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ABSTRACT 

Image Blur Detection with Two-Dimensional Haar Wavelet Transform 

 

by 

 

Sarat Kiran Andhavarapu, Master of Science 

 

Utah State University, 2015 

 

 

Major Professor: Dr. Vladimir Kulyukin 

Department: Computer Science 

 

 

An algorithm is presented for image blur detection with the use of Two-

Dimensional Haar Wavelet transform (2D HWT). The algorithm classifies an image as 

blurred or sharp by splitting the image into N x N tiles, applying several iterations of the 

2D HWT to each tile, and grouping horizontally, vertically, and diagonally connected 

tiles with pronounced changes into tile clusters. Images with large tile clusters are 

classified as sharp. Images with small tile clusters are classified blurred. If necessary, the 

blur extent can be estimated as the ratio of the total area of the connected tile clusters and 

the area of the image. When evaluated on a sample of five hundred images, the algorithm 

performed on par or better than two other blur detection algorithms found in the 

literature. The effect of blur detection on skewed barcode scanning is investigated by 

integrating the presented blur detection algorithm into a skewed barcode scanning 

algorithm. The experimental results show that blur detection had a positive effect on 

skewed barcode scanning rates and OCR rates.      

  (46 pages) 
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PUBLIC ABSTRACT 

 

Image Blur Detection with Two-Dimensional Haar Wavelet Transform 

Sarat Kiran Andhavarapu 

 

             Efficient detection of image blur and its extent is an open research problem in 

computer vision. Image blur has a negative impact on image quality. Blur is introduced 

into images due to various factors including limited contrast, improper exposure time or 

unstable device handling.  Toward this end, an algorithm is presented for image blur 

detection with the use of Two-Dimensional Haar Wavelet transform (2D HWT). The 

algorithm is experimentally compared with two other image blur detection algorithms 

frequently cited in the literature. When evaluated over a sample of images, the algorithm 

performed on par or better than the two other blur detection algorithms.  
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CHAPTER 1 

INTRODUCTION 

Many products sold worldwide have nutrition labels (NLs). In the U.S., the 

display of nutrition information is mandated by the Nutrition Education and Labeling Act 

(NLEA) of 1990 [1]. Similar initiatives or legislative acts (e.g., EU FLABEL [2]) exist in 

other countries. Unfortunately, even highly motivated consumers, who look for NLs to 

make healthy food choices, sometimes find it difficult to locate and to comprehend 

nutrition information on many products [3]. Recent investigations of NL use by 

consumers have used digital cameras to track consumers’ eye movements to better 

understand how consumers locate and understand NLs [4].  

In a previous research project of the USU Computer Science Assistive 

Technology Laboratory, a system was implemented for effective use of nutrition label 

use on smartphones [5]. The system’s front end is implemented as a smartphone 

application. The application runs on the Google Nexus 4 smartphone with Android 4.3 or 

4.4. The system’s back end is currently a four node Linux cluster used for image 

recognition and data storage. 

The front end smartphone sends captured frames to the back end cluster across a 

wireless data channel (e.g., 3G/4G/Wi-Fi) where barcodes, both skewed and aligned, are 

recognized [6]. Corresponding NLs are retrieved from a cloud database, where they are 

stored as HTML documents, and sent across the wireless data channel back to the 
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smartphone where the HTML documents are displayed on the touchscreen. Wikipedia 

links to important nutrition terms are embedded for better comprehension. 

 A nutrition label crawler [5] was implemented to get the nutrition table 

information from various websites. The current version of the crawler scrapes three 

public web sites dedicated to nutrition: www.directionsforme.org, 

www.smithsfoodanddrug.com, www.digit-eyes.com. Each URL is parsed with the 

Python BeautifulSoup library (http://www.crummy.com/software/BeautifulSoup/) 

implemented on top of the popular Python XML and HTML parsers LXML (lxml.de) and 

HTML5LIB (http://code.google.com/p/html5lib/) . Each URL is parsed to obtain the NL, 

ingredients, warnings, and categories. When this information is extracted, a new HTML 

document is generated that contains not only the extracted information but also embedded 

Wikipedia links to all nutrition terms used in the tabular part of the NL. A path to this 

HTML document is saved in a database under a specific barcode. The NL database 

currently includes 200,000 products compiled from public web sites by the crawler. 

When a barcode is recognized at the back end in an image sent to it from the 

smartphone, its HTML document (if there is one) is sent back to the smartphone and 

displayed on the touchscreen, as shown in Figure 1.1. Consumers can use standard touch 

gestures (e.g., zoom in/out, swipe) for manipulating the label’s surface size or browsing 

its contents. For example, Figure 1.1 (left) shows the lower part of the NL displayed in 

Figure 1.1 (right) after the user does a down swipe on the touchscreen.  When the user 

clicks on an embedded link, a Wiki page for that nutrient is displayed, as shown in Figure 

1.2. 

http://www.digit-eyes.com/
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Figure 1.1 Upper part of NL (left); Lower part of NL (right)  

 

 The nutrition label crawler was a temporary solution. Some sites may contain 

inaccurate or obsolete nutrition information. Web site scraping is unreliable in the long 

term in that a site that currently permits robots may prohibit them in the future. 

Consequently, the USU CSATL currently has ongoing projects to automate NL scanning 

with computer vision and OCR [6]. 
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Figure 1.2 Wiki page for Nutrient A 

While processing an image for subsequent skewed barcode scanning or OCR, the 

blurriness of an image plays a major role on the accuracy of specific barcode scanning or 

OCR algorithms. For example, in [7, 8] an algorithm is developed for in-place vision-

based skewed barcode scanning with relaxed pitch, roll, and yaw camera alignment 

constraints. The skewed barcode scanning experiments were conducted on a set of 506 

video recordings of common grocery products. Experiments with the algorithm showed 

that the scanning results were substantially higher on sharp images than on blurred ones.  
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A limitation of that algorithm was that it did not filter the blurred frames out of 

the barcode localization and scanning process. 

The same limitation was experimentally discovered in another algorithm that was 

developed for mobile vision-based localization of skewed nutrition labels (NLs) on 

grocery packages that maximizes specificity, i.e., the percentage of true negative matches 

out of all possible negative matches [9]. The NL localization algorithm works on frames 

captured from the smartphone camera’s video stream and localizes NLs skewed up to 35-

40 degrees in either direction from the vertical axis of the captured frame. The NL 

localization algorithm uses three image processing methods: edge detection, line 

detection, and corner detection. Experimentally it is discovered that the majority of false 

negative matches were caused by blurred images. 

Both the Canny edge detector [10] and dilate-erode corner detector [11] used in 

the algorithm require rapid and contrasting changes to identify key points and lines of 

interest. These data cannot be readily retrieved from blurred images, which results in run-

time barcode scanning and NL localization failures. Consequently, effective image blur 

detection methods will likely improve both skewed barcode scanning and NL localization 

rates. 

The remainder of our report is organized as follows. In Chapter 2, we present and 

analyze related work. In Chapter 3, we outline the details of our image blur detection 

algorithm. In Chapter 4, we present our experiments with the blur detection algorithm 

and experimentally compare the algorithm’s performance with two other blur detection 

algorithms found in the literature [12, 13]. In Chapter 5, the results of the experiments are 
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discussed. Chapter 6 summarizes our findings, presents our conclusions, and outlines 

some research venues we would like to pursue in the future. 
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CHAPTER 2 

RELATED WORK 

In this chapter, we review several existing algorithms for blur detection frequently 

cited in the literature.  

Mallat and Hwang [14] mathematically prove that signals carry information via 

irregular structures and singularities. In particular, they show that the local maxima of the 

wavelet transform detect the locations of irregularities. For example, the 2D wavelet 

transform maxima indicate the locations of edges in images. The Fourier analysis [15], 

which has been traditionally used in physics and mathematics to investigate irregularities, 

is not always suitable to detecting the spatial distribution of such irregularities. 

According to Tong et al. [13], image blur detection methods can be broadly 

classified as direct or indirect. Figure 2.1 shows different edges present in an image. 

Indirect methods characterize image blur as a linear function 𝐼𝐵 = 𝐵 ∙ 𝐼𝑂 + 𝑁, where 𝐼𝑂 is 

the original image, 𝐵 is an unknown image blur function, 𝑁 is a noise function, and 𝐼𝐵 is 

the resulting image after the introduction of the blur and noise.  

Indirect methods consider B unknown and use various techniques to estimate it. 

Rooms et al. [16] propose a wavelet-based method to estimate the blur of an image by 

looking at the sharpness of the sharpest edges in the image. The Lipschitz exponents [17] 

are computed for the sharpest edges and a relation between the variance of a Gaussian 
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point spread function and the magnitude of the Lipschitz exponent is shown to be 

dependent on the blur present in the image and not on the image contents. 

 

 
 

Figure 2.1 Edge classification 

 

Venkatakrishnan et al. [18] show that the wavelet transform modulus maxima 

(WTMM) detect all the singularities of a function and describe strategies to measure their 

regularity and propose an algorithm for characterizing singularities of irregular signals. 

The researchers present a method for measuring the Lipschitz exponents that uses the 

area between the straight line satisfying specific properties and the curve of the WTMM 

in a finite scale interval in the log-log plot of scales versus WTMM as the objective 

function. 

Pavlovic and Tekalp [19] propose a formulation of the maximum likelihood (ML) 

blur identification based on parametric modeling of the blur in the continuous spatial 

coordinates. Unlike ML blur identification methods based on discrete spatial domain blur 
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models, their method finds the ML estimate of the extent and the parameters of arbitrary 

point spread functions that admit a closed form parametric description in the continuous 

coordinates. Experiments show significant results for the cases of 1D uniform motion 

blur, 2D out-of-focus blur, and 2D truncated Gaussian blur at different signal-to-noise 

ratios. 

Panchapakesan et al. [20] present an indirect method for image blur identification 

from vector quantizer encoder distortion. The method takes a set of training images from 

all candidate blur functions. These sets are used to train vector quantizer encoders. The a-

priori unknown blur function is identified from a blurred image by choosing among the 

candidate vector quantizer encoders the encoder with the lowest distortion. The 

researchers investigated two training methods: the generalized Lloyd algorithm and a 

non-iterative discrete cosine transform (DCT)-based approach. 

Direct methods estimate blur extent on the basis of some distinctive features 

directly found in images such as edges, corners, or discrete cosine transform (DCT) 

coefficients. Marichal et al. [21] estimate image blur based on the histogram computation 

of non-zero DCT coefficients computed from MPEG or JPEG compressed images. The 

proposed method takes into account the DCT information from the entire image. A key 

assumption is that any edge type will likely cross some 8 x 8 blocks at least once in the 

image. The camera and motion blur is estimated through the globalization among all 

DCT blocks. 

Tong et al. [13] propose a direct method similar to the one proposed in this paper 

in that it also uses the 2D HWT. Their method is based on the assumption that the 
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introduction of blur has different effects on the four main types of edges shown in Figure 

1: Dirac, A-Step, G-Step, and Roof. It is claimed that in blurred images the Dirac and A-

Step edges disappear while G-Step and Roof edges lose their sharpness. The method 

classifies an image as blurred on the basis of the presence or absence of Dirac and A-Step 

edges and estimates the blur extent as the percentage of G-Step and Roof edges present in 

the image.     

The algorithm presented in this report is also based on the 2D HWT. However, it 

does not extract any explicit features such as edges or corners from the image. Instead, it 

uses the 2D HWT to detect square tiles with pronounced changes and combines those 

tiles into larger segments without explicitly computing the causes of those changes. This 

algorithm continues our investigation of vision-based barcode and nutrition label 

scanning on mobile phones with relaxed pitch, yaw, and roll constraints [7, 8]. As we 

have previously reported, most false negatives in our experiments were caused by blurred 

images. While newer models of smartphones will likely have improved camera stability 

and focus capabilities, software techniques to detect blurred images can still make vision-

based skewed barcode scanning and nutrition information extraction more reliable and 

efficient. Since our barcode scanning and nutrition information extraction algorithms are 

cloud-based, eliminating blurred images from processing will likely improve the network 

throughput and decrease data plan consumption rates.
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CHAPTER 3 

BLUR DETECTION ALGORITHM 

3.1 Overview 

      In this chapter, we describe our blur detection algorithm based on the 2D HWT. The 

chapter consists of two parts. The first part briefly reviews the formal foundations of the 

2D HWT [12].  The second part describes our algorithm.  Images are split into N x N 

tiles, by applying several iterations of the 2D HWT on each tile and grouping 

horizontally, vertically, and diagonally connected tiles with pronounced changes into title 

clusters. Images with large title clusters are classified as sharp. Images with small clusters 

are classified as blur.  

 

3.2 2D Haar Transform 

Our implementation of the 2D HWT is based on the approach taken in [12] where 

the transition from 1D Haar wavelets to 2D Haar wavelets is based on the products of 

basic wavelets in the first dimension with basic wavelets in the second dimension. For a 

pair of functions 𝑓1 and 𝑓2 their tensor product is defined as(𝑓1 × 𝑓2)(𝑥, 𝑦) = 𝑓1(𝑥) ∙

𝑓2(𝑥). Two 1D basic wavelet functions are defined as follows: 

𝜑[0,1[(𝑟) = {
1 𝑖𝑓 0 ≤ 𝑟 < 1,
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
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𝜓[0,1[(𝑟) =

{
 
 
 

 
 
 1 𝑖𝑓 0 ≤ 𝑟 <

1

2
,

−1 𝑖𝑓
1

2
≤ 𝑟 < 1,

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

 

The 2D Haar wavelets are defined as tensor products of 𝜑[0,1[(𝑟) and 𝜓[0,1[(𝑟):  

𝛷0,0
(0)(𝑥, 𝑦) = (𝜑[0,1[ × 𝜑[0,1[)(𝑥, 𝑦), 𝛹0,0

ℎ,(0)(𝑥, 𝑦) = (𝜑[0,1[ × 𝜓[0,1[)(𝑥, 𝑦), 𝛹0,0
𝑣,(0)(𝑥, 𝑦) =

(𝜓[0,1[ × 𝜑[0,1[)(𝑥, 𝑦), 𝛹0,0
𝑑,(0)(𝑥, 𝑦) = (𝜓[0,1[ × 𝜓[0,1[)(𝑥, 𝑦). The superscripts h, v, and d 

indicate the correspondence of these wavelets with horizontal, vertical, and diagonal 

changes, respectively. The horizontal wavelets detect horizontal (left to right) changes in 

2D data, the vertical wavelets detect vertical (top to bottom) changes in 2D data, and the 

diagonal changes detect diagonal changes in 2D data. 

In practice, the basic 2D HWT is computed by applying a 1D wavelet transform 

of each row and then a 1D wavelet transform of each column. Suppose we have a 2 x 2 

pixel image 

[
𝑠0,0       𝑠0,1
 𝑠1,0       𝑠1,1

] = [
11     9
7         5

]. 

 

Applying a 1D wavelet transform to each row results in the following 2 x 2 

matrix: 
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[
 
 
 
 
𝑠0,0 + 𝑠0,1

2
     
𝑠0,0 − 𝑠0,1

2

𝑠1,0 + 𝑠1,1
2

     
𝑠1,0 − 𝑠1,1

2 ]
 
 
 
 

=

[
 
 
 
 
 
11 + 9

2
     
11 − 9

2

7 + 5

2
     
7 − 5

2
 ]

 
 
 
 
 

= [
10  1
6  1

]. 

 

 

Applying a 1D wavelet transform to each new column is fetches us the result 2 x 

2 matrix: 

[
 
 
 
 
10+6

2
     

1+1

2

10−6

2
     

1−1

2
 ]

 
 
 
 

= [

8     1

2    0
 

]. 

 

The coefficients in the result matrix obtained after the application of the 1D 

transform to the columns express the original data in terms of the four tensor product 

wavelets 𝛷0,0
(0)(𝑥, 𝑦),  𝛹0,0

ℎ,(0)(𝑥, 𝑦), 𝛹0,0
𝑣,(0)(𝑥, 𝑦), and 𝛹0,0

𝑑,(0)(𝑥, 𝑦):  

 

[
11     9
7         5

] = 8𝛷0,0
(0)(𝑥, 𝑦) + 1𝛹0,0

ℎ,(0)(𝑥, 𝑦) + 

2𝛹0,0
𝑣,(0)(𝑥, 𝑦) + 0𝛹0,0

𝑑,(0)(𝑥, 𝑦). 

 

The value 8 in the upper-left corner is the average value of the original matrix: 

(11+9+7+5)/4 = 8. The value 1 in the upper right-hand corner is the horizontal change in 

the data from the left average, (11+7)/2 = 9, to the right average, (9+5)/2 = 7, which is 

equal 1 ∙ 𝛹0,0
ℎ,(0)(𝑥, 𝑦) = 1 ∙ −2. The value 2 in the bottom-left corner is the vertical 

change in the original data from the upper average, (11+9)/2 = 10, to the lower average, 
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(7+5)/2 = 6, which is equal to 2 ∙ 𝛹0,0
𝑣,(0)(𝑥, 𝑦) = 2 ∙ −4. The value 0 in the bottom-right 

corner is the change in the original data from the average along the first diagonal (from 

the top left corner to the bottom right corner), (11+5)/2 = 8, to the average along the 

second diagonal (from the top right corner to the bottom left corner), (9+7)/2 = 8, which 

is equal to 0 ∙ 𝛹0,0
𝑑,(0)(𝑥, 𝑦). The decomposition operation can be represented in terms of 

matrices.  

[
11   9
7     5

] = 8 [
1    1
1    1

] + 1 [
1  − 1
1  − 1

] + 2 [
1        1
−1  − 1

] + 

0 [
 1     − 1
−1      1

].  

 

3.3 Blur Detection Algorithm 

The first stage of the blur detection algorithm is to find square tiles (windows) 

that have pronounced horizontal, vertical, or diagonal changes. A captured frame is 

divided into N x N windows, called tiles, where 𝑁 = 2𝑘, 𝑘 ∈ 𝑍. Figure 3.1 shows square 

tiles of size 𝑁 = 64. The border pixels at the right and bottom margins are discarded 

when captured frames are not evenly divisible by N. A candidate tile must have a 

pronounced change along at least one of the three directions: horizontal, vertical, or 

diagonal. Whether a change is pronounced or not is determined through a threshold.  
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Figure 3.1 Tile splitting 

Each tile is processed by two iterations of the 2D HWT [22]. Figure 3.2 shows 

two 2D HWT iterations applied to the image shown in the upper left corner.  The number 

of iterations and the tile size are parameters and can be made either smaller or larger. The 

values reported in this paper were experimentally found to work well in our domain of 

vision-based skewed barcode scanning and nutrition information extraction [7, 8, 9].  
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Figure 3.2 Two Iterations of 2D HWT 

Let HC be the horizontal change between the left half of the tile and the right half 

of the tile. Let VC be the vertical change between the upper half of the tile and the lower 

half of the tile. Let DC be the change between the first diagonal (top left to bottom right) 

and the second diagonal (top right to bottom left). If at least one of the values HC, VC, 

and DC is above the corresponding thresholds 𝐻𝐶𝜃, 𝑉𝐶𝜃, and 𝐷𝐶𝜃, respectively, the tile 
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is marked as having a pronounced change. Figure 3.3 (left) shows the tiles with 

pronounced changes marked as squares.  

After the tiles with pronounced changes are found, the depth-first search (DFS) is 

used to combine them into tile clusters. The DFS starts with an unmarked tile with a 

pronounced horizontal, vertical, or diagonal change and proceeds by connecting to its 

immediate horizontal, vertical, and diagonal tile neighbors if they have pronounced 

changes. If such tiles are found, they are marked with the same cluster number and the 

search continues recursively. The search stops when no other tiles can be added to the 

current cluster. The algorithm then continues to look for another unmarked tile to which 

it can apply the DFS. If no such tile is found, the algorithm terminates. Figure 3.3 (right) 

shows five DFS-found tile clusters. 

After the tile clusters are found, two cluster-related rules are used to classify a 

whole image as sharp or blurred. The first rule is the percentage of the total area of the 

image covered by the clusters. The second rule uses the number of the tiles in each 

cluster to discard small clusters.  

The first rule captures the intuition that in a sharp image there are many tiles with 

pronounced changes, as shown in Figure 3.3 (right). The second rule discards small 

clusters whose size, i.e., the number of tiles in the cluster, is below a given threshold. 
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Figure 3.3 Square tiles with pronounced changes (left); Tile clusters found by DFS (right) 

The second rule can be viewed as cluster weeding. In the current implementation, 

this rule has a threshold of five. In other words, any cluster with fewer than five tiles is 

rejected by the second rule and does not contribute to the area of the image with 

pronounced changes.  Thus, in Figure 3.3 (right), only two clusters are left after the 

application of the second rule: the cluster with 18 tiles and the cluster with 6 tiles. Since 

both clusters are large, the image is classified as sharp by the first rule. The three 

singletons are discarded. On the other hand, all clusters found in the blurred image of 

Figure 3.4 and shown in Figure 3.5 are small, and are discarded by the second rule. 

Therefore, the image is classified as blurred. 
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Figure 3.4 Tiles with pronounced changes in a blurred image 

 

Figure 3.5 DFS-found tile clusters 

Figure 3.6 gives the pseudo code of our blur detection algorithm. The first 

argument to the DetectBlur function is the image, the second argument is the size of the 

square tile into which the image is split, as shown in Figure 3.1. In our experiments 

presented in the next section, N=64. The next argument, NITER, is the number of 

iterations of the 2DHWT function runs in each square tile in line 4. In our current 

implementation, NITER=4. Our Java source of the 2DHWT function is available at [16]. 
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This function returns an array of four matrices: AVRG, HC, VC, and DC. The matrix 

AVRG contains the average numbers after all iterations and the matrices HC, VC, and DC 

contain the horizontal, vertical, and diagonal wavelet coefficients, respectively.  

  

 

 

 

 

 

 

 

 

 

 

Figure 3.6 pseudo code of the algorithm 

. If at least one of the averages of the HC, VC, or DC matrices after all NITER 

iterations is above a corresponding threshold, which is computed in lines 5 and 6, then 

the appropriate tile is marked as having pronounced change. In lines 9-13, the DFS is 

used to find all tile clusters in the image, as shown in Figure 3.3 (right).   

In lines 14-20, the two rules described above to compute the total area occupied 

by the clusters greater than the value of the cluster threshold parameter CSZ. In lines 21-

1. DetectBlur(Img, N, NITER,  𝐻𝐶𝜃, 𝑉𝐶𝜃, 𝐷𝐶𝜃, CSZ, A) 

2. { 

3.    FOR each N x N tile T in image Img  { 

4.          [AVRG, HC, VC, DC] = 2DHWT(T, NITER); 

5.          AH=Avrg(HC); AV=Avrg(VC); AD=Avrg(DC);  

6.          IF (AH > 𝐻𝐶𝜃 or AV > 𝑉𝐶𝜃 or AD > 𝐷𝐶𝜃) 

7.              Mark T as having pronounced change; 

8.     } 

9.     FOR each N x N tile T in image Img { 

10.          IF ( T is not in any tile cluster ) 

11.            Run DFS(T) to find and mark all tiles in the 

12.            same cluster; 

13.   } 

14.   TotalArea = 0; 

15.   FOR each tile cluster TC { 

16.        IF ( TC’s size  >  CSZ ) { 

17.             ClusterArea = TC’s size * N x N; 

18.             TotalArea += ClusterArea; 

19.        } 

20.   } 

21.   IF ( TotalArea/Area(Img)  < A )  Return True;  

22.   ELSE Return False; 

23. } 
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22, if the percentage of the total area occupied by the clusters is smaller than the 

threshold value specified by the last parameter A, the image is classified as blurred. If 

need be, the algorithm can be modified to return the blur extent as the ratio of the total 

area occupied by the large tile clusters and the total area of the image. The smaller the 

ratio, the more blur exists in the image.  

The outlined algorithm is based on the assumption that in blurred images square 

tiles with pronounced changes do not form large clusters but scatter across the image as 

singletons or form clusters whose combined area is small relative to the size of the image.  

For example, Figure 3.4 is a blurred image where 64 x 64 tiles with pronounced 

changes are marked. Figure 3.5 shows the tile clusters found by the DFS. As can be seen 

in Figure 3.5, most clusters are either singletons or are of size 2. The largest cluster in the 

bottom left of the image is of size 4. 
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CHAPTER 4 

EXPERIMENTS 

4.1 Overview 

This chapter describes the experiments we conducted to compare our algorithm 

with two other blur detection algorithms frequently cited in the literature. A sample of 

five hundred images that contained both sharp and blur images was taken on a mobile 

phone. The ground truth was obtained by three human evaluators who classified each 

image as blurred or sharp, as explained in the next section. This human evaluation 

resulted in 167 images classified as blurred and 333 classified as sharp [23]. All three 

algorithms were run on these images and compared with the human classified results to 

verify the accuracy of each algorithm. 

 

4.2 Experimental Procedure 

We took five hundred random RGB images from a set of 506 video recordings of 

common grocery products that we made publicly available in our previous field 

investigations of skewed barcode scanning [24]. The videos have a 1280 x 720 resolution 

and an average duration of 15 seconds. All videos were recorded on an Android 4.2.2 

Galaxy Nexus smartphone in a supermarket in Logan, UT. All videos were taken by an 
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operator who held a grocery product in one hand and a smartphone in the other. The 

videos covered four different categories of products: bags, boxes, bottles, and cans. 

 

Figure 4.1 Experimental setup for volunteers to classify image as blur or sharp 

Three human volunteers were recruited to classify each of the five hundred 

images as blurred or sharp.  Figure 4.1 shows the tool used by the volunteers to classify 

an image into either blur or sharp. The above shown tool uses a simple interface, image is 

displayed and the volunteer clicks the button YES, if he/she thinks that the image is blur 

or clicks the button NO, if he/she thinks the image is sharp. Clicking either of the buttons 

brings up a new image. This process is repeated till the end of five hundred images. Three 

volunteers classified each of five hundred images as blurred or sharp. An image was 

classified as blurred if at least two volunteers classified it as blurred. It was otherwise 
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classified as sharp. The human evaluation resulted in 167 blurred images and 333 sharp 

images. These results were used as the ground truth.  

We compared our algorithm with two other image blur detection algorithms 

frequently cited in the literature [13, 25]. Since we could not find the source code of [13] 

publicly available online, we implemented it ourselves in Python. Our Python source 

code is available at [26]. We found a MATLAB implementation of the other algorithm at 

[27] and used it for the experiments. 

Table 4.1 gives the numbers of true and false positives for all three algorithms. 

The columns TPB and FPB give the numbers of true and false positives, respectively, for 

the blurred images. The columns TPS and FPS give the numbers of true and false 

positives, respectively, for the sharp images. The row Algorithm 1 gives the statistics for 

our algorithm implemented in Java. The rows Algorithm 2 and Algorithm 3 give the 

statistics for the Python implementation of [13] and the MATLAB implementation of 

[25], respectively. 

  Table 4.1 True and false positives 

Algorithm TPB FPB TPS 

 

FPS 

Algorithm 1 163 4 254 79 

Algorithm 2 167 0 183 150 

Algorithm 3 81 86 268 65 

 

To compare the performance numbers of each algorithm with the ground truth, we 

used the relative difference percentage, which is a unit less measure that compares two 

quantities while taking into account their magnitudes. Table 4.2 gives the relative 
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difference percentages computed as |𝑥– 𝑦|/max(|𝑥|, |𝑦|) ∙ 100, where y is the humanly 

estimated number of blurred or sharp images, i.e., the ground truth, and x is the number 

of sharp or blurred images found by a given algorithm. For example, for Algorithm 1, the 

first relative difference is computed as |163– 167|/max(|163|, |167|) ∙ 100=2.39, where 

163 is the number of blurred images found by Algorithm 1 and 167 is the number of 

blurred images found by the human evaluators. 

Table 4.2 Relative differences 

 

 

 

 

Table 4.3 Effect of blur on barcode scanning I 

Sample Sharp Blurred Barcode in 

sharp 

Barcodes 

in blurred 

1 15 15 12 1 

2 13 17 11 0 

3 16 14 12 0 

 
 

4.3 Effect of Image Blur on Skewed Barcode Scanning 

We investigated the effect of image blur on skewed barcode scanning. We chose 

three random samples of 30 images from the same set of 500 images classified by the 

three human evaluators. In each sample, 15 images were classified as blurred and 15 as 

sharp. We integrated our blur detection algorithm into our cloud-based barcode scanning 

Algorithm Blurred Sharp 

Algorithm 1 2.39 23.72 

Algorithm 2 0.00 45.05 

Algorithm 3 51.50 19.52 
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algorithm and estimated the effect of accurate image blur detection on skewed barcode 

scanning. Tables 4.3 and 4.4 give the results of our experiments. 

In Table 4.3, the first column gives the sample numbers. The column Sharp gives 

the number of sharp images classified as sharp by our algorithm. The column Blurred 

gives the number of images classified as blurred by our algorithm. The column Barcode 

in sharp gives the number of barcodes correctly scanned in the images classified as sharp. 

The column Barcodes in blurred gives the number of barcodes correctly scanned in the 

images classified by our algorithm as blurred. Thus, in sample 1, all blurred and sharp 

images were classified accurately.  However, in the 15 sharp images, the barcode scanner 

accurately scanned 12 barcodes whereas in the 15 blurred images, the barcode scanner 

accurately scanned only 1 barcode.  

In sample 2, 13 out of 15 images were accurately classified as sharp with 2 false 

negatives and 17 images were classified as blurred with 2 false positives. In 11 images 

classified as sharp, the barcodes were accurately scanned. No barcodes were accurately 

scanned in the images classified as blurred.  

In sample 3, 16 images were classified as sharp with 1 false positive and 14 

images were classified as blurred with 1 false negative. Barcodes were successfully 

scanned in 12 images classified as sharp. No barcodes were scanned in the images 

classified as blurred. 
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       Table 4.4 Effect of blur on barcode scanning II 

Sample Blurred Sharp Total Gain 

1 1/15 12/15 13/30 0.37 

2 0/17 11/13 11/30 0.50 

3 0/16 12/14 12/30 0.46 

             
Table 4.4 gives the results of the effect of blur detection on skewed barcode 

scanning. The first column gives the numbers of the random samples. The second column 

records the ratio of accurately scanned barcodes in the images classified as blurred. The 

third column records the ratio of accurately scanned barcodes in the images classified as 

sharp. The fourth column gives the ratio of recognized barcodes in all images. The fifth 

column gives the gain measured as the difference between the ratio of the accurately 

recognized barcodes only in the sharp images and the ratio of the accurately recognized 

barcodes in all images, which estimates the effect of blur detection on barcode scanning. 

Thus, in sample 1, we increase the barcode scanning rate by 37 percent if we eliminate 

images classified as blurred from barcode scanning. In sample 2, if blurred images are 

eliminated from barcode scanning, we gain 50 percent in barcode scanning rates. In 

sample 3, the gain is 46 percent.  

 

4.4 Effect of Image Blur On OCR Rates 

 We investigated the effect of image blur on OCR rates. We chose three random 

samples of 16 images classified by the three human evaluators. In each sample, 8 images 

were classified as blurred and 8 as sharp. We integrated our blur detection algorithm into 

open source OCR engine, Tesseract and estimated the effect of accurate image blur 
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detection on OCR rates. Figure 4.2 shows a sharp NL image on the left and the Tesseract 

output on the right. Figure 4.3 shows a blurred NL image on the left and the Tesseract 

output on the right. Tables 4.5 give the results of our experiments. 

 

Figure 4.2 OCR Detection for sharp images by Tesseract. 

Table 4.5 gives the results of the effect of blur detection on OCR rates. The first 

column gives the numbers of the random samples. The second column records the ratio 

of accurately recognized words in the images classified as sharp. The third column 

records the ratio of accurately recognized words in the images classified as blurred. The 

fourth column gives the ratio of recognized words in all images. 
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Figure 4.3 OCR Detection for blur images by Tesseract. 

 The fifth column gives the gain measured as the difference between the ratio of 

the accurately recognized words only in the sharp images and the ratio of the accurately 

recognized words in all images, which estimates the effect of blur detection on OCR 

rates. 

 In sample 1, we increase the OCR rate by 37 percent if we eliminate images 

classified as blurred from barcode scanning. 
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Table 4.5 Effect of blur on OCR rates. 

Sample Sharp Image Blur Image Total Gain 

1 258/267 21/267 279/534 0.45 

2 218/288 8/288 226/576 0.39 

3 213/321 9/321 222/642 0.32 

 

In sample 2, if blurred images are eliminated from OCR scanning, we gain 50 percent in 

OCR rates. In sample 3, the gain is 46 percent.  
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CHAPTER 5 

RESULTS 

In discussing the results of the experiments, we will again refer to our algorithm 

as Algorithm 1, to the algorithm by Tong et al. [13] as Algorithm 2, and to the algorithm 

by [25] as Algorithm 3. The experiments indicate (see Table 4.1) that, on our sample of 

images, in classifying images as blurred. Algorithm 1 performs as well as Algorithm 2 

and outperforms Algorithm 3. In classifying images as sharp, Algorithm 1 performs as 

well as Algorithm 3 and outperforms Algorithm 2.  

Table 4.2 confirms the observations recorded in Table 4.1. In image blur 

detection, there is almost no difference between Algorithm 1 and Algorithm 2 in that 

these algorithms do not deviate from the ground truth provided by the human evaluators 

on blurred images. On the other hand, Algorithm 3 shows a significant deviation from the 

ground truth on blurred images. On the other hand, in classifying images as sharp, 

Algorithm 1 and Algorithm 2 deviate from the ground truth by approximately 20 points 

while Algorithm 2 deviates from the ground truth by 45 points.  

Tables 4.3 and 4.4 indicate that image blur detection has a pronounced positive 

effect on skewed barcode scanning. In all three random samples, the barcoding 

recognition gain was above thirty percent. While we ran these experiments only with our 
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barcode scanning algorithm, we expect similar gains with other vision-based barcode 

scanning algorithms.   

Tables 4.5 indicates, as should be expected, that image blur detection has a 

pronounced positive effect on OCR rates. In all three random samples, the barcoding 

recognition gain was above thirty percent. While we ran these experiments only with 

open source OCR engine, Tesseract, we expect similar gains with other OCR engines. 

Our experiments indicate that direct methods provide a viable alternative to 

indirect methods. While indirect methods may be more accurate, they tend to be more 

computationally expensive due to complex matrix manipulations. Direct methods may 

not be as precise as their indirect counterparts. However, they compensate for it by 

increased efficiency, which makes them more suitable for mobile and wearable 

platforms. 

Another observation that we would like to make is that in working with our 

samples of images we could not observe the blur effect on the edges observed by Tong et 

al. [13] in some images. The edge blur effect observed by these researchers is that the 

injection of blur in the images causes the Dirac and A-Step edges disappear or turn into 

Roof and G-Step edges, respectively and the G-Step and Roof edges to lose their 

sharpness.  

Instead of using the 2D HWT to detect edge types, the algorithm proposed in this 

paper is based on the assumption that in blurred images square tiles with pronounced 

changes do not form larger clusters but scatter across the image as singletons or form 

clusters that are small in size relative to the overall size of the image.  
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Our approach is theoretically rooted in the research by Mallat and Hwang [14] 

who show that the 2D HWT can detect the location of irregularities in 2D images. In our 

algorithm, the 2D HWT is used to detect the location of changes via square tiles without 

explicitly identifying the causes of the detected changes, e.g., edges or corners.  
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 CHAPTER 6  

CONCLUSIONS 

We have presented an algorithm for direct image blur detection with the 2D Haar 

Wavelet transform (2D HWT). The algorithm classifies an image as blurred or sharp by 

splitting it into N x N tiles, applying four iterations of the 2D HWT to each tile, and 

grouping the horizontally, vertically, and diagonally connected  tiles with pronounced 

changes into tile clusters. Images with large tile clusters are classified as sharp. Images 

with small tile clusters are classified as blurred. If necessary, the blur extent can be 

estimated as the ratio of the total area of the large tile clusters and the area of the whole 

image. 

Our experiments on a sample of 500 images indicate that our algorithm either 

performs on par or outperforms two other blur detection algorithms found in the 

literature. The experiments also indicate that image blur detection has a pronounced 

positive effect on skewed barcode scanning, OCR rates. One possible implication of the 

research presented in this paper is that it may be possible to estimate blurriness in the 

images without explicitly computing the explicit features in the image that caused the 

blurriness (e.g., edges) or using involved methods to find the best fitting blur function.  

In our future work, we plan to investigate the effect of parallel processing when 

input images are divided into rows that are processed concurrently. In our previous work, 
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we proposed to a greedy spellchecking algorithm to correct OCR errors during nutrition 

label scanning on smartphones [6]. The proposed algorithm, called skip trie matching, 

uses a dictionary of strings stored in the trie data structure to correct run-time OCR errors 

by skipping misrecognized characters while going down specific trie paths. 
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