0.00709 0.00098 

0.984375 0.007356 0.110536 -0.00687 0.001268 

0.992188 0.007184 0.107559 -0.00671 0.00144 

1 0.006981 0.105313 -0.00658 0.001643 

 

Table 54 CFD Data Used to Create Figures 99 – 102  

τ
t  Cx Cy CP CT 

0.007812 0.008331 0.139806 -0.00872 0.000293 

0.015625 0.008307 0.139194 -0.00865 0.000318 
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0.023437 0.008183 0.13926 -0.0086 0.000441 

0.03125 0.007959 0.14046 -0.0086 0.000665 

0.039062 0.008075 0.14194 -0.0086 0.000549 

0.046875 0.007933 0.144202 -0.00862 0.000691 

0.054687 0.00802 0.147691 -0.00868 0.000604 

0.0625 0.008085 0.15121 -0.00872 0.000539 

0.070312 0.008062 0.155908 -0.0088 0.000562 

0.078125 0.008315 0.161455 -0.00889 0.000309 

0.085937 0.008289 0.167261 -0.00896 0.000335 

0.09375 0.008567 0.174301 -0.00905 5.71E-05 

0.101562 0.008709 0.18162 -0.00911 -8.5E-05 

0.109375 0.008822 0.189694 -0.00916 -0.0002 

0.117187 0.009205 0.198493 -0.00918 -0.00058 

0.125 0.009289 0.207811 -0.00917 -0.00067 

0.132812 0.009483 0.217754 -0.00913 -0.00086 

0.140625 0.009814 0.228245 -0.00904 -0.00119 

0.148437 0.009985 0.239389 -0.0089 -0.00136 

0.15625 0.010141 0.25095 -0.0087 -0.00152 

0.164062 0.010333 0.263054 -0.00844 -0.00171 

0.171875 0.010548 0.27561 -0.00811 -0.00192 

0.179687 0.010652 0.288651 -0.00771 -0.00203 

0.1875 0.010754 0.302098 -0.00722 -0.00213 

0.195312 0.010827 0.315892 -0.00664 -0.0022 

0.203125 0.010841 0.330064 -0.00598 -0.00222 

0.210937 0.010802 0.344479 -0.00523 -0.00218 

0.21875 0.010754 0.359169 -0.00437 -0.00213 

0.226562 0.01063 0.374116 -0.00343 -0.00201 

0.234375 0.010444 0.389243 -0.00238 -0.00182 

0.242187 0.010213 0.404564 -0.00124 -0.00159 

0.25 0.009904 0.419995 -2.5E-15 -0.00128 

0.257812 0.009551 0.435538 0.001334 -0.00093 

0.265625 0.009145 0.451154 0.002761 -0.00052 

0.273437 0.008623 0.466719 0.004276 1.33E-06 

0.28125 0.00806 0.482263 0.005874 0.000564 

0.289062 0.007468 0.497752 0.007551 0.001156 

0.296875 0.006794 0.513121 0.0093 0.00183 

0.304687 0.006039 0.528422 0.011115 0.002586 

0.3125 0.005298 0.543619 0.012989 0.003326 

0.320312 0.004382 0.558431 0.014907 0.004242 

0.328125 0.003534 0.573118 0.016868 0.00509 

0.335937 0.002604 0.587653 0.018862 0.00602 
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0.34375 0.001558 0.601639 0.020869 0.007066 

0.351562 0.000602 0.615247 0.022882 0.008022 

0.359375 -0.0004 0.628748 0.024904 0.009028 

0.367187 -0.00154 0.64157 0.0269 0.010161 

0.375 -0.00261 0.653926 0.02887 0.011231 

0.382812 -0.0036 0.666059 0.030813 0.012224 

0.390625 -0.00483 0.677378 0.032692 0.013449 

0.398437 -0.00591 0.688887 0.034546 0.014534 

0.40625 -0.00695 0.699158 0.036295 0.015571 

0.414062 -0.00805 0.708716 0.037953 0.016671 

0.421875 -0.00891 0.718267 0.03955 0.017532 

0.429687 -0.01005 0.726478 0.041003 0.018676 

0.4375 -0.01095 0.734705 0.042379 0.019575 

0.445312 -0.01184 0.741828 0.043608 0.020463 

0.453125 -0.01299 0.748804 0.044738 0.021614 

0.460937 -0.01332 0.754517 0.045696 0.021941 

0.46875 -0.01426 0.759385 0.046501 0.022887 

0.476562 -0.01487 0.764365 0.047206 0.023494 

0.484375 -0.01551 0.768084 0.047724 0.024137 

0.492187 -0.01602 0.77086 0.04807 0.02464 

0.5 -0.01637 0.773911 0.048319 0.024999 

0.507812 -0.01683 0.774416 0.048292 0.025459 

0.515625 -0.01688 0.774875 0.048146 0.025505 

0.523437 -0.01708 0.776124 0.047933 0.025709 

0.53125 -0.01714 0.774273 0.047413 0.02576 

0.539062 -0.01705 0.773126 0.046823 0.025677 

0.546875 -0.0169 0.771011 0.046065 0.025524 

0.554687 -0.01678 0.767356 0.045109 0.025402 

0.5625 -0.01647 0.764032 0.044071 0.025089 

0.570312 -0.01588 0.759295 0.042855 0.024505 

0.578125 -0.01545 0.753806 0.041506 0.024071 

0.585937 -0.01491 0.747792 0.040046 0.023531 

0.59375 -0.01415 0.741246 0.03848 0.022773 

0.601562 -0.01336 0.733694 0.036793 0.021988 

0.609375 -0.01266 0.725801 0.035029 0.021281 

0.617187 -0.01184 0.717009 0.03317 0.020462 

0.625 -0.01076 0.707537 0.031236 0.019386 

0.632812 -0.0098 0.69774 0.029255 0.018426 

0.640625 -0.00877 0.687108 0.027215 0.017395 

0.648437 -0.00769 0.676123 0.025147 0.016318 

0.65625 -0.00657 0.664321 0.023043 0.015192 
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0.664062 -0.00546 0.652234 0.020935 0.014087 

0.671875 -0.00431 0.639646 0.018826 0.012934 

0.679687 -0.00317 0.626746 0.016731 0.01179 

0.6875 -0.00201 0.613272 0.014653 0.01063 

0.695312 -0.00084 0.599453 0.012609 0.009465 

0.703125 0.000287 0.585322 0.010608 0.008337 

0.710937 0.001425 0.570879 0.00866 0.0072 

0.71875 0.002509 0.556108 0.006774 0.006115 

0.726562 0.003553 0.54115 0.004958 0.005071 

0.734375 0.004578 0.525955 0.003219 0.004046 

0.742187 0.005543 0.510608 0.001564 0.003081 

0.75 0.006472 0.495095 3.79E-15 0.002153 

0.757812 0.007324 0.479512 -0.00147 0.0013 

0.765625 0.008147 0.463863 -0.00284 0.000477 

0.773437 0.008919 0.448128 -0.00411 -0.00029 

0.78125 0.009588 0.432522 -0.00527 -0.00096 

0.789062 0.010223 0.41688 -0.00632 -0.0016 

0.796875 0.010784 0.40151 -0.00728 -0.00216 

0.804687 0.011267 0.386092 -0.00812 -0.00264 

0.8125 0.011643 0.370864 -0.00886 -0.00302 

0.820312 0.011914 0.355954 -0.0095 -0.00329 

0.828125 0.012243 0.341216 -0.01004 -0.00362 

0.835937 0.012493 0.326875 -0.01049 -0.00387 

0.84375 0.012665 0.312685 -0.01085 -0.00404 

0.851562 0.012825 0.298969 -0.01112 -0.0042 

0.859375 0.012721 0.28554 -0.01131 -0.0041 

0.867187 0.01271 0.272394 -0.01142 -0.00409 

0.875 0.012632 0.26 -0.01148 -0.00401 

0.882812 0.012458 0.248298 -0.01149 -0.00383 

0.890625 0.012341 0.236432 -0.01141 -0.00372 

0.898437 0.012246 0.225308 -0.0113 -0.00362 

0.90625 0.011925 0.215248 -0.01117 -0.0033 

0.914062 0.011758 0.205103 -0.01098 -0.00313 

0.921875 0.011296 0.195991 -0.01079 -0.00267 

0.929687 0.011079 0.187284 -0.01057 -0.00246 

0.9375 0.010821 0.179423 -0.01035 -0.0022 

0.945312 0.010462 0.172141 -0.01012 -0.00184 

0.953125 0.010209 0.165692 -0.0099 -0.00159 

0.960937 0.009893 0.15976 -0.00968 -0.00127 

0.96875 0.009561 0.154391 -0.00945 -0.00094 

0.976562 0.00935 0.150111 -0.00927 -0.00073 
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0.984375 0.009048 0.146501 -0.0091 -0.00042 

0.992187 0.008753 0.143487 -0.00895 -0.00013 

1 0.008674 0.141532 -0.00884 -5E-05 

 

Table 55 Lifting-Line Data Used to Create Figures 95 – 102  

τ
t  Cx Cy CP CT 

0 0.004255 0.065276 -0.00408 0.004721 

0.007813 0.004283 0.065753 -0.0041 0.004693 

0.015625 0.004365 0.067184 -0.00417 0.004611 

0.023438 0.0045 0.069564 -0.0043 0.004476 

0.03125 0.004687 0.072888 -0.00446 0.004288 

0.039063 0.004923 0.077148 -0.00467 0.004052 

0.046875 0.005205 0.082335 -0.00492 0.003771 

0.054688 0.005528 0.088434 -0.0052 0.003447 

0.0625 0.005889 0.095432 -0.0055 0.003087 

0.070313 0.006281 0.103312 -0.00583 0.002695 

0.078125 0.006699 0.112054 -0.00617 0.002276 

0.085938 0.007138 0.121639 -0.00651 0.001838 

0.09375 0.00759 0.132041 -0.00685 0.001386 

0.101563 0.008048 0.143238 -0.00718 0.000928 

0.109375 0.008506 0.155201 -0.00749 0.00047 

0.117188 0.008956 0.167901 -0.00777 2E-05 

0.125 0.00939 0.181309 -0.008 -0.00041 

0.132813 0.009802 0.195392 -0.00819 -0.00083 

0.140625 0.010183 0.210116 -0.00832 -0.00121 

0.148438 0.010527 0.225445 -0.00838 -0.00155 

0.15625 0.010827 0.241342 -0.00837 -0.00185 

0.164063 0.011075 0.25777 -0.00827 -0.0021 

0.171875 0.011265 0.274689 -0.00808 -0.00229 

0.179688 0.011392 0.292057 -0.0078 -0.00242 

0.1875 0.011449 0.309834 -0.0074 -0.00247 

0.195313 0.011433 0.327975 -0.0069 -0.00246 

0.203125 0.011338 0.346439 -0.00628 -0.00236 

0.210938 0.011161 0.365179 -0.00554 -0.00219 

0.21875 0.0109 0.384151 -0.00468 -0.00192 

0.226563 0.010551 0.403309 -0.00369 -0.00158 

0.234375 0.010115 0.422608 -0.00259 -0.00114 

0.242188 0.009589 0.442 -0.00135 -0.00061 

0.25 0.008976 0.461438 -1.8E-18 -8.2E-19 

0.257813 0.008275 0.480877 0.001473 0.000701 
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0.265625 0.007488 0.500269 0.003061 0.001487 

0.273438 0.00662 0.519568 0.00476 0.002356 

0.28125 0.005672 0.538726 0.006562 0.003303 

0.289063 0.004651 0.557698 0.00846 0.004325 

0.296875 0.00356 0.576438 0.010447 0.005416 

0.304688 0.002406 0.594902 0.012513 0.00657 

0.3125 0.001195 0.613043 0.014647 0.00778 

0.320313 -6.5E-05 0.63082 0.016839 0.00904 

0.328125 -0.00137 0.648188 0.019077 0.010342 

0.335938 -0.0027 0.665107 0.021348 0.011677 

0.34375 -0.00406 0.681534 0.02364 0.013036 

0.351563 -0.00543 0.697432 0.025939 0.01441 

0.359375 -0.00682 0.712761 0.028231 0.015791 

0.367188 -0.00819 0.727485 0.030502 0.017169 

0.375 -0.00956 0.741568 0.032739 0.018533 

0.382813 -0.0109 0.754975 0.034926 0.019874 

0.390625 -0.01221 0.767676 0.03705 0.021183 

0.398438 -0.01347 0.779639 0.039097 0.02245 

0.40625 -0.01469 0.790835 0.041054 0.023666 

0.414063 -0.01585 0.801238 0.042908 0.024821 

0.421875 -0.01693 0.810822 0.044646 0.025908 

0.429688 -0.01794 0.819565 0.046256 0.026918 

0.4375 -0.01887 0.827445 0.047729 0.027843 

0.445313 -0.0197 0.834443 0.049053 0.028677 

0.453125 -0.02044 0.840542 0.050219 0.029413 

0.460938 -0.02107 0.845728 0.05122 0.030045 

0.46875 -0.02159 0.849989 0.052049 0.030569 

0.476563 -0.02201 0.853313 0.0527 0.030981 

0.484375 -0.0223 0.855693 0.053168 0.031278 

0.492188 -0.02248 0.857124 0.05345 0.031456 

0.5 -0.02254 0.857601 0.053544 0.031516 

0.507813 -0.02248 0.857124 0.05345 0.031456 

0.515625 -0.0223 0.855693 0.053168 0.031278 

0.523438 -0.02201 0.853313 0.0527 0.030981 

0.53125 -0.02159 0.849989 0.052049 0.030569 

0.539063 -0.02107 0.845728 0.05122 0.030045 

0.546875 -0.02044 0.840542 0.050219 0.029413 

0.554688 -0.0197 0.834443 0.049053 0.028677 

0.5625 -0.01887 0.827445 0.047729 0.027843 

0.570313 -0.01794 0.819565 0.046256 0.026918 

0.578125 -0.01693 0.810822 0.044646 0.025908 
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0.585938 -0.01585 0.801238 0.042908 0.024821 

0.59375 -0.01469 0.790835 0.041054 0.023666 

0.601563 -0.01347 0.779639 0.039097 0.02245 

0.609375 -0.01221 0.767676 0.03705 0.021183 

0.617188 -0.0109 0.754975 0.034926 0.019874 

0.625 -0.00956 0.741568 0.032739 0.018533 

0.632813 -0.00819 0.727485 0.030502 0.017169 

0.640625 -0.00682 0.712761 0.028231 0.015791 

0.648438 -0.00543 0.697432 0.025939 0.01441 

0.65625 -0.00406 0.681534 0.02364 0.013036 

0.664063 -0.0027 0.665107 0.021348 0.011677 

0.671875 -0.00137 0.648188 0.019077 0.010342 

0.679688 -6.5E-05 0.63082 0.016839 0.00904 

0.6875 0.001195 0.613043 0.014647 0.00778 

0.695313 0.002406 0.594902 0.012513 0.00657 

0.703125 0.00356 0.576438 0.010447 0.005416 

0.710938 0.004651 0.557698 0.00846 0.004325 

0.71875 0.005672 0.538726 0.006562 0.003303 

0.726563 0.00662 0.519568 0.00476 0.002356 

0.734375 0.007488 0.500269 0.003061 0.001487 

0.742188 0.008275 0.480877 0.001473 0.000701 

0.75 0.008976 0.461438 5.29E-18 2.46E-18 

0.757813 0.009589 0.442 -0.00135 -0.00061 

0.765625 0.010115 0.422608 -0.00259 -0.00114 

0.773438 0.010551 0.403309 -0.00369 -0.00158 

0.78125 0.0109 0.384151 -0.00468 -0.00192 

0.789063 0.011161 0.365179 -0.00554 -0.00219 

0.796875 0.011338 0.346439 -0.00628 -0.00236 

0.804688 0.011433 0.327975 -0.0069 -0.00246 

0.8125 0.011449 0.309834 -0.0074 -0.00247 

0.820313 0.011392 0.292057 -0.0078 -0.00242 

0.828125 0.011265 0.274689 -0.00808 -0.00229 

0.835938 0.011075 0.25777 -0.00827 -0.0021 

0.84375 0.010827 0.241342 -0.00837 -0.00185 

0.851563 0.010527 0.225445 -0.00838 -0.00155 

0.859375 0.010183 0.210116 -0.00832 -0.00121 

0.867188 0.009802 0.195392 -0.00819 -0.00083 

0.875 0.00939 0.181309 -0.008 -0.00041 

0.882813 0.008956 0.167901 -0.00777 2E-05 

0.890625 0.008506 0.155201 -0.00749 0.00047 

0.898438 0.008048 0.143238 -0.00718 0.000928 
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0.90625 0.00759 0.132041 -0.00685 0.001386 

0.914063 0.007138 0.121639 -0.00651 0.001838 

0.921875 0.006699 0.112054 -0.00617 0.002276 

0.929688 0.006281 0.103312 -0.00583 0.002695 

0.9375 0.005889 0.095432 -0.0055 0.003087 

0.945313 0.005528 0.088434 -0.0052 0.003447 

0.953125 0.005205 0.082335 -0.00492 0.003771 

0.960938 0.004923 0.077148 -0.00467 0.004052 

0.96875 0.004687 0.072888 -0.00446 0.004288 

0.976563 0.0045 0.069564 -0.0043 0.004476 

0.984375 0.004365 0.067184 -0.00417 0.004611 

0.992188 0.004283 0.065753 -0.0041 0.004693 

1 0.004255 0.065276 -0.00408 0.004721 

  

Table 56 CFD Data Used to Create Figures 103 – 107 0.0ˆ =yα  

ωx Mean Cx Mean Cy Mean CP Mean CT Mean Efficiency 

0.383276 0.000738 0.457668 0.011337 0.007886 0.695616 

0.335366 0.000385 0.457688 0.011656 0.008239 0.706847 

0.291623 -8.2E-08 0.45772 0.011993 0.008624 0.71908 

0.24842 -0.00046 0.457766 0.012387 0.009088 0.73366 

0.206379 -0.00098 0.457815 0.012819 0.009602 0.749024 

0.191638 -0.00117 0.45783 0.012975 0.00979 0.754525 

0.161622 -0.00154 0.457861 0.013294 0.010167 0.764774 

0.149052 -0.00169 0.457859 0.01342 0.010317 0.768759 

0.134147 -0.00186 0.457871 0.013564 0.010485 0.773005 

0 -0.00271 0.456819 0.014269 0.011332 0.794133 

  

Table 57 CFD Data Used to Create Figures 103 – 107 2.0ˆ =yα  

ωx Mean Cx Mean Cy Mean CP Mean CT Mean Efficiency 

0 -0.006267 0.458548 0.017940 0.014903 0.830743 

0.479095 -0.001123 0.458149 0.013289 0.009747 0.733442 

0.257974 -0.003302 0.458289 0.015269 0.011926 0.781036 

 

Table 58 CFD Data Used to Create Figures 103 – 107 2.0ˆ −=yα  

ωx Mean Cx Mean Cy Mean CP Mean CT Mean Efficiency 

0 -0.000334 0.457753 0.011928 0.008958 0.751055 

0.319397 0.002145 0.457397 0.009864 0.006479 0.656826 

0.171983 0.000749 0.457571 0.011009 0.007875 0.715345 
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Table 59 Lifting- Line Data Used to Create Figures 103 – 107 0.0ˆ =yα  

ωx Mean Cx Mean Cy Mean CP Mean CT Mean Efficiency 

0 -0.00256 0.461438 0.014841 0.011533 0.777101 

0.5 -0.00256 0.461438 0.014841 0.011533 0.777101 

 

Table 60 Lifting- Line Data Used to Create Figures 103 – 107 2.0ˆ =yα  

ωx Mean Cx Mean Cy Mean CP Mean CT Mean Efficiency 

0 -0.006267054 0.461438 0.018551 0.015243 0.821681 

0.5 -0.006267054 0.461438 0.018551 0.015243 0.821681 

 

Table 61 Lifting- Line Data Used to Create Figures 103 – 107 2.0ˆ −=yα  

ωx Mean Cx Mean Cy Mean CP Mean CT Mean Efficiency 

0 -8.3488E-05 0.461438 0.012367 0.009059 0.732522 

0.5 -8.3488E-05 0.461438 0.012367 0.009059 0.732522 
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