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ABSTRACT 

An Ecological I Life History Comparison of Two Whitefish Species 

in Bear Lake, Utah/Idaho 

by 

Brett W. Thompson, Master of Science 

Utah State University, 2003 

Major Professor: Dr. Chris Luecke 
Department: Aquatic Watershed and Earth Resources 

Ecological traits of the endemic Bear Lake whitefish Prosopium abyssicola and 

the Bonneville whitefish Prosopium spilonotus were investigated. Spatial distributions 

indicated distinctive differences in depth contour preference. Catch per unit effort data 

indicated that Bonneville whitefish prefer shallow depths and warmer water 

temperatures, whereas Bear Lake whi tefish prefer deep, cold water. 

Diet differences between the two species were large. Differences in both age 

distribution and growth rate patterns were also observed. The Bonneville whitefish 

population was predominantly composed of juvenile age classes. Very large adults 

reached ages of 12- 14 years . Bear Lake whitefish exhibited a different population 

structure with few young fish and larger proportions of older age classes. Some of these 



fish were aged over 35 years old. Both analyses suggest that the population structure of 

each species is the result of a stable or growing population. 

Ill 

(1 31 pages) 
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CHAPTER I 

INTRODUCTION AND STUDY OBJECTIVES 

Fishes adapt to perpetuate the history of their kind and maximize fitness. These 

adaptations allow them to occupy an extraordinary array of habitats, ranging from the 

tiniest desert springs, to deep ocean trenches . The diversity of fish (>25,000 species) and 

the habitats they occupy reflects their extremely long evolutionary history (Moyle and 

Cech 2000). 

Fishes in Bear Lake, Utah/Idaho exemplify this diversity and adaptability. The 

whitefish group (Subfamily Coregoninae) has been regarded as being among the most 

intriguing and controversial group of animals from an evolutionary and taxonomic 

standpoint (Lindsey and Woods 1970). Three endemic Coregon id whi tefish species of 

the genus Prosopium are currently recognized in Bear Lake: Bonneville whitefish 

Prosopium spilonotus, Bear Lake whitefi sh Prosopium abyssicola, and the Bonneville 

Cisco Prosopium gemmiferum Snyder (1921 ). However, only the Bonnevi lle Cisco is 

affably distinguished from the others by means of simple morphological identification. 

Extensive research on the Bonneville cisco has previously been conducted (Perry 1943; 

Bouwes and Luecke 1997). Therefore, this species was not evaluated in the present 

study. The other two whitefish species exhibit different life history traits, including the 

separation of spawning times and size at age characteristics. These traits allow 

researchers to di stinguish the Bear Lake and Bonneville whitefishes as spawning adu lts. 

The whitefish complex in Bear Lake is particularly interesting in that they have 

been geographically iso lated, at least since the Pleistocene. Although the mountain 
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whitefish Prosopium williamsoni is ubiquitous throughout the west, no other endemic and 

sympatric morphotypes of whitefish occur in the region. Thus most taxonomists surmise 

that P. williamsoni is the ancestor to the three whitefish species in Bear Lake. 

In North America and Europe simi lar complexes oflake whitefish have been 

reported in several disjunct localities including the Laurentian Great Lakes. Normally 

these complexes have one or more pairs of whitefish that are closely related. They are 

most often referred to as dwarf and normal morphotypes displaying distinct differences in 

behavioral and ecological traits (Pigeon et al. 1997). The origins of these "dwarf and 

normal" whitefish pairs remains uncertain. Some evidence suggests that both allopatric 

divergence followed by secondary contact and sympatric radiation may be involved. 

Other various modes of speciation have been hypothesized to account for coregonid 

complexes, including sympatric speciation within lakes, and micro-geographic speciation 

during deglaciation (Bodaly et al. 1992). Others have suggested that glacial refugia could 

be attributed where sympatric pairs oflake whitefish occur in geographically isolated 

areas (Svardson 1970). 

It is not completely understood what mechanisms drove the relatively recent 

speciation of the Bear Lake whitefish complex. Geologic evidence suggests that the 

whitefishes in Bear Lake could have allopatri c origins, which supports the widely 

accepted notion that complete geographic isolation is necessary to drive speciation 

(Behnke 1972). Alternatively, sympatric divergence may have occurred as a result of 

partitioning of food resources and or spawning habitat in space and time (Mann and 

McCart 1981; Schluter and Mcphaill992). This mechanism may be plausible since all 

three species utilize the same limited spawning habitat during different times of the year. 



Regardless of their origins the sympatric pair of whitefish in Bear Lake possess 

similar characteristics to those of the Eastern United States, Canada, and Europe. The 

Bonneville whitefish can reach total lengths of over 450 mrn whereas the Bear Lake 

whitefish have never been collected at sizes greater than 280 mrn (B. Nielson and S. 

Tolentino, Utah Division of Wildlife Resources, personal communication). The present 

study proposes that these two species are analogous to other sympatric pairs of whitefish 

where normal and dwarf morphotypes are present. 

Difficulties in identification of the Bonneville and Bear Lake whitefishes 

outside of spawning times and at early life stages has precipitated research investigating 

possible differences in morphological traits and meristic counts (Ward 2000). Results of 

this study indicate that both lateral line/dorsal and total lateral line scale counts provide a 

means of distinguishing individuals of these species. All life stages of whitefish were 

separated in an effort to investigate the inherent ecological and biological differences that 

are present between the two species. 

Prior to the present study it was unknown if each species demonstrated different 

population dynamics, food habits, seasonal habitat preference, and spatial distribution. 

Attaining some understanding of these factors is imperative since both species are 

endemic to Bear Lake and their preservation may depend on these ecological 

relationships. 

Chapter 2 will detail the intrinsic ecological traits of both whitefish species. More 

specifically this chapter will describe the evolution of these two species and how they 

have successfully persisted in Bear Lake under sympatric conditions. To understand 

these traits, specific ecological characteristics were investigated, including; (I) their diet 
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preferences during the summer, when the lake is thermally stratified, and during the 

winter-early spring when the lake is iso-thermic; (2) Their spatial distribution during 

these same time periods. The data collected will provide important insight into the life 

history differences of both species, and will assist with the criteria of a management plan. 

In Chapter 3, size, age at length, and fecundity were explored to understand the 

life history both populations. Sectioned otoliths were used to determine age structures 

and growth characteristics. These data were then used to parameterize a life table and 

Leslie matrix to gain a better understanding of important population growth 

characteristics, and sensitive stages in each species life history. 

Study Objectives 

I. To assess the differences in food resources used by the two whitefish species. 

Stomach contents were examined to determine if they are utilizing different sources of 

food. If spatial separation is established, differences in food preferences will be 

expected. Different species of fish often evolve feeding structures and mechanisms that 

allow them to exploit a vast array of food resources. White (1974) documented 

differences in maxillary length and positioning of the mouth in some known specimens of 

Bear Lake whitefish. The mouth of the Bear Lake whitefish is often inferior and pointing 

in a sub-terminal direction when compared to the Bonneville whitefish. A preference for 

benthic dwelling organisms would correspond with this morphological difference and 

could be an evolutionary adaptation. 

The information provided will give us a better understanding about which trophic 

levels the whitefish are feeding at within the lake. Diet analysis will provide important 



information to fisheries managers trying to make decisions that may directly or indirectly 

precipitate unwanted population changes. 

2. To identify spatial distribution (by depth contour) differences between Bear Lake and 

Bonneville whitefish. Because known morphological differences permitted the 

identification of non-spawning individuals, habitat partitioning during both the summer 

months when the lake is thermally stratified, and also after fall mixing when the lake is 

iso-thermic was investigated. Mazur (1999) failed to collect a significant number of Bear 

Lake whitefish in depths deeper than 30m. Depths greater than 30m were thus sampled 

ex tensively in the present study. The proportion of Bear Lake I Bonneville whitefish 

reported in his (Mazur 1999) intensive gill net study were very low, indicating that the 

Bear Lake whitefish were not being sampled effectively. Folklore and old reports 

produced by pioneering investigators on Bear Lake have mentioned that Bear Lake 

whitefish dwell in deep water. Snyder (192 1) may have had some semblance of their 

distribution when he described the Bear Lake whitefish as abyssicola meaning "of the 

deep." However, prior to this study, no substantial data existed concerning habitat use 

and or spatial distribution of whitefish in Bear Lake deeper than 35 m. Utah Division of 

Wildlife Resources (U.D.W.R.) samples the lake annually up to 35-40 m. The 

examination of these data suggests that a separate smaller size class of fish is present, 

which might be the Bear Lake whitefish. These observations suggest that Bear Lake 

whitefish may prefer deeper, colder water (Elliot 1976; Buckel 1995). 

3. Otoliths from both species were sectioned and examined to determine the age structure 

of both populations. Length at age and growth rate parameters inherent to the life history 

of both species were then calculated. Through a vertical-static life table analysis, 



variation in mortality and fecundity of separate size classes were examined, and the 

effects on population dynamics reported. 

The most reliable method of determining age-specific mortality and fecundity rates 

for populations that have overlapping generations is to follow the fate of a group of 

individuals (a cohort) through a complete lifecycle (Begon et al. 1986). Unfortunately is 

not always possible to monitor the dynamics of a population by constructing such a 

"fixed cohort" life table. In fact, natural populations of animals are rarely examined in 

this way, as individuals are highly more mobile and surreptitious to observers. However, 

an alternative to the cohort life table exists. This is called a static or vertical life table. 

The static life table involves examining the age structure and survival probabilities of the 

whole population at one particular time step. In a sense it consists of taking a "snap shot" 

(sample) or a slice out of a larger population that was constructed over a longer period of 

time. This type of life table can have practical uses when trying to describe populations 

and can provide a number of important life history parameters that can be calculated 

based on survivorship and fecundity schedules. Lowe (1969) demonstrated the uses of 

such a life table with deer populations in Scotland. He was more concerned, as is the 

present study, with general trends rather than with particular changes occurring from one 

year to the next. Certain assumptions apply to the use of static life tables: 

I. The populations are closed. Changes in population size are dependent on local births 

and deaths. 

2. There is no genetic structure within the populations. There cannot be any underlying 

genetic variation in the populations that affect the birth and death rates. 

3. This life table assumes that the population has reached its stable age distribution. 



The latter assumption is rarely met when sampling natural populations. However the 

goal of this study was not to use the data generated by the life tab le to accurately project 

population sizes or trends several generations into the future, but rather use the 

information derived by the li fe table to perform a sensitivity analysis. In general the 

purpose of using such a life-table, as the model that Lowe constructed, is to discover 

patterns of birth and mortality, which are repeated year to year under a variety of 

circumstances. In this study static life table approaches were used to assess the shared or 

un-shared properties of the whitefish species in Bear Lake. 
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CHAPTER2 

ECOLOGICAL CHARACTERJSTJCS: FOOD HABITS, DIET PREFERENCES, AND 

SPATIAL DISTRIBUTION OF BONNEVILLE WHITEFISH PROSOPIUM 

SPILONOTUS, AND BEAR LAKE WHITEFISH PROSOPIUM ABYSSICOLA IN 

BEAR LAKE, UTAH I IDAHO 

Abstract.- Bonneville and Bear Lake whitefish were sampled using gill nets throughout 

the summer of2000, early spring 2001, and the summer of2001. Samples were taken 

from the stomachs of whitefish and analyzed in the lab to investigate differences in food 

preferences between the two species. Spatial distributions were analyzed using the catch 

per unit effort (CPUE) data collected during the gi ll netting survey. Large differences in 

the diets of the two species were found at nearly every size class indicating apparent 

resource partitioning within the lake. Whitefish captured in the gill nets during every 

sampling period showed that not on ly do the two species differ in relative abundance, but 

their spatial distribution was also significantly different. Bonneville whitefish were more 

abundant in shallower depths with 96% caught in water depths of 5-35 m. Bear Lake 

whitefish were more abundant in deeper water with 90% caught in depths ranging from 

40-60 m. 

Introduction 

The diets and feeding habits reveal many distinguishable characteristics attributed 

to a species ecology. They help provide information as what trophic level a fish occupies 

and define species that occupy often complex food chains . 



II 

The mouth morphology of fish is one factor that dictates what they can and will 

eat. Ultimately through a fishes morphological and physiological evolution they settle 

into respective niches within ecosystems. The Bonneville and Bear Lake whitefish in 

Bear Lake employ an inferior mouth morphology. This is evident by their aberrant pre­

maxilla, which distinguishes their genus from all other Coregonid species. They are 

neither specialized for feeding on prey associated with the benthos, or for preying heavily 

on forage fish, and or zooplankton suspended in the pelagic zone. This generalist feeding 

strategy may provide some advantage in competing with effective planktivores 

(Bonneville Cisco), piscivores (Cutthroat Trout), and benthic feeders (Utah Sucker and 

Utah Chub) that are also native to Bear Lake. 

Seasonal diets of each whitefish species were examined to detect any differences 

in the feeding ecology of Bonneville and Bear Lake whitefish throughout their entire life 

history. Spatial distribution was also explored using a gill net survey of benthic habitats. 

The distribution of the whitefish complex in Bear Lake has been evaluated by previous 

investigators (Snyder 1921 ; B. Neilson and S. Tolentino, Utah Division of Wildlife 

Resources, personal communication; Mazur 1999), however none of these investigators 

sampled all depth strata of the lake. The goal of this study was to systematically sample 

the abundance of Bonneville and Bear Lake whitefish throughout the available benthic 

habitat present in Bear Lake. 

Many factors drive varying fish distribution, including predation avoidance, food 

resources, and patterns of thermal stratification. Other closely related Coregonid species 

are known to segregate habitats sympatrically. Randi (1999) showed differences in the 

distribution of length groups and morphotypes of whitefish within a Norwegian lake. 
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Small individuals (dwarf) were caught in deeper areas of the lake, whereas larger species 

were found in the shallower depths. 

Increasing human development in the Bear Lake watershed has the potential to 

change nutrient inputs and subsequently influence the food resources and spatial 

distributions of fishes . Changes in water use patterns may also affect fish habitat. 

Results of our study will help in understanding the potential consequences of these 

environmental changes and can assist in the management of Bear Lake and the 

preservation of these endemic species. 

Study Area 

Bear Lake is a long, elliptical-shaped Jake located in a moderately elevated 

mountainous area in northeastern Utah and southeastern Idaho. The valley that harbors 

the Jake is relatively narrow and runs in a north-south direction surrounded by the Bear 

River range of mountains on the west (elevation 3048 m) and the Bear Lake plateau on 

the east (elevation 2440 m). The lake is large, and comparatively deep with a fluctuating 

surface area of approximately 282 krn2 and a mean depth of 30.5 m. Maximum depth can 

reach over 63 m approximately one-fourth of a mile off the eastern shore and just south 

of the South Eden creek delta. Its total length is nearly 30 km with 19 krn in Utah and the 

remainder in Idaho with width ranging from 12 krn to 6.4 krn. 

Since the construction of a hydroelectric facility on the northern shore of the lake, 

the main uses for the lake have been the production of electricity, and use of water 

storage for agriculture practices. Bear Lake is a natural lake, thus no dam was ever built. 

However, the natural outlet where the Bear River once historically left the lake has been 
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reopened and a controlled canal constructed. The Bear River was also diverted to enter 

the lake to compensate for water leaving through the canal. Prior to these developments 

the lake was considered a closed system. All water that entered the lake from its small 

in-flowing streams and benthic springs stayed in the lake. The geology of the lake is of 

special interest. An active fault runs north and south along its eastern shore. Tectonic 

uplifting has been credited for the lake's deepest hole and signs of fault activity are 

detectable at the North and South Eden stream deltas (Kalister 1972). The sediments of 

Bear Lake are very deep(> 100m) and consist mostly ofCaC03 precipitate, extinct 

gastropod shells, and cobble sized stone. The current form of the lake has been present 

since the Pleistocene, but the lake basin has likely existed for several million years (Perry 

1943). 

Bear Lake is oligotrophic with mean chlorophyll a levels never exceeding 0.2 

mglm' at the surface during summer months. Secci depth measurements range from 3-10 

m (Wurtsbaugh and Hawkins 1990). The lake is full of minerals and a plethora of 

calcium carbonate precipitate, which gives the lake a turquoise-blue color. The water 

column is typically saturated with dissolved oxygen and has not been observed to drop 

below 4].lg/L at the surface (Lamarra et al. 1987). Surface temperatures in the summer 

can reach 20 C with temperatures at 55 m never exceeding 5 C (figure 2-1 ). The water 

column displays distinct summer stratification, and an obvious thermocline exists at 12-

15 m, which forms as early as June, and persists through October. 

Perry (1943) reported that "very seldom does the lake pass through a winter 

without freezing over." However, Bear Lake did have complete ice cover the three years 



prior to this study (1996- 1999). Despite the recent trend of mild winters, complete ice 

cover of Bear Lake was experienced during the winters of2000 and 2001 . 
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The limnetic zooplankton community is dominated primarily by low densities of 

copepoda and Bosmina; however, yearly sporadic pulses of daphnia can also be measured 

in the lake (Mazur 1999; Morreno 1989). These low densities are likely the main 

limitation to low levels of fish production experienced by the lake. 

The invertebrate fauna of Bear Lake is not diverse, nor abundant, and most 

species are associated with the benthos. These species include: Nematoda, Annelidea, 

Ostracoda, Sphaeridae, and Chironomidae (Wurtsbagh and Hawkins 1990). However, 

species oflarval trichoptera, ephemeroptera, and adult coleoptera have also been 

observed in the stomachs of whitefish. 

Bear Lake ichthyiofauna is fairly complex and includes four endemic species: 

Bonneville whitefish, Bear Lake whitefish, Bonneville cisco, and the Bear Lake sculpin 

Cottus extensus. Healthy populations of indigenous Utah sucker Catostomus ardens, 

Utah Chub Gila atraria, and Bonneville cutthroat trout Oncorynchus clarki utah also 

reside in the lake. The sport-fishery in Bear Lake is primarily managed for the highly 

picsivorous strain of cutthroat trout , and exotic lake trout Salve/in us namaycush. Both 

have been documented as voracious predators and rely heavily on the whi tefish complex 

(primarily Bonneville cisco) for food throughout the year (Orrne et al. 1998; Mazur 

1999). Other introduced fish that have been recently collected include: rainbow trout 

Oncorhynchus mykiss, redside shiner Richardson ius baltiatus, speckled dace Rhinichthys 

osculus green sunfish Lepomis cyanellus, yellow perch Perca jlavenscens , and the 

common carp Cyprinus carpio . 
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Methods 

Sample Design 

Gill net collections of whitefish were taken in July/August of2000 and 2001 , and 

in April/May 2001. Samples were collected during summer stratification of the lake and 

during isothermic conditions. Bear Lake was divided into six separate sections, starting 

on the north end of the lake running laterally to the south end, and then back in a north 

(figure 2-2). Preliminary investigations of habitat types located within the lake were 

performed in June 2000 using an eckman dredge to sample the benthic substrate. Lake 

sections were then delineated according to depth strata and substrate habitat type. Each 

sample location and its depth were recorded by taking a UTM coordinate derived from a 

Global Positioning System (GPS). Benthic substrate within the lake consists mostly of a 

fine calcium carbonate precipitate. All lake sections are dominated by this substrate type 

with the exception of sections 4 and 6, which contain small patches of macrophyte beds. 

Other types of habitat in the lake are gastropod shell beds (section 2), and rock-cobble 

(sections 3 and 5). Sections were then projected in Arc View and the position of each 

transect recorded so we could know exactly which section we were in while on the lake 

(figure 2-2). All depth strata of the lake were sampled starting at 5 m, or 10m, 

depending on section and habitat type, and running parallel to shore along each depth 

contour (figure 2-3). 

Gill nets were deployed for 12 hours each night from dusk to dawn in an effort to 

sample both crepuscular periods. Sections I and 6 were sampled starting at 5 m and 

extending down to 30 m, which is the deepest depth found in these sections. Sections 2, 
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3, and 4 were sampled starting at I 0 m and extending to 40 m utilizing a total of seven 

separate nets. Section 5 was sampled starting at 1Om and ending with a 60 m set utilizing 

a total of 11 separate nets. During the summer of2000 sampling of each depth strata 

within each section was replicated twice with an exception in section 5. Here depths 45 

m, 50 m, 55 m, and 60 m were replicated four times each. This was done because these 

depths are only found in section 5 and a good representation of fish was needed for 

statistical inference. During the spring and summer of2001 , each depth strata within 

each section was sampled once. As gill nets were deployed, a GPS reading was taken. 

These net deployment sites were then mapped in Arc View 3.2 to get an idea of sample 

coverage across the lake (figure 2-4). 

The gill nets used were the experimental-sinking type and utilized a number of 

different sized mesh panels. They consisted of nine panels ( 4.6 meters in length) starting 

at 1.27 em stretch measurement and increasing by .64 em increments up to 5.17 em. 

Panels then increased by 1.27 em up to 7.6 em stretch. The very small mesh sizes 

increased by .64 em increments (.08 mm diameter). The numerous panels were in an 

effort to reduce bias in catching only larger size classes of fish, which is usually the norm 

when sampling with gill nets . The small mesh sizes were included so we could catch a 

good proportion of age-l whitefish that are often hard to sample using mono-filament gill 

nets. 

A gill net selectivity analysis was then conducted to assess the bias in our 

sampling procedure and to correct for any that was experienced (Rudstam et al. 1984). 

Details of this analysis are documented in chapter 3. 
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Diet Analysis 

Lengths and weights were measured from all whitefish for descriptive 

relationships of both species. Ten stomach samples for each size class of whitefish, at 

least I 00 mm in total length, were taken within each depth strata and preserved in 95% 

ethanol for future laboratory examination. Stomach contents were sorted by terrestrial, 

and aquatic taxonomic groups and volumetric percentages were calculated. Any prey 

fish found in the samples were identified to the lowest taxonomic level using skin, bones, 

and scales as described by (Hansel et al. 1988). 

Whitefish were separated into predetermined size classes based on previous diet 

infom1ation (Wurtsbaugh and Hawkins 1990; Orme et al. 1998). Bonneville whitefish 

size classes consisted of: 100-150 mm, 150-200 mm, 200-250,250-300 mm, 300-350 

mm, and > 350 mm TL. Bear Lake whitefish size classes consisted of: I 00-150 mm, 

150-200 mm, 200-250 mm, and > 250 mm TL. 

A multiple analysis of covariance (MANCOVA) was used to assess differences 

between the diets of the two whitefish species (Wilkinson 1990). The diet data were 

combined into four or five prey types with prey types comprising less than I 0% of the 

diet and prey of terrestrial origin being lumped into a prey type called "other." To 

enhance the normality of the data an arcsine transformation was conducted by taking the 

arcsin of the square root of the volumetric proportion of each diet type (Zar 1999). We 

used total length of the fish as a covariate to account for potential effects related to size 

differences between the two whitefish species. If the Wilks' Lamda [-statistic indicated 

significant differences between the species for the multivariate ctiet analysis, then 

univariate F tests were used to assess significance of individual prey types in diets. 
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Distribution 

Collected whitefish were positively identified using methods described by White 

(1974) and Ward (2000). Identification involves meristic scale counts cross diagonally 

from the lateral line dorsally to the opposite lateral line. A more positive identification 

can be achieved with a complete lateral line count starting at the first scale near the 

opercular opening and ending with the last countable scale at the base of the caudal fin . 

Fish can be identified with extreme accuracy (99%) using this methodology. Ward (2000) 

tested and validated these identification methods using laboratory reared fish of known 

species origin . Bonneville whitefish count 18-21 scales across the back where Bear Lake 

whitefish count 15-17, normally 16. Any fish that counted 17 across the back were 

double-checked using the more definitive lateral line count. Bonneville whitefish count 

75 and greater while Bear Lake whitefish count 65-72. To ensure identification accuracy, 

each fish was identified by two independent observers. Any discrepancies in scale counts 

were noted and recounted to make positive identification. 

A Komolgrov-Smirnov non-parametric test was used to evaluate the significance 

of spatial distribution. I tested the null hypothesis: Depth contour and species are 

independent. This is a relatively simple test and is based on the absolute differences 

between observed and expected cumulative frequency distributions (Zar 1999). 

Results 

Length Weight Relationships 

During the summer of2000, 1212 total netting hours were logged. One thousand 

forty one Bonneville whitefish and 290 Bear Lake whitefish were caught in the gill nets. 



The resulting length-weight relationships were very similar for both species with slopes 

near 3.0 (figure 2-5). 

Diet Analysis 
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Examination of the whitefish stomach contents revealed distinctive differences in 

feeding habits of the two whitefish species. Two hundred ten Bonneville whitefish 

stomachs and 126 Bear Lake whitefish stomachs were examined from the summer of 

2000 sampling period. 

The MANCOVA indicated significant differences in the stomach contents from 

the summer of2000 sampling period (F5,45=3.32, p = 0.012). Univariate comparisons of 

each prey type indicated that Chironomid larvae were more abundant in the diet of 

Bonneville whitefish (F1,49=5.29, p=0.026) and that ostracods were more abundant in the 

diet of Bear Lake whitefish (F1,49=11.4, p=O.OOI) . Significant differences in the other 

category were also apparent (F1,49=4.78, p=0.034) and likely derived from a greater 

abundance of terrestrial insects in the diet of Bonneville whitefish. The covariate fish 

length also had significant effects on the proportion of chiromids (F 1,49= 1 0.02, p=0.003) 

and fi sh (FJ.49=4.08, p=0.049) in the diets. In both cases, larger whitefish had greater 

proportions of these prey in their diets. 

Smaller size classes of Bonneville whitefish (100-150 mm, 150-200 mm) 

primarily utilized ostracod, chrinomid, and spharid prey. Once these Bonneville 

whitefish exceeded a total length of200 mm, they fed more heavily on terrestrial insects 

from the surface, and ostracods in the sediments. A few Bonneville whitefish over 250 

mm fed on smaller sizes of sculpin, most of which were young of the year (YOY). Once 
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Bonneville whi tefi sh reached lengths greater than 300 mm they fed almost exclusively on 

fish. Stomach contents for size classes 300-350 mm and greater than 350 mm largely 

consisted of sculpin (98 %) during summer months and 2 % terrestrial insects (figure 2-

6). 

A large proportion of the Bear Lake whitefish diet consisted of benthic taxa 

(figure 2-7). Bear Lake whitefish exhibited a more homogeneous diet throughout size 

classes than did the Bonneville whi tefish. Small individuals (I 00-150 mm) utilized an 

array of food items including ostracods, chironomids, and limited amounts of copepod 

zooplankton. By the time Bear Lake whi tefish reached ! 50 mm their diets were 

dominated by ostracods. They continued this diet selectivity throughout their life history 

and did not exhibit any prey switching after the first size class of fish. Size classes 150-

200 mm, 200-250 mm, and >250 mm contained 75 %, 83 %, and 99% ostracods within 

their stomachs respectively (figure 2-7). 

Stomach samples from the summer 2001 sampling period were also examined to 

verify data from the previous year. This was also done to detect any differences that may 

have been related to lower lake levels in 2001. On July 201
h, 2001 Bear Lake was 4 

meters lower than it was the previous year and we suspected some diet changes might be 

precipitated. However, following the examination of 100 stomachs from each species it 

was determined that the patterns were similar to the 2000 observations for both species. 

Differences in diets of the two whitefish species were also apparent in the spring 

2001 sampling. Early in March (6 days following ice off), stomachs from 61 Bear Lake 

whitefish and 251 Bonneville whitefish were collected to detect any differences between 

summer and winter/spring diet preferences. 
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Diet analysis for stomach samples collected during the spring of2001 also 

indicated significant differences between the two species of whitefish as indicated by the 

MANCO VA (F 1,311 =48.45, p<O.OOI). Univariate comparisons of each prey type showed 

similar patterns to those present during summer with Bonneville whitefish feeding more 

frequently on chironomid larvae (F1,J 11 =14.4, p<O.OOI) and Bear Lake whitefish feeding 

predominantly on ostracods (F1,311 =713, p<O.OOI). Oligocheates were also more 

abundant in the diet of Bear Lake whitefish compared to Bonneville whitefish during this 

period (F 1,3 11 = 11.8, p=O.OO 1 ). As in the summer sampling period, fish prey were more 

abundant in the stomachs oflarger individuals (F1,J 11 =52.1, p<O.OOI). 

In comparing spring to summer diets, Bonneville whitefish demonstrated greater 

dependence on ostracods in the spring. Tererrestrial insects were less abundant but sti ll 

present in all size classes with the exception of the >350 mm size class. This size class 

fed almost exclusively on sculpin. Coleopterans, in the family Elmidae, were also much 

more common in the spring stomachs than summer (figure 2-8). 

Bear Lake whitefish diets examined from the spring sample were very similar to 

those from the summer with two exceptions. Large masses of oligochate worms were 

found in many fish within the two largest size classes. Fish between 150-200 mm and 

200-250 mm complemented their ostracod diet with 15% and 25% of these worms 

respectively. The Bear Lake whitefish were also utilizing more Coleoptera during spring 

in comparison to the summer sampling period (figure 2-9). 

Distribution and Relative Abundance 

B01meville whitefish were the predominant whitefish captured during every 



sampling period. During the summer of2000, spring 2001 , and summer 2001 sampling 

periods, Bonneville whitefish made up 78%, 75%, and 77% of the catch, respectively. 
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Spatial distribution differences among the populations' cumulative CPUE 

frequencies were statistically significant during all sampling periods. The Komolgrov­

Smimov tests yielded highly significant results at the 0.05 alpha level with summer 2000: 

d(max) = 0.796, spring 2001: d(max) = .841, and summer 2001: d(max) = 0.832. 

Significance was reached if d(max) > .068. 

Bonneville whitefish were more abundant in shallower depths. Pooled catch per 

unit effort (CPUE) data over the three sampling periods revealed that 96% were caught in 

depths of 5-35 m while only 4% were caught in depths 40-60 m. Bear Lake whitefish 

were more abundant in deeper depths. Ninety percent were caught in depths ranging 

from 40-60 m while only 10% were found at depths of5-35 m (figures 2-10,2-11, and 2-

12). 

Discussion 

Population estimates, in terms of individuals, were not a goal in this study. 

However, when you look at CUPE the intensive gi ll net survey indicates that Bear Lake 

supports a larger population of Bonneville whitefish than Bear Lake whitefish. Bear 

Lake whitefish comprised only 22% of the total catch during all sampling periods, which 

covered all possible depths and habitat substrates. Intuitively higher predation rates on 

the smaller species could account for the large difference. However, Mazur (2000) failed 

to document a significantly higher proportion of Bear Lake whitefish than Bonneville 

whitefish in the stomachs of large picsivores, namely lake trout and large cutthroat trout. 
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A more plausible explanation is apparent from the spatial distribution data. 

Definitive separation of the two species within the lake limits the habitat availability of 

the Bear Lake whitefish. This species preferred depths greater than 30m and the highest 

CPUE was recorded at 50-60 m. This depth preference limits them to a very small 

portion of the lake, which contain these depths 

The interesting question that has yet to be explored is why the Bear Lake 

whitefish prefer to live in the dark abyss. Life histories of other smaller species, 

including juvenile Bonneville whitefish, have been observed to prefer littoral, warmer 

habitats. Predator avoidance and diet capabilities normally drive such behavior, yet it 

appears that Bear Lake whitefish have evolved a different strategy. But why the 

evolution of a smaller species? Decreased metabolism at deeper depths, driven by year 

round temperatures of4-5 C (figure 2-1), support suppressed growth rates, and could 

explain the evolution of the smaller Bear Lake whitefish "dwarf' form . The speciation 

mechanism may have been driven by the partitioning of available benth ic habitat in the 

lake. 

Diet differences between the two species can also be explained by their spatial 

separation. The diet analysis revealed an almost exclusive dependence on ostracoda by 

Bear Lake whitefish especially in sub-adult to adult size classes. Benthic samples taken 

with an eckman dredge suggest that these small crustaceans are also found in high 

densities at these depths. Although Oligochaeta make up most of the biomass at these 

depths (Wurtsbaugh and Hawkins 1990) ostracoda become readily available to the 

whitefish when they release from the sediments to feed (Thorpe and Covich 1998). The 



Bear Lake whitefish preference or specialization for ostracoda may be a contributing 

factor to the spatial separation of the two whitefish species 
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Figure 2-1 .--Thermograph taken of Bear Lake during the summer of 2001 showing 
di stinct thermocline beginning at 10 m. 
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Figure 2-2.- Map generated in Arc View 3.2 showing sections of the lake that were 
sampled. 
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Figure 2-4.- Bathymetric map of Bear Lake showing depth contours sampled. 



Figure 2-4.-Map of Bear Lake showing netting sites and sample coverage. White dots 
indicate first replication sites, and yellow dots indicate sites sampled during the second 
replication. Netting sites were recorded using a GPS during the summer of2000. 
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Figure 2-5 .--Length-Weight relationships for (A) Bonneville whitefish and (B) Bear 
Lake whitefish sampled during the summer 2000 sampling period. 
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2000. 
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Figure 2-9.- Early Spring Bear Lake whitefish diet. Data collected during April of2001. 
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Figure 2-10.- Distribution of Bonneville and Bear Lake whitefish during the summer 
2000 sampling period. 
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Figure 2-ll.- Distribution of Bonneville and Bear Lake whitefish during the spring 2001 
sampling period. 
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Figure 2- 12.- Distribution of Bonneville and Bear Lake whitefish during the summer 
2001 sampling period. 
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CHAPTER 3 

LlFE HISTORY CHARACTERISTICS: GROWTH, LENGTH AT AGE, 

POPULATION DYNAMICS, AND SENSITIVITY ANALYSIS OF BONNEVILLE 

WHITEFISH PROSOPIUM SPILONOTUS AND BEAR LAKE WHITEFISH 

PROSOPIUM AB YSS!COLA IN BEAR LAKE, UTAH I IDAHO 
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Abstract. - Bonneville and Bear Lake whitefish were sampled using gill nets during the 

summer of 2000, and throughout the early spring and summer of2001. Sectioned otoliths 

were used to age fish and calculate annual growth rates. Definitive differences in both 

age distribution, and growth rate patterns were observed. Age- I and 2 Bonneville 

whitefish were most abundant. Adults greater than 350 mm in total length 

reached ages of 12-14 years. A smaller proportion of young Bear Lake whitefish were 

collected in relation to older age classes. The Bear Lake whitefish population consisted 

mostly of medium to large sized adults, some of which were aged 30 years and beyond. 

All Bonneville whitefish larger than 225 mm in total length , and all Bear Lake 

whitefish larger than 200 mm total length were aged and placed into respective age 

classes for a subsequent sensitivity analysis of population growth patterns. Survivorship 

and fecundity values were placed into a simple life-table model assuming both 

populations of whitefish had reached a stable age distribution. The sensitivity analysis 

was conducted on the age structure of both populations to identify which age classes are 

most important to positive population growth. Ages (0-3) were most important to 

Bonneville whitefish , while perturbations of the model to ages (4-7) precipitated the 

greatest change in Bear Lake whitefish. 



39 

Leslie matrix exercises were also performed to project future trends, and estimate 

the finite rate of increase (A). Although the life table model inherently assumes a stable 

age distribution, recursions of the matrix were carried out until stability was achieved and 

predicted stable age distributions were compared to current age structures. Proportions in 

each age class for both species were different than model projections at a stable age 

distribution. 

Introduction 

The Bonneville and Bear Lake whitefish are endemic to Bear Lake. Intrinsic 

population characteristics need to be explored in order to assess the population status of 

these two species. In addition, knowledge of their somatic growth, survival, and 

reproduction will assist with the development of management plans for the endemic fish 

of Bear Lake. 

The growth of individual fish, has long been the subject of intensive investigation 

concerning the biology of fish. By the end of the 19'h century it was apparent that the 

growth of individual fish might frequently and accurately be estimated from the relative 

position of annulus on scales or other calcified tissues. The first record of using annuli to 

determine growth patterns was conducted on common carp in 1898 (Summerfelt and Hall 

1987). As scale reading became more and more refined, it became increasingly feasible 

to determine the individual growth histories of fish. This technique has greatly improved 

population analysis by increasing the precision of data on length at-age, age at maturity, 

and yearly growth rates (Weatherley and Gill 1987). 
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The most reliable method of determining age-specific mortality and fecundity rates 

for populations that have overlapping generations is to follow the fate of a group of 

individuals (a cohort) through a complete lifecyc le (Began et al. I 986). Thi s approach is 

called a cohort life table. Unfortunately it is not always possible to monitor the dynamics 

of a population by constructing such a "fixed cohort" life table. Since individuals from 

natural populations are highly more mobile and surreptitious to observers, they are rarely 

examined in this way. An alternative to the cohort life table exists, a static or vertical life 

table can also be developed. This technique involves examining the age structure and 

survival probabilities of the whole population at one particular point in time. The final 

product is much like taking a 'snap shot ' sample, or a slice out of a larger population that 

was constructed over a long period of time. This type of life table can have practical uses 

when trying to describe populations and can provide estimates of a number of important 

life history parameters. A vertical li fe table has three principal assumptions: (I) the 

population is currently at its stable-age distribution; (2) the recruitment rate and age­

specific mortality rates are relatively constant; and, (3) there is no ingress or egress of 

individuals at each age group (Gotelli 1996). 

It should be stressed that the vertical life-table represents only a crude generalization 

of the populations probable age structure at the time the sample was taken (Emmel 1976). 

Despite the often violation of assumptions, this type of life table can have practical uses 

when investigating natural populations. Efforts in constructing the life-tables were not to 

project true population growth over time, but rather to look at what effects current age 

structure would have on the basic trends of both populations. Lowe (1969) demonstrated 

the uses of such a life table with deer populations in Scotland. The purpose of using a 
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life-table is to allow patterns of birth and mortality to be investigated. In tum this allows 

us to uncover the shared or un-shared properties of closely related populations such as the 

whitefish in Bear Lake. 

The two most important life history characteristics that can be calculated using the 

life table model are: (I) Fecundity Schedules. Given the disparities in maximum total 

length, both species should have separate reproductive rates and allocate different 

amounts of energy to reproduction. Specific values assigned to each age class on their 

reproductive contribution to the whole population can then be analyzed (Fisher 1930). 

(2) Survivorship Schedules. Individuals of older age classes may produce thousands of 

offspring. However if few individuals survive to mature ages, the effect on the 

population as a whole could be negligible. Survivorship data will also provide an 

assessment of the potential predation risk associated with the two whitefish species. 

Other life history characteristics derived from the life-tables were the intrinsic rate of 

increase (r) and the net reproductive rate (Ro). The population growth statistic (r) is 

defined as the difference between the instantaneous birth rates and death rates. The value 

of (r) determines whether a population has the potential to increase (r > 0), remain 

stationary (r = 0), or decay to extinction (r < 0). (Ro) is simply defined as the number of 

offspting produced per female over her lifetime. These calculations will provide an 

estimation of both species population trends. 

An important question in the analysis of population dynamics is the extent to 

which a slight change in survival at a certain age changes the relative numbers of 

individuals in other age classes. Such elasticity or sensitivity analyses are useful and 

popular tools in conservation biology. They are used to categorize populations according 
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to their response to different perturbations that affect vital growth parameters. An 

elasticity pattern is composed of the relative contributions of essential entities pertaining 

to population growth that are grouped in biologically meaningful ways for comparative 

analysis (Heppell et al. 2000). Elasticity analyses can also be a qualitative guide for 

research and management, particularly for poorly known species, and a useful first step in 

a larger modeling effort to determine population viabi lity (Grant and Benton 2000). 

Comparison of the relative contributions of fertility, and juvenile survival were calculated 

using the life table information for the two species of whitefish in Bear Lake. 

The survival and fecundi ty probabilities were derived through the life-table, and 

algebraic matrix analysis was performed as described by Leslie (1945). This analysis 

described the changes in population size due to mortality and reproduction. The model 

tested for the stable age distribution of both species and recursions of the model provided 

an estimation of their respective theoretical age distributions. Lambda(/..) was the other 

important life history characteristic evaluated through a Leslie matrix. 

Life history strategies are directly linked to these vital rates and there is a need to 

explore population response to environmental perturbations. Once these factors have 

been explored managers can then formulate conservation and management plans that are 

tailored to specific populations. The goal of the elasticity-sensitivity analysis in the 

present study was to examine the response of the Bonneville and Bear Lake whitefish's 

population dynamics when subjected to disturbance. An example of such a disturbance 

may include decreased spawning habitat, which would reduce egg to fry recruitment and 

young of the year (YOY) survival. Increased predation pressure due to elevated levels of 
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stocked piscivores, could in tum have ramifications on juvenile to middle-aged classes of 

fish . And an increase in fishing pressure might also reduce the number of matured 

spawning adults resulting in a decreased (YOY) recruitment. All such situations were 

examined by manipulating survivorship schedules in the life table, yielding different 

hypothetical responses. 

Study Area 

Bear Lake is a long elliptical shaped lake located in a moderately elevated 

mountainous area in northeastern Utah and southeastern Idaho. The valley that harbors 

the lake is relatively narrow and runs in a north-south direction surrounded by the Bear 

River range of mountains on the west (elevation 3048 m) and the Bear Lake plateau on 

the east (elevation 2440 m). The lake is large, and comparatively deep with a fluctuating 

surface area of approximately 282 km2 and a mean depth of 30.5 m. Maximum depth can 

reach over 63 m approximately one-fourth of a mile off the eastern shore and just south 

of the South Eden creek delta. Its total length is nearly 30 km with 19 km in Utah and the 

remainder in Idaho with width ranging from 12 km to 6.4 km. 

Since the construction of a hydroelectric facility on the northern shore of the lake, 

the main uses for the lake have been the production of electricity, and use of water 

storage for agriculture practices. No dam was ever built, but the natural outlet where the 

Bear River once left the lake was re-opened and a controlled canal was constructed. The 

Bear River was also diverted to enter the lake to compensate for water leaving through 

the canal. Prior to these developments the lake was considered a closed system. All 

water that entered the lake from its small in-flowing streams and benthic springs stayed in 
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the lake. The geology of the lake is of special interest. An active fault runs north and 

south along its eastern shore. Tectonic uplifting has been credited for the lake's deepest 

hole and signs of fault activity are detectable at the North and South Eden stream deltas 

(Kalister 1972). The sediments of Bear Lake are very deep(> 100m) and consist mostly 

ofCaC03 precipitate, extinct gastropod shells, and cobble sized stone. The current form 

of the lake has been present since the Pleistocene, but the lake basin has likely existed for 

several million years (Perry 1943). 

Bear Lake is oligotrophic with mean chlorophyll a levels never exceeding 0.2 

mg/m' at the surface during summer months. Secci depth measurements range from 3-10 

m (Wurtsbaugh and Hawkins 1990). The lake is full of minerals and a plethora of 

calcium carbonate precip itate, which gives the lake a turquoise-blue color. The water 

column is typically saturated with di ssolved oxygen and has not been observed to drop 

below 4f.Lg/L at the surface (Lamarra et al. 1987). Surface temperatures in the summer 

can reach 20 C with temperatures at 55 m never exceeding 5 C (figure 2-1). The water 

column displays di stinct summer stratification, and an obvious thermocline exists at 12-

15 m, which forms as early as June, and persists through October. 

Perry (1943) reported that "very seldom does the lake pass through a winter 

without freezing over." However, Bear Lake did not have complete ice cover the three 

years prior to thi s study (1996-1999). Despite the recent trend of mild winters, complete 

ice cover of Bear Lake was experienced during the winters of2000 and 2001. 

The 1imnetic zooplankton community is dominated primarily by low densities of 

copepoda and Bosmina; however, yearly sporadic pulses of daphnia can also be measured 



in the lake (Mazur 1999; Morreno 1989). These low densities are Ji ke:ly the main 

limitation to low levels of fish production experienced by the lake. 

The invertebrate fauna of Bear Lake is not diverse, nor abundant, and most 

species are associated with the benthos. These species include: Nematoda, Annelidea, 

Ostracoda, Sphaeridae, and Chironomidae. (Wurtsbagh and Hawkins 1990). However, 

species oflarval trichoptera, ephemeroptera, and adult coleoptera have also been 

observed in the stomachs of whitefish. 

Bear Lake ichthyiofauna is fairly complex and includes four endemic speices: 
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Bonneville whitefish, Bear Lake whitefish, Bonneville cisco, and the Bear Lake sculpin 

Cottus extensus. Healthy populations of indigenous Utah sucker Catostomus ardens, 

Utah Chub Gila atraria, and Bonneville cutthroat trout Oncorynchus clarki utah also 

reside in the lake. The sport-fishery in Bear Lake is primarily managed for the highly 

picsivorous strain of cutthroat trout, and exotic Jake trout Salve/in us namaycush. Both 

have been documented as voracious predators and rely heavily on the whitefish complex 

(primarily Bonneville cisco) for food throughout the year (Orrne et al. 1998; Mazur 

1999). Other introduced fi sh that have been recently collected include: rainbow trout 

Oncorhynchus mykiss, redside shiner Richardsonius baltiatus, speckled dace Rhinichthys 

osculus green sunfish Lepomis cyanel/us, yellow perch Perea flavenscens, and the 

common carp Cyprinus carpio . 

Methods 

Aging and Growth 

Methodology of the extraction, preservation, and aging of whitefish otoliths 
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followed those described by Brothers (1987). Both sagittal oto liths were extracted from 

freshl y killed fi sh and placed in micro-centrifuge containers where they were 

immediately preserved in 95% ethanol. The left otolith form each fish was then 

embedded in a glass resin mold and cataloged according to its corresponding fish 

number. Subsequently, embedded otoliths were sectioned and placed on microscope 

slides for final age and growth observations. A Leica® computer-camera imaging system 

was next used for the examination ofrumulus counts and growth rate measurements. 

Annuli were counted by an experienced teclmician, and confirmed by a second witness. 

Where discrepancies became apparent the otolith was re-examined and a determinate age 

establi shed. 

Since the first systematic studies on fish growth, both inter and intraspecific 

comparisons have been made (Moreau 1987). Measurements fo r the growth comparison 

of species were taken from the center of each otolith and extended outwards towards its 

longest point. At least 10 otoliths of each age for both species were measured for growth 

rate ranging from ages 1-11. Each annuli was measured in terms of millimeter units 

(mm) and reported accordingly. 

The Von-Bertalanffy growth funct ion (VBGF) L = L., [ 1-e < -K( <-to)) ] was used to 

mathematically and theoretically describe growth relationships of the two species of 

whitefish (Von-Bertalanffy 1938). Ricker (1975) defined L., as the mean length a fish 

would reach in a given population if they lived and grew indefinitely. Simple Walford 

plots (figures 3-1 and 3-2) were used to predict asymptotic growth values (L.,) and 

provide an estimate ofK. These values were then used in the VBGF. 
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Population Modeling and Sensitivity Analysis 

Length-frequency histograms constructed for both Bonneville whitefish and Bear 

Lake whitefish show distinct peaks at early lengths and can be interpreted as age classes 

(figure 3-3 and 3-4). Numbers of Bonneville whitefish in age classes 1-4, and Bear Lake 

whitefish in age classes 1-2 were determined using this method. Subsamples of these 

length (age) classes were subsequently aged using previously described methodology for 

verification (Ricker 1975). Since not all age classes could be deciphered from the length­

frequency histograms, all Bonnevi lle whitefish > 250 mm and all Bear Lake whitefish > 

200 mm were aged to achieve a reliable data set. Consequently, over 500 Bonneville 

otoliths and 200 Bear Lake otoliths were sectioned and read for age using previously 

described methodology. 

All sizes of fish encounter gi ll nets at di fferent rates. This is mainly attributed to 

differences in swimming speeds. Their probability of being retained in the net once they 

encounter a net is related to girth. Because of thi s the relative numbers of fish captured in 

each age class were corrected using equations derived by Rudstam et al. (1984). Relative 

selectivity coefficients were calculated and applied to the catch/effort data to achieve a 

more accurate estimation. The corrected data describe the relative abundance of different 

size classes of fish, if all fish swam at constant speeds, and had constant probabi lities of 

being retained in the net (figure 3-5). Figure 3-5 depicts the gill net selectivity function 

and implies the probability of capturing all size classes of fish. Since no large gaps 

between functions were apparent, the chance of capturing all size classes of fish was 

high. 



The actual calculations for correcting the data involves a function of both length 

and girth measurements. Girth is an important component of the correction in 

determining the probability of a fish being retained when it encounters a net of a certain 

mesh size. Fifty samples of a broad range of lengths were measured for girth and were 

used in the corrective equations (figure 3-6). 
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The correction equation ultimately produces a corrected catch per unit effort 

(CUPE), which can then be multiplied by the actual effort to gain corrected numbers of 

fish within each size class. Figures 3-7 and 3-8 illustrate the comparison offish caught in 

the gill netting survey (field data) and corrected numbers using the (Rudstam et al. 1984) 

equations. Relationship curves of the corrected fish data were then used to predict the 

numbers of fish within each respective age class and later into the life table model. 

Fecundity values for both species were estimated by examining ripe females of 

each species during their respective spawning periods. Bonneville whitefish were 

collected in November-December and Bear Lake whitefish in March-February. 

Collections were made using gill nets designed to catch multiple sizes of mature 

spawning females. The Bear lake whitefish winter collections necessitated sampling 

through ice cover. These winter collections involved attaching gill nets to a small 

diameter PVC pipe and a rope then threading it underneath the ice between two disparate 

holes. The net can then be pulled through from one hole and the net set normally. Since 

spawning whitefish were very dense during these periods the sets were only 1-3 hours in 

duration. 

Egg masses were counted from each sampled ripe female. The number of young 

of the year (age 0) offspring were estimated by regressing the number of eggs produced 



by a female against its total length (figure 3-9). Egg samples from both species were 

weighed and individual eggs measured to detect discrepancies between the two species. 

Upon this analysis it was detem1ined that there was no significant difference in the 

density and overall shape of the eggs. 
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The life-table model was constructed using data derived from the corrected 

length frequency histograms, and the aging analysis. A smooth curve was applied to the 

data and fish numbers from the exponential fit calculations were ultimately used in the 

life table (Figure 3-10 A&B). Age (0) fish were estimated from the fecundity analysis. It 

was assumed that 50% of all fish caught were females and mature ones spawn every year. 

Therefore all mature females were multiplied by their respective fecundity value to 

achieve a total age (0) estimate (Figure 3-9). Methods for the model construction 

followed those described by Gotelli (1996) and Begon et al. (1986). 

Two separate analyses were carries out to predict ages of sampled whitefish. 

First, using mathematical equations, the Yon-Bertalanffy growth function (VBGF) was 

used to determine theoretical ages. Second, length at age calculations produced during 

the otolith analysis were used to bolster VBFG estimations and produce known age at 

length data. Age-0 production values (egg# or fecundity value) were applied to fish 

caught in our gill netting survey that were determined to have been mature the previous 

spawning period. We assumed that all mature females spawned each year and fecundity 

rates were constant. 

The sensitivity analysis was performed by manipulating the survivorship schedule 

values across a suite of different possibilities. Ultimately this changes the value of the 

intrinsic rate of increase (r), and the net reproductive rate Ro. Values ofr similar to those 
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from the life-table analysis were used. Three distinct situations for each species were 

analyzed with the life table model, which would include all life history stages and would 

analyze the age at maturity break points for both species. Survival of age classes (0-3) 

were increased by I 0% and then decreased by the same value. Subsequent manipulations 

of the same type were calculated for ages ( 4-7) and (9-12). Recursions of the sensitivity 

analysis were performed in a similar hypothetical life-table built in a spreadsheet 

program. A subsequent Leslie matrix was also constructed and recursions of the model 

were carried out to reach stable age distributions and finite rates of increase values (A). 

Results 

Aging and Growth 

Age specific mortality can be expressed in the form a survivorship curve by 

plotting the number of individuals in a particular cohort against time. Natural 

survivorship curves fall into three main types with all degrees of intermediacy. These 

curve types include: convex, linear, and J -shaped. 

Bonneville and Bear Lake whitefish have somewhat simi lar age structures and 

very similar survivorship curves. In the Bonneville population many young individuals 

were sampled with very few older classes offish being present. Tills type of concave (J­

shaped) mortality pattern is common amongst most populations of fish because the 

probability of being preyed upon by a larger predator is much greater at smaller sizes and 

thus mortality is frequently high for smaller individuals (figure 3-10 A) (Emmel 1976). 

The average instantaneous annual mortality was -0.312. 
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The Bear Lake population had a relatively smaller number of age-l fish, but the 

average survivorship pattern was similar to the Bonneville whitefish. Gill net catches for 

Bear Lake whitefish suggests higher mortality of older age classes resulting in an average 

mortality rate of -0.319 . This rate is very similar to the rate estimated for Bonneville 

whitefish (figure 3-10 B). 

Both Bonneville and Bear Lake whitefish growth was relatively consistent with 

growth patterns described using the Von-Bertalanffy growth equation. Equations were 

manipulated until the best fit for the age at length data was achieved (figures 3-11 and 3-

12 ). 

Length at age analysis revealed that Bonneville whitefish grow at faster rates and 

were larger in every age class than Bear Lake whitefish. Bear Lake whitefish growth 

seemed to asymptote between ages 6 and 8 where Bonneville whitefish growth was 

realized past the last age analyzed {II) (figures 3-13 and 3-14). 

During the aging analysis differences in otolith growth patterns were also 

apparent. (one-tailed t test for slopes, t = 3.5 1, P = .0039, df = 8) Mean annuli increment 

length for the first year for Bonneville whitefish was .47 mrn compared to Bear Lake 

whitefish at .34 mrn. Bear Lake whitefish otolith growth appears to asymptote ai age 8 

where Bonneville whitefish otoliths showed rates of growth past the last age analyzed 

{II) (figures 3-15 and 3-16) 

Images taken through the Leica® camera clearly show the differences in otolith 

growth and age at length relationships for the two whitefish species. (figure 3-17) 

illustrates four whitefish that were aged, all of the same approximate length. Some of the 

Bear Lake whitefish examined aged were over 30 years old, reaching lengths never 
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exceeding 280 mm TL, whi le the oldest Bonnevi lle whitefish caught in the gill net survey 

aged 14 years and measured over 400 mm TL. 

Population Modeling and Sensitivity Analysis 

Using the survivorship curve relationships produced during the aging analysis a 

multiple cohort li fe table was constructed for each species analyzing ages 1-12 (Tables 3-

1 & 3-2). The results of these models suggest that at current age structure the whitefish 

populations are maintaining very different population dynamics. This result was 

expected considering the large discrepancies in their respective age structures. The 

relevant population statistics are reported in Table 3-8. 

Using the life-table data, Leslie matricies were constructed and appropriate 

algebra applied to the first population vector, assuming a 50% male I female ratio (Tables 

3-5 and 3-6). Recursions of the model were carried out until both populations reached a 

stable age di stribution C(x). The proportions of fi sh in each age class were then 

compared to those contained in the actual corrected catch data (Table 3-7). Lambda 

values (A.) stabilized for Bonneville whitefish after eight recursions at 0.45, and Bear 

Lake whitefish stabilized after nine recursions at 0.68 . 

The sensitivity analysis suggested that the most important age classes for 

Bonneville whitefish are (0-3). For the Bear Lake whitefish age classes 4-7 were most 

sensiti ve to perturbations. Increasing and decreasing survivorship schedules for these 

ages produced the most change in population parameters rand Ro (Tables 3-3 and 3-4). 

Discuss ion 



Many lake whitefish complexes display two closely related species ofwhi tfish. 

Usually one is a large robust species, which if allowed can reach very old age, and the 

other a smaller shorter lied species (Bodaly et al. 1991 ). However, the species in Bear 

Lake seem to follow an oposite li fe history. The larger species (Bonneville whitefish) 

grows very large and has a shorter life cycle than the smaller Bear Lake whitefish. 
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Asymtotic length fo r both species was corroborated using both the (VBGF) and 

length at age data. Growth analysis indicated that Bonneville and Bear Lake whitefish 

follow distictly differenent growth patterns. Normally this idicates a sharp divergence in 

li fe hi story strategies between two closely related species. The Bonneville whitefish 

(large form) grows extremely fast comparativley and can reach lenghts that nearly double 

those of mature Bear Lake whitefish. 

Unlike examples from the literature, Bear Lake whitefi sh follow much different 

survivorship patterns. The oldest Bonneville whitefish that was co llected aged to 14 

years and was over 450 nun in total length, where as one particular Bear Lake whitefish 

aged to 37 years old and measured only 247 mm TL. ln addition to this many individual 

Bear Lake whitefish aged to over 25 years old and never exceeded 270 mm TL. 

Fecundity was also markedly different due to survivorship and age at length 

differences. A mature female Bonneville whitefish can reach lengths exceeding 450 mm 

TL and produce upwards of II 00 eggs when gravid. Bear Lake whitefish females were 

never collected larger than 270 mm TL and produced approximately 790 eggs when 

gravid. 

Age at maturity was also different for the two species of whitefish and factored 

into their fecundity. Bonneville whitefish normally reached lengths> 180 mm by age-2 



when maturity was reached and ripe eggs were observed in the scanes of collected 

females. Ripe females from the Bear Lake whitefish population were not collected until 

lengths approaced those associated with age-3 class fish . 
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Bonneville whitefish recruit many individuals and experience heavy predation at 

young ages. The Bear Lake whitefish seem to recruit a comparatively small number of 

young which do not experience a great deal of predation. During our sampling for 

mature spa wing adults it was observed that not only was the Bonnevi lle whitefish 

population more fecund due to body size and age at maturity, but a higher proportion of 

females to males were actively staged on spawning sites. Although nets were run 

periodically during entire respective spawning periods and during all times of the day, out 

of69 mature Bear Lake whitefish caught only 16 were gravid females. However, an 

approximate 50:50 male/female ratio for the Bonnevilles were sampled. 

Trying to explain the large diffemences in age and growth only raises more 

questions. Although these questions were not investigated in the present study there may 

be plausible explanations to the observed phenomenon. It became clear from the netting 

data that Bear Lake whitefish spend most of their lives in very deep water. Temperatures 

at 40 meters in the summer do not exceed 5.5 degrees centigrade. Metabolic processes at 

these depths would be slowed due to temperature, which would in turn produce very slow 

metabolic rates for somatic growth. Animals which exhibit slower metabolism are 

usually associated with longer life spans and generation times. Additionally, during the 

extensive gill netting survey we failed to collect any large predators in depths exceeding 

40 m. More than likely this is due to a lack of ciscoe, the main prey species, occurring at 
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the deep depths. In light of this one might expect the Bear Lake whitefish to reach older 

ages . The survivorship curves clearly illustrated lesser predation rates in this population. 

The apparent refuge of the deep water may provide an explantion to fecundity 

differences also. In the absence of heavy predation, and possible habitat limitaions 

(depth strata), Bear Lake whitefish may have evolved in a way that females only spawn 

every other year, or mature females may senecse at older ages and are therefore 

reproductively inactive for the balance of their life history. The large amount of food 

resources required for the production of reproductive gametes may not be available and 

thermal conditions not condusive for annual gamete assimilation. Further investigations 

are needed to determine the frequency of spawning females within both whitefish 

populations. 

Implications of the life-table analyses were that both whitefish populations are 

capable of positive growth given their current age-structures. Bonneville whitefish 

intrisic rate of increase (r) proved much higher than Bear Lake whitefish, indicating 

potential for rapid increases in abundnaces if environmental carrying capacity is not 

reached at the present time. Although the Bear Lake whitefish life-table produced a 

possitive (r) value it was very low. At current age structure this population is persisting 

with the possiblility of dimunitive increases in abundance over time. 

Resulting (r) values from the Sensitivity analysis were integrated into a simple 

exponential growth population model ( Nt = Noe-n ). It is understood that both 

populations do not exhibit natural exponential growth. However, the model was used to 

illustrate what effects the different values of r would have on population trends not 

projections. 
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When survival probabilities of Bonneville whitefish age classes (0-3) were 

increased by I 0% an II% increase in final population size was experienced. When these 

age classes were then decreased by the same amount a I 0% decrease was realized . Other 

manipulations of older age classes yielded a change of less than 5% in exponential 

growth (figure 3-18 A). 

When survival of Bear Lake whitefish age classes were increased by I 0% a 

resulting 14% rise in population growth occurred. Decreasing these age classes by 10% 

produced a 13% reduction in overall exponent ial growth (figure 3-18 B). 

Although it was assumed that both populations were at their respecitve theoretical 

stable age distribution, the Leslie matrix analysis suggests that they are not. This is not 

surprising however because the model does not account for stachastic environmental 

factors such predati on, fi shing harvest, and climate. Theoretical modeling of natural 

populations is extremley difficult and the results from the present study indicate that 

something was missing from the model. These gaps could be linked to the unknown 

percent of spawning females. Or because the model incorporated only one year of data, 

the effects of recent strong/weak year classes of fish cou ld be affecting model output. 
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Table 3-1 .- Life table constructed for Bonneville whitefish sampled during the 
summer of2000. 

X b(x) s(x) l(x) g(x) l(x)b(x) l(x)b(x)x 

0 0 210563 1.000000 0.00 0.00 0.00 
0 259 0.001230 0.79 0.00 0.00 

2 573 204 0.000970 0.79 0.56 1.11 
3 776 161 0.000765 0.79 0.59 1.78 
4 838 127 0.000603 0.79 0.51 2.02 
5 885 100 0.000475 0.79 0.42 2.10 
6 916 79 0.000375 0.79 0.34 2 .06 
7 932 62 0.000295 0.79 0.28 1.93 
8 963 49 0.000233 0.79 0.22 1.79 
9 979 39 0.000184 0.79 0.18 1.62 
10 1010 30 0.000145 0.79 0.15 1.46 
11 1088 24 0.000114 0.79 0.12 1.37 
12 1103 19 0.000090 0.10 1.19 

Sum 3.47 18.43 

Table 3-2.- Life table constructed for Bear Lake whitefish sampled during the 
summer of2000. 

X b(x) s(x) l(x) g(x) l(x)b(x) l(x)b(x)x 

0 0 58710 1.000000 0.00 0.00 
0 52 0.000887 0.78 0.00 0.00 

2 0 41 0.000696 0.78 0.00 0.00 
3 573 32 0.000546 0.78 0.31 0.94 
4 698 25 0 .000428 0.78 0.30 1.20 
5 729 20 0.000336 0 .78 0.25 1.23 
6 760 15 0.000264 0.78 0.20 1.20 
7 776 12 0.000207 0.78 0.16 1.12 
8 776 10 0.000162 0.78 0.13 1.01 
9 776 7 0.000127 0.78 0.10 0.89 
10 791 6 0.000100 0.78 0.08 0.79 
11 791 5 0.000078 0.78 0.06 0.68 
12 791 4 0.000061 0.00 0.05 0.58 

Sum 1.63 9.64 

x = Age class of fish. 
b(x) = fecundity schedule for each age class of fish. 
s(x) = Numbers of fish in each age class. 
l(x) = Probability of survival to age x. 
g(x) = Probability of survival from age x to x + I. 



Table 3-3.- Results of the sensitivity analysis for Bonneville whitefish. Life­
table population parameters rand Ro were both analyzed by manipulating survivorship 
schedules. 

Age class manipulation Ro 

Start .337 5.50 

Inc. (0-3) .352 5.72 

Dec. (0-3) .321 5.26 

Inc. (4-7) .344 5.69 

Dec. (4-7) .330 5.29 

Inc. (9-12) .334 5.58 

Dec. (9- 12) .331 5.37 
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Table 3-4.- Results of the sensitivity analysis for Bear Lake whitefish. Life-table 
population parameters rand Ro were both analyzed by manipulating survivorship 
schedules. 

Age class manipulation Ro 

Start .112 1.99 

Inc. (0-3) .12 1 2.03 

Dec. (0-3) .114 1.97 

Inc. (4-7) .128 2.15 

Dec. (4-7) .105 1.88 

Inc. (9-1 2) .123 2.12 

Dec. (9-12) .117 1.99 
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Table 3-5.- Leslie Matrix constructed for Bonneville whitefish. Fecundity 
schedules are plotted across the top row and survival probabilities in the cross diagonal. 
Numbers of spawning females in each age class (assuming a 50:50 sex ratio) are listed in 
the far left column. 

235 1.751 430.071 622.359 712. 152 775.273 8 16.922 852.009 885.627 915.827 972.625 1025.215 
87 0.006 0 0 0 0 0 0 0 0 0 0 
49 0 0.370 0 0 0 0 0 0 0 0 0 
32 0 0 0.559 0 0 0 0 0 0 0 0 
23 0 0 0 0.662 0 0 0 0 0 0 0 
18 0 0 0 0 0.726 0 0 0 0 0 0 
14 0 0 0 0 0.770 0 0 0 0 0 
12 0 0 0 0 0 0.802 0 0 0 0 
10 0 0 0 0 0 0 0.825 0 0 0 
9 0 0 0 0 0 0 0 0.845 0 0 

0 0 0 0 0 0 0 0.860 0 

Table 3-6.- Leslie Matrix constructed for Bear Lake whitefish. Fecundity 
schedules are plotted across the top row and survival probabilities in the cross diagonal. 
Numbers of spawning females in each age class (assuming a 50:50 sex ratio) are li sted in 
the far left column. 

21 225 106 603.683 701 .256 718 .394 696.176 740.546 676.834 757.230 565.294 725.460 
16.5 0.001 0 0 0 0 0 0 0 0 0 0 
15 0 0.786 0 0 0 0 0 0 0 0 

14.5 0 0 0.909 0 0 0 0 0 0 0 
13.5 0 0 0.967 0 0 0 0 0 0 
11 0 0 0.931 0 0 0 0 0 
10 0 0 0.815 0 0 0 0 
7.5 0 0 0.909 0 0 0 
7 0 0 0 0.750 0 0 
3 0 0 0 0.933 0 

2.5 0 0 0 0.429 



Table 3-7.- Comparison between the proponions within each age class (once a 
stable age distribution was reached) with proponions caught during the gill net survey. 

AGE (BN) C(x) Caught AGE (BL) 

1 0.81509 0.46634 
2 0.13530 0.17276 
3 0.03426 0.09664 
4 0.01016 0.06400 
5 0.00336 0.04649 
6 0.00114 0.03580 
7 0.00043 0.02871 
8 0.00014 0.02371 
9 0.00007 0.02003 

10 0.00002 0.01722 
11 0.00002 0.01502 

Age (BN) = Bonneville whitefish age classes. 
Age (BL) = Bear Lake whitefish age classes. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

C(x) Caught 

0.414 0.173 
0.225 0.136 
0.139 0.123 
0.092 0.119 
0.058 0.111 
0.033 0.091 
0.021 0.082 
0.010 0.062 
0.006 0.058 
0.002 0.025 
0.002 0.021 

C(x) = Calculated stable age distribution from Les lie matrix proponions. 
Caught = Proportion within each age class caught during the gi ll netting survey. 

Table 3-8.-Life-table parameters calculated for Bonneville and Bear Lake 
whitefish using catch and age data from the summer 2000 sampling period. 

Species G 

Bonneville 0.234 5.32 

Bear Lake 0.083 5.91 

r = intrinsic rate of increase= ln(Ro) \ G 
G =Generation time= [l(x)b(x)x \ [l(x)b(x) 
Ro =Net reproductive rate = [l(x)b(x) 

Ro 

3.47 

1.63 
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Figure 3-1.- Walford plot for Bonneville whitefish sampled during the summer of2000. 
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Figure 3-2.- Walford plot for Bear Lake whitefish sampled during the summer of2000. 
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"r-----------------------~====~ 

I I 
h i ,, 

1 'I li 1\ 
.• 1\ I I I I ii ,, 
•• I\ li/ \i \I\ 
•• I 1/ X i. A \ 

I I ·. ' )I 

100 200 

Total Length (mm) 

-12.7 rrm 
····· ·· 19.0nm 
--25.4mm 
- ·· 31 .8mm 
- 38.1nm 
- · · 44.5mm 
- · 50.8rrm 
- 63.5rrm 
······· 76.2 rrm 

400 500 

Figure 3-5.- Gillnet retention selectivity coeffic ient by mesh size. 
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Bonneville WF Gill Net Correction 
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Figure 3-7.- Gill net corrected vs. field CPUE data for Bonneville whitefish. 
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Figure 3-8.-Gill net corrected vs. field CPUE data for Bear Lake whitefish. 
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Bonneville WF Von-Bertalanffy Length at Age Relationship 
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Figure 3-1 1.- Von-Bertalanff'y growth function utili zing aged Bonneville whitefish 
caught during the summer 2000 sampling period. 
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Figure 3- 12.-Von-Bertalanff'y growth function utilizing aged Bear Lake whitefi sh 
caught during the summer 2000 sampling period. 
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Bonneville WF Length at Age Relationship 
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Figure 3-13.--Bonneville whitefish length at age relationship. 

Figure 3-14.--Bear lake whitefish length at age relationship. 
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Bonneville WF Length at Age and Otolith Growth Rate Relationship 
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Figure 3- 15.- Bonneville whitefish length at age and otolith annuli measurement 
relationship. 
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Figure 3-1 6.-Bear Lake whitefish length at age and otolith annuli measurement 
relationship. 

72 



Bear lake Wlltefish: 247mn 
Agroxirmtely 37 years old 

funreville Wlltefislr 256 mn 
4+yearsold 

Bear lake Wlltefislr 24fum 
Agroxirmtely21 years old 

Booreville Wlltefish: 278 mn 
4+yearsold 

Figure 3-17.-Slide images comparing the otoliths of both whitefish species of 
approximately the same length. 
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CHAPTER 4 

CONCLUSION 

In thi s study, ecological and life hi story characteristics of Bonneville and Bear 

Lake whitefi sh were investigated through an intensive gill netting survey. Diet 

preferences, relative abundance, spatial di stribution, survi vorship, age structure, 

fecundity, somatic growth, population trends, and sensitivity analyses were explored. 

The following is a summary of the major findings of the completed study. 
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I. Examination of stomach contents revealed distinctive differences in the feeding habits 

of the two whitefish species. MANCOVA indicated significant differences in the 

stomach contents of the two whitefish species collected during the summer of 2000 and 

during the spring of2001. In comparing spring to summer diets Bonneville whitefish 

demonstrated a great dependence on ostracods in spring. Tererrestrial insects were less 

abundant but still present in all size classes with the exception of the >350 mm size class. 

This size class fed almost exclusively on sculpin . 

2. Bonneville whitefish were the predominant species captured during every sampling 

period. During the summer of2000, spring 2001, and summer 2001 sampling periods 

Bonnevi lle whitefish made up 78%, 75%, and 77% of the catch, respectively. The 

Komolgrov-Smimov test yielded highly significant differences in relative distribution at 

the .05 alpha level. Bonneville whitefish were more abundant in shallower depths during 

all sampling periods. Pooled catch per unit effort (CPUE) data over the three sampling 

periods revealed that 96% of all whitefish caught in depths of 5-35 m were Bonneville 
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whitefish. Bear Lake whitefish were more abundant in deeper depths. Ninety percent of 

all whitefish caught in depths ranging from 40-60 m were Bear Lake whitefish. 

3. Bonneville and Bear Lake whitefish have distinctly different age structures and hence 

very different survivorship curves. The Bonnevi ll e whitefish population follows a 

somewhat normal survivorship curve for fish populations in that many young individuals 

were sampled with very few older classes of fish being present. The Bear Lake whitefish 

population did not follow this same type of morta lity pattern. These whitefish displayed 

a (constant), or linear type of survivorship curve. Although only 22% of the total catch 

were Bear Lake whitefish, CPUE in their preferred depths was nearly equal to that of 

Bonneville whitefish in 15-25 m. Given these data I would sum1ise that, although 

significantly less Bear Lake whitefish were sampled, there is no evidence to indicate a 

decaying or threatened population. 

4. Major differences in fecundity schedules were pronounced and are attributed to 

differences in body size at mature ages, age at maturity differences, and relative 

abundances of the two species. Bonneville whitefish grow larger, mature younger, and 

are more abundant than Bear Lake whitefish. 

5. Average annual growth was different for all age classes and was described by a von 

Bertalanffy growth equation. Length at age was greater for the Bonneville whitefish, 

which can reach total lengths nearly double that of the Bear Lake whitefish. 

6. At current age structure, the whitefish populations examined are followi ng different 

population trends. Large discrepancies in respective age structures produced very 

different model outputs. The life-table model suggested that Bonneville whitefish have 

potential for significant population growth with lower potentials evident for Bear Lake 



whitefish. Leslie matrix modeling suggested that both populations are not currently at 

their theoretical stable age distributions and revealed large differences in finite rates of 

increase (A.). 

7. Sensitivity analysis suggested that the most important age classes of Bonneville 

whitefish are ages (0-3) and most important to the Bear Lake whitefish population are 

ages ( 4-7). Increasing and decreasing both of these age classes survival from x to x + I 

had the most positive and negative effect on life-table parameters (r), and (Ro). 
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Appendix (A.) Netting Data. 

Summer 2000 Bonneville Whitefish Collection Data. 

Net Site Depth (M) Fish# Length Weight 

3 35 1 288 123.5 
3 35 2 288 178 
3 35 3 254 114.8 
3 35 4 205 56 
3 35 5 177 34 
3 30 6 246 110 
3 30 7 243 97 
3 30 8 302 221 
3 30 9 268 143 
3 30 10 205 61 
3 30 11 196 45 
3 30 12 312 202 
3 30 13 277 137 
3 30 14 194 56 
3 30 15 283 163 
3 30 16 185 48 
3 30 17 288 173 
3 30 18 288 206 
3 30 19 276 155 
3 30 20 275 158 
3 30 21 230 87 
3 30 22 230 88 
3 30 23 162 34 
3 30 24 259 129 
3 30 25 194 45 
3 30 26 202 61 
3 25 27 282 173 
3 25 28 275 139 
3 25 29 224 103 
3 25 30 287 168 
3 25 31 242 98 
3 25 32 158 27 
3 25 33 274 141 
3 25 34 197 56 
3 25 35 266 148 
3 25 36 167 34 
3 25 37 126 14 
3 25 38 131 14 
3 25 39 120 92 
3 25 40 11 3 8 
3 20 41 223 87 
3 20 42 266 144 
3 20 43 214 67 
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3 20 44 152 23 
3 20 45 195 46 
3 20 46 225 84.5 
3 20 47 131 14 
3 15 48 211 67.5 
3 15 49 219 75 
3 15 50 197 48 
3 15 51 196 60 
3 15 52 180 53 
3 15 53 224 85 
3 15 54 179 44 
3 15 55 175 40 
3 15 56 146 25.5 
3 15 57 176 37 
3 15 58 183 44 
3 15 59 215 80 
3 15 60 196 51 .5 
3 15 61 225 90 
3 15 62 202 66 
3 15 63 189 48 
3 15 64 256 97 
3 15 65 200 59 
3 15 66 137 21 
3 15 67 144 20.5 
3 15 68 152 26 
3 15 69 140 22 
3 15 70 175 38 
3 15 71 125 15 
3 15 72 129 15 
3 15 73 143 17 
3 15 74 134 16 
3 15 75 139 18 
3 15 76 128 13.5 
3 15 77 135 13 
3 15 78 105 9 
3 15 79 135 19 
3 15 80 139 15 
3 15 81 131 18 
3 15 82 136 19 
3 15 83 130 16 
3 15 84 129 13 
3 15 85 115 10 
3 15 86 170 35 
3 15 87 220 74 
3 15 88 186 48 
3 15 89 171 40 
4 35 90 271 153 
4 35 91 249 103 
4 35 92 260 112.5 
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4 35 93 251 107 
4 35 94 262 110 
4 35 95 305 206 
4 35 96 272 144 
4 35 97 285 166 
4 35 98 292 178 
4 35 99 261 131 
4 35 100 268 31 6 
4 30 101 275 136 
4 30 102 251 102 
4 30 103 249 99 
4 30 104 244 104 
4 30 105 266 122 
4 30 106 194 49 
4 30 107 271 144 
4 30 108 169 34 
4 25 109 271 145 
4 25 110 286 172 
4 25 111 257 110 
4 25 112 224 78 
4 25 113 266 116 
4 25 114 213 71 
4 25 115 185 42 
4 25 116 180 39 
4 25 117 231 88 
4 20 118 233 105 
4 20 119 213 60 
4 20 120 209 77 

4 20 121 212 80 
4 20 122 189 53 
4 20 123 163 33 
4 20 124 135 20 
4 20 125 121 11 
4 20 126 66 1.5 
4 15 127 267 117 
4 15 128 251 123 
4 15 129 220 80 
4 15 130 135 18 
4 15 131 131 16 
4 15 132 137 18 
4 10 133 196 66 
4 10 134 136 18 
4 10 135 155 26 
2 10 136 65 
2 10 137 138 20 
2 10 138 128 15 
2 10 139 142 22.5 
2 10 140 126 14 
2 10 141 136 18 
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2 10 142 139 20 
2 10 143 171 42 
2 10 144 176 41 
2 10 145 182 44 
2 10 146 176 44 
2 10 147 164 34 
2 10 148 158 33 
2 10 149 149 28 
2 10 150 175 40 
2 10 151 150 24 
2 10 152 150 27 
2 10 153 148 24 
2 10 154 160 37 
2 10 155 205 67 
2 10 156 184 49 
2 10 157 176 40 
2 10 158 158 31 
2 10 159 144 23 
2 10 160 145 26 
2 10 161 141 22.5 
2 10 162 144 22 
2 10 163 135 18.5 
2 10 164 242 116 
2 10 165 215 72 
2 10 166 240 99 
2 10 167 209 73 
2 10 168 209 73 
2 10 169 208 64.5 
2 10 170 190 58 
2 10 171 213 69 
2 10 172 235 87 
2 10 173 176 45 
2 15 174 137 21 
2 15 175 129 18 
2 15 176 142 22 
2 15 177 144 19 
2 15 178 145 20 
2 15 179 138 21 
2 15 180 136 19 
2 15 181 134 20 
2 15 182 145 26 
2 15 183 161 30 
2 15 184 178 39 
2 15 185 182 48 
2 15 186 211 70 
2 15 187 218 76 
2 15 188 160 34 
2 15 189 205 67 
2 15 190 176 43 
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2 15 191 190 55 
2 15 192 207 70 
2 15 193 273 153 
2 15 194 246 103 
2 15 195 181 56 
2 15 196 182 47 
2 15 197 246 110 
2 15 198 213 86 
2 15 199 233 99 
2 15 200 155 30 
2 15 201 177 42 
2 15 202 168 36 
2 15 203 176 45 
2 15 204 174 40 
2 20 205 285 169 
2 20 206 270 148 
2 20 207 209 78 
2 20 208 184 50 
2 25 209 214 78 
2 25 210 227 87 
2 25 211 294 188 
2 25 212 272 149 
2 25 213 234 89 
2 30 214 265 153 
2 30 215 259 136 
2 30 216 281 168 
2 30 217 238 98 
2 30 218 160 29 
2 35 219 252 126 
5 20 220 168 28 
5 20 221 170 31 
5 20 222 168 32 
5 20 223 141 12.5 
5 20 224 227 96 
5 20 225 203 63 
5 20 226 198 58 
5 20 227 186 44 
5 20 228 211 58 
5 5 229 135 14.5 
5 5 230 134 14 
5 5 231 132 10 
5 20 232 165 30 
5 20 233 165 30 
5 20 234 205 65 
5 20 235 230 85 
5 20 236 130 12 
5 20 237 140 17 
5 20 238 142 19.5 
5 20 239 230 97 
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5 20 240 280 135 
5 20 241 267 122 
5 20 242 240 85 
5 20 243 293 181 
5 20 244 272 107 
5 20 245 238 100 
5 15 246 186 47 
5 15 247 150 26 
5 15 248 
5 15 249 170 33.5 
5 15 250 160 32 
5 15 251 125 11 
5 15 252 150 26.5 
5 15 253 140 18 
5 15 254 226 93 
5 15 255 234 92 
5 15 256 245 101 
5 15 257 212 76 
5 15 258 127 13 
5 15 259 294 200 
5 25 260 275 124 
5 25 261 275 135 
5 25 262 284 132 
5 25 263 274 138 
5 25 264 260 123 
5 25 265 285 162 
5 25 266 258 110 
5 25 267 186 44 
5 25 268 183 37 
5 25 269 154 17 
5 25 270 125 8 
5 25 271 118 9 
5 30 272 295 181 
5 30 273 279 141 
5 30 274 276 148 
5 30 275 276 140 
5 30 276 241 85 
5 30 277 297 155 
5 30 278 273 179 
5 30 279 266 127 
5 30 280 210 64 
5 30 281 228 75 
5 30 282 240 98 
5 30 283 190 45 
5 30 284 200 54 

5 
5 35 286 268 133 
5 35 287 235 99 
5 35 288 233 78 
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5 35 289 237 101 
5 35 290 230 84 
5 35 291 166 30 

5 292 137 23 
10 293 237 101 
10 294 233 88 
10 295 165 37 
10 296 167 38 
10 297 141 25 
10 298 134 19 
10 299 142 21 
10 300 125 14 
10 301 138 24 
10 302 136 20 
10 303 129 18 
10 304 136 18 
10 305 155 30 
10 306 138 19 
10 307 139 21 
10 308 146 25 
10 309 121 14 
10 310 134 19 
10 311 135 16 
10 312 139 24 
10 313 134 20 
10 314 123 14 
10 315 137 17 
10 316 136 18 
10 317 137 20 
10 318 136 17 
10 319 152 24 
10 320 175 41 
10 321 169 32 
10 322 190 67 
10 323 201 66 
15 324 235 98 
15 325 215 91 
15 326 197 64 
15 327 230 92 
15 328 203 62 
15 329 212 79 
15 330 170 37 
15 331 161 29 
15 332 152 25 
15 333 134 16 
15 334 140 19 
15 335 140 20 
15 336 134 19 
15 337 137 20 
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15 338 144 23 
15 339 139 20 
15 340 132 16 
15 341 122 14 
15 342 146 27 
15 343 143 21 
15 344 160 32.5 
15 345 132 18 
15 346 140 21 
15 347 139 21 
15 348 124 16 
15 349 140 18 
15 350 125 13 
20 351 146 23 
20 352 130 16 
20 353 147 24 
20 354 154 26 
20 355 158 31 
25 356 300 195.5 
25 357 210 58 
25 358 237 96 
25 359 252 113 
25 360 277 155 
25 361 169 35 
25 362 169 35 
25 363 148 21 .5 
25 364 139 16.5 
25 365 167 29 
30 366 280 191 
30 367 267 141 
30 368 235 87.5 

6 5 367 260 108 
6 5 368 161 41 
6 5 369 154 31 
6 5 370 115 12 
6 5 371 145 28 
6 5 372 159 37 
6 5 373 194 61 
6 10 374 239 90 
6 10 375 231 106 
6 10 376 214 81 
6 10 378 197 60 
6 10 379 225 82 
6 10 380 226 65 
6 10 381 179 31 
6 10 382 189 56 
6 10 383 171 31 
6 10 384 212 70 
6 10 385 199 62 



87 

6 10 386 169 35 
6 10 387 135 15 
6 10 388 153 26 
6 10 389 139 21 
6 10 390 146 25 
6 10 391 144 22 
6 10 392 141 23 
6 10 393 173 41 
6 10 394 128 16 
6 10 395 195 44 
6 10 396 137 18 
6 10 397 156 29 
6 10 398 135 20 
6 10 399 147 22 
6 10 400 137 20.3 
6 10 401 140 19 
6 10 402 140 20.2 
6 10 403 129 15 
6 10 404 155 28 
6 10 405 124 15 
6 10 406 125 13 
6 10 407 126 14 
6 15 408 304 209 
6 15 409 352 289 
6 15 410 352 320 
6 15 411 283 158 
6 15 412 270 131 
6 15 413 273 146 
6 15 414 247 105.5 
6 15 415 185 59 
6 15 416 215 68 
6 15 417 210 68 
6 15 418 210 73 
6 15 419 229 80 
6 15 420 224 88 
6 15 421 185 48 
6 15 422 176 44 
6 15 423 156 30 
6 15 424 146 26 
6 15 425 136 21.5 
6 15 426 150 24 
6 15 427 139 20 
6 15 428 129 17 
6 15 429 135 20 
6 15 430 135 21 
6 15 431 133 15 
6 15 432 145 24 
6 20 433 340 270 
6 20 434 273 161 
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6 20 435 234 92 
6 20 436 139 106 
6 20 437 179 42 
6 20 438 176 44 
6 20 
6 20 440 170 38 
6 20 441 265 154 
6 20 442 254 111 
6 20 443 215 86 
6 20 444 224 95 
6 20 445 178 42 
6 20 446 145 27 
6 20 447 145 27 
6 20 448 136 19 
6 20 448 134 18 
6 20 449 124 15 
6 20 450 159 30 
6 20 451 121 15 
6 20 452 137 20 
6 20 453 140 20.5 
6 25 454 353 315 
6 25 455 279 144 
6 25 456 225 71 
6 25 457 218 78 
6 25 458 215 83 
6 25 459 175 43 
6 25 460 175 43 
6 25 461 142 23 
6 25 462 131 20 
6 25 463 109 11 
6 30 464 247 115 
6 30 465 278 172 
6 30 466 265 136 
6 30 467 280 154 
6 30 468 237 93 
6 30 469 251 127 
6 30 470 225 85 
6 30 471 202 61 
6 30 472 202 61 
6 30 473 210 73 
6 30 474 232 87 
5 50 475 206 53 
5 60 476 279 138 
5 60 477 233 85 
5 50 478 205 95 

3(b) 15 479 194 52 
3(b) 15 480 158 32 
3(b) 15 481 149 27 
3(b) 15 482 137 17 
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3(b) 15 483 142 15 

3(b) 15 484 150 24 

3(b) 15 485 137 18 

3(b) 15 486 135 18 

3(b) 15 487 134 18 

3(b) 15 488 145 20 

3(b) 15 489 153 24 

3(b) 15 490 152 24 

3(b) 15 491 147 22 

3(b) 15 492 149 24 

3(b) 15 493 144 20 

3(b) 15 494 145 20 

3(b) 15 495 141 18 

3(b) 15 496 125 11 

3(b) 15 497 236 109 

3(b) 15 498 255 111 

3(b) 15 500 188 55 

3(b) 15 501 197 54 

3(b) 15 502 94 4 

3(b) 15 503 94 4 

3(b) 20 504 133 13 

3(b) 20 505 138 17 

3(b) 20 506 140 17 

3(b) 20 507 165 33 

3(b) 20 508 167 32 

3(b) 25 509 179 42 

3(b) 25 510 170 33 

3(b) 25 511 160 28 

3(b) 25 512 147 21 
3(b) 25 513 150 23 
3(b) 25 514 137 18 

3(b) 30 515 285 173 

3(b) 30 516 287 202 

3(b) 30 517 282 166 

3(b) 30 518 260 124 

3(b) 30 519 259 123 

3(b) 30 520 254 110 

3(b) 30 521 159 30 

3(b) 30 522 127 16 

3(b) 35 523 305 231 

3(b) 35 524 265 123 

3(b) 35 525 240 105 

3(b) 35 526 251 11 6 

3(b) 35 527 257 132 

3(b) 35 528 222 88 

3(b) 35 529 240 109 

4(b) 10 530 136 22 

4(b) 10 531 132 18 

4(b) 10 532 137 20 
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4(b) 10 533 137 22 

4(b) 10 534 139 20 

4(b) 10 535 131 14 

4(b) 10 536 130 14 

4(b) 10 537 230 104 

4(b) 15 538 197 12 
4(b) 15 539 145 20 

4(b) 15 540 135 16 

4(b) 15 541 135 14 

4(b) 15 542 145 20 

4(b) 15 543 145 22 

4(b) 15 544 141 16 

4(b) 15 545 136 12 
4(b) 15 546 136 12 
4(b) 15 547 136 12 
4(b) 15 548 139 18 

4(b) 15 549 175 12 

4(b) 15 550 135 18 
4(b) 15 551 136 14 
4(b) 15 552 144 20 
4(b) 15 553 131 12 
4(b) 15 554 136 16 
4(b) 15 555 140 16 

4(b) 15 556 139 16 

4(b) 15 557 150 20 
4(b) 15 558 131 16 
4(b) 15 559 133 12 
4(b) 15 560 136 14 

4(b) 15 561 140 20 
4(b) 15 562 145 20 
4(b) 15 563 154 24 
4(b) 15 564 155 18 
4(b) 15 565 151 22 
4(b) 15 566 158 22 
4(b) 15 567 156 22 
4(b) 15 568 151 20 
4(b) 15 569 149 20 
4(b) 15 570 148 24 
4(b) 15 571 170 34 
4(b) 15 572 182 38 
4(b) 15 573 190 38 
4(b) 15 574 220 70 
4(b) 15 575 243 88 
4(b) 15 576 264 102 
4(b) 15 577 264 124 
4(b) 15 578 287 130 
4(b) 15 579 295 170 
4(b) 15 580 396 482 

4(b) 15 581 389 440 
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4(b) 15 582 339 298 

4(b) 15 583 299 228 

4(b) 15 584 302 194 

4(b) 15 585 293 190 

4(b) 15 586 280 144 

4(b) 15 587 259 126 

4(b) 15 588 262 126 

4(b) 15 589 252 126 

4(b) 15 590 251 132 

4(b) 15 591 227 92 

4(b) 15 592 237 120 

4(b) 15 593 220 84 

4(b) 15 594 225 92 

4(b) 15 595 211 86 
4(b) 15 596 213 74 

4(b) 15 597 214 80 

4(b) 15 598 195 60 

4(b) 15 599 190 50 

4(b) 15 600 201 68 
4(b) 15 601 166 40 
4(b) 15 602 174 46 

4(b) 15 603 182 54 

4(b) 15 604 166 40 

4(b) 15 605 135 20 

4(b) 15 606 142 21 
4(b) 15 607 135 20 
4(b) 15 608 147 24 
4(b) 15 609 142 22 

4(b) 15 610 145 22 
4(b) 15 611 136 18 
4(b) 15 612 140 20 
4(b) 15 613 138 20 
4(b) 15 614 132 16 
4(b) 15 615 140 20 
4(b) 15 616 149 24 
4(b) 15 617 145 22 

4(b) 15 618 138 20 
4(b) 15 619 150 24 
4(b) 15 620 131 16 
4(b) 15 621 92 6 

4(b) 15 622 72 2 
4(b) 15 623 74 5 
4(b) 25 624 159 32 
4(b) 25 625 138 20 
4(b) 25 626 145 24 

4(b) 25 627 135 18 

4(b) 25 628 146 24 

4(b) 25 629 173 38 

4(b) 25 630 180 46 
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4(b) 25 631 170 36 

4(b) 25 632 161 34 

4(b) 25 633 176 42 

4(b) 25 634 194 62 

4(b) 25 635 174 40 

4(b) 25 636 219 78 

4(b) 25 637 184 54 

4(b) 25 638 266 140 

4(b) 25 639 278 160 

4(b) 30 640 136 18 

4(b) 30 641 144 24 

4(b) 30 642 146 20 

4(b) 30 643 135 18 

4(b) 30 644 138 20 

4(b) 30 645 166 32 

4(b) 30 646 174 42 

4(b) 30 647 187 48 

4(b) 30 648 270 134 

4(b) 30 649 258 110 

4(b) 30 650 299 202 

4(b) 30 651 264 126 

4(b) 30 652 237 94 

4(b) 30 653 248 108 

4(b) 30 654 257 116 

4(b) 30 655 264 132 

4(b) 35 656 250 122 

4(b) 35 657 238 82 
4(b) 35 658 232 96 

4(b) 35 659 244 104 
4(b) 35 660 240 104 
4(b) 35 661 234 96 
4(b) 35 662 256 118 

4(b) 35 663 279 158 

4(b) 35 664 259 126 

4(b) 35 665 275 138 
4(b) 35 666 285 164 

4(b) 35 667 286 176 

3 35 668 184 46 
3 35 669 166 47 

3 35 670 166 46 

3 35 671 139 18 

3 35 672 127 14 

3 35 673 122 16 

3 35 674 140 20 

3 35 675 145 24 

3 35 676 143 22 

3 35 677 136 18 

3 35 678 136 17 

3 35 679 91 6 
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3 35 680 91 6 
3(b) 10 681 353 298 
3(b) 10 682 284 192 
3(b) 10 683 141 18 
3(b) 10 684 145 26 
3(b) 10 685 146 24 
3(b) 10 686 147 20 
3(b) 10 687 99 5 

5 10 688 269 130 
5 10 689 211 78 
5 10 690 172 46 
5 10 691 174 44 
5 10 692 173 40 
5 10 693 169 34 
5 10 694 162 32 
5 10 695 137 18 
5 10 696 136 18 
5 10 697 142 24 
5 10 698 149 22 
5 10 699 150 28 
5 10 700 135 18 
5 10 701 145 22 
5 10 702 137 18 
5 10 703 140 20 
5 10 704 158 28 
5 10 705 153 26 
5 10 706 137 19 
5 10 707 141 20 
5 10 708 97 6 
5 10 709 93 6 
5 10 710 98 6 
5 10 711 97 6 
5 10 712 97 6 
4 35 713 259 102 
4 35 714 237 104 
4 35 715 221 82 
4 35 716 200 62 
4 35 717 179 43 
4 35 718 168 36 

2(b) 15 719 398 524 
2(b) 15 720 332 250 
2(b) 15 721 294 148 
2(b) 15 722 300 156 
2(b) 15 723 265 130 
2(b) 15 724 220 80 
2(b) 15 725 230 80 
2(b) 15 726 214 62 
2(b) 15 727 224 82 
2(b) 15 728 189 50 
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2(b) 15 729 206 64 
2(b) 15 730 179 46 
2(b) 15 731 174 40 
2(b) 15 732 184 44 
2(b) 15 733 177 38 
2(b) 15 734 183 42 
2(b) 15 735 163 30 
2(b) 15 736 186 46 
2(b) 15 737 170 34 
2(b) 15 738 163 30 
2(b) 15 739 155 24 
2(b) 15 740 140 18 
2(b) 15 741 139 14 
2(b) 15 742 135 16 
2(b) 15 743 139 16 
2(b) 15 744 140 16 
2(b) 15 745 145 20 
2(b) 15 746 145 22 
2(b) 15 747 140 18 
2(b) 15 748 134 12 
2(b) 15 749 131 16 
2(b) 15 750 129 12 
2(b) 15 751 140 20 
2(b) 15 752 135 12 
2(b) 15 753 144 22 
2(b) 15 754 125 12 
2(b) 15 755 140 14 
2(b) 15 756 137 18 
2(b) 15 757 127 14 
2(b) 15 758 146 16 
2(b) 15 759 90 4 
2(b) 15 760 90 4 
2(b) 15 761 86 3 
2(b) 15 762 75 2.5 
2(b) 10 763 198 76 
2(b) 10 764 70 40 
2(b) 10 765 147 26 
2(b) 10 766 145 32 
2(b) 10 767 134 20 
2(b) 10 768 142 30 
2(b) 10 769 154 32 
2(b) 10 770 145 24 
2(b) 10 771 142 20 
2(b) 10 772 145 16 
2(b) 10 773 147 20 
2(b) 10 774 127 16 
2(b) 10 775 145 24 
2(b) 10 776 132 16 
2(b) 10 777 144 18 
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2(b} 10 778 147 22 

2(b) 10 779 133 22 

2(b} 10 780 154 30 

2(b} 10 781 84 4 

5(b} 40 782 325 264 

5(b} 40 783 344 316 

5(b} 40 784 307 232 

5(b) 40 785 267 142 

5(b} 40 786 245 102 

5(b} 40 787 252 112 

5(b} 40 788 260 128 

5(b} 40 789 178 44 

5(b) 35 790 273 154 

5(b} 35 791 273 156 

5(b) 35 792 264 130 

5(b} 35 793 252 106 

5(b} 35 794 243 104 

5(b} 35 795 257 114 

5(b) 35 796 241 98 

5(b) 35 797 236 98 

5(b) 35 798 221 80 

S(b) 35 799 232 92 

S(b) 35 800 204 66 

S(b} 35 801 195 58 

5(b} 35 802 211 66 

5(b} 35 803 177 48 

5(b} 35 804 180 46 

5(b} 35 805 127 18 

5(b) 15 806 406 560 

5(b) 15 807 371 404 

5(b} 15 808 281 170 

5(b} 15 809 260 128 

5(b} 15 810 215 82 

5(b} 15 811 182 52 

5(b) 15 812 146 28 

5(b} 15 813 135 18 

5(b) 10 814 359 342 

5(b) 10 815 145 26 

5(b) 10 816 92 8 

5(b} 30 817 262 118 

5(b} 30 818 235 92 

5(b) 30 819 210 70 

5(b) 30 820 160 32 

5(b} 25 821 303 222 

5(b} 25 822 265 134 

5(b) 25 823 260 114 

5(b) 25 824 252 118 

5(b} 25 825 239 91 

5(b} 25 826 215 70 
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5{b} 25 827 212 66 

5(b} 25 828 205 62 

5(b} 25 829 196 58 

5(b} 20 830 280 172 

5(b) 20 831 253 116 

5{b} 20 832 246 11 2 

5{b} 20 833 136 18 

2(b) 35 834 270 136 

2(b) 30 835 260 120 

2(b) 30 836 252 114 

2{b} 30 837 270 128 

2{b} 25 838 309 206 

2(b} 25 839 210 68 

2(b) 25 840 210 64 

2{b} 25 841 210 68 

2{b} 25 842 180 50 

2(b) 25 843 185 52 

2(b) 20 844 280 170 

2{b) 20 845 277 140 

2(b) 20 846 248 118 

2{b} 20 847 262 142 

2(b) 20 848 267 140 

2(b) 20 849 242 100 

2(b} 20 850 224 90 

2{b} 20 851 197 56 
2{b} 20 852 177 44 

2(b) 20 853 142 22 

2{b} 20 854 131 14 

6(b} 10 855 283 156 
6{b) 10 856 303 204 

6{b} 10 857 279 130 

6(b) 10 858 268 142 

6(b) 10 859 290 170 

6{b} 10 860 281 140 
6{b} 10 861 270 146 

6(b} 10 862 286 134 

6{b} 10 863 269 118 

6(b) 10 864 259 136 
6(b) 10 865 275 142 

6(b) 10 866 255 114 

6(b) 10 867 268 112 
6(b) 10 868 262 126 
6{b} 10 869 255 132 

6{b} 10 870 265 122 

6(b} 10 871 265 132 

6(b) 10 872 240 104 

6{b} 10 873 234 98 

6{b} 10 874 239 90 

6(b} 10 875 238 84 
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6(b) 10 876 223 82 

6(b) 10 877 226 88 

6(b) 10 878 204 72 
6(b) 10 879 213 66 

6(b) 10 880 177 34 

6(b) 10 881 180 44 

6(b) 10 882 187 50 

6(b) 10 883 179 46 

6(b) 10 884 170 36 

6(b) 10 885 166 30 

6(b) 10 886 170 36 

6(b) 10 887 163 30 

6(b) 10 888 177 32 

6(b) 10 889 152 30 

6(b) 10 890 152 26 

6(b) 10 891 152 26 

6(b) 10 892 146 20 

6(b) 10 893 139 16 

6(b) 10 894 148 24 

6(b) 10 895 140 16 

6(b) 10 896 142 16 

6(b) 10 897 147 "18 

6(b) 10 898 147 22 

6(b) 10 899 134 16 

6(b) 10 900 144 20 
6(b) 10 901 137 14 

6(b) 10 902 135 16 

6(b) 10 903 130 16 

6(b) 10 904 147 16 

6(b) 15 905 282 140 

6(b) 15 906 275 128 

6(b) 15 907 270 130 

6(b) 15 908 270 134 

6(b) 15 909 276 144 

6(b) 15 910 278 152 

6(b) 15 911 256 94 

6(b) 15 912 255 108 

6(b) 15 913 260 118 

6(b) 15 914 253 108 

6(b) 15 915 222 80 

6(b) 15 916 225 76 

6(b) 15 917 208 64 

6(b) 15 918 192 52 

6(b) 15 919 205 60 

6(b) 15 920 205 62 

6(b) 15 921 186 46 

6(b) 15 922 180 42 

6(b) 15 923 172 36 

6(b) 15 924 161 32 



98 

6(b) 15 925 180 42 

6(b) 15 926 150 30 

6(b) 15 927 164 36 

6(b) 15 928 141 22 

6(b) 15 929 165 30 

6(b) 15 930 137 20 

6(b) 15 931 144 24 

6(b) 15 932 140 20 

6(b) 15 933 135 16 

6(b) 15 934 131 16 

6(b) 15 935 136 16 

6(b) 15 936 115 10 

6(b) 20 937 395 428 

6(b) 20 938 261 136 

6(b) 20 939 269 120 

6(b) 20 940 275 156 

6(b) 20 941 258 110 

6(b) 20 942 216 70 
6(b) 25 943 280 144 

6(b) 25 944 268 132 

6(b) 25 945 253 114 

6(b) 25 946 229 78 
6(b) 25 947 219 78 

6(b) 25 948 208 66 

6(b) 25 949 183 36 

6(b) 25 950 184 38 

6(b) 25 951 173 26 
6(b) 25 952 120 8 
6(b) 35 953 290 184 
6(b) 35 954 285 160 

6(b) 35 955 272 156 
6(b) 35 956 243 114 

6(b) 35 957 210 70 
6(b) 35 958 206 64 

6(b) 35 959 203 54 

6(b) 35 960 180 40 

6(b) 10 961 327 278 
6(b) 10 962 274 150 
6(b) 10 963 274 158 
6(b) 10 964 271 150 

6(b) 10 965 265 150 
6(b) 10 966 270 142 

6(b) 10 967 265 136 
6(b) 10 968 255 124 

6(b) 10 969 264 136 

6(b) 10 970 249 108 

6(b) 10 971 241 114 

6(b) 10 972 260 126 

6(b) 10 973 250 104 
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6(b) 10 974 231 98 

6(b) 10 975 241 98 

6(b) 10 976 234 110 

6(b) 10 977 249 126 

6(b) 10 978 230 96 

6(b) 10 979 215 76 

6(b) 10 980 220 86 

6(b) 10 981 224 88 

6(b) 10 982 224 84 

6(b) 10 983 218 76 

6(b) 10 984 207 70 

6(b) 10 985 194 66 

6(b) 10 986 193 60 

6(b) 10 987 196 60 

6(b) 10 988 180 50 

6(b) 10 989 183 52 

6(b) 10 990 174 46 

6(b) 10 991 178 52 
6(b) 10 992 179 48 

6(b) 10 993 160 38 

6(b) 10 994 169 38 
6(b) 10 995 175 44 

6(b) 10 996 185 54 

6(b) 10 997 180 46 

6(b) 10 998 170 36 

6(b) 10 999 152 32 
6(b) 10 1000 141 26 
6(b) 10 1001 142 24 
6(b) 10 1002 140 22 
6(b) 10 1003 145 22 
6(b) 10 1004 135 22 
6(b) 10 1005 135 18 

6(b) 10 1006 100 10 
1(b) 10 1007 97 6 
1(b) 10 1008 94 6 
1(b) 10 1009 350 320 
1(b) 10 1010 340 300 
1(b) 10 1011 273 144 
1(b) 10 1012 275 148 
1(b) 10 1013 245 98 
1(b) 10 1014 225 82 
1(b) 10 1015 229 90 
1(b) 10 1016 210 82 

1(b) 10 1017 210 78 
1(b) 15 1018 210 74 
1(b) 15 1019 177 40 

1(b) 15 1020 164 34 

1(b) 15 1021 164 34 
1(b) 15 1022 169 34 
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1(b) 15 1023 165 34 
1(b) 15 1024 164 32 
1(b) 15 1025 153 25 
1(b) 15 1026 155 32 
1(b) 15 1027 155 32 
1(b) 15 1028 161 36 
1(b) 15 1029 149 28 
1(b) 15 1030 145 24 
1(b) 15 1031 103 8 
1(b) 15 1032 103 8 
1(b) 20 1033 277 146 
1(b) 20 1034 188 54 

1(b) 20 1035 147 24 
1(b) 20 1036 144 22 
1(b) 25 1037 405 526 
1(b) 25 1038 235 104 
1(b) 25 1039 21 4 70 
1(b) 30 1040 266 136 

4 40 1041 272 126 

Summer 2000 Bear Lake Whitefish Collection Data. 

Net Site Depth Fish# Length Weight 

3 35 1 211 65 
3 35 2 174 35 
3 35 3 174 33 
3 35 4 189 49 
3 35 5 202 53 
3 35 6 186 49 
3 35 7 187 44 
3 25 8 237 76 
3 25 9 125 12 
3 20 10 141 16 
3 15 11 160 26 
3 15 12 105 7 
3 15 13 100 6 
4 30 14 212 55 
4 30 15 136 17 
4 20 16 143 17 
4 15 17 105 8 
2 15 18 169 35 
2 20 19 130 no weight 

2 20 20 128 16 
2 25 21 239 88 
2 25 22 170 36 
2 30 23 215 64 
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2 30 24 137 17 
5 10 25 105 6 
5 10 26 137 13 
5 10 27 117 7 
5 20 28 109 7 
5 30 29 190 46 
5 30 30 123 12 
5 35 31 156 27 

10 32 134 16 
15 33 160 29 
15 34 127 13 
20 35 195 53 
20 36 138 18 
25 37 106 6 

1 30 38 185 45 
6 15 39 140 19 
6 15 40 130 15 
6 20 41 136 17 
6 25 42 141 18 
6 30 43 196 41 
5 50 44 233 73 
5 50 45 215 57 
5 50 46 227 66 
5 50 47 246 92 
5 50 48 254 105 
5 50 49 228 77 
5 50 50 226 76 
5 50 51 229 84 
5 50 52 197 55 
5 60 53 240 90 
5 60 54 240 84 
5 60 55 244 86 
5 60 56 257 106 
5 60 57 279 134 
5 60 59 240 93 
5 60 60 238 83 
5 60 61 247 95 
5 60 62 250 99 
5 60 63 269 139 
5 60 64 246 95 
5 60 65 257 106 
5 60 66 178 35 
5 60 67 250 95 
5 60 68 201 44 
5 60 69 260 111 
5 60 70 229 66 
5 60 71 235 93 
5 60 72 258 110 
5 60 73 233 91 



102 

5 60 74 235 89 
5 60 75 250 99 
5 60 76 228 69 
5 60 77 230 76 

5 60 78 247 107 
5 60 79 191 43 
5 60 80 229 71 

5 60 81 209 58 
5 60 82 190 42 
5 60 83 190 41 
5 60 84 235 76 
5 60 85 234 83 
5 60 86 236 88 
5 60 87 210 71 
5 60 88 184 42 
5 55 89 210 55 
5 55 90 235 68 
5 55 91 208 63 
5 55 92 259 103 
5 55 93 241 89 
5 55 94 238 89 
5 55 95 224 71 
5 55 96 238 79 
5 55 97 202 57 
5 55 98 224 80 
5 50 99 216 64 
5 50 100 184 47 
5 50 101 248 13 
5 45 102 249 103 
5 45 103 268 136 
5 45 104 220 84 
5 45 105 194 47 
5 45 106 204 56 
5 45 107 240 85 

5(b) 60 108 248 87 
5(b) 60 109 233 80 
5(b) 60 110 239 84 
5(b) 60 111 240 75 
5(b) 60 112 210 52 
5(b) 60 113 229 75 
5(b) 60 114 230 79 
5(b) 60 115 242 87 
5(b) 60 116 213 71 
5(b) 60 117 227 80 
5(b) 60 118 237 96 
5(b) 60 119 258 118 
5(b) 60 120 232 77 
5(b) 60 121 206 59 
5(b) 60 122 236 82 



103 

5(b) 60 123 225 77 
5(b) 60 124 238 87 

5(b) 60 125 198 49 

5(b) 55 126 241 93 

5(b) 55 127 245 96 

5(b) 55 128 250 94 

5(b) 55 129 222 72 
5(b) 55 130 232 81 

5(b) 55 131 262 106 

5(b) 55 132 239 92 

5(b) 55 133 254 108 

5(b) 55 134 232 69 

5(b) 55 135 259 105 

5(b) 55 136 260 113 

5(b) 55 137 220 70 

5(b) 55 138 216 72 

5(b) 55 139 217 63 

5(b) 55 140 227 74 

5(b) 55 141 217 64 

5(b) 55 142 232 81 

5(b) 55 143 245 108 

5(b) 55 144 234 81 

5(b) 50 145 243 87 

5(b) 50 146 220 73 

5(b) 50 147 247 107 

5(b) 50 148 183 40 

5(b) 50 149 208 70 

5(b) 50 150 256 112 

5(b) 50 151 219 72 
5(b) 50 152 197 52 

5(b) 45 153 211 71 

5(b) 45 154 232 85 

5(b) 45 155 212 55 
5(b) 45 156 239 92 

5 60 157 212 57 

5 60 158 230 78 

5 60 159 207 64 

5 60 160 239 98 

5 60 161 250 111 

5 60 162 218 71 

5 60 163 240 86 

5 60 164 256 120 

5 60 165 235 91 

5 60 166 232 92 

5 60 167 234 109 

5 60 168 240 85 

5 60 169 250 102 

5 60 170 226 83 

5 60 171 217 63 
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5 60 172 225 77 
5 60 173 252 108 
5 60 174 234 80 
5 60 175 249 104 
5 60 176 251 120 
5 60 177 239 98 
5 60 178 249 89 
5 60 179 241 92 
5 60 180 265 143 
5 60 181 211 70 
5 60 182 225 78 
5 60 183 232 87 
5 60 184 240 88 
5 60 185 253 118 
5 60 186 257 111 
5 60 187 242 103 
5 60 188 227 81 
5 55 189 238 95 
5 55 190 238 86 
5 55 191 249 111 
5 55 192 264 128 
5 55 193 289 178 
5 55 194 249 100 
5 55 195 228 80 
5 55 196 202 65 
5 55 197 240 88 
5 55 198 245 103 
5 55 199 223 72 

5 55 200 240 99 
5 55 201 256 112 
5 55 202 240 97 
5 55 203 211 67 
5 55 204 242 104 
5 55 205 269 123 
5 45 206 240 97 
5 45 207 198 53 
5 45 208 193 55 
5 45 209 200 60 
5 45 210 222 78 
5 45 211 205 63 
5 45 212 203 62 
5 45 213 189 49 
5 45 214 244 103 
5 45 215 226 85 
5 45 216 222 81 
5 45 217 178 42 
5 50 218 241 104 
5 50 219 245 96 
5 50 220 238 102 



105 

5 50 221 232 86 
5 50 222 239 100 
5 50 223 238 105 
5 50 224 247 102 
5 50 225 218 70 
5 50 226 200 59 
5 50 227 230 89 
5 50 228 227 91 
5 50 229 205 61 
5 50 230 181 43 
5 50 231 194 52 

3(b) 15 232 145 18 
3(b) 20 233 140 18 
3(b) 25 234 138 14 
3(b) 30 235 160 29 
3(b) 30 236 151 28 
3(b) 30 237 134 16 
4(b) 10 238 181 38 
4(b) 15 239 145 20 
4(b) 15 240 150 26 
4(b) 20 241 180 46 
4(b) 20 242 142 22 
4(b) 25 243 153 28 
4(b) 25 244 139 22 
4(b) 35 245 145 22 
4(b) 35 246 139 18 
4(b) 35 247 229 84 

3 10 248 140 16 
4 35 249 162 30 
4 35 250 192 54 

5(b) 40 251 184 48 
5(b) 40 252 193 50 
5(b) 40 253 212 64 
5(b) 40 254 175 34 

3 40 255 219 74 
3 40 256 222 70 
3 40 257 186 46 
3 40 258 194 46 
3 40 259 201 52 
3 35 260 190 52 
3 35 261 153 28 
3 30 262 215 76 
3 30 263 139 16 
3 25 264 124 14 

6(b) 10 265 140 18 
6(b) 15 266 110 10 
6(b) 15 267 115 10 
6(b) 20 268 179 42 
6(b) 30 269 170 32 
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6(b) 30 270 143 18 
6(b) 30 271 126 14 
1(b) 10 272 130 16 
1(b) 15 273 154 20 
1(b) 15 274 133 14 
1(b) 25 275 215 72 
1(b) 35 276 237 88 
1(b) 35 277 188 46 
1(b) 35 278 176 34 
4 40 279 219 70 
4 40 280 215 66 
4 40 281 240 94 
4 40 282 220 68 
4 40 283 201 52 
4 40 284 116 60 
4 40 285 188 50 
4 40 286 194 48 
4 40 287 208 60 
4 40 288 196 52 
4 40 289 205 52 
4 40 290 190 54 

Summer 2001 Bonneville Whitefish Collection Data. 

Site Depth Fish# Length Weight 

5 55 280 158 
5 40 2 406 611 
5 40 3 247 104 
5 40 4 171 37 
5 45 5 285 160 
5 45 6 299 172 
6 5 7 219 82 
6 10 8 182 50 
6 10 9 185 50 
6 10 10 182 46 
6 10 11 164 32 
6 10 12 125 16 
6 15 14 240 98 
6 15 15 224 82 
6 15 16 215 64 
6 15 17 185 46 
6 15 18 162 32 
6 15 19 124 14 
6 15 20 120 14 
6 15 21 130 16 
6 15 22 125 16 
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6 20 23 244 112 
6 20 24 185 52 
6 25 25 152 28 
6 30 26 189 56 
6 35 27 197 54 
4 10 28 302 182 
4 10 29 292 160 
4 10 30 269 146 
4 10 31 275 142 
4 10 32 270 130 
4 10 33 275 140 
4 10 34 271 134 
4 10 35 241 112 
4 10 36 238 84 
4 10 37 209 70 
4 10 38 195 58 
4 10 39 165 36 
4 10 40 158 32 
4 10 41 135 18 
4 10 42 136 20 
4 10 43 133 18 
4 15 44 289 180 
4 15 45 279 132 
4 15 46 265 142 
4 15 47 268 130 
3 10 94 167 38 
3 10 95 160 32 
3 10 96 158 32 
3 10 97 149 26 
3 10 98 130 16 
3 10 99 118 12 
3 10 100 117 12 
3 10 101 125 14 
3 10 102 114 12 
3 10 103 128 16 
3 10 104 129 16 
3 10 105 120 12 
3 10 106 125 14 
3 10 107 115 11 
3 15 108 418 596 
3 15 109 269 120 
3 15 110 245 112 
3 15 111 210 74 
3 15 112 200 66 
3 15 113 195 60 
3 15 114 178 48 
3 15 115 185 48 
3 15 116 173 38 
3 15 117 180 42 
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3 15 118 169 36 
3 15 119 170 38 
3 15 120 157 32 
3 15 121 160 32 
3 15 122 133 16 
3 15 123 110 10 
3 15 124 110 10 
3 15 125 123 14 
3 20 126 291 158 
3 20 127 271 130 
3 20 128 245 100 
3 20 129 252 118 
3 20 130 224 84 
3 20 131 218 70 
3 20 132 191 54 
3 20 133 164 32 
3 25 134 286 156 
3 25 135 257 142 
3 25 136 270 156 
3 25 137 197 58 
3 25 138 170 36 
3 30 139 260 136 
3 30 140 260 132 
3 30 141 241 11 2 
3 30 142 194 50 
5 15 193 203 66 
5 15 194 185 48 
5 15 195 160 32 
5 15 196 155 28 
5 15 197 160 30 
5 15 198 130 16 
5 15 199 131 16 
5 20 200 366 422 
5 20 201 270 142 
5 20 202 284 152 
5 20 203 265 138 
5 20 204 249 108 
5 20 205 223 84 
5 20 206 212 70 
5 20 207 196 56 
5 20 208 184 46 
5 20 209 186 46 
5 20 210 174 40 
5 20 211 165 32 
5 20 212 166 36 
5 20 213 171 36 
5 20 214 160 30 
5 20 215 170 38 
5 20 216 174 38 
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5 20 217 181 44 
5 20 218 166 36 
5 20 219 134 18 
5 20 220 144 22 
5 20 221 129 16 
5 20 222 115 12 
5 25 223 375 448 
5 25 224 336 304 
5 25 225 260 118 
5 25 226 249 118 
5 25 227 272 146 
5 25 228 247 112 
5 25 229 187 56 
5 25 230 196 64 
5 25 231 214 76 
5 25 232 181 50 
5 25 233 154 26 
5 25 234 184 44 
5 25 235 176 42 
5 25 236 169 36 
5 25 237 175 40 
5 25 238 184 48 
5 25 239 186 52 
5 25 240 163 30 
5 25 241 180 36 
2 20 291 197 54 

2 20 292 183 42 
2 20 293 171 32 
2 20 294 180 36 
2 20 295 167 32 
2 20 296 157 26 
2 20 297 125 16 
2 25 298 267 122 
2 25 299 268 130 
2 25 300 244 102 
2 25 301 239 86 
2 25 302 213 70 
2 25 303 165 28 
2 30 304 215 66 
2 30 305 193 50 
2 30 306 159 34 
4 15 48 275 136 
4 15 49 225 90 
4 15 50 230 94 
4 15 51 179 40 
4 15 52 135 18 
4 15 53 130 16 
4 15 54 135 20 
4 15 55 125 14 
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4 15 56 110 10 
4 20 57 325 246 
4 20 58 269 128 
4 20 59 293 166 
4 20 60 267 126 
4 20 61 263 124 
4 20 62 262 132 
4 20 63 263 124 
4 20 64 249 11 2 
4 20 65 199 62 
4 20 66 190 52 
4 20 67 165 36 
4 20 68 162 36 
4 20 69 149 24 
4 20 70 107 8 
4 25 71 337 324 
4 25 72 325 272 
4 25 73 329 276 
4 25 74 280 172 
4 25 75 284 160 
4 25 76 267 128 
4 25 77 259 110 
4 25 78 260 118 
4 25 79 274 146 
4 25 80 254 108 
4 25 81 227 84 
4 30 82 270 136 
4 30 83 161 32 
4 30 84 139 22 
4 40 85 291 168 
3 10 86 247 116 
3 10 87 218 82 
3 10 88 219 82 
3 10 89 200 56 
3 10 90 193 60 
3 10 91 165 36 
3 10 92 156 32 
3 10 93 183 48 
3 35 143 203 58 
3 35 144 191 46 
3 35 145 183 44 
3 35 146 151 24 
3 40 147 211 60 
3 40 148 205 56 

10 150 213 70 
10 151 198 60 
10 152 186 54 

10 153 153 28 
10 154 127 18 
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15 155 197 62 
15 156 187 56 
15 157 130 16 
20 158 260 132 
20 159 244 106 
20 160 235 112 
20 161 195 58 
20 162 160 36 
20 163 159 32 
25 164 285 170 
25 165 263 130 
25 166 194 58 
25 167 169 40 
30 168 281 142 
30 169 275 136 
30 170 242 108 
30 171 230 90 
30 172 195 58 

5 10 173 405 524 
5 10 174 261 134 
5 10 175 211 74 
5 10 '176 194 58 
5 10 177 197 70 
5 10 178 200 60 
5 10 179 210 66 
5 10 180 187 46 
5 10 181 155 30 
5 10 182 160 30 
5 10 183 126 14 
5 10 184 125 16 
5 10 185 129 16 
5 15 186 245 112 
5 15 187 250 104 
5 15 188 227 88 
5 15 189 206 66 
5 15 190 200 56 
5 15 191 194 60 
5 15 192 185 46 
5 25 242 153 18 
5 30 243 264 132 
5 30 244 262 118 
5 30 245 269 108 
5 30 246 252 104 
5 30 247 275 146 
5 30 248 260 132 
5 30 249 195 58 
5 30 250 180 38 
5 30 251 202 56 
5 30 252 197 52 
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5 30 253 181 44 
5 30 254 197 60 
5 30 255 203 60 
5 30 256 170 38 
5 30 257 190 54 
5 30 258 166 36 
5 30 259 175 36 
5 30 260 128 16 
5 35 261 388 462 
5 35 262 282 168 
5 35 263 265 128 
5 35 264 268 148 
5 35 265 270 128 
5 35 266 251 120 
5 35 267 194 48 
5 40 268 284 160 
2 10 269 190 60 
2 10 270 171 36 
2 10 271 182 48 
2 10 272 168 36 
2 10 273 164 36 
2 10 274 120 16 
2 15 275 249 126 
2 15 276 190 62 
2 15 277 185 52 
2 15 278 175 48 
2 15 279 189 50 
2 15 280 180 48 
2 15 281 162 40 
2 15 282 182 50 
2 15 283 128 20 
2 15 284 135 24 
2 15 285 116 12 
2 15 286 126 16 
2 15 287 109 4 
2 20 288 262 130 
2 20 289 215 76 
2 20 290 218 76 

Summer 2001 Bear Lake Whitefish Collection Data. 

Site Depth Fish# Length Weight 

1 15 1 109 10 
2 15 2 109 9 

25 3 125 14 
2 15 4 125 14 
3 20 5 126 13 

30 6 134 16 
6 30 7 136 20 
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1 25 8 137 18 
2 25 9 137 18 

15 10 140 20 
25 11 140 18 

1 30 12 141 21 
6 35 13 143 22 

20 14 144 22 
20 15 149 24 
20 16 150 24 
30 17 151 28 

2 25 18 154 26 
2 20 19 158 28 
1 35 20 160 28 
5 45 21 171 36 
4 40 22 172 36 
4 40 23 174 38 
3 40 24 175 36 
2 35 25 175 38 
3 40 26 185 42 
1 30 27 186 40 
5 45 28 186 46 
5 50 29 187 40 
3 35 30 190 46 
2 30 31 191 48 
3 40 32 192 56 
5 45 33 194 53 
3 40 34 194 42 
3 30 35 196 50 
5 55 36 197 50 
5 50 37 200 50 
5 50 38 200 56 
5 55 39 200 50 
2 35 40 201 54 
3 30 41 204 52 
5 40 42 205 56 
5 55 43 205 57 
5 45 44 210 60 
3 40 45 210 62 
5 40 46 211 61 
5 60 93 254 111 
2 20 94 255 26 
5 60 95 271 144 
5 45 47 211 64 
5 40 48 214 74 
5 60 49 214 66 
5 55 50 215 60 
5 45 51 219 76 
5 50 52 223 84 
5 60 53 223 82 
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5 60 54 224 91 
5 55 55 224 70 
5 55 56 225 82 
5 45 57 229 86 
3 30 58 229 82 
1 30 59 229 74 
5 50 60 229 78 
5 45 61 230 83 
5 50 62 230 86 
5 55 63 230 76 
5 55 64 231 83 
5 60 65 231 91 
5 45 66 234 80 
5 50 67 234 88 
5 55 68 234 84 
5 55 69 235 82 
5 60 70 235 84 
5 55 71 237 97 
5 55 72 237 92 
5 50 73 238 94 
5 45 74 239 94 
5 50 75 239 88 
5 50 76 239 88 
5 55 77 239 82 
5 55 78 240 98 
5 55 79 241 87 
5 55 80 241 86 
5 55 81 242 96 
5 45 82 243 100 
5 60 83 244 97 
5 60 84 244 88 
5 55 85 245 100 
5 60 86 246 88 
5 50 87 248 94 
5 60 88 249 105 
5 55 89 249 98 
5 55 90 251 105 
5 55 91 251 101 
5 55 92 254 106 

Spring 2001 Bonneville Whitetlsh Collection Data. 

Fish# Depth (M) Length Weight 
1 10 150 26 
2 15 306 184 
3 15 265 118 
4 15 311 204 
5 15 224 90 
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6 15 195 52 
7 15 219 78 
8 15 214 76 
9 15 161 32 
10 15 131 18 
11 15 96 8 
12 15 105 8 
13 20 237 96 
14 20 233 102 
15 20 219 74 
16 20 229 84 
17 20 225 74 
18 20 135 18 
19 20 110 8 
20 20 98 6 
21 20 113 10 
22 25 250 108 
23 25 235 98 
24 25 254 114 
25 25 240 90 
26 25 266 136 
27 25 265 124 
28 25 210 80 
29 25 209 72 
30 25 236 94 
31 25 161 32 
32 25 136 18 
33 30 282 158 
34 30 243 106 
35 30 235 94 
36 30 163 34 
37 30 180 46 
38 30 196 60 
39 30 163 30 
40 30 153 26 
41 30 144 22 
42 35 230 88 
43 35 152 24 
46 40 155 26 
48 10 244 116 
49 20 257 122 
50 20 241 96 
51 20 199 60 
52 20 144 18 
53 20 116 10 
54 25 279 140 
55 25 237 94 
56 25 221 74 
57 25 215 74 
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59 25 100 8 
60 25 100 8 
61 25 97 8 
62 30 437 730 
63 30 324 258 
64 30 331 274 
65 30 288 174 
66 30 280 170 
67 30 271 150 
68 30 274 146 
69 30 296 156 
70 30 275 126 
71 30 267 132 
72 30 271 138 
73 30 244 106 
74 30 242 96 
75 30 232 94 
76 30 224 84 
77 30 246 102 
78 30 219 72 
79 30 191 48 
80 30 180 40 
81 30 155 26 
82 35 285 156 
83 35 257 11 6 
84 35 252 106 
85 35 229 84 
86 35 242 100 
87 35 190 50 
88 35 140 20 
89 40 280 156 
90 ? 144 20 
91 10 301 190 
92 10 280 158 
93 10 278 150 
94 10 279 150 
95 10 275 146 
96 10 257 118 
97 10 244 90 
98 10 240 98 
99 10 238 98 
100 10 230 86 
101 10 220 80 
102 10 215 72 
103 10 203 64 
104 10 203 60 
105 10 204 60 
106 10 191 48 
107 10 187 54 
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108 10 170 40 
109 10 143 22 
110 15 289 160 
111 15 268 134 
112 15 290 160 
113 15 265 134 
114 15 268 140 
115 15 265 118 
116 15 249 110 
117 15 250 104 
118 15 237 96 
119 15 218 72 
120 15 177 40 
121 15 182 44 
122 15 173 40 
123 15 155 26 
124 15 145 22 
125 20 272 150 
126 20 275 138 
127 20 270 130 
128 20 261 124 
129 20 215 76 
130 20 187 46 
131 20 163 32 
132 25 261 124 
133 25 263 130 
134 25 262 120 
135 25 247 98 
136 25 232 98 
137 25 217 80 
138 25 185 44 
139 25 169 36 
140 25 157 26 
141 25 149 24 
142 25 149 24 
143 25 164 30 
144 25 146 20 
145 25 99 6 
146 25 98 6 
147 25 96 5 
148 25 101 7 
149 30 300 184 
150 30 288 166 
151 30 276 136 
152 30 253 112 
153 30 260 122 
154 30 248 104 
155 30 247 96 
156 30 250 108 



11 8 

157 30 243 94 
158 30 242 88 
159 30 207 62 
160 30 194 56 
161 30 198 60 
162 30 185 44 
163 30 193 52 
164 30 197 52 
165 30 174 36 
166 30 193 50 
167 30 183 46 
168 30 187 46 
169 30 178 40 
170 30 168 34 
171 30 181 44 
172 30 158 28 
173 30 159 30 
174 30 148 22 
175 30 152 26 
176 30 140 20 
177 30 107 8 
178 30 101 8 
179 15 285 136 
180 15 257 114 
181 15 266 130 
182 15 192 50 
183 15 108 8 
184 20 282 156 
185 20 245 104 
186 20 205 64 
187 20 158 26 
188 25 312 232 
189 25 294 164 
190 25 262 120 
191 25 246 112 
192 25 245 102 
193 25 234 88 
194 25 237 88 
195 25 210 66 
196 25 205 66 
197 25 149 24 
198 25 155 26 
199 25 147 24 
200 30 243 90 
201 35 243 98 
202 40 163 28 
203 10 187 48 
204 20 270 130 
205 20 252 114 



119 

206 20 238 96 
207 20 137 18 
208 25 257 116 
209 25 225 90 
210 25 170 34 
211 30 382 460 
212 30 285 172 
213 30 268 132 
214 30 284 158 
215 30 273 144 
216 30 288 158 
217 30 269 140 
218 30 273 136 
219 30 262 132 
220 30 247 94 
221 30 206 64 
222 30 190 52 
223 30 160 30 
224 35 262 134 
225 35 197 62 
226 35 201 60 
227 40 262 126 
228 40 250 106 
229 10 272 144 
230 10 271 146 
231 10 277 144 
232 10 260 136 
233 10 239 102 
234 10 257 114 
235 10 238 90 
236 10 235 94 
237 10 230 84 
238 10 233 78 
239 10 207 68 
240 10 207 64 
241 10 190 50 
242 10 177 40 
243 10 193 48 
244 10 178 42 
245 10 185 48 
246 10 178 38 
247 10 166 36 
248 10 164 28 
249 10 154 26 
250 10 153 26 
251 10 152 26 
252 15 271 144 
253 15 285 156 
254 15 262 144 
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255 15 265 132 
256 15 256 114 
257 15 255 106 
258 15 262 108 
259 15 242 98 
260 15 217 80 
261 15 235 78 
262 15 184 46 
263 15 184 46 
264 15 168 34 
265 15 171 34 
266 15 161 30 
267 15 153 28 
268 15 158 28 
269 15 154 26 
270 15 148 22 
271 20 296 184 
272 20 282 162 
273 20 278 150 
274 20 251 122 
275 20 230 82 
276 20 160 30 
277 20 154 26 
278 20 97· 6 
279 20 101 8 
280 25 289 180 
281 25 257 118 
282 25 230 90 
283 25 225 80 
284 25 161 30 
285 25 98 8 
286 25 106 8 
287 25 99 6 
288 30 333 268 
289 30 308 222 
290 30 267 116 
291 30 238 104 
292 30 214 74 
293 30 182 42 
294 30 181 46 
295 50 410 604 
296 50 196 50 
297 55 220 68 

Spring 2001 Bear Lake Whitefish Collection Data. 

Fish# Depth Length Weight 
1 40 241 88 
2 40 140 16 
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3 40 154 24 
4 30 209 60 
5 25 203 60 
6 35 243 88 
7 35 206 52 
8 30 220 80 
9 35 149 22 
10 45 195 50 
11 45 154 26 
12 50 261 132 
13 50 248 102 
14 50 230 84 
15 50 212 68 
16 50 231 80 
17 50 222 66 
18 55 247 104 
19 55 253 112 
20 55 249 106 
21 55 263 112 
22 55 231 78 
23 55 235 80 
24 55 217 68 
25 55 219 74 
26 55 222 74 
27 55 220 76 
28 55 248 98 
29 55 216 66 
30 55 228 78 
31 55 223 70 
32 55 212 64 
33 55 214 64 
34 55 220 64 
35 55 214 64 
36 55 210 60 
37 55 195 50 
38 55 186 40 
39 60 241 92 
40 60 244 92 
41 60 236 88 
42 60 254 106 
43 60 206 60 
44 60 204 56 
45 60 205 64 
46 60 196 52 
47 60 214 66 
48 60 193 50 
49 60 204 54 
50 60 190 48 
51 60 179 36 
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52 45 234 80 
53 45 243 100 
54 45 219 76 
55 45 211 64 
56 45 186 46 
57 45 171 36 
58 50 248 94 
59 50 239 88 
60 50 239 88 
61 50 238 94 
62 50 234 88 
63 50 223 84 
64 50 230 86 
65 50 229 78 
66 50 200 50 
67 50 200 56 
68 50 187 40 
69 55 237 92 
70 55 249 98 
71 55 230 76 
72 55 225 82 
73 55 240 98 
74 55 224 70 
75 55 242 96 
76 55 234 84 
77 55 245 100 
78 55 239 82 
79 55 235 82 
80 55 241 86 
81 55 215 60 
82 55 200 50 
83 55 197 50 
84 60 244 88 
85 60 214 66 
86 60 223 82 
87 60 235 84 
88 60 246 88 
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Appendix (B.) Diet Data. 

Bonnevi lle Whitefish Summer Diet (Proportion in Stomach) 

Food 
100-150 150-200 200-250 250-300 300-350 > 350 Item 

0.194 0.021 0.021 0.040 0 0 Zoop. 
0.010 0.010 0.013 0.034 0 0 Tricopt. 
0.004 0.024 0.011 0.147 0 0 Coleopt . 
0.018 0 .076 0.120 0.405 0 0.020 Terrest. 

0 0 0 0.138 0.980 0.980 Sculp. 
0.161 0.043 0.249 0.043 0.010 0 Sphar. 

Bear Lake Whitefish Summer Diet (Proportion in Stomach) 

Food 
100-150 150-200 200-250 > 250 Item 

0.129 0.072 0.012 0.05 Chiro. 
0.592 0.751 0.825 0.99 Otstra . 
0.169 0.104 0.050 0 Zoops. 
0.041 0 .002 0.008 0 Eggs 
0.019 0.001 0 0 Tricopt. 
0.022 0.006 0.068 0 Coleopt. 
0.028 0.064 0.037 0 Terrest. 

0 0 0 0 Sculp. 
0 0 0 0 Sphar. 

Bonneville Whitefish Spring Diet (Proportion in Stomach) 

100-150 150-200 200-250 250-300 300-350 > 350 Food Item 
0.226 0.351 0.28 0.262 0 .377 0 Chiro. 
0.333 0.135 0.029 0.008 0.033 0 Otstra . 

0 0 0 0 0 0 Zoops. 
0 0 0 0.004 0 0 Eggs 
0 0.025 0.007 0.017 0 0 Tricopt. 
0 O.Q35 0.055 0.107 0.267 0 Coleopt. 

0.441 0 0.215 0.237 0.148 0 Terrest. 
0 0.172 0 0 0 1 Sculp. 
0 0.258 0.412 0.356 0.175 0 Sphar. 
0 0.024 0 0.008 0 0 Oligocha. 
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Bear Lake Whitefish Spring Diet (Proportion in Stomach) 

Food 
100-150 150-200 200-250 >250 Item 

0.02 0.043 0.038 0 Chiro . 
0.99 0.896 0.727 0.75 Otstra. 

0 0 0 0 Zoops. 
0 0.002 0.021 0 Eggs 
0 0 0.001 0 Tricopt. 
0 0.023 0.036 0 Coleopt. 
0 0 0.011 0 Terrest. 
0 0 0 0 Sculp. 
0 0 0 0 Sphar. 
0 0.036 0.15 0.25 Oligocha. 
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Appendix (C.) Spatial Distribution Data. 

Spring Distribution Data (CPUE (NET HOUR)) by Depth Contour. 

Bonneville Bear Lake Depth (m) 
0.6250 0 10 
0.6944 0 15 
0.5278 0 20 
0.8056 0.0139 25 
1.1111 0.0278 30 
0 .1806 0.0417 35 
0.1042 0.0625 40 

0 0.3333 45 
0.0833 0.7083 50 
0.0417 1.5000 55 
0.0417 0.7083 60 

Summer Distribution Data (CPUE (NET HOUR)) by Depth Contour. 

Bonneville Bear Lake Depth (m) 
0.306 0.028 5 
1.903 0.056 10 
2.451 0.111 15 
0 .688 0.083 20 
0.764 0.076 25 
0.646 0.111 30 
0.896 0.188 35 
0.150 0.350 40 
0.083 0.917 45 
0.083 1.417 50 

0 1.533 55 
0 1.771 60 
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Appendix (D.) Thermograph Data. 

Thermograph Data Taken during the summer and winter of2001. 

Summer Winter 
Depth m Tempe Temp C 

1 19.8 5 
2 19.9 5 
3 19.9 5 
4 19.9 5 
5 19.9 5 
6 19.9 5 
7 19.9 5 
8 19.7 5 
9 19.4 5 

10 18.9 5 
11 18.7 5 
12 16.2 5 
13 15.4 5 
14 15.2 5 
15 14.8 5 
16 14.6 5 
17 14.5 5 
18 14.4 5 
19 12.6 5 
20 11 .8 5 
21 11.6 5 
22 11.4 5 
23 10.9 5 
24 9.9 5 
25 9.3 4.75 
26 8.8 4 .5 
27 8.4 4 
28 7.9 4 
29 7.3 4 
30 7 4 
31 6.7 4 
32 6.6 4 
33 6.4 4 
34 6.2 4 
35 6.1 4 
36 5.8 4 
37 5.6 4 
38 5.6 4 
39 5.5 4 
40 5.5 4 
41 5.5 4 
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42 5.4 4 
43 5.4 4 
44 5.3 4 
45 5.2 4 
46 5.2 4 
47 5.1 4 
48 5.1 4 
49 5 4 
50 5 4 
51 5 4 
52 4.9 4 
53 4 .8 4 
54 4 .8 4 
55 4 .8 4 
56 4 .8 4 
57 4.7 4 
58 4 .7 4 
59 4.7 4 
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Appendix (E.) Survivorship Curve Data. 

Bonneville Whitefish Survivorship. 

Age (years) #Individuals 

1 383 
2 164 
3 86 
4 43 
5 42 
6 77 
7 70 
8 47 
9 32 
10 13 
11 8 
12 5 

Bear Lake Whitefish Survivorship. 

Age (years) # Individuals 

1 42 
2 33 
3 30 
4 29 
5 27 
6 22 
7 20 
8 15 
9 14 
10 6 
11 5 
12 3 
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Appendix (F.) Catch Per Unit Effort (CPUE) Data. 

Bonneville Whitefish Catch Per Unit Effort (CPUE) for both caught and Corrected Data. 

Length (mm) CPUE (caught) CPUE (corrected) 

90 0.0071 0.0083 
95 0.0027 0.0050 
100 0.0030 0.0025 
105 0.0039 0.0017 
110 0.0020 0.0008 
115 0.0045 0.0033 
120 0.0056 0.0091 
125 0.0127 0.0223 
130 0.0326 0.0330 
135 0.1177 0.0817 
140 0.0761 0.0545 
145 0 .0482 0.0528 
150 0.0133 0.0264 
155 0.0097 0.0173 
160 0.0171 O.D206 
165 0.0244 0.0239 
170 0 .0216 0 .0231 
175 0.0207 0.0314 
180 0.0099 0.0239 
185 0.0092 0.0165 
190 0.0091 0.0124 
195 0.0135 0.0165 
200 0.0085 0.0116 
205 0.0095 0.0173 
210 0.0110 0.0297 
215 0.0071 0.0132 
220 0.0113 0.0173 
225 0.0103 0.0149 
230 0.0134 0.0215 
235 0.0089 0.0182 
240 0.0058 0.0165 
245 0.0077 0.0124 
250 0.0146 0.0173 
255 0.0202 0.0182 
260 0.0264 0.0190 
265 0.0406 0.0256 
270 0.0398 0.0248 
275 O.Q309 0.0215 
280 0.0174 0.0149 
285 0.0110 0.0124 
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290 0.0043 0 .0066 
295 0.0019 0.0041 
300 0.0020 0.0058 
305 0.0023 0.0033 
310 0.0007 0 .0008 
315 0.0000 0 .0000 
320 0.0000 0.0000 
325 0.0020 0.0017 
330 0.0010 0.0008 
335 0.0009 0.0008 
340 0.0022 0.0025 
345 0.0000 0.0000 
350 0.0023 0.0041 
355 0.0004 0.0008 
360 0.0000 0.0000 
365 0.0000 0.0000 
370 0.0008 0.0008 
375 0.0000 0.0000 
380 0.0000 0.0000 
385 0.0016 0.0008 
390 0.0000 0.0000 
395 0.0076 0.0025 
400 0.0000 0.0000 
405 0.0121 0.0025 
410 0.0000 0.0000 
415 0.0000 0.0000 

Bear Lake Whitefish Catch Per Unit Effort (CPUE) for both caught and Corrected Data. 

Length (mm) CPUE (caught) CPUE (corrected) 

90 0.0000 0.0000 
95 0.0000 0.0000 
100 0.0010 0 .0008 
105 0.0097 0.0041 
110 0.0020 0.0008 
115 0.0034 0.0025 
120 0.0010 0.0017 
125 0.0019 0.0033 
130 0.0049 0 .0050 
135 0.0107 0.0074 
140 0.0104 0.0074 
145 0.0023 0.0025 
150 0.0021 0.0041 
155 0.0005 0.0008 
160 0.0027 0.0033 
165 0.0008 0.0008 
170 0.0031 0.0033 
175 0.0027 0.0041 
180 0.0024 0.0058 
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185 0.0037 0.0066 
190 0.0079 0.0107 
195 0.0047 0.0058 
200 0.0061 0.0083 
205 0.0041 0.0074 

210 0.0037 0.0099 
215 0.0066 0.0124 
220 0.0059 0.0091 
225 0.0109 0.0157 
230 0.0098 0.0157 
235 0.0101 0.0206 
240 0.0067 0.0190 
245 0.0087 0.0140 
250 0.0077 0.0091 
255 0.0092 0.0083 
260 0.0046 0.0033 
265 0.0052 0.0033 
270 0.0000 0.0000 
275 0.001 2 0.0008 
280 0.0000 0.0000 
285 0.0007 0.0008 
290 0.0000 0.0000 
295 0.0000 0.0000 
300 0.0000 0.0000 
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