
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Theses and Dissertations Graduate Studies 

5-2003 

Assessing the Effects of Myxobolus cerebralis and Other Assessing the Effects of Myxobolus cerebralis and Other 

Environmental Factors on the Dynamics, Abundance, and Environmental Factors on the Dynamics, Abundance, and 

Distribution of Trout Populations in the Logan River, Utah Distribution of Trout Populations in the Logan River, Utah 

Ernesto A. de la Hoz Franco 

Follow this and additional works at: https://digitalcommons.usu.edu/etd 

 Part of the Life Sciences Commons 

Recommended Citation Recommended Citation 
de la Hoz Franco, Ernesto A., "Assessing the Effects of Myxobolus cerebralis and Other Environmental 
Factors on the Dynamics, Abundance, and Distribution of Trout Populations in the Logan River, Utah" 
(2003). All Graduate Theses and Dissertations. 4433. 
https://digitalcommons.usu.edu/etd/4433 

This Thesis is brought to you for free and open access by 
the Graduate Studies at DigitalCommons@USU. It has 
been accepted for inclusion in All Graduate Theses and 
Dissertations by an authorized administrator of 
DigitalCommons@USU. For more information, please 
contact digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F4433&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1016?utm_source=digitalcommons.usu.edu%2Fetd%2F4433&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/4433?utm_source=digitalcommons.usu.edu%2Fetd%2F4433&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/




ABSTRACT 

Assessing the Effects of Myxobolus cerebra/is and Other Environmental Factors 

on the Dynamics, Abundance, and Distribution of Trout Populations in the Logan 

River, Utah 

by 

Ernesto A. de Ia Hoz, Master of Science 

Utah State University, 2003 

Major Professor: Dr. Phaedra Budy 
Department: Aquatic, Watershed, and Earth Resources 

The presence of nonnative trout and the recent introduction of Myxobo/us 

cerebra/is in the Logan River drainage pose a threat to the native Bonneville 

cutthroat trout population (Oncorhynchus clarki Utah). The variability in the 

response of susceptible trout populations to M. cerebra/is, causing agent of 

whirling disease, suggests that environmental factors may influence the effects of 

the parasite in infected environments. I investigated the relationship between 

temperature, discharge, substrate size, nutrient concentration (nitrogen and 

phosphorous), periphyton (chlorophyll a), and the relative abundance of Tubifex 

tubifex to the distribution, and prevalence of M. cerebra/is in wild salmonid 

populations and sentinel fish in the mainstem of the Logan River and two of its 

tributaries. In addition, I investigated the potential influence of biotic (e.g ., food 
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availability, M. cerebra/is prevalence) and abiotic factors (e.g. , temperature) on 

the distribution, abundance, and condition of salmonid fishes . 

Differences in mean temperature and discharge across sites explained 

most(> 70%) of the variabi lity in prevalence of M. cerebra/is observed along the 

Logan River. However, the prevalence of the parasite was not related to other 

factors that can influence its life cycle, such as productivity and substrate 

composition. The results also indicate that the fish fauna presents a longitudinal 

change reflected in a zonation pattern. Cutthroat trout dominates the headwaters 

and high-elevation reaches , while reaches at lower elevations of the mainstem 

and tributaries were dominated by brown trout. The transition between these 

species was consistent with changes in environmental characteristics. Cutthroat 

trout dominates the fish community in mainstem reaches with the lowest average 

minimum temperature and highest diel temperatures, and where small boulders 

and small cobbles are the predominant substrate. 

This study provides insights of the abiotic and biotic factors that affect the 

distribution, abundance, and condition of salmonid populations along the Logan 

River. Identifying these factors is crucial to effectively manage this and other trout 

streams, where ensuring the conservation of native cutthroat trout populations is 

a priority. Further, I present baseline information of the potential linkages 

between environmental factors and M. cerebra/is distribution and prevalence, 

which could be used to develop plans to minimize the potential negative effects 

of this parasite on wild salmonid populations. 

(99 pages) 
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CHAPTER I 

INTRODUCTION AND PROBLEM DEFINITION 

Declines of native cutthroat trout populations have been evident 

throughout the intermountain west with only a few populations remaining. Factors 

that lead these declines include habitat degradation, hybridization, and 

competition with non-native species (Behnke 1992). The American Fisheries 

Society (AFS) designated the native Bonneville cutthroat trout (Oncorhynchus 

clarki Utah) as "threatened" throughout its range in 1979. This species was 

reclassified in 1989 as "endangered" and is currently considered a species of 

special concern in the state of Utah (Lentsch et al. 1997). According to the Utah 

Division of Natural Resources monitoring program, the Logan River provides 

habitat to one of the strongest and largest metapopulations of native Bonneville 

cutthroat trout remaining within their historic range (Thompson et al. 2000). 

However, the presence of brown trout (Sa/mo trutta) and other non-native 

species, as well as the recent introduction of Myxobolus cerebra/is in this 

drainage pose threat to the conservation of this native trout population. 

Myxobolus cerebra/is, causative agent of whirling disease, has spread 

quickly since it first emerged in the United States during 1950s (Bartholomew 

and Reno 2002) and has been reported in at least 22 states (Bergersen and 

Anderson 1997). Myxobolus cerebra/is was first detected in Germany in 1893, 

and since then it has been transferred worldwide most likely in shipments of 

infected frozen or live trout (Hoffman 1970). Experiments have shown that fish-
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eating birds may also transfer M. cerebra/is via feces, but how far and for how 

long remains to be discovered (Taylor and Lot 1978). Other speculative modes 

of disease transmission include anglers (mud, boots, boats, or other equipment), 

water diversion, irrigation systems, and oligochaetes traded in pet stores 

(Bergersen and Anderson 1997) 

In the United States, Snieszko and Hoffman first diagnosed M. cerebra/is 

in 1958 in watersheds in western Nevada and eastern Pennsylvania (Hoffman et 

al. 1962). The detection of this parasite in the USA and Europe has often been 

associated with artificial rearing facilities. It was not until the 1990's that reports 

of M. cerebra/is in natural populations increased with findings of clinical signs of 

the disease (black tail , whirling , and skeletal deformities) in Colorado (Nehring 

and Walker 1996) and Montana (Vincent 1996). Declines of recruitment in wild 

rainbow trout in various drainages of these states were attributed to the effects of 

M. cerebra/is (Baldwin et al. 1998). Further, Nehring and Thompson (2001) 

showed evidence of M. cerebra/is to be a decisive factor implicated in the loss of 

rainbow trout in several Colorado streams. 

The response of susceptible trout populations to M. cerebra/is has 

demonstrated substantial variability across and within different geographic areas. 

This parasite has been associated with severe declines of wild rainbow trout 

populations in Montana and Colorado (Nehring and Walker 1996; Vincent 1996), 

but population level responses have not been consistently observed in areas of 

other states where the parasite is also present (e.g. , California ; Modin 1998). 



Further, Hiner and Moffitt (2001) demonstrated substantial variability in the 

effects of M. cerebra/is within drainages and even within streams. 

3 

The inconsistency in responses of wild rainbow trout populations to M. 

cerebra/is suggests that environmental factors may have an influence on the 

response of susceptible trout in infected environments (Schisler et al. 2000). 

Environmental factors and anthropogenic stressors can affect parasite-host 

interactions as they influence the physiological condition, reproduction, and 

survival of both groups (e.g. , Lenihan et al. 1999). Infectious agents may cause a 

disease of the host when environmental conditions are favorable, when there are 

additional stresses, and sufficient interactions between these factors (Hedrick 

1998; Lafferty and Kuris 1999). Further, fluctuations in prevalence and the 

degree of impact also depend on interactions between the host, the pathogen, 

and the environment (Reno 1998). 

Myxobolus cerebra/is was reported for the first time in Utah in a private 

fish hatchery during 1991 (Heckmann 1992). Subsequent examinations from 

various sites led to the discovery of new occurrences of M. cerebra/is in Utah . 

Samples from the Little Bear River tested positive for the parasite (Wilson 1993), 

and in 1994 the parasite was detected in samples from Porcupine Reservoir, 

Cache County, Utah. The detection of the parasite at Porcupine Reservoir 

represented a significant increase in the prevalence of the disease in the 

population of kokanee salmon (Oncorhynchus nerka) since the beginning of a 

monitoring program that started in 1987 (C. Wilson , Utah Division of Wildlife 

Resources, personal communication) . However, an assessment of the effects of 



M. cerebra/is on the stage-specific survival and growth of kokanee showed no 

conclusive evidence of population effects (Butts 2002). Myxobolus cerebra/is 

was recently detected on the Logan River (Wilson 1999), but its potential effects 

on the native trout population and other salmonids in the Logan River remain 

unknown, as well as the physical, chemical, and biological factors that may be 

linked to its dispersal, infectivity, and prevalence. 

4 

Understanding the interactions between environmental factors, host, and 

pathogen is a critical component for assessing the potential effects of M. 

cerebra/is and for developing management strategies to minimize the impact of 

the parasite in wild trout populations. However, identifying the environmental 

factors that influence M. cerebra/is is complicated by the complexity of its life 

cycle , which involves two obligate hosts, fish and Tubifex tubifex, and two spore 

stages, myxospore and triactinomyxon (Hedrick 1998). The life cycles of 

Myxobolus cerebra/is, its secondary host (Tubifex tubifex) , and fish, can be 

influenced by the characteristics of the environment. For example, water 

temperature affects the development of the infective spore stage (Et-Matbouli et 

al. 1999), its persistence (Markiw 1992), the growth of T. tubifex (Reynoldson 

1987), and has been directly related to infectivity, lesion severity, and prevalence 

on wild and naturally exposed trout (Nehring and Thompson 2001; Hiner and 

Moffit 2002). 

Advances in the knowledge of the biology and susceptibility of T. tubifex 

and different salmonid species as well as how the pathogen interacts with 

different species, is leading to the improvement of fisheries management and 
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regulatory decisions (Bartholomew and Wilson 2002) . However, environmental 

factors that might be related to the distribution of M. cerebra/is and the 

susceptibility of its hosts are still poorly understood. Understanding the impact of 

the parasite on trout populations, given the importance of other environmental 

factors, requires the use of both laboratory and field experiments (Schisler et al. 

2000). 

The general objective of my research was two fold. First, to assess the 

distribution and prevalence of M. cerebra/is, the potential relationships between 

environmental factors and the distribution and prevalence of the parasite , and its 

effects on salmonid populations; particularly on the native Bonneville cutthroat 

trout. And second, to assess the abundance, condition, and distribution of the 

salmonid populations along the Logan River and the interaction and influence of 

environmental factors associated with this distribution. To meet these objectives, 

I investigated the relationship between temperature, discharge, substrate size, 

nutrient concentration (nitrogen and phosphorous), periphyton (chlorophyll a), 

and the relative abundance ofT. tubifex to the distribution, and prevalence of M. 

cerebra/is in wild salmonid populations and sentinel fish in the mainstem of the 

Logan River and two of its tributaries. In addition , I explored the suitability of 

these factors in the development of a simple predictive model relating potential 

increases in prevalence of M. cerebra/is to differences or changes in 

environmental factors. This assessment is discussed in detail in Chapter II. 

Secondly, detailed in Chapter Ill, I investigated the potential influence of biotic 
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and abiotic factors on the distribution , abundance, and condition of salmonid 

fishes along the Logan River. 
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CHAPTER II 

LINKING ENVIRONMENTAL HETEROGENEITY TO THE 

DISTRIBUTION AND VARIABILITY IN PREVALENCE OF 

MYXOBOLUS CEREBRALIS ALONG THE LOGAN RIVER, UTAH1 

9 

Abstract. --Given the variable effects of Myxobolus cerebra/is on trout 

populations in different streams across the intermountain west, it is important to 

try and understand the role of environmental variation in determining the 

distribution and prevalence of M. cerebra/is in newly infected watersheds. 

investigated the relationship between a selected group of environmental factors 

and the distribution and prevalence of M. cerebra/is in both wild salmonid 

populations and sentinel fish in the Logan River. Results indicated that despite 

its recent widespread distribution, the prevalence of the parasite varied greatly 

across sites. The lowest prevalence among cutthroat trout (Oncorhynchus clarki) 

was found at the headwaters where the average summer temperature was below 

9.5 °C, whereas high prevalence was associated with water temperatures above 

12 °C. Further, prevalence in brown trout (Sa/mo trutta) and cutthroat trout 

increased with discharge reaching its highest levels at sites where the average 

base flow ranged between 0. 7 and 1.1 m3/s. Despite hypothesized mechanistic 

links to one or more stages or hosts on the M. cerebra/is life cycle , we observed 

no relationship between M. cerebra/is prevalence and substrate composition, 

nutrients (TN, TP), periphyton, and oligochaetes. However, multiple linear 

1 Coauthored by Ernesto A. de Ia Hoz Franco and Phaedra Budy 
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regression models that included average temperature and discharge explained 

most (>70%) of the variability in prevalence across sites. The diagnosis of the 

parasite also revealed inconsistencies among wild and sentinel fish , suggesting 

that fish movement may be one of the key vectors leading to the spread of the 

parasite along the drainage. These results indicate that changes in stream 

temperature or discharge, either natural or anthropogenic could reduce or 

increase the prevalence and ultimate effect of M. cerebra/is on wild trout 

populations. 

Introduction 

The response of trout populations susceptible to Myxobolus cerebra/is has 

varied widely across and within different geographic areas. Myxobolus cerebra/is 

(Myxozoa: Myxosporea), the parasite that causes whirling disease, has been 

associated with declines of wild rainbow trout (Oncorhynchus mykiss) 

populations in Montana and Colorado (Nehring and Walker 1996; Vincent 1996), 

but population level responses have not been consistently observed in areas of 

other states where the parasite is also present (e.g., California; Modin 1998). 

Further, Hiner and Moffitt (2001) revealed evidence of the variability on the 

effects of M. cerebra/is within drainages and even within streams. The reported 

inconsistency in responses of wild rainbow trout populations to M. cerebra/is, 

suggests that environmental factors may influence the variability of the 

responses in infected environments (Schisler et al. 2000). Environmental factors 

and anthropogenic stressors can affect parasite-host interactions by influencing 



the physiological condition, reproduction, and survival of both groups (e.g. , 

Lenihan et al. 1999). 
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Understanding the interactions among environmental factors , hosts, and 

pathogen is critical for assessing the potential effects of M. cerebra/is and 

developing management strategies to minimize the impact of the parasite in wild 

trout populations. However, identifying the environmental factors that influence 

M. cerebra/is is complicated by the complexity of its life cycle , which involves two 

obligate hosts , fish and Tubifex tubifex, and two spore stages, myxospore and 

triactinomyxon (Wolf and Markiw 1984 ). Environmental factors such as water 

temperature, substrate composition, water velocity, and discharge may influence 

the life cycle of M. cerebra/is. 

Among these factors , temperature directly influences the parasite (spores 

and the infective triactinomyxon [TAM]), the tubificid secondary host, and fish. 

Experiments have shown that 12-15oC is the optimal temperature range for TAM 

production in infected T. tubifex; lower temperatures may retard the development 

and maturation of the spores while extending the period of spore production (EI

Matbouli et al. 1999), and higher temperatures may decrease TAM persistence 

(Markiw 1992). In contrast, somewhat lower temperatures, between 1 0-13°C, 

have been associated with the optimal range for T. tubifex growth (Reynoldson 

1987). Further, temperature has been directly related to infectivity, lesion 

severity, and prevalence of M. cerebra/is on wild and naturally exposed rainbow 

trout (Nehring and Thompson 2001; Hiner and Moffit 2002). 
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In addition to temperature effects, the distribution of tubificid worms can be 

influenced by their preference for fine sediments (Sauter and Gude 1996; Arndt 

et al. 2002). Experiments have shown that T. tubifex prefer fine substrates 

where the associated microflora may offer concentrated bacterial food (Lazim 

and Learner 1987). Despite their preference for fine substrates, the abundance 

of heterotrophic aerobic bacteria may be a more important factor controlling 

substrate selection (McMurtry et al. 1983). In addition to a preference for fine 

substrate, high abundances of T. tubifex have been associated with increasing 

concentrations of nitrogen and phosphorous compounds (Lestochova 1994 ). 

Water velocity may also determine, in part, the prevalence of M. cerebra/is 

through its effects on sedimentation rates, TAM destruction , and dilution effects. 

Low water-velocity areas in streams, where silty organic material may be more 

abundant (e.g. , backwaters, pools), have been related to higher abundances of 

tubificid worms (Lazim and Learner 1987). Kerans and Zale (2002) suggest that 

myxospores may not be very abundant in natural environments and point out the 

possibility of their passive dispersal to areas of low water velocity and fine 

sediments where tubificids may be more prolific. Conversely, high water velocity 

may reduce the rate of M. cerebra/is infection by destroying TAMs, and high 

discharge may result in a reduction of their concentration (Kerans and Zale 2002; 

MacConnell and Vincent 2002) . 

The effects of M. cerebra/is on salmonid populations along the Logan 

River are uncertain . The parasite poses a threat to sa lmonid populations, 

particularly to the endemic Bonneville cutthroat trout (Oncorhynchus clarki Utah) 
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population, which may be one of the largest metapopulations with its historic 

range (Thompson et al. 2000). The recent detection of the parasite in this 

system (Wilson 1999), the higher resistance to infection of cutthroat trout and 

brown trout (Sa/mo trutta) in relation to rainbow trout, and heterogeneity in 

environmental characteristics in the Logan River, make this area an ideal study 

site to explore processes of invasion, persistence, and the role of environmental 

factors in determining the parasite's distribution and prevalence. 

Numerous studies have focused on the biology of the M. cerebra/is 

(Halliday 1976), T. tubifex (Hedrick and EI-Matbouli 2002), and on the effects of 

the parasite on fish (MacConnell and Vincent 2002). Fewer studies have been 

designed to identify and enhance the understanding of the environmental factors 

that may be associated with the distribution, prevalence, and infectivity of the 

parasite (Hiner and Moffitt 2002) . I investigated the relationship between 

environmental factors (i.e ., water temperature, discharge, substrate size, nutrient 

concentration, primary productivity, and relative abundance ofT. tubifex) to the 

distribution and prevalence of M. cerebra/is in wild salmonid populations and 

sentinel fish in the mainstem of the Logan River and two of its tributaries. These 

factors were chosen a priori based on suggested relationships and hypothesized 

mechanistic links as discussed above. I also explored the use of these 

environmental factors to build a predictive model for potential increases in 

prevalence of M. cerebra/is . 
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Methods 

Eight sites within the Logan River drainage, in northern Utah, were 

selected to represent a wide range of environmental conditions. Sites included 

reaches at headwaters, tributaries, and lower stream sections developed for 

water management and influenced by artificial impoundments (Figure 2.1 ). Field 

surveys of fish populations and habitat characteristics were conducted at all sites 

during the summers of 2001 and 2002. Sentinel fish were exposed to natural 

stream conditions at six of these sites. 

Fish sampling and M. cerebra/is diagnosis 

Salmonid populations were sampled at all sites using three-pass 

electrofishing depletion techniques during low-flow conditions in August of 2001 

and 2002. When possible, 20 juveniles and subadults, and 10 adults from each 

species were sacrificed . Fish were examined in the field for external signs of 

whirling disease (i.e., black tail, whirling behavior, deformities). The head, 

including all gill arches and anterior spinal cord were removed, and frozen. 

Appropriate tissues were tested for the presence of M. cerebra/is using the heat 

shock protein-70 WD polymerase chain reaction method (Hsp PCR; J. Wood, 

Pisces Molecular LLC, personal communication). Prevalence was quantified as 

the percentage of samples that tested positive as a function of the total number 

tested. 
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Sentinel fish exposures 

Cutthroat trout alevins (< 5 weeks post-hatch) were obtained from a 

rearing facility free of M. cerebra/is. Alevins were transported to a fish holding 

facility and maintained in pathogen-free water at 10oc until natural exposures 

were conducted. Natural field exposures were completed at three sites during 

summer of 2001, and at three additional sites during summer of 2002. In 2001 , 

three sentinel cages holding 30 fish each (< 9 weeks post hatch) were deployed 

at each site. In 2002, I used the same number of cages per site with 14 fish(< 9 

weeks post hatch) per cage. Fish were exposed 21 d at each site. After the 

exposure, survivors were returned to the laboratory and maintained in pathogen

free well water at 10°C. Fish from different sentinel cages were held in separate 

aquaria. Daily observations were made to detect clinical signs of whirling 

disease, and to remove dead fish . At 90 d post-exposure , fish were euthanized, 

and the heads, including all gill arches and anterior spinal cord were removed , 

and frozen . Fish heads were tested for the presence of M. cerebra/is using the 

same Hsp-PCR method used in wild fish . 

Environmental variables 

Temperature. --Water temperature was recorded from July to September 

at all sites in 2 h intervals using temperature loggers. Daily, monthly, and 

summer minimum, maximum, average, and daily variations (diel =daily max

daily min ) were calculated for each sampling site. Temperature was also 

recorded from October 2001 to June 2002 at five selected sites. In addition , 
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thermographs were placed at the stream sites. along with sentinel cages during 

the field fish exposures. 

Discharge. --Bi-weekly measurements were conducted during summer 

2001 and 2002 at each sampling location. Discharge was estimated from cross

sectional measurements of water velocity at 10 to 20 equally spaced sites using 

an electromagnetic flow meter (Bain and Stevenson 1999). Measurements were 

also conducted bi-weekly during the field exposures at each site. 

Substrate. --Substrate composition was determined for each site during 

low flow conditions in summer of 2001 and 2002. Substrate particles were 

collected randomly at riffle zones from four evenly spaced transects 

perpendicular to stream flow (Wolman 1954). A minimum of 100 particles was 

collected. The middle width (B-axis) of each particle was measured to determine 

average substrate size and percent fines (<10 mm in diameter). Substrate was 

classified according to the Wentworth Scale {Allan 1995 ). 

Nutrient analyses. --Water samples were collected for nutrient analyses 

one day during late spring and one day during summer at each sampling site in 

2001 and 2002. Bottles were pre-washed with 1 N HCI and rinsed with stream 

water before the sample collection. Samples were kept on ice in the field and 

frozen until total nitrogen (TN) and total phosphorous (TP) analyses were 

conducted . Total nitrogen was determined by high-temperature catalytic 

oxidation (HTCO) with chemiluminescent nitrogen detection (Merriam et al. 

1996). The ascorbic acid method was used for total phosphorous analysis 

(APHA et al. 1992). 
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Periphyton. --Chlorophyll a, extracted from periphyton, was used as an 

index of productivity (Wetzel and Likens 1991 ). In 2001 , rocks were randomly 

collected in riffles at each site by walking three transects perpendicular to the 

stream flow. Ten rocks from each transect were collected, placed in plastic bags, 

and frozen . Methanol extraction of chlorophyll a was conducted at room 

temperature, in the dark for 24 h. From the extract, three 6-ml aliquots were 

analyzed fluorometrically (Welschmeyer 1994). The surface area of each rock 

was estimated by measuring three axes, length , width , and depth, and it was 

assumed that the area covered by periphyton was 60% of the estimated surface 

(Biggs and Close 1989). In summer 2002, three to five unpolished tiles (30 x 30 

em) were individually deployed across a riffle at each sampling site. Tiles where 

retrieved after 36 d, placed in plastic bags, stored in a cooler in the field , and 

frozen . Chlorophyll was extracted and measured following the same procedures 

used for periphyton on rocks. Chlorophyll concentrations were expressed in 

mg/m2
. 

Oligochaetes and Tubifex tubifex. -Oligochaetes were collected during a 

10- minute fixed-time collection at each site. Oligochaetes were collected during 

spring 2002 from habitats with soft, fine sediments using a 500 llm kick net. 

Samples were washed, sorted, and preserved in 70% methanol. Subsequently, 

oligochaetes were sorted and counted. All mature tubificids (bifid chaetae and 

hair with pectinate chaetae) were mounted on microscope slides and identified. 

If more than 100 tubificids were collected, 50 were randomly selected and 

mounted for identification. 
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Statistical Analyses and Modeling 

The prevalence of M. cerebra/is was evaluated only in wild cutthroat trout 

and brown trout. A two-way ANOVA was used to examine variability in the 

prevalence of M. cerebra/is, and to evaluate differences in explanatory variables 

(e.g., average temperature, discharge) across all sites and between years. 

Scatterplots of the response versus each explanatory variable were examined for 

preliminary assessment of potential relationships and to evaluate the form of 

relationship if present (i.e., linear, non-linear). Scatterplots were also used to 

assess relationships among explanatory variables; apparent associations among 

these variables provided information about collinearity and were used to select a 

subset of variables for model selection. Multiple linear regression analysis was 

used to identity the environmental variables that best explained the variation in 

M. cerebra/is prevalence in cutthroat trout and brown trout across sites. An 

analysis of residuals was included to assess assumptions of normality, 

homogeneity of variance, and linearity. Relationships between M. cerebra/is 

prevalence among the sentinel fi sh and environmental factors were examined as 

described above for wild trout species. Prevalence data was transformed with an 

arcsine square-root function to meet assumptions of normality for statistical 

analyses. 
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Results 

Myxobolus cerebra/is diagnosis 

Over 4200 fish representing five salmonid species (cutthroat trout, brown 

trout, brook trout Salvelinus fontinalis, rainbow trout, and mountain whitefish 

Prosopium williamsoni) where col lected during 2001 and 2002. Clinical signs 

that could be attributed to whirling disease (e.g ., black tail , cranial or spinal 

deformities) where observed on less than 1% of the total number of trout 

captured. However, M. cerebra/is was detected with PCR assays at seven of 

eight sampling sites, demonstrating that the parasite was widespread in the 

basin. The overall prevalence of M. cerebra/is across the basin in 2001 was 47% 

for cutthroat trout (n=91 ), 24% for brown trout (n=25), 0% for mountain whitefish 

(n=10), 75% for rainbow trout (n=4), and 0% for brook trout (n=4). In 2001 , 

prevalence among cutthroat trout across sites ranged from 5% at the uppermost 

site (Franklin Basin) to 100% at a low elevation mainstem site (Third Dam). In 

2002, prevalence in cutthroat trout ranged from 17 to 84%, again at the 

uppermost site (Franklin Basin) and a low elevation mainstem site (Third Dam), 

respectively (Figure 2.2). Differences in prevalence across sites were significant 

(df= 7, P<0.01 ), but differences between years were not (df=1, P=0.1 ). Similarly, 

the highest prevalence of the parasite in brown trout was observed at the 

lowermost site in 2001 and 2002 (Lower Logan; Figure 2.2). Prevalence in 

brown trout ranged from 0 to 60% in 2001 , and 0 to 79% in 2002. 
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Sentinel fish exposures 

Sentinel fish exposed to natural stream conditions did not develop clinical 

signs of whirling disease during the 90 d post-exposure period. The PCR 

analyses, however, indicated that some of the sentinel fish became infected with 

M. cerebra/is during the 21 d exposure. Prevalence of M. cerebra/is ranged from 

undetected at the uppermost site and the two tributaries to 56% at an upper

elevation mainstem site (Forestry Camp; Figure 2.3). 

Environmental variables 

Temperature . --Summer temperatures along the stream increased 

considerably from high to low elevation sites. Average summer daily 

temperatures (July-September) ranged from 9.2 to 15.9 ' C in 2001 , and from 8.8 

to 15.7 ' C in 2002 (Figure 2.4). Daily average temperatures were significantly 

different among sites (df= 7, P<0.01 ), but no differences where detected between 

years (df= 1, P=0.06). The lowest daily average temperature during the 21 d 

sentinel fish exposure was recorded at the uppermost site (Franklin Basin , 8.5 

' C) , while the highest was recorded at a low-elevation site (Third Dam, 12.4 ' C; 

Figure 4 ). Average summer diel temperature in 2001 ranged from 1.8 ' C at a 

tributary to 8.8 ' C at a mainstem site; a similar pattern was observed in 2002 

(Table 2.1 ). The daily maximum temperatures recorded from September to June 

at selected sites reached 8' C during fall , 4 ' C during winter, and 10 ' C during 

spring. 



Discharge. --The highest summer discharge was recorded at a middle

main stem site in 2001 (Twin Bridges, 1.73 m3/s) and 2002 (Twin Bridges, 1.95 

m3 /s). The lowest average discharge was observed in 2001 at one of the 

tributaries (Right Hand Fork, 0.19 m3 /s; Figure 2.5). In general, estimates of 

discharge were lower at high and low elevation sites and tributaries, while the 

highest estimates occurred at mainsteam sites. Significant differences in 

discharge among years were not detected across all sites (df=1, P=0.7). 

Substrate. --Small boulders and large cobbles were predominant in 

headwaters and mainsteam sites. Coarse gravel was the most common 

substrate at the lowermost site (Lower Logan). Substrate at tributary sites 

(Temple Fork, Right Hand Fork) was predominantly small cobbles. The highest 

percentage of fine substrates ( :S1 0 mm) occurred in one of the tributaries 

(Temple Fork; 27%); lower percentages were estimated at low-elevation sites 

(Lower Logan, 3%; Third Dam, 3.5%; Table 2.1 ). 
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Nutrient analyses. --Higher nitrogen concentrations were detected at high 

and low-elevation sites, as well as in the tributaries as compared to sites in 

middle sections of the main stem. Differences between years were not significant 

(df=1 , P=0.06; Table 2.1) but sites were significantly different (df= 7, P<0.01 ). 

Total nitrogen concentrations ranged from 0.07 to 0.21 mg N/L, corresponding to 

the upper (Franklin Basin) and lowermost (Lower Logan) sampling sites. No 

significant differences were detected in total phosphorous concentrations among 

sites (df= 7, P=0.09) or between years (df=1, P=0.4; Table 2.1 ). 
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Periphyton. --Extracts of chlorophyll a from rocks in 2001, and from 

artificial substrates in 2002 did not reveal a consistent pattern in primary 

productivity along the stream. Chlorophyll a concentration from rocks ranged 

between 12 and 183 mg/m2
, and between 74 and 96 mg/m2 on tiles (Table 2.1 ). 

There were no significant differences between sites (df= 7, P=0.56) or years 

(df=1 , P=0.64). 

Oligochaetes and Tubifex tubifex. --In total, 1210 oligochaetes were 

collected at the eight sites. Four species of Tubificidae were identified (Tubifex 

tubifex, Rhyacodrilus coccineus, Limnodri/us hoffmeisteri, and Telmatodrilus 

vejdovskyi). Five other families were identified (Naididae, Enchytraeidae, 

Lumbriculidae, Lumbricidae, and Sparganophilidae), with Eiseniel/a tetraedra 

representing the only mature Lumbricidae. The largest numbers of oligochaetes 

were collected at an upper-elevation mainsteam site (Forestry Camp; Table 1 ); 

854 out of 857 worms at this site were tubificids with hair and pectinate chaetae, 

and of the 50 mounted and identified, 49 were T. tubifex. Samples from 

headwaters and high-elevation mainsteam sites contained mostly tubificidae , 

while tributaries and low-elevation sites contained more lumbriculids or 

lumbricids. Tubifex tubifex was not found at a low-elevation mainsteam site 

(Third Dam) or at the lowermost site (Lower Logan). 



Relationships among environmental factors 
and prevalence 
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The prevalence of M. cerebra/is was similar for cutthroat trout and brown 

trout. Prevalence of M. cerebra/is in cutthroat trout appeared to increase with 

water temperature (Figure 2.6). The highest prevalence of the parasite was 

detected in water temperatures around 12 °C. In addition, M. cerebra/is 

prevalence showed a nonlinear relationship with discharge (Figure 2.6). The 

highest prevalence, at a low-elevation mainstem site (Third Dam), was 

associated with discharge estimates ranging between 0.6 and 1 m3/s. A similar 

pattern was observed for prevalence in brown trout in relation to temperature and 

discharge. 

In contrast to wi ld fish , the prevalence of the parasite among sentinel fish 

did not show a clear pattern that could be related to any of the environmental 

variables considered in this study. There was no apparent relationship between 

M. cerebra/is prevalence in wild trout and periphyton (Chi a). nutrient 

concentration (TN, TP), substrate size , percent fines (<1 0 mm), or relative 

density of oligochaetes. Further, scatterplots did not reveal any apparent 

associations between oligochaete density and productivity (Chi a), nutrient 

concentration (TN, TP), or substrate composition (Figure 2.7). 

Multiple linear regression models that included average water temperature 

and discharge were significant overall and explained a large portion of the 

variation in prevalence of M. cerebra/is. For cutthroat trout, the model accounted 

for 74% of the variabi lity in prevalence observed across sampling sites (df=11 , 



Adjusted R2=0.74, P :S0.01 ; Table 2.2). A similar model explained 83% of the 

variability in prevalence among brown trout (df=7, Adjusted R2=0.83, P=0.018; 

Table 2.3). 

Discussion 
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Since M. cerebra/is was first detected in the Logan River in 1g98, its range 

has broadened along the mainstem and its tributaries. Suspected vectors of the 

parasite include, fish eating birds, anglers' equipment, and fish (Taylor and Loti 

1978; Bergersen and Anderson 1997; Schisler and Bergersen 2002). The 

diagnosis of M. cerebra/is in wild and sentinel fish revealed that at some sites the 

parasite was not detected among sentinel trout, while highest prevalences were 

observed among wild trout. These inconsistencies suggest that fish movement is 

one of the vectors leading to the spread of the parasite along the stream and its 

tributaries . Differences in prevalence among juvenile and adult trout also support 

this hypothesis. A study conducted in a tributary of the Logan River 

demonstrated that the behavior of cutthroat trout ranges from almost completely 

stationary to frequent and wide-ranging movements (Hilderbrand 1998), 

depending on time and season, and life history stage. Cutthroat trout on the 

mainstem may exhibit similar behavior, and infected fish could act as important 

vectors for the transport and spread of M. cerebra/is spores to tributaries and 

headwaters. 
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Despite its widespread distribution , the prevalence of M. cerebra/is along 

the Logan River varies greatly within the basin. This high variability in prevalence 

was not surprising ; other studies have shown evidence of variability in 

prevalence and severity of infection across and within drainages (Baldwin et al. 

1998; Hiner and Moffitt 2001 ). In this study, differences in average summer 

temperature and discharge along the river explained most of the variability 

(>70%) in prevalence observed across sites. Across sites where cutthroat trout 

were present, the lowest prevalence was observed in the headwaters, where the 

daily average water temperature was 9.2 oc, while the highest was observed at a 

low-elevation site, where the average temperature was the highest (>12 oc). 

Likewise , the low prevalence of brown trout in the tributaries and high prevalence 

at the lowermost site was consistent with the lowest (1 0-11 oc) and highest (16 

oc) average summer temperatures across stream reaches where this species 

was distributed. Water temperatures that are close to the ideal for TAM 

production (12 oc ; Markiw 1992) and persistence (15 oc ; EI-Matbouli et al. 1999), 

could explain the high prevalence of the parasite at lower sections of the river, in 

both cutthroat trout and brown trout. Similarly, lower temperatures may retard 

spore development (EI-Matbouli et al. 1999) and lead to lower prevalences, as 

we observed in trout from headwaters and tributaries. 

This study also demonstrated that differences in base flow discharge 

along the river may influence the variability in prevalence. The prevalence of the 

parasite in cutthroat trout increased with increasing discharge. Lower prevalence 

rates were observed at headwaters and one of the tributaries where discharge 
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was low, while the highest prevalence was observed at a low-elevation 

mainsteam site where discharge was higher. These results were consistent with 

the pattern observed in prevalence among brown trout. Other authors have 

suggested that high flows could destroy or dilute TAMs, thus reducing infection in 

susceptible fish (Kerans and Zale 2002; MacConnell and Vincent 2002). 

Conversely, this study showed a nonlinear relationship between the range of 

flows observed in the Logan River and the prevalence of the parasite. 

Prevalence in cutthroat trout and brown trout increased with discharge reaching 

its highest levels at sites where average base flow ranged between 0.7 and 1.1 

m3/s; prevalence then decreased at the site where the highest discharge was 

estimated. 

The asymptotic relationship between discharge and prevalence suggests 

that lower discharge at headwaters and tributaries may decrease the probability 

of spores contacting and infecting fish. On the other hand, higher discharge 

likely disturbs areas where spores may be concentrated, thus increasing the 

probability of infection to a maximum. Above this threshold, higher discharge 

could lead to lower infections, as the concentration of TAMs in the water column 

is reduced. Further, the presence of artificial impoundments at lower sections of 

the Logan River may favor higher spore concentrations , as spores may be 

passively transported to areas of low water velocity (Hiner and Moffit 2002; 

Kerans and Zale 2002; Nehring et al. 2003), thus leading to the higher 

prevalences observed at low-elevation reaches. 
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The lack of clinical signs (e.g., deformities, black tail) in wild and sentinel 

fish suggest that the abundance of TAMs along the Logan River is low. Similarly, 

we have observed no population level declines in the trout populations of the 

Logan River since 1999 (Budy et al. 2003). Spore concentration (dose) is 

directly related to the development of clinical signs of whirling disease and its 

severity (Markiw 1992). However, other factors such as fish age (Markiw 1991 ), 

size (Thompson et al. 1999), species (Hedrick et al. 1999; Sollid et al. 2002; 

Vincent 2002) , and environmental factors at the time of the exposure may also 

influence the susceptibility of fish to the disease. Highly susceptible cutthroat 

trout fry could be exposed to low TAM concentrations during spring; low 

temperatures may also retard spore development and production, and flushing or 

diluting effects may also result from high discharge during this season. The 

effects of these environmental variables may also explain the response in brown 

trout fry that emerge during autumn. Results from this study are consistent with 

the hypothesis formulated by Hubert et al. (2002) for cutthroat trout in spring 

streams of the Salt River drainage; that is their life history patterns may reduce 

the susceptibil ity to M. cerebra/is as fish migrate from the mainstem to smaller 

tributaries and headwaters to spawn, and fry use these lower water temperature 

streams as nursery habitat. 

Other factors such as primary productivity, relative abundance of 

oligochaetes (T. tubifex) , substrate composition , and nutrient concentrations (TN, 

TP), were not related to the prevalence of the parasite among trout in the Logan 

River. Despite the potential influence of these factors on the life cycle of M. 
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cerebra/is, and thus on its distribution and prevalence, our results do not provide 

evidence of such relationships. Other authors have revealed that T. tubifex is not 

ubiquitous, and where present, densities can vary greatly from less than 100 to 

>1 000 worms/m 2 (Sarkka 1987; Zendt and Bergersen 2000). The large 

differences in oligochaete abundance across the sites sampled in the Logan 

River therefore reflect the pattern observed in other intermountain west streams. 

The lack of correlation between oligochaete density and productivity (Chi a), 

nutrient concentration (TN, TP), or substrate composition, suggests that in the 

Logan River other biological factors (e.g., abundance of heterotrophic bacteria) 

may be more important than physical or chemical factors on their substrate 

selection (McMurtry et al. 1983). 

The low variability in environmental factors (i.e. , temperature, flow) 

between 2001 and 2002, and the fact that these factors were assessed mainly 

during base flow conditions potentially limit our results. Logistical limitations 

impeded the measurement of environmental factors year-round . In addition there 

are other variables, which we did not measure here (e.g. , abundance of food 

source or predator of tubificids) , that may determine, in part, the pattern of 

distribution and abundance of M. cerebra/is. However, results from this study 

should serve as a solid starting point or reference for others investigating 

potential linkages between environmental factors (e.g ., water quality, discharge, 

distribution and abundance of T. tubifex) and M. cerebra/is distribution and 

prevalence. In addition , our results suggest that changes to stream temperature 
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or discharge, either natural or anthropogenic, could alter the spread and impact 

of M. cerebra/is in mountain streams. 

Many authors have addressed the need to investigate pathogen-host-

environment interactions in order to fully understand and assess the potential 

effects of a disease in fish populations (Hedrick 1998; Reno 1998). Similarly, 

understanding the role of fish stressors, and synergistic effects of stress or 

disease and the environment, is also key to evaluating and managing the health 

and status of fish populations (Budy et al. 2002). This study was conducted to 

provide baseline information for the distribution and prevalence of M. cerebra/is 

along the Logan River, and to assess potential relationships between 

environmental factors and the parasite. Understanding the environmental 

variables that influence the distribution and prevalence of diseases and the 

mechanisms for its dispersal, are tools that fishery biologists and managers could 

use to limit the spread of parasites, and to develop plans to minimize potential 

negative effects on wild salmonid populations. 
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TABLE 2.1. Number of wild cu tthroat trout and brown trout infected. 
Temperature measurements, average substrate size, percent fines (<10 mm), 
nutrient concentrations (TN , TP), chlorophyll a concentration from rocks (2001) 
and artificial substrates (2002), total oligochaetes, and number of T.tubifex 
collected . 

Species Temperature Substrate Nutrients Periphyton Oligochaeta 

summer die I average average 
Cutthroat Brown trout average average average fines TN TP Chi a Total ' T. t il 

number number 
Site 'tear infected n infected n ('C) ("C) (mm} (%) (mg/L} (usll} (mg/m2

) 

Franklin 
Basin 20 9.2 7.3 209 0.07 17.7 47 
Red 
Banks 14 11.0 7.7 287 0.08 21 .9 44 

Forestry 
Camp 11 17 12.1 8.8 283 10 0.07 21 .8 120 

Twin 
Bridges 

~ 
10 19 11.8 6 .2 143 0.03 21.9 64 

Third 
Dam 12.1 6.0 38 0.09 15.2 182 

Lower 
Logan 10 16.0 2.5 137 0.21 22.5 95 

Temple 
Fork 13 10.6 8.5 23 24 0.12 21.3 183 

RH 
Fork 10 10.8 1.8 46 13 0.16 24.2 12 
Franklin 
Basin 18 8.8 6.7 173 14 0.14 21.0 74 62 

Red 
Sanks 15 20 10.6 7.3 252 14 0.07 19.2 80 12 

Forestry 
Camp 15 20 11.6 8.5 258 14 0.05 19.4 86 857 49 ' 

Twin 
Bridges 

~ 
15 19 20 11 .7 5.5 236 0.06 15.5 78 16 

Third 
Dam 12 14 13 20 12.3 4.1 205 0.10 11 .7 75 92 
Lower 
Logan 15 19 15.7 3.2 40 0.27 28.6 91 
Temple 
Fork 19 11 10.6 8.1 123 30 0.13 18.3 75 39 
R. H. 
Fork 0 0 0 10 10.7 1.7 105 11 0.22 21.7 96 126 , 
a 10 m fixed-time collection. 
b Tubifex tubifex. 
'50 out of 415 mature tubi ficidae collected at this site were identified . 
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Table 2.2. Summary of linear regression model for prevalence of M. 
cerebra /is in cutthroat trout in the Logan River, Utah. Parameter estimates are 
also given. 

Source of Sum of Mean Adjusted 
variation df Sguares Sguare F p R2 

Model 3 1.1467 0.3822 11.28 0.0030 0.7371 
Error 8 0.2710 0.0338 
Total 11 1.4178 

Parameter Standard 
Variable df estimate error p 

Intercept --1.7796 0.5880 -- 3.03 0.0164 
Average 
temperature 0.1816 0.0646 2.81 0.0229 
Average 
discharge 0.0405 0.0178 2.28 0.0524 
(Average 
discharge )2 -- 0.0004657 0.0002087 -- 2.23 0.0262 
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Table 2.3. Summary of linear regression model for prevalence of M. 
cerebra/is in brown trout in the Logan River. Utah. Parameter estimates are also 
given . 

Source of Sum of Mean Adjusted 
variation df Sguares Sguare F p R2 

Model 3 1.3492 0.4497 12.12 0.0178 0.8265 
Error 4 0.1485 0.0371 
Total 7 1.4977 

Parameter Standard 
Variable df estimate error p 

Intercept -- 1.1070 0.4540 -- 2.44 0.0713 
Average 
temperature 0.0669 0.0522 1.28 0.2693 
Average 
discharge 0.0546 0.0231 2.37 0.0767 
(Average 
discharge )2 -- 0.000591 3 0.0002862 -- 2.07 0.1077 
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Figure 2.1. Map depicting the location of study sites within the Logan River 
basin, Utah. Circles represent sites where wild fish where co llected and 
environmental factors measured. Squares indicate sites where sentinel fish 
where exposed. 
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Figure 2.2. Prevalence of Myxobolus cerebra/is(% testing positive) in wild 
cutthroat trout (a) and brown trout (b) at 6 sites along the Logan River and 2 
tributaries in 2001 (gray bars) and 2002 (white bars). The asterisks show sites 
where the parasite was not detected. NC indicates that no fish were captured at 
a particu lar site. NT indicates that fish have not been tested. 
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Figure 2.3. Prevalence of M. cerebra/is in field-exposed sentinel fish at 
sample sites on the Logan River, Utah, 2001 . Asterisks depict sites where the 
parasite was not detected in sentinel fish. NE indicates sites where no 
exposures where conducted . Sample sizes (n) are indicated. Sites to the right 
of the vertical dashed line are tributaries to the mainstem Logan River. 
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Figure 2.4. Summer average temperature (°C) at sample sites on the Logan 
River, Utah , 2001 (gray bars) and 2002 (white bars). Minimum and maximum 
average summer temperatures are depicted. Average temperatures during 
sentinel fish field exposures are represented with squares (•). 
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Figure 2.5. Discharge (m'/s) at mainstem sites and tributaries on the Logan 
River, Utah , during summer 2001 (gray) and 2002 (white). Boxes depict 
minimum and maximum discharge. Horizontal lines in boxes indicate averages. 
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Figure 2.6. Prevalence(%) of M. cerebra/is in wild cutthroat trout (a-b) and 
brown trout (c -d) as a function of average summer temperature and discharge in 
the Logan River, Utah, 2001 and 2002. Symbols depict sampling sites: 
Headwaters( ~) . tributaries (•), high (c), middle (•), and low-elevation (T) 
reaches. 



Figure 2.7. Total number of oligochaetes collected at sample sites in the 
Logan River, Utah, 2002, in relation to percent fines (a), average substrate size 
(b), average summer discharge (c), average summer temperature (d), total 
nitrogen (e), and total phosphorous (f). Symbols depict sampling sites: 
Headwaters ( • ). tributaries (• ). high (c ), middle (• ). and low-elevation (T ) 
reaches. 
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CHAPTER Ill 

EFFECTS OF BIOTIC AND ABIOTIC FACTORS ON THE DISTRIBUTION OF 

TROUT ALONG A LONGITUDINAL STREAM GRADIENT1 

Abstract. --Given the widespread decline of cutthroat trout across their native 

range, it is important to identify the factors that determine their distribution in 

populations that have persisted and reside in relatively intact stream systems. 

examined the potential influence of biotic (e.g., competitors, parasite prevalence) 

and abiotic (e.g ., temperature , discharge) factors on the distribution, abundance, 

and condition of salmonid fishes along a longitudinal gradient in a mountain 

stream. Field surveys of fish populations and environmental factors were 

conducted during the summer of 2001 and 2002. I observed a longitudinal 

change in fish distribution with native cutthroat and introduced brown trout 

demonstrating a distinct pattern of allopatry. Cutthroat trout dominated 

headwaters and high elevation reaches, while reaches at lower elevations were 

dominated by brown trout (Salmo trutta). A transition zone between these 

populations was associated with changes in average and diel temperature, and 

substrate size. In addition, I observed considerable overlap in the diet of 

sympatric cutthroat and brown trout, suggesting that both biotic and abiotic 

factors influenced their distribution and abundance. Regression models provided 

addi tional evidence of these relationships; the best model for cutthroat trout 

abundance included abundance of brown trout and die I temperature (R2= 0.86) 

1 Coauthored by Ernesto A. de Ia Hoz Franco and Phaedra Budy 
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as explanatory variables. In contrast, the best model for explaining brown trout 

abundance and distribution included diel temperature and sediment size 

(R2=0.97). These results suggest that brown trout may have a greater effect on 

the species distribution than cutthroat trout and indicate the potential for 

competitive interactions among the two species. Further, the diagnosis of 

Myxobolus cerebra/is , the causative agent of whirling disease, revealed that the 

parasite is widespread along the river but has not impacted the population 

abundance as of yet. Results suggested that the range of environmental 

characteristics in the Logan River (e.g., temperature, discharge) may contribute 

to the variability of the parasites' prevalence, and could explain in part why 

clinical signs of whirling disease were rare . The results from my study can aid 

biologists in developing robust conservation and management strategies for 

cutthroat trout in western streams, based on the biotic and abiotic factors that 

determine their abundance and distribution. 

Introduction 

The spatial arrangement of biotic and abiotic habitat components may 

influence not only the distribution and abundance of individual fish species 

across many scales (Bozek and Rahel 1991 ; Grossman et al. 1995; Rahel and 

Nibbelink 1999) but also community-level properties such as species richness 

and production (Hawkes et al. 1986; Hughes and Gammon 1987; Rahel and 

Hubert 1991 ). Biotic factors that affect fish populations and communities include 

inter and intraspecific competition (e.g ., Fausch and White 1981 ), predation (e.g., 
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Gilliam and Fraser 2001) and food availability (e.g ., Bowlby and Roff 1986). 

Temperature and discharge are among the abiotic factors that affect fish at this 

level of organization in stream ecosystems (e.g. , Jackson et al. 2001 ). Further, 

the interaction of biotic and abiotic factors can also determine the distribution of 

species arranged along altitudinal gradients in streams, as demonstrated by 

Fausch et al. (1994), where the distribution and hierarchy among sympatric char 

species was driven by temperature, habitat type, and interspecific competition , 

depending on the spatial scale (e.g. , regional, watershed, stream) of the 

observations. An allopatric pattern of species distribution is often observed in 

streams that provide a longitudinal gradient of habitat for salmonids, where the 

species that is present at high-elevation reaches overlaps very little with another 

species that occupies reaches at low elevations (Fausch 1989). Competition is 

a key factor influencing the distribution of species in such streams (Fausch 

1988; Nakano 1995); however, significant changes in abiotic factors (e.g ., 

temperature) along an altitudinal gradient may regulate these types of biotic 

interactions (De Sato and Rahel 1994; Taniguchi et al. 1998). Limitations in the 

distribution of salmonid populations as a result of thermal constraints have been 

firmly established (Keleher and Rahel 1996; Dickerson and Vinyard 1999; 

Schrank et al. 2003). 

In addition to the influence of thermal constraints and interspecific 

interactions, other biotic factors such as parasites and disease also play an 

important role in fish population dynamics and community structure. Examples 

include, Renibacterium salmoninarum, the causative agent of bacterial kidney 
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disease (BKD), and Myxobotus cerebra/is , the parasite that causes whirling 

disease. Juvenile chinook salmon (Oncorhynchus tshawytscha) infected with 

BKD may become more vulnerable to predation (Mesa et al. 1998), and similarly, 

M. cerebra/is has been directly implicated in juvenile mortality and severe 

declines of salmonid year-classes in some streams (Nehring and Walker 1996; 

Vincent 1996). 

The goal of this study was to examine the potential influence of biotic 

(e .g. , competitors , Myxobo/us cerebra/is prevalence) and abiotic (e.g ., 

temperature, discharge) factors on the distribution, abundance, and condition of 

salmonid fishes along a longitudinal gradient in a mountain stream. The Logan 

River, Utah provides habitat to one of the few populations of Bonneville cutthroat 

trout (BCT; Oncorhynchus clarki Utah) throughout its historical range, what may 

be one of the strongest and largest populations remaining (Thompson et al. 

2000). However, declines in the population of the native cutthroat trout 

throughout the intermountain west are evident, with few populations remaining 

(Behnke 1992). Habitat degradation, hybridization, and competition with 

nonnative species led the American Fisheries Society (AFS) to designate BCT as 

"threatened" throughout its range in 1979. In 1989, this species was reclassified 

as "endangered" and is currently considered a species of special concern in the 

state of Utah (Lentsch et al. 1997). Within the Logan river drainage specifically, 

the presence of non-native trout (especially brown trout) and the recent discovery 

of M. cerebra/is in this drainage are potential threats to the native cutthroat trout 

population . 
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Understanding the factors that influence the distribution, abundance, and 

condition of trout and salmon populations in these mountain streams is critical to 

effectively manage this system, and to ensure the long-term conservation of 

native cutthroat trout through out their range. The objectives of my study were to 

1) evaluate the status and distribution of trout in the Logan River, 2) understand 

the role of abiotic and biotic factors in determining the abundance and distribution 

of these fishes, and 3) develop tools for predicting the abundance and 

distribution of cutthroat trout, to aid in the conservation and management of these 

endemic fish . 

Methods 

Study area 

The headwaters of the Logan River are located in the southeastern corner 

of Idaho. The river enters the northeast corner of Utah at an elevation of 2590 m 

and runs through Logan Canyon for forty miles to reach the city of Logan, 

dropping to an elevation of approximately 1371 m. The gradient on the main 

stream varies from 6 to 32 m/km, and the higher gradients of the tributaries reach 

75 m/km (Thoreson 1949). Climate is predominantly cold and snowy during the 

winter, fo llowed by hot, dry summers, in which diel water temperatures can range 

9 °C, and maximum temperatures range from 12 to 19 °C in tributaries and in low 

elevation reaches of the mainsteam, respectively (see Chapter II; Figure 2.4). 

Eight sites within the Logan River Drainage were surveyed, ranging from 

headwaters and tributaries to low elevation sections (see Chapter II ; Figure 2.1 ). 



Fish species found in the Logan River include Bonneville cutthroat trout. 

brown trout (Sa/mo trutta) . stocked and wild rainbow trout (Oncorhynchus 

mykiss). brook trout (Salvelinus fontinalis). mountain whitefish (Prosopium 

williamsoni). and sculpin (Coitus bairdi). Field surveys of fish populations and 

envi ronmental characteristics were conducted at all sites during the summer of 

2001 and 2002. 

Fish population abundance and condition 
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Fish population abundance was estimated based on three-pass depletion 

electrofishing. Small-mesh seines were used to block the upper and lower end of 

200m reaches on mainsteam sites, and 100m on headwaters and tributary 

sites. All fish species collected were counted, and their lengths and weights 

recorded . Fish densities were then estimated using the removal method of 

Zippin (1958) . Fulton's (K) condition factor was used to assess the condition of 

the fish (Anderson and Newman 1996). 

Parasite analyses 

When possible, 20 juveniles and sub adults. and 10 adults from each 

species were kept for diet and Myxobolus cerebra/is analyses; these fish were 

euthanized using a lethal dose of tricaine methanesulfonate (500 mg/L). The 

head, including all gill arches and anterior spinal cord was removed. and frozen . 

Fish were examined in the field for external signs of whirling disease (e.g., black 

tail. deformities). Fish heads were tested for the presence of M. cerebra/is using 



the heat shock protein-70 WD polymerase chain reaction method (Hsp PCR; J. 

Wood, Pisces Molecular LLC, personal communication). 

Invertebrate abundance, diet 

analyses, and prey selection 

51 

Data on invertebrate abundance and composition were provided by the 

National Aquatic Monitoring Center (M . Vinson, National Aquatic Monitoring 

Center- Utah State University, personal communication). Aquatic invertebrates 

were sampled at each site in years 1997-2000 with a kick net or surber sampler. 

Three to twelve samples collected during summer months of one to three years 

were averaged for each site. Diet analyses were conducted on fish samples from 

2001. Stomach contents from the same fish samples used for parasite analyses 

were removed by dissection and fixed with 10% formalin. Contents were 

examined from each fish specimen, and the number of organisms belonging to 

each particular taxa (i.e., genus) was determined. Blot-dry wet weights were 

recorded to the nearest milligram. I estimated the percent composition by 

number and weight, as recommended by Bowen (1996). Chesson's alpha prey 

selectivity index (Chesson 1978) was used to compare the diets of cutthroat trout 

and brown trout to invertebrate abundance. 

Environmental variables 

Temperature. --Water temperature was recorded from July to September 

at all sites in 1 h intervals using temperature loggers. Minimum, maximum, and 

average daily, monthly, and summer water temperatures were estimated for each 
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site, as well as die! variations during these same time periods (die!= daily max -

daily min). 

Discharge. --Bi-weekly measurements were conducted during summer 

2001 and 2002 at each sampling location. Discharge was estimated from cross

sectional measurements of water velocity at 10 to 20 equally spaced sites. 

Velocity was measured at two thirds of the depth of the water column using an 

electromagnetic flow meter (Bain and Stevenson 1999). 

Substrate. -Substrate particles were randomly collected at riffle zones 

from four evenly spaced transects perpendicular to the stream flow according to 

the Wolman pebble count method (Wolman 1954). At least 100 particles were 

blindly collected; the middle width (S-axis) of each particle was measured to 

determine average substrate size and percent fines (<10 mm in diameter). 

Substrate composition was evaluated according to the Wentworth Scale (Allan 

1995). 

Periphyton. -Chlorophyll a, extracted from periphyton was used as an 

index of productivity (Wetzel and Likens 1991 ). In 2001, rocks were randomly 

collected in riffles at each site by walking a transect perpendicular to the stream 

flow. Ten rocks were collected from each of three transects, placed in whirl

packs and maintained frozen until the extraction of chlorophyll a and fluorometric 

analyses were completed. Chlorophyll a was extracted in methanol in the dark 

for 24 h at room temperature. From the extract, three 6 ml aliquots were 

analyzed fluorometrically (Welsch meyer 1994) and the concentrations were 

expressed in mg/m2
• The surface area of each rock was estimated by measuring 
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length, width, and depth, and it was assumed that the area covered by 

periphyton was 60% of the estimated surface (Biggs and Close 1989). In 2002, 

three to five unpolished tiles (30 x 30 em) were arranged across a riffle at each 

sampling site . Tiles were retrieved after 6 weeks, placed in plastic bags, and 

frozen. Chlorophyll a was extracted and analyzed following the same procedures 

used for rocks. 

Statistical analyses 

I used ANOVA to examine differences in response variables (i.e., fish 

abundance), and to evaluate differences in explanatory variables (e.g., 

temperature , discharge, invertebrate abundance) among sites. I initially used 

scatterplots and Pearson correlations to examine the factors that potentially 

affect the distribution of cutthroat trout and brown trout, and to assess 

relationships among explanatory variables. Evident associations among 

variables provided information about collinearity and were used to select a 

subset of variables for model selection . 

Best-subset regression was used to select variables to be used in linear 

regression analyses; I used the following model selection criteria : adjusted-R2
, 

R2
, mean square error (MSE), Mallows' Cp, and Akaike's information criterion 

(AIC) . I used these models to identify the variables that best explained the 

variation in cutthroat trout and brown trout abundance across sites, and used 

prediction sum of squares (PRESS) residuals (Myers 1990), to evaluate the 

predictive performance of the regressions. Residuals were estimated by 

withholding the observations from 2002, and subtracting observed values from 



those predicted by the regression model based on the observations from 2001 . 

Data were transformed with square root or logarithmic functions to meet 

assumptions of normality and homogeneity of variance. 

Results 

Fish population abundance and condition 
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The fish community changed longitudinally from high elevation sites to low 

elevation sites (Figure 3.1 ). The distribution of cutthroat trout and brown trout 

was inversely related with the highest abundances of native cutthroat trout 

observed at high elevation reaches and none observed at lower elevations . 

Conversely , brown trout were observed in highest abundance at low elevation 

sites and in one of the tributaries, but were not present at high elevations sites. 

Further, little overlap was observed in the distribution, with both species present 

in relatively low abundance at only two sites on the mainstem (Figure 3.1 ). 

Abundance of both cutthroat and brown trout was high (as many as 2000 

fish/km) and fluctuated little over the two years of this study. 

Fulton's condition factor (K) for cutthroat trout and brown trout ranged from 

0.9 to 1.1, respectively, indicating that these populations are composed of 

relatively healthy individuals for both species (Table 3.1 ). Condition was 

positively correlated with the elevation of mainstem sites for subadult cutthroat 

trout (R2=0.45; df=8; P=0.049), but not for adults (R2=0.33; df=7; P=0.13). 

Similarly, the condition of both subadult (R2=0.64; df=6; P=0.03) and adult brown 



trout (R2=0.71 ; df=5; P=0.03) increased as a function of mainsteam site 

elevation. 

Parasite analyses 
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Clinical signs that could be attributed toM. cerebra/is (e.g., black tail, 

spinal deformities) were observed on less that 1% of more than 4000 trout 

captured during the field surveys; however, PCR analyses indicated that the 

parasite was widespread along the drainage. The prevalence of the parasite 

among cutthroat trout and brown trout varied greatly across sites, from 

headwaters, to tributaries , to low elevation reaches (see Chapter II; Figure 2.2). 

Differences in prevalence were explained largely by variations in temperature 

and discharge along the river (see Chapter II; Table 2.2 -2.3). 

Analyses of invertebrate abundance, 

diet, and prey selection 

The abundance of invertebrates ranged from 2794 organisms/m2 at 

Forestry Camp to 7082 organisms/m2 at Twin Bridges (Table 3.1 ). 

Ephemeroptera, Diptera , Trichoptera , and Chironomidae were the most 

abundant invertebrate groups. The composition of invertebrates did not differed 

significantly across sites (df=6; P=0.73; Figure 3.2). Fish consumed a variety of 

aquatic invertebrates (Figure 3.2), organic and inorganic matter, and terrestrial 

invertebrates (e.g. , beetles, crickets, ants). A few cutthroat trout and brown trout 

diets contained fish (including sculpins). Cutthroat trout and brown trout 

appeared to have similar prey preferences at Forestry Camp, Third Dam, and 
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Temple Fork, (Figure 3.3); these species also appeared to select oligochaetes at 

Twin Bridges and Temple Fork. 

Environmental variables 

Temperature. --Summer water temperatures along the stream increased 

from high to low elevation reaches. Average summer daily water temperatures 

(July-September) ranged from 9.2 octo 15.9 oc in 2001, and from 8.8 octo 15.7 

oc in 2002. These average daily water temperatures were significantly different 

among sites (df= 7; P<0.01 ). Average summer die! temperature in 2001 ranged 

from 1.8 °C, at one of the tributaries, to 8.8 oc at a main stem site; a similar 

pattern was observed in 2002 (Table 3.1 ). 

Discharge. --In general, lower estimates of discharge were observed at 

high and low-elevation sites and tributaries, while higher estimates were 

observed at middle-elevation mainsteam sites (Table 3.1 ). I measured the 

lowest discharge at one of the tributaries in 2001 (Right Hand Fork, 0.19 m3/s). 

The highest summer flows were recorded at a middle elevation mainsteam site in 

2001 (Twin Bridges, 1.73 m3/s) and 2002 (Twin Bridges, 1.95 m3/s) . 

Substrate. --Small boulders and large cobbles were predominant in 

headwaters and mainsteam sites. Coarse gravel is the most common substrate 

at the lower most site (Lower Logan), while small cobbles were most common at 

the tributaries (Temple Fork, Right Hand Fork). The highest percentage of fine 

substrates ( :o;JOmm) was observed in one of the tributaries (Temple Fork, 27%). 

Lower percentages of fines were estimated at low elevation sites (Lower Logan, 

3%; Third Dam, 3.5%; Table 3.1 ). 
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Periphyton. --A consistent pattern in primary productivity was not evident 

based on extracts of chlorophyll a from rocks in 2001 and from tiles in 2002. 

Chlorophyll concentrations from rocks ranged between 12 and 183 mg/m2
, and 

between 74 and 96 mg/m2 on tiles (Table 3.1 ). No significant differences between 

sites (df= 7; P=0.56) or years (df=1 ; P=0.64) were detected. 

Factors associated with fish distribution, 

abundance, and condition 

The abundance of cutthroat trout was positively associated with sediment 

size (R2=0.88; P<0.0001) and diel water temperature (R2=0.68; P=0.003), and 

negatively associated with brown trout abundance (R2=0.69, P"0.0029; Figure 

3.4). In contrast, brown trout abundance was inversely associated with sediment 

size (W=-0. 78; P<0.01 ), diel water temperature (W= -0.57; P=0.02) , and 

discharge (R2=-0.56; P=0.02; Figure 3.4 ). Like abundance, cutthroat trout 

condition was positively associated with sediment size (W=0.68; P=0.012) and 

negatively associated with the abundance of brown trout (W= -0.84; P=0.0005; 

Figure 3.5). Conversely, the condition of brown trout appeared to be associated 

only with the average minimum water temperature (R2=-0.64; P=0.03). 

Based on this screening for factors associated with cutthroat trout 

abundance, I selected a two variable model that included the abundance of 

brown trout and diel water temperature for explaining the variation observed 

abundance of cutthroat trout across sites (Table 3.2) . Sediment size was not 

included due to its auto-correlation with diel water temperature (R2=0.62; 

P=0.01 ). This model accounted for over 80% of the variation in cutthroat 
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abundance across sites (Table 3.3). For brown trout abundance, we also 

selected a two variable model that included diel water temperature and sediment 

size as explanatory variables (Table 3.4) . The model explained more than 95% 

of the variation in abundance of brown trout across sites (Table 3.5). In both 

cases, models predicted observations well; PRESS residuals representing the 

difference between observed and predicted numbers of fish were small , 

averaging 2±6 cutthroat trout and 15±19 brown trout (Figure 3.6). 

Discussion 

The fish fauna of the Logan River are distributed longitudinally with a 

distinct allopatric pattern . Cutthroat trout dominated the mainstem headwaters 

and high-elevation reaches (altitudes above 1800 m), while brown trout 

dominated reaches at lower elevations of the mainsteam and tributaries. Similar 

patterns of biotic allopatry, zonation, and species addition along an altitudinal 

gradient have been documented in other studies (e.g ., Fausch 1989). In 

Sagehen Creek, California, only brook trout were present at high-elevation 

reaches while three other trout species along with sculpins, suckers, and 

whitefish were observed at lower elevations (Gard and Flittner 1974). In a Rocky 

Mountain stream , Rahel and Hubert (1991) identified a fish community pattern 

that followed the temperature variation along the stream; a coldwater trout 

assemblage inhabited high-elevation reaches while a warm water assemblage of 

minnow-sucker (Cyprinidae -Catostomidae) dominated low-elevation reaches. 

And like in our study, Rahel and Hubert (1991) identified a major gradient of 



habitat change from high elevation to low elevation sites. Similar examples of 

biotic zonation and species addition have been documented by Fausch et al. 

(1994) for two charr species (Salvelinus leucomaenis and S. ma/ma) in a 

Japanese island, and by Taniguchi et al. (1998) for brook trout (Salvelinus 

fontinalis) , brown trout, and creek chub (Semotilus atromaculatus) in Rocky 

Mountain streams. 
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The transition between the cutthroat trout and brown trout zones was 

consistent with changes in environmental characteristics along the Logan River. 

Cutthroat trout dominated the fish community in mainsteam reaches with the 

lowest average minimum water temperatures, highest diel water temperatures, 

and where small boulders and large cobbles were the predominant substrate. In 

contrast, brown trout dominated reaches where the average minimum water 

temperature was at least one degree higher than at high-elevation reaches, diel 

temperature did not exceed 6.2 °C, and the primary substrate types were small 

cobble and coarse gravel. These results were consistent with other studies that 

have provided evidence of abiotic factors (e.g., water temperature, discharge, 

substrate) influencing the distribution and abundance of individual fish species 

(e.g., Lotrich 1973), as well as the community composition (Hughes and 

Gammon 1987) . These transitions in community composition can be expected in 

mountainous reg ions where an increase in water temperature is consistent with a 

decrease in altitude (Rahel and Hubert 1991 ). However, even when the 

temperature does not vary dramatically within the stream, changes in fish 



community composition and production can also result from shifts 

geomorphologic features such as stream gradient (Guillory 1982). 
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Based on the physiological limits of cutthroat trout, it is unlikely that the 

replacement of cutthroat trout in some reaches and tributaries by brown trout can 

be attributed to abiotic factors alone (i.e., water temperature). The maximum 

daily average summer water temperature in the Logan River (8 .8 -16 °C) is well 

below the upper thermal tolerance limit for Bonneville cutthroat trout. Laboratory 

experiments indicated that 24.2 °C is the estimated 7 d incipient lethal 

temperature for this species, and that mortality occurs at temperature over 25 °C 

(Johnstone and Rahel 2003). These experiments also show that fish survived 7 d 

exposures to a diel cycle of 16 to 26 °C despite a daily-6 h exposure to 

temperatures higher than 24.2 °C. In addition to these experimental results, field 

studies indicated that Bonneville cutthroat trout neither moved nor experienced 

mortality in spite of water temperatures as high as 27 °C in a Wyoming stream 

(Schrank et al. 2003). The results from all these studies combined suggest that 

trout survival may depend more on the large daily water temperature fluctuations 

(1 0 -13 °C) caused by low nighttime temperatures, as compared to the daily 

average or maximum temperature. Thus I suspect that higher temperatures (<16 

°C) at low-elevation sections of the Logan River, relative to high and middle 

sections , are not a limiting factor for the distribution of the native cutthroat trout 

population in th is system. Conversely, however, minimum temperatures (this 

study; Vincent and Miller 1969) and discharge Lob6n-Cervia (2003) may limit 

brown trout distribution. 



61 

Regression analyses provided additional evidence of the influence of both 

biotic and abiotic factors on trout and salmon distribution and abundance. The 

best overall model predicting cutthroat trout abundance included the abundance 

of brown trout as an important factor, as well as diel temperature. In contrast, the 

best overall model predicting brown trout density included diel temperature and 

sed iment size. These results suggest that brown trout may have a greater effect 

than cutthroat trout on the longitudinal species distribution and on the abundance 

of the native cutthroat trout. While declines in cutthroat trout abundance have 

not been documented in the Logan River during the past decade, it is clear that 

the brown trout population may contribute to the observed distribution pattern 

and to any differences in river-wide cutthroat abundance relative to pre-brown 

trout establishment. 

When cutthroat and brown trout do co-exist , we observed lower relative 

abundances of both species and also a considerable overlap in their diets. 

Ephemeroptera, Plecoptera , and Trichoptera were the most preferred prey for 

both trout species, results that are consistent with other studies that have also 

identified these invertebrates to be among the major components of trout and 

salmon diets (Giova and Sagar 1991; Kusabs and Swales 1991; Sagar and 

Glova 1995). The overlap in the diets of native cutthroat trout and brown trout, 

and the inverse correlation between the condition of cutthroat trout and the 

abundance of brown trout suggest the potential for competitive interactions 

among these species. The combination of results from this study demonstrated 

the potential for negative interactions, perhaps in the form of competition, 
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between native cutthroat trout and introduced brown trout. In related 

experimental work on the same system, cutthroat trout appeared to be more 

affected by brown trout than the converse. When held in sympatry, cutthroat 

trout demonstrated lower growth and condition as compared to allopatric 

treatments. Conversely brown trout appeared to be largely unaffected by cuts 

and were more affected by intraspecific increases in density (Budy et al. 2003). 

Interspecific competition among salmonids has been documented in other 

studies and is suspected to lead to the altitudinal distribution patterns observed in 

many trout streams (Fausch and White 1981 ; Fausch 1988; Nakano 1995). 

Competitive interactions may also play a decisive function in the replacement of 

species. For example, Fausch (1989) and De Sato and Rahel (1994) provided 

evidence of the vulnerability of cutthroat trout to displacement by brook trout, a 

factor that is considered to be a major contributor in the displacement of native 

cutthroat trout from their native range (Gresswell1988). 

Finally, my analyses indicated that in addition to the potential interspecific 

interactions among trout species, the widespread distribution of Myxobolus 

cerebra/is along the Logan River poses an additional threat to the native 

cutthroat trout population. This parasite has been implicated in severe trout 

population declines in other streams (Nehring and Walker 1996; Vincent 1996). 

Despite the distribution and high prevalence of M. cerebra/is, there has been no 

evidence of population level effects in the Logan River as of yet (Thompson et al. 

2000; Budy et al. 2002). However, given that the parasite became recently 

established in this drainage, the overlapping cohorts of all ages of trout (Budy et 
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al. 2003), and that the susceptibility to the parasite is greater on juvenile fish, 

there could be a considerable time lag before a population level effect could be 

observed. Further, the range of environmental characteristics of the Logan River 

(e.g. , temperature, discharge) also appear to contributed to the variability in M. 

cerebra/is prevalence, and could explain in part why clinical signs of whirling 

disease were rare (see Chapter II). 

Identifying the factors , whether biotic, abiotic, or a combination of both , 

that determine the distribution and abundance of trout species is crucial to 

effectively manage the Logan River and other trout streams, where ensuring the 

conservation of native cutthroat trout populations is a top priority. This study was 

conducted to provide insights to the factors that affect the distribution, 

abundance , and condition of sa lmonid populations. I identified abiotic and biotic 

factors that appear to determine, in part, the distribution of fish along the Logan 

River; identifying the mechanisms that drive th is pattern warrant further 

consideration . Moreover, I provide base line information for the distribution and 

prevalence of M. cerebra/is. The effects of this parasite on the salmonid 

populations in the Logan River, and particularly on the native cutthroat trout, may 

not be fully realized yet. Changes in environmental characteristics (e.g., an 

increase in temperature) or biotic variables (e.g., expansion of less vulnerable 

brown trout that act as disease vectors) could lead to higher probability of 

infection, the development of whirling disease, and detrimental effects at a 

population level. Finally, my regression models for predicting cutthroat and 

brown trout abundance and distribution may aide in developing sound 
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management and conservation plans for trout and salmon populations in similar 

stream systems across the intermountain west. 
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Table 3.1. Summary of trout condition (Fulton's K), invertebrate abundance, 
and environmental variables for 8 sites along the Logan River, Utah . See Figure 
3.1 for site locations. Data for trout condition and environmental factors was 
collected during summer in 2001 and 2002. 

Elevation Condition Invertebrates b Temperature c Discharge d Chi a• 
(m) (K) ' (#lm') ('C) (m3/sec) (mg/L) Substrate 1 

SITE Year cutthroat brown 

die I min •'9 •'9 min max .,9 .,9 fines 
(mm) (%) 

Franklin 
Basin 2052 1.07 5676 7.3 4.9 15.4 9.2 0.26 0.55 0.37 14 81 47 209 

Red 
Banks 1949 0 .98 7.7 5.1 17.7 11 .0 0.59 0.84 0.71 10 93 44 287 

Forestry 
Camp 1889 1.05 2794 8.8 6.2 18.8 12.1 0.40 0.96 0.62 51 244 120 283 10 

Twin 
Bridges 

~ 
1686 1.08 1.15 7082 6.2 7.2 16.8 11 .8 1.38 2.30 1.73 18 116 64 143 

Third 
Dam 1521 0.90 1.07 4806 6.0 7.5 16.9 12.1 0.95 1.26 1.08 52 447 182 38 
Lower 
logan 1370 0.92 3750 2.5 13.2 18.7 16.0 0.65 0.73 0.68 21 196 95 137 
Temple 
Fork 1785 1.05 0.96 4752 8.5 5.4 17.3 10.6 0.28 0.67 0.44 60 437 183 23 24 

R.H. 
Fork 1698 0 .93 6494 1.8 9.8 12.8 10.6 0.1 7 0.22 0.20 0 64 12 46 13 

Franklin 
Basin 2052 0.95 6.7 4.8 14.2 8.8 0.28 0.72 0.47 69 82 74 173 14 
Red 
Banks 1949 1.02 7.3 5.6 17.1 10.6 0.74 1.91 1.11 67 106 80 252 14 
Forestry 
Camp 1889 1.01 1.05 8.5 6.0 18.6 11.6 0.43 1.56 0.90 62 147 86 258 14 
Twin 
Bndges 

~ 
1686 1.01 1.08 5.5 7.2 16.1 11 .7 1.38 2 .89 1.95 60 90 78 236 

Third 
Dam 1521 0.93 0.96 4.1 8.8 16.1 12.3 0.65 0 .89 0 .76 60 95 75 205 

Lower 
Logan 1370 0 .92 3.2 12.4 19.0 15.7 0.64 1.55 0.94 76 103 91 40 
Temple 
Fork 1785 0.90 i .13 8.1 5.5 17.0 10.6 0.29 0 .38 0 .35 61 114 75 123 30 
R. H. 
Fork 1698 1.08 1.7 9.6 12.1 10.7 0 .1 6 0 .23 0 .19 58 132 96 105 11 

' Fulton's (K) condi tion factor. 
' Estimates of invertebra te abundance provided by the National Aquatic Monitoring Center (M . Vinson, 

National Aquatic Monitoring Center- Utah State University, personal communication).Based on samples 
collected in 1997-2000. 

' Estimated average diet, minimum, maximum, and summer (July-September) temperatures. 
d Minimum, maximum, and average discharge during summer (July-September) base-flow conditions. 
' Chlorophyll a extracted from rocks (2001) and artificial substrates (2002); used as an index of 

productivity. 
'Average substrate size and estimated percentage of fine sediments (<1 Omm). 



Table 3.2. Best-subset regressions for variables associated with the 
abundance of cutthroat trout. Natural log transformation is indicated by (In). 
Square-root transformation is shown as (sqrt). The asterisks (**) indicate the 
model selected for multiple linear regression analyses. 

Variables R' Adjusted 
C(p) AIC MSE Variables in Model 

in model R' 
0.7472 0.7051 3.4449 36.4968 77.4611 In sediment ' 
0.7402 0.6969 3.6520 36.7163 79.6161 sqrt_btpop • 
0.5522 0.4776 9.1879 41 .0709 137.2142 ln_dieltemp ' 

2 .. 0.8597 0.8036 2.1323 33.7872 51 .5942 sqrt_btpop ln_dieltemp 
2 0.8183 0.7456 3.3525 35.8570 66.8285 ln_dieltemp ln_sediment 
2 0.7803 0.6925 4.4693 37.3731 80.7725 sqrt_btpop ln_sediment 

3 0.8642 0.7623 4.0000 35.5269 62.4275 sqrt_btpop ln_dieltemp 
In sediment 

' Natural log of the average sediment size. 
• Square-root of the estimated abundance (fish/km) of brown trout. 
' Natura! log of the average summer (July- September) diel water temperature. 
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Table 3.3. Summary of linear regression model for cutthroat trout abundance 
in the Logan River, Utah. Parameter estimates are also given. 

Source of Sum of Mean Adjusted 
variation df Sguares Sguare F p R2 

Model 2 1580.6468 790.3234 15.32 0.0074 0.8036 
Error 5 257.9711 51.5942 
Corrected 7 1838.6179 
Total 

Parameter Standard 
Variable df estimate error p 

Intercept 10.9287 11.6162 0.94 0.3900 
sqrt_btpop a -0.6017 0.1818 -3.31 0.0212 
ln_dieltemp b 11.0172 5.3386 2.06 0.0940 

• Square-root of the estimated abundance (fish/km) of brown trout. 
b Natural log of the average summer (July- September) diel water temperature . 
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Table 3.4. Best-subset regressions for variables associated with the 
abundance of brown trout. Natural log transformation is indicated by (In). Square
root transformation is shown as (sqrt). The asterisks (**) indicate the model 
selected for multiple linear reg ression analyses. 

Va riables Rz Adjusted 
C(p) AIC MSE Variables in Model in model Rz 

0.8797 0.8596 23.2992 31.7810 42.9618 In sediment a 

0.7402 0.6969 54.9453 37.9390 92.7643 sq-rt_ctpop ' 
0.2711 0.1497 161.3616 46 .1912 260.2355 ln_d ieltemp' 
0.05 16 ·0.1065 211 .1757 48 .2978 338.6298 ln_discharged 

2'' 0.97 10 0.9594 4.5859 22.4056 12.4373 ln_dieltemp Jn_sediment 
2 0.9572 0.9401 7.7080 25.5098 18.3334 sqrt_ctpop ln_sediment 
2 0.8801 0.8321 25 .2066 33.7539 51.3793 In_ discharge 

ln_sediment 

0.9800 0.9649 4.5453 21.4389 10.7296 ln_dieltemp Jn_discharge 
ln_sediment 

0.9733 0.9533 6.0596 23.7393 14.3044 sqrt_ctpop 
ln_d ieltemp 
In sediment 

a Natural log of the average sediment size. 
' Square-root of the estimated abundance (fish/km) of cutthroat trout 
' Natural Jog of the average summer (July· September) diel wate r temperature. 
d Natural log of the average discharge during summer base flow conditions (July-September). 



Table 3.5. Linear regression model with brown trout abundance as 
dependent variable, and sed iment size and diel temperature as predictor 
variables . 

Source of Sum of Mean Adjusted 
variation df Sguares Sguare F p R2 
Model 2 2080.0695 1040.0347 83.62 0.0001 0.9594 
Error 5 62.1867 12.4373 
Corrected 

7 2142 .2562 
Total 

Parameter Standard 
Variable df estimate error t p 

Intercept 107.3256 6.8642 15.64 <0.0001 
In sediment a -15.4742 1.4094 -10.98 0.0001 
ln=dieltemp b -9 .1474 2.3067 -3.97 0.0107 

' Natural log of the average sed iment size. 
• Natural log of the average summer (July- September) diel water temperature. 
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Figure 3.1. Estimated abundance of cutthroat trout (top), and brown trout 
(bottom) at mainstem and tributary sites in the Logan River, Utah. Mainsteam 
sites are organized left to right from high to low-elevation. Error bars represent :t: 
1 SE. 
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Figure 3.2. Invertebrate composition by taxa in the Logan River (a), and diet 
composition by wet weight in cutthroat trout (b) and brown trout (c). Sample size 
(n) is given on bars. 



1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

1.0 

0.8 

0.6 

X 

~ 0.4 
5 
c:: 0.2 0 
u 

<1> 
-.; 0.0 
Ul 

"' 1.0 
~ 
a. 
<( 

-"' 
0.8 

c:: 

j 0.6 

() 0.4 

0.2 

0.0 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

Forestry Camp 

e---1 
Twin Bridges 

1

- Cutthroat trout I 
c:::J Brown trout 

-

R--e--B-- - --- -
Third Dam 

Temple Fork 

--------.----
Prey type 

76 

Figure 3.3. Chesson's alpha selection index for cutthroat trout and brown 
trout at four sites on the mainstem and one tributary (Temple Fork) of the Logan 
River, Utah. Dashed lines indicate the level at which there is a preference for a 
particular food item. 
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Figure 3.4. Scatterplots of cutthroat trout (top) and brown trout abundance 
(bottom) in relation to different environmental variables. Statistical results for 
Pearson correlations (lines) are provided in the text. 
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Figure 3.6. Predicted versus observed fish abundances based on PRESS 
residuals for cutthroat trout (top), and brown trout (bottom). 



CHAPTER IV 

SUMMARY 
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Understanding the current and potential effects of Myxobolus cerebra/is, 

the parasite that causes whirling disease, in the Logan River is important to 

effectively manage this system, as well as other streams where native cutthroat 

populations are threatened . While other authors have suggested that 

environmental factors could lead to the variability in the response of susceptible 

trout populations to M. cerebra/is, few studies have been designed to identify and 

enhance the understanding of such factors. In the first phase of my thesis, I 

investigated the potential relationship between the prevalence of M. cerebra/is 

and suit of environmental variables hypothesized to be influential in determining 

its distribution and effects of in wild salmonid populations. To do this, I assessed 

potential relationships between temperature, discharge, substrate size, nutrient 

concentration , primary productivity, the relative abundance of Tubifex tubifex, 

and the distribution and prevalence of M. cerebra/is in wild and sentinel fish . In 

addition, I evaluated the importance of these factors in the development of a 

predictive model relating potential increases in prevalence of the parasite to 

differences or variations in environmental factors. 

The diagnosis of M. cerebra/is in wild and sentinel fish revealed that the 

parasite is widespread along the main stem and at least one of the tributaries of 

the Logan River. However, inconsistencies in the prevalence of wild and sentinel 

fish suggested that fish movement may be an important vector leading to the 
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spread of the parasite in the Logan River drainage. In addition, much of the 

variability in prevalence across sites could be explained by differences in 

temperature and discharge. Temperatures above or below the ideal range for 

the life cycle of M. cerebra/is at headwaters, tributaries, and low-elevation 

reaches of the Logan River, were associated with lower prevalence of the 

parasite detected at these sites. While other authors have suggested high water 

discharge may reduce the rate M. cerebra/is infection by destroying the parasite's 

spores or diluting their concentration, my results indicated an asymptotic 

relationship between discharge and prevalence. This relationship indicated that 

low base flow discharge at headwaters and tributaries may decrease the 

probability of spores contacting and infecting susceptible fish . In contrast, higher 

base flow discharge likely disturbs areas where spores may be concentrated, 

therefore increasing the probability of infection up to a maximum. Above this 

maximum discharge level, the concentration of spores in the water column may 

be reduced and could lead to lower infection rates. In addition , multiple linear 

regression models that included both temperature and discharge were significant 

overall and explained a large proportion of the variability in the prevalence of M. 

cerebra/is. 

The second phase of my thesis research was intended to gain insight into 

the factors that influence the distribution, abundance, and condition of trout 

populations in the Logan River. My results indicated that the fish fauna are 

distributed longitudinally with an allopatric distribution of the two dominant 

species. Cutthroat trout dominated the headwaters and high-elevation reaches, 
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while reaches at lower elevations of the mainstem and tributaries were 

dominated by brown trout. The transition zone between the two dominant 

populations was consistent with changes in environmental characteristics along 

the river. Cutthroat trout dominated the fish community in mainstem reaches with 

the lowest average minimum temperatures , highest die I temperatures, and where 

the substrate consists predominantly of small boulders and large cobbles. These 

results were consistent with other studies that have provided evidence of abiotic 

factors influencing the distribution and abundance of individual fish species. 

Further, my analyses indicated a considerable overlap in the diets of 

sympatric cutthroat trout and brown trout. Linear regression models suggested 

that both biotic and abiotic factors influenced the trout distribution and 

abundance. For cutthroat trout, the best model for predicting abundance 

included brown trout abundance and diel temperature, whereas for brown trout, 

the best model for predicting abundance included diel temperature and sediment 

size. These analyses suggested that brown trout may have a greater effect on 

the species distribution and abundance of cutthroat trout, than the opposite, 

suggesting the potential for competitive interactions among these native and 

introduced species. 

My study not only provides baseline information of the distribution and 

prevalence of a parasite that poses a threat to salmonid populations in the Logan 

River, but also provides insights of pathogen-host-environment interactions 

needed to fully understand and asses the potential effects of M. cerebra/is in 

other trout populations. In addition , I identified abiotic and biotic factors that may 
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determine , in part, the distribution of fish along the Logan River. My research 

contributes to the understanding of the factors that influence the distribution and 

abundance of trout species; the understanding of these factors is crucial to 

effectively manage this system and to ensure the conservation of native trout 

populations. 
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APPENDIX 



Historical data on trout population abundance in the Logan River, Utah 
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Figure A.1. Population estimates for cutthroat trout for four sites on the 
mainstem of the Logan River and one tributary (Temple fork) . Error bars 
represent 95% confidence interva ls. Based on Wul lschleger (1991 ), and 
Thompson (1999). 
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Figure A.2 . Population estimates for brown trout for three sites on the 
mainstem of the Logan River and one tributary (Temple fork) . Error bars 
represent 95% confidence intervals. Based on Wullschleger (1991 ), and 
Thompson (1999). 
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