An Ecological/Life History Comparison of Two Whitefish Species in Bear Lake, Utah/Idaho

Brett W. Thompson

Follow this and additional works at: https://digitalcommons.usu.edu/etd
Part of the Life Sciences Commons

Recommended Citation

Thompson, Brett W., "An Ecological/Life History Comparison of Two Whitefish Species in Bear Lake, Utah/ Idaho" (2003). All Graduate Theses and Dissertations. 4432.
https://digitalcommons.usu.edu/etd/4432

This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

AN ECOLOGICAL COMPARISON OF TWO ENDEMIC SPECIES OF WHITEFISH IN BEAR LAKE, UTAH/IDAHO by Brett W. Thompson
 A thesis submitted in partial fulfillment of the requirement for the degree
 of
 MASTER OF SCIENCE
 in
 Fisheries Biology

Approved:

UTAH STATE UNIVERSITY
Logan, Utah

ABSTRACT
An Ecological / Life History Comparison of Two Whitefish Species in Bear Lake, Utah/Idaho
by
Brett W. Thompson, Master of Science
Utah State University, 2003
Major Professor: Dr. Chris Luecke
Department: Aquatic Watershed and Earth Resources

Ecological traits of the endemic Bear Lake whitefish Prosopium abyssicola and the Bonneville whitefish Prosopium spilonotus were investigated. Spatial distributions indicated distinctive differences in depth contour preference. Catch per unit effort data indicated that Bonneville whitefish prefer shallow depths and warmer water temperatures, whereas Bear Lake whitefish prefer deep, cold water.

Diet differences between the two species were large. Differences in both age distribution and growth rate patterns were also observed. The Bonneville whitefish population was predominantly composed of juvenile age classes. Very large adults reached ages of 12-14 years. Bear Lake whitefish exhibited a different population structure with few young fish and larger proportions of older age classes. Some of these
fish were aged over 35 years old. Both analyses suggest that the population structure of each species is the result of a stable or growing population.
(131 pages)

ACKNOWLEDGMENTS

First I would like to thank the Utah Division of Wildlife Resources and Utah State University, who made this project financially and logistically possible. Specifically I would like to thank both Bryce Nielson and Scott Tolentino, who provided me with help and friendship while at Bear Lake.

Special thanks to my advisor and friend, Dr. Chris Luecke. Without his constant professional guidance and help, the fulfillment of this project would have not been possible. In addition I would like to thank Dr. Phaedra Budy and Dr. Ted Evans, who as committee members, gave invaluable input and suggestions throughout my research.

Jon Flinders and Kirk Dahle were great field technicians who assisted me in the data collection and analysis often under adverse field conditions. Without the hard work and dedication of these people I would have never finished. I would also like to thank all others who directly or indirectly assisted and contributed to my research.

CONTENTS

Page
ABSTRACT ii
ACKNOWLEDGMENTS iv
LIST OF TABLES vii
LIST OF FIGURES viii
CHAPTER

1. INTRODUCTION 1
2. ECOLOGICAL CHARACTERISTICS: FOOD HABITS, DIET PREFERENCES, AND SPATIAL DISTRIBUTION OF BONNEVILLE WHITEFISH PROSOPIUM SPILONOTUS, AND BEAR LAKE WHITEFISH PROSOPIUM ABYSSICOLA IN BEAR LAKE, UTAH / IDAHO 10
Abstract 10
Introduction 10
Study Area 12
Methods 15
Results 18
Discussion 22
Literature Cited 24
3. LIFE HISTORY CHARACTERISTICS: GROWTH, LENGTH AT AGE, POPULATION DYNAMICS, AND SENSITIVITY ANALYSIS OF BONNEVILLE WHITEFISH PROSOPIUM SPILONOTUS AND BEAR LAKE WHITEFISH PROSOPIUM ABYSSICOLA IN BEAR LAKE, UTAH/IDAHO 38
Abstract 38
Introduction 39
Study Area 43
Methods 45
Results 50
Discussion 53
Literature Cited 56
IV. CONCLUSION 75
APPENDIX 78
A. Netting Data 79
B. Diet Data 123
C. Spatial Distribution Data 125
D. Thermograph Data 126
E. Survivorship Curve Data 128
F. Catch Per Unit Effort (CPUE) Data 129

LIST OF TABLES

Table Page
3-1 Life table constructed for Bonneville whitefish sampled during the summer of 2000 60
3-2 Life table constructed for Bear Lake whitefish sampled during the summer of 2000 60
3-3 Results of the sensitivity analysis for Bonneville whitefish. Life-table population parameters r and Ro were both analyzed by manipulating survivorship schedules. 61
3-4 Results of the sensitivity analysis for Bear Lake whitefish. Life-table population parameters r and Ro were both analyzed by manipulating survivorship schedules. 61
3-5 Leslie matrix constructed for Bonneville whitefish. 62
3-6 Leslie matrix constructed for Bear Lake whitefish. 62
3-7 Comparison between the proportions within each age class once a stable age distribution was reached with proportions caught during the gill net survey. 63
3-8 Life table parameters calculated for Bonneville and Bear Lake whitefish using catch and age data from the summer 2000 sampling period 63

LIST OF FIGURES

Figure

Page

2-1 Summer thermograph taken of Bear Lake 2001 showing distinct thermocline 26
2-2 Map generated in Arc View 3.2 showing sections of the lake that were sampled 27
2-3 Bathymetric map of Bear Lake (Utah-Idaho) showing depth contours to be sampled using the multimeshed gill nets. 28
2-4 Map of Bear Lake showing netting sites and sample coverage. White dots indicate first replication site, and yellow dots indicate second replication site, summer 2000 29
2-5 Length-Weight relationships for (A) Bonneville whitefish and (B) Bear Lake whitefish sampled during the summer 2000 sampling period. 30
2-6 Summer Bonneville whitefish diet. Data collected summer 2000. 31
2-7 Summer Bear Lake whitefish diet. Data collected summer 2000 32
2-8 Early Spring Bonneville whitefish Diet. Data collected April 2001. 33
2-9 Early Spring Bear Lake whitefish diet. Data collected April 2001 34
2-10 Distribution of Bonneville and Bear Lake whitefish during the summer 2000 sampling period. 35
2-11 Distribution of Bonneville and Bear Lake whitefish during the spring of 2001 sampling period 36
2-12 Distribution of Bonneville and Bear Lake whitefish during the summer 2001 sampling period. 37
3-1 Walford plot for Bonneville whitefish sampled during the summer of 2000. 64
3-2 Walford plot for Bear Lake whitefish sampled during the summer of 2000.. 64
3-3 Bonneville whitefish length frequency relationship 65
3-4 Bear Lake whitefish length frequency relationship 65
3-5 Gill net retention selectivity coefficient by mesh size. 66
3-6 Whitefish Length/Girth relationship for Bonneville and Bear Lake whitefish 66
3-7 Gill net corrected vs. field CPUE data for Bonneville whitefish 67
3-8 Gill net corrected vs. field CPUE data for Bear Lake whitefish. 67
3-9 Egg-Length relationship for Bonneville and Bear Lake whitefish 68
3-10 Survivorship curves of Bonneville (A) and Bear Lake (B) whitefish collected summer 2000 69
3-11 Von-Bertalanffy growth function utilizing aged Bonneville whitefish caught during the summer 2000 sampling period 70
3-12 Von-Bertalanffy growth function utilizing aged Bear Lake whitefish caught during the summer 2000 sampling period 70
3-13 Bonneville whitefish length at age relationship 71
3-14 Bear lake whitefish length at age relationship. 71
3-15 Bonneville whitefish length at age and otolith annuli measurement relationship 72
3-16 Bear Lake whitefish length at age and otolith annuli measurement relationship 72
3-17 Slide images comparing the otoliths of both whitefish species of approximately the same length 73
3-18 Sensitivity analysis output for Bonneville whitefish ages (0-3) A, and Bear Lake whitefish ages (4-7) B 74

CHAPTER 1

INTRODUCTION AND STUDY OBJECTIVES

Fishes adapt to perpetuate the history of their kind and maximize fitness. These adaptations allow them to occupy an extraordinary array of habitats, ranging from the tiniest desert springs, to deep ocean trenches. The diversity of fish ($>25,000$ species) and the habitats they occupy reflects their extremely long evolutionary history (Moyle and Cech 2000).

Fishes in Bear Lake, Utah/Idaho exemplify this diversity and adaptability. The whitefish group (Subfamily Coregoninae) has been regarded as being among the most intriguing and controversial group of animals from an evolutionary and taxonomic standpoint (Lindsey and Woods 1970). Three endemic Coregonid whitefish species of the genus Prosopium are currently recognized in Bear Lake: Bonneville whitefish Prosopium spilonotus, Bear Lake whitefish Prosopium abyssicola, and the Bonneville Cisco Prosopium gemmiferum Snyder (1921). However, only the Bonneville Cisco is affably distinguished from the others by means of simple morphological identification. Extensive research on the Bonneville cisco has previously been conducted (Perry 1943; Bouwes and Luecke 1997). Therefore, this species was not evaluated in the present study. The other two whitefish species exhibit different life history traits, including the separation of spawning times and size at age characteristics. These traits allow researchers to distinguish the Bear Lake and Bonneville whitefishes as spawning adults.

The whitefish complex in Bear Lake is particularly interesting in that they have been geographically isolated, at least since the Pleistocene. Although the mountain
whitefish Prosopium williamsoni is ubiquitous throughout the west, no other endemic and sympatric morphotypes of whitefish occur in the region. Thus most taxonomists surmise that P. williamsoni is the ancestor to the three whitefish species in Bear Lake.

In North America and Europe similar complexes of lake whitefish have been reported in several disjunct localities including the Laurentian Great Lakes. Normally these complexes have one or more pairs of whitefish that are closely related. They are most often referred to as dwarf and normal morphotypes displaying distinct differences in behavioral and ecological traits (Pigeon et al. 1997). The origins of these "dwarf and normal" whitefish pairs remains uncertain. Some evidence suggests that both allopatric divergence followed by secondary contact and sympatric radiation may be involved. Other various modes of speciation have been hypothesized to account for coregonid complexes, including sympatric speciation within lakes, and micro-geographic speciation during deglaciation (Bodaly et al. 1992). Others have suggested that glacial refugia could be attributed where sympatric pairs of lake whitefish occur in geographically isolated areas (Svardson 1970).

It is not completely understood what mechanisms drove the relatively recent speciation of the Bear Lake whitefish complex. Geologic evidence suggests that the whitefishes in Bear Lake could have allopatric origins, which supports the widely accepted notion that complete geographic isolation is necessary to drive speciation (Behnke 1972). Alternatively, sympatric divergence may have occurred as a result of partitioning of food resources and or spawning habitat in space and time (Mann and McCart 1981; Schluter and Mcphail 1992). This mechanism may be plausible since all three species utilize the same limited spawning habitat during different times of the year.

Regardless of their origins the sympatric pair of whitefish in Bear Lake possess similar characteristics to those of the Eastern United States, Canada, and Europe. The Bonneville whitefish can reach total lengths of over 450 mm whereas the Bear Lake whitefish have never been collected at sizes greater than 280 mm (B. Nielson and S. Tolentino, Utah Division of Wildlife Resources, personal communication). The present study proposes that these two species are analogous to other sympatric pairs of whitefish where normal and dwarf morphotypes are present.

Difficulties in identification of the Bonneville and Bear Lake whitefishes outside of spawning times and at early life stages has precipitated research investigating possible differences in morphological traits and meristic counts (Ward 2000). Results of this study indicate that both lateral line/dorsal and total lateral line scale counts provide a means of distinguishing individuals of these species. All life stages of whitefish were separated in an effort to investigate the inherent ecological and biological differences that are present between the two species.

Prior to the present study it was unknown if each species demonstrated different population dynamics, food habits, seasonal habitat preference, and spatial distribution. Attaining some understanding of these factors is imperative since both species are endemic to Bear Lake and their preservation may depend on these ecological relationships.

Chapter 2 will detail the intrinsic ecological traits of both whitefish species. More specifically this chapter will describe the evolution of these two species and how they have successfully persisted in Bear Lake under sympatric conditions. To understand these traits, specific ecological characteristics were investigated, including; (1) their diet
preferences during the summer, when the lake is thermally stratified, and during the winter-early spring when the lake is iso-thermic; (2) Their spatial distribution during these same time periods. The data collected will provide important insight into the life history differences of both species, and will assist with the criteria of a management plan.

In Chapter 3, size, age at length, and fecundity were explored to understand the life history both populations. Sectioned otoliths were used to determine age structures and growth characteristics. These data were then used to parameterize a life table and Leslie matrix to gain a better understanding of important population growth characteristics, and sensitive stages in each species life history.

Study Objectives

1. To assess the differences in food resources used by the two whitefish species. Stomach contents were examined to determine if they are utilizing different sources of food. If spatial separation is established, differences in food preferences will be expected. Different species of fish often evolve feeding structures and mechanisms that allow them to exploit a vast array of food resources. White (1974) documented differences in maxillary length and positioning of the mouth in some known specimens of Bear Lake whitefish. The mouth of the Bear Lake whitefish is often inferior and pointing in a sub-terminal direction when compared to the Bonneville whitefish. A preference for benthic dwelling organisms would correspond with this morphological difference and could be an evolutionary adaptation.

The information provided will give us a better understanding about which trophic levels the whitefish are feeding at within the lake. Diet analysis will provide important
information to fisheries managers trying to make decisions that may directly or indirectly precipitate unwanted population changes.
2. To identify spatial distribution (by depth contour) differences between Bear Lake and Bonneville whitefish. Because known morphological differences permitted the identification of non-spawning individuals, habitat partitioning during both the summer months when the lake is thermally stratified, and also after fall mixing when the lake is iso-thermic was investigated. Mazur (1999) failed to collect a significant number of Bear Lake whitefish in depths deeper than 30 m . Depths greater than 30 m were thus sampled extensively in the present study. The proportion of Bear Lake / Bonneville whitefish reported in his (Mazur 1999) intensive gill net study were very low, indicating that the Bear Lake whitefish were not being sampled effectively. Folklore and old reports produced by pioneering investigators on Bear Lake have mentioned that Bear Lake whitefish dwell in deep water. Snyder (1921) may have had some semblance of their distribution when he described the Bear Lake whitefish as abyssicola meaning "of the deep." However, prior to this study, no substantial data existed concerning habitat use and or spatial distribution of whitefish in Bear Lake deeper than 35 m . Utah Division of Wildlife Resources (U.D.W.R.) samples the lake annually up to $35-40 \mathrm{~m}$. The examination of these data suggests that a separate smaller size class of fish is present, which might be the Bear Lake whitefish. These observations suggest that Bear Lake whitefish may prefer deeper, colder water (Elliot 1976; Buckel 1995).
3. Otoliths from both species were sectioned and examined to determine the age structure of both populations. Length at age and growth rate parameters inherent to the life history of both species were then calculated. Through a vertical-static life table analysis,
variation in mortality and fecundity of separate size classes were examined, and the effects on population dynamics reported.

The most reliable method of determining age-specific mortality and fecundity rates for populations that have overlapping generations is to follow the fate of a group of individuals (a cohort) through a complete lifecycle (Begon et al. 1986). Unfortunately is not always possible to monitor the dynamics of a population by constructing such a "fixed cohort" life table. In fact, natural populations of animals are rarely examined in this way, as individuals are highly more mobile and surreptitious to observers. However, an alternative to the cohort life table exists. This is called a static or vertical life table. The static life table involves examining the age structure and survival probabilities of the whole population at one particular time step. In a sense it consists of taking a "snap shot" (sample) or a slice out of a larger population that was constructed over a longer period of time. This type of life table can have practical uses when trying to describe populations and can provide a number of important life history parameters that can be calculated based on survivorship and fecundity schedules. Lowe (1969) demonstrated the uses of such a life table with deer populations in Scotland. He was more concerned, as is the present study, with general trends rather than with particular changes occurring from one year to the next. Certain assumptions apply to the use of static life tables:

1. The populations are closed. Changes in population size are dependent on local births and deaths.
2. There is no genetic structure within the populations. There cannot be any underlying genetic variation in the populations that affect the birth and death rates.
3. This life table assumes that the population has reached its stable age distribution.

The latter assumption is rarely met when sampling natural populations. However the goal of this study was not to use the data generated by the life table to accurately project population sizes or trends several generations into the future, but rather use the information derived by the life table to perform a sensitivity analysis. In general the purpose of using such a life-table, as the model that Lowe constructed, is to discover patterns of birth and mortality, which are repeated year to year under a variety of circumstances. In this study static life table approaches were used to assess the shared or un-shared properties of the whitefish species in Bear Lake.

References

Begon, M., J. L. Harper, and C. R. Townsend. 1986. Ecology of individuals, populations, and communities. Blackwell Scientific Publications, London, England.

Behnke, R. J. 1972. The systematics of salmonid fishes of recently glaciated lakes. Journal of the Fisheries Research Board of Canada 29:639-671.

Bodaly, R. A., J. W. Clayton, C. C. Lindsey, and J. Vourinen. 1992. Evolution of lake whitefish in North America during the pleistocene: genetic differentiation between sympatric populations. Canadian Journal of Fisheries and Aquatic Sciences 49:769-779.

Bouwes, N. W. Jr., and C. Luecke. 1997. The fate of bonneville cisco eggs in Bear Lake: evaluating mechanisms of egg loss. Transactions of the American Fisheries Society 126:240-247.

Buckel, J. A. 1995. Effects of temperature, salinity, and fish size on growth and consumption of juvenile bluefish. Journal of Fish Biology 47:696-706.

Elliot, J. M. 1976. The energetics of feeding metabolism and growth of brown trout Salmo trutta in relation to weight, water temperatures, and ration size. Journal of Animal Ecology 45:923-948.

Lindsey, C. C. and C. S. Woods, editors 1970. Biology of Coregonid Fishes. University of Manitoba Press, Winnipeg, Canada.

Lowe, V. P. W. 1969. Population dynamics of the red deer Cervus elaphus. Journal of Animal Ecology 38:425-457.

Mann, G. J., and P. J. McCart. 1981. Comparison of sympatric dwarf and normal populations of least cisco Coregonus sardinella inhabiting Trout Lake, Yukon Territory. Canadian Journal of Fisheries and Aquatic Sciences 38:240-244.

Mazur, M. 1999. Population dynamics of interactions among fishes of Bear Lake. Annual report to the Utah Division of Wildlife Resources. Project F-47-R Number V. Salt Lake City, Utah.

Moyle, P. B., and J. J. Cech. 2000. An introduction to ichthyology. Prentice-Hall Inc., Englewood Cliffs, New Jersey.

Perry, L. E. 1943. Biological and economical significance of the peaknose cisco of Bear Lake, Utah-Idaho. Doctoral dissertation. University of Michigan Library, Ann Harbor, Michigan.

Pigeon, D., A. Chouinard, and L. Bernatchez. 1997. Multiple modes of speciation involved in the parallel evolution of sympatric morphotypes of lake whitefish. Evolution 51(1):196-205.

Schluter, D., and J. D. Mcphail. 1992. Ecological character displacement and speciation in sticklebacks. The American Naturalist 140:85-108.

Snyder, J. O. 1921. Three new whitefishes from Bear Lake, Idaho and Utah. Bulletin of the United States Bureau of Fisheries 36:1-9.

Svardson, G. 1970. Significance of introgression in coregonid evolution. Pages 33-59 in C. C. Lindsey and C. S. Woods, editors. Biology of coregonid fishes. University of Manitoba Press, Winnipeg, Canada.

Ward, A. 2000. Morphometric evaluation of the whitefish complex in Bear Lake, UtahIdaho. Master's thesis. Utah State University, Logan, Utah.

White, R. G. 1974. Endemic whitefishes of Bear Lake, Utah-Idaho: A problem in systematics. Doctoral dissertation. Utah State University, Logan, Utah.

CHAPTER 2

ECOLOGICAL CHARACTERISTICS: FOOD HABITS, DIET PREFERENCES, AND SPATIAL DISTRIBUTION OF BONNEVILLE WHITEFISH PROSOPIUM SPILONOTUS, AND BEAR LAKE WHITEFISH PROSOPIUM ABYSSICOLA IN BEAR LAKE, UTAH / IDAHO

Abstract. - Bonneville and Bear Lake whitefish were sampled using gill nets throughout the summer of 2000, early spring 2001, and the summer of 2001. Samples were taken from the stomachs of whitefish and analyzed in the lab to investigate differences in food preferences between the two species. Spatial distributions were analyzed using the catch per unit effort (CPUE) data collected during the gill netting survey. Large differences in the diets of the two species were found at nearly every size class indicating apparent resource partitioning within the lake. Whitefish captured in the gill nets during every sampling period showed that not only do the two species differ in relative abundance, but their spatial distribution was also significantly different. Bonneville whitefish were more abundant in shallower depths with 96% caught in water depths of 5-35 m. Bear Lake whitefish were more abundant in deeper water with 90% caught in depths ranging from 40-60 m.

Introduction

The diets and feeding habits reveal many distinguishable characteristics attributed to a species ecology. They help provide information as what trophic level a fish occupies and define species that occupy often complex food chains.

The mouth morphology of fish is one factor that dictates what they can and will eat. Ultimately through a fishes morphological and physiological evolution they settle into respective niches within ecosystems. The Bonneville and Bear Lake whitefish in Bear Lake employ an inferior mouth morphology. This is evident by their aberrant premaxilla, which distinguishes their genus from all other Coregonid species. They are neither specialized for feeding on prey associated with the benthos, or for preying heavily on forage fish, and or zooplankton suspended in the pelagic zone. This generalist feeding strategy may provide some advantage in competing with effective planktivores (Bonneville Cisco), piscivores (Cutthroat Trout), and benthic feeders (Utah Sucker and Utah Chub) that are also native to Bear Lake.

Seasonal diets of each whitefish species were examined to detect any differences in the feeding ecology of Bonneville and Bear Lake whitefish throughout their entire life history. Spatial distribution was also explored using a gill net survey of benthic habitats. The distribution of the whitefish complex in Bear Lake has been evaluated by previous investigators (Snyder 1921; B. Neilson and S. Tolentino, Utah Division of Wildlife Resources, personal communication; Mazur 1999), however none of these investigators sampled all depth strata of the lake. The goal of this study was to systematically sample the abundance of Bonneville and Bear Lake whitefish throughout the available benthic habitat present in Bear Lake.

Many factors drive varying fish distribution, including predation avoidance, food resources, and patterns of thermal stratification. Other closely related Coregonid species are known to segregate habitats sympatrically. Randi (1999) showed differences in the distribution of length groups and morphotypes of whitefish within a Norwegian lake.

Small individuals (dwarf) were caught in deeper areas of the lake, whereas larger species were found in the shallower depths.

Increasing human development in the Bear Lake watershed has the potential to change nutrient inputs and subsequently influence the food resources and spatial distributions of fishes. Changes in water use patterns may also affect fish habitat. Results of our study will help in understanding the potential consequences of these environmental changes and can assist in the management of Bear Lake and the preservation of these endemic species.

Study Area

Bear Lake is a long, elliptical-shaped lake located in a moderately elevated mountainous area in northeastern Utah and southeastern Idaho. The valley that harbors the lake is relatively narrow and runs in a north-south direction surrounded by the Bear River range of mountains on the west (elevation 3048 m) and the Bear Lake plateau on the east (elevation 2440 m). The lake is large, and comparatively deep with a fluctuating surface area of approximately $282 \mathrm{~km}^{2}$ and a mean depth of 30.5 m . Maximum depth can reach over 63 m approximately one-fourth of a mile off the eastern shore and just south of the South Eden creek delta. Its total length is nearly 30 km with 19 km in Utah and the remainder in Idaho with width ranging from 12 km to 6.4 km .

Since the construction of a hydroelectric facility on the northern shore of the lake, the main uses for the lake have been the production of electricity, and use of water storage for agriculture practices. Bear Lake is a natural lake, thus no dam was ever built. However, the natural outlet where the Bear River once historically left the lake has been
reopened and a controlled canal constructed. The Bear River was also diverted to enter the lake to compensate for water leaving through the canal. Prior to these developments the lake was considered a closed system. All water that entered the lake from its small in-flowing streams and benthic springs stayed in the lake. The geology of the lake is of special interest. An active fault runs north and south along its eastern shore. Tectonic uplifting has been credited for the lake's deepest hole and signs of fault activity are detectable at the North and South Eden stream deltas (Kalister 1972). The sediments of Bear Lake are very deep ($>100 \mathrm{~m}$) and consist mostly of CaCO^{3} precipitate, extinct gastropod shells, and cobble sized stone. The current form of the lake has been present since the Pleistocene, but the lake basin has likely existed for several million years (Perry 1943).

Bear Lake is oligotrophic with mean chlorophyll a levels never exceeding 0.2 $\mathrm{mg} / \mathrm{m}^{3}$ at the surface during summer months. Secci depth measurements range from 3-10 m (Wurtsbaugh and Hawkins 1990). The lake is full of minerals and a plethora of calcium carbonate precipitate, which gives the lake a turquoise-blue color. The water column is typically saturated with dissolved oxygen and has not been observed to drop below $4 \mu \mathrm{~g} / \mathrm{L}$ at the surface (Lamarra et al. 1987). Surface temperatures in the summer can reach 20 C with temperatures at 55 m never exceeding 5 C (figure 2-1). The water column displays distinct summer stratification, and an obvious thermocline exists at 1215 m , which forms as early as June, and persists through October.

Perry (1943) reported that "very seldom does the lake pass through a winter without freezing over." However, Bear Lake did have complete ice cover the three years
prior to this study (1996-1999). Despite the recent trend of mild winters, complete ice cover of Bear Lake was experienced during the winters of 2000 and 2001.

The limnetic zooplankton community is dominated primarily by low densities of copepoda and Bosmina; however, yearly sporadic pulses of daphnia can also be measured in the lake (Mazur 1999; Morreno 1989). These low densities are likely the main limitation to low levels of fish production experienced by the lake.

The invertebrate fauna of Bear Lake is not diverse, nor abundant, and most species are associated with the benthos. These species include: Nematoda, Annelidea, Ostracoda, Sphaeridae, and Chironomidae (Wurtsbagh and Hawkins 1990). However, species of larval trichoptera, ephemeroptera, and adult coleoptera have also been observed in the stomachs of whitefish.

Bear Lake ichthyiofauna is fairly complex and includes four endemic species: Bonneville whitefish, Bear Lake whitefish, Bonneville cisco, and the Bear Lake sculpin Cottus extensus. Healthy populations of indigenous Utah sucker Catostomus ardens, Utah Chub Gila atraria, and Bonneville cutthroat trout Oncorynchus clarki utah also reside in the lake. The sport-fishery in Bear Lake is primarily managed for the highly picsivorous strain of cutthroat trout, and exotic lake trout Salvelinus namaycush. Both have been documented as voracious predators and rely heavily on the whitefish complex (primarily Bonneville cisco) for food throughout the year (Orme et al. 1998; Mazur 1999). Other introduced fish that have been recently collected include: rainbow trout Oncorhynchus mykiss, redside shiner Richardsonius baltiatus, speckled dace Rhinichthys osculus green sunfish Lepomis cyanellus, yellow perch Perca flavenscens, and the common carp Cyprinus carpio.

Methods

Sample Design

Gill net collections of whitefish were taken in July/August of 2000 and 2001, and in April/May 2001. Samples were collected during summer stratification of the lake and during isothermic conditions. Bear Lake was divided into six separate sections, starting on the north end of the lake running laterally to the south end, and then back in a north (figure 2-2). Preliminary investigations of habitat types located within the lake were performed in June 2000 using an eckman dredge to sample the benthic substrate. Lake sections were then delineated according to depth strata and substrate habitat type. Each sample location and its depth were recorded by taking a UTM coordinate derived from a Global Positioning System (GPS). Benthic substrate within the lake consists mostly of a fine calcium carbonate precipitate. All lake sections are dominated by this substrate type with the exception of sections 4 and 6 , which contain small patches of macrophyte beds. Other types of habitat in the lake are gastropod shell beds (section 2), and rock-cobble (sections 3 and 5). Sections were then projected in Arc View and the position of each transect recorded so we could know exactly which section we were in while on the lake (figure 2-2). All depth strata of the lake were sampled starting at 5 m , or 10 m , depending on section and habitat type, and running parallel to shore along each depth contour (figure 2-3).

Gill nets were deployed for 12 hours each night from dusk to dawn in an effort to sample both crepuscular periods. Sections 1 and 6 were sampled starting at 5 m and extending down to 30 m , which is the deepest depth found in these sections. Sections 2,

3 , and 4 were sampled starting at 10 m and extending to 40 m utilizing a total of seven separate nets. Section 5 was sampled starting at 10 m and ending with a 60 m set utilizing a total of 11 separate nets. During the summer of 2000 sampling of each depth strata within each section was replicated twice with an exception in section 5. Here depths 45 $\mathrm{m}, 50 \mathrm{~m}, 55 \mathrm{~m}$, and 60 m were replicated four times each. This was done because these depths are only found in section 5 and a good representation of fish was needed for statistical inference. During the spring and summer of 2001, each depth strata within each section was sampled once. As gill nets were deployed, a GPS reading was taken. These net deployment sites were then mapped in Arc View 3.2 to get an idea of sample coverage across the lake (figure 2-4).

The gill nets used were the experimental-sinking type and utilized a number of different sized mesh panels. They consisted of nine panels (4.6 meters in length) starting at 1.27 cm stretch measurement and increasing by .64 cm increments up to 5.17 cm . Panels then increased by 1.27 cm up to 7.6 cm stretch. The very small mesh sizes increased by .64 cm increments $(.08 \mathrm{~mm}$ diameter). The numerous panels were in an effort to reduce bias in catching only larger size classes of fish, which is usually the norm when sampling with gill nets. The small mesh sizes were included so we could catch a good proportion of age-1 whitefish that are often hard to sample using mono-filament gill nets.

A gill net selectivity analysis was then conducted to assess the bias in our sampling procedure and to correct for any that was experienced (Rudstam et al. 1984). Details of this analysis are documented in chapter 3.

Diet Analysis

Lengths and weights were measured from all whitefish for descriptive relationships of both species. Ten stomach samples for each size class of whitefish, at least 100 mm in total length, were taken within each depth strata and preserved in 95% ethanol for future laboratory examination. Stomach contents were sorted by terrestrial, and aquatic taxonomic groups and volumetric percentages were calculated. Any prey fish found in the samples were identified to the lowest taxonomic level using skin, bones, and scales as described by (Hansel et al. 1988).

Whitefish were separated into predetermined size classes based on previous diet information (Wurtsbaugh and Hawkins 1990; Orme et al. 1998). Bonneville whitefish size classes consisted of: 100-150 mm, 150-200 mm, 200-250, 250-300 mm, 300-350 mm , and $>350 \mathrm{~mm}$ TL. Bear Lake whitefish size classes consisted of: $100-150 \mathrm{~mm}$, $150-200 \mathrm{~mm}, 200-250 \mathrm{~mm}$, and $>250 \mathrm{~mm}$ TL.

A multiple analysis of covariance (MANCOVA) was used to assess differences between the diets of the two whitefish species (Wilkinson 1990). The diet data were combined into four or five prey types with prey types comprising less than 10% of the diet and prey of terrestrial origin being lumped into a prey type called "other." To enhance the normality of the data an arcsine transformation was conducted by taking the \arcsin of the square root of the volumetric proportion of each diet type (Zar 1999). We used total length of the fish as a covariate to account for potential effects related to size differences between the two whitefish species. If the Wilks' Lamda f-statistic indicated significant differences between the species for the multivariate diet analysis, then univariate F tests were used to assess significance of individual prey types in diets.

Distribution

Collected whitefish were positively identified using methods described by White (1974) and Ward (2000). Identification involves meristic scale counts cross diagonally from the lateral line dorsally to the opposite lateral line. A more positive identification can be achieved with a complete lateral line count starting at the first scale near the opercular opening and ending with the last countable scale at the base of the caudal fin. Fish can be identified with extreme accuracy (99\%) using this methodology. Ward (2000) tested and validated these identification methods using laboratory reared fish of known species origin. Bonneville whitefish count 18-21 scales across the back where Bear Lake whitefish count $15-17$, normally 16 . Any fish that counted 17 across the back were double-checked using the more definitive lateral line count. Bonneville whitefish count 75 and greater while Bear Lake whitefish count 65-72. To ensure identification accuracy, each fish was identified by two independent observers. Any discrepancies in scale counts were noted and recounted to make positive identification.

A Komolgrov-Smirnov non-parametric test was used to evaluate the significance of spatial distribution. I tested the null hypothesis: Depth contour and species are independent. This is a relatively simple test and is based on the absolute differences between observed and expected cumulative frequency distributions (Zar 1999).

Results

Length Weight Relationships

During the summer of 2000,1212 total netting hours were logged. One thousand forty one Bonneville whitefish and 290 Bear Lake whitefish were caught in the gill nets.

The resulting length-weight relationships were very similar for both species with slopes near 3.0 (figure 2-5).

Diet Analysis

Examination of the whitefish stomach contents revealed distinctive differences in feeding habits of the two whitefish species. Two hundred ten Bonneville whitefish stomachs and 126 Bear Lake whitefish stomachs were examined from the summer of 2000 sampling period.

The MANCOVA indicated significant differences in the stomach contents from the summer of 2000 sampling period $\left(\mathrm{F}_{5,45}=3.32, \mathrm{p}=0.012\right)$. Univariate comparisons of each prey type indicated that Chironomid larvae were more abundant in the diet of Bonneville whitefish $\left(\mathrm{F}_{1,49}=5.29, \mathrm{p}=0.026\right)$ and that ostracods were more abundant in the diet of Bear Lake whitefish $\left(\mathrm{F}_{1,49}=11.4, \mathrm{p}=0.001\right)$. Significant differences in the other category were also apparent $\left(\mathrm{F}_{1,49}=4.78, \mathrm{p}=0.034\right)$ and likely derived from a greater abundance of terrestrial insects in the diet of Bonneville whitefish. The covariate fish length also had significant effects on the proportion of chiromids $\left(\mathrm{F}_{1,49}=10.02, \mathrm{p}=0.003\right)$ and fish $\left(\mathrm{F}_{1.49}=4.08, \mathrm{p}=0.049\right)$ in the diets. In both cases, larger whitefish had greater proportions of these prey in their diets.

Smaller size classes of Bonneville whitefish (100-150 mm, 150-200 mm) primarily utilized ostracod, chrinomid, and spharid prey. Once these Bonneville whitefish exceeded a total length of 200 mm , they fed more heavily on terrestrial insects from the surface, and ostracods in the sediments. A few Bonneville whitefish over 250 mm fed on smaller sizes of sculpin, most of which were young of the year (YOY). Once

Bonneville whitefish reached lengths greater than 300 mm they fed almost exclusively on fish. Stomach contents for size classes $300-350 \mathrm{~mm}$ and greater than 350 mm largely consisted of sculpin (98%) during summer months and 2% terrestrial insects (figure 2$6)$.

A large proportion of the Bear Lake whitefish diet consisted of benthic taxa (figure 2-7). Bear Lake whitefish exhibited a more homogeneous diet throughout size classes than did the Bonneville whitefish. Small individuals ($100-150 \mathrm{~mm}$) utilized an array of food items including ostracods, chironomids, and limited amounts of copepod zooplankton. By the time Bear Lake whitefish reached 150 mm their diets were dominated by ostracods. They continued this diet selectivity throughout their life history and did not exhibit any prey switching after the first size class of fish. Size classes 150 $200 \mathrm{~mm}, 200-250 \mathrm{~mm}$, and $>250 \mathrm{~mm}$ contained $75 \%, 83 \%$, and 99% ostracods within their stomachs respectively (figure 2-7).

Stomach samples from the summer 2001 sampling period were also examined to verify data from the previous year. This was also done to detect any differences that may have been related to lower lake levels in 2001. On July 20 ${ }^{\text {th }}, 2001$ Bear Lake was 4 meters lower than it was the previous year and we suspected some diet changes might be precipitated. However, following the examination of 100 stomachs from each species it was determined that the patterns were similar to the 2000 observations for both species.

Differences in diets of the two whitefish species were also apparent in the spring 2001 sampling. Early in March (6 days following ice off), stomachs from 61 Bear Lake whitefish and 251 Bonneville whitefish were collected to detect any differences between summer and winter/spring diet preferences.

Diet analysis for stomach samples collected during the spring of 2001 also indicated significant differences between the two species of whitefish as indicated by the MANCOVA $\left(\mathrm{F}_{1,311}=48.45, \mathrm{p}<0.001\right)$. Univariate comparisons of each prey type showed similar patterns to those present during summer with Bonneville whitefish feeding more frequently on chironomid larvae $\left(\mathrm{F}_{1,311}=14.4, \mathrm{p}<0.001\right)$ and Bear Lake whitefish feeding predominantly on ostracods $\left(\mathrm{F}_{1,311}=713, \mathrm{p}<0.001\right)$. Oligocheates were also more abundant in the diet of Bear Lake whitefish compared to Bonneville whitefish during this period $\left(\mathrm{F}_{1,311}=11.8, \mathrm{p}=0.001\right)$. As in the summer sampling period, fish prey were more abundant in the stomachs of larger individuals $\left(\mathrm{F}_{1,311}=52.1, \mathrm{p}<0.001\right)$.

In comparing spring to summer diets, Bonneville whitefish demonstrated greater dependence on ostracods in the spring. Tererrestrial insects were less abundant but still present in all size classes with the exception of the $>350 \mathrm{~mm}$ size class. This size class fed almost exclusively on sculpin. Coleopterans, in the family Elmidae, were also much more common in the spring stomachs than summer (figure 2-8).

Bear Lake whitefish diets examined from the spring sample were very similar to those from the summer with two exceptions. Large masses of oligochate worms were found in many fish within the two largest size classes. Fish between $150-200 \mathrm{~mm}$ and $200-250 \mathrm{~mm}$ complemented their ostracod diet with 15% and 25% of these worms respectively. The Bear Lake whitefish were also utilizing more Coleoptera during spring in comparison to the summer sampling period (figure 2-9).

Distribution and Relative Abundance

Bonneville whitefish were the predominant whitefish captured during every
sampling period. During the summer of 2000, spring 2001, and summer 2001 sampling periods, Bonneville whitefish made up $78 \%, 75 \%$, and 77% of the catch, respectively.

Spatial distribution differences among the populations' cumulative CPUE frequencies were statistically significant during all sampling periods. The KomolgrovSmirnov tests yielded highly significant results at the 0.05 alpha level with summer 2000: $\mathrm{d}(\max)=0.796$, spring 2001: $\mathrm{d}(\max)=.841$, and summer 2001: $\mathrm{d}(\max)=0.832$. Significance was reached if $\mathrm{d}(\max)>.068$.

Bonneville whitefish were more abundant in shallower depths. Pooled catch per unit effort (CPUE) data over the three sampling periods revealed that 96% were caught in depths of 5-35 m while only 4% were caught in depths $40-60 \mathrm{~m}$. Bear Lake whitefish were more abundant in deeper depths. Ninety percent were caught in depths ranging from 40-60 m while only 10% were found at depths of 5-35 m (figures 2-10, 2-11, and 212).

Discussion

Population estimates, in terms of individuals, were not a goal in this study. However, when you look at CUPE the intensive gill net survey indicates that Bear Lake supports a larger population of Bonneville whitefish than Bear Lake whitefish. Bear Lake whitefish comprised only 22% of the total catch during all sampling periods, which covered all possible depths and habitat substrates. Intuitively higher predation rates on the smaller species could account for the large difference. However, Mazur (2000) failed to document a significantly higher proportion of Bear Lake whitefish than Bonneville whitefish in the stomachs of large picsivores, namely lake trout and large cutthroat trout.

A more plausible explanation is apparent from the spatial distribution data. Definitive separation of the two species within the lake limits the habitat availability of the Bear Lake whitefish. This species preferred depths greater than 30 m and the highest CPUE was recorded at $50-60 \mathrm{~m}$. This depth preference limits them to a very small portion of the lake, which contain these depths

The interesting question that has yet to be explored is why the Bear Lake whitefish prefer to live in the dark abyss. Life histories of other smaller species, including juvenile Bonneville whitefish, have been observed to prefer littoral, warmer habitats. Predator avoidance and diet capabilities normally drive such behavior, yet it appears that Bear Lake whitefish have evolved a different strategy. But why the evolution of a smaller species? Decreased metabolism at deeper depths, driven by year round temperatures of 4-5 C (figure 2-1), support suppressed growth rates, and could explain the evolution of the smaller Bear Lake whitefish "dwarf" form. The speciation mechanism may have been driven by the partitioning of available benthic habitat in the lake.

Diet differences between the two species can also be explained by their spatial separation. The diet analysis revealed an almost exclusive dependence on ostracoda by Bear Lake whitefish especially in sub-adult to adult size classes. Benthic samples taken with an eckman dredge suggest that these small crustaceans are also found in high densities at these depths. Although Oligochaeta make up most of the biomass at these depths (Wurtsbaugh and Hawkins 1990) ostracoda become readily available to the whitefish when they release from the sediments to feed (Thorpe and Covich 1998). The

Bear Lake whitefish preference or specialization for ostracoda may be a contributing factor to the spatial separation of the two whitefish species

References

Bouwes, N. W. Jr., and C. Luecke. 1997. The fate of bonneville cisco eggs in Bear Lake: evaluating mechanisms of egg loss. Transactions of the American Fisheries Society 126:240-247.

Hansel, H. C., S. D. Duke, P. T. Lofty, and G. A. Gray. 1988. Use of diagnostic bones to identify and estimate original lengths of ingested prey fishes. Transactions of the American Fisheries Society 177:55-62.

Kalister, B. N. 1972. Environmental geology of Bear Lake area, Rich county, Utah. Utah Geological and Mineralogical Survey. College of Mines and Mineral Industries. University of Utah, Bulletin 96:32.

Lamarra, V., C. Liff, and J. Carter. 1987. Hydrology of Bear Lake and its impact on the trophic state of Bear Lake, Utah-Idaho. Great Basin Naturalist 6:690-705.

Mazur, M. 1999. Population dynamics of interactions among fishes of Bear Lake. Annual report to the Utah Division of Wildlife Resources. Project F-47-R Number V. Salt Lake City, Utah.

Morreno, E. G. 1989. Seasonal variation in the species composition abundance and size frequency distribution of zooplankton in Bear Lake, Utah-Idaho. Master's thesis. Utah State University, Logan, Utah.

Orme, R. W., J .J. Van Tassell, M. M. Mazur, and D. A. Beauchamp. 1998. Population dynamics of interactions among fishes of Bear Lake. Annual report to the Utah Division of Wildlife Resources. Project F-47-R Number V. Salt Lake City, Utah.

Perry, L. E. 1943. Biological and economical significance of the peaknose cisco of Bear Lake, Utah-Idaho. Doctoral dissertation. University of Michigan Library, Ann Arbor, Michigan.

Randi, S. 1999. Habitat segregation between different size groups of whitefish Coregonus lavaretus in a large and deep Norwegian lane. Paper presented at the VII International Symposium on the Biology and Management of Coregonid Fishes, Ann Arbor, Michigan.

Rudstam, L. G., J. J. Magnuson, and W. M. Tonn. 1984. Size selectivity of passive fishing gear: A correction for encounter probabilities applied to gill nets. Canadian Journal of Fisheries and Aquatic Sciences 41:1252-1255.

Snyder, J. O. 1921. Three new whitefishes from Bear Lake, Idaho and Utah. Bulletin of the United States Bureau of Fisheries. 36:1-9.

Sokal, R., and F. J. Rohlf. 1969. Biometry. W.H. Freeman and Company, San Francisco, California.

Thorpe J. H. and A. P. Covich. 1998. Ecology and classification of North American freshwater invertebrates. Academic Press Inc., San Diego, California.

Ward, A. 2000. Morphometric evaluation of the whitefish complex in Bear Lake, UtahIdaho. Masters thesis, Utah State University, Logan, Utah.

White, R. G. 1974. Endemic whitefishes of Bear Lake, Utah-Idaho: A problem in systematics. Doctoral dissertation. Utah State University, Logan, Utah.

Wilkinson, L. 1990. Systat: the system for statistics. Systat Inc., Evanston.
Wurtsbaugh, W., and C. Hawkins. 1990. Trophic interactions between fish and invertebrates in Bear Lake, Utah-Idaho. Utah State University Ecology Center Special Publication. Utah State University, Logan, Utah.

Zar, J. H. 1999. Biostatistical analysis. Prentice Hall, Upper Saddle River, New Jersey.

Figure 2-1.-Thermograph taken of Bear Lake during the summer of 2001 showing distinct thermocline beginning at 10 m .

Figure 2-2.-Map generated in Arc View 3.2 showing sections of the lake that were sampled.

Figure 2-4.- Bathymetric map of Bear Lake showing depth contours sampled.

Figure 2-4.-Map of Bear Lake showing netting sites and sample coverage. White dots indicate first replication sites, and yellow dots indicate sites sampled during the second replication. Netting sites were recorded using a GPS during the summer of 2000.

Figure 2-5.-Length-Weight relationships for (A) Bonneville whitefish and (B) Bear Lake whitefish sampled during the summer 2000 sampling period.

Figure 2-6.-Summer Bonneville whitefish diet. Data collected during the summer of 2000.

Figure 2-7.-Summer Bear Lake whitefish diet. Data collected during the summer of 2000.

Figure 2-8.-Early Spring Bonneville whitefish Diet. Data collected during April of 2001.

Figure 2-9.-Early Spring Bear Lake whitefish diet. Data collected during April of 2001.

Figure 2-10.-Distribution of Bonneville and Bear Lake whitefish during the summer 2000 sampling period.

Figure 2-11.-Distribution of Bonneville and Bear Lake whitefish during the spring 2001 sampling period.

Figure 2-12.-Distribution of Bonneville and Bear Lake whitefish during the summer 2001 sampling period.

CHAPTER 3

LIFE HISTORY CHARACTERISTICS: GROWTH, LENGTH AT AGE, POPULATION DYNAMICS, AND SENSITIVITY ANALYSIS OF BONNEVILLE WHITEFISH PROSOPIUM SPILONOTUS AND BEAR LAKE WHITEFISH

 PROSOPIUM ABYSSICOLA IN BEAR LAKE, UTAH / IDAHOAbstract. - Bonneville and Bear Lake whitefish were sampled using gill nets during the summer of 2000, and throughout the early spring and summer of 2001. Sectioned otoliths were used to age fish and calculate annual growth rates. Definitive differences in both age distribution, and growth rate patterns were observed. Age-1 and 2 Bonneville whitefish were most abundant. Adults greater than 350 mm in total length reached ages of 12-14 years. A smaller proportion of young Bear Lake whitefish were collected in relation to older age classes. The Bear Lake whitefish population consisted mostly of medium to large sized adults, some of which were aged 30 years and beyond .

All Bonneville whitefish larger than 225 mm in total length, and all Bear Lake whitefish larger than 200 mm total length were aged and placed into respective age classes for a subsequent sensitivity analysis of population growth patterns. Survivorship and fecundity values were placed into a simple life-table model assuming both populations of whitefish had reached a stable age distribution. The sensitivity analysis was conducted on the age structure of both populations to identify which age classes are most important to positive population growth. Ages (0-3) were most important to Bonneville whitefish, while perturbations of the model to ages (4-7) precipitated the greatest change in Bear Lake whitefish.

Leslie matrix exercises were also performed to project future trends, and estimate the finite rate of increase (λ). Although the life table model inherently assumes a stable age distribution, recursions of the matrix were carried out until stability was achieved and predicted stable age distributions were compared to current age structures. Proportions in each age class for both species were different than model projections at a stable age distribution.

Introduction

The Bonneville and Bear Lake whitefish are endemic to Bear Lake. Intrinsic population characteristics need to be explored in order to assess the population status of these two species. In addition, knowledge of their somatic growth, survival, and reproduction will assist with the development of management plans for the endemic fish of Bear Lake.

The growth of individual fish, has long been the subject of intensive investigation concerning the biology of fish. By the end of the $19^{\text {th }}$ century it was apparent that the growth of individual fish might frequently and accurately be estimated from the relative position of annulus on scales or other calcified tissues. The first record of using annuli to determine growth patterns was conducted on common carp in 1898 (Summerfelt and Hall 1987). As scale reading became more and more refined, it became increasingly feasible to determine the individual growth histories of fish. This technique has greatly improved population analysis by increasing the precision of data on length at-age, age at maturity, and yearly growth rates (Weatherley and Gill 1987).

The most reliable method of determining age-specific mortality and fecundity rates for populations that have overlapping generations is to follow the fate of a group of individuals (a cohort) through a complete lifecycle (Begon et al. 1986). This approach is called a cohort life table. Unfortunately it is not always possible to monitor the dynamics of a population by constructing such a "fixed cohort" life table. Since individuals from natural populations are highly more mobile and surreptitious to observers, they are rarely examined in this way. An alternative to the cohort life table exists, a static or vertical life table can also be developed. This technique involves examining the age structure and survival probabilities of the whole population at one particular point in time. The final product is much like taking a 'snap shot' sample, or a slice out of a larger population that was constructed over a long period of time. This type of life table can have practical uses when trying to describe populations and can provide estimates of a number of important life history parameters. A vertical life table has three principal assumptions: (1) the population is currently at its stable-age distribution; (2) the recruitment rate and agespecific mortality rates are relatively constant; and, (3) there is no ingress or egress of individuals at each age group (Gotelli 1996).

It should be stressed that the vertical life-table represents only a crude generalization of the populations probable age structure at the time the sample was taken (Emmel 1976). Despite the often violation of assumptions, this type of life table can have practical uses when investigating natural populations. Efforts in constructing the life-tables were not to project true population growth over time, but rather to look at what effects current age structure would have on the basic trends of both populations. Lowe (1969) demonstrated the uses of such a life table with deer populations in Scotland. The purpose of using a
life-table is to allow patterns of birth and mortality to be investigated. In turn this allows us to uncover the shared or un-shared properties of closely related populations such as the whitefish in Bear Lake.

The two most important life history characteristics that can be calculated using the life table model are: (1) Fecundity Schedules. Given the disparities in maximum total length, both species should have separate reproductive rates and allocate different amounts of energy to reproduction. Specific values assigned to each age class on their reproductive contribution to the whole population can then be analyzed (Fisher 1930). (2) Survivorship Schedules. Individuals of older age classes may produce thousands of offspring. However if few individuals survive to mature ages, the effect on the population as a whole could be negligible. Survivorship data will also provide an assessment of the potential predation risk associated with the two whitefish species. Other life history characteristics derived from the life-tables were the intrinsic rate of increase (r) and the net reproductive rate (Ro). The population growth statistic (r) is defined as the difference between the instantaneous birth rates and death rates. The value of (r) determines whether a population has the potential to increase ($r>0$), remain stationary $(r=0)$, or decay to extinction $(r<0)$. (Ro) is simply defined as the number of offspring produced per female over her lifetime. These calculations will provide an estimation of both species population trends.

An important question in the analysis of population dynamics is the extent to which a slight change in survival at a certain age changes the relative numbers of individuals in other age classes. Such elasticity or sensitivity analyses are useful and popular tools in conservation biology. They are used to categorize populations according
to their response to different perturbations that affect vital growth parameters. An elasticity pattern is composed of the relative contributions of essential entities pertaining to population growth that are grouped in biologically meaningful ways for comparative analysis (Heppell et al. 2000). Elasticity analyses can also be a qualitative guide for research and management, particularly for poorly known species, and a useful first step in a larger modeling effort to determine population viability (Grant and Benton 2000). Comparison of the relative contributions of fertility, and juvenile survival were calculated using the life table information for the two species of whitefish in Bear Lake.

The survival and fecundity probabilities were derived through the life-table, and algebraic matrix analysis was performed as described by Leslie (1945). This analysis described the changes in population size due to mortality and reproduction. The model tested for the stable age distribution of both species and recursions of the model provided an estimation of their respective theoretical age distributions. Lambda (λ) was the other important life history characteristic evaluated through a Leslie matrix.

Life history strategies are directly linked to these vital rates and there is a need to explore population response to environmental perturbations. Once these factors have been explored managers can then formulate conservation and management plans that are tailored to specific populations. The goal of the elasticity-sensitivity analysis in the present study was to examine the response of the Bonneville and Bear Lake whitefish's population dynamics when subjected to disturbance. An example of such a disturbance may include decreased spawning habitat, which would reduce egg to fry recruitment and young of the year (YOY) survival. Increased predation pressure due to elevated levels of
stocked piscivores, could in turn have ramifications on juvenile to middle-aged classes of fish. And an increase in fishing pressure might also reduce the number of matured spawning adults resulting in a decreased (YOY) recruitment. All such situations were examined by manipulating survivorship schedules in the life table, yielding different hypothetical responses.

Study Area

Bear Lake is a long elliptical shaped lake located in a moderately elevated mountainous area in northeastern Utah and southeastern Idaho. The valley that harbors the lake is relatively narrow and runs in a north-south direction surrounded by the Bear River range of mountains on the west (elevation 3048 m) and the Bear Lake plateau on the east (elevation 2440 m). The lake is large, and comparatively deep with a fluctuating surface area of approximately $282 \mathrm{~km}^{2}$ and a mean depth of 30.5 m . Maximum depth can reach over 63 m approximately one-fourth of a mile off the eastern shore and just south of the South Eden creek delta. Its total length is nearly 30 km with 19 km in Utah and the remainder in Idaho with width ranging from 12 km to 6.4 km .

Since the construction of a hydroelectric facility on the northern shore of the lake, the main uses for the lake have been the production of electricity, and use of water storage for agriculture practices. No dam was ever built, but the natural outlet where the Bear River once left the lake was re-opened and a controlled canal was constructed. The Bear River was also diverted to enter the lake to compensate for water leaving through the canal. Prior to these developments the lake was considered a closed system. All water that entered the lake from its small in-flowing streams and benthic springs stayed in
the lake. The geology of the lake is of special interest. An active fault runs north and south along its eastern shore. Tectonic uplifting has been credited for the lake's deepest hole and signs of fault activity are detectable at the North and South Eden stream deltas (Kalister 1972). The sediments of Bear Lake are very deep ($>100 \mathrm{~m}$) and consist mostly of CaCO^{3} precipitate, extinct gastropod shells, and cobble sized stone. The current form of the lake has been present since the Pleistocene, but the lake basin has likely existed for several million years (Perry 1943).

Bear Lake is oligotrophic with mean chlorophyll a levels never exceeding 0.2 $\mathrm{mg} / \mathrm{m}^{3}$ at the surface during summer months. Secci depth measurements range from 3-10 m (Wurtsbaugh and Hawkins 1990). The lake is full of minerals and a plethora of calcium carbonate precipitate, which gives the lake a turquoise-blue color. The water column is typically saturated with dissolved oxygen and has not been observed to drop below $4 \mu \mathrm{~g} / \mathrm{L}$ at the surface (Lamarra et al. 1987). Surface temperatures in the summer can reach 20 C with temperatures at 55 m never exceeding 5 C (figure 2-1). The water column displays distinct summer stratification, and an obvious thermocline exists at 1215 m , which forms as early as June, and persists through October.

Perry (1943) reported that "very seldom does the lake pass through a winter without freezing over." However, Bear Lake did not have complete ice cover the three years prior to this study (1996-1999). Despite the recent trend of mild winters, complete ice cover of Bear Lake was experienced during the winters of 2000 and 2001.

The limnetic zooplankton community is dominated primarily by low densities of copepoda and Bosmina; however, yearly sporadic pulses of daphnia can also be measured
in the lake (Mazur 1999; Morreno 1989). These low densities are likely the main limitation to low levels of fish production experienced by the lake.

The invertebrate fauna of Bear Lake is not diverse, nor abundant, and most species are associated with the benthos. These species include: Nematoda, Annelidea, Ostracoda, Sphaeridae, and Chironomidae. (Wurtsbagh and Hawkins 1990). However, species of larval trichoptera, ephemeroptera, and adult coleoptera have also been observed in the stomachs of whitefish.

Bear Lake ichthyiofauna is fairly complex and includes four endemic speices: Bonneville whitefish, Bear Lake whitefish, Bonneville cisco, and the Bear Lake sculpin Cottus extensus. Healthy populations of indigenous Utah sucker Catostomus ardens, Utah Chub Gila atraria, and Bonneville cutthroat trout Oncorynchus clarki utah also reside in the lake. The sport-fishery in Bear Lake is primarily managed for the highly picsivorous strain of cutthroat trout, and exotic lake trout Salvelinus namaycush. Both have been documented as voracious predators and rely heavily on the whitefish complex (primarily Bonneville cisco) for food throughout the year (Orme et al. 1998; Mazur 1999). Other introduced fish that have been recently collected include: rainbow trout Oncorhynchus mykiss, redside shiner Richardsonius baltiatus, speckled dace Rhinichthys osculus green sunfish Lepomis cyanellus, yellow perch Perca flavenscens, and the common carp Cyprinus carpio.

Methods

Aging and Growth

Methodology of the extraction, preservation, and aging of whitefish otoliths
followed those described by Brothers (1987). Both sagittal otoliths were extracted from freshly killed fish and placed in micro-centrifuge containers where they were immediately preserved in 95% ethanol. The left otolith form each fish was then embedded in a glass resin mold and cataloged according to its corresponding fish number. Subsequently, embedded otoliths were sectioned and placed on microscope slides for final age and growth observations. A Leica ${ }^{\circledR}$) computer-camera imaging system was next used for the examination of annulus counts and growth rate measurements. Annuli were counted by an experienced technician, and confirmed by a second witness. Where discrepancies became apparent the otolith was re-examined and a determinate age established.

Since the first systematic studies on fish growth, both inter and intraspecific comparisons have been made (Moreau 1987). Measurements for the growth comparison of species were taken from the center of each otolith and extended outwards towards its longest point. At least 10 otoliths of each age for both species were measured for growth rate ranging from ages 1-11. Each annuli was measured in terms of millimeter units (mm) and reported accordingly.

The Von-Bertalanffy growth function (VBGF) $L=L_{\infty}\left[1-e^{(-K(t-10))}\right]$ was used to mathematically and theoretically describe growth relationships of the two species of whitefish (Von-Bertalanffy 1938). Ricker (1975) defined L_{∞} as the mean length a fish would reach in a given population if they lived and grew indefinitely. Simple Walford plots (figures 3-1 and 3-2) were used to predict asymptotic growth values (L_{∞}) and provide an estimate of K . These values were then used in the VBGF.

Population Modeling and Sensitivity Analysis

Length-frequency histograms constructed for both Bonneville whitefish and Bear Lake whitefish show distinct peaks at early lengths and can be interpreted as age classes (figure 3-3 and 3-4). Numbers of Bonneville whitefish in age classes 1-4, and Bear Lake whitefish in age classes 1-2 were determined using this method. Subsamples of these length (age) classes were subsequently aged using previously described methodology for verification (Ricker 1975). Since not all age classes could be deciphered from the lengthfrequency histograms, all Bonneville whitefish $>250 \mathrm{~mm}$ and all Bear Lake whitefish > 200 mm were aged to achieve a reliable data set. Consequently, over 500 Bonneville otoliths and 200 Bear Lake otoliths were sectioned and read for age using previously described methodology.

All sizes of fish encounter gill nets at different rates. This is mainly attributed to differences in swimming speeds. Their probability of being retained in the net once they encounter a net is related to girth. Because of this the relative numbers of fish captured in each age class were corrected using equations derived by Rudstam et al. (1984). Relative selectivity coefficients were calculated and applied to the catch/effort data to achieve a more accurate estimation. The corrected data describe the relative abundance of different size classes of fish, if all fish swam at constant speeds, and had constant probabilities of being retained in the net (figure 3-5). Figure 3-5 depicts the gill net selectivity function and implies the probability of capturing all size classes of fish. Since no large gaps between functions were apparent, the chance of capturing all size classes of fish was high.

The actual calculations for correcting the data involves a function of both length and girth measurements. Girth is an important component of the correction in determining the probability of a fish being retained when it encounters a net of a certain mesh size. Fifty samples of a broad range of lengths were measured for girth and were used in the corrective equations (figure 3-6).

The correction equation ultimately produces a corrected catch per unit effort (CUPE), which can then be multiplied by the actual effort to gain corrected numbers of fish within each size class. Figures 3-7 and 3-8 illustrate the comparison of fish caught in the gill netting survey (field data) and corrected numbers using the (Rudstam et al. 1984) equations. Relationship curves of the corrected fish data were then used to predict the numbers of fish within each respective age class and later into the life table model.

Fecundity values for both species were estimated by examining ripe females of each species during their respective spawning periods. Bonneville whitefish were collected in November-December and Bear Lake whitefish in March-February. Collections were made using gill nets designed to catch multiple sizes of mature spawning females. The Bear lake whitefish winter collections necessitated sampling through ice cover. These winter collections involved attaching gill nets to a small diameter PVC pipe and a rope then threading it underneath the ice between two disparate holes. The net can then be pulled through from one hole and the net set normally. Since spawning whitefish were very dense during these periods the sets were only 1-3 hours in duration.

Egg masses were counted from each sampled ripe female. The number of young of the year (age 0) offspring were estimated by regressing the number of eggs produced
by a female against its total length (figure 3-9). Egg samples from both species were weighed and individual eggs measured to detect discrepancies between the two species. Upon this analysis it was determined that there was no significant difference in the density and overall shape of the eggs.

The life-table model was constructed using data derived from the corrected length frequency histograms, and the aging analysis. A smooth curve was applied to the data and fish numbers from the exponential fit calculations were ultimately used in the life table (Figure 3-10 A\&B). Age (0) fish were estimated from the fecundity analysis. It was assumed that 50% of all fish caught were females and mature ones spawn every year. Therefore all mature females were multiplied by their respective fecundity value to achieve a total age (0) estimate (Figure 3-9). Methods for the model construction followed those described by Gotelli (1996) and Begon et al. (1986).

Two separate analyses were carries out to predict ages of sampled whitefish. First, using mathematical equations, the Von-Bertalanffy growth function (VBGF) was used to determine theoretical ages. Second, length at age calculations produced during the otolith analysis were used to bolster VBFG estimations and produce known age at length data. Age-0 production values (egg \# or fecundity value) were applied to fish caught in our gill netting survey that were determined to have been mature the previous spawning period. We assumed that all mature females spawned each year and fecundity rates were constant.

The sensitivity analysis was performed by manipulating the survivorship schedule values across a suite of different possibilities. Ultimately this changes the value of the intrinsic rate of increase (r), and the net reproductive rate Ro. Values of r similar to those
from the life-table analysis were used. Three distinct situations for each species were analyzed with the life table model, which would include all life history stages and would analyze the age at maturity break points for both species. Survival of age classes (0-3) were increased by 10% and then decreased by the same value. Subsequent manipulations of the same type were calculated for ages (4-7) and (9-12). Recursions of the sensitivity analysis were performed in a similar hypothetical life-table built in a spreadsheet program. A subsequent Leslie matrix was also constructed and recursions of the model were carried out to reach stable age distributions and finite rates of increase values (λ).

Results

Aging and Growth

Age specific mortality can be expressed in the form a survivorship curve by plotting the number of individuals in a particular cohort against time. Natural survivorship curves fall into three main types with all degrees of intermediacy. These curve types include: convex, linear, and J-shaped.

Bonneville and Bear Lake whitefish have somewhat similar age structures and very similar survivorship curves. In the Bonneville population many young individuals were sampled with very few older classes of fish being present. This type of concave (Jshaped) mortality pattern is common amongst most populations of fish because the probability of being preyed upon by a larger predator is much greater at smaller sizes and thus mortality is frequently high for smaller individuals (figure 3-10 A) (Emmel 1976). The average instantaneous annual mortality was -0.312 .

The Bear Lake population had a relatively smaller number of age- 1 fish, but the average survivorship pattern was similar to the Bonneville whitefish. Gill net catches for Bear Lake whitefish suggests higher mortality of older age classes resulting in an average mortality rate of -0.319 . This rate is very similar to the rate estimated for Bonneville whitefish (figure 3-10 B).

Both Bonneville and Bear Lake whitefish growth was relatively consistent with growth patterns described using the Von-Bertalanffy growth equation. Equations were manipulated until the best fit for the age at length data was achieved (figures 3-11 and 312).

Length at age analysis revealed that Bonneville whitefish grow at faster rates and were larger in every age class than Bear Lake whitefish. Bear Lake whitefish growth seemed to asymptote between ages 6 and 8 where Bonneville whitefish growth was realized past the last age analyzed (11) (figures 3-13 and 3-14).

During the aging analysis differences in otolith growth patterns were also apparent. (one-tailed t test for slopes, $\mathrm{t}=3.51, \mathrm{P}=.0039, \mathrm{df}=8$) Mean annuli increment length for the first year for Bonneville whitefish was .47 mm compared to Bear Lake whitefish at .34 mm . Bear Lake whitefish otolith growth appears to asymptote at age 8 where Bonneville whitefish otoliths showed rates of growth past the last age analyzed (11) (figures 3-15 and 3-16)

Images taken through the Leica ${ }^{\circledR}$ camera clearly show the differences in otolith growth and age at length relationships for the two whitefish species. (figure 3-17) illustrates four whitefish that were aged, all of the same approximate length. Some of the Bear Lake whitefish examined aged were over 30 years old, reaching lengths never
exceeding 280 mm TL, while the oldest Bonneville whitefish caught in the gill net survey aged 14 years and measured over 400 mm TL.

Population Modeling and Sensitivity Analysis

Using the survivorship curve relationships produced during the aging analysis a multiple cohort life table was constructed for each species analyzing ages 1-12 (Tables 31 \& 3-2). The results of these models suggest that at current age structure the whitefish populations are maintaining very different population dynamics. This result was expected considering the large discrepancies in their respective age structures. The relevant population statistics are reported in Table 3-8.

Using the life-table data, Leslie matricies were constructed and appropriate algebra applied to the first population vector, assuming a 50% male / female ratio (Tables 3-5 and 3-6). Recursions of the model were carried out until both populations reached a stable age distribution $C(x)$. The proportions of fish in each age class were then compared to those contained in the actual corrected catch data (Table 3-7). Lambda values (λ) stabilized for Bonneville whitefish after eight recursions at 0.45 , and Bear Lake whitefish stabilized after nine recursions at 0.68 .

The sensitivity analysis suggested that the most important age classes for Bonneville whitefish are (0-3). For the Bear Lake whitefish age classes 4-7 were most sensitive to perturbations. Increasing and decreasing survivorship schedules for these ages produced the most change in population parameters r and Ro (Tables 3-3 and 3-4).

Discussion

Many lake whitefish complexes display two closely related species of whitfish. Usually one is a large robust species, which if allowed can reach very old age, and the other a smaller shorter lied species (Bodaly et al. 1991). However, the species in Bear Lake seem to follow an oposite life history. The larger species (Bonneville whitefish) grows very large and has a shorter life cycle than the smaller Bear Lake whitefish.

Asymtotic length for both species was corroborated using both the (VBGF) and length at age data. Growth analysis indicated that Bonneville and Bear Lake whitefish follow distictly differenent growth patterns. Normally this idicates a sharp divergence in life history strategies between two closely related species. The Bonneville whitefish (large form) grows extremely fast comparativley and can reach lenghts that nearly double those of mature Bear Lake whitefish.

Unlike examples from the literature, Bear Lake whitefish follow much different survivorship patterns. The oldest Bonneville whitefish that was collected aged to 14 years and was over 450 mm in total length, where as one particular Bear Lake whitefish aged to 37 years old and measured only 247 mm TL. In addition to this many individual Bear Lake whitefish aged to over 25 years old and never exceeded 270 mm TL.

Fecundity was also markedly different due to survivorship and age at length differences. A mature female Bonneville whitefish can reach lengths exceeding 450 mm TL and produce upwards of 1100 eggs when gravid. Bear Lake whitefish females were never collected larger than 270 mm TL and produced approximately 790 eggs when gravid.

Age at maturity was also different for the two species of whitefish and factored into their fecundity. Bonneville whitefish normally reached lengths $>180 \mathrm{~mm}$ by age- 2
when maturity was reached and ripe eggs were observed in the scanes of collected females. Ripe females from the Bear Lake whitefish population were not collected until lengths approaced those associated with age- 3 class fish.

Bonneville whitefish recruit many individuals and experience heavy predation at young ages. The Bear Lake whitefish seem to recruit a comparatively small number of young which do not experience a great deal of predation. During our sampling for mature spawing adults it was observed that not only was the Bonneville whitefish population more fecund due to body size and age at maturity, but a higher proportion of females to males were actively staged on spawning sites. Although nets were run periodically during entire respective spawning periods and during all times of the day, out of 69 mature Bear Lake whitefish caught only 16 were gravid females. However, an approximate 50:50 male/female ratio for the Bonnevilles were sampled.

Trying to explain the large differnences in age and growth only raises more questions. Although these questions were not investigated in the present study there may be plausible explanations to the observed phenomenon. It became clear from the netting data that Bear Lake whitefish spend most of their lives in very deep water. Temperatures at 40 meters in the summer do not exceed 5.5 degrees centigrade. Metabolic processes at these depths would be slowed due to temperature, which would in turn produce very slow metabolic rates for somatic growth. Animals which exhibit slower metabolism are usually associated with longer life spans and generation times. Additionally, during the extensive gill netting survey we failed to collect any large predators in depths exceeding 40 m . More than likely this is due to a lack of ciscoe, the main prey species, occurring at
the deep depths. In light of this one might expect the Bear Lake whitefish to reach older ages. The survivorship curves clearly illustrated lesser predation rates in this population.

The apparent refuge of the deep water may provide an explantion to fecundity differences also. In the absence of heavy predation, and possible habitat limitaions (depth strata), Bear Lake whitefish may have evolved in a way that females only spawn every other year, or mature females may senecse at older ages and are therefore reproductively inactive for the balance of their life history. The large amount of food resources required for the production of reproductive gametes may not be available and thermal conditions not condusive for annual gamete assimilation. Further investigations are needed to determine the frequency of spawning females within both whitefish populations.

Implications of the life-table analyses were that both whitefish populations are capable of positive growth given their current age-structures. Bonneville whitefish intrisic rate of increase (r) proved much higher than Bear Lake whitefish, indicating potential for rapid increases in abundnaces if environmental carrying capacity is not reached at the present time. Although the Bear Lake whitefish life-table produced a possitive (r) value it was very low. At current age structure this population is persisting with the possiblility of dimunitive increases in abundance over time.

Resulting (r) values from the Sensitivity analysis were integrated into a simple exponential growth population model $\left(\mathrm{Nt}=\mathrm{Noe}^{-\mathrm{rt}}\right)$. It is understood that both populations do not exhibit natural exponential growth. However, the model was used to illustrate what effects the different values of r would have on population trends not projections.

When survival probabilities of Bonneville whitefish age classes (0-3) were increased by 10% an 11% increase in final population size was experienced. When these age classes were then decreased by the same amount a 10% decrease was realized. Other manipulations of older age classes yielded a change of less than 5% in exponential growth (figure 3-18 A).

When survival of Bear Lake whitefish age classes were increased by 10% a resulting 14% rise in population growth occurred. Decreasing these age classes by 10% produced a 13\% reduction in overall exponential growth (figure 3-18 B).

Although it was assumed that both populations were at their respecitve theoretical stable age distribution, the Leslie matrix analysis suggests that they are not. This is not surprising however because the model does not account for stachastic environmental factors such predation, fishing harvest, and climate. Theoretical modeling of natural populations is extremley difficult and the results from the present study indicate that something was missing from the model. These gaps could be linked to the unknown percent of spawning females. Or because the model incorporated only one year of data, the effects of recent strong/weak year classes of fish could be affecting model output.

References

Begon, M., J. L. Harper, and C. R. Townsend. 1986. Ecology of individuals, populations, and communities. Blackwell Scientific, London, England.

Bodaly, R. A., J. A. Vourinen, and V. Macins. 1991. Sympatric presence of dwarf and normal forms of lake whitefish (Coregonus clupeaformis) in Como Lake, Ontario. Canadian Field Naturalist 105:87-90.

Brothers, E. B. 1987. Methodological approaches to the examination of otoliths in aging studies. Pages 33-54 in The age and growth of fish. R. C. Summerfelt, and G. E. Hall, editors. The Iowa State University Press, Ames, Iowa

Emmel, T. C. 1976. Population biology. Harper and Row, New York, New York.
Fisher, R. A. 1930. The genetical theory of natural selection. Clarendon Press, Oxford, England.

Gotelli, N. J. 1996. A primer of ecology. Sinauer Associates, Inc. Sunderland, Massachusetts.

Grant, A., and T. G. Benton. 2000. Elasticity analysis for density-dependent populations in stochasitic environments. Ecology 81(3):680-693.

Heppell, S. S. H. Caswell, and L. B. Crowder. 2000. Life histories and elasticity patterns: Perturbation analysis for species with minimal demographic data. Ecology 81(3):654-665.

Kalister, B. N. 1972. Environmental geology of Bear Lake area, Rich county, Utah. Utah Geological and Mineralogical Survey. College of Mines and Mineral Industries. University of Utah, Bulletin 96:32

Lamarra, V., C. Liff, and J. Carter. 1987. Hydrology of Bear Lake and its impact on the trophic state of Bear Lake, Utah-Idaho. Great Basin Naturalist 6:690-705.

Leslie, P. H. 1945. The use of matrices in certain population mathematics. Biometrika 35:185-212.

Lowe, V. P. 1969. Population dynamics of the red deer Cervus elaphus. Journal of Animal Ecology 38:425-457.

Mazur, M. 1999. Population dynamics of interactions among fishes of Bear Lake. Annual report to the Utah Division of Wildlife Resources. Project F-47-R Number V. Salt Lake City, Utah.

Moreau, J. 1987. Mathematical and biological expression of growth in fishes: Recent trends and further developments. In "The Age and Growth of Fish." Summerfelt, R. C. and G. E. Hall editors. The Iowa State University Press, Ames, Iowa.

Morreno, E. G. 1989. Seasonal variation in the species composition abundance and size frequency distribution of zooplankton in Bear Lake, Utah-Idaho. Master's thesis, Utah State University, Logan, Utah.

Orme, R. W., J. J. Van Tassell, M. M. Mazur, and D. .A. Beauchamp. 1998. Population dynamics of interactions among fishes of Bear Lake. Annual report to the Utah Division of Wildlife Resources. Project F-47-R Number V. Salt Lake City, Utah.

Perry, L. E. 1943. Biological and economical significance of the peaknose cisco of Bear Lake, Utah-Idaho. Doctoral dissertation. University of Michigan Library, Ann Harbor, Michigan.

Ricker, W. E. 1975. Computation and interpretation of biological statistics of fish populations. Fisheries Research Board Canada Bulletin 191, Ottawa, Ontario, Canada.

Rudstam, L. G., J. J. Magnuson, and W. M. Tonn. 1984. Size selectivity of passive fishing gear: A correction for encounter probabilities applied to gill nets. Canadian Journal of Fisheries and Aquatic Sciences 41:1252-1255.

Summerfelt, R. C., and G. E. Hall. 1987. The age and growth of fish. The Iowa State University Press, Ames, Iowa.

Von Bertalanffy, L. 1938. A quantitative theory of organic growth. Human Biology 10:181-213.

Vourinen, J. A., R. A. Bodaly, J. D. Reist, L. Bernatchez, and J. J Dodson. 1992. Genetic and morphological differentiation between dwarf and normal size forms of lake whitefish (Coregonus clupeaformis) in Como Lake, Ontario. Canadian Journal of Aquatic Sciences 50:210-216.

Ward, A. 2000. Morphometric evaluation of the whitefish complex in Bear Lake, UtahIdaho. Master's thesis, Utah State University, Logan, Utah.

Weatherly, A. H., and H. S. Gill. 1987. The biology of fish growth. Academic Press Inc., Orlando, Florida.

Wurtsbaugh, W., and C. Hawkins. 1990. Trophic interactions between fish and invertebrates in Bear Lake, Utah-Idaho. Utah State University Ecology Center Special Publication. Utah State University, Logan, Utah.

Table 3-1.-Life table constructed for Bonneville whitefish sampled during the summer of 2000.

\mathbf{x}	$\mathbf{b}(\mathbf{x})$	$\mathbf{s}(\mathbf{x})$	$\mathbf{l}(\mathbf{x})$	$\mathbf{g}(\mathbf{x})$	$\mathbf{l}(\mathbf{x}) \mathbf{b}(\mathbf{x})$	$\mathbf{l}(\mathbf{x}) \mathbf{b}(\mathbf{x}) \mathbf{x}$
		210563	1.000000	0.00	0.00	0.00
0	0	259	0.001230	0.79	0.00	0.00
1	0	204	0.000970	0.79	0.56	1.11
2	573	161	0.000765	0.79	0.59	1.78
3	776	127	0.000603	0.79	0.51	2.02
4	838	100	0.000475	0.79	0.42	2.10
5	885	79	0.000375	0.79	0.34	2.06
6	916	79	0.000295	0.79	0.28	1.93
7	932	62	0.000233	0.79	0.22	1.79
8	963	49	0.000184	0.79	0.18	1.62
9	979	39	0.008			
10	1010	30	0.000145	0.79	0.15	1.46
11	1088	24	0.000114	0.79	0.12	1.37
12	1103	19	0.000090		0.10	1.19
				Sum	3.47	$\mathbf{1 8 . 4 3}$

Table 3-2.-Life table constructed for Bear Lake whitefish sampled during the summer of 2000.

\mathbf{x}	$\mathbf{b}(\mathbf{x})$	$\mathbf{s}(\mathbf{x})$	$\mathrm{l}(\mathbf{x})$	$\mathbf{g}(\mathbf{x})$	$\mathbf{l}(\mathbf{x}) \mathbf{b}(\mathbf{x})$	$\mathbf{l}(\mathbf{x}) \mathbf{b}(\mathbf{x}) \mathbf{x}$
		58710	1.000000		0.00	0.00
0	0	52	0.000887	0.78	0.00	0.00
1	0	41	0.000696	0.78	0.00	0.00
2	0	32	0.000546	0.78	0.31	0.94
3	573	35	0.000428	0.78	0.30	1.20
4	698	20	0.000336	0.78	0.25	1.23
5	729	20	0.000264	0.78	0.20	1.20
6	760	15	0.000207	0.78	0.16	1.12
7	776	12	0.12			
8	776	10	0.000162	0.78	0.13	1.01
9	776	7	0.000127	0.78	0.10	0.89
10	791	6	0.000100	0.78	0.08	0.79
11	791	5	0.000078	0.78	0.06	0.68
12	791	4	0.000061	0.00	0.05	0.58
				Sum	$\mathbf{1 . 6 3}$	$\mathbf{9 . 6 4}$

$\mathrm{x}=$ Age class of fish.
$b(x)=$ fecundity schedule for each age class of fish.
$s(x)=$ Numbers of fish in each age class.
$1(x)=$ Probability of survival to age x.
$g(x)=$ Probability of survival from age x to $x+1$.

Table 3-3.-Results of the sensitivity analysis for Bonneville whitefish. Lifetable population parameters r and Ro were both analyzed by manipulating survivorship schedules.

Age class manipulation	r	Ro
Start	.337	5.50
Inc. (0-3)	$\mathbf{. 3 5 2}$	$\mathbf{5 . 7 2}$
Dec. (0-3)	$\mathbf{. 3 2 1}$	$\mathbf{5 . 2 6}$
Inc. (4-7)	.344	5.69
Dec. (4-7)	.330	5.29
Inc. $(9-12)$.334	5.58
Dec. $(9-12)$.331	5.37

Table 3-4.-Results of the sensitivity analysis for Bear Lake whitefish. Life-table population parameters r and Ro were both analyzed by manipulating survivorship schedules.

Age class manipulation	r	Ro
Start	.112	1.99
Inc. (0-3)	.121	2.03
Dec. (0-3)	.114	1.97
Inc. (4-7)	.128	$\mathbf{2 . 1 5}$
Dec. (4-7)	.105	$\mathbf{1 . 8 8}$
Inc. (9-12)	.123	2.12
Dec. (9-12)	.117	1.99

Table 3-5.-Leslie Matrix constructed for Bonneville whitefish. Fecundity schedules are plotted across the top row and survival probabilities in the cross diagonal. Numbers of spawning females in each age class (assuming a 50:50 sex ratio) are listed in the far left column.

235	1.751	430.071	622.359	712.152	775.273	816.922	852.009	885.627	915.827	972.625	1025.215
87	0.006	0	0	0	0	0	0	0	0	0	0
49	0	0.370	0	0	0	0	0	0	0	0	
32	0	0	0.559	0	0	0	0	0	0	0	0
23	0	0	0	0.662	0	0	0	0	0	0	0
18	0	0	0	0	0.726	0	0	0	0	0	0
14	0	0	0	0	0	0.770	0	0	0	0	0
12	0	0	0	0	0	0	0.802	0	0	0	0
10	0	0	0	0	0	0	0	0.826	0	0	0
9	0	0	0	0	0	0	0	0	0.845	0	0
8	0	0	0	0	0	0	0	0	0	0.860	0

Table 3-6.-Leslie Matrix constructed for Bear Lake whitefish. Fecundity schedules are plotted across the top row and survival probabilities in the cross diagonal. Numbers of spawning females in each age class (assuming a 50:50 sex ratio) are listed in the far left column.

	0	225.106	603.683	701.256	718.394	696.176	740.546	678.834	757.230	565.294	725.460
21	0.001	0	0	0	0	0	0	0	0	0	0
16.5	0	0.786	0	0	0	0	0	0	0	0	0
15	0	0	0.909	0	0	0	0	0	0	0	0
14.5	0	0	0	0.967	0	0	0	0	0	0	0
13.5	0	0	0	0	0.931	0	0	0	0	0	0
11	0	0	0	0	0	0.815	0	0	0	0	0
10	0	0	0	0	0	0	0.909	0	0	0	0
7.5	0	0	0	0	0	0	0	0.750	0	0	0
7	0	0	0	0	0	0	0	0	0.933	0	0
3	0	0	0	0	0	0	0	0	0.429	0	
2.5	0	0	0								0

Table 3-7.-Comparison between the proportions within each age class (once a stable age distribution was reached) with proportions caught during the gill net survey.

AGE (BN)	C(x)	Caught	AGE (BL)	$\mathbf{C}(\mathbf{x})$	Caught
$\mathbf{1}$	0.81509	0.46634	$\mathbf{1}$	0.414	0.173
$\mathbf{2}$	0.13530	0.17276	$\mathbf{2}$	0.225	0.136
$\mathbf{3}$	0.03426	0.09664	3	0.139	0.123
$\mathbf{4}$	0.01016	0.06400	$\mathbf{4}$	0.092	0.119
$\mathbf{5}$	0.00336	0.04649	$\mathbf{5}$	0.058	0.111
$\mathbf{6}$	0.00114	0.03580	$\mathbf{6}$	0.033	0.091
$\mathbf{7}$	0.00043	0.02871	$\mathbf{7}$	0.021	0.082
$\mathbf{8}$	0.00014	0.02371	$\mathbf{8}$	0.010	0.062
$\mathbf{9}$	0.00007	0.02003	$\mathbf{9}$	0.006	0.058
$\mathbf{1 0}$	0.00002	0.01722	10	0.002	0.025
$\mathbf{1 1}$	0.00002	0.01502	$\mathbf{1 1}$	0.002	0.021

Age $(\mathrm{BN})=$ Bonneville whitefish age classes.
Age (BL) $=$ Bear Lake whitefish age classes.
$\mathrm{C}(\mathrm{x})=$ Calculated stable age distribution from Leslie matrix proportions.
Caught $=$ Proportion within each age class caught during the gill netting survey.

Table 3-8.-Life-table parameters calculated for Bonneville and Bear Lake whitefish using catch and age data from the summer 2000 sampling period.

Species	r	G	Ro
Bonneville	0.234	5.32	3.47
Bear Lake	0.083	5.91	1.63

$\mathrm{r}=$ intrinsic rate of increase $=\ln (\mathrm{Ro}) \backslash \mathrm{G}$
$\mathrm{G}=$ Generation time $=\sum \mathrm{l}(\mathrm{x}) \mathrm{b}(\mathrm{x}) \mathrm{x} \backslash \sum \mathrm{l}(\mathrm{x}) \mathrm{b}(\mathrm{x})$
Ro $=$ Net reproductive rate $=\sum 1(x) b(x)$

Figure 3-1.-Walford plot for Bonneville whitefish sampled during the summer of 2000.

Figure 3-2.-Walford plot for Bear Lake whitefish sampled during the summer of 2000.

Figure 3-3.-Bonneville whitefish length frequency relationship.

Figure 3-4.-Bear Lake whitefish length frequency relationship.

Retention Selectivity Coefficients By Mesh Size

Figure 3-5.-Gill net retention selectivity coefficient by mesh size.

Figure 3-6.-Whitefish Length/Girth relationship for Bonneville and Bear Lake whitefish.

Figure 3-7.-Gill net corrected vs. field CPUE data for Bonneville whitefish.

Figure 3-8.-Gill net corrected vs. field CPUE data for Bear Lake whitefish.

Figure 3-9.-Egg-Length relationship for Bonneville and Bear Lake whitefish.

Figure 3-10.-Survivorship curves of Bonneville (A) and Bear Lake (B) whitefish collected summer 2000 .

Figure 3-11.-Von-Bertalanffy growth function utilizing aged Bonneville whitefish caught during the summer 2000 sampling period.

Figure 3-12.-Von-Bertalanffy growth function utilizing aged Bear Lake whitefish caught during the summer 2000 sampling period.

Figure 3-13.-Bonneville whitefish length at age relationship.

Figure 3-14.-Bear lake whitefish length at age relationship.

Figure 3-15.-Bonneville whitefish length at age and otolith annuli measurement relationship.

Figure 3-16.-Bear Lake whitefish length at age and otolith annuli measurement relationship.

Bear Lake Whitefish: 247mm
Approximately 37 years old

Bonneville Whitefish: 256 mm $4+$ years old.

Bear Lake Whitefish: 240 mm Approximately 21 years old

Bonneville Whitefish: 278 mm $4+$ years old.

Figure 3-17.-Slide images comparing the otoliths of both whitefish species of approximately the same length.

Figure 3-18.-Sensitivity analysis output for Bonneville whitefish ages (0-3) (A), and Bear Lake whitefish ages (4-7) (B).

CHAPTER 4

CONCLUSION

In this study, ecological and life history characteristics of Bonneville and Bear Lake whitefish were investigated through an intensive gill netting survey. Diet preferences, relative abundance, spatial distribution, survivorship, age structure, fecundity, somatic growth, population trends, and sensitivity analyses were explored. The following is a summary of the major findings of the completed study.

1. Examination of stomach contents revealed distinctive differences in the feeding habits

 of the two whitefish species. MANCOVA indicated significant differences in the stomach contents of the two whitefish species collected during the summer of 2000 and during the spring of 2001. In comparing spring to summer diets Bonneville whitefish demonstrated a great dependence on ostracods in spring. Tererrestrial insects were less abundant but still present in all size classes with the exception of the $>350 \mathrm{~mm}$ size class. This size class fed almost exclusively on sculpin.2. Bonneville whitefish were the predominant species captured during every sampling period. During the summer of 2000, spring 2001, and summer 2001 sampling periods Bonneville whitefish made up $78 \%, 75 \%$, and 77% of the catch, respectively. The Komolgrov-Smirnov test yielded highly significant differences in relative distribution at the .05 alpha level. Bonneville whitefish were more abundant in shallower depths during all sampling periods. Pooled catch per unit effort (CPUE) data over the three sampling periods revealed that 96% of all whitefish caught in depths of $5-35 \mathrm{~m}$ were Bonneville
whitefish. Bear Lake whitefish were more abundant in deeper depths. Ninety percent of all whitefish caught in depths ranging from 40-60 m were Bear Lake whitefish.
3. Bonneville and Bear Lake whitefish have distinctly different age structures and hence very different survivorship curves. The Bonneville whitefish population follows a somewhat normal survivorship curve for fish populations in that many young individuals were sampled with very few older classes of fish being present. The Bear Lake whitefish population did not follow this same type of mortality pattern. These whitefish displayed a (constant), or linear type of survivorship curve. Although only 22% of the total catch were Bear Lake whitefish, CPUE in their preferred depths was nearly equal to that of Bonneville whitefish in $15-25 \mathrm{~m}$. Given these data I would surmise that, although significantly less Bear Lake whitefish were sampled, there is no evidence to indicate a decaying or threatened population.
4. Major differences in fecundity schedules were pronounced and are attributed to differences in body size at mature ages, age at maturity differences, and relative abundances of the two species. Bonneville whitefish grow larger, mature younger, and are more abundant than Bear Lake whitefish.
5. Average annual growth was different for all age classes and was described by a von Bertalanffy growth equation. Length at age was greater for the Bonneville whitefish, which can reach total lengths nearly double that of the Bear Lake whitefish.
6. At current age structure, the whitefish populations examined are following different population trends. Large discrepancies in respective age structures produced very different model outputs. The life-table model suggested that Bonneville whitefish have potential for significant population growth with lower potentials evident for Bear Lake
whitefish. Leslie matrix modeling suggested that both populations are not currently at their theoretical stable age distributions and revealed large differences in finite rates of increase (λ).
7. Sensitivity analysis suggested that the most important age classes of Bonneville whitefish are ages $(0-3)$ and most important to the Bear Lake whitefish population are ages (4-7). Increasing and decreasing both of these age classes survival from x to $x+1$ had the most positive and negative effect on life-table parameters (r), and (Ro).

APPENDIX

Appendix (A.) Netting Data.
Summer 2000 Bonneville Whitefish Collection Data.

Net Site	Depth (M)	Fish\#	Length	Weight
3	35	1	288	123.5
3	35	2	288	178
3	35	3	254	114.8
3	35	4	205	56
3	35	5	177	34
3	30	6	246	110
3	30	7	243	97
3	30	8	302	221
3	30	9	268	143
3	30	10	205	61
3	30	11	196	45
3	30	12	312	202
3	30	13	277	137
3	30	14	194	56
3	30	15	283	163
3	30	16	185	48
3	30	17	288	173
3	30	18	288	206
3	30	19	276	155
3	30	20	275	158
3	30	21	230	87
3	30	22	230	88
3	30	23	162	34
3	30	24	259	129
3	30	25	194	45
3	30	26	202	61
3	25	27	282	173
3	25	28	275	139
3	25	29	224	103
3	25	30	287	168
3	25	31	242	98
3	25	32	158	27
3	25	33	274	141
3	25	34	197	56
3	25	35	266	148
3	25	36	167	34
3	25	37	126	14
3	25	38	131	14
3	25	39	120	92
3	25	40	113	8
3	20	41	223	87
3	20	42	266	144
3	20	43	214	67
3				

3	20	44	152	23
3	20	45	195	46
3	20	46	225	84.5
3	20	47	131	14
3	15	48	211	67.5
3	15	49	219	75
3	15	50	197	48
3	15	51	196	60
3	15	52	180	53
3	15	53	224	85
3	15	54	179	44
3	15	55	175	40
3	15	56	146	25.5
3	15	57	176	37
3	15	58	183	44
3	15	59	215	80
3	15	60	196	51.5
3	15	61	225	90
3	15	62	202	66
3	15	63	189	48
3	15	64	256	97
3	15	65	200	59
3	15	66	137	21
3	15	67	144	20.5
3	15	68	152	26
3	15	69	140	22
3	15	70	175	38
3	15	71	125	15
3	15	72	129	15
3	15	73	143	17
3	15	74	134	16
3	15	75	139	18
3	15	76	128	13.5
3	15	77	135	13
3	15	78	105	9
3	15	79	135	19
3	15	80	139	15
3	15	81	131	18
3	15	82	136	19
3	15	83	130	16
3	15	84	129	13
3	15	85	115	10
3	15	86	170	35
3	15	87	220	74
3	15	88	186	48
3	15	89	171	40
4	35	90	271	153
4	35	91	249	103
4	35	92	260	112.5

$\left.\begin{array}{ccccc}4 & 35 & 93 & 251 & 107 \\ 4 & 35 & 94 & 262 & 110 \\ 4 & 35 & 95 & 305 & 206 \\ 4 & 35 & 96 & 272 & 144 \\ 4 & 35 & 97 & 285 & 166 \\ 4 & 35 & 98 & 292 & 178 \\ 4 & 35 & 99 & 261 & 131 \\ 4 & 35 & 100 & 268 & 316 \\ 4 & 30 & 101 & 275 & 136 \\ 4 & 30 & 102 & 251 & 102 \\ 4 & 30 & 103 & 249 & 99 \\ 4 & 30 & 104 & 244 & 104 \\ 4 & 30 & 105 & 266 & 122 \\ 4 & 30 & 106 & 194 & 49 \\ 4 & 30 & 107 & 271 & 144 \\ 4 & 30 & 108 & 169 & 34 \\ 4 & 25 & 109 & 271 & 145 \\ 4 & 10 & 10 & 139 & 142 \\ 4 & 10 & 10 & 10 & 22.5 \\ 4 & 10 & 15 & 131 & 136\end{array}\right) 18$

2	10	142	139	20
2	10	143	171	42
2	10	144	176	41
2	10	145	182	44
2	10	146	176	44
2	10	147	164	34
2	10	148	158	33
2	10	149	149	28
2	10	150	175	40
2	10	151	150	24
2	10	152	150	27
2	10	153	148	24
2	10	154	160	37
2	10	155	205	67
2	10	156	184	49
2	10	157	176	40
2	10	158	158	31
2	10	159	144	23
2	10	160	145	26
2	10	161	141	22.5
2	10	162	144	22
2	10	163	135	18.5
2	10	164	242	116
2	10	165	215	72
2	10	166	240	99
2	10	167	209	73
2	10	168	209	73
2	10	169	208	64.5
2	10	170	190	58
2	10	171	213	69
2	10	172	235	87
2	10	173	176	45
2	15	174	137	21
2	15	175	129	18
2	15	176	142	22
2	15	177	144	19
2	15	178	145	20
2	15	15	179	138
2	15	21		
2	15	180	136	19
2	15	181	134	20
2	15	188	160	34
2	15	189	205	67
2	15	190	176	43
2	15	182	145	26
2	15	183	161	30
2	15	184	178	39
2	15	185	182	48
2	15	186	211	70
2	187	218	76	
2				
2	15	10		

2	15	191	190	55
2	15	192	207	70
2	15	193	273	153
2	15	194	246	103
2	15	195	181	56
2	15	196	182	47
2	15	197	246	110
2	15	198	213	86
2	15	199	233	99
2	15	200	155	30
2	15	201	177	42
2	15	202	168	36
2	15	203	176	45
2	15	204	174	40
2	20	205	285	169
2	20	206	270	148
2	20	207	209	78
2	20	208	184	50
2	25	209	214	78
2	25	210	227	87
2	25	211	294	188
2	25	212	272	149
2	25	213	234	89
2	30	214	265	153
2	30	215	259	136
2	30	216	281	168
2	30	217	238	98
2	30	218	160	29
2	35	219	252	126
5	20	220	168	28
5	20	221	170	31
5	20	222	168	32
5	20	223	141	12.5
5	20	224	227	96
5	20	225	203	63
5	20	226	198	58
5	20	227	186	44
5	20	228	211	58
5	5	229	135	14.5
5	5	230	134	14
5	5	231	132	10
5	20	232	165	30
5	20	233	165	30
5	20	234	205	65
5	20	235	230	85
5	20	236	130	12
5	20	237	140	17
5	20	238	142	19.5
5	20	239	230	97

5	20	240	280	135
5	20	241	267	122
5	20	242	240	85
5	20	243	293	181
5	20	244	272	107
5	20	245	238	100
5	15	246	186	47
5	15	247	150	26
5	15	248		
5	15	249	170	33.5
5	15	250	160	32
5	15	251	125	11
5	15	252	150	26.5
5	15	253	140	18
5	15	254	226	93
5	15	255	234	92
5	15	256	245	101
5	15	257	212	76
5	15	258	127	13
5	15	259	294	200
5	25	260	275	124
5	25	261	275	135
5	25	262	284	132
5	25	263	274	138
5	25	264	260	123
5	25	265	285	162
5	25	266	258	110
5	25	267	186	44
5	25	268	183	37
5	25	269	154	17
5	25	270	125	8
5	25	271	118	9
5	30	272	295	181
5	30	273	279	141
5	30	274	276	148
5	30	275	276	140
5	30	276	241	85
5	30	277	297	155
5	30	278	273	179
5	30	279	266	127
5	30	280	210	64
5	30	281	228	75
5	30	282	240	98
5	30	283	190	45
5	30	284	200	54
5				
5	35	286	268	133
5	35	287	235	99
5	35	288	233	78

5	35	289	237	101
5	35	290	230	84
5	35	291	166	30
1	5	292	137	23
1	10	293	237	101
1	10	294	233	88
1	10	295	165	37
1	10	296	167	38
1	10	297	141	25
1	10	298	134	19
1	10	299	142	21
1	10	300	125	14
1	10	301	138	24
1	10	302	136	20
1	10	303	129	18
1	10	304	136	18
1	10	305	155	30
1	10	306	138	19
1	10	307	139	21
1	10	308	146	25
1	10	309	121	14
1	10	310	134	19
1	10	311	135	16
1	10	312	139	24
1	10	313	134	20
1	10	314	123	14
1	10	315	137	17
1	10	316	136	18
1	10	317	137	20
1	10	318	136	17
1	10	319	152	24
1	10	320	175	41
1	10	321	169	32
1	10	322	190	67
1	10	323	201	66
1	15	324	235	98
1	15	325	215	91
1	15	326	197	64
1	15	327	230	92
1	15	328	203	62
1	15	329	212	79
1	15	330	170	37
1	15	331	161	29
1	15	332	152	25
1	15	333	134	16
1	15	334	140	19
1	15	335	140	20
1	15	336	134	19
1	15	337	137	20

1	15	338	144	23
1	15	339	139	20
1	15	340	132	16
1	15	341	122	14
1	15	342	146	27
1	15	343	143	21
1	15	344	160	32.5
1	15	345	132	18
1	15	346	140	21
1	15	347	139	21
1	15	348	124	16
1	15	349	140	18
1	15	350	125	13
1	20	351	146	23
1	20	352	130	16
1	20	353	147	24
1	20	354	154	26
1	20	355	158	31
1	25	356	300	195.5
1	25	357	210	58
1	25	358	237	96
1	25	359	252	113
1	25	360	277	155
1	25	361	169	35
1	25	362	169	35
1	25	363	148	21.5
1	25	364	139	16.5
1	25	365	167	29
1	25	366	280	191
1	30	367	267	141
1	30	368	235	87.5
1	30	367	260	108
6	5	367	368	161
6	5	41		
6	5	369	154	31
6	5	370	115	12
6	5	371	145	28
6	5	372	159	37
6	5	373	194	61
6	10	374	239	90
6	10	375	231	106
6	10	376	214	81
6	10	378	197	60
6	10	379	225	82
6	10	380	226	65
6	10	381	179	31
6	10	382	189	56
6	10	383	171	31
6	10	384	212	70
6	10	385	199	62
1		10		

6	10	386	169	35
6	10	387	135	15
6	10	388	153	26
6	10	389	139	21
6	10	390	146	25
6	10	391	144	22
6	10	392	141	23
6	10	393	173	41
6	10	394	128	16
6	10	395	195	44
6	10	396	137	18
6	10	397	156	29
6	10	398	135	20
6	10	399	147	22
6	10	400	137	20.3
6	10	401	140	19
6	10	402	140	20.2
6	10	403	129	15
6	10	404	155	28
6	10	405	124	15
6	10	406	125	13
6	10	407	126	14
6	15	408	304	209
6	15	409	352	289
6	15	410	352	320
6	15	411	283	158
6	15	412	270	131
6	15	413	273	146
6	15	414	247	105.5
6	15	415	185	59
6	15	416	215	68
6	15	417	210	68
6	15	418	210	73
6	15	419	229	80
6	15	420	224	88
6	15	421	185	48
6	15	422	176	44
6	15	423	156	30
6	15	424	146	26
6	15	425	136	21.5
6	15	426	150	24
6	15	427	139	20
6	15	428	129	17
6	15	429	135	20
6	15	430	135	21
6	15	431	133	15
6	15	432	145	24
6	20	433	340	270
6	20	434	273	161
6				

6	20	435	234	92
6	20	436	139	106
6	20	437	179	42
6	20	438	176	44
6	20			
6	20	440	170	38
6	20	441	265	154
6	20	442	254	111
6	20	443	215	86
6	20	444	224	95
6	20	445	178	42
6	20	446	145	27
6	20	447	145	27
6	20	448	136	19
6	20	448	134	18
6	20	449	124	15
6	20	450	159	30
6	20	451	121	15
6	20	452	137	20
6	20	453	140	20.5
6	25	454	353	315
6	25	455	279	144
6	25	456	225	71
6	25	457	218	78
6	25	458	215	83
6	25	459	175	43
6	25	460	175	43
6	25	461	142	23
6	25	462	131	20
6	25	463	109	11
6	30	464	247	115
6	30	465	278	172
6	30	466	265	136
6	30	467	280	154
6	30	468	237	93
6	30	469	251	127
6	30	470	225	85
6	30	471	202	61
6	30	472	202	61
6	30	473	210	73
6	30	474	232	87
5	50	475	206	53
5	60	476	279	138
5	60	477	233	85
5	50	478	205	95
3(b)	15	479	194	52
3(b)	15	480	158	32
3(b)	15	481	149	27
3(b)	15	482	137	17

3(b)	15	483	142	15
3(b)	15	484	150	24
3(b)	15	485	137	18
3(b)	15	486	135	18
3(b)	15	487	134	18
3(b)	15	488	145	20
3(b)	15	489	153	24
3(b)	15	490	152	24
3(b)	15	491	147	22
3(b)	15	492	149	24
3(b)	15	493	144	20
3(b)	15	494	145	20
3(b)	15	495	141	18
3(b)	15	496	125	11
3(b)	15	497	236	109
3(b)	15	498	255	111
3(b)	15	500	188	55
3(b)	15	501	197	54
3(b)	15	502	94	4
3(b)	15	503	94	4
3(b)	20	504	133	13
3(b)	20	505	138	17
3(b)	20	506	140	17
3(b)	20	507	165	33
3(b)	20	508	167	32
3(b)	25	509	179	42
3(b)	25	510	170	33
3(b)	25	511	160	28
3(b)	25	512	147	21
3(b)	25	513	150	23
3(b)	25	514	137	18
3(b)	30	515	285	173
3(b)	30	516	287	202
3(b)	30	517	282	166
3(b)	30	518	260	124
3(b)	30	519	259	123
3(b)	30	520	254	110
3(b)	30	521	159	30
3(b)	30	522	127	16
3(b)	35	523	305	231
3(b)	35	524	265	123
3(b)	35	525	240	105
3(b)	35	526	251	116
3(b)	35	527	257	132
3(b)	35	528	222	88
3(b)	35	529	240	109
4(b)	10	530	136	22
4(b)	10	531	132	18
4(b)	10	532	137	20

4(b)	10	533	137	22
4(b)	10	534	139	20
4(b)	10	535	131	14
4(b)	10	536	130	14
4(b)	10	537	230	104
4(b)	15	538	197	12
4(b)	15	539	145	20
4(b)	15	540	135	16
4(b)	15	541	135	14
4(b)	15	542	145	20
4(b)	15	543	145	22
4(b)	15	544	141	16
4(b)	15	545	136	12
4(b)	15	546	136	12
4(b)	15	547	136	12
4(b)	15	548	139	18
4(b)	15	549	175	12
4(b)	15	550	135	18
4(b)	15	551	136	14
4(b)	15	552	144	20
4(b)	15	553	131	12
4(b)	15	554	136	16
4(b)	15	555	140	16
4(b)	15	556	139	16
4(b)	15	557	150	20
4(b)	15	558	131	16
4(b)	15	559	133	12
4(b)	15	560	136	14
4(b)	15	561	140	20
4(b)	15	562	145	20
4(b)	15	563	154	24
4(b)	15	564	155	18
4(b)	15	565	151	22
4(b)	15	566	158	22
4(b)	15	567	156	22
4(b)	15	568	151	20
4(b)	15	569	149	20
4(b)	15	570	148	24
4(b)	15	571	170	34
4(b)	15	572	182	38
4(b)	15	573	190	38
4(b)	15	574	220	70
4(b)	15	575	243	88
4(b)	15	576	264	102
4(b)	15	577	264	124
4(b)	15	578	287	130
4(b)	15	579	295	170
4(b)	15	580	396	482
4(b)	15	581	389	440

4(b)	15	582	339	298
4(b)	15	583	299	228
4(b)	15	584	302	194
4(b)	15	585	293	190
4(b)	15	586	280	144
4(b)	15	587	259	126
4(b)	15	588	262	126
4(b)	15	589	252	126
4(b)	15	590	251	132
4(b)	15	591	227	92
4(b)	15	592	237	120
4(b)	15	593	220	84
4(b)	15	594	225	92
4(b)	15	595	211	86
4(b)	15	596	213	74
4(b)	15	597	214	80
4(b)	15	598	195	60
4(b)	15	599	190	50
4(b)	15	600	201	68
4(b)	15	601	166	40
4(b)	15	602	174	46
4(b)	15	603	182	54
4(b)	15	604	166	40
4(b)	15	605	135	20
4(b)	15	606	142	21
4(b)	15	607	135	20
4(b)	15	608	147	24
4(b)	15	609	142	22
4(b)	15	610	145	22
4(b)	15	611	136	18
4(b)	15	612	140	20
4(b)	15	613	138	20
4(b)	15	614	132	16
4(b)	15	615	140	20
4(b)	15	616	149	24
4(b)	15	617	145	22
4(b)	15	618	138	20
4(b)	15	619	150	24
4(b)	15	620	131	16
4(b)	25	628	146	24
4(b)	15	621	92	6
4(b)	25	629	173	38
4(b)	15	622	72	2
4(b)	15	623	74	5
4(b)	25	624	159	32
4(b)	25	625	138	20
4(b)	25	626	145	24
4(b	627	135	18	
4(b	180	46		
4(b	15			

4(b)	25	631	170	36
4(b)	25	632	161	34
4(b)	25	633	176	42
4(b)	25	634	194	62
4(b)	25	635	174	40
4(b)	25	636	219	78
4(b)	25	637	184	54
4(b)	25	638	266	140
4(b)	25	639	278	160
4(b)	30	640	136	18
4(b)	30	641	144	24
4(b)	30	642	146	20
4(b)	30	643	135	18
4(b)	30	644	138	20
4(b)	30	645	166	32
4(b)	30	646	174	42
4(b)	30	647	187	48
4(b)	30	648	270	134
4(b)	30	649	258	110
4(b)	30	650	299	202
4(b)	30	651	264	126
4(b)	30	652	237	94
4(b)	30	653	248	108
4(b)	30	654	257	116
4(b)	30	655	264	132
4(b)	35	656	250	122
4(b)	35	657	238	82
4(b)	35	658	232	96
4(b)	35	659	244	104
4(b)	35	660	240	104
4(b)	35	661	234	96
4(b)	35	662	256	118
4(b)	35	663	279	158
4(b)	35	664	259	126
4(b)	35	665	275	138
4(b)	35	666	285	164
4(b)	35	667	286	176
3	35	668	184	46
3	35	669	166	47
3	35	670	166	46
3	35	671	139	18
3	35	672	127	14
3	35	673	122	16
3	35	674	140	20
3	35	675	145	24
3	35	676	143	22
3	35	677	136	18
3	35	678	136	17
3	35	679	91	6

3	35	680	91	6
3(b)	10	681	353	298
3(b)	10	682	284	192
3(b)	10	683	141	18
3(b)	10	684	145	26
3(b)	10	685	146	24
3(b)	10	686	147	20
3(b)	10	687	99	5
5	10	688	269	130
5	10	689	211	78
5	10	690	172	46
5	10	691	174	44
5	10	692	173	40
5	10	693	169	34
5	10	694	162	32
5	10	695	137	18
5	10	696	136	18
5	10	697	142	24
5	10	698	149	22
5	10	699	150	28
5	10	700	135	18
5	10	701	145	22
5	10	702	137	18
5	10	703	140	20
5	10	704	158	28
5	10	705	153	26
5	10	706	137	19
5	10	707	141	20
5	10	708	97	6
5	10	709	93	6
5	10	710	98	6
5	10	711	97	6
5	10	712	97	6
4	35	713	259	102
4	35	714	237	104
4	35	715	221	82
4	35	716	200	62
4	35	717	179	43
4	35	718	168	36
2(b)	15	719	398	524
2(b)	15	720	332	250
2(b)	15	721	294	148
2(b)	15	722	300	156
2(b)	15	723	265	130
2(b)	15	724	220	80
2(b)	15	725	230	80
2(b)	15	726	214	62
2(b)	15	727	224	82
2(b)	15	728	189	50

2(b)	15	729	206	64
2(b)	15	730	179	46
2(b)	15	731	174	40
2(b)	15	732	184	44
2(b)	15	733	177	38
2(b)	15	734	183	42
2(b)	15	735	163	30
2(b)	15	736	186	46
2(b)	15	737	170	34
2(b)	15	738	163	30
2(b)	15	739	155	24
2(b)	15	740	140	18
2(b)	15	741	139	14
2(b)	15	742	135	16
2(b)	15	743	139	16
2(b)	15	744	140	16
2(b)	15	745	145	20
2(b)	15	746	145	22
2(b)	15	747	140	18
2(b)	15	748	134	12
2(b)	15	749	131	16
2(b)	15	750	129	12
2(b)	15	751	140	20
2(b)	15	752	135	12
2(b)	15	753	144	22
2(b)	15	754	125	12
2(b)	15	755	140	14
2(b)	15	756	137	18
2(b)	15	757	127	14
2(b)	15	758	146	16
2(b)	15	759	90	4
2(b)	15	760	90	4
2(b)	15	761	86	3
2(b)	15	762	75	2.5
2(b)	10	763	198	76
2(b)	10	764	70	40
2(b)	10	765	147	26
2(b)	10	766	145	32
2(b)	10	767	134	20
2(b)	10	768	142	30
2(b)	10	769	154	32
2(b)	10	770	145	24
2(b)	10	771	142	20
2(b)	10	772	145	16
2(b)	10	773	147	20
2(b)	10	774	127	16
2(b)	10	775	145	24
2(b)	10	776	132	16
2(b)	10	777	144	18

2(b)	10	778	147	22
2(b)	10	779	133	22
2(b)	10	780	154	30
2(b)	10	781	84	4
5(b)	40	782	325	264
5(b)	40	783	344	316
5(b)	40	784	307	232
5(b)	40	785	267	142
5(b)	40	786	245	102
5(b)	40	787	252	112
5(b)	40	788	260	128
5(b)	40	789	178	44
5(b)	35	790	273	154
5(b)	35	791	273	156
5(b)	35	792	264	130
5(b)	35	793	252	106
5(b)	35	794	243	104
5(b)	35	795	257	114
5(b)	35	796	241	98
5(b)	35	797	236	98
5(b)	35	798	221	80
5(b)	35	799	232	92
5(b)	35	800	204	66
5(b)	35	801	195	58
5(b)	35	802	211	66
5(b)	35	803	177	48
5(b)	35	804	180	46
5(b)	35	805	127	18
5(b)	15	806	406	560
5(b)	15	807	371	404
5(b)	15	808	281	170
5(b)	15	809	260	128
5(b)	15	810	215	82
5(b)	15	811	182	52
5(b)	15	812	146	28
5(b)	15	813	135	18
5(b)	10	814	359	342
5(b)	10	815	145	26
5(b)	10	816	92	8
5(b)	30	817	262	118
5(b)	30	818	235	92
5(b)	30	819	210	70
5(b)	30	820	160	32
5(b)	25	821	303	222
5(b)	25	822	265	134
5(b)	25	823	260	114
5(b)	25	824	252	118
5(b)	25	825	239	91
5(b)	25	826	215	70

5(b)	25	827	212	66
5(b)	25	828	205	62
5(b)	25	829	196	58
5(b)	20	830	280	172
5(b)	20	831	253	116
5(b)	20	832	246	112
5(b)	20	833	136	18
2(b)	35	834	270	136
2(b)	30	835	260	120
2(b)	30	836	252	114
2(b)	30	837	270	128
2(b)	25	838	309	206
2(b)	25	839	210	68
2(b)	25	840	210	64
2(b)	25	841	210	68
2(b)	25	842	180	50
2(b)	25	843	185	52
2(b)	20	844	280	170
2(b)	20	845	277	140
2(b)	20	846	248	118
2(b)	20	847	262	142
2(b)	20	848	267	140
2(b)	20	849	242	100
2(b)	20	850	224	90
2(b)	20	851	197	56
2(b)	20	852	177	44
2(b)	20	853	142	22
2(b)	20	854	131	14
6(b)	10	855	283	156
6(b)	10	856	303	204
6(b)	10	857	279	130
6(b)	10	858	268	142
6(b)	10	859	290	170
6(b)	10	860	281	140
6(b)	10	861	270	146
6(b)	10	862	286	134
6(b)	10	863	269	118
6(b)	10	864	259	136
6(b)	10	865	275	142
6(b)	10	866	255	114
6(b)	10	867	268	112
6(b)	10	868	262	126
6(b)	10	869	255	132
6(b)	10	870	265	122
6(b)	10	871	265	132
6(b)	10	872	240	104
6(b)	10	873	234	98
6(b)	10	874	239	90
6(b)	10	875	238	84
65				
20				

6(b)	10	876	223	82
6(b)	10	877	226	88
6(b)	10	878	204	72
6(b)	10	879	213	66
6(b)	10	880	177	34
6(b)	10	881	180	44
6(b)	10	882	187	50
6(b)	10	883	179	46
6(b)	10	884	170	36
6(b)	10	885	166	30
6(b)	10	886	170	36
6(b)	10	887	163	30
6(b)	10	888	177	32
6(b)	10	889	152	30
6(b)	10	890	152	26
6(b)	10	891	152	26
6(b)	10	892	146	20
6(b)	10	893	139	16
6(b)	10	894	148	24
6(b)	10	895	140	16
6(b)	10	896	142	16
6(b)	10	897	147	18
6(b)	10	898	147	22
6(b)	10	899	134	16
6(b)	10	900	144	20
6(b)	10	901	137	14
6(b)	10	902	135	16
6(b)	10	903	130	16
6(b)	10	904	147	16
6(b)	15	905	282	140
6(b)	15	906	275	128
6(b)	15	907	270	130
6(b)	15	908	270	134
6(b)	15	909	276	144
6(b)	15	910	278	152
6(b)	15	911	256	94
6(b)	15	912	255	108
6(b)	15	913	260	118
6(b)	15	914	253	108
6(b)	15	915	222	80
6(b)	15	916	225	76
6(b)	15	917	208	64
6(b)	15	918	192	52
6(b)	15	919	205	60
6(b)	15	920	205	62
6(b)	15	921	186	46
6(b)	15	922	180	42
6(b)	15	923	172	36
6(b)	15	924	161	32
6				

6(b)	15	925	180	42
6(b)	15	926	150	30
6(b)	15	927	164	36
6(b)	15	928	141	22
6(b)	15	929	165	30
6(b)	15	930	137	20
6(b)	15	931	144	24
6(b)	15	932	140	20
6(b)	15	933	135	16
6(b)	15	934	131	16
6(b)	15	935	136	16
6(b)	15	936	115	10
6(b)	20	937	395	428
6(b)	20	938	261	136
6(b)	20	939	269	120
6(b)	20	940	275	156
6(b)	20	941	258	110
6 (b)	20	942	216	70
6(b)	25	943	280	144
6(b)	25	944	268	132
6(b)	25	945	253	114
6(b)	25	946	229	78
6(b)	25	947	219	78
6(b)	25	948	208	66
6(b)	25	949	183	36
6(b)	25	950	184	38
6(b)	25	951	173	26
6(b)	25	952	120	8
6(b)	35	953	290	184
6 (b)	35	954	285	160
6 (b)	35	955	272	156
6(b)	35	956	243	114
6(b)	35	957	210	70
6(b)	35	958	206	64
6(b)	35	959	203	54
6(b)	35	960	180	40
6(b)	10	961	327	278
6(b)	10	962	274	150
6(b)	10	963	274	158
6(b)	10	964	271	150
6(b)	10	965	265	150
6(b)	10	966	270	142
6(b)	10	967	265	136
6(b)	10	968	255	124
6(b)	10	969	264	136
6(b)	10	970	249	108
6(b)	10	971	241	114
6(b)	10	972	260	126
6(b)	10	973	250	104

6(b)	10	974	231	98
6(b)	10	975	241	98
6(b)	10	976	234	110
6(b)	10	977	249	126
6(b)	10	978	230	96
6(b)	10	979	215	76
6(b)	10	980	220	86
6(b)	10	981	224	88
6(b)	10	982	224	84
6(b)	10	983	218	76
6(b)	10	984	207	70
6(b)	10	985	194	66
6(b)	10	986	193	60
6(b)	10	987	196	60
6(b)	10	988	180	50
6(b)	10	989	183	52
6(b)	10	990	174	46
6(b)	10	991	178	52
6(b)	10	992	179	48
6(b)	10	993	160	38
6(b)	10	994	169	38
6(b)	10	995	175	44
6(b)	10	996	185	54
6(b)	10	997	180	46
6(b)	10	998	170	36
6(b)	10	999	152	32
6(b)	10	1000	141	26
6(b)	10	1001	142	24
6(b)	10	1002	140	22
6(b)	10	1003	145	22
6(b)	10	1004	135	22
6(b)	10	1005	135	18
6(b)	10	1006	100	10
1(b)	10	1007	97	6
1(b)	10	1008	94	6
1(b)	10	1009	350	320
1(b)	10	1010	340	300
1(b)	10	1011	273	144
1(b)	10	1012	275	148
1(b)	10	1013	245	98
1(b)	10	1014	225	82
1(b)	10	1015	229	90
1(b)	10	1016	210	82
1(b)	10	1017	210	78
1(b)	15	1018	210	74
1(b)	15	1019	177	40
1(b)	15	1020	164	34
1(b)	15	1021	164	34
1(b)	15	1022	169	34
15				

1(b)	15	1023	165	34
1(b)	15	1024	164	32
1(b)	15	1025	153	25
1(b)	15	1026	155	32
1(b)	15	1027	155	32
1(b)	15	1028	161	36
1(b)	15	1029	149	28
1(b)	15	1030	145	24
1(b)	15	1031	103	8
1(b)	15	1032	103	8
1(b)	20	1033	277	146
1(b)	20	1034	188	54
1(b)	20	1035	147	24
1(b)	20	1036	144	22
1(b)	25	1037	405	526
1(b)	25	1038	235	104
1(b)	25	1039	214	70
1(b)	30	1040	266	136
4	40	1041	272	126

Summer 2000 Bear Lake Whitefish Collection Data.

Net Site	Depth	Fish \#	Length	Weight
3	35	1	211	65
3	35	2	174	35
3	35	3	174	33
3	35	4	189	49
3	35	5	202	53
3	35	6	186	49
3	35	7	187	44
3	25	8	237	76
3	25	9	125	12
3	20	10	141	16
3	15	11	160	26
3	15	12	105	7
3	15	13	100	6
4	30	14	212	55
4	30	15	136	17
4	20	16	143	17
4	15	17	105	8
2	15	18	169	35
2	20	19	130	no weight
2	20	20	128	16
2	25	21	239	88
2	25	22	170	36
2	30	23	215	64

2	30	24	137	17
5	10	25	105	6
5	10	26	137	13
5	10	27	117	7
5	20	28	109	7
5	30	29	190	46
5	30	30	123	12
5	35	31	156	27
1	10	32	134	16
1	15	33	160	29
1	15	34	127	13
1	20	35	195	53
1	20	36	138	18
1	25	37	106	6
1	30	38	185	45
6	15	39	140	19
6	15	40	130	15
6	20	41	136	17
6	25	42	141	18
6	30	43	196	41
5	50	44	233	73
5	50	45	215	57
5	50	46	227	66
5	50	47	246	92
5	50	48	254	105
5	50	49	228	77
5	50	50	226	76
5	50	51	229	84
5	50	52	197	55
5	60	53	240	90
5	60	54	240	84
5	60	55	244	86
5	60	56	257	106
5	60	57	279	134
5	60	59	240	93
5	60	60	238	83
5	60	61	247	95
5	60	62	250	99
5	60	63	269	139
5	60	64	246	95
5	60	65	257	106
5	60	66	178	35
5	60	67	250	95
5	60	68	201	44
5	60	69	260	111
5	60	70	229	66
5	60	71	235	93
5	60	72	258	110
5	60	73	233	91

5	60	74	235	89
5	60	75	250	99
5	60	76	228	69
5	60	77	230	76
5	60	78	247	107
5	60	79	191	43
5	60	80	229	71
5	60	81	209	58
5	60	82	190	42
5	60	83	190	41
5	60	84	235	76
5	60	85	234	83
5	60	86	236	88
5	60	87	210	71
5	60	88	184	42
5	55	89	210	55
5	55	90	235	68
5	55	91	208	63
5	55	92	259	103
5	55	93	241	89
5	55	94	238	89
5	55	95	224	71
5	55	96	238	79
5	55	97	202	57
5	55	98	224	80
5	50	99	216	64
5	50	100	184	47
5	50	101	248	13
5	45	102	249	103
5	45	103	268	136
5	45	104	220	84
5	45	105	194	47
5	45	106	204	56
5	45	107	240	85
5(b)	60	108	248	87
5(b)	60	109	233	80
5(b)	60	110	239	84
5(b)	60	111	240	75
5(b)	60	112	210	52
5(b)	60	113	229	75
5(b)	60	114	230	79
5(b)	60	115	242	87
5(b)	60	116	213	71
5(b)	60	117	227	80
5(b)	60	118	237	96
5(b)	60	119	258	118
5(b)	60	120	232	77
5(b)	60	121	206	59
5(b)	60	122	236	82

5(b)	60	123	225	77
5(b)	60	124	238	87
5(b)	60	125	198	49
5(b)	55	126	241	93
5(b)	55	127	245	96
5(b)	55	128	250	94
5(b)	55	129	222	72
5(b)	55	130	232	81
5(b)	55	131	262	106
5(b)	55	132	239	92
5(b)	55	133	254	108
5(b)	55	134	232	69
5(b)	55	135	259	105
5(b)	55	136	260	113
5(b)	55	137	220	70
5(b)	55	138	216	72
5(b)	55	139	217	63
5(b)	55	140	227	74
5(b)	55	141	217	64
5(b)	55	142	232	81
5(b)	55	143	245	108
5(b)	55	144	234	81
5(b)	50	145	243	87
5(b)	50	146	220	73
5(b)	50	147	247	107
5(b)	50	148	183	40
5(b)	50	149	208	70
5(b)	50	150	256	112
5(b)	50	151	219	72
5(b)	50	152	197	52
5(b)	45	153	211	71
5(b)	45	154	232	85
5(b)	45	155	212	55
5(b)	45	156	239	92
5	60	157	212	57
5	60	158	230	78
5	60	159	207	64
5	60	160	239	98
5	60	161	250	111
5	60	162	218	71
5	60	163	240	86
5	60	164	256	120
5	60	165	235	91
5	60	166	232	92
5	60	167	234	109
5	60	168	240	85
5	60	169	250	102
5	60	170	226	83
5	60	171	217	63

5	60	172	225	77
5	60	173	252	108
5	60	174	234	80
5	60	175	249	104
5	60	176	251	120
5	60	177	239	98
5	60	178	249	89
5	60	179	241	92
5	60	180	265	143
5	60	181	211	70
5	60	182	225	78
5	60	183	232	87
5	60	184	240	88
5	60	185	253	118
5	60	186	257	111
5	60	187	242	103
5	60	188	227	81
5	55	189	238	95
5	55	190	238	86
5	55	191	249	111
5	55	192	264	128
5	55	193	289	178
5	55	194	249	100
5	55	195	228	80
5	55	196	202	65
5	55	197	240	88
5	55	198	245	103
5	55	199	223	72
5	55	200	240	99
5	55	201	256	112
5	55	202	240	97
5	55	203	211	67
5	55	204	242	104
5	55	205	269	123
5	45	206	240	97
5	45	207	198	53
5	45	208	193	55
5	45	209	200	60
5	45	210	222	78
5	45	211	205	63
5	45	212	203	62
5	45	213	189	49
5	45	214	244	103
5	45	215	226	85
5	45	216	222	81
5	45	217	178	42
5	50	218	241	104
5	50	219	245	96
5	50	220	238	102
5				

5	50	221	232	86
5	50	222	239	100
5	50	223	238	105
5	50	224	247	102
5	50	225	218	70
5	50	226	200	59
5	50	227	230	89
5	50	228	227	91
5	50	229	205	61
5	50	230	181	43
5	50	231	194	52
3(b)	15	232	145	18
3(b)	20	233	140	18
3(b)	25	234	138	14
3(b)	30	235	160	29
3(b)	30	236	151	28
3(b)	30	237	134	16
4(b)	10	238	181	38
4(b)	15	239	145	20
4(b)	15	240	150	26
4(b)	20	241	180	46
4(b)	20	242	142	22
4(b)	25	243	153	28
4(b)	25	244	139	22
4(b)	35	245	145	22
4(b)	35	246	139	18
4(b)	35	247	229	84
3	10	248	140	16
4	35	249	162	30
4	35	250	192	54
5(b)	40	251	184	48
5(b)	40	252	193	50
5(b)	40	253	212	64
5(b)	40	254	175	34
3	40	255	219	74
3	40	256	222	70
3	40	257	186	46
3	40	258	194	46
3	40	259	201	52
3	35	260	190	52
3	35	261	153	28
3	30	262	215	76
3	30	263	139	16
3	25	264	124	14
6 (b)	10	265	140	18
6(b)	15	266	110	10
6 (b)	15	267	115	10
6 (b)	20	268	179	42
6 (b)	30	269	170	32

6(b)	30	270	143	18
6(b)	30	271	126	14
1(b)	10	272	130	16
1(b)	15	273	154	20
1(b)	15	274	133	14
1(b)	25	275	215	72
1(b)	35	276	237	88
1(b)	35	277	188	46
1(b)	35	278	176	34
4	40	279	219	70
4	40	280	215	66
4	40	281	240	94
4	40	282	220	68
4	40	283	201	52
4	40	284	116	60
4	40	285	188	50
4	40	286	194	48
4	40	287	208	60
4	40	288	196	52
4	40	289	205	52
4	40	290	190	54

Summer 2001 Bonneville Whitefish Collection Data.

Site	Depth	Fish \#	Length	Weight
5	55	1	280	158
5	40	2	406	611
5	40	3	247	104
5	40	4	171	37
5	45	5	285	160
5	45	6	299	172
6	5	7	219	82
6	10	8	182	50
6	10	9	185	50
6	10	10	182	46
6	10	11	164	32
6	10	12	125	16
6	15	14	240	98
6	15	15	224	82
6	15	16	215	64
6	15	17	185	46
6	15	18	162	32
6	15	19	124	14
6	15	20	120	14
6	15	21	130	16
6	15	22	125	16

6	20	23	244	112
6	20	24	185	52
6	25	25	152	28
6	30	26	189	56
6	35	27	197	54
4	10	28	302	182
4	10	29	292	160
4	10	30	269	146
4	10	31	275	142
4	10	32	270	130
4	10	33	275	140
4	10	34	271	134
4	10	35	241	112
4	10	36	238	84
4	10	37	209	70
4	10	38	195	58
4	10	39	165	36
4	10	40	158	32
4	10	41	135	18
4	10	42	136	20
4	10	43	133	18
4	15	44	289	180
4	15	45	279	132
4	15	46	265	142
4	15	47	268	130
3	10	94	167	38
3	10	95	160	32
3	10	96	158	32
3	10	97	149	26
3	10	98	130	16
3	10	99	118	12
3	10	100	117	12
3	10	101	125	14
3	10	102	114	12
3	10	103	128	16
3	10	104	129	16
3	10	105	120	12
3	10	106	125	14
3	10	107	115	11
3	15	108	418	596
3	15	109	269	120
3	15	110	245	112
3	15	111	210	74
3	15	112	200	66
3	15	113	195	60
3	15	114	178	48
3	15	115	185	48
3	15	116	173	38
3	15	117	180	42

3	15	118	169	36
3	15	119	170	38
3	15	120	157	32
3	15	121	160	32
3	15	122	133	16
3	15	123	110	10
3	15	124	110	10
3	15	125	123	14
3	20	126	291	158
3	20	127	271	130
3	20	128	245	100
3	20	129	252	118
3	20	130	224	84
3	20	131	218	70
3	20	132	191	54
3	20	133	164	32
3	25	134	286	156
3	25	135	257	142
3	25	136	270	156
3	25	137	197	58
3	25	138	170	36
3	30	139	260	136
3	30	140	260	132
3	30	141	241	112
3	30	142	194	50
5	15	193	203	66
5	15	194	185	48
5	15	195	160	32
5	15	196	155	28
5	15	197	160	30
5	15	198	130	16
5	15	199	131	16
5	20	200	366	422
5	20	201	270	142
5	20	202	284	152
5	20	203	265	138
5	20	204	249	108
5	20	205	223	84
5	20	206	212	70
5	20	207	196	56
5	20	208	184	46
5	20	209	186	46
5	20	210	174	40
5	20	211	165	32
5	20	212	166	36
5	20	213	171	36
5	20	214	160	30
5	20	215	170	38
5	20	216	174	38

5	20	217	181	44
5	20	218	166	36
5	20	219	134	18
5	20	220	144	22
5	20	221	129	16
5	20	222	115	12
5	25	223	375	448
5	25	224	336	304
5	25	225	260	118
5	25	226	249	118
5	25	227	272	146
5	25	228	247	112
5	25	229	187	56
5	25	230	196	64
5	25	231	214	76
5	25	232	181	50
5	25	233	154	26
5	25	234	184	44
5	25	235	176	42
5	25	236	169	36
5	25	237	175	40
5	25	238	184	48
5	25	239	186	52
5	25	240	163	30
5	25	241	180	36
2	20	291	197	54
2	20	292	183	42
2	20	293	171	32
2	20	294	180	36
2	20	295	167	32
2	20	296	157	26
2	20	297	125	16
2	25	298	267	122
2	25	299	268	130
2	25	300	244	102
2	25	301	239	86
2	25	302	213	70
2	25	303	165	28
2	30	304	215	66
2	30	305	193	50
2	30	306	159	34
4	15	48	275	136
4	15	49	225	90
4	15	50	230	94
4	15	51	179	40
4	15	52	135	18
4	15	53	130	16
4	15	54	135	20
4	15	55	125	14

4	15	56	110	10
4	20	57	325	246
4	20	58	269	128
4	20	59	293	166
4	20	60	267	126
4	20	61	263	124
4	20	62	262	132
4	20	63	263	124
4	20	64	249	112
4	20	65	199	62
4	20	66	190	52
4	20	67	165	36
4	20	68	162	36
4	20	69	149	24
4	20	70	107	8
4	25	71	337	324
4	25	72	325	272
4	25	73	329	276
4	25	74	280	172
4	25	75	284	160
4	25	76	267	128
4	25	77	259	110
4	25	78	260	118
4	25	79	274	146
4	25	80	254	108
4	25	81	227	84
4	30	82	270	136
4	30	83	161	32
4	30	84	139	22
4	40	85	291	168
3	10	86	247	116
3	10	87	218	82
3	10	88	219	82
3	10	89	200	56
3	10	90	193	60
3	10	91	165	36
3	10	92	156	32
3	10	93	183	48
3	35	143	203	58
3	35	144	191	46
3	35	145	183	44
3	35	146	151	24
3	40	147	211	60
3	40	148	205	56
1	10	150	213	70
1	10	151	198	60
1	10	152	186	54
1	10	153	153	28
1	10	154	127	18

1	15	155	197	62
1	15	156	187	56
1	15	157	130	16
1	20	158	260	132
1	20	159	244	106
1	20	160	235	112
1	20	161	195	58
1	20	162	160	36
1	20	163	159	32
1	25	164	285	170
1	25	165	263	130
1	25	166	194	58
1	25	167	169	40
1	30	168	281	142
1	30	169	275	136
1	30	170	242	108
1	30	171	230	90
1	30	172	195	58
5	10	173	405	524
5	10	174	261	134
5	10	175	211	74
5	10	176	194	58
5	10	177	197	70
5	10	178	200	60
5	10	179	210	66
5	10	180	187	46
5	10	181	155	30
5	10	182	160	30
5	10	183	126	14
5	10	184	125	16
5	10	185	129	16
5	15	186	245	112
5	15	187	250	104
5	15	188	227	88
5	15	189	206	66
5	15	190	200	56
5	15	191	194	60
5	15	192	185	46
5	25	242	153	18
5	30	243	264	132
5	30	244	262	118
5	30	245	269	108
5	30	246	252	104
5	30	247	275	146
5	30	248	260	132
5	30	249	195	58
5	30	250	180	38
5	30	251	202	56
5	30	252	197	52

5	30	253	181	44
5	30	254	197	60
5	30	255	203	60
5	30	256	170	38
5	30	257	190	54
5	30	258	166	36
5	30	259	175	36
5	30	260	128	16
5	35	261	388	462
5	35	262	282	168
5	35	263	265	128
5	35	264	268	148
5	35	265	270	128
5	35	266	251	120
5	35	267	194	48
5	40	268	284	160
2	10	269	190	60
2	10	270	171	36
2	10	271	182	48
2	10	272	168	36
2	10	273	164	36
2	10	274	120	16
2	15	275	249	126
2	15	276	190	62
2	15	277	185	52
2	15	278	175	48
2	15	279	189	50
2	15	280	180	48
2	15	281	162	40
2	15	282	182	50
2	15	283	128	20
2	15	284	135	24
2	15	285	116	12
2	15	286	126	16
2	20	287	109	4
2	208	262	130	
2	290	215	76	
2	318	76		
2	30			

Summer 2001 Bear Lake Whitefish Collection Data.

Site	Depth	Fish \#	Length	Weight
1	15	1	109	10
2	15	2	109	9
1	25	3	125	14
2	15	4	125	14
3	20	5	126	13
1	30	6	134	16
6	30	7	136	20

1	25	8	137	18
2	25	9	137	18
1	15	10	140	20
1	25	11	140	18
1	30	12	141	21
6	35	13	143	22
1	20	14	144	22
1	20	15	149	24
1	20	16	150	24
1	30	17	151	28
2	25	18	154	26
2	20	19	158	28
1	35	20	160	28
5	45	21	171	36
4	40	22	172	36
4	40	23	174	38
3	40	24	175	36
2	35	25	175	38
3	40	26	185	42
1	30	27	186	40
5	45	28	186	46
5	50	29	187	40
3	35	30	190	46
2	30	31	191	48
3	40	32	192	56
5	45	33	194	53
3	40	34	194	42
3	30	35	196	50
5	55	36	197	50
5	50	37	200	50
5	50	38	200	56
5	55	39	200	50
2	35	40	201	54
3	30	41	204	52
5	40	42	205	56
5	55	43	205	57
5	45	44	210	60
3	40	45	210	62
5	40	46	211	61
5	60	93	254	111
2	20	94	255	26
5	60	95	271	144
5	45	47	211	64
5	40	48	214	74
5	60	49	214	66
5	55	50	215	60
5	45	51	219	76
5	50	52	223	84
5	60	53	223	82

5	60	54	224	91
5	55	55	224	70
5	55	56	225	82
5	45	57	229	86
3	30	58	229	82
1	30	59	229	74
5	50	60	229	78
5	45	61	230	83
5	50	62	230	86
5	55	63	230	76
5	55	64	231	83
5	60	65	231	91
5	45	66	234	80
5	50	67	234	88
5	55	68	234	84
5	55	69	235	82
5	60	70	235	84
5	55	71	237	97
5	55	72	237	92
5	50	73	238	94
5	45	74	239	94
5	50	75	239	88
5	50	76	239	88
5	55	77	239	82
5	55	78	240	98
5	55	79	241	87
5	55	80	241	86
5	55	81	242	96
5	45	82	243	100
5	60	83	244	97
5	60	84	244	88
5	55	85	245	100
5	60	86	246	88
5	50	87	248	94
5	60	88	249	105
5	55	89	249	98
5	55	90	251	105
5	55	91	251	101
5	55	92	254	106
5				

Spring 2001 Bonneville Whitefish Collection Data.

Fish \#	Depth (M)	Length	Weight
1	10	150	26
2	15	306	184
3	15	265	118
4	15	311	204
5	15	224	90

6	15	195	52
7	15	219	78
8	15	214	76
9	15	161	32
10	15	131	18
11	15	96	8
12	15	105	8
13	20	237	96
14	20	233	102
15	20	219	74
16	20	229	84
17	20	225	74
18	20	135	18
19	20	110	8
20	20	98	6
21	20	113	10
22	25	250	108
23	25	235	98
24	25	254	114
25	25	240	90
26	25	266	136
27	25	265	124
28	25	210	80
29	25	209	72
30	25	236	94
31	25	161	32
32	25	136	18
33	30	282	158
34	30	243	106
35	30	235	94
36	30	163	34
37	30	180	46
38	30	196	60
39	30	163	30
40	30	153	26
41	30	144	22
42	35	230	88
43	35	152	24
46	40	155	26
48	10	244	116
49	20	257	122
50	20	241	96
51	20	199	60
52	20	144	18
53	20	116	10
54	25	279	140
55	25	237	94
56	25	221	74
57	25	215	74

59	25	100	8
60	25	100	8
61	25	97	8
62	30	437	730
63	30	324	258
64	30	331	274
65	30	288	174
66	30	280	170
67	30	271	150
68	30	274	146
69	30	296	156
70	30	275	126
71	30	267	132
72	30	271	138
73	30	244	106
74	30	242	96
75	30	232	94
76	30	224	84
77	30	246	102
78	30	219	72
79	30	191	48
80	30	180	40
81	30	155	26
82	35	285	156
83	35	257	116
84	35	252	106
85	35	229	84
86	35	242	100
87	35	190	50
88	35	140	20
89	40	280	156
90	$?$	144	20
91	10	301	190
92	10	280	158
93	10	278	150
94	10	279	150
95	10	275	146
96	10	257	118
97	10	244	90
98	10	240	98
99	10	238	98
100	10	230	86
101	10	220	80
102	10	215	72
103	10	203	64
104	10	203	60
105	10	204	60
106	10	191	48
107	10	187	54
70			

108	10	170	40
109	10	143	22
110	15	289	160
111	15	268	134
112	15	290	160
113	15	265	134
114	15	268	140
115	15	265	118
116	15	249	110
117	15	250	104
118	15	237	96
119	15	218	72
120	15	177	40
121	15	182	44
122	15	173	40
123	15	155	26
124	15	145	22
125	20	272	150
126	20	275	138
127	20	270	130
128	20	261	124
129	20	215	76
130	20	187	46
131	20	163	32
132	25	261	124
133	25	263	130
134	25	262	120
135	25	247	98
136	25	232	98
137	25	217	80
138	25	185	44
139	25	169	36
140	25	157	26
141	25	149	24
142	25	149	24
143	25	164	30
144	25	146	20
145	25	99	6
146	25	98	6
147	25	96	5
148	25	101	7
149	30	300	184
150	30	288	166
151	30	276	136
152	30	253	112
153	30	260	122
154	30	248	104
155	30	247	96
156	30	250	108

157	30	243	94
158	30	242	88
159	30	207	62
160	30	194	56
161	30	198	60
162	30	185	44
163	30	193	52
164	30	197	52
165	30	174	36
166	30	193	50
167	30	183	46
168	30	187	46
169	30	178	40
170	30	168	34
171	30	181	44
172	30	158	28
173	30	159	30
174	30	148	22
175	30	152	26
176	30	140	20
177	30	107	8
178	30	101	8
179	15	285	136
180	15	257	114
181	15	266	130
182	15	192	50
183	15	108	8
184	20	282	156
185	20	245	104
186	20	205	64
187	20	158	26
188	25	312	232
189	25	294	164
190	25	262	120
191	25	246	112
192	25	245	102
193	25	234	88
194	25	237	88
195	25	210	66
196	25	205	66
197	25	149	24
198	25	155	26
199	25	147	24
200	30	243	90
201	35	243	98
202	40	163	28
203	10	187	48
204	20	270	130
205	20	252	114

206	20	238	96
207	20	137	18
208	25	257	116
209	25	225	90
210	25	170	34
211	30	382	460
212	30	285	172
213	30	268	132
214	30	284	158
215	30	273	144
216	30	288	158
217	30	269	140
218	30	273	136
219	30	262	132
220	30	247	94
221	30	206	64
222	30	190	52
223	30	160	30
224	35	262	134
225	35	197	62
226	35	201	60
227	40	262	126
228	40	250	106
229	10	272	144
230	10	271	146
231	10	277	144
232	10	260	136
233	10	239	102
234	10	257	114
235	10	238	90
236	10	235	94
237	10	230	84
238	10	233	78
239	10	207	68
240	10	207	64
241	10	190	50
242	10	177	40
243	10	193	48
244	10	178	42
245	10	185	48
246	10	178	38
247	10	166	36
248	10	164	28
249	10	154	26
250	10	153	26
251	10	152	26
252	15	271	144
253	15	285	156
254	15	262	144
25			

255	15	265	132
256	15	256	114
257	15	255	106
258	15	262	108
259	15	242	98
260	15	217	80
261	15	235	78
262	15	184	46
263	15	184	46
264	15	168	34
265	15	171	34
266	15	161	30
267	15	153	28
268	15	158	28
269	15	154	26
270	15	148	22
271	20	296	184
272	20	282	162
273	20	278	150
274	20	251	122
275	20	230	82
276	20	160	30
277	20	154	26
278	20	97	6
279	20	101	8
280	25	289	180
281	25	257	118
282	25	230	90
283	25	225	80
284	25	161	30
285	25	98	8
286	25	106	8
287	25	99	6
288	30	333	268
289	30	308	222
290	30	267	116
291	30	238	104
292	30	214	74
293	30	182	42
294	30	181	46
295	50	410	604
296	50	196	50
297	55	220	68

Spring 2001 Bear Lake Whitefish Collection Data.

Fish \#	Depth	Length	Weight
1	40	241	88
2	40	140	16

3	40	154	24
4	30	209	60
5	25	203	60
6	35	243	88
7	35	206	52
8	30	220	80
9	35	149	22
10	45	195	50
11	45	154	26
12	50	261	132
13	50	248	102
14	50	230	84
15	50	212	68
16	50	231	80
17	50	222	66
18	55	247	104
19	55	253	112
20	55	249	106
21	55	263	112
22	55	231	78
23	55	235	80
24	55	217	68
25	55	219	74
26	55	222	74
27	55	220	76
28	55	248	98
29	55	216	66
30	55	228	78
31	55	223	70
32	55	212	64
33	55	214	64
34	55	220	64
35	55	214	64
36	55	210	60
37	55	195	50
38	55	186	40
39	60	241	92
40	60	244	92
41	60	236	88
42	60	254	106
43	60	206	60
44	60	204	56
45	60	205	64
46	60	196	52
47	60	214	66
48	60	193	50
49	60	204	54
50	60	190	48
51	60	179	36

52	45	234	80
53	45	243	100
54	45	219	76
55	45	211	64
56	45	186	46
57	45	171	36
58	50	248	94
59	50	239	88
60	50	239	88
61	50	238	94
62	50	234	88
63	50	223	84
64	50	230	86
65	50	229	78
66	50	200	50
67	50	200	56
68	50	187	40
69	55	237	92
70	55	249	98
71	55	230	76
72	55	225	82
73	55	240	98
74	55	224	70
75	55	242	96
76	55	234	84
77	55	245	100
78	55	239	82
79	55	235	82
80	55	241	86
81	55	215	60
82	55	200	50
83	55	197	50
84	60	244	88
85	60	214	66
86	60	223	82
87	60	235	84
88	60	246	88

Appendix (B.) Diet Data.
Bonneville Whitefish Summer Diet (Proportion in Stomach)

$100-150$	$\mathbf{1 5 0 - 2 0 0}$	$\mathbf{2 0 0 - 2 5 0}$	$\mathbf{2 5 0 - 3 0 0}$	$\mathbf{3 0 0 - 3 5 0}$	$\mathbf{> 3 5 0}$	Food Item
0.194	0.021	0.021	0.040	0	0	Zoop.
0.010	0.010	0.013	0.034	0	0	Tricopt.
0.004	0.024	0.011	0.147	0	0	Coleopt.
0.018	0.076	0.120	0.405	0	0.020	Terrest.
0	0	0	0.138	0.980	0.980	Sculp.
0.161	0.043	0.249	0.043	0.010	0	Sphar.

Bear Lake Whitefish Summer Diet (Proportion in Stomach)

$\mathbf{1 0 0 - 1 5 0}$	$\mathbf{1 5 0 - 2 0 0}$	$\mathbf{2 0 0 - 2 5 0}$	$\mathbf{> 2 5 0}$	Food Item 0.129
0.072	0.012	0.05	Chiro.	
0.592	0.751	0.825	0.99	Otstra.
0.169	0.104	0.050	0	Zoops.
0.041	0.002	0.008	0	Eggs
0.019	0.001	0	0	Tricopt.
0.022	0.006	0.068	0	Coleopt.
0.028	0.064	0.037	0	Terrest.
0	0	0	0	Sculp.
0	0	0	0	Sphar.

Bonneville Whitefish Spring Diet (Proportion in Stomach)

$\mathbf{1 0 0 - 1 5 0}$	$\mathbf{1 5 0 - 2 0 0}$	$\mathbf{2 0 0 - 2 5 0}$	$\mathbf{2 5 0 - 3 0 0}$	$\mathbf{3 0 0 - 3 5 0}$	$\mathbf{> 3 5 0}$	Food Item
0.226	0.351	0.28	0.262	0.377	0	Chiro.
0.333	0.135	0.029	0.008	0.033	0	Otstra.
0	0	0	0	0	0	Zoops.
0	0	0	0.004	0	0	Eggs
0	0.025	0.007	0.017	0	0	Tricopt.
0	0.035	0.055	0.107	0.267	0	Coleopt.
0.441	0	0.215	0.237	0.148	0	Terrest.
0	0.172	0	0	0	1	Sculp.
0	0.258	0.412	0.356	0.175	0	Sphar.
0	0.024	0	0.008	0	0	Oligocha.

Bear Lake Whitefish Spring Diet (Proportion in Stomach)

$100-150$	$\mathbf{1 5 0 - 2 0 0}$	$\mathbf{2 0 0 - 2 5 0}$	$\mathbf{> 2 5 0}$	Food Item 0.02
0.043	0.038	0	Chiro.	
0.99	0.896	0.727	0.75	Otstra.
0	0	0	0	Zoops.
0	0.002	0.021	0	Eggs
0	0	0.001	0	Tricopt.
0	0.023	0.036	0	Coleopt.
0	0	0.011	0	Terrest.
0	0	0	0	Sculp.
0	0	0	0	Sphar.
0	0.036	0.15	0.25	Oligocha.

Appendix (C.) Spatial Distribution Data.
Spring Distribution Data (CPUE (NET HOUR)) by Depth Contour.

Bonneville	Bear Lake Depth (m)	
0.6250	0	10
0.6944	0	15
0.5278	0	20
0.8056	0.0139	25
1.1111	0.0278	30
0.1806	0.0417	35
0.1042	0.0625	40
0	0.3333	45
0.0833	0.7083	50
0.0417	1.5000	55
0.0417	0.7083	60

Summer Distribution Data (CPUE (NET HOUR)) by Depth Contour.

Bonneville	Bear Lake	Depth (m)
0.306	0.028	5
1.903	0.056	10
2.451	0.111	15
0.688	0.083	20
0.764	0.076	25
0.646	0.111	30
0.896	0.188	35
0.150	0.350	40
0.083	0.917	45
0.083	1.417	50
0	1.533	55
0	1.771	60

Appendix (D.) Thermograph Data.
Thermograph Data Taken during the summer and winter of 2001.

Summer Winter		
Depth \mathbf{m} Temp C	Temp C	
1	19.8	5
2	19.9	5
3	19.9	5
4	19.9	5
5	19.9	5
6	19.9	5
7	19.9	5
8	19.7	5
9	19.4	5
10	18.9	5
11	18.7	5
12	16.2	5
13	15.4	5
14	15.2	5
15	14.8	5
16	14.6	5
17	14.5	5
18	14.4	5
19	12.6	5
20	11.8	5
21	11.6	5
22	11.4	5
23	10.9	5
24	9.9	5
25	9.3	4.75
26	8.8	4.5
27	8.4	4
28	7.9	4
29	7.3	4
30	7	4
31	6.7	4
32	6.6	4
33	6.4	4
34	6.2	4
35	6.1	4
36	5.8	4
37	5.6	4
38	5.6	4
39	5.5	4
40	5.5	4
41	5.5	4

42	5.4	4
43	5.4	4
44	5.3	4
45	5.2	4
46	5.2	4
47	5.1	4
48	5.1	4
49	5	4
50	5	4
51	5	4
52	4.9	4
53	4.8	4
54	4.8	4
55	4.8	4
56	4.8	4
57	4.7	4
58	4.7	4
59	4.7	4

Appendix (E.) Survivorship Curve Data.
Bonneville Whitefish Survivorship.

Age (years)	\# Individuals
1	383
2	164
3	86
4	43
5	42
6	77
7	70
8	47
9	32
10	13
11	8
12	5

Bear Lake Whitefish Survivorship.

Age (years)	\# Individuals
1	42
2	33
3	30
4	29
5	27
6	22
7	20
8	15
9	14
10	6
11	5
12	3

Appendix (F.) Catch Per Unit Effort (CPUE) Data.
Bonneville Whitefish Catch Per Unit Effort (CPUE) for both caught and Corrected Data.

Length (mm)	CPUE (caught)	CPUE (corrected)
90	0.0071	0.0083
95	0.0027	0.0050
100	0.0030	0.0025
105	0.0039	0.0017
110	0.0020	0.0008
115	0.0045	0.0033
120	0.0056	0.0091
125	0.0127	0.0223
130	0.0326	0.0330
135	0.1177	0.0817
140	0.0761	0.0545
145	0.0482	0.0528
150	0.0133	0.0264
155	0.0097	0.0173
160	0.0171	0.0206
165	0.0244	0.0239
170	0.0216	0.0231
175	0.0207	0.0314
180	0.0099	0.0239
185	0.0092	0.0165
190	0.0091	0.0124
195	0.0135	0.0165
200	0.0085	0.0116
205	0.0095	0.0173
210	0.0110	0.0297
215	0.0071	0.0132
220	0.0113	0.0173
225	0.0103	0.0149
230	0.0134	0.0215
235	0.0089	0.0182
240	0.0058	0.0165
245	0.0077	0.0124
250	0.0146	0.0173
255	0.0202	0.0182
260	0.0264	0.0190
265	0.0406	0.0256
270	0.0398	0.0248
275	0.0309	0.0215
280	0.0174	0.0149
285	0.0110	0.0124

290	0.0043	0.0066
295	0.0019	0.0041
300	0.0020	0.0058
305	0.0023	0.0033
310	0.0007	0.0008
315	0.0000	0.0000
320	0.0000	0.0000
325	0.0020	0.0017
330	0.0010	0.0008
335	0.0009	0.0008
340	0.0022	0.0025
345	0.0000	0.0000
350	0.0023	0.0041
355	0.0004	0.0008
360	0.0000	0.0000
365	0.0000	0.0000
370	0.0008	0.0008
375	0.0000	0.0000
380	0.0000	0.0000
385	0.0016	0.0008
390	0.0000	0.0000
395	0.0076	0.0025
400	0.0000	0.0000
405	0.0121	0.0025
410	0.0000	0.0000
415	0.0000	0.0000

Bear Lake Whitefish Catch Per Unit Effort (CPUE) for both caught and Corrected Data.

Length (mm)	CPUE (caught)	CPUE (corrected)
90	0.0000	0.0000
95	0.0000	0.0000
100	0.0010	0.0008
105	0.0097	0.0041
110	0.0020	0.0008
115	0.0034	0.0025
120	0.0010	0.0017
125	0.0019	0.0033
130	0.0049	0.0050
135	0.0107	0.0074
140	0.0104	0.0074
145	0.0023	0.0025
150	0.0021	0.0041
155	0.0005	0.0008
160	0.0027	0.0033
165	0.0008	0.0008
170	0.0031	0.0033
175	0.0027	0.0041
180	0.0024	0.0058

185	0.0037	0.0066
190	0.0079	0.0107
195	0.0047	0.0058
200	0.0061	0.0083
205	0.0041	0.0074
210	0.0037	0.0099
215	0.0066	0.0124
220	0.0059	0.0091
225	0.0109	0.0157
230	0.0098	0.0157
235	0.0101	0.0206
240	0.0067	0.0190
245	0.0087	0.0140
250	0.0077	0.0091
255	0.0092	0.0083
260	0.0046	0.0033
265	0.0052	0.0033
270	0.0000	0.0000
275	0.0012	0.0008
280	0.0000	0.0000
285	0.0007	0.0008
290	0.0000	0.0000
295	0.0000	0.0000
300	0.0000	0.0000

