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ABSTRACT

Tropical Arithmetics and Dot Product

Representations of Graphs

by

Nicole Turner, Master of Science

Utah State University, 2015

Major Professor: Dr. David Brown
Department: Mathematics and Statistics

A dot product representation (DPR) of a graph is a function that maps each vertex

to a vector and two vertices are adjacent if and only if the dot product of their function

values is greater than a given threshold. A tropical algebra is the antinegative semiring

on IR∪{∞,−∞} with either min{a, b} replacing a+b and a+b replacing a ·b (min-plus),

or max{a, b} replacing a + b and a + b replacing a · b (max-plus), and the symbol ∞

is the additive identity in min-plus while −∞ is the additive identity in max-plus; the

multiplicative identity is 0 in min-plus and in max-plus. Recall the threshold dimension

of graph G is the minimum number of threshold graphs whose union is G.

We study DPRs in the context of tropical semi-rings, and discuss results on mini-

mizing the dimension of the space from which vectors must come in order to represent

certain classes of graphs. These results differ depending on whether min-plus or max-

plus is used, but a relationship is shown between the min-plus and max-plus results.

Finally we show that max-plus dot product dimension and the threshold dimension of

a graph are the same.

(30 pages)
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PUBLIC ABSTRACT

Tropical Arithmetics and Dot Product

Representations of Graphs

by

Nicole Turner, Master of Science

Utah State University, 2015

Major Professor: Dr. David Brown
Department: Mathematics and Statistics

In tropical algebras we substitute min or max for the typical addition and then

substitute addition for multiplication. A dot product representation of a graph assigns

each vertex of the graph a vector such that two edges are adjacent if and only if the dot

product of their vectors is greater than some chosen threshold. The resultS of creating

dot product representations of graphs using tropical algebras are examined. In particular

we examine the tropical dot product dimensions of graphs and establish connections to

threshold graphs and the threshold dimension of a graph.

(39 pages)
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Graph theory has applications in almost every field of study. In particular it is

often used in social, natural, and computer science situations. What is the best as-

signment of workers to available jobs? How many colors are required when coloring a

map to ensure that no two neighboring regions are colored the same color? What is the

optimal route to take when making multiple stops on a round trip journey? How can

airlines make most effective and efficient use of their fleet? Questions in social networks,

train schedules, computer chip manufacturing, DNA decoding, and biological evolution

all have solutions in graph theory. Many of these questions involve optimization. What

is the best, fastest, most efficient way to do something. Concerned only with sums,

minimums, and maximums, tropical numbers are a natural pair with graph theory to

help answer these questions of optimization. In this work we will explore the effect of

using tropical algebras when creating dot product representations of graphs and finding

the dot product dimension. Uncited definitions given can be found in sources such as

[8] or [5].

1.2 Basic Definitions

A graph G is an ordered pair (V,E) where V = V (G) is a set of elements called

vertices, and E = E(G) is a set of 2-element subsets of V called edges. Each edge can be

seen as a representation of some symmetric relation between it’s two constituent vertices,

these vertices are referred to as the edge’s endpoints. Two vertices that constitute an

edge are said to be adjacent and are neighbors of each other. If two vertices are adjacent

this may be denoted with the juxtaposition of their names. So, if u and v are adjacent

this may be denoted uv ∈ E as opposed to {u, v} ∈ E. We say a vertex is incident to

an edge if and only it is one of the endpoints of that edge.
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A graph is simple if no endpoints have more than one edge between them, and

no vertex is adjacent to itself. The graphs considered here are undirected ; meaning the

relation adjacent is symmetric.

It is convenient to have names for various structures found within a graph. To

assist in understanding these consider the graph, G, in Figure 1.1.

Figure 1.1: Gex: An example graph

The graph Gex is a simple undirected graph with vertex set V = {v1, v2, v3, v4, v5}

and edge set E = {v1v2, v1v3, v1v4, v2v3, v2v5, v3v4, v4v5}.

A path is a sequence of distinct vertices (except for possibly the first and last) with

each two consecutive vertices in the sequence being adjacent. The length of a path is

the number of edges used in the path. The distance between two vertices is the length

of the shortest path between them. In Gex (v1, v2, v3, v4) is a path of length 3, but the

distance between v1 and v4 is 1. We will use the notation Pn for a graph that is a path

on n vertices. A graph is connected if there is a path between every pair of vertices in

the graph.

If the first and last vertices of a path are the same the path is called a cycle. A

n-cycle is a cycle on n vertices, denoted as Cn. C3 and C4 are called a triangle and

a square respectively. A chord is an edge that connects two nonadjacent vertices of

a path or cycle. In Gex (v2, v3, v4, v1, v2) is a cycle with a chord v1v3 and the cycle

(v2, v3, v4, v5, v2) is chordless. A graph is called chordal if it has no chordless cycles.

Given two graphs, G = (V,E) and H = (W,F ), we say H is a subgraph of G if

W ⊆ V and F ⊆ E. The paths and cycles described above are subgraphs of Gex. An

induced subgraph of a graph G is a graph that can be obtained from G by deletion of a

selection of vertices and all edges incident to them. Some examples of induced subgraphs

of Gex are shown in Figure 1.2.

When every pair of vertices in a graph are adjacent we say that the graph is

complete. A complete graph on n vertices is denoted Kn. Every graph is a subgraph of

the complete graph on the same number of vertices, but not every graph is an induced
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Figure 1.2: Two induced subgraphs of Gex

subgraph of a complete graph. When a complete graph is a subgraph of a larger graph

those vertices form a clique, a set of pairwise adjacent vertices. The opposite of a clique

is an independent set, vertices which are pairwise nonadjacent. In Figure 1.1 {v1, v2, v3}

form a clique, as do {v1, v3, v4}. Vertices v1 and v5 form an independent set. The size

of the largest independent set in a graph G is denoted as α(G).

The complement of a graph G = (V,E) is the graph G = (V, F ) such that for any

vi, vj ∈ V we have vivj ∈ F if and only if vivj /∈ E. The union of graphs G1 = (V1, E1)

and G2 = (V2, E2) is the graph G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2). The intersection of G1

and G2 is the graph G1 ∩G2 = (V1 ∩ V2, E1 ∩ E2). An example of each a union and an

intersection of two graphs are shown in Figures 1.3 and 1.4.

Figure 1.3: The union of two graphs

Figure 1.4: The intersection of two graphs

1.3 Graph Classes and Parameters

By analyzing structures in the graph we can classify graphs and introduce param-

eters that can be compared across different classes. Many classes of graphs deal with

the connectivity of the graph, others with the presence or absence of certain structures.

We shall review some of these classes and parameters that are relevant to the later dis-

cussion.
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A k-partite graph is one in which the vertices can be partitioned into k indepen-

dent (partite) sets such that all edges in G join vertices from different partite sets. A

frequently studied class is bipartite graphs, i.e. 2-partite graphs. Because partite graphs

require independent sets there can be no complete k-partite graphs, k ≥ 2, using the

classical definition of complete; therefore we adopt a modified concept of completeness

when discussing them. A k-partite graph is considered complete when every pair of

vertices not in the same partite set are adjacent. Complete k-partite graphs are denoted

similarly to complete graphs, Kn1,n2,...,nk
, where n1, n2, . . . , nk are the sizes of the partite

sets. For example, a K3,2 is shown in Figure 1.5. A K1,m, with m ≥ 1, is called a star.

If v is the vertex in the partite set of size 1 the star is centered at v.

Figure 1.5: An example bipartite graph

A tree is a connected graph with no cycles. All trees are also bipartite graphs. A

caterpillar is a tree with a single path containing at least one endpoint of every edge.

A vertex not on this path is called a leaf. A star is a tree consisting of a central vertex

and n− 1 leaves adjacent to it. Examples of a tree and caterpillar can be seen in Figure

1.6. Since trees have no cycles they are chordal by default.

Figure 1.6: A tree that is not a caterpillar (left), and a caterpillar (right)

Threshold graphs are another class of graphs that are pertinent to the subject of

this paper. While there are many characterizations and definitions of threshold graphs

we include only three. For a graph G = (V,E) the following are equivalent:

1. G is a threshold graph;
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2. There are real weights w(i), i ∈ V , and a threshold value t such that w(i)+w(j) ≥ t

if and only if ij ∈ E (We may refer to the function w : V → R as the threshold

realization);

3. G can be built sequentially from the empty graph by adding vertices one at a time

where each new vertex, when added, is either isolated or adjacent to every existing

vertex;

4. There is no induced subgraph C4, P4, or 2K2 (shown in Figure 1.7).

Figure 1.7: Forbidden subgraphs of threshold graphs: C4, P4, 2K2 respec-
tively.

In this work we will be primarily concerned with the definition 2 given above.

However, definition 4 gives us the result that the complement of a threshold graph is a

threshold graph, since the set {C4, P4, 2K2} is closed under complementation [7].

The threshold dimension of G is the minimum number k of threshold subgraphs

T1, . . . , Tk of G such that the union of these graphs yields G and is denoted Θ(G). The

threshold dimension is well defined, since a single edge along with isolated vertices is

a threshold subgraph of G, and is bounded above by |E|. The problem of finding the

threshold dimension of a graph has been shown to be NP-hard and has been of interest

since the 80’s, see [1]. Though generally finding the threshold dimension of a graph is

hard it is known for many graphs and classes of graphs. When the threshold dimension

is not known a bound may be established that is based on the structure of the graph,

or a well-known parameter such as α(G). Here is on such from [1] whose proof is given

as an example of the arguments made for such results.

Theorem 1.1 ([1]). For every graph G on n vertices we have Θ(G) ≤ n− α(G). Fur-

thermore, if G is triangle-free, then Θ(G) = n− α(G).

Proof. Let S be a largest independent set. For each vertex u ∈ V − S, consider the

subgraph consisting of all the edges incident to u, i.e. the star centered at u. Each such

star is a threshold graph and all the stars together cover G since S has no edges. Thus

Θ(G) ≤ |V − S| = n − α(G). If, in addition, G is triangle free then every threshold
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subgraph is a star, and the centers of the stars that cover G form the complement of an

independent set. It follows then that Θ(G) ≥ n−α(G) and hence Θ(G) = n−α(G) for

every triangle-free graph.
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CHAPTER 2

BACKGROUND

2.1 Dot Product Representations

We will be examining a type of representation of graphs called a dot product rep-

resentation. A k-dot product representation of G = (V,E) is a function f : V → Rk

where for distinct vertices u, v ∈ V we have uv ∈ E if and only if f(u) · f(v) ≥ t given

t ≥ 0 and where · is the standard inner product on Rk. A graph with a k-dot product

representation is called a k-dot product graph.

Proposition 2.0.1. For every graph G there is an integer k so that G has a k-dot

product representation.

Proof. Let G = (V,E) with |E(G)| = k, and choose z ∈ R such that z2 ≥ t. Arbitrarily

assign each edge of G a unique label from 1 to k. Create the function f : V → Rk with

the ith component, with 1 ≤ i ≤ k, of f(v) equal to z if v is incident to edge i and equal

to 0 otherwise. Then, for v, u ∈ V , f(v) and f(u) will have z in the same component

if and only if they are incident to the same edge. Then we have vu ∈ E if and only if

f(v) · f(u) ≥ t. Note also that if vu /∈ E then f(v) · f(u) = 0. Therefore G is a k-dot

product graph.

2.1.1 Example Dot Product Representations

To better understand dot product representations of graphs consider the graph H

in Figure 2.1.

Using the method described in the proof of Proposition 1 we can create a 5-dot

product representation of H. A brief examination of the dot products of the following
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Figure 2.1: H: An example graph

vectors shows that they are a representation of H when we let t = 1:

f(v1) =



1

0

1

1

0


, f(v2) =



1

1

0

0

0


, f(v3) =



0

1

1

0

1


, f(v4) =



0

0

1

1

1



This is not the only dot product representation of H. We can make a 2-dot product

representation by following a similar procedure as above, only now we label the cliques

of the graph, instead of the edges. Here we labeled the top triangle as clique 1 and the

bottom triangle as clique 2. Again, let t = 1.

f(v1) =

1

1

 , f(v2) =

1

0

 , f(v3) =

1

1

 , f(v4) =

0

1



2.1.2 Dot Product Dimension

Since a primary motivation behind these representations is reducing the amount of

information required to represent a graph uniquely in a computer the question arises of

how small we can make these vectors. The minimum k ∈ N such that a k-dot product

representation of G exists is called the dot product dimension of G, denoted ρ(G). From

the proof of Proposition 1 we obtain an upper bound for this value, ρ(G) ≤ |E(G)|.

Thus if G is edgeless we may define ρ(G) = 0. While several upper bounds are known,

determining the value of this parameter for any given graph has been shown to be NP -

hard [3].

That is not to say that finding the dot product dimension of a graph is always

difficult. If we return to H in Figure 2.1 we have shown that ρ(H) ≤ 2. With careful

thought we can find a dot product representation of dimension 1, f(v1) = 2, f(v2) =
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1
2 , f(v3) = 2, f(v4) = 1

2 . Since only empty graphs have dot product representations of

dimension 0, we can say that for our example graph ρ(H) = 1. Indeed it is the plight of

many to determine which classes of graphs have easily computed ρ or which structures

give a bound on ρ.

2.1.3 Relevant Results

Often local or global properties that are used to classify graphs result in whole

classes of graphs having the same dot product dimension, some sort of formula for

finding it, or bounds on the dimension’s value. The following are some known results

about dot product dimension from [7] and [2].

• ρ(G) ≤ 1 if and only if no induced subgraph of G is either a 3K2, P4, or C4 if

and only if G has at most two nontrivial components, both of which are threshold

graphs. (Figure 2.2 shows a representation in one dimension of a graph with two

nontrivial components that are threshold graphs.)

Figure 2.2: ρ(2K2) = 1

• ρ(Cn) = 2 if n ≥ 4

• ρ(Pn) = 2 if n ≥ 4

• ρ(G) ≤ Θ(G)

• ρ(G) ≤ ρ(G− v) + 1 for v ∈ V

• ρ(G) ≤ n− 1

• If G is a tree, then ρ(G) ≤ 3

• If G is a caterpillar, then ρ(G) ≤ 2

• If G = Kn,m, then ρ(G) = min{n,m}
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• Let n1 ≥ n2 ≥ . . . ≥ np ≥ 1 be integers. Then ρ(Kn1,n2,...,np) = n2.

• Let G = (V,E), A ⊂ V , and KA be the clique on A. Then ρ(G∪KA) ≤ ρ(G) + 1.

2.1.4 As a Generalization of Intersection Representations

An intersection representation of a graph G assigns a set Sv to each vertex v

so that vivj ∈ E(G) if and only if Svi ∩ Svj 6= ∅. The smallest size of the union

of the sets assigned to the vertices in an intersection representation of a graph is the

intersection number of that graph. An intersection graph is one with an intersection

representation. Every graph is an intersection graph. The class of threshold graphs

defined in Chapter 1 is an example of a subclass of intersection graphs. Intersection

graphs and their many subclasses have been the subject of research for over half a century

because of the broadness of their applications. In the preface of [6] the authors state,

“Intersection graphs provide theory to underlie much of graph theory. They epitomize

graph-theoretic structure and have their own distinctive concepts and emphasis... They

have real applications to topics like biology, computing, matrix analysis, and statistics

(with many of these applications not well known).”

In fact, the concept of dot product representation is a generalization of intersection

representation and dot product dimension of intersection number [2]. Thus our work, an

expansion of the concept of dot product representation, is a contribution to the study

of intersection graphs as well.

2.2 Tropical Arithmetics

In this work we will be using two algebra systems called the tropcial semirings.

They are named so in honor of Imre Simon, a Brazilian mathematician and computer

scientist, [4] and are defined here. The first is the min-plus tropical semring, denoted T

we define as

(R ∪ {∞},⊕,⊗)

with operations

x⊕ y := min{x, y} and x⊗ y := x+ y.

The second, the max-plus tropical semiring denoted T̂, is defined similarly

(R ∪ {−∞}, ⊕̂ ,⊗)
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with

x ⊕̂ y := max{x, y} and x⊗ y := x+ y.

By letting the operator ⊗ take precedence when ⊕,⊕̂ and ⊗ occur in the same expression

it is easy to determine that associative, commutative, and distributive laws hold in

tropical arithmetics. For example in T we have

4⊗ (2⊕ 5) = 4⊗ 2 = 6 or 4⊗ (2⊕ 5) = (4⊗ 2)⊕ (4⊗ 5) = 6⊕ 9 = 6.

For the same question in T̂ we have

4⊗ (2 ⊕̂ 5) = 4⊗ 5 = 9 or 4⊗ (2 ⊕̂ 5 = (4⊗ 2) ⊕̂ (4⊗ 5) = 6 ⊕̂ 9 = 9.

Both operations also have identity elements with

x⊕∞ = x

x ⊕̂ −∞ = x

and

x⊗ 0 = x.

Tropical division is defined to be classical subtraction so we make no special notation

for this operation. Since there is no real number, x, such that 7⊕ x = 11 has a solution

there is no tropical subtraction. Thus T and T̂ meet all of the ring axioms except for the

existence of additive inverse, hence the name semiring. Perhaps not surprisingly T and

T̂ are isomorphic [4], meaning that there is a bijective homomorphism between them.

That is, there exists some bijective function f : T → T̂ (or the other way around) such

that for a, b ∈ T we have f(a+ b) = f(a) + f(b) and f(ab) = f(a)f(b). Essentially, this

means the semirings are the same, up to labeling.

Other mathematical concepts translate naturally over to tropical arithmetic. Expo-

nents can be treated as repeated multiplication (i.e. tropical exponentiation is classical

multiplication), so in tropical algebras
√
−1 = −.5 because (−.5)2 = −.5 ⊗ −.5 = −1.

The linear algebra operations of vector addition, scalar multiplication, matrix multipli-

cation, and the dot product of vectors all make perfect sense in the tropical semiring.

This last operation is of special importance to this work. We define the tropical dot
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product of two vectors of dimension n as the tropical sum of the component wise trop-

ical products. We will use � to denote the operation of tropical dot product in T and

�̂ in T̂. Then given two vectors, ~u = [u1, u2, . . . , un] and ~v = [v1, v2, . . . , vn], we have

~u� ~v := min{u1 + v1, u2 + v2, . . . , un + vn} in T

~u �̂ ~v := max{u1 + v1, u2 + v2, . . . , un + vn} in T̂.

For example, given ~v = [1, 2, 3, 4] and ~u = [7, 5, 3, 2] we have

~v � ~u = min{8, 7, 6} = 6

~v �̂ ~u = max{8, 7, 6} = 8.

Any operation not specifically designated as tropical (⊕, ⊕̂,⊗,�, �̂) should be considered

as arithmetic in real, not tropical.
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CHAPTER 3

TROPICAL DOT PRODUCT REPRESENTATIONS

Given the direct translation of the classical dot product to tropical arithmetics the

definition of a DPR changes little when done in tropical arithmetics. A tropical dot

product representation of G is a function f : V → Rk for some k such that, for any

x, y ∈ V , xy ∈ E if and only if f(x) � f(y) ≥ t or f(x) �̂ f(y) ≥ t. We will use the

notation ρT (G) and ρ
T̂

(G) to denote the tropical dot product dimension of G using min-

plus and max-plus algebras respectively. Note that although T and T̂ are isomorphic as

rings ρ
T

and ρ
T̂

differ, but we ultimately show a connection between the two.

Theorem 3.1. Every graph has a min-plus tropical dot product representation.

Proof. Let G be a graph on n vertices and set t > 0. Assign an ordering to the vertices,

{v1, v2, . . . vi, . . . , vn}. For f : V → Rn, build f(vi) component wise as follows:

component j of f(vi) =



t
3 if j = i

∞ if j < i

t if j > i and vivj ∈ E(G)

t
2 if j > i and vivj /∈ E(G)

Now, for vivj ∈ E(G) we have vi�vj = 4t
3 > t, but if vivj /∈ E(G) we have vi�vj = 5t

6 < t

as desired.

Corollary 3.1.1. Let G be a graph and v ∈ V (G). Then ρ
T

(G) ≤ ρ
T

(G− {v}) + 1.

Proof. Let k = ρ
T

(G− {v}) and choose f : V → T k be a min-plus k-dot product repre-

sentation of G with threshold t > 0. Now a min-plus (k+ 1)-dot product representation



14

f̂ of G can be formed by adding an extra coordinate to the representation f . Let

f̂(u) =



f(u)

t

 when u 6= v and uv ∈ E(G)

f(u)

t
2

 when u 6= v and uv /∈ E(G)

∞k

t
3

 when u = v

where ∞k is a vector of dimension k with all components equal to ∞.

Corollary 3.1.2. ρ
T

(G) ≤ n− 1

Proof. Let u, v ∈ V (G) such that uv ∈ E(G). Choose t ≥ 0 and let f : {u, v} → R

be the mapping f(u) = t and f(v) = t. Recursively apply Corollary 3.1.1 to build a

(n− 1)-dot product representation of G in T.

Theorem 3.2. Every graph has a max-plus tropical dot product representation.

Proof. Let G be a graph on n vertices and let the threshold be t > 0. A n-dot product

representation may be made in T̂ by placing t
2 in the ith component of f(vj) when

vivj ∈ E(G) or i = j.

Given a particular set of vectors, the resulting graph is dependent on the choice of

threshold, t. However, when given the graph and are left to determine the vectors we

find that the threshold does not influence the value of the tropical threshold dimension.

Theorem 3.3. The threshold, t, of any tropical dot product representation of a graph

G can be any arbitrary t > 0.

Proof. Let f : V → Rk be a tropical k-dot product representation of G with threshold

t∗. Then f̂ : V → Rk, f̂(u) = t
t∗ f(u), is a tropical k-dot product representation of G

with threshold t

Since our choice of threshold does not affect the tropical dot product dimension of

a graph, from here on we will put the threshold t = 1 unless otherwise noted.
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3.1 Results with Θ(G)

Note that for vectors u, v in one dimension v � u = v �̂ u, since the minimum

value of a set of size one is the same as the maximum value of that set. Hence if G can

be represented in one dimension we have ρ
T

(G) = ρ
T̂

(G). Thus the following theorem

holds also for ρ
T̂

(G).

Theorem 3.4. Let G be a graph. Then ρ
T

(G) = 1 if and only if G is a threshold graph.

Proof. ρ
T

(G) = 1⇔ (f : V → R such that f(v)�f(u) ≥ t⇔ vu ∈ E)⇔ (f(v)�f(u) ≥

t⇔ f(v) + f(u) ≥ t)⇔ G is a threshold graph.

This result implies that any graph with tropical dot product dimension 1 can have

at most one non-trivial component. This is different than the result for ρ(G) = 1, where

G could have 2 components that are non-trivial threshold graphs. Thus a 2K2 is an

example where ρ(G) differs from ρ
T

(G) and ρ
T̂

(G).

Due to the nature of ⊕ and ⊕̂ adding a dimension to a representation has limited

effects on the tropical dot product of two vectors from the representation. Suppose a

graph G has a dot product representation in Tk using a given threshold. Create a set of

vectors of dimension k+ 1, by adding an additional component to the end of each of the

vectors representing the vertices of G then consider the min-plus dot product graph of

these vectors, using the same threshold. If v�u < t in the k-dimensional representation

then there is a component sum that is less than 1 which will remain less than one in the

(k + 1)-dimensional representation. So adding a dimension to a set of vectors can only

yield a graph with an equal or smaller number of edges than the original. Conversely

in T̂ adding a component cannot remove edges. This quality, in T̂, is reminiscent of

the result of a union of graphs. The union of two graphs cannot have fewer edges than

either of the original graphs had. This caused us to search for a connection to threshold

dimension.

Theorem 3.5. ρ
T̂

(G) = Θ(G)

Proof. ρ
T̂

(G) ≤ Θ(G): Let t = 1 and G be a graph such that Θ(G) = m. Let

{G1, G2, . . . , Gm} be a set of threshold graphs that realize Θ(G). Let gi : R → R
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be the function for the threshold representation of Gi. Create f(vi) as follows:

component j of f(vi) =


gj(vi) when vi ∈ V (Gi)

0 otherwise

Thus we have an m-dimensional max-plus dot product representation of G and ρ
T̂

(G) ≤

Θ(G).

ρ
T̂

(G) ≥ Θ(G): Let (G) be a graph such that ρ
T̂

(G) = k. This means there is a

k-dimensional representation of G, call it f . By the theorem above we see that if we

consider the graph created by the dot product of vectors made of only the value of the

jth component of f(vi) for all vi ∈ G we have a threshold graph that is a subgraph of

G. By this consideration we find k threshold graphs such that the union of these graphs

gives us G. By the definition of threshold dimension we know that Θ(G) ≤ k and hence

Θ(G) ≤ ρ
T̂

(G)

Thus ρ
T̂

(G) = Θ(G).

This result gives us a wealth of free information about ρ
T̂

(G) and also gives us a

new way to explore the well researched parameter Θ. Problems and results dealing with

Θ(G) can now be rephrased in terms of ρ
T̂

(G). For example, from Theorem 1.1 we have:

Corollary 3.5.1. For every graph G on n vertices we have ρ
T̂

(G) ≤ n − α(G). Fur-

thermore, if G is triangle-free, then ρ
T̂

(G) = n− α(G).

Define the threshold graph intersection number as the minimum value for k such

that there exists a set of k threshold graphs, G1, G2, . . . , Gk, Gi = (V,E(Gi)), where

G = ∩ki=1Gi. We denote the threshold graph intersection number as Θ̂(G) for lack of

imagination. The intersection of two graphs cannot have more edges than either of the

original graphs. This hints at a connection between our new parameter and ρ
T

(G).

Theorem 3.6. For G = (V,E), ρ
T

(G) = Θ̂(G).

Proof. ρ
T

(G) ≥ Θ̂(G): Suppose ρ
T

(G) = k, and f : V → Rk is a k-tropical dot product

representation of G. Let vi represent the value of the ith component of f(v). Create a set

of Gi = (V,E(Gi)) which are the threshold graphs formed by fi(v) = vi for v ∈ V and

t = 1. If xy ∈ E(G) then x� y ≥ 1 so xi + yi ≥ 1 for all 1 ≤ i ≤ k. Hence xy ∈ E(Gi)
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for 1 ≤ i ≤ k and xy ∈ ∩ki=1E(Gi). If xy /∈ E(G) then x� y < 1 and there exists some

value of i for which xi + yi < 1. For this i, xy /∈ E(Gi) and hence xy /∈ ∩ki=1Gi. Thus

G = ∩ki=1Gi and ρ
T

(G) ≥ Θ̂(G).

ρ
T

(G) ≤ Θ̂(G): Let X = {G1, G2, . . . , Gk} be a set of threshold graphs on V such

that G = ∩ki=1Gi. Since each Gi is a threshold graph, let the function fi : V → R be

a mapping that realizes Gi as a threshold graph. Create f : V → Rk where for v ∈ V

the ith component of f(v) is fi(v). Since G = ∩ki=1Gi, for xy ∈ E(G) we know that

xy ∈ E(Gi) for 1 ≤ i ≤ k so fi(x) + fi(y) ≥ 1 and by definition f(x) � f(y) ≥ 1 as

desired. If xy /∈ E(G) there is a Gi with xy /∈ E(Gi). Then fi(x) + fi(y) < 1 and

f(x)� f(y) < 1. Thus f is a tropical k-dot product of G and ρ
T
≤ Θ̂(G).

Therefore ρ
T

(G) = Θ̂(G).

Recall the following theorem from set theory.

Theorem 3.7 (de Morgan’s Law). Let ∪ represent “or”, ∩ represent “and”, and ′

represent “not”. Then for two logical units E and F , (E ∪F )′ = E′∩F ′ and (E ∩F )′ =

E′ ∪ F ′.

Note that these laws also apply in set theory where ∪ denotes union, ∩ denotes

intersection, and ′ is complementation with respect to a superset of E and F . We are

now able to make a connection between ρ
T

(G) and ρ
T̂

(G) using de Morgan’s law and

their connections to Θ(G) and Θ̂(G).

Theorem 3.8. Θ̂(G) = ρ
T

(G) = ρ
T̂

(G) = Θ(G)

Proof. IfG is a threshold graph thenG is a threshold graph.[7] Thus ρ
T

(G) = ρ
T̂

(G) = 1.

If G is not a threshold graph then suppose ρ
T

(G) = k. Then there exist graphs

G1, G2, . . . , Gk, Gi = (V,E(Gi), such that G = ∩ki=1Gi. By de Morgan’s Law G =

∩ki=1Gi = ∪ki=1Gi and so ρ
T

(G) ≥ ρ
T̂

(G).

For ρ
T

(G) ≤ ρ
T̂

(G) suppose ρ
T̂

(G) = k then G = ∪ki=1Gi. By de Morgan’s Law

G = ∪ki=1Gi = ∩ki=1(G) so ρ
T

(G) ≤ ρ
T̂

(G).

The following corollary is a direct result of this theorem.

Corollary 3.8.1. If G is self complementary then ρ
T

(G) = ρ
T̂

(G).



18

3.2 Other Results

Beginning with the results above we can establish values and bounds on the tropical

threshold dimensions for non-threshold graphs. For many of the cases below the bound

or value of the max-plus dot product dimension has already been determined by those

studying threshold dimension and can be found in resources such as [5]. As the purpose

of this work is not to reiterate these findings, we predominantly give results about ρ
T

(G).

Corollary 3.8.2. ρ
T

(C4) = 2

Proof. The complement of a C4 is a 2K2. This graph has threshold dimension 2, so

ρ
T̂

(C4) = 2 by Theorem 3.5. Then by Theorem 3.8 ρ
T

(C4) = 2.

Corollary 3.8.3. ρ
T

(2K2) = 2

Proof. The complement of a 2K2 is a C4 which has threshold dimension 2. Thus by

Theorem 3.5 ρ
T̂

(2K2) = 2 so ρ
T

(2K2) = 2 by Theorem 3.8.

Corollary 3.8.4. ρ
T

(P4) = 2

Proof. A P4 is self complementary and has threshold dimension 2. Thus by Theorem

3.5 and Corollary 3.8.1 ρ
T̂

(P4) = ρ
T

(P4) = 2.

Though the threshold dimension of a graph, or its complement, generally may not

be known we can still say some things about the min-plus dot product dimension of it.

Many of these results echo the type of results that have been obtained regarding ρ(G),

some of which are listed in Section 2.1.3.

Corollary 3.8.5. For any graph G on n ≥ 3 vertices, let H be the largest induced

subgraph of G that is a threshold graph. If H has k vertices then ρ
T

(G) ≤ n− k + 1

Proof. Since any graph on n = 3 vertices is a threshold graph, every graph has an

induced subgraph that is a threshold graph on at least 3 vertices. Find the largest such

graph, call it H. By Theorem 3.4 there exists a function f that is a 1-dimensional

representation of this subgraph. Now apply Lemma 3.1.1 n− (k − 1) times to create f̂

an n− k + 1 tropical dot product representation of G.
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A result for ρ(G) is that by adding edges to G to form a clique on some subset

of vertices of G the dot product dimension is increased by at most 1. The join of two

graphs, G1 = (V1, E1) and G2 = (V2, E2), is the graph G1∨G2 = G1∪G2∪KV1,V2 , where

KV1,V2 is the bipartite graph with V1 as one partite set and V2 as the other. In other

words, G1 ∨G2 adds an edge from every vertex of G1 to every vertex of G2. When G2

is a complete graph this operation does not increase the tropical dot product dimension

of a graph:

Lemma 3.8.1. Let G be a graph and Kn a complete graph on n-vertices. Then ρ
T

(G∨

Kn) = ρ
T

(G).

Proof. Let ρ
T

(G) = k and f : V (G)→ Rk be a tropical k-dot product representation of

G. Let H = G ∨Kn and let g : V (H)→ Rk be the mapping where

g(vi) =


f(vi) when vi ∈ V (G)

~1k when vi ∈ Kn

where (1k) is the vector of entries equal to 1 of dimension k. Now the vertices of the

Kn are adjacent to all vertices in H, but the adjacencies between vertices originally in

G remain as they were.

Note that this same proof works to show that ρ
T̂

(G ∨Kn) = ρ
T̂

(G).

Theorem 3.9. Let G be a complete k-partite graph. Then ρ
T

(G) ≤ k.

Proof. Let t = 1. Consider the function f : V → Rk that maps vertices in partite set i,

1 ≤ i ≤ k, to the vector with entry i equal to 0 and all other entries equal to 1. Suppose

vp and vq are in different partite sets; then f(vp) � f(vq) = 1. Suppose vp and vq are

in the same partite set; then f(vp)� f(vq) = 0. Thus we have a tropical k-dot product

representation of a complete k-partite graph.

If given only a little more information about the sizes of the partite sets we improve

the results.

Corollary 3.9.1. Let G be a complete k-partite graph with the size of each partite set

greater than 1. Then ρ
T

(G) = k.
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Proof. ConsiderG which consists of k components that are complete graphs. The thresh-

old dimension of a disconnected graph must be at least the number of components, and

exactly that number when each component is a threshold graph. Since a complete graph

is a threshold graph we have Θ(G) = k and hence ρ
T

(G) = k by Theorem 3.8.

Corollary 3.9.2. Let G be a complete k-partite graph with m (m < k) of the partite

sets of cardinality 1. Then ρ
T

(G) = k −m.

Proof. Let Ĝ be the graph induced on the k −m partite sets of size greater than 1. By

Corollary 3.9.1 ρ
T

(Ĝ) = k −m. Now apply Lemma 3.8.1 m times to add m K1s to Ĝ

to have a tropical (k −m)-dot product representation of G.

We saw above that ρ(2K2) < ρ
T

(2K2). Consider now Km,n where n,m > 2. From

Corollary 3.9.1 we know ρ
T

(Km,n) = 2 but ρ(Km,n) = min{m,n} > 2. Thus we have

examples of ρ(G) ≤ ρ
T

(G) and ρ(G) ≥ ρ
T

(G) so we cannot use one as a bound of the

other. In [7] it was shown that ρ(G) ≤ Θ(G) so ρ(G) ≤ ρ
T̂

(G) for any graph.

It was also shown in [7] that if T is a tree then ρ(T ) ≤ 3. A bound on ρ
T

for trees

in general has not been established, but we have been able to establish the same bound

for ρ
T

of caterpillars as for ρ in [7]:

Theorem 3.10. Let G be a caterpillar. Then ρ
T

(G) ≤ 2.

Proof. Proof by construction: First we will construct a min-plus dot product represen-

tation of a path of longest length. Find such a path and label the vertices p1, p2, . . . , pm

beginning at one end and proceeding down the path. Let vij be the jth leaf attached at

vertex pi. A caterpillar labeled in this way is shown in Figure 3.1. Choose k ≥ 2 and let

di = b i−12 c for vertex pi, 1 ≤ i ≤ m. Then give each vertex a function value as follows:

f(pi) =



 1
k+di

k+di
k+di+1

 when i is odd

 k+di
k+di+1

1
k+di+1

 when i is even
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Consider vertices pj and pk, and without loss of generality let j < k. If they are

adjacent then by construction f(pj) � f(pk) ≥ 1. If they are not adjacent and both j

and k are odd then the sum of the first components will be less than one, if they’re both

even the sum of the second components will be less than 1. If they are nonadjacent and

j is odd and k is even then k− j ≥ 3 so dj < dk and the sum of the second components

of the vectors will give
k+dj

k+dj+1 + 1
k+dk+1 < 1 since 1

k+dk+1 <
1

k+dj+1 . Similarly if j is

even and k is odd then the sum of the first components is less than 1. For all these cases

f(pj)� f(pk) < 1 as desired.

Figure 3.1: B: A caterpillar with its vertices labeled

Now for vij ,

f(vij ) =

1

1

− f(pi)

Figure 3.2 shows a 2-dot product representation of B using this construction with

k = 2.

Figure 3.2: A min-plus 2-dot product representation of B

By construction these leaves are adjacent to pi. There are 10 other types of vertices

it should not be adjacent to. In each case the progressively increasing denominator and

the alternating nature of the vector components cause the tropical dot product to fail

to reach 1. In all these cases either the sum of one set of components is of two values

less than 1
2 or of a value of more than 1

2 and a value smaller than needed to add to 1.

The following tables detail each of these cases and tells which of the sets of components
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fails to add to 1. First consider f(vij )� f(vkk)

i k components whose sum is < 1

even even 1st

odd even 1st

odd odd 2nd

even odd 2nd

Now consider f(vij )� f(pk)

i k index constraints components whose sum is < 1

even odd i 6= k 1st

odd even i 6= k 2nd

even even i < k 2nd

i > k 1st

odd odd i < k 1st

i > k 2nd

Thus f : V → R2 as described above produces a tropical dot product representation

of dimension 2, and ρ
T

(G) ≤ 2 for any caterpillar. ρ
T

(G) = 2 when G is a caterpillar

that is not a threshold graph.

This also gives a value for non threshold subgraphs of caterpillars, i.e. paths.

Corollary 3.10.1. ρ
T

(Pn) = 2 for n > 3.

Proof. Since Pn is a caterpillar, by Theorem 3.10 and Theorem 3.4 ρ
T

(Pn) = 2 when

n > 3.

Theorem 3.10 also reduces the min-plus dot product dimension upper bound for

any graph that has an induced subgraph that is a caterpillar which is at least 2 vertices

larger than it’s largest induced subgraph that is a threshold graph.

Corollary 3.10.2. ρ
T

(Cn) ≤ 3.
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Proof. If n ≤ 4 the tropical dot product dimension has been shown. Let n ≥ 5. For

v ∈ V , Cn − v is a path, which has dimension 2. Then by Lemma 3.1.1 ρ
T

(Cn) ≤

ρ
T

(Cn − v) + 1 hence ρ
T

(Cn) ≤ 3.

Because of the linear nature of caterpillars we are able to use the labeling system

in Theorem 3.10 on disconnected graphs where each component is a caterpillar.

Corollary 3.10.3. Let G be a graph with k > 1 components that are caterpillars. Then

ρ
T

(G) = 2.

Proof. Find a path of longest length for each caterpillar. Beginning with one caterpillar,

label the vertices following the pattern from Theorem 3.10. When a caterpillar is com-

pletely labeled continue the labeling on another caterpillar beginning the path labels

with 2 more than the highest path label already used. By design the construction in

Theorem 3.10 connects path vertex pi only to pi−1 and pi+1. Thus the last vertex of

one caterpillar and the first of another will not be adjacent, and the rest of the labeling

provides only the desired adjacencies as shown in the proof of the theorem above.

We have already seen that ρ does not necessarily relate to ρ
T

and is a lower bound

for ρ
T̂

. It is yet to be determined if there is a bounding relationship between the min-plus

and max-plus dot product dimensions of a graph.

Theorem 3.11. There exist graphs such that ρ
T

(G) 6= ρ
T̂

(G)

Proof. Θ(P6) = 3⇒ ρ
T̂

(P6) = 3 but ρ
T

(P6) = 2 by Corollary 3.10.1.

Consequently, if there is to be a bounding of one by the other, we have only one

option.

Conjecture 3.11.1. ρ
T

(G) ≤ ρ
T̂

(G) for all G.
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CHAPTER 4

APPLICATION AND FUTURE WORK

4.1 Application

The main course of our study has been working with graphs to find tropical dot

product representations, and find values and bounds for tropical dot product dimensions.

The situation can be viewed from the other direction. Every set of vectors yields a

variety of tropical dot product graphs depending on our choice of threshold and whether

we work in T or T̂. This leads to the possibility of many applications for these kinds of

graph representations. A natural association with tropical dot product representations

is with qualification questions. Min-plus representations can evaluate situations where

all of the qualifications must be met. Max-plus representations can evaluate situations

where only one of many qualifications need be met. We give a few basic examples to

illustrate the applications. We set our examples in a classroom with six students: Andy,

Bryn, Chuck, Darby, Elian, and Fran. These students will be represented in graphs by

a vertex labeled with the first letter of their name.

Example 4.0.1. A math project

The teacher wants to pair the students up to work on a research project. The

student pairs will research a mathematical question, using computer programs to aid in

their study, and then will write up a report on their findings. In order for the student

pairs to be successful it is important that each pair has sufficient skill between them

to complete all the tasks required. The teacher decided to have the students rate their

skills in three areas — computer use, mathematics, and english — as an integer in the

range [−2, 2], with −2 meaning no skill and 2 very skilled. Then, shown in Table 4.1, a

vector for each student is created representing their answers: [computer,math, english].
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Table 4.1: Student’s response vectors

Name Computer Math English

Andy [1, 1, 1]

Bryn [-1, 1, 2]

Chuck [2, 2, -1]

Darby [0, 0, 1]

Elian [1, -1, 2]

Fran [2, 0, -1]

The teacher can then decide on an appropriate threshold and create a tropical dot

product graph. A min-plus dot product graph is constructed since the teacher wants

the student pairs to have adequate skill in all 3 areas, not just one. The teacher decides

on a threshold of 0 and produces the graph in Figure 4.1.

Figure 4.1: The min-plus dot product graph with t = 0

Each edge represents a pair of students whose scores add to 0 or greater and hence

could be paired. Using only Figure 4.1 it is unclear how the pairs should be selected.

Any edge indicates an acceptable pair, but are there pairs that would match better than

others? A higher threshold would show pairs that have even higher competence levels

in each subject, potentially proving for a better experience and better results on the

project. If the teacher uses t = 1 instead the graph in Figure 4.2 is obtained. If the

teacher wants each pair to have this higher skill level then Andy and Darby can only be

paired with each other. Though Bryn and Chuck could be a pair Fran and Elian cannot

so we use the other pairs to maintain the higher skill level in each pairing. The teacher

then makes the pairs Andy with Darby, Fran with Bryn, and Elian with Chuck.

This suggests another problem to investigate.
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Figure 4.2: The min-plus dot product graph with t = 1

Example 4.0.2. A general project

Suppose in Example 4.0.1 the teacher wanted to allow students to select a difficult

research project from one of three subject areas instead of giving the same project to

each group. The students would be paired up and then complete a project that would

involve extensive research or problem solving. The teacher wants each student pair to

have a subject that both students excel at so they can work as equals on the project.

The teacher can use the same ranking system and data from Example 4.0.1 but since

each pair only needs to have high marks in one subject area, instead of all 3, the teacher

used the max-plus dot product representation. Ideally each student pair would have a

subject that both students ranked as a 2 so the teacher begins with a threshold of 4. This

produces the graph in Figure 4.3. However, with t = 4 Darby is left as an independent

vertex. Since Fran and Bryn are only adjacent to Chuck and Elian, respectively, the

teacher could pair Andy and Darby as the only unmatched ones. This would provide the

highest possible skill ranking sum for two of the three pairs, but it is uncertain if Darby

Figure 4.3: The max-plus dot product graph with t = 4
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Figure 4.4: The max-plus dot product graph with t = 3

and Andy’s skills would be high enough in an area to complete the project. If t = 3

the graph, in Figure 4.4, is connected and there are multiple ways the students can be

paired such that each group has one skill that both students excel at. It is interesting

to note that in the graph when t = 3 Andy and Darby are not adjacent. The teacher

can still pair Fran and Chuck as well as Andy and Elian, which pairs were adjacent with

t = 4, and then pair Bryn with Darby for the highest possible competency level for each

group.

Example 4.0.3. Career day

The six students are to be assigned one of six jobs to experience for a day. Using

the data collected for Example 4.0.1 the teacher decides to make a min-plus tropical

dot product bipartite graph to show which students would be qualified to perform each

job. To assign vectors for the jobs the teacher inverts the scale used by the students.

In the vector for each job a value of −2 means much skill is required in that area and

2 means no particular skill in that area is required to successfully perform the job. To

make the graph bipartite two additional components are added to both the student and

job vectors. The first additional component is a 2 if the vector represents a student,

0 otherwise. The second additional component is a 2 if the vector represents a job, 0

otherwise. The vectors for the jobs and the student vectors with the added components

are Tables 4.2 and 4.3, respectively.

All of the students need to be assigned to a job, so a perfect matching, or a set of edges

such that each vertex belongs to exactly one of them, is required in our graph. An edge

in the tropical dot product graph with t = 1 indicates that the student exceeds the skill

level requirements for the job. Figure 4.5 shows that no perfect matching exists using
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Table 4.2: Job requirement vectors

Job Computer Math English Student Job

Cashier [1, 1, 2, 0, 2]

Buisness Manager [0, 0, -1, 0, 2]

I.T. [-2, 0, , 2, 0, 2]

Writer [-1, 2, -2, 0, 2]

Secretary [0, 1, 0, 0, 2]

Program Developer [-2, -1, 2, 0, 2]

Table 4.3: Student’s response vectors with added components

Name Computer Math English Student Job

Andy [1, 1, 1, 2, 0]

Bryn [-1, 1, 2, 2, 0]

Chuck [2, 2, -1, 2, 0]

Darby [0, 0, 1, 2, 0]

Elian [1, -1, 2, 2, 0]

Fran [2, 0, -1, 2, 0]

this threshold. Students are still qualified for a job if the dot product of the vectors

is only 0 so the teacher considers the graph with t = 0. This graph looks much more

likely to contain a perfect matching. Keeping in mind that an edge connected Andy

and Secretary when t = 1, if a perfect matching can be found using that edge it would

Figure 4.5: A min-plus dot product graph with t = 1

Figure 4.6: A min-plus dot product graph with t = 0
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be a better choice than one that does not. In fact (fortunately for the teacher) such a

matching exists as shown in Figure 4.7.

Figure 4.7: A perfect matching is in thick red lines

4.2 Future Work

Much remains to be determined about tropical dot product graphs and their di-

mensions. We conclude this work with a list of open questions.

1. Is ρ
T

(G) ≤ ρ
T̂

(G) for all graphs?

2. Can we determine ρ
T̂

(G) of graphs for which Θ(G) is unknown?

3. Characterize k-dot product graphs under T.

4. Does ρ
T

(Cn) = 3 for all n ≥ 5?

5. Does ρ
T

(T ), where T is any tree, have an upper bound?

6. Threshold graphs are a subclass of interval graphs. Is there an upperbound for

ρ
T

(G) where G is an interval graph?

7. What, if any, connection is there between other graph properties and ρ
T

?

Finally, we have shown that consideration of dot product representations of graphs

in algebraic systems other than the standard reals with classical addition and multipli-

cation is worthwhile. In which other fields, rings, or semirings can we create dot product

representations?
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