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ABSTRACT 

Bioavailable Phosphorus in the 

Bear River System, Utah 

by 

Kenneth W. Barker, Master of Science 

Utah State University, 1988 

Major Professor: Dr. Darwin L. Sorensen 
Department: Civil and Environmental Engineering 

ix 

The bioavailable fraction of phosphorus (BAP) in the lower Bear 

River system waters was investigated. BAP plays a critical role as 

the limiting nutrient for algal production and eutrophication in 

proposed reservoirs in the Bear River system. The Bear River system 

has a hardness rang ing between 180-240 rng/L as CaC03 which 

significantly affects BAP. 

BAP estimation was done by a modified Selenastrum capricorn utum 

Print z Algal Assay Bottle Test. The algal bioassay is considered the 

best estimator of BAP because no chemical tests or i ndicator 

parameters are available. Autoclaving and UV radiation were found to 

be unacceptable means for sterilization because of phosphorus 

precipitation and inability to kill all the protozoa, respectively. 

Whole water samples were sterilized by gamma radiation . Hydrogen 

peroxide formed by gamma radiation was minimized by sparging with 

nitrogen gas , and adding peroxidase to remove low hydrogen peroxide 

concentrations. Soluble reactive phosphorus concentrations changed 

during radiation. 
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The algal photosynthetic consumption of co
2 

in the assay 

procedure raised the pH from 8 to as high as 10, which resulted in 

significant quantities of phosphorus precipitating with calcium and 

becoming unavailable. To minimize the effects of precipitation , the 

following recommendations are made : (1) bubble the bioassay flask 

with a C02/air gas mixture to minimize pH increase ; and (2) use a 

high inoculum (105 cells/ml) of S . capricornutum that have been 

phosphorus starved for several days to maximize luxury uptake. 

Bioavailable phosphorus was estimated for each of the sources in 

Cache County. There are three major point sources (Logan, Hyrum , and 

Preston wastewater treatment plants) that contribute significant 

quantities of phosphorus . There are approximately 200 feedlots in the 

Cache Valley, and approximately 744,000 acres of land in Cache County 

which contribute runoff to the Bear River system. In Cache County, 

point sources contribute 2 8 , 20 0 ( 4 6%) kg BAP /yr, livestock runoff 

contributes 2,500 (4%) kg BAP/yr, and land runoff contributes 28,600 

to 33,600 (50 %) kg BAP/yr. Bioavailable phosphorus from land runoff 

was calculated by using export coefficients, which are usually 

accurate within a factor of two. 

A comprehensive phosphorus management plan is required to reduce 

available phosphorus from all sources to minimize algal blooms in t he 

receiving waters . 

(109 page s ) 



INTRODUCTION 

Overview 

Excessive algal blooms associated with eutrophication cause water 

quality proble ms in many reservoir s that supply water for domestic, 

agricultural and industrial uses. Drinking water treatment costs will 

be increased due to the removal of the odors and tastes associated 

with algae, the production of trihalomethane precursor material, 

clarification problems and higher c hlorine demand. Algal blooms will 

also degrade rec r eational aspects of reservoirs due to odors, 

aesthetics, hind ra nc e of swimmers and c logging of boat motors. 

Certain species of cyanobacteria (blue-green algae) are especially 

harmful because they are undesirable as food to grazing zooplankton 

species, they cause reduced light pe netration, and they reduce 

dissolved oxygen , resulting in anaerobic conditions, which may 

mobilize iron and mangane se thereby causing additional potable water 

use problems (Miller et al., 1983). 

Algal growth can be limited by the surrounding environment or by a 

specific nutrient. The Law of Tolerance states that environmental 

factors such as light, pH and temperature outside of certain ranges 

can limit growth (Odum, 1954) . When excessive nutrients are present 

in a lake and cause eutrophic conditions, plant growth probably 

becomes limit e d by envirorunental (extrinsic) factors (e. g., light, 

temperature or pH) rather than by nutrients (Porcella and Bishop, 

1975) . 

Liebigs Law states that growth of a plant is dependent on the 

amount of food-stuff which is presented to it in minimum quantity. In 

other words, the essential material available in amounts most close l y 

approaching the critical minimum needed will tend to be the limiting 
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one (Odum, 1954). This law implies that a single nutrient limits 

growth at any one time (Miller et al., 1978) , 

Algae require carbon , nitrogen, phosphorus and s ulfur in 

relatively l arge quantities for growth. Sulfur is essential in the 

formation of proteins and promotes the formation of chlorophyll. 

Sulfur is usually quite abundant in natural waters (Coker, 1954). 

Other nutrients that are required in trace amounts are potassium, 

magnesium, manganese, boron, and iron as part of the chlorophyll 

molecule or i n its formation (Coker, 1954). These nutrients are 

usually not limiting because they are only needed in minute quantities 

and come into the water system by airborne particulate matter, and 

runoff from surrounding areas. Usually carbon, in the form of co
2

, 

nitrogen or phosphorus is the limiting nutrient, depending upon their 

relative abundance in the water {O'Kelly, 1973). For algal production 

to be reduced, the limiting nutrient concentration must be at the 

level where algal productivity is proportional to, or limited by that 

nutrient (Porce lla and Bishop, 1975). 

Weiss (1976) suggested that if the ratio of soluble inorganic 

nitrogen to total soluble phosphorus was greater than 13 the waters 

were phosphorus limited, when this ratio was in the range of 9-12, 

both nutrients were limiting, and when the ratio was below 8 nitrogen 

was limiting. Phosphorus i s usually the limiting nutrient in lakes 

and reservoirs due to the additional nitrogen often made available 

through nitrogen fixation by cyanobacteria (Porcella and Bishop, 1975; 

Maki et al., 1984). Carbon is usually the limiting nutrient only if 

the algal production of the water body is so high that not enough co
2 

can be absorbed by the water from the atmosphere. Carbon is usually 

in such excess , that it would be impractical to control it as a 

limiting nutrient. For this reason, the present study focuses on 

phosphorus management. 

Phosphorus can be in four forms: (1) orthophosphate (Po
4

3 -) 

which is available for biological metabolism without further 
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breakdown; (2) polyphosphates which are mainly unavailable, but can 

undergo hydrolysis in aqueous solutions and revert to orthophosphate 

(within a period as short as a few hours); (3) organic phosphorus 

which can become available with the breakdown of organic matter by 

bacterial action and dissolution; and (4) particulate inorganic 

phosphates (either precipitated as mineral phosphates or sorbed to 

clay minerals) which require dissolution , usually by a pH decrease, to 

become readily avai l able to a lgae as dissolved ort hophosphate 

(Tchobanoglous, 1979; Porcella and Bishop, 1975; Van Wazer, 1973) . 

Bioavailable Phosphorus 

Another important phosphorus category is bioavailable phosphorus 

(BAP) which is defined as the phosphorus which can be readily utilized 

by algae. Bioavailable phosphorus is usually only a fraction of total 

phosphorus (TP), while soluble reactive phosphorus (SRP) determined by 

the ascorbic acid method can be greater or less than BAP. Generally 

phosphorus is available to algae only as orthophosphate (Porcella and 

Bishop 197 5) . 

The types of phosphorus are continually changing between available 

and unavailable forms. Lee et al. (1978) stated that phosphorus may 

become unavailable by sorption on sediments; coprecipitation with 

iron, aluminum oxides and calcium; and uptake by aquatic organisms. 

For the Bear River, Sorensen et al . (1987) stated that important 

phosphorus removal mechanisms may be c hemical precipitation 

(especially with calcium) in the stream, sedimentation of phosphorus 

bearing solids , and biological immobilization. Lee et al. (1 978) also 

stated that, the longer the transit time of phosphorus, the greater 

the primary productivity in the river; or the greater the suspended 

sediment load in the river, the greater will be the conversion of 

initially available P to unavailable forms. Edmundson ( 1972) found 

that the total phosphorus concentration during the summertime algal 



bloom in eutrophic lakes, when most of the phosphorus is in the algal 

cells, appears to be closely related to the winter-dissolved 

orthophosphate concentrations , so phosphorus is cycling from the cells 

to the water column. The phosphorus is released back to the water 

column by the death and subsequent decomposition of the cells. 

Cycling a lso occurs for particulate phosphorus. Organic 

particulate phosphorus can be made available by microbial 

mineralization in a relatively short time (Golterman, 1973). Some 

inorganic particulate phosphorus may be made ava i lable to algae 

through solubilization reactions (Golterman , 1973) . 

Phosphorus also cycles in lakes. Hooper ( 1973) stated that 

phosphorus compounds may become available in lakes by (1) in situ 

decomposition of the phytoplankton and zooplankton organisms 

themselves, (2) excretion by the plankton organisms, (3) regeneration 

from bottom sediments and transport to the photosynthetic areas, and 

(4) in-situ release of dissolved organic compounds by algae and 

bacteria and subsequent breakdown of the organic compounds into 

soluble phosphate. These processes may operate simultaneously or 

separately. 

Phosphorus can also be cycled from sediments that contain iron. 

Insoluble ferric phosphate can be reduced to a soluble ferrous 

phosphate under anaerobic conditions (Holt et al ., 1970). Sulfide has 

a stronger affinity to ferrous iron than phosphate , so phosphate will 

then become available in the ortho-phosphate form (Messer and Ihnat, 

1983) . This process will be reversed when aerobic conditions occur 

and phosphorus will become unavailable (Holt et al., 1970). Phosphorus 

continually cycles between available and unavailable forms. 

I 

l.i 
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Bioavailable Phosphorus Estimation 

Algal bioassays (Miller et al., 1978) can be used to estimate BAP. 

One of the major disadvantages of BAP estimation is that it is a 

relatively expensive and time consuming test (Bradford and Peters, 

1987) . Peters (1981) felt that BAP should be approximated by total 

phosphorus because current assays for available phosphorus are at, 

best, cumbersome and at worst inadequate. U.S. Environmental 

Protection Agency (1980a) shared this opinion stating that BAP should 

be viewed with a high degree of uncertainty and as only a "ball park" 

approximation of algal productivity. Present practice in nutrient-

response regressions and loading models implies that TP is an adequate 

estimator of bioavai l able phosphorus, so BAP may not even need to be 

estimated (Bradford and Peters , 1987) . 

Rast and Lee (1982) found that acceptable estimates of 

eutrophication could be determined by inputting various total 

phosphorus concentrations into the U. S. Organization for Economic 

Cooperation and Development (OECD) phosphorus loading models. The 

United States portion of the North American study included 34 water 

bodies located primarily in the north central and northeastern United 

States (Rast and r.ee , 1980). However, these empirical models are 

based on data with considerable variance and very broad confidence 

intervals. Many eutrophication and phosphorus management applications 

require more accurate and precise estimations of potential algal 

production potential (Bradford and Peters, 1 987) . 

Studies conducted in New Jersey by Trama and Mcintosh (1985) 

showed that BAP could be estimated by soluble reactive phosphorus 

(SRP) and total phosphorus (TP) . They found for one watershed in New 

Jersey that ratios of BAP to TP ranged from 0.03 to 1.00 with a mean 

of 0.40 and the ratios of BAP to SRP ranged from 0.04 to 4.00 with a 

mean of 1. 20. 



Rigler (1973) stated that SRP analysis could have two errors when 

predicting orthophosphate, which is often considered 100% BAP: (1) 

filtration might damage delicate algal cells and release phosphate 

phosphorus o r readily hydrolyzed phosphate esters into the filtrate; 

(2) H2S04 could hydrolyze free phosphate esters and release ortho­

phosphorus from fulvic acid-metal phosphates or from colloidal iron 

phosphate. Rigler (1973) also felt that t h e discrepancy between SRP 

and ortho-phosphorus will probably prove to be significant only in 

unpolluted lakes in which phosphorus is in short demand. Twinch and 

Breen (1982) found that SRP underestimated BAP in the soluble fraction 

at low concentrations and overestimated BAP at SRP concentrations ~ 20 

~l g P/L. 

Another chemical method to estimate BAP is with sodium hydroxide 

extractions which have been us ed to estimate BAP for sedime nt core 

samples containing iron . Sodium hydroxide phosphorus represents 

primarily phosphorus l oonely bound to the ~urface of ferrous-ferric 

hydrous oxide gels, and which would be readily released upon reduction 

of the iron to Fe(II) when the sediment interface becomes anaerobic 

(Messer and Ihnat, 1983) . 

It is difficult to estimate BAP because phosphorus is continually 

changing forms. BAP estimation is only applicable for o ne instant in 

time and one set of conditions at the instant that it is measured. 

BAP is a very dynamic parameter with organic phosphorus becoming 

available over time with biochemical att ack and dissolution, condensed 

phosphates becoming available by hydrolysis, and the effects of a pH 

change upon t he precipitation and solubilization of 

phosphate. 

particulate 

The algal bioassay is probably still the best way to est imate BAP 

since no chemical method has produced satisfactory estimations of BAP 

for all the various watersheds and their respective water chemistries 

throughout the world. In the bioassay procedure the water sample 
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needs to be sterilized to eliminate all life so that the test algae 

will nei t her be grazed upon nor have compet ition for the limiting 

nutr i ent. Filtration may underestimate BAP, si nce part iculate BAP 

will not b e accounted for. Therefore a whole water sample s h o uld be 

used. Phosphorus may precipitate with hardness in the water when 

autoclaved, result i ng in a low BAP. Ultraviolet radiati o n may not 

dest r o y all the protozoa which can graze on t h e algae and result in a 

l ow BAP estimate. Two hundred thousand mWS of ultravio l et radiation 

is needed to destroy Paramecium, a type of protozoa (Ho ffman , 1 97 4). 

Algal Bioassays 

Algal bioassays are u seful for determining algal productivity and 

nutrient limitation because they integrate the effects of all 

intri n sic factors such as the chemical composition of the water 

(Porcella and Bishop, 1975). The alga l bioassay ca n estimate toxicity 

by using dilution techniques, and estimate the specific limiting 

nutrient via spiking with one or more nutrients and observi ng the 

response of the algae (Porcella and Bishop , 1975) . The a l gal b i oassay 

wi ll measure the nutrient forms that are available for algal growth 

vers u s the total nutrient concentration as measured by c hemical 

analysis (Miller et al. , 1978). According to Miller et al. (1978) the 

U.S. Environme ntal Protection Agency ' s standa rd algal bioassay is 

meant f o r: 

1. Asses sme nt o f a receiving water to d e termine its nutrient 
status and sensitivity to changes in N and P loading. 2 . 
E v aluation of materials and products to determine t heir 
p o tential stimulatory o r inhibitory effects on algal g r owth in 
rec eiving waters. 3 . Assessment of effects of comp l ex wastes 
origi n ating from industrial, mu nicipal a nd agricultural point 
or non-point sources to define their impact up o n receiving 
waters. (p. 5) 



8 

The standard algal assay has been modified s l ightly by va r iou s 

investigators to allow it to be used to estimate BAP (Bradford and 

Peters , 1987; Dorich et al. , 1984). 

~s of Phosphorus 

Cyc l ing of phosphorus from sediments , degrada t ion of organic 

phosphates and the hydrolysis of polyphosphates to orthophosphates may 

serve as phosphorus sources to algae , but the primary , though not 

always the most immediately important sources of phosphorus are t hose 

external to a lake (Porcella and Bishop, 1975). The external sources 

include domestic and industrial wastewater , dairies, feedlots, 

agricultural runoff and erosion whi c h can all contribute phosphorus i n 

varying quantities depending on their proximity to a water body and 

the relative proportions of each in the watershed. For example , Loe h r 

(1974) estimated that 73 % of the total phosphorus load to Lake Erie 

came from wastewater treatme nt plants. For a different watershed , 

agricultural runoff, contributed 52 % of the t ota l phosphorus load to 

Lake Canadarago, N. Y. Total phosphorus in runoff from forest land, 

range land and cropland was 0.03-0.9 , 0.08 , and 0.06 - 2.9 kg/yr/ha , 

respectively (Loehr , 1974). 

Phosphorus from land runoff 

In some watersheds land runoff is the biggest contributor of tota l 

phosphorus. Crop lands can be the major contributor of so l ub l e 

phosphorus depending upon the fertilizer application rate and method 

(Porcella and Bishop, 1975}. Often times range lands can have 

substantial quantities of decaying vegetation upon the surface which 

can be h igh in organic phosphorus and is high l y susceptible to 

transport because of the low density of organic matter (Porce lla and 

Bishop , 1975). 



Grobler and Silberbauer (1985 ) felt t hat land u se has been 

mistakenly identified in many studi es as the cause of non-point 

pollution problems, whereas the controlling factor actually is land 

form (soil composition) . Runoff from soils high in c lay a nd organic 

matter usually have higher concentrations o f TP than the o riginal soil 

(Green, et al ., 1978; Overcas h and Davidson, 1980) . For example 

r unoff sediment in one situation contained 60 percent c l ay while the 

soi l on l y contained 18 percent. The runoff had a higher TP content 

than the original soil due to the higher clay content (Sharpley, 

198 0a) . Runoff will contain enriched concentrations of suspended clay 

because of its smaller particle size and dispe r sive properties; and 

enriched concentrations of organic matter because of its lower 

density, and smaller size. The particle density of most silicate 

minerals in soils varies between 2. 60 and 2. 75 g/cm3 while organi c 

matter falls in the range of 1.2 to 1.5 g/cm3 (Brady, 1974) The 

densit y of clay particles is between 2 and 3 g/cm3 (Weast , 1 9 76) . 

Clays are colloids with large surface areas and a negative charge (van 

Olphen , 1963). The negative charge keeps the c lay particles from 

agglomerating, which enhances their dispersive action and slow 

sett ling characterist i cs (van Olphen , 1963) . Even though c l ay so ils 

have a h igh TP content, Mancini et al. (198 3 ) found that most o f this 

phosphorus was unavailable to algae. 

The rock s in the soil can be i mportant as well as the clay and 

organic matter content in predicting the quant ity of phosphorus in the 

runoff. Grobler and Silberbauer (1985) s howed that sedimentary rocks 

in South Africa contain more phosphorus tha n igneous rocks. The U.S. 

Environmental Protection Agency (1980a) and Tisdale and Nelson (1975) 

have given the following soil descriptio n s i n regards to their 

eros ivity and phosphorus characteristics for croplands: Sandy/grave l 

soils (1) do not erode easily , (2 ) have a low cation content, a nd (3) 

cause a general downward flow of water to the g roundwate r (high 

infiltration capacity) . Thus phosphorus export v ia runoff is low. 
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Clay soils (clay learns, silt learns , etc . } can remove phosphorus by two 

mechanisms : (1} replacement of a hydroxyl group or (2 ) formation of 

a clay-cation- phosphate linkage. Clay soils have a high erodibi lity, 

and a low infiltration capacity. Therefore phosphorus export via 

runoff is high. Organic soils have a high nutrient content. As this 

soil is used for cultivation, it decomposes rapidly and organic 

phosphorus i s mineralized. Therefore phosphorus export via runoff is 

high. 

The r e latio nship between TP and BAP in runoff is not completely 

understood. Schaffner and Oglesby (1978), stated that the consequence 

of using BAP instead of TP is to de- emphasize the importance of 

agriculture relative to the other sources since potentially large 

quantities of phosphorus can be tied up with particulate matter and 

not be available. 

The time of year as well as soil composition are significant 

i nfluence s on the amount of phosphorus transported off the land. 

Spring snowmelt runoff has been s hown t o ca rry greater mass loads of 

phosphorus than runoff during other times of the year (Hanson and 

Fenster, 1969). Most snowmelt runoff phosphorus originates in plant 

residues that accumulate during winter on the frozen soil . The 

phos phate released by these residues does not have sufficient time to 

interact wit h the semi-frozen soil during the spring runoff period and 

the residues are easily removed with overland flowing water (Porcella 

and Bishop, 197 5) . 

Not only is the soil composition and time of year in runoff 

important, but the length of time that this phosphorus associated wit h 

particulate matter will r e ma in in solution is also important. A study 

done in Indiana determined that 90 percent o f the suspended sediment 

was less than 20 pm in size (Dorich et al., 1984 ) . Armst r o ng et al. 

(1979) determi ned that particles l ess than 2 pm will stay in 

suspension longer t han 76 days and particles between 2 to 20 ~lm will 
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stay in suspension from 0.76 to 76 days. This means that phosphorus 

associated with clay (< 2~) is likely to remain suspended. 

Land runoff can also contribute phosphorus to irrigation return 

water which would be expected to contain relatively low concentrations 

of phosphorus. This is demonstrated in a study on the Snake river 

where the river had phosphorus concentrations of 21 ~g/L, but drainage 

irrigation water, originally diverted from the river , had Jl g/L. 

This is a 70% reduction of phosphorus in irrigation return water 

(Carter et al., 1971). 

Another form of runoff can come from feedlots. Feedlot runoff is 

extremely high in phosphorus (10-620 kg TP/yr/ha) and bacteria which 

will result in water quality degradation of any nearby reservoirs or 

streams (Filip and Middlebrooks, 197 6; Loehr, 1974) . A conunon 

practice during early agricultural development was to locate feedlots 

where natural drainage aided the transport of runoff wastes to the 

nearest water body (Kreis and Shuyler , 1972). 

Phosphorus from wastewater 
treatment plants 

Wastewater treatment plants (WWTP's) along with land runoff are 

usually considered the major contributors of phosphorus to water 

bodies. Phosphorus in domestic wastewater comes from human wastes, 

food wastes and condensed inorganic phosphate compounds used in 

various household detergents. Raw domestic wastewater has typically 4 

to 15 rng/L as total phosphorus which is composed of 1 to 5 rng/L as 

organic phosphorus and to 10 mg/L as inorganic phosphorus. 

Approximately 10 % of insoluble phosphorus is removed in primary 

treatment. The secondary treatment transforms polyphosphates and 

organic phosphates to ortho-phosphorus, but removes very little 

phosphorus (Tchobanoglous , 1979). This means that secondary treatment 

increases bioavailability of the phosphorus. Young et al. (1982) 

presents data that confirms the transformation of influent phosphorus 
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to BAP in the WWTP process by e howing t hat i n flue nt wastewater is 60 

to 80 % BAP while the effluent total phosphorus was 83 % BAP . 

Wa s tewater treatment plants can be designed and operated to remove 

phosphorus by precipitation with chemical addition, biological uptake 

(a c tivated s ludge ) or land application. 

fol low secondary treatment. 

Phosphorus Management 

These processes usually 

The relative contr ibution of phosphorus f o r each of the sources 

discussed n eeds to be d etermined before a n effective phosphorus 

management plan can be designed and implemented. It is important to 

know BAP when ranking the importan ce of variou s source s in regards to 

eutrophication. For example , land runoff can contribut e large total 

phosphorus loads wit h much of it unavailable to algae while , total 

phosphorus l oads from WWTP ' s are almost 100 % available. 

Phosphorus management needs to control all of the sources now and 

i n the future to assure a long term water quality improvement. 

Reduction in a l gal blooms may requi re some addit i onal time after 

implementation of t he phosphorus management plan. This time l ag might 

be due to sediment storage of phosphorus a nd later release to the 

overlying waters by organic matter decay or redox reactions, it has 

no t been satisfactorily demonstrated that a reduction in phosphorus 

concentration alone in a lake will cause an immediate reduction in 

algal blooms. Furthermore , if a phosphoru s load reduction program 

incorporates the removal of most ly particulate phosphorus (e.g. from 

land runoff), a s maller improvement in phytoplankton-related water 

qua lity would be expected than if a greater portion of the ava ilable 

phosphorus l oad (e . g . wastewater ) were r emoved (Ras t and Lee, 1982 ). 

One of the first phosphorus management decisio ns made by many 

states was to ban phosphate s in dete r gents t hinking that this 

reduction in phosphorus load would improve the wa ter quality. Maki et 
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al. (19811) found that even though detergents comprise 20 to 30% of the 

phosphate load in wastewater; the ban of phosphate in detergents did 

not measu rably improve the water quality in the Great Lakes area. 

Maki et al. (1984) showed that it can require up to a 92% reduction of 

phosphorus in wastewater treatment plant effluents before a measurable 

improvement of water quality can be measured in a water body. 

Usually, a comprehensive phosphorus management program needs to 

incorporate contro l of non-point sources and point sources. In 1976, 

sixteen states had phosphorus limits between 0.1 to 2 mg/L for 

wastewater treatment plant effluents {U.S. Environmental Protection 

Agency, 1976). The State of Utah regulates its water bodies by 

stating that streams cannot e~ceed 0.05 mg/L ro4-P and that lakes and 

reservoirs cannot exceed 0.025 mg/L P04-P (Utah Deptartment of Health, 

1978) . The present study investigated the Bear River System in Utah to 

determine the BAP contributions from the various sources. 

The Phosphorus Situation for the Bea r 

River System in Utah 

The Utah Water Development Plan 

The " State Water Plan for the Lower Bear River Basin" proposes 

Bear River water be developed for irrigation, municipal, industrial, 

wildlife/waterfowl, recreation , hydro - power, and flood control. A 

number of water related studies have been conducted on the Bear River 

since 1970. The development plans began in earnest in 1980 when the 

Bear River compact was signed between the states of Idaho, Wyoming and 

Utah (N.E. Stauffer, Jr. , Utah Division of Water Resources, personal 

communication, June 6 , 1988) . 

The Colorado River will supply the Salt Lake Vall ey 130 , 000 to 

136,000 acre - feet of water for municipal and industrial use upon 

completion of the canal. In 1986 it was decided that the Salt Lake 
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Valley might need an additional 100,000 acre-feet from the Bear River 

system by the year 2005 for municipal and industrial use (N. E. 

Stauffer, Jr . , Utah Division of Water Resources , personal 

communication, June 6, 1988) . 

The Utah Association of Conservation Districts (1986) stated the 

following facts regarding Bear River water usage: in Box Elder and 

Cache Counties it is estimated that 42,000 acres of a potentia l 

11 9 ,00 0 acres of irrigable land could be brought under irrigation in 

the next 30-40 years whi c h would require a divers ion of about 111,000 

acre -feet of new water; a minimum addition of 124,000 acre-feet of 

storage water is needed at the Bear River Migratory Bird Refuge to 

provide adequate management in existing areas and 13 , 000 to 15,000 

acre-feet for addi tional habitat development. 

There are over 17 reservoir s with a capacity over SO acre-feet in 

Box Elder and Cache Counties, but with the except ion of Willard Bay , 

each ha s a capacity under 20,000 feet. Thirty five potential. 

reservoir sites have been se lected . The nine best sites are at 

Washakie, Lampo, Honeyville, West Bay, and East Promontory in Box 

Elder County, and at Amalga, Cutler , Millcreek , and Avon in Cache 

County. It has not yet been decided which reservoirs wil l be built 

(Utah Association of Conservation Districts, 1986) . 

Potential eutrophication problems 
in the proposed reservoirs 

Water quality data has been col lected on the Bear River system by 

the Utah Water Research Laboratory (UWRL) . This data was used in 

compute r simulation modeling of the eutrophication potential of the 

proposed reservoirs at Amalga, Honeyville, Oneida , Mill Creek and 

Avon. It was determined that all of these proposed reservoirs could 

have at least short periods of eutrophication , and that phosphorus was 

the limiting nutrient . These mode ls were run using 45 and 85 percent 

of the total phosphorus as bioavailable phosphorus, but the actual BAP 
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load of the Bear River and its tributa ries was not kno wn (Sorensen et 

a l., 1986). 

Methods of eutrophication control 

If these reservoirs were t o be built, there cou ld be two 

strat egies for eutrophication control . The limiting nutrient can be 

controlled at the source and/or the effects of eutrophica tion can be 

minimi zed in the water body. Of course , the e ffects of eutrophication 

may be negligible or even desirable and no contro l may be nee ded at 

a ll. This "do nothing " option is seldom acceptable, however. 

Eutrophication prevention management options are generally the most 

desirable a n d are usually directed toward con tro ll i ng the limiting 

nutrient. 

Si nc e p hosphorus was determined to be the limit ing nutrient in the 

Bear River system, the control stra t egies s h o uld be based on its 

control. Wastewater treatment plants are one of the major sources o f 

phosphorus . Phosphorus can be removed from WWTP effluent s by p hy s i ca l 

treatment whi ch can inc lude sedimentation , f lotation a nd fi ltration; 

chemical treatment which can include precipitat i o n with l ime, a luminum 

or iron , chemical - biol ogica l precipitation, ion exc hange ; a nd 

biological treatment which can include activat e d sludge o r o xidation 

ponds. Removal efficiencies range from 70 % for chemical addition 

followed by sedimentation to 99 % for c hemi ca l addition followed by 

sedimentation and filtration (Nesbitt , 1 973) . 

For a comprehensive management plan t o b e effective in control l i ng 

the limiting nutri e nt, p hosphoru s from l a nd runoff sho uld be minimized 

by using agricultural practices s uch as minimal tillage tha t minimize 

surface disturbance and by placing highly e r od ible lands into a 

p e rmanent cover sit uation (Sorensen et a l., 1987). 

The second control strategy of minimizing eutrophication in the 

water body can be accomplished by dredging , sediment trea tment for 

phosphorus inactivation, aeration a nd/or weed harvesting . Dredging 
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will: (1) reduce the frequency of summer overturns in very shallow 

lake s by increasing the volume of the hypolimnion layer; (2) result 

in a larger volume of hypolimnetic water which in turn contains a 

larger quantity of oxygen; and (3) reduce the water temperature to 

increase oxygen solubi lity, and decrease biological kinetic rates 

(Stefan and Han son , 1980). The general concept is that shallow 

eutrophic lakes can be dredged to such a depth that phosphorus 

released from the sediments into the hypolimnion is not recycled to 

the photic zone by lake overturn. Thi s wil l reduce the standing crop 

of algae (Stefan and Hanson , 1980). Dredging has been used in several 

locations , including Wisconsin, where varying improvements of water 

quality have been seen (Dunst, 1980). In situ sediment treatment 

involves adding a materi al such as alum to increase the phosphorus 

binding capacity of the sediment (Barroin, 1980) . This process needs 

to be further evaluated to determine its effectiveness. Aeration 

increase s the dissolved oxygen in bottom waters which minimizes the 

redox reactions of phosphorus with Fe, Al , and Mn and the cycling of 

phosphorus from bottom sediments (Pastorek et al., 1980). Harvesting 

will remove weeds and algae and thus increase the aesthetics of the 

water body and remove the phosphorus that is contained within the 

plants (King and Burton, 1980) . Harvesting is a short term remedy 

because the algae will grow back since the phosphorus concentration i s 

usually not signi fica ntly reduced. 

Water quality managers must decide whether to control 

eutrophication or pay the increased costs associated with using 

eutrophied water as a water supply. 
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OBJECTIVES 

Bioavailable phosphorus is the limiting nutrient for alga l growth 

in the Bear River system, Utah. This study involved two processes to 

better understand BAP. These were: (1) to deve lop a BAP estimation 

procedure; and (2) to measure BAP from the various sources in the 

Bear River system . 

The following objectives were addressed in this study: 

1) To develop a procedure for estimation of bioavailable phosphorus 

for the Bear River. 

2) To determine sources of bioavailable phosphorus in the Bear River 

system . 

3 ) To determine the relative contribution of bioavai l able phosphorus 

from the various sources . 

4) To determine if bioavailable phosphorus estimation is site 

specific. 
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MATERIALS AND METHODS 

Bear Riyer Site Description 

This study will investigate the Bear River system, shown 

schematically in Figure 1, which arises from 3048 meters elevation on 

the north s l ope of the Uintah mountains in northeastern Utah. It 

travels back and forth for 676 kilometers through Wyoming, Idaho and 

Utah (Utah Water Research Laboratory, 1974). The Bear River basin 

area is approximately 241 kilometers long from north to south and 161 

kilometers wide from east to west and encompasses 1 .9 X 1010 square 

meters of primarily agricultural land. The area receives 

precipitation of 20 to more than 102 em/year (Utah Water Research 

Laboratory, 1976). 

The rocks in the mountains which feed the Bear River are largel y 

sedimentary while the valleys contain alluvial material from Lake 

Bonneville. The area is highly calcareous resulting in a hard water 

river (Utah Wat er Research Laboratory, 1974 ) . 

This study will investigate the water quality of the Bear River 

from Bear Lake to the Great Salt Lake with emphasis on the portion of 

the Bear River system contained in Cache Valley which includes 

Franklin County, Idaho, and Cache County, Utah. Cache Valley contai ns 

most of the the proposed reservoirs and sources of phosphorus that 

will impact these reservoirs. Franklin County only includes the 

northern portion of Cache Va lley and is relatively unimportant in 

respects to it s contribution of phosphorus to the Bear River system. 

Cache County encompasses appro~imately 753,500 acres of which 40 % 

is federally or state owned and used for forest and grazing land. 

Fifty- seven percent is privately owned and primarily used for 

agriculture (Cundy and Conant, 1982). The rest is mainly urban with 
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SODA POINT 

Figure 1. Map of the major rivers and reservoirs in the Bear River 
Basin. 
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Logan being the largest town (population 30,600 in 1985, Cache Valley 

Data, 1988). The Bear River system supplies water primarily for 

irrigation purposes , but may in the future be used for municipal and 

industrial uses. 

Approximately one -half of the surface water in Cache Valley e nters 

via the Bear River. The rest of the flow comes from the Cub , Logan, 

Black smith Fork, and Little Bear rivers, minor tributaries, and 

groundwater (Cundy and Conant , 1982). The surface water leaves Cache 

Valley through Cutler reservoir. Reservoirs in the valley include 

Cutler, Hyrum, Porcupine, Newton, and three s mall reservoirs on the 

Logan River. 

Table 1 summarizes 7 years of record of the chemistry of the Bear 

River at the USGS gage (#: 10118000) belo w Cutler Reservoir, 64 

kilometers upst ream from the Great Salt Lake. The Bear River at this 

point had a pH between 7.4 and 10.5 with a h ardness range of 194 to 

360 mg/L as CaC03 (Table 1) . 

There are several wa stewater sources listed in Table 2 that impact 

the water chemistry, including the phosphorus load of the Bear River 

and its tributaries . Cache Valley has three wastewater treatment 

plant s (WWTP's) that discharge greater than 1 MGD to surface water. 

The City of Logan lagoons discharge, on the average , 10 MGD while both 

Preston and Hyrum WWTP' s discharge approximately 1 MGD. There are 

several smaller lagoon systems that discharge less than 0 .25 MGD. The 

non-domestic wastewater sources include trout farms, slaughter houses, 

and vegetable canning. E. A. Miller (beef s laughter house) and Whites 

Trout Farm are the largest industrial sources discharging 0.75 and 8.6 

MGD respectively. Approximately 200 dairy and cattle feed l ots are i n 

Cache Valley (Wieneke et al., 1980). 



Table 1. Nater chemistry data for the Bear River below Cutler Reservoir 
(1/77 to 12 /83) 

Parameter 
Temperature {°C) 
pH 
Total Suspended Solids (mg/L) 
Conductivity, 25 °C (~os) 

Total Dissolved Solids (mg/L) 
Total Hardness (rng/L as CaC03) 
Total Alkalinity (mg/L as CaC03) 
Dissolved Calcium (mg/L) 
Total Iron (mg/L) 
Total Kjeldahl Nitroge~ (mg/L) 
Total Phosphorus (mg/L) 
Ortho-Phosphorus (mg/L) 
Data from Sorensen et al. 1986 

He an 
11.4 
8.2 
52.2 
924.4 
541.6 
290.6 
253.6 
60.3 

0.518 
0 . 863 
0.117 
0.056 

Std. Dev. 
8.7 
0.6 
48.3 

426.8 
241.4 
39.9 
32.8 
9.5 

0.419 
0.951 
0.047 
0·.027 

Minimum 
0.0 
7.4 
0.5 

450.0 
252.0 
194.0 
179.0 
42.0 

0.080 
0.200 
0.050 
0.020 

Ma~imurn 

26.0 
10.5 
175.0 

2140.0 
1272.0 
360.0 
315.0 
81.0 
1. 919 
5.000 
0.200 
0.100 

"' ... 



Table 2. Description of wastewater point sources in the Cache Valley which discharge 
to the Bear River system 

Discharge Flow Receiving 
Source T:a~e HGD Water 

Preston City Domest i c 0.5-1.0 Norm Cr. to Cub R. to Bear R. 
Del Honte Canning 0.54 (July-August) Cub R. to Bear R. 

Richmond City Domestic 0.02 Cub R. to Bear R. 
Logan City Domest i c 12.4 Logan R. to L. Bear R. to Bear R . 

White's Trout Farm Fish Vlaste 8 . 6 L. Bear R. to Bear R. 

E. A. Miller Slaughterhouse 0 . 75 Spring Cr. to L. Bear R . to Bear R . 
Hyrum City Domestic 0. 6-1.2 Sp ring Cr. to L . Bear R . to Bea r R. 

Wellsville City Domestic 0.07 L. Bear R . to Bear R. 

"' "' 
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An erosion and runoff study was done in the Cache Valley to 

determine the phosphorus contribution of these sources to the Bear 

River. This study investigated four streambank l ocations that had 

recent erosion (slippage) and four different soi l surfaces i n a runoff 

study that included a variety of land uses. The streambank samples 

were taken at Battle Creek {N 42° 08' 48"; W 111° 54' 52 11
), Weston 

Creek (N 42° 01' 38"; W 111° 57' 21"), Bear River at Arnalga (N 41° 53' 

27"; W 111° 52' 26"), and Little Bear River below Hyrum reservoir (N 

41° 38' 01"; w 111° 53 ' 19 " ). Table 3 shows that the streambank soils 

studied were clay loam, loam, and sandy loam. 

The runoff study selected four sites for their proximity (within 

0 . 5 mi.) to a stream and having been identified by the Soil 

Conservation Service (USDA , Soil Conservation Service, Logan, UT Field 

Office) maps as having high erosion potential. The surface runoff 

samples were taken at sites above Cutler Reservoir (N 41° 51' 03 " ; w 

112° 02' 25")' adjacent to Weston Creek (N 42° 01' 50 " ; w 111° 58' 

22")' near the Cub River (N 41° 54 ' 46 " ; w 111° 51' 52") and near the 

Blacksmith Fork River nea r Anderson Ranch (N 41° 35 ' 56"; w 111° 37' 

05") . The site above Cutler Reservoir soil was classified as a 

Wheelan silt loam with 30- 50 % eroded slopes , and was a grazing land 

with small tufts of vegetation and a gravelly soil. The site adjacent 

to Weston Creek was classified a Bingham gravelly loam with 0-60% 

slopes, and was composed of loose soil that had been recently planted 

with no rocks or vegetation on the surface. The site near the Cub 

River, was classified as a Trenton silty c l ay loam with 8- 20 % eroded 

slopes, and had wheat stubble on the soil . The Blacksmith River Fork 

site , was classified as a Yeates Hollow extremely rocky silt loam with 

30-70% slopes, and was grazing land with sage brush and grasses that 

h ad approximately 20 % open space . Table 3 shows that the runoff site 

soils are predominantly silty. 



Table 3. 

Sample 

TJ::Ee 
Streambank 

Runoff 

Classification of soils by percent clay, silt and sand 
for the streambank and runoff sites in Cache Valley 

USDA USDA USDA 
% clay % silt % sand Soil 

Site <0.002 rnm <0.04 rnm <2.0 rnm Type 
Battle Cr. 32.5 35.0 32.5 clay loam 
Neston Cr. 25.0 46.0 29.0 loam 
Bear R. (.ll.malga) 14.5 21.0 64.5 sandy loam 
Little Bear R. 12.0 19.0 69.0 sandy loam 

Blacksmith Fork 22.3 60.5 17.3 silt loam 
Weston Cr. 18.0 37.5 44.5 loam 
Cub R. 32.5 51.5 16 .0 silty clay loam 
Abv. Cutler Res. 22.3 50.0 27.8 ~ilt loam 

"' ... 
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Sampling col l ected BAP data o n the WWTP ' s , for the land runoff and 

streambank studies , and the Bear River and its tributaries. River 

sampling statio ns were selected to "isolate" reaches of the river that 

might be impo rtant in t erms of phosphorus loading . Tributary 

location s , adjoining land uses , s treambank characte ristics , point 

source discharges, U. S.G.S. gage stations and accessibility were all 

evaluated when determining sampling locations. 

Sample cont ai ners were cleaned by wa s hing with a sodium 

bicarbonate solution and rinsing with 6 N HCl followed by seve ral 

rinses with double - deionized water. 

Some samples were collected b y subme rg i ng a clean 1 gallon 

polyethylene container in the stream to a depth of 2 t o inches. 

Other samples were collected from the bridge by fill ing a we ll-rinsed 

polyet hylene 2 gal. bucket suspe nded by a rope i nto the stream and 

using the water thus co l lected to rinse and fill a 0. 5 gal. 

polyethylene bottle . Water samples col l ect e d in the bucket were 

transferred to the bottle quickly to minimize settling of suspended 

material in the water. 

Bottles containing the samples were placed in ice che s ts wit h ice 

and transported to the UWRL, within 12 hours . Samples were stored 

under refrigeration (5° C) until a nalyses were complete. Sampl es for 

alga l assays were then sterilized by autoclaving , filtration, UV or 

gamma radiation. Aliquots of s terilized and unsterilized water were 

a nalyzed for various phosphorus f ractions. All samples were either 

analyzed or a ppropr iately f ilter ed a nd preserved within 72 hours. All 

ana lyses were completed within 7 days (So rensen et al., 1987) . 

A special s tudy used streambank samples to determine the possible 

contribution that streambank erosion may have u pon the phosphorus load 

of the Bear River sys tem. The st reambank samples were taken at o ne 
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foot intervals along three transects which encompassed the entire 

vertical. height of the eroded streambank. Samples of approximately 20 

cm3 each, were collected by pushing a 60 cc monoject disposable 

syringe with its end cut off into the streambank . Lengths of the 

three vertical transects were 38 , 26 and 20 feet at Battle Creek; 12, 

12 and 13 feet at Weston Creek; 26, 33 and 30 feet at Bear River, 

Amalga; and 12, 10 .5 and 11 feet at Little Bear River below Hyrum 

Reservoir Samples from all transects were composited in the field for 

each site. 

Another special study was conducted to determine the possible 

contribution of phosphorus to the Bear River system f rom land runoff. 

The soil runoff samples were collected by setting up a rain simulator 

that was 1.5 feet square and positioned on a platform 2 . 5 feet above 

the ground. Rainfall intensity varied from 0.22 to 0.56 in/min due to 

varying storage tank heights above the rain simulator at individual 

sites. Runoff collection times ranged from 6 to 15 minutes. The 

slope of the p l ots varied from 14 to 40 percent (Table 4). Rai nfall 

cont inued until one gallon of runoff was collected down slope of the 

rain simulator by a flat piece of metal with sides which funneled the 

water into the container. 

each site . 

Rainfall was simulated at two plots for 

Physical Analyses 

The river flow was determined at each of the sampling sites at 

each sampling time, so that mass transport of phosphorus could be 

determined. River discharge was determined by using USGS gage 

stations or was estimated by multiplying the average river velocity by 

the cross - sectional area (Dunne and Leopold, 1978). The cross-section 

profile was determined by using surveying techniques to determine 

water surface elevation in terms of a reference point and river bed 

profile which was determined by using a sonar depth finder (Sorensen 
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Table 4. Runoff plot characteristics for four sites (2 plots/site) 
where runoff was collected from simulated rainfall 

Site Plot Plot size Slope Rainfall Rainfall 

Jt intensity depth 

in 

Abv. Cut l er Res. 27 X 19 0.1 0.3 4.0 

2 31 19 0.2 0.6 5.0 

Weston Creek 21 X 18 0.2 0.4 2.5 

2 24 24 0.2 0.2 2.8 

Cub River 26 " 17 0.2 0.3 7.0 

2 23 21 0 . 2 0.2 8.0 

Blac ksmith Fork 27 24 0.4 0.3 3.0 

et al., 1987). The average velocity was determined by multiplying the 

velocity of an orange passing betwe en two fi~:ed points near the known 

cross s ection by 0.85 (Hynes, 1970). Stream flows were determined by 

"' setting up spreadsheets (Microsoft Excel, Microsoft Corp.) with the 

flow profiles and using the s tream depth and velocity for flow 

determination. 

At the same time as samples were collected and flow determined , 

water t e mperature was taken with a glass mercury centigrade 

thermometer. Samples were then brought back to the lab and electrical 

conductivity was determined using a YSI model 33 S - C-T conductivity 

meter. 

A special study investigated the relations hip of particle size 

range to BAP. Several samples had suspended solids and size fractions 

determined upon them by initially passing the sample through a 250 pm 

brass sieve to remove debris , sand, and relatively large aggregates of 

particles. Approximately one lit e r o f the sieved sample was placed in 

an ultrasonic bath for two minute s to break up the aggregates. 

Following sonication the sample was vacuum-filtered through a 30 J..lm 
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opening nylon mesh (Spectra/mesh) fabric. To separate the 30 to 10 ~Lm 

range particles, the filtrate from the 30 pm filter was passed through 

a 10 ~filter (Nucleopore polycarbonate membrane). For the 30 to 0.5 

~lrn range, the filtrate from the 30 ~lm filter was passed through a 0. 5 

pm Whatman 934AH glass fiber filter. For the 10 to 0. 5 Jlrn range, the 

sample filtrate from the 10 ~filter was then passed through a 0.5 ~ 

Whatman 934AH glass fiber filter. Standard Methods (APHA, 1980) 

procedures for suspended solids determination were followed for 

filter preparation and residue determination . The volwne of liquid 

that passed through the filter and the additional weight due to the 

solids on the 10 and 0. 5 ~lm filters were u sed to determine the 

concentration o f each size range. 

Another special study involved determining phosphorus 

contributions from streambanks and land runoff to the Bear River. 

Composite samples of streambank soil were thoroughly mixed and air 

dried under a laboratory fume hood at room temperature for 

approximately 24 hours. During drying, large stones and vegetation 

were picked out and the soil clumps were broken up by hand and sieved 

through a #10, U.S. standard testing sieve to remove all material 

larger than 2 mm. After air drying, subsamples were weighed and then 

oven dried for 24 hours at 103° C for percent moisture determination. 

A suspension of soil from each site was made by mixing 18 grams of air 

dried sample and approximately liter of doubly deionized water 

(DOW). These samples were then sonicated (Bransonic 12 ultrasonic 

bath} for 5 minutes. The suspension was then passed through a 325 mesh 

brass s i eve (-45~l.); a 30 J.1 Spectramesh® nylon cloth and then diluted 

to 3600 mL with DOW. These samples were then tumbled at 30 rpm for 

one hour. A portion of each sample was centrifuged , the supernatant 

was decanted and soluble reactive phosphorus (SRP) and total 

phosphorus were determined on the supernatant. The remaining 

suspension of each sample was sparged with nitrogen for 90 minutes, 
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capped, sealed with paraffin and gamma irradiated (2 to 3.5 Mrad in 20 

hrs . ) at a commercial facility (Isomedix (Utah), Inc., Sandy, UT) . 

Samples from the runoff study were sonicated with a Biosonic IV 

sonicator (high setting, mid sca l e) and mixed with magnetic stirrers 

for 5 minutes. The sample was allowed to stand for one minute so that 

course materials would settle out; the supernatant suspension was 

then passed through a 250 ~lm brass sieve. The sediment that had 

settled was discarded. Approximate l y one liter of the sample was 

passed through a 45 J.lm brass sieve into a clean half-gallon 

(polyethylene) bottle and stored overnight at 5° C. The sample was 

then re-sonicated and shaken for five minutes to re - suspend the 

sample. Four hundred milliliters (minimal) of the sample was passed 

through a 30 ~trn mesh size Spectramesh® nylon filter which had been 

silicone-glued onto a 3.5 mesh brass sieve. The filter had to be 

washed severa l times with tap water to remove the sediment from the 

clogged filter. After the filter was rinsed following t.he last 

sample, a 400 mL aliquot o f tap water was passed through the 30 ~lm 

cloth and analyzed for TP and SRP as a blank. Tap water was used 

instead of DOW because tap water was used in the rain simulator. A 

composite sample was made for each site by combining 180 mL from each 

plot with 3140 mL DOW for an approximate 1:17 dilution. Diluted 

samples were placed in clean one gallon polyethylene bottles and 

tumbled at 30 rpm for 1 hour. Duplicate 30 mL aliquots from each site 

were r emoved immediately and centrifuged at 2600 rpm for 10 min., the 

supernatant was then passed through a pre - rinsed 0. 45 11m Gelman 

Sciences GN-6 filter and ana l yzed for SRP. Separate 30 mL aliquots in 

duplicate , were placed in polypropylene bottles and digested for tota l 

phosphorus. The remaining portion of the samples were poured into 

glass bottles, sparged with nitrogen gas, capped , sealed with 

paraffin, and sent, together with the streambank soil suspensions , for 

gamma radiation sterilization. 
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Most samples from both the streambank and runoff studies were very 

turbid. To ensure adequate light penetration for algal growth in the 

determination of BAP, the intensity of light passing through an empty 

500 mL bioassay flask was measured. The sample s were diluted so at 

least 50 % of the light passing through the empty flask would pass 

through 100 mL of sample in the same flask. One streambank site 

(Battle Creek) and two runoff sites (Blacksmith Fork River and Weston 

Creek} require d dilution. 

Water soluble phosphoru s was determined on the streambank and 

runoff site soil samples by the method of Olsen and Sommers (1982). 

This method involves shaking a soil sample with distilled water, 

filtering the s uspens ion and then measuring phosphorus by the ascorbic 

acid method. The filtrate contained some suspended clay which 

required turbidity corrections to be made. The turbidity correct ions 

were made in addition to the Olsen and Sonuners (1982) procedures, by 

subtracting the absorbance of samples from which the combined reagent 

had been withheld from the absorbance of samples after full color 

development had occurred. The corrected absorbance readings were then 

used to determine water soluble phosphorus concentrations based on a 

standard curve prepared with the sample. 

Total pho sphorus analysis of soil samples was performed by the 

Soil , Plant and Water Analys i s Laboratory at Utah State University , 

using the metho d by Olsen and Sonuners (1 982 ). Percent calcium 

carbonate in the soil was determined using a pressure-calcimeter 

method (Nelson, 1982) except a 1 000 mL flask was used and the pressure 

reading was taken on a mercury manometer once the reading had 

stabilized. Percent calcium carbonate is based on the principle that 

carbonates release C02 when an acid is added. This release of C02 

will increase t h e pressure in a closed system (mea sured on the 

manometer) and is related to percent o f CaC03 by using standards. The 

determination of pH upon the soils was done by a saturated soil paste 
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method (Ri c h ards et al., 1969). The texture was det ermined by the 

hydrometer method (Gee and Bauder, 1986) . 

Chemical Analysis 

The pH of the water samples was determined using a Corning model 

130 pH meter. The glass pH electrode was calibrated using a phosphate 

buffer of pH 7 and a borate buffer of pH 10 (VWR Scientific) . 

A specia l study involved determining total organic carbon (TOC ) on 

several water samples to determine if TOC could be an indicator of 

BAP. Total organic carbon was determined by passing the sampl e 

through a 250 ~m nominal opening brass sieve (U . S.A. Standard Testing 

Sieve No. 60) and then determining the organic carbon on an 

Oceanography International Carbon Analyzer (model 05248) using 

persulfate oxidation with infrared absorption detection of C02 

(Oceanography International, Inc. , 1977). 

All of the water samples had SRP and TP analysis done upon them to 

compare with the BAP determinations. SRP samples and digested TP 

samples were analyzed by the manual ascorbic acid method (Strickland 

and Parsons, 1972). Total phosp horus digestions were carried out 

according to the American Public Health Association (1980} persulfate 

digestion protocol. 

Sterilizat ion for Bioavailable 

Phosphorus Estimation 

Sterilization of the water sample is the first step required in 

BAP estimation. Initially UV and gamma irradiation were investigated 

as two alternative methods of sterilization. Ultraviolet radiation 

was used initially because no known by- products are formed and a Model 

SP F teflon-tube ultraviolet device manufactured by Ultraviolet 

Technology Inc. (El Toro, California) was availabl e (Harr is , 1986) . 
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Three e xperiments were performed to investigate the use of UV 

radiation for bioassay sample sterilization. A sampl e collected from 

the Bear River at Amalga, UT was treated by placing it in a pyrex dish 

to a depth of about 1 inch and exposing it to UV radiation from a 

germicidal lamp for hour. Another aliquot was sterilized by 

autoclaving at 121° C for 30 minutes. Since the UV dose was not 

sufficient to kill the native algae and protozoans in this sample, 

other methods ·t~ere tried. In the second experiment , the model SPF UV 

reactor, consisting of several 3 ft sections of teflon tubing, each 

surrounded by four G30T8 (G e neral Electric Co ., Schenectady, NY) low 

pressure mercury germicidal lamps, were used. The water sample 

(co llected from the Bear River at Honeyville , UT) was pumped through 

1/4 " inner diameter teflon tubes at a rate of approximately 0.12 

gal/min and collected in a sterile polypropylene container. Growth of 

native algae was evident in this sample as well. A t hird sample was 

colle cted from the Bear R . at Be nson , UT. This sample was pumped 

through the large teflon tubing of the reactor described above. Five 

to ten gallons o f water were pumped through the reactor and discarded 

before turning on the germicidal lamps. After the lamps were turned 

on , the first ten gallons were discarded and the next three gallons 

collected in sterile polypropylene bottles at a rate of 5 gal/min . 

In summary , the experiments showed that ultraviolet radiation was 

able to kill all the endogenous algae , but was unable to kill all the 

protozoa. Protoz oa can graze on the algae and result in an 

underestimation of BAP since it is based on a lgal growt h, so UV 

radiation was judged unacceptable and a new sterilization procedure 

had to be found. 

Gamma radiation had been used successfully by Dorich et al. (1984) 

for sterilizing concentrat ed sedime nt suspensions prior to BAP 

estimations. It was decided to evaluate gamma radiation for 

sterilization of the whole water samples from the Bear River system. 
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Whole water samples , and in several instances water samples which 

were fi l ter-steril ized with 0 .2 ~Lm membrane filters, were placed in 

glass bottles and transported to a commercia l facility (I somed i x 

(Utah) Inc., Sandy, UT) for gamma radiat i o n sterilization. Samples 

received a minimum dose of 2 . 5 to 3.5 Mrad (cobalt - 60 source) during 

an exposure period of approximately 20 hr. 

The first algal bioassay performed with gamma-sterilized water and 

filter - sterilized , non-irradiated water produced no growth in any o f 

the gamma - irradiated samples. The MicrotoxTM test (Microbics Corp., 

Carlsbad , CA) was used to evaluate possible toxicity i n those samples. 

It was suspected that low conce n trations of hyd r ogen peroxide, 

produced by ionization of oxygen dissolved in the water during the 

gamma radiation treatment , may have persisted in the samples after 

irradiation resulting in toxicity to the algae. Despite subsequent 

efforts to strip oxygen from samples by sparging with N2 gas pr i or to 

irradiation and thus preventing the f ormation of hydrogen peroxide, 

toxicity probl ems were frequent. The use of the enzyme peroxidase 

(Type IV and VI , Sigma Chemical Co., St. Louis, MO) to break down 

peroxide in irradiated samples and eliminate toxicity was evaluated. 

Type VI was initially used because of its higher purity. The l ess 

expensive type IV was later evaluated and found to be phosphorus free 

and capable of detoxifying the sample water. After initial success an 

experiment was conducted to determine the optimum time and e n zyme 

concentration to eliminate t he toxicity. 

Algal Bioassays and Calculation 

of Bioavailable Phosphorus 

Al gal b i oassays were performed following a modified version of the 

Envi r onmental Protection Agency (EPA) Algal Assay Procedure (AAP) 

protocol (Mi l ler et al . , 1978). The method used to determine BAP was 

to mea sure in vivQ fluo re scence of a l ga l chlorophyll with known 
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additions of phosphorus and comparing these with the fluorescence of 

the algae developing in the unamended river sample . 

Prior to analysis, approximately three liters of sample were 

sparged with nitrogen gas for 90 minutes to remove oxygen so as to 

minimize formation of hydrogen peroxide during irradiation. The 

sample was then gamma - irradiated with a dose of 2.5 to 3.5 Mrad (60co 

source) . Untreated samples and gamma-irradiated samples were analyzed 

for both TP and SRP to determine any differences caused by the 

radiation. Radi a ted samples were treated with 2000 units/L of 

peroxidase (Type IV or VI, Sigma Chemical Co., St. Louis, MO) for 48 

hours to eliminate any toxicity due to hydrogen peroxide formation 

during irradiation. A MicrotoxlM test (Microbics Corp., Carlsbad, CA) 

was then done on the sample to confirm toxicity removal. Samples 

showing less than 5 unit s of light intensit y lost relative to the 

control were found not to be to:-:ic to the algae. 

Aliquot~ of treated and toxicity free river water were introduced 

into triplicate bioassay flasks, enriched with N and P, and inoculated 

with Selenastrum capricornutum (10 3 cells/mL in the test flasks). 

After it was discovere d that samples spiked with 1 mg nitrate-N per 

liter often exhibited evidence of nitrogen limitation, nitrogen spikes 

were adjusted to 20 times the TP concentration in the sample. Two 

levels of phosphorus additions and a nonenriched control were used in 

order to verify linearity of algal growth response to the P additions. 

In vivo fluorescence measurements were made daily after the third 

day of incubation of the test flasks and continued until the peak in 

growth occurred. Linear regression ana lysis of maximum fluorescence 

versus added P was performed. The negative value of the intercept of 

the regression equation represents bioavailable phosphorus in the 

sample . This standard additions method gave precise BAP estimates 

(i.e., high correlations between fluorescence and added P) for many 

sampl es . However, as the data set increased in size, the occurrence 
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of data scatter a nd poor fit from regression analysis in a significant 

number of samples became obvious. A second method for estimating BAP 

was, therefore , investigated. A standard curve was prepared with AAP 

medium in which the P concentration was adjusted over a range of 10 to 

250 ~ l g/1. Triplicate flasks for each concentration were inocul ated 

with 10 3 cells of S. capricornutum/mL (final concentration ) . A 

second set of flasks was inoculated with 10 5 cells/mL Gamma-

irradiated whole water samples amended with nitrogen were also 

inoculated with S . capr icornut urn at both high and low leve l s. 

Bioavailable P was determined by comparing maximum fluorescence of the 

sample with the calibration curve prepared by linear regression of 

maximum fluorescence versus P in the standards. Seven to ten day old 

cult ures of S. capricornutum maintained according to the AAP protocol 

of Miller et al. (1978) were used in all assays . 

pH Study 

During the algal bioassay tes t the sample pH can increase by as 

much as two units. Two studies were done to investigate the effects 

of a pH increase upon the algal bioassay. The first study was to 

determine the effect of pH change on soluble reactive phosphorus. A 

surface water sample was collected from the Bear River below Cutler 

Reservoir for the first study . A three liter portion of the sample 

was filtered through a 0. 45 pro Gelman membrane filter prior to use in 

pH experiment s. Triplicate 100 mL aliquots of filtered sampl e were 

introduced into 500 mL erlenmeyer flasks for each pH level. Tris/HCl 

buffers (2M) were prepared for pH control in the 8.00 to 9.00 range. 

Carbonate/bicarbonate buffers (2M) were used for pH values between 

9 . 20 to 10.25. Each was prepared so that the desired sample pH would 

be attained by adding 1 mL of the buffer to 100 mL of river water 

resulting in a 0. 02 M buffer. Appropriate buffers were added and pH 

was measured using a Corning model 130 pH meter . SRP and pH were 
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measured after 30 min. and again after 2 hours had elapsed since 

buffer addition. 

The second pH study involved monitoring and controlling the pH 

while determining BAP during an algal assay test. Compressed carbon 

dioxide and air fr om an aquarium air pump were used to control the pH 

for the algal assay test. The mi~ture of C02 and air was adjusted by 

variable area flowmeters until the desired pH was obtained. The gas 

mixture passed through water to saturate the gas. It then entered the 

algal assay 500 mL erlenmeyer flasks through Kimble 1 mL disposable 

sterile pipette s . Yellow eppendorf pipette tips were attached to the 

ends of the 1 mL pipettes to produce a fine stream of gas bubbles. 

Sterile gauze-wrapped cotton was used as stoppers for the flasks. 

Luxury uptake was investigated to determine if this could minimize 

the effects of pho sphorus precipitation due to the increase in pH of 

the medium du r ing the assay. The normal assay procedures were 

followed except Selenstrum capricornitum inoculum sizes of 6.8 X 10 4 

cells/mL and 1. 3 X 105 cells/mL were done along with the usual 

inoculum size of 103 cells/mL Replicates of three to four were done 

for each inoculum size. In a study conducted on March 22, 1988 the 

algae from a stationary phase culture was harvested by centrifugation 

and put into a phosphorus free nutrient medium for a phosphorus 

starvation period of two days before the bioassay. 

Data Reduction and Statistics 

Data reduction and statistics is important in evaluating and 

understanding the significance of the sampling data obtained by the 

previously described methods. The sampling data was c ompiled by using 

the MicrosoftThf Excel program on the Apple Macintosh computer . 
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Ninety five percent confidence intervals were determined for the 

BAP estimation methods o f standard additions and standard curve by 

procedures in Kleinbaurn and Kupper (1978) and the Statview statistical 

computer program (Feldman and Gagnon , 1986} for the Apple Macintosh 

computer. Procedures in Kleinbaurn and Kupper (1978) were also used to 

determine whether lines were significantly different by comparison of 

the slopes and y-intercept s . Analysis of Variance (ANOVA) of the 

Statview program was used to determine the significance of the affects 

of various sterilization treatment scenarios upon BAP. Where ANOVA 

indicated significant (P ~ 0.05) differences among the treatments, the 

Leas t Significant Difference was used to identify specific significant 

difference s between mean s . The t-test, also of the Statview program 

was used to test the significance (P ~ 0.05) of the difference between 

the means of two data sets . The Cricket graph program (Rafferty and 

Norling, 1986) for the Apple Macintosh computer was used to determine 

regression lines and R-values for the data. A correlation was 

determined to be statistically significant if at the 95 % confidence 

level (P ~ 0 .05), the slope was different from 0 and when the 

correlation coefficient, R was greate r than 0. 71. The value of r2 

would then be greater tha n 0.5, suggesting that more than SO% of the 

data variance was explai ned by the regression line. 

Power Peaking 

A special study was done on power peaking to determine its effects 

upon phosphorus transport. Hydraulic output can be increased by power 

peaking which is accomplished by increasing the fl o w thro ugh the 

turbines. The water from the turbines is discharged to the river 

resulting in a higher flow. Both Cutler and Oneida reservoirs are 

operated by Uta h Power and Light Company for hydroelectric power 

generatio n in a p o wer p ea king mode. Sorensen et al . (1987) describes 

the powe r peaking study in the following paragraphs: 



In cooperation with Uta h Power and Light Company and 
the U.S. Geological Survey t ... e sampled for ortho and total 
phosphorus over a power peaking cycle for both Cutler and 
Oneida Reservoirs. On December 3 , 1986, at 7:00 a . m., 
Cutler Reservoir was discharging minimal flow (approximately 
20 cfs) . The flow was increased hourly in increments of 
1000 cfs until a maximum of 4000 cfs was reached. Water 
flow was then decreased back to minimum flow at the same 
rate. Surface water samples were collected at 30 minute 
intervals at the USGS gauging station 800 yards downstream 
from the power plant tail race during the time that the flow 
rate was changing. After the flow had stabilized at each 
increment of change, samples were collected at approximately 
1 foot intervals from the river bottom using a sampl er at 
points approximately 1/3 and 2/3 the distance across the 
river. 

At 9:00 a.m. on December 4, 1986, a power peaking 
cycle was begun at Oneida Reservoir . Flow was increased 
hourly in 1000 cfs increments until a maximum of 2800 cfs 
was reached and then decreased back to minimum flow (40 cfs) 
in 1000 cfs increments. River sampling was begun at 6:30 
p.m. at the USGS Gage Station at the Utah-Idaho border, 
approximately 32 river miles downstream from the reservoir. 
A permanently installed sampler, used for suspended sediment 
moni toring by the USGS, was used to collect water samples at 
30 minute intervals from approximately one foot above the 
river bottom. Surface water samples were collected hourly 
for the duration of the cycle. On the following evening we 
intended to collect samples at the Benson Bridge (66.6 miles 
downstream) but were unable to detect any increased flows . 
(pp. 29 - 30) 
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RESULTS AND DISCUSSION 

Indicators of Bioavaj J able Pho:mhorns 

Total and soluble reactive phosphorus 

Bioavailable phosphorus estimation is time consuming and 

expensive, so indicator parameters were investigated to determine if 

they could provide adequate estimations of BAP. Initially total and 

soluble reactive phosphorus we re investigated. Table 5 and Figures 2, 

3 , 4, 5, 6, and 7 present the phosphorus data obtained for the Bear 

River System. Figure 2 i s a plot of TP plo tted versus BAP for river 

water and the data has a statistica lly significant (P S. 0. 05) 

correlation (R = 0.81). Thi s correlation is questionable, however, 

because 6 of the 10 BAP concentrations are from sites that have WWTP's 

discharging within 1 to 7 miles upstream of them; 58 % of the sites 

have less than 8 ~Lg/ L; and the two data points on the far right may 

control the corre l ation more than is justified. The data in Figures 3 

and 4 do not show a statistically significant (P > 0.05) correlation 

of SRP with BAP (R 0.59) and SRP with TP (R- 0 . 52) respectively for 

river water. Sample data from wastewater effluents shows that TP 

plotted against BAP (Figure 5) and SRP plotted against BAP (Figure 6) 

have R-values of 0. 97 and 0. 96 respectively which suggest a good 

correlation, but the slopes of the regression lines are not 

significantly (P > 0. 05) different from zero. The data plotted in 

Figure 7 shows a statistically significant (P S 0.05) correlation (R ~ 

1.00) between SRP and TP for wastewater samples. 

In summary, there does not appear to be a reliable correlation 

between BAP and SRP, and BAP a nd TP for the Bear River system. In 

some areas of the U.S., total phosphorus is a good estimator of BAP, 

but for the Bear River this is not the case (Figure 2) . 
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Table 5. Soluble reactive, total and bioavailable phosphorus data 
for the Bear River system 

River 

Bear 

Cub 

L. Bear 

Sample Location 

Weston Cr. 
West of Fairview, UT-ID gage 
West of Fairview, UT-rD gage 
West of Fairview, UT-ID gage 
Abv Cutler Res., w. of Benson 
Abv Cutler Res., W. of Benson 
Abv Cutler Res., W. of Denson 
Dlw Cutler Res. , UPL gage 
Blw Cutler Res., UPL gage 
Blw Cutler Res., UPL gage 
l'7est Side Canal 
~1. of Honeyville 

South of Richmond 
Worm Cr. 

S. Fork Blw Davenport Cr. 
S. Fork Blw Davenport Cr. 
Blw Hyrum Res., Hwy 101 
Abv Logan R. confluence, 6th S . 
Spring Creek 
Benson Marina 
Benson Marina 
Benson Marina 

Blacks. Fork Blw Anderson Ranch, gage 

Logan Blw Logan lagoon outfall 

Point Source Richmond Lagoon effluent 
Hyrum WWTP effluent 
Wellsville Lagoon effluent 
Logan Lagoon effluent 
Preston WWTP effluent 

Date 

5/27/87 52. 
5/11/07 0. 
7/12/87 20. 
8/18/87 19. 
5/11/87 0. 
5/27/87 37. 
7/12/87 18. 
5/11/87 14. 
5/27/87 34. 
7/12/87 14. 
8/18/87 12. 
5/11/87 0. 

8/18/87 17. 
6/21/87 129. 

5/11/87 
5/27/87 
7/12/87 
7/12/87 
8/18/87 
5/27/87 
7/12/87 
0/18/87 

5/11/87 

13. 
37. 
68. 
66. 

289. 
74. 
211. 
130. 

7. 

7/12/07 14. 

6/21/07 
6/21/07 4090. 
6/21/87 862. 
6/21/87 1700. 
0/18/87 2300. 

224. 
308. 
100. 
67. 

138. 
224. 
130. 
125. 
208. 
131. 
163. 
142. 

<8. 
<8. 
<8. 
<8. 
<8 . 
<8. 
<8. 
13. 
<8. 
<8. 
<8. 
41. 

128. 18. 
274. 156. 

24. 
181. 
106. 
137. 
332. 
227. 
456. 
336. 

17. 

<8. 
12. 
<8. 
<8. 

141. 
52. 
274. 
139. 

<8. 

490. 302. 

2800. 2450. 
5190. 5830. 
1130. 860. 
1960. 1518. 
2520. 1303. 
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y = - 65.0794 + 0.5686x R = 0.81 
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Total Phosphorus (ftg/L) 

Total phosphorus data plotted against bioavailable 
phosphorus data in river water (Table 5) . 
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Soluble reactive phosphorus data plotted against 
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Figure 4. Tota l phosphoru s data p l otted again s t soluble react i ve 
phosphorus data in river water (Table 5 ) . 
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Comparison of the fractions of BAP, SRP and TP between river water 

and wastewater effluent samples is shown in Table 5. BAP was 

approximately 88% of TP and 98 % of SRP for wastewater samples. While 

for river samples with BAP greater than 8, BAP wa s approximately 41% 

of TP and 120% of SRP. The WWTP ' s effluent is highly available due to 

the complex waste in the influent being converted to available forms 

by the treatment process. Also , a low particle load in the WWTP' s 

effluent relative to river water in the Bear River basin, could 

explain that SRP is 72 % of TP for WWTP's, while for Bear River water 

SRP is only 34 % of TP. 

Total organic carbon 

Total organic carbon (TOC) was also investigated as a possible 

indicator for BAP. Walker (1983) used data collected from lakes and 

reservoirs in the United States to determine a positive correlation 

between TP and TOC measurements. This appears reasonable because land 

and livestock runoff can contain large concentrations of organic 

matter. 

Table 6 presents the TOC and BAP data collected for the Bear River 

system. The observed relationship between TOC and BAP in river water 

is shown in Figure 8. The regression analysis of these data suggests 

that there is a s t atistically significant (P ~ 0.05) relationship (R = 

0.82) between these measurements. However, all but one of the data 

points with BAP > 8 Jlg/L are from stream or reservoir sample sites 

that have wastewater discharged 1 to 7 miles upstream of them. This 

suggests that the relationship cannot be applied to river waters in 

general. It is noteworthy that the correlation between TOC and BAP in 

wastewater effluents is not statistically significant (P ~ 0.05; R = 

0.05; Figure 9). The lack of correlation between TOC and BAP in WWTP 

effluents is not surprising because one of the main objectives of a 

WWTP is to remove organi c carbon , but other nutrients such as 

phosphorus are not necessarily removed in the same proportion. It was 
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Table 6. Total organic carbon and bioavailable phosphorus data 
for the Bear River system 

River Sample Location 

Bear Weston Cr . 
West of Fairview, UT-ID gage 
Worm Cr. 
Richmond Lagoon effluent 
Abv Cutler Res . , w. of Benson 
Abv Cutler Res., W. of Benson 
Blw Cutler Res., UPL gage 
Blw Cutler Res., UPL gage 

L. Bear S. Fork Blw Davenport Cr. 
Whites Trout Farm Effluent 
Hyrum WWTP effluent 
Blw Hyrum Res., Hwy 101 
Wellsville Lagoon effluent 
Abv. Logan R. confluence, 6th S. 
Benson Marina 
Denson Marina 

Logan Logan Lagoon effluent 
Blw Logan Lagoon outfall 

TOC 
Date (rng/L) 

5/27/87 5. 
7/12/87 6. 
6/21/87 8. 
6/21/87 27. 
5/2 7 /87 5. 
7/12/87 7. 
5/27/87 7. 
7/12/87 7. 

5/27/87 9. 
6/21/87 4. 
6/21/87 4. 
7/12/87 5. 
6/21/8 7 10. 
7/12/87 5. 
5/27/87 6. 
7/12/87 10 . 

6/21/07 10. 
7/12/87 11. 

BAP 
(flg/L) 

<8. 
<8. 

156. 
245 0. 
<8. 
<8. 
<8. 
<8. 

12. 
<8. 

5830. 
<8. 
860. 
<8. 
52. 
274. 

1518. 
302. 
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decided that the TOC and BAP relationship would not be further 

investigated since there does not appear to be a reliable correlation 

and the precision of our TOC analysis {± 1 rng C/L) may not be adequate 

to allow resolution of changes in TOC relative to BAP changes in river 

water . 

Particle size range 

The last potential indicator investigated was the correlation 

between BAP and particle size ranges . Several researchers have 

proposed that BAP may be approximated by adding 20% of particulate 

phosphorus to ortho-phosphorus (Dorich et al., 1980; Rast and Lee, 

1982; U.S. Environmental Protection Agency, 1980a). The high surface 

area of clays, fine si lt, and colloidal size organic matter may have 

appreciable amounts of sorbed phosphate that may be available to algae 

through ion exchange or solubilization reactions. Dorich et al. 

(1984) found that aggregates that contained the least amount of clay 

also conta ined the least amount of total phosphorus. These solids 

associated with available phosphorus can easily be transported along a 

river system. 

Particle size ranges of 30 to 0. 5 pm, 30 to 10 ~tm, and 10 to 0. 5 

~1m were investigated to determine if there was a significant 

correlation with BAP for the Bear River system. These size ranges 

were separated by filtration after sonication to breakup the 

aggregates (Table 7) . The data in Figure 10 shows that BAP 

concentrations are not correlated with suspended solids in any of the 

size ranges composed of individual particles . Dorich et al. (1984) 

found that soil aggregate s ize (groups of particles) did not corre l ate 

with phosphorus concentration because of the similarity of the primary 

particle s ize distribution within the aggregates. Even with no 

measurable BAP (Figure 10), the suspended solids concentrations in a ll 

of the size fractions were quite variable. There also appears to be 



Table 7. Ranges of suspended solids and bioavailable phosphorus data for the Bear River system 

Suspended Solids (mg/L) 

for 
30 to to SRP 

River Sam le Location Date 0.5 /L 

Bear Nest of Fairview, UT-ID gage 7/12/87 31.8 14.0 19.3 <8. 100. 20. 
West of Fairview, UT-ID gage 8/18/87 24.7 8.7 13.0 <8 . 67. 19. 
Abv Cutler Res., W. of Benson 7/12 /8 7 63.2 29.0 38.6 <8. 130. 18. 
Blw Cutler Res., UPL gage 7/12/87 35.2 ll.8 13 .6 <8. 131. 14. 
Nest side canal 8/18/87 50.4 5.8 33.3 <8. 163. 12. 

Cub South of Richmond 8/18/87 I 26.6 7.7 12 . 9 I 18. 128. 17. 

L. Bear Blw Hyrum Res., Hwy 101 7/12/87 2.4 0.9 1.9 <8. 106. 68. 
~~v Logan R. confluence, 6th s. 7/12/87 30.3 14.0 17.0 <8 . 137. 66. 
Spring Creek 8/18/87 7.8 4.0 3.7 141. 332. 289. 
Benson Marina 7/12/87 51.2 4.0 39.0 274. 458. 211. 
Benson Marina 8/18/87 38.4 5.0 35.0 139. 336. 130. 

... 
"' 
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no correlation between total phosphorus or , SRP and suspended solids 

as shown by the data in Figures 11 and 12 . 

In summary for all of the indicators investigated, there appears 

to be no reliable correlation between TP , SRP , TOC , particle s i ze 

range , and BAP. Al though the data analyzed to dat e is limi ted , it 

seems unlikely that a useab l e index of BAP in Bear Rive r system waters 

can be derived by considering TOC and/or particl e size distribut i ons 

along with SRP and total phosphorus data. 
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Bioavailable Phosphorus Estimation 

Water hardness affects upon BAP 

As discussed earlier, one of the disadvantages of BAP estimations 

was that they are time consuming, r equiring up to two weeks, and over 

this time period, a portion of the initially available phosphorus can 

become unavailable due to precipitation, adsorption or settling. It 

is also difficult to relate a BAP estimation back to where the sample 

was taken because during the bioassay, the sample pH can increase by 

as much as two units. This increa se in pH can cause phosphorus to 

precipitate o ut, therefore resulting in a low BAP estimate f or the 

river. 

Currently BAP is determined by a modified Selenastrum 

capricornutum Printz Algal Assay Bottle Test. This assay can raise 

the pH from natural conditions of approximately 8 up to 10 because of 

the algal photosynthetic consumption of carbon dioxide. REDEQL-EPAK 

(Ingle et al., 1980), aqueous chemical equilibrium computer model, 

was used to determine the effects that a pH increase would have upon 

phosphorus. Bear River data was used in the model as the pH was 

increased from 8 to 10. The model calculated that 99.9% of the 

phosphorus would be precipitated with calci um at equilibrium 

conditions with a pH of 10. Equilibrium conditions represent limit s , 

which the system is moving towards, but rarely reaches, so probably 

less phosphorus is precipitated with calcium in the Bear River than 

predicted by REDEQL. Snoeyink and Jenkins (1980) state that if, in 

natural waters, phosphate levels were controlled by equilibrium with 

calcium hydroxyapatite (Ca 50H(P04 )3), the phosphate levels would be so 

l ow that phosphate would not be a concern as a limiting nutrient for 

algal growth. The rate of formation of hydro~yapatite is very slow 

with intermediate calcium- phosphate containing species forming first 

allowing phosphorus concentrations to far e~ceed predicted equilibrium 

concentrations (Snoeyink and Jenkins, 1980). Phosphorus precipitation 
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during the bioassay probably makes BAP e stimates low. However, river 

water pH is a l so frequently higher than 8 , and p hosphorus 

precipitation is likely to occur in the stream, so bioavailability 

could be l ow naturally. 

In using the REDEQL mo del it was seen that both pH and calcium 

were important factors in the precipitation of phosphorus and its 

r esultant unavailability. To determine if there was a correlation 

between ca l cium an d p H a stepwise regression was done on data 

collected by Greene et a l. (1 9 7 5 ) for the Snake River in Idaho, 

Oregon, and Wa shington. The Snake River is located in the same 

geographical area , and the data had a r e latively broad range o f pH, 

BAP and TH . More data was available from the Snake River st udy than 

has been collected for the Bear River. Greene et al. (197 5 ) used the 

algal bioassay t es t to collect data for the water quality study o n the 

Snake River Basin to det ermine t h e limiting nutrients. Bioava ilable 

phosphorus numbers were estimated by using the a lgal yields given by 

Greene et al. (1975) in the following ratio : 

Where: 

BAP~ ~I!L.il:N.tl'.ll 
1- (YN/ (YN+P)) 

YN = algal yie l d with 1 mg/L of nitrogen added 

(1) 

YN+P - algal yield with 1 mg/ L of nitrogen and 50 pg/L of 

phosphorus added 

50 50 ~lg/L of phosphorus added 

Thi s ratio was used on only 14 of the 18 sample re sult s reported 

because these were the only ones with either nitrogen or phosphorus 

limiting for algal growth. Tota l phosphorus , SRP, t otal ha rdness, 

hydrogen ion concentration and iron concent ration were also given for 

the sampl e sites. 
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The se parameters and their interactions for 14 sites were used in 

a stepwise multiple regression analysis for BAP using the Statview 

computer program (Feldman and Gagnon, 1 986 ) The variables and 

interactions evaluated were: BAP, TP, SRP, TH, H+, Fe, SRP/TP , TH*H+, 

SRP*TH*H+, TP*SRP, TH*H+* (SRP/TP), TP*TH*H+, TP*TH, SRP*TH. The 

regression procedure identified two important variables: (1) the 

product (int e raction} of SRP , total hardness and hydrogen ion 

concentration (SRP*TP*H+) a nd, (2) total hardness. The r 2 value of 

the equation with both of these variable s was 0.941. 

BAP a(SRP*TH*H+) + b(TH) (2) 

These statistics indicate that the interaction of SRP, total 

hardness and pH are major factors in the availability of phosphorus in 

the Snake River. 

A multiple regression analysis was then done using the same 

parameters for the Bear River data as wa s done on the Snake River. 

Six data point s were evaluated for the Bear River. The regression 

procedure identified the interaction of TP, total hardness, and 

hydrogen ion concentration (pH) as describing the largest fraction of 

the BAP sample variance (r2 = 0.879). 

BAP (3) 

This analysis does indicate that total hardness and pH play a 

major role in regulating BAP for the Bear River system. The total 

hardness for the Bea r River system is between 180-240 mg/L a s Caco3 . 

By comparison, the surface water hardness of the northwestern U.S. is 

between 0-120, the East coast h~s less than 60, and the Great Lake 

states are between 60 to 180 with a few areas getting as high as 240 

mg Caco3 hardness/L (Geraghty, et al., 1973). The difference in 

surface water hardnesses across the U.S . could provide one reason why 
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in some areas of the country TP correlates c l osely with BAP while in 

other parts there are no correlations. In hardwater areas the TP 

would be mainly in unavailable forms because of phosphorus being 

precipitated with the hardness contributing ions. Th e Bear River 

system has very hard water in comparison to most of the areas in which 

algal assays for estimation of BAP have been conducted. 

Selection of sterilization procedure 

The algal bioassay requires the sample to be sterilized, so that 

no protozoa can graze upon the algae, resulting in a l ow BAP 

estimation. \'later hardness can be an important factor in picking a 

sterilization procedure due to the potential precipit ation of 

phosphorus . 

Filtration is a common way to sterilize a sample in preparation 

for an algal assay. Filter sterilization may underestimate BAP by 

eliminating phosphorus associated with particulate matter. Sever al 

studies have estimated that 20 % of particulate p hosphorus i s available 

{Dorich et al., 1980; Rast and Lee, 1982; U.S. Environmental 

Protection Agency, 1980a} . It was decided that a possible 20 % error 

was unacceptable in the current study. O'Kelly (1 973) stated that 

measurements of phosphate available for growth based on solubl e 

phosphorus (filtered) alone does not take into account the presence of 

phosphorus in particulate detritus or absorbed o n particl es of silt or 

clay , and both are available for algal growt h . It was felt whole 

water samples would provide a better estimation of bioavailable 

phosphorus for the Bear River system . 

Autoclaving is another fairly standard method for sterilization of 

water samples used in algal assays and has proven satisfactory in many 

studies, especially those conducted in the Southeastern United States 

{Raschke and Schultz , 1987). In a 1984 e:-:periment o n Bear River 

water , separate aliquots of the sample were spiked with nit roge n (N) 
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and phosphorus (P} prior to autoclaving. The effect of autoclaving 

was very pronounced. Sample s spiked with N and/or P before 

autoclaving produced very little algal growth (in-vivo fluorescence), 

whereas samples spiked after autoclaving s upported significantly 

higher maximum algal populations. Autoclaving resu.lted in the 

precipitation of P and a low algal population. In another experiment, 

soluble reactive phosphorus decreased from 52 to 14 J..lg/1 upon 

autoclaving in a sample col l ected from the Bear River in March, 1986. 

UV treatment, another steri lization procedure, did not affect SRP 

concentration in the March , 1986 sample or in a sample collected in 

April. Algal bioassays were then set up with both autoclaved and UV 

treated samples in August, 1984 and Mar c h, 1986. The effect of 

autoclaving on BAP was dramatically demonstrated in both experiments: 

BAP estimates were < 1 and 6 J..lg /1 in autoclaved samples; and 28 and 

79 ~lg /1 in UV treated samples. Although, UV treatme nts did not kill 

all the nat ive algae (protozoa were not observed, but possibly 

present}, we feel that the comparisons are valid , since unspiked UV 

treat ed samples with and without Selenastrum capricornutum reached 

about the same maximum fluorescence. 

Gamma radiation sterilization was also investigated. The positive 

aspects of gamma radiation are that it allows use of a whole water 

sample without causing precipitation of phosphate such as autoclaving, 

and does complete sterilization which UV cannot consistently do. 

Gamma radiation appears to be the best sterilization method for the 

Bear River system. However, some chemical changes due to gamma 

irradiation were obse r ved. 

Total phosphorus concentration did not change with gamma 

radiation, but Figure 13 s hows that 83 % of the samples showed an 

increase in SRP after gamma radiation. Ten, fifty and eighty percent 

of the sample s had a SRP increase of 63 pg /L (276 '• ), 17 ~tg /L (22 %), 

and 6 pg/L (8 %) respectively. Figure 14 shows that 17 % of the samples 



showed a d ecrease in SRP after gamma radiat i o n. 

samples dec r eased by 7 ~g/L( 21%). 
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Ten percent o f t h e 

Table 8 shows the effects of gamma radiation upon samples taken on 

Mar c h 22 , 1988. SRP was signifi cantly (P ~ 0. 05) increased after 

g a mma radiation for the Benson Marina site while the SRP's for below 

Cutler Reservoir were not significantly different (P ~ 0.05). For the 

Benson Marina BAP estimation using a low inoculum size, the gamma 

irradiated sample is significantly higher (P ~ 0.05) t han g a mma plus 

filtratio n and filtr ation alon e , but filtration alone is no t 

significantly (P ..::;. 0. 05) diffe r ent from gamma plus filtra t ion . The 

BAP for t he high inoculum size for Benson Marina shows that the gamma 

radiated sample is significantly higher (P ~ 0. 05) than gamma plus 

fil tration and filtrat ion alone. Filtration alone f o r BAP is 

s i gnificant ly higher (P ..::;. 0 .05) then filtration followed by gamma. 

For the below Cutler Res ervoir site the BAP ' s for the l ow inoculum 

were a ll below the detection level (i .e. , 8 ~tg BAP/L). The BAP for 

the high inoculum shows that the gamma radiated samp le i s 

significant l~r higher than gamma plus fi l t ratio n (P -~ 0 . 05) and 

fil tration a l one (P ~ 0.05). Filtration alone for BAP i s 

sig n ificantl y lower (P ~ 0.05) than gamma plus filtration. 

The genera l trend seen in Table 8 is tha t gamma radiatio n alone 

results in a higher BAP than gamma with filtration and filtrati o n 

alone. One possible explanation for this is that filtration r e mo ves 

particulate phosphorus which could become available upon gamma 

radiation for a non - filtered sample. This may overestimate BAP if the 

gamma radia t ion causes mor e particulate p hospho rus to become available 

than would actually occur in the nat ural system. 

Not o nly d oe s gamma radiation cause a c hange in SRP, but it ca n 

cause the formation of hydrogen pero:-:ide which is to:-:ic to the algae. 
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Figure 13. Soluble reactive phosphorus concentration increase with 
its accompanying percentage increase due to gamma 
radiation . 
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Table 8. Effects of gamma radiation upon an average SRP and BAP for 
three sterilization scenarios on samples taken on March 22, 
1988 

Location Inoculum Treatment* SRP before SRP after BAP 

SiilOe gamma (UgLI.l gamma CU\lL l. l (J,l\lLIJ_ 

Benson Mar. Low a 132.7 

Low b 150.5 173 88.7 

Low c 95.7 

High a 246.7 

High b 150 . 5 173 148.0 

High c 176.0 

Bear R. Blw. 

Cutler High a 49.3 

Reservoir High b 72 68.5 42.3 

7 

a: is gamma radiated only; b: is filtration followed by gamma 

radiated; c: is filtra tion only. 

Sorensen et al. (1987) discussed the toxicity induced in samples by 

gamma radiation sterilization as follows: 

Due to radiation induced toxicity of the water, 
bioavailable phosphorus estimates were obtained for only 
filtered, non-irradiat ed samples for the first two sampling 
periods. For the April 21 co l lection , estimates ranged 
from 3.6 (Little Bear) to 13.3 ~g P/L (Bear R., Honeyville). 
Bioavailable phosphorus estimates for the May 12 samples 
were 7.6 (Little Bear) and 26.7 ~g/L (Honeyville). Microtox 
tests performed on the filtered samples collected May 12 
indicated toxicity (23 31 Microtox units) in the 
irradiated samples. We collected a sample from the Bear 
River above Oneida Reservoir on June 10 and sparged it with 
N2 for 1 hour to strip oxygen from solution hoping to 

prevent hydrogen peroxide formation through the reactions of 
singlet oxygen (Foot e, 1968). Microtox tests indicated no 
toxicity and a trial bioassay resulted in good growth of S. 
capricornutum in thi s sample . The next two set of bioassay 
samples (23 June and 13 August) were also sparged with N2 

prior to irradiation. Good growth of S. capricornutum was 



exhibited in most samples in each set , but toxicity was 
evident in the Blacksmith Fork samples collected on both 
dates and in the Little Bea r sample in August. Microtox 
tests p e rformed on the 23 June Little Bear and Blacksmith 
Fork samples indicated toxici ty in both samples . 
Apparently, sparging with N2 did not consistently remove 

sufficient oxygen from solution to prevent hydrogen peroxide 
formation. 

Unfortunately, samples used for phosphorus analyses in 
samples collected for bioavailability assays in April 
through August were cont aminate d with phosphate from 
membrane filters used in sample preparation and all results 
are unreliable. It is, therefore, not possible to evaluate 
what fraction of the total phosphorus in the samples was 
available to algae. Complete sets of phosphorus data are 
available for samples collected in September through 
December. Post irradiation toxicity prevented obtaining 
bioavai lable phosphorus estimates for most of these samples 
however. In September, bioavailable phosphorus at the 
Honeyville station wa s 31 ~tg/L. Orthophosphorus at this 
station was 20 pg/ L before irradiation and 42 ~lg/L after 
irradiation . One sample from the November set was selected 
for an experiment which investigated the use of the enzyme 
peroxidase to break down p eroxide and possibly eliminate 
toxicity. The sample (Blacksmith Fork R.) was treated with 
450 units of peroxidase per liter and allowed to stand at 
r oom temperature overnight in the dark. Microtox results 
changed from 17.8 unit s to 0 after the e nzyme treatment 
indicating the remo val of t oxicity in this sample. Samples 
collected on 1 December were treated with 150 units of 
peroxidase per liter and allowed to stand overnight. 
Microtox tests indicated that the samples were still toxic. 
Additional peroxidase was added to bring the enzyme 
concentration up to 450 units activity/L before the algal 
bioassay was set up, but some toxicity evidently persisted 
in most {perhaps all) of these samp l es. A bioavailable 
phosphorus estimate was obtained at only one site, the Bear 
R. above Oneida Reservoir. Orthophosphorus at this site was 
< 5 J.lg/L before radiation t reatment and 13 ~lg/L after 
treatment. Peroxidase addition did not affect the 
orthophosphorus concentration. 

The effects of different conce ntrations of peroxidase 
and reaction time on the toxici~y of irractiat.ed samples were 
evaluated in an experiment conducted in mid-December. ~later 

was collected from the Bear R. near Honeyville. One gallon 
was sparged with nitrogen for 1 hr. A second sample was not 
sparged. Both samples were irradiated and returned to the 
laboratory where they were sub- sampled and treated with 
peroxidase concentrations of 160, 500, 1000, 2000 units/L. 
Microtox tests were performed after 2 hr. had elapsed and 
again aft er 16 hr. The 2000 unit/ L treatment reduced 
toxicity to 1 Microtox unit in the N2-sparged sample and to 
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6 in the non-sparged sample after a 16-hr reaction period. 
Relative l y high toxicity levels remained in all ot.her 
treatments. No algal bioassay was set up for this sample. 
Future bioavailable P research will probably utilize a 2000 
unit/L peroxidase treatment for more than 16 hr. following 
radiation sterilization of the water samples . (pp. 43, 49) 

Bioavailable phosphorus estimation 
by standard addition 

60 

Once the sample had been sterilized, standard additions were used 

in the algal bioassay to estimate BAP. In quantitative analysis , 

standard addition is a common way to correct for interferences from 

the sample matrix and produces reliable values unless some internal 

process prevents the addition from being linear. In algal bioassays 

something , or some reaction in the sample could inhibit growth (e .g . , 

toxicant, precipitation of nutrients, or lack of nutrients) or 

stimulate the growth (e. g., vitamins, amino acids, temperature, or 

light) . 

For example, Figure 15 shows that an unamended Bear River sample 

collected on July 22, 1987 from below Cutler Reservoir produced a 

fluorescence of 7.0 indicating algal growth, but the BAP determined, 

based on the "linear" response to P addition was a negative 5 J.tg/L 

(negative y-intercept). A November 22, 1987 sample from the same site 

had a lower fluorescence of 4. 4, but the resulting BAP estimate was 

higher; 14 ~g/L. This discrepancy might be explained by an increase 

in pH (due to algal photosynthetic consumption of C02) which would 

cause the precipitation of phosphorus with calcium r esulting in non -

linearity of the availability of phosphoru s and misleading BAP va lues. 

Calcium-phosphate forms severa l intermediates before it reaches the 

stable hydroxyapatite form. The different intermediates have 

different solubility products and proportions of calcium to phosphate 

which might explain the curve seen in Figure 16 for the higher pH. 

Figure 16 shows that a reduction of phosphorus can occur due to a pH 
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occurs rapidly in the first ten minutes and then con tinues slowly for 

increase and result in a non-linear response to phosphorus addition. 

A linear relationship is shown in Figure 16 for the natural pH of 8.7, 

but a pH of 9 . 6 results in a non-linear relationship . 

This next study also investigated the phenomenon of a non-linear 

response of phosphorus addi tion due to an increase in pH. This was 

done by raising the pH incrementally with buffer additions and 

measuring the decrease in SRP after 30 minutes. This time period was 

provided to allow the system to become evenly mixed and al l ow 

precipitation to begin {Figure 17). After 120 minutes, SRP was 

measured again and the change was found not to be statistically 

different (P S 0. 05) between 30 minutes and 120 minutes. This 

indicates that most of the phosphorus is precipitated within the first 

30 minutes after pH adjustment. When the pH of this sample was 

lowered again to a pH of 8 for 20 hours, dissolution of precipitated 

phosphorus could not be statistically proven. Griffin and Jurinak 

(1974) found that in soils, phosphorus adsorption and precipitation 

the next 4 hours. Desorption occurs much slower, requiring 6 to 7 

hours in soils (Griffin and Jurinak, 1 974). The REDEQL model was run 

for the same pH's used in the above experiment and approximately the 

same sample composition (ortho-phosphorus equals 50 ~g/L) . The model 

calculations showed that as pH was increased from 8.70 to 9.48 the 

ortho-phosphorus equilibrium concentration went from 0. 35 ~lg/L to 0.15 

~g/L while the balance of phosphorus was in solid form with calcium. 

Both the laboratory results and REDEQL calculations agree that as pH 

is increased , ortho-phosphorus , and hence BAP concentrat ion would 

decrease for Bear River water. Equilibriwn concentrations (0 .3 5 to 

0.15 ~Lg /L) calculated by REDEQL are approximately 100 times less than 

the measured concentrations (Figure 17) wl1ich shows that the river 

compos i tion is not at equilibrium. This suggests that phosphorus 

inputs replenish that lost to precipitation with time in the river. 
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Figure 17 . The change of soluble reactive phosphorus with an increase 
in pH (95 % confidence interval error bars drawn). 

The next study investigated the effects of a pH increase upon BAP 

estimation. These effects were monitored during an algal assay test 

by controlling pH near neutrality for some of the samples and having 

no pH control on the remaining samples. A C02 and air gas mixture was 

bubbled through the culture to control pH. The results of this study 

are shown in Table 9. 

The Benson Marina site shows a significantly higher (P ~ 0.05} BAP 

with pH kept between 6.7 and 7.2 versus a much lower BAP with the pH 

as high as 9.7. The estimated BAP concentrat ions for the site below 

Cutler Reservoir shows a significantly higher (P ~ 0 .05) BAP with pH 

kept below 6.9 versus a much lower BAP with a pH high around 8.9. No 

BAP could be measured in the Blacksmith Fork sample at either high or 

neutral p H. It appears that an increase of pH for Benson Marina and 

below Cutler Reservoir samples resulted in an apparent reduction of 

BAP. This generally agrees with the REDEQL program results whic h 

predict a high (> 99 %) precipitation of P04-P with ca l cium in Bear 
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Table 9. The effects on BAP estimation while controlling the algal 
culture pH near 7.0 

pH range BAP pH range BAP 

Wit hout Without COz COz 

Site C02 with Air with Air 

____________________________ (~~L_ __________________ ,(I~ 

Benson Mar. 7.5-9.7 60.5 6.7-7.2 119 

Blw. Cutler Res 8 .1-8 .9 0 6.9 16.5 

Blacksmith Fork 8 5 8 9 0 6-7 0 0 

River water. Scherfig et al. (1973) found that co2 addition to 

maintain pH betwe en 7 and 8 resulted in 45 to 74 % increases of algal 

growt h (g of cells/L) . The Benson Marina sample s howed a 97 % increase 

in estimated BAP. 

Precipitation o f pho sphorus due to an increase of pH might be 

minimized by using a large inoculum size to encourage rapid luxury 

uptake of BAP by the inoculum. Luxury uptake refers to the uptake and 

storage of phosphorus by the algae beyond those levels required for 

immediate growth (Keenan and Auer, 1974). Keenen and Auer (1974) made 

the foll owing findings: (1) one of the problems associated with 

luxury uptake is that it could result in a larger ortho-phosphorus 

concentration in solution due to the release of stored intracellular 

phosphorus which will act as an e~t raneous source of phosphorus in 

situations where phosphorus concentration in the sample is low; (2) 

the detrimental effects of lu~ury uptake by introducing additional 

phosphorus into the sample can be minimized by a starvation period; 

(3) the influence of lu:-::ury uptake of phosphorus on algal bi oassays 

is a function of t h e phosphorus concentration in the original (stock 

culture) growth medium and of the length of time during which the 

cells are sta rved of phosphorus; (4) Se lena strum capricornutum 
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culture) growth medium and of the length of time during which the 

cells are starved of phosphorus; (4) Selenastrum capricornutum 

exhibits luxury uptake of phosphorus. 

On March 22, 1988 a S . capricornutum culture in stationary growth 

phase was put into a phosphorus free medium for two days before being 

used as an inoculum in a culture. The results were compared with 

results using an inoculum from a culture at stationary phase, but 

without holding the cells in phosphorus free medium (February 22, 

1988). Both of these sample dates used an inoculum of 103 cells/mL in 

an AAP culture . No significant (P ~ 0. 05) increase of fluorescence 

was detected between the two cultures for given phosphorus additions 

(Figure 18) . Since these results are from one culture, the effects of 

phosphorus starvation needs to be studied further before any 

conclusions about the effect on luxury uptake can be drawn. 

It was hypothesized that luxury uptake could be us ed 

advantageously for estimating BAP in Bear River system samples. Cells 

added in the bioassay inoculum would utilize luxury uptake and store 

the available phosphorus within the cell. The phosphorus then would 

not be susceptible to precipitation due to a pH increase within the 

culture. The quicker the avai labl e phosphorus could be removed from 

the system by cell incorporation, the smaller the effect of phosphorus 

precipitation would be on BAP estimation. 

A low inoculum had been used for the previous study. A high 

inoculum had also been used for the same sample, so that the effects 

of luxury uptake could be investigated for two inoculum sizes. Data 

in Figures 19 and 20 are from the high (1 X 105 cells/mL) and low 

inoculum (1 X 103 cells/mL) sizes for data taken February 22 and March 

22, 1988. Statistical comparison of the slopes and y-intercepts for 

both the low and high inoculums on both dates found that they were 

significantly different (P ~ 0.05). Both of these figures show that 

the higher inoculum size produces more growth (fluorescence) than the 

low inoculum. 
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cells/mL exceeds the ma:c::imum fluorescence of the 1 X 103 cells/mL 

inoculum within the first day. The inoculum size of 1 .3 X 10 5 

cells/mL exceeds the maximum fluorescence of the 6.8 X 10 4 ce lls /mL 

within the first 2 days. This faster response can be important in 

counteracting the effects of precipitation due to a gradual pH 

increase over a one to two week period. This suggests that a high 

inoculum could be used to minimize the effects of phosphorus 

precipitation due to a pH increase. 

External standard curve 

The previously discussed data s howed that use of an internal 

standard curve resulted in a non - linear response to phosphorus as pH 

was increased. It was then decided to try an external standard curve 

which might provide more consistent BAP estimates . An external 

standard curve for S. capricornutum growth in response to P was done 

in March, 1988 by growing S . capricornutum in a lgal assay medium 

(Miller et al. 1978) with varying concentrations of P04-P. 

There was 72 Jlg/L (1. 8 J..tmolar) of calcium in the algal assay 

medium. This calcium could have precipitated 6 and 23 percent of the 

added 200 and 50 pg /L of P04- P, r espectively , if solid CaHP0 4 (pK90 = 

6. 66) formed as an intermediate to hydroxyapatite (Snoeyink and 

Jenkins, 1980) . Less than 6 to 20 percent of the phosphorus could 

precipitate from any phosphorus addition since a portion of the 

calcium would be utilized by the algae and would be unavailable f or 

precipitation. The linearity of the standard curve seen in Figure 22 

indicates that P04 - P precipitation was not a factor in algal response 

to P04 -P addition because the line does not curve to suggest any 

precipitation. 

The minimal detectable change in fluorescence when using the 

external standa rd curve was determined to be 8 p g of BAP/L. This was 

determined by the 95 % prediction confidence interval of the 
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250 

fluorescen ce at 0 phosphoru s based on the regress ion of fluorescence 

with SRP. The SRP corresponding to this fluoresce nce was determined 

using the regression equatio n. 

The equation for calculating BAP from the fluorescence of the 

sampl e culture without phosphorus addition was: 

BAP~(Fluorescence + 1.04)/ 2.7 438 (4) 

A disadvantage of using a n external s tandard curve i s that all 

natural constituents are n o t present in the artificial medium and 

t heir inhibitory and stimulatory effects on the algae are not 

accounted for. Bear River water quality data and ability o f samples 

to s upport a l gal growth suggests that toxic or inhibitory constituents 

are either not present or their concentrations are insignificant i n 

r egards to affecting the growt h of the algae. Copper, one of t h e most 

toxic element s to algae and one of the most likel y to be present, has 

usually been below 30 ~L g/L of total copper in Bear River samples. 
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usually been below 30 ~lg / L of total copper in Bear River samples. 

Soluble copper inhibits S. capricornutum growth at 50 ~lg /L (U.S. 

Environmental Protection Agency, 1980b} . A maximum concentration of 

105 iJg/L of total copper was observed in samples collected between 

January 1977 and December 1983 in the Bear River (Sorensen et al. , 

1986}. Soluble copper ranges from 10 to 1 % of total copper for water 

ranging between pH's of 7.5 to 8.0 (Lindsay, 1979). A pH of 7.5 to 8.5 

is typical of Bear River water. Therefore, the maximum soluble copper 

in a Bear River sample would be 10.5 ~tg/L which would be below the 

toxic level for algae. Similar computations for other heavy metals 

indicate that toxic concentrations are unlikely in this hard, alkaline 

water. 

Recommended BAP estimation procedures 

In summary , the standard Algal Assay Bottle Test (Miller, et al., 

1978} was primarily developed to determine the limiting nutrient and 

the presence of any toxicants. This procedure has been modified to 

allow BAP estimation by using standards. Miller et al. (1978) suggests 

that the pH of the algal cultures be maintained below 8.5 to insure 

the availability of carbon dio:-:ide. A pH increase for the Bear River 

samples resulted in phosphorus precipitating with calcium. 

The apparent affects of precipitation of phosphorus with calcium 

on BAP estimation can be minimized by the use of an external standard 

curve, luxury uptake by an initial starvation period of the inoculum 

and large inoculum size, and pH control by bubbling with carbon 

dioxide. Luxury uptake would maximize the phosphorus uptake within 

the cells during the initial phase of algal growth and minimize the 

phosphorus concentration in solution which would be available for 

precipitation. Precipitation of phosphorus with ca l ci um is pH 

dependent, so contro l of pH will minimize precipitation. The se 

procedures would probably produce the maximum BAP estimate for the 

Bear River system. Thi s does not mean this would be the most 
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accurate, but it would give the largest BAP estimate and a margin of 

safety in making management decisions. A more accurate procedure 

might include maintaining the sample pH at the natural river pH. The 

BAP estimations for this study used the March 22, 198 8 external 

standard curve with an inoculum of 103 cells/mL and no pH control. 

Sources of Bioavailable Phosphorus 

Phosphorus contributed by RQi-~~~ 

The Cache Valley has five wastewater treatment plants that 

discharge into the Bear River system, including: the City of Preston 

(trickli ng filter), City of Richmond lagoons , City of Logan lagoons, 

City of Wellsville lagoons and City of Hyrum (oxidation ditch) . The 

City o f Franklin has a total containment lagoon , while Richmond and 

Wellsville were designed t o be total containment fac ilities, but 

current ly discharge le~~ t han 0.1 MGD. White ' s Trout Farm and E . A . 

Miller are the only significant industrial waste dischargers to 

surface water in the Cache Valley. 

Table 10 shows that, based on the average BAP concentration and 

average flow, the wastewater treatment plants in Cache Valley 

contribute approximately 30,000 kg of BAP/year to the Bear River 

system. The Logan lagoons contribute 73 % of the total WWTP effluent 

BAP while Preston WWTP and Hyrum WWTP contribute 6 and 21%, 

respectively. This means that if the Logan Lagoons effluent 

phosphorus was completely eliminated from entering the Bear River 

system, the BAP load from wastewater treatment plants would be reduced 

to approximately 8,200 kg/yr . If Logan lagoons, Preston WWTP a nd 

Hyrum WWTP effluents were all removed from the Bear River system, the 

point source BAP load would be reduced by 99.5 % to only 160 kg/yr. 

Realistically these effluents could not be complete ly removed from the 

Bear River system, but treatments are available that would remove 90% 



Table 10 . Cache Valley point sources that discharge into the Bear Riv er system 

Concentrations Average mass 
River Effluent Samples discharge 

Date Flow TP SRP BAP TP BAP 
cu. ft/s ~q/1 ~q/1 ~q/1 kq/vr kq/vr 

Bear Preston WWTP 6/21/87 1.0 2210. 1470. 1560. 2697. 1800. 
2/22/88 3830. 3290 . 2500. 

L. Bear White's Trout Far.m 6/21/87 31.0 * * < 8 1272. < 179 
2/22/88 25.0 57. 23. < 8 

Hyrum WWTP 6/21/87 1.4 5190. 4890. 5830. 7571. 6300. 
2/22/88 6920. 7000. 4180. 

Wellsville Lagoon 6/21/87 0.1 1130. 862. 860. 101. 90. 

Logan Logan Lagoon 2/22/88 14.4 3170. 2530. 1710. 40768 . 22000. 

Total 52409. 30000. 

*= sample was contaminated 

Percentage 
of Total 

BAP 
6.0 

0.0 

21.0 

0 . 3 

73.3 

-.J 

"' 
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of the P04 -P; the form which is highly avai l able. If a 90% reduction 

of P04 -P from the three major plants was instituted then P04-P , and 

hence BAP from the point sources , would be reduced by 89.5 % to 3,200 

kg/yr. A 90 % reduction in phosphorus for only the Logan lagoons could 

reduce the BAP contribution from WWTP ' s by 65.5% to 10,400 kg/yr to 

the Bear River system . 

Phosphorus values from the literat ure were reviewed to de termine 

if the concentrations mea s ured for the point sources in Cache Valley 

were within the same range as the literature values. Typical values 

from the literature show that total phosphorus ranges from 4 to 15 

mg/L for untreated wastewater , but since secondary treatment removes a 

small percentage (<10 %) of total phosphorus , this range would be 

typical for effluents (Tchobanoglous , 1979) . The TP concentration 

from the Cache Valley wa stewater treatment plants ranges from 1.1 to 

5. 2 mg/L (Table 5). The se phosphorus concentrations reflect the 

relatively dilute wastewaters treated by these plants. Excessive 

infiltration and inflow problems in the sewer systems probably explain 

these lo\>t concentrations. Rast and Lee (1902) recorrunend a phosphorus 

loading value of 1.1 kg P/cap .-yr . Using this value for the City of 

Preston, City of Hyrum and City of Logan results in phosphorus l oads 

of 4,200 kg/yr, 9,300 kg/yr and 33,000 kg/yr, respectively (Table 11). 

Table 11. Phosphorus loading calculation for the three major 
wastewater plants in Cache Valley using the factor of 
1.1 kg P/cap.-yr 

Calculated 

Population Pop. eq. from Total Discharge 

City WWTP using system Industries Population Kg P/yr 

Preston 3800 3800 4200 

Hyrum 4600 3850 8450 9300 

Logan 30000 30000 33000 
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The calculated loading comes within a factor of two of the measured 

values (Table 10) ; a reasonabl e variance . 

Phosphorus contributed by 
livestock runoff 

Another source of phosphorus comes from dairy and feedlot waste 

carried into streams by runoff. Based on the modeling results of 

Wieneke et al. (1980), Sorensen et al. (1987) estimated that 2 . 5 Mg/y 

of total phosphorus was contributed to the Bear River system from 

feedlots. Thi s was equivalent to approximately 0. 6% of the total 

phosphorus (44 0 Mg/y) that pas sed by Cut l er Reservoir in 1985. The 

contr i bution from feedlots in regards to BAP was estimated. The 

average BAP concentration is 22.5 ~l g/L below Cutler Reservoir and the 

12 
water year flow in 1985 was 2.6 X 10 L. The BAP which then passed 

by Cutler Reservoir wa s approximately 59 Mg /y. If al l the total 

phosphorus (2.5 Mg/y) contributed from feedlots was bioavailable then 

it wo uld compose only 4. 3 percent of all the BAP that passes below 

Cutler Rese rvoir. Feedlot phosphorus could be highly ava ilable sinc e 

5 to 25 % of the total phosp horus is ort ho -phosphate and much o f the 

remaining phosphorus fraction is decomposab l e organi c mat erial 

(Wie neke et al ., 1 980) . 

Wieneke et al. (1980) found that t here was no linear correlation 

between TP and SRP in feedlot runoff. This might be due to p hosphorus 

being in the o=ganic form which wou l d not be measured as SRP. The 

organic matter would break down over time and become available , so BAP 

woul d probably be high. According to Wieneke et al. (1980) a ll o f 

these fe edl ots are within 24 hours river time of Cut l e r Reservoir. 

More studies need to be conducted to determine BAP transport along t he 

river and reservoirs to determine the potential impact upon down st ream 

reservoirs from livestock runoff. 
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The transport of phosphorus in runo ff from agric ultural land is 

corrunonly regarded as one of the major fa c tors control ling the 

eutrophication of natural waters (Sharpley, 1980a). In contrast, 

Raschke and Schultz (1987) fo und, in limited wo rk, that very little 

nonpoint source phosphorus was bioavailable . 

Sagher (1 97 6) found that most o f the inorganic phosphorus was not 

available in calcareous soils . Cache Valley has mainly sedimentary 

geology , so it would be eY.pected that the soils would be high in total 

phosphorus, but wo uld be l o w i n BAP due to its calcareous soils. 

Rainfall and s n owmelt are the major causes o f land runoff. The 

phosphoru s concentrat i on in soi l ru noff decreases in eac h successive 

r unoff event during rainy periods (Sharpley, 1980b; Wendt a nd Corey, 

1980) . Phosphorus is replenis hed during dry peri o ds due to 

atmospheric depos ition and organi c mat ter buildup. A Bear River 

sample taken at the UT-ID state border in February 1986 during a high 

runo ff event indicated phosphorus l oads o f 89 g TP /sec a nd 37 g 

SRP/sec. This high runoff eve nt was a very rare (=1 / 100 years) 

occurrence. The magnitude of phosphorus transport during this event 

can be put in perspective when compared to the ave rage 1986 load of 9 

g TP/s and 3 g SRP/s. These loads convert to annua l l oads of 270 ,000 

kg TP / yr and 95 ,00 0 kg SRP/yr without i n c luding the February data. 

The February eve nt contributed 30 , 700 kg TP/4 days and 12,800 kg SRP/4 

days which is 11 and 14 %, respectively, of t he annual loads. Runoff 

events can contribute large amou nt s of phosp ho rus during a short time 

p e riod, but over an e ntire year the relat ive magnitud e is reduced. 

To obtain an annual estimate of the total p hosphorus co nt ributed 

by land runoff in Cache Co un t y, export coeff icients for e ntire 

waters heds from Rast and Lee ( 1982 ) were used along with land use 

acreages (Cundy and Conant, 1982) of Cache County (Table 12). I t was 

estimated that 55,000 to 65,000 kg of TP/year was contributed to the 



Table 12. Phosphorus contribution from land runoff for vari ous land uses in Cache County, UT 

Land use 
Non-irrigated Cropland 
I~rigated Pasture * 
Marshland 
Multiple Use 
Native Grazing 
Recreation 
Urban 
Wildlife 

Acres 
60,000. 

120,000. 
5,000. 

307,000. 
218,000. 
1,000. 

19,000. 
19,000. 

* includes a ll irrigated cropland 

Total Phosphorus 
Rast & Lee Low Total High Total 

Export Coeff. Phosphorus Phosphorus 
sq~_~ete~~ g/m2/yr Designation kg/yr kg/yr 

2.4E+08 0.05 rural/agriculture 12,000. 12,000. 
4 .9E+08 0.05 rural/agriculture 24,000. 24,000. 
2. OE+07 0 wetlands 0. 0. 
1. 2E+09 0.005-0.01 forest 6,200. 12,000. 
8.8E+08 0.005-0.01 forest 4,400. 8,800. 
4.0E+06 0.005-0.01 forest 20. 40. 
7. 7E+07 0.1 urban 7,700. 7,700. 
7.7E+07 0.005-0 . 01 forest 380. 770. 

Total (kg/yr)= 5~,_QQQ. 65,000 . 

._, 
"' 
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Bear River system by land runoff. Rast and Lee (1982) state that the 

approach of using export coefficients shou ld provide an estimate , 

usually accurate within a factor of two, of the amounts of nutrients 

expected to enter a waterbody. 

4 4 0 Mg of TP /year passed by 

Sorensen et al. 

Cutler Reservoir 

(1987) estimated that 

dam in 1985. This 

estimate included the phosphorus contributed from the point and non ­

point sources from the entire Bear River basin. 

A special study was done to try and estimate the percentage of TP 

that was BAP in runoff . Since rain is the major cause of land runoff, 

a rain simulation st udy was done in September, 1987 on four sites with 

different soils , slopes, and l a nd cover characteristics (Table 13) . 

The sites were: a wheat fie l d , a recently planted barren field, and 

two range land sites in the Cache Valley. The sample date probably 

results in a lower estimation of phosphorus loss than would be 

expected in a spri ng runoff event since the additional factors of 

organic matter accumulation over the fall and s nowpa ck would not 

affect the loss of top soil and plant litter. The rain simulation 

apparatus gave us the benefit of better experimental control but some 

error may have occurred due to the small number of sample p l ots done 

and their respective small areas. The simulated rain intensity 

ranged from 0.22 to 0.56 in/min. Typical rainfall in the Cache Val ley 

is 0.02 in/min for a 5 minute duration over a 1 yea r return period and 

0. 05 in/min for a 5 minute duration over a 100 year return period 

(State Climatologist office, USU, Logan, UT). The simulated rain 

intensity was 10 times greater than actual rainfall. This excess rain 

intensity may have produced a lower BAP estimate because of its higher 

erosive power which would wash away larger part icles , and l ower the 

fraction of clays and organic matter, and thus result in a lower BAP 

fraction per unit mass of suspended solids t han would be expected from 

natural runoff. 



Table 13. Soil characteristics from runoff and strearnbank sampling sites; BAP and TP measurements 
from simulated runoff and streambank suspensions in Cache Valley 

Location Soil (< 2 ll'JTI) Suspension 
Soluble TP % % % Sus. BAP TP 

Phos. clay CAC03 pH Organic* solids 
flg P/ flg P/ matter flg/ flg/ 

Runoff** q soil q soil mg/L jlg/L q ss lua/L q ss 
Blacksmith Fork 1 3.2 850 22.25 0 7.1 6.29 422 2744. 6502.4 2392 5668 
Weston Cr. 3 .91 130 18 11. 6 7.84 1. 95 932 735. 788.6 13 66 1466 
Cub R. 6.88 860 32.5 15.3 7.77 2.26 297 51. 171.7 2444 8229 
Abv. Cutler Res. 11.75 1.3 0 22.25 1.7 7 .2 5 6.28 426 433 . 1016.4 1156 2714 

Strea.."T\bank 
Battle Cr. 7.97 710 32.5 10.2 8.13 0.74 2560 15. 5.9 2529 988 
Weston Cr. 2 . 58 640 25 7.7 7.67 2.52 2485 1 0. 4 .1 932 375 
Little Bear R. 3.2 600 12 5.1 7.74 1. 91 1010 1. 1.4 2027 200 7 
Bear R . (Ama l ga ) 2.34 560 14.5 10.2 7.64 1.67 560 6 . 9.8 1487 2655 

*Organi c matter- (1 .724) X Organic carbon and is measured on the top 3 in . of soi l inc l uding duff . 
** Al l runoff parameters are averages from two plots except BAP which was a single measurement 

_, 
"" 
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The BAP load from runoff can be estimated by using the ratios of 

(~g BAP/g SS)/(~g TP/g SS) for the four runoff sites. The ratios are 

1.15, 0.54, 0.02 and 0.37 flg BAP /~g TP for the runoff sites at the 

Blacksmith Fork, Weston Creek, Cub River and Above Cutler Reservoir , 

respectively. The large range might be due to the Blacksmith Fork 

site having 0 CaC03, and is a range land with an accumulated organic 

layer on the surface while the Cub River has 15.3 % CaC03, and is a 

cropland with the organic matter being tilled into the soil. The 

average of the ratios is 0.52 which was multiplied by the TP high and 

low export estimates (Table 12) to obtain an estimate for BAP export. 

It is felt that the average value would provide the best BAP estimate 

due to the large range of a limited data set . The estimated SAP l oads 

would range from 28 ,600 to 33 ,800 kg BAP/yr using this ratio. These 

estimated BAP loads could be high because the measured BAP value s do 

not account for any BAP loss as it travels through the watershed and 

becomes unavailable due to precipitation and plant uptake. Sorensen 

et al., 198 7 and Ahuja et al. , 1982 point out that the relative 

contribution o f sediment and phosphorus from any soil to a water body 

depends on its erosivity, slope , and distance from the water. This 

runoff total phosphorus estimate needs to be taken with caution since 

the e~port coefficients are national averages and may not be 

representative for a calcareous area such as Cache County. 

Phosphorus contributed from streambanks was also investigated 

because bank erosion and landsliding was obvious in many locations in 

Cache Valley. The relative phosphorus contribution for streambanks in 

respect to runoff can be see n by dividing the SAP concentrations by 

the suspended solids concentrations which allows a comparison on a 

conunon basis. This comparison shows that the runoff samples were 

several orders of magnitude greater in BAP than the streambank 

samples . Runoff samples come from top soi l s that have continual 

phosphorus repl e nishment from atmospheric deposition, fertilizer 
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addition and/or decaying vegetation . The streambanks are naturally l ow 

in phosphorus and continually lose it by root uptake. In agreement, 

Taylor and Kunishi (1971) state that streambanks can actually act as 

phosphorus sinks because they are usually l ow in phosphorus content. 

The final analysis of the data in Table 13 showed that no 

correlations existed for either the runoff or streambank samples 

between BAP and % clay , % caco
3 

and pH. The lowest pH, l o west % Caco3 

and average c l ay percentage gave the highest BAP estimate (Blacksmith 

Fork). The lowest BAP estimate for runoff samples was obtained for 

the Cub River sample which had a higher pH, the highest percent CaC03, 

and the highest clay content. 

:rhe relative contribution of 
~phorus from each of the sources 

Cache County will be used as the common base to compare the 

relative contributions of phosphorus from the various sources (Table 

14) . The point sources (not including Preston WWTP) in Cache County 

contribute 28,200 kg BAP/yr. The majority o f the feedl ots are in 

Cache County, so it will be assumed that all of the 2,500 kg BAP/yr is 

contributed from livestock runoff to the Bear River in Cache County. 

The BAP contribution from land runoff of 28 , 600 to 33 , 600 kg BAP/yr 

was calculated for Cache County only. Point sources contribute 46% , 

livestock runoff cont ribute s 4% and land runoff (midpoint of 31 ,1 00 

kg/year of BAP) contributes 50 % of the bioavailable phosphorus load. 

The majority of phosphorus for the point sources only comes f r om three 

WWTP plants, while the livestock runoff comes from approximately 200 

feedlot areas and the land runoff is very diffuse encompassing 744,000 

acres . It is noteworthy that BAP has been undetectable at the Bear 

River sampling site above Cutler Reservoir, even tho ugh this s it e 

would receive most of the land runoff in Cache Valley. This suggests 

t hat even though land runoff can contribute 50 % of the BAP , an 

undetectable amount of it reaches Cutler Reservoir. Land runoff may 



81 

have insignificant impa c t upo n downstream reservoirs. With this in 

mind, a comprehensive management plan still needs to be developed 

which will minimize the phosphorus from all the sources. 

Sor ensen et al. (1987) stated that not only should the total mass 

of phosphorus from any one source in a year's time be considered in 

phospho rus management, but the mass of algal available p hosphorus 

contributed must also be taken into account. Control of the sources 

whi c h have the greatest impact in terms of contributing the largest 

BAP to the reservoir should be ranked highest (Soren sen et al ., 1 987) , 

and a management plan should apply the best management practices (BMP) 

to those sources which will reduce t he BAP load to the reservoirs in 

the most cost effective manner. 

Table 14. Bioavailable phosphorus contributions from various sources 
in Cache County, UT 

3 Wastewater Treatment Plant s discharge 

Phosphorus from livestock runoff 

Phosphorus from land runoff 

Total 

Phosphorus 

28 , 200 

2,500 

55,000 to 

*For Wastewater and livestock runoff, BAP/TP 1.0 

Bioavailable 

Phosphorus 

28,200* 

2 , 500 

28,600 

The proposed Honeyville reservoir will be immediately below Cut l er 

reservoir and i s the main reservoir impacted by the Cache Valley 

sources. The three wast e water treatment plants (Logan, Hyrum and 

Wellsvi l le ) are the closest sources to the Honeyville reservoir and 

therefore shou l d be ranked h ighest since they will contribute the most 

BAP. E. A. Miller , a slaughter house in Hyrum, needs t o be studied to 

determine if it fits into this category. 
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Technology is available that can reduce the phosphorus from WWTP ' s 

by 90 %. The Innovative and Alternative Technology Assessment Manual 

(Reckho w et al ., 1980) discusses the economics of chemical 

precipitation , biological and land treatment for phosphorus removal. 

Th e construction and operation and maintenance costs from the 

Innovative and Alternative Technology Assessment Manual were updated 

to June, 1988 by using the ENR construction cost index of 4531.58 

(ENR, 1988) (Table 15) . 

Alum, ferric chloride and lime addition are the three most common 

precipitation methods. Removal efficiencies ranged from 75 % for lime 

to 97 % for ferric chloride addition . These processes produce s ludges 

which, because of their to:-::icity may require additional treatment 

depending on the disposal methods. For a 1 MGD WWTP, ferric chloride 

wa s the least expensive control strategy for construction with costs 

of $46 ,000, while alum addition was the most expensive at $49,000. 

The annual operation and maintenance costs for a 1 MGD WWTP showed 

that lime clarification was the c heapest at $19,000, while alum 

addition was again the most expensive at $55,000. For a 10 MGD WWTP 

ferric chloride addition was the least expensive with construction 

costs of $150 , 000 and lime clarification being the most expensive at 

$210,000. The annual operation and maintenance for a 10 MGD WWTP 

showed that lime clarification was the least expensive at $200,000 

with alum addition being the most e::-::pensive at $400 ,000 (Table 15). 

Even though lime clarification is relatively inexpensive compared to 

the ot her strategies , it should only be recommended with caution 

because of its low, (75 %) removal efficiency. 

Land treatment technology ranges from wetlands to overland flow 

with removal efficiencies ranging between 0 to 9Q !'o depending on the 

site and design characteristi cs . Construct ion costs and annual 

operation and maintenance costs show that wet lands are the least 



Table 15. Economics for phosphorus removal from wastewater effluents by various treatments 
(Data from U.S. EPA, 1980a and ENR = 4531 for June, 1988) 

Treatment Process 

Wetlands 

Rapid Infiltration, 
Underdrained 

Rapid Infiltration, 
Not Underdrained 

Land Treatment, Slow Rate, 
Sprinkler (CP), Underdrained 

Land Treatment, Slow Rate, 
Sprinkler (CP), Not Underdrained 

Wastewater Construction 
Flow (MGD) 

1 

10 

10 
1 

10 
1 

10 

Cost ($) 

26,000 
140,000 
420,000 

3,200,000 
370,000 

2,900,000 
1,200,000 
9, 800,000 
1,200,000 
9,800,000 

Operation/ 
Haintenance 

Cost ($) 

8,200 
37,000 
47,000 

245,000 
37,000 
220,000 
59,000 
440,000 
56,000 
440,000 

Land Treatment, Slow Rate, 1 86,000 56,000 
Gravity (RF), Not Underdrained 10 370,000 320,000 

Land Treatment, Slow Rate, 1 1,200,000 71,000 
Gravity (RF), Underdrained 10 5, 400,000 340,000 

Overland Treatment (OD), Gravity 1 980 , 000 23,000 

Phostrip (Activated Sludge) 

Alum Addition 

Ferric Chloride Addition 

L~e Clarification of Raw 
Wastewater 

10 9,100,000 150,000 

10 

1 

10 
1 

10 
1 

10 

860,000 
1,600,000 

70,000 
100,000 

49,000 55,000 
180,000 400,000 
46,000 

150,000 
42,000 

310,000 
47,000 19, 000 

210,000 200,000 

Performance 
T. Phosphorus 

Removal (%) 

0-94 

0-90 

0-90 

80- 99 

80-99 

80-99 

80- 99 

90-99.9 

>90 

94 

56-97 

75 Q) 

w 
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expensive for treating both 1 and 10 MGD while land treatment options 

are the most expensive (Table 15) . 

Biological phosphorus removal treatment is usually accomplished by 

an activated sludge process either in a combined or split treatment 

system in regards to carbon removal. This process can remove greater 

than 90% of the phosphorus. Estimated construction costs are $860 ,000 

for 1 MGD and $1,600 ,000 for 10 MGD . Annua l operation and maintenance 

costs are $70,000 for 1 MGD and $100,000 for 10 MGD. 

The selection of treatment technology should be based on existing 

facilities , operator expertise and cost effectiveness. The beneficial 

use of land treatment should be accounted for if additional irrigation 

or wetlands are provided. 

Land runoff contributes about 50% of the total BAP and probably 

s hould be ranked second because of the difficulty of its control. 

Land runoff also contributes significant quantities of sediment which 

are filling in the channels and reservoirs. Hanson and Fenster (1969} 

stated that we should n' t ignore erosion into o ur lakes, but we s hould 

not consider the sediment in addition to nutrient enrichment. The 

cost effectiveness of land runoff control should account for both BAP 

and sediment remova l from the Bear River system. Phosphorus in land 

runoff can be minimized by using no - till or low-till agriculture , 

maintaining a crop cover , controlling runoff c hannels, using green 

belts adjacent to the water courses , maintaining wetlands, and using 

proper fertilizer application a nd dosage. No-till agriculture was 

developed in the 1960 ' s and is now gaining national acceptance. Cache 

County agriculture in 1987 o nly used 0 .2 % of no-till and 9.9% of low­

till (Sorensen et al., 1987). The 1985 Federal Farm Bill (PL 99 -1 98) 

contains the Conservation Reserve Program (CRP) in which farmers are 

encouraged, through 10-year contracts with the U.S. Department of 

Agriculture to stop growing crops on highly erodible cropland and 

plant it to grass or trees . The Soil Conservation Service, Logan 
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(Gwen Christiansen, personal communication, June 8, 1988), reported 

that Cache County had 45,000 acres eligible for CRP out of 200 , 000 

acres of cropland; 17,250 acres (38 %) had taken advantage of this 

program. 

Streambank erosion should be controlled to red uce the sedimen t 

load , but not necessarily to control BAP. St r eambanks can b e 

stabilized by low porosity covers, loose material covers , vegetation 

or modification of the stream channel. The Corps of Engineers (1981) 

found that, generally, across the U.S . stream bank stabilization was 

not cost effective. 

Livestock runoff contributes appro~imately 4 % of the BAP. Wieneke 

et al. (1980) stated that separation of cattle from the receivi n g 

s tream by approximately 60 m (200 ft . ), significantly reduced the 

impact of the waste on the stream. The Cache County Zoning Ordinance 

does not establish a separation distance for cattle , but states , 

'' Setback distance s: A . The applicant shall demonstrate that h is 

waste management system will minimize any wastes from entering a 

waterway; canal, drain, or ditch; lake or reservoir; wetland or 

watertable, co n sistent with federal , state , and local laws and 

regulations " (Chapter 13 - A, Agriculture Zone, ame n ded November 15, 

1983, Section 13-6-3). The Utah Bureau of Water Pollution Control 

(Brian Elwell, personal communication , June 16, 1988) has a policy 

that if a county does not have a setback regulation, then the 

wastewater from operation and runoff cannot be discharged into a water 

body . 

A benefit - cost analysis needs to be done to determine whether i t 

is more cost effective to control the sources or treat the water 

before use. Sorensen et al . (1986) determined that it would cost 

$3 . 62/acre-ft to $10.47/acre-ft for treatment of Bear River water by 

coagulation/flocculation, taste and odor control and chlorination . 

The recreational benefits {boating, aesthetics , fishing etc.) of 

better quality water in the Bear River and reservoirs needs to be 
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determined and subtracted from the costs of source treat.ment before a 

meaningful cost analysis can be determined. 

Transportation of Bioavailable Phosphoru s 

Effects of power peakillg_UP-QU_QhQsp~ 
concentration in the Bear River 

When discussing transportation of phosphorus it i s important to 

distinguish between concentration and mass. Algae influence the 

phosphorus concentration surrounding them resulting in a concentration 

gradient as the phosphorus is taken up by the algal cell. BAP needs 

to be within this realm of influence for the algae to be utilize it, 

so BAP concentration is important. Mass transport is related to 

concentration by flow. The mass transport value can be mi sleading 

because even with a large mass transport, the concentration can be low 

due to large flows. 

A power peaking study was done for both Oneida and Cutler 

reservoirs to determine the effect upon phosphorus transport . Figures 

23 and 24 sho~<o-1 the effects of power peaking. For below Cutler 

Reservoir (Figure 23), the stream surface total phosphorus 

concentration reached a maximum of 50 ~l g/L , a n d the depth profile 

total phosphorus concentration reached a maximum of 4 8 J.lg/L. The 

depth profile was obtained by lowering and raising a USGS con tinuous 

sampler throughout the river depth at approximately 1/3 and 2/3 the 

distance across the river. Flow reached a maximum of 4000 cfs at 

approximately one hour before the maximum TP concentrations were 

measured . The SRP measurements remained relatively constant and no 

outstanding maximum is observed. 

On the Bear River at the Idaho/Utah border 32 miles downstream 

from the reservoir, the effects of the Oneida Reservoir power peaking 

were measured (Figure 24) . The stream surface total phosphorus 

concentration reached a maximum of 50 ~lg/L, the near bottom total 
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Figure 23. Bear River below Cutler Reservoir during a power peaking 
operation on December 3, 1986. The concentration of SRP and 
TP on the surfa ce (A) • The concentration of SRP and TP over 
a composited water profile (B). The flow of the Bear River 
(C). 
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Figure 2~. Bear River below Oneida Reservoir at the UT-ID border during a 
power peaking operation on December ~, 1986. The 
concentration of SRP and TP at the surface (A). The 
concentration of SRP and TP at 1 foot off the river bottom 
(B) • The flow of the Bear River (C) . 
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phosphorus concentration reached a maximum of 68 ~g/ L , and the flo w 

reached a maximum of 1680 cfs, all at approximately the same time . 

The SRP measurements remained relatively constant with the near bottom 

phosphorus concentration reaching a peak of 18 ~g/L at approximately 

one hour after the flow reached its peak. The total phosphorus peaks 

were probably due to suspension of the stream bed material with total 

phosphorus being comprised mainly of particulate phosphorus and only a 

small percentage of SRP. 

Verhoff et al. (1982) made the following conclusions for rivers in 

western Ohio over a time period which included seve ral storms: {1) 

the peak of the total phosphorus concentration almost a l ways leads the 

flow rate peak of the river at any station, (2) the total phosphorus 

concentration decl ines to its low flow value before the river flow 

becomes low. This discrepancy is probably due to the phosphorus being 

suspended from the streambed during the power peaking study while the 

phosphorus came from surface runoff during storms in the study done by 

Verhoff et al. (1982). The Verhoff et al. (1982) findings agree with 

the phosphorus flushing action from storms which was previously 

discussed. This study showed that power peaking is important in the 

transport ·of TP, but does not appear to be a major factor in SRP 

transport. The relationship between BAP and TP and SRP needs to be 

better understood before the importance of power peaking upon BAP can 

be determined. 

Concentrations of bioavailable phosphorus 
through Cutler Reservoir 

The concentration of BAP through Cutler Reservo i r is important in 

understanding the transport of phosphorus through it and the impact s 

it will have upon the downstream Honeyville Reservoir . Vollenweider 

(1968) estimated that , based on the nutrient budget of 15 eutrophic 

lakes, an average of 49% of the phosphorus entering the lakes was 
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retained in them, presumably in the sediments. Porcella and Bishop 

(1975) found that a similar ratio, 54% , of the influent phosphorus 

remained in Hyrum Reservoir , Utah. Hyrum Reservoir has a detention 

time of 52 days for high flows and 123 days for low flows (Sorensen et 

al., 1986). Cutler Reservoir is a river - run reservoir with retention 

times ranging between 2 to 5 days. An average 5 foot depth was 

approximated from random samples and an approximate surface area of 

5. 4 X 107 ft2 were used to calculate the retention time for Cutler 

Reservoir . Probably less than 54% of the influent phosphorus remains 

in Cutler Reservoir because its retention time is shorter than Hyrum. 

While actual data for Cutler Reservoir shown in Table 16 was used to 

calculate that 69 % (October 20 , 1987) of the influent TP can be 

stored, but on another date in the same month (October 3, 1987) 193 % 

of the influent TP was released. Cutler Reservoir as a river run 

reservoir does not appear to consistently store or release TP. The 

proposed Honeyville reservoir will have an average retention time of 

58 days (Sorensen et al., 1986). Honeyville Reservoir might store as 

much as 54% of the influent phosphorus since its expected retention 

time will be similar to Hyrum. 

Logan, Hyrum and Well s ville wastewater treatment plants in Cache 

Valley discharge to the Little Bear and Logan rivers within 4, 9, and 

9 miles, respectively , of Cutler Reservoir. Table 17 presents the 

October 3, 1987 phosphorus and flow data that is graphed in Figure 25. 

The outflow from Cutler Reservoir is measured at the site below Cutler 

Reservoir. Table 16 shows that the Bear River usually has greater 

flows ranging from 3.3 to 19 . 3 times as much as the combined Little 

Bear and Logan rivers except on October 20 , 1987 where the flows were 

approximately the same . The Bear River has lower TP concentrations 

ranging from equal to as little as 30% of those in the Logan and 

Little Bear rivers. The Bear River has BAP concentrations so low they 

are unmeasurable (Table 16). The higher flows, lower TP's and BAP ' s 

of the Bear River can dilute the phosphorus concentration in the 



Table 16. Flow 1 total and bioavailable phosphorus concentration balance around Cutler Reservoir 

Ab. Cutler Res. Benson ' inflow Below Cutler Res (1) (2) Below Cutler Res. 
Bear River L. Bear and Logan R Calculated value <8=8 <8=0 measured values 

Date Flow TP BAP flow TP 
cfs ua/L ua /L cfs Uq/L 

5/27/87 1578 222. < 8 293 225. 
7/12/87 1 049 129. < 8 164 453. 
8/18/87 808 123. < 8 243 333. 
10 /3/87 1291 114. < 8 67 229. 
10/20/87 284 79 . < 8 351 240. 

(1) setting BAP for Ab. Cutler Res. equa l tc 8 
(2) setting BAP for Ab. Cutler Res. equa l to 0 

BA? flow TP* BAP* BAP* Flow 
ua/L cfs ua/L ua/L Uq/L cfs 

51. 1871 222. 15. 8. 3226 
271. 1 213 173. 44. 37. 778 
138. 1051 171. 38. 32. 
66. 1358 120. 11. 3. 2156 
33. 635 168. 22. 18. 

* concentrations calculated by adding mass flows of Bear R. wi th L. Bear and Logan R . 
and converting this sum back to concentration 

TP BAP 
ua/L Jq/L 

206 < 8 
13 0 < 8 

146 < 8 . 

"' ,_. 
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Little Bear and Logan rivers and explain most of the decrease in 

concentration . At mile 12, SAP was reduced to a non-measurable 

concentration while TP concentration was reduced by 20 %. One possible 

explanation for the lack o f a decrease in phosphorus concentration at 

mile 9 , might be that the Bear River water had not completely mixed 

with the Little Bear and Logan river water at the sampling point. The 

sample might have been taken in the sect i on only impacted by the 

Little Bear and Logan river, so no phosphorus concentration change was 

detected. 

Table 17. Transport of phosphorus through Cutler Reservoir on 
October 3, 1 987 

Inc luded Distance from Total Bioavailable 

Rivers Logan lagoons Flow Phosphorus Phosphorus 

:l.ts ~lglL ll9LL 

Bear R. 1291 114 < 8 

L. Bear, Logan R 6 67 231 67 

L. Bear, Logan, Bear R. 9 887 196 60 

L. Bear , Logan, Bear R. 12 808 159 < 8 

~. LQg2nt J2~ar R 1~ n~ l5Q :;; 8 

Table 16 is a mass balance of Cutler reservoir with the influent 

comprised of the sites Above Cutler Reservoir, Bear River and the 

Benson Marina which accounts for the Logan and Little Bear rivers. 

The calculated values be low Cutler Reservoir are the summation of the 

Bear, Little Bear and Logan rivers which s hould equal the measured 

flow and concentration be low Cutler Reservoir if the parameter i s 

conserved through the rese rvoir. The flow differs by as much as a 

factor of 2, while the TP concentrations are within 33 ~ of each ot her. 

The differences in flow and TP concentration could be e:·:plained by the 

error incurred in obtaining the measurements , and the variable flow of 
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Changes in flow, total and bioavailable phosphorus with 
distance through Cutler Reservoir on October 3 , 1987 . 

t h e reservoir due to power peaking. Two scenarios were used to 

calculate the BAP concentrations below Cutler Rese rvoir: (1) the BAP 

above Cutler Reservoir is assumed to be 8 or; (2) the BAP above 

Cutler Reservoir is assumed to be 0. These two scenarios s how that 

dilution can account for most of the decrease in concentration in BAP, 

but both scenarios yield BAP concentrations greater than what was 

measured below Cutler Reservoir. This suggests there might be anothe r 

removal mechani srn for BAP. This removal mechanism mig h t be a 

combination of plant uptake, precipitation and/or settling. 

Figure 26 presents another way to look at t h e mass ba l ance of 

Cut l er Reservoir. The percent change is determined by subtract i ng the 

f l ow (ft3/s) , TP (mg/s) and BAP (mg/s) of the inputs (Bear River above 

Cu tler Reservoir plus Little Bear River at Benson Marina) from the 

output of Cutler Reservoir , the result is then divided by the output 

and multip l ied by 100 to obta in percent. Flow and TP a r e well 

correlated (r2 = 0. 95), while BAP does not correlat e with flow (r2 = 

0.00), but is consistently lost. If the percent change is negative, 
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then flow, TP and BAP is stored within the reservoir. While if the 

percent change is positive then Cutler reservoir is r eleasing flow and 

TP. In summary it appears that TP and flow are generally conserved 

through Cutler Reservoir, but the data suggests that BAP may not be 

conserved and i s actually removed through the reservoir. 
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Figure 26. 

5/11 /87 5/27/87 7/12/87 8/17/87 10/3/87 10/20/87 
Date 

Percent change o f total phosphorus {TP), bioavailable 
phosphorus (BAP) and flow through Cutler Reservoir 
[((output - input)/output)*lOO]. 
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SUMMARY AND CONCLUSIONS 

Estimation o f Bioayailable Phosphorus 

Prior studies had identified that phosphorus was the limiting 

nutrient for algal productivity in the Bear River system. This study 

investigates the fraction of total phosphorus (TP) which is available 

for algal growth, referred to as bioavailable phosphorus (BAP) . BAP 

estimation is best done by using a Selenastrum capricornutum Printz 

algal assay test (algal bioassay test) modified by estimating the 

equivalent BAP from an algal growth vers u s P0 4 -P concentrat ion 

standard curve. This test, however, is time-consuming and expensive. 

There is presently no known chemical method to estimate BAP. 

Therefore possible BAP indicators were investigated such as total 

phosphorus (TP), solubl e reactive phosphorus (SRP), total organic 

ca .r:bon (TOC), and particle siz e range (30-0. 5 ~lm, 30-10 ~tm, 10-0.5 

~lm) . No reliable co.rrelat.ions were found between these parameters and 

BAP for Bear River water. 

Another pos sible indicator would be the interaction of water 

hardness, TP, and hydrogen ion concentration (pH) . A stepwise 

regression was done on the BAP data collected from the Bear River. 

This regression found that the interaction of TP, total hardness, and 

pH explained 87 % of the data variance. Thus it appears this 

interaction may be a good indicator of BAP for the Bear River. 

Unfortunately, insufficient time was available during the current 

research effort to verify the predictive capability of this 

relationship. 

BAP estimation through algal bioassay is site-specific and 

dependent on the make up of the water sample. If the water has a 

naturally high pH , aluminum, iron , ca lcium and/or magnesium 



96 

concentration then phosphorus will precipitate out. Studies conducted 

in the l ab on Bea r River samp l es showed that 58 % of SRP will be lost 

within 30 minutes when the pH is increased from 8.7 to 1 0.0. 

An underestimation of BAP will thus result unless p reci p itatio n 

can be mi nimized. This research has s hown that precipitation can be 

minimized in three ways. First, an external standard curve could be 

used, so that calcium precipitation would not cause a non-linear 

standard c urve. Second , luxury uptake could be utilized by using a 

l arge inoculum that has been phosphorus starved. Available phosphorus 

would be incorporated into the ce ll before the pH has increased. An 

inoculum size of 1.3 X 105 cells/mL resulted in a 17-fo ld increase of 

fluorescence over the u s ual inoculum size (1 X 103 cells/mL} used in 

the algal assay . Third, t he pH during the assay can be controlled by 

bubbling it with a n air/C02 ga s mixture. For one site , a 2 fold 

increase in apparent BAP concentration occurred wh e n the p H wa s 

maintained by a C02/air gas mixture around neutral, as opposed t o 

letting the pH increase to 9.7 . These procedures result in a maximum 

BAP that would give the planner a safety margin in determining the 

algal productivity potential of the water body . A more accurate 

estimate of BAP might b e obtained by c ontrolling the pH near the 

nat ural pH o f the water body . 

Algal bioassay test s require sterilization for consistent BAP 

estimations. All the protozoa must be killed to prevent their grazing 

upon the a l gae. In order for any available phosphorus associated with 

particulate matter (up to 20 %) to be accounted fo r , whole water 

sample s must be used . This eliminat e d the possibilit y of 

steri lizatio n by fi ltration. Autoc laving re sulted in precipitating 

phosphoru s out of solution, while UV radiation , anothe r common 

steri lization procedure, was unable to kill all of the protozoa. 

Ganuna r adiation , the last sterilizat i on process tried , resulted in a 

relatively small number of samples losing SRP, a nd wa s able to kill 

all of the protozoa . Gamma radiation (2.0-3.5 Mrad in 20 hours, 60co 
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source) was used for sample s terilization throughout this s tudy. As 

the study progre ssed, it was determined that garruna radiation caused 

50% of the sample s to increase in SRP by a minimum of 17 ~g/L , while 

only 1 0% of the samples decreased a minimum of by 7 Jlg/L. Gamma 

radiation also re sul ted in hydroge n peroxide formation, which is toxic 

to algae. The samples were, therefore , spa rged with nitrogen gas for 

90 minute s to remove o xygen and prevent formation of hydrogen 

peroxide. Spa rging a l o ne was n ot enough t o eliminate toxicity 

consistently. Two thou sand units/L of peroxidase were added, and the 

sample was incubat e d for 48 hours, to remove a ll of the toxicity. 

Gamma radiation will need t o be studied further to understand its 

limi tat ion s and determine whether it is the best availab le 

sterilizatio n procedure for h a rdwater systems. 

BAP wa s estimated in this st udy with a n inoc ulum of 103 cel l s/mL, 

no pH control, and a n external s tandard curve. 

The Source s of Bioavailable Phosp~~~ 

Relat j ve Cont.D..b..u..t.iorut,_~ 

A prerequisite in deve lopi ng a phosphorus ma nagement plan is to 

know the relative BAP contributions from each of the sources in the 

watershed. Several re servoirs a re planned for the Bear River system. 

Previous modeling efforts on the Bear River used fractions o f 45 % and 

85% of TP as available p hosphorus, to determine the eutrophication 

potentia l of the reservoirs . The s tudies reported here suggest the 

available fraction of TP is between 0 to 60% for the Bear River and 

its tributaries. The models may have ove r predicted t he 

eutrophication pot e ntia l d ue to use of a higher fraction of TP being 

available . 

The BAP contributions from various sources in Cache Valley were 

e s timated, so tha t a phosphorus management plan could be deve l oped. 
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BAP was measured on samples from the wastewater treatment plant 

(WWTP 1 s) effluents. Total phosphorus loadings from livestock runoff 

were determined by a previous st udy which had modeled the Cache Valley 

feedlots. The BAP from land runoff was determined using an average 

BAP/TP rati o of 0.52 from 4 different rainfall-simulated runoff sites 

that had been identified as high erosion areas. This ratio was then 

multiplied by the total phosphorus , calculated by export coefficients, 

expected from Cache County due to land runoff. 

The phosphorus from wastewater treatment plants and livestock 

runoff is approximately 100 % bioavailable while phosphorus from land 

runoff can have very low bioavailability. In Cache County, point 

sources (City of Logan lagoons, City of Hyrum WWTP, City of 

Well svil le lagoons) contribute 28,200 kg BAP/yr, livestock runoff 

contributes 2500 kg BAP/yr, and land runoff contributes 28,600 to 

33,600 kg BAP/yr. The point sources contribute 46 %, livestock runoff 

contributes 4%, and land runoff contributes 50% (the midpoint was 

used) of the BAP. 

The BAP from point sources would probably be easiest to control 

since three wastewater treatment plants comprise 99% of the total BAP 

from point sources. Even if only the Loga n lagoons had phosphorus 

treatment (90 % r eduction ), this would reduce the point source BAP 

cont ribution by 65 % or reduce the overall BAP from all sources by 32%. 

The livestock runoff comes from approximately 200 sites, and the land 

runoff comes from 744 , 000 acres , both of which would be more difficult 

to control. The wastewater treatment plants appear to be the easiest 

and most effective place to begin phosphorus reduction . 

The majority of the wastewater plants discharge relatively close 

to the proposed Honeyville reservoir. The data presented here suggest 

that phosphorus removed from the Logan lagoons effluent may be the 

most effective in reducing BAP concentrations due to its large 

contribution of phosphorus. A comprehensive management p lan will need 
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to be developed which will redu ce al l of the BAP sources before the 

control of eutrophication is likely to be compl ete. 
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RECOMMENDATIONS FOR FURTHER RESEARCH 

BAP estimation still has a l o t of variables that are not fully 

understood. BAP estimation is greatly affected by pH changes whe n 

excess iron, calcium, magnesium or aluminum are present. Utilization 

of luxury uptake by using a large inoculum, and controlling pH by 

bubbling with C02, have been briefly investigated and need further 

research to confirm the initial findings presented here. Indicators 

for BAP estimation need to be found before the concept of BAP can be 

,..-idely used because of the time requirement, complexity and expense of 

the present BAP estimation procedure. 

The transport of BAP in a river or reservoir system need s to be 

better understood . It is known that BAP can be precipitated out , 

taken up and released by aquatic life, and settled out and suspended 

again by flow. The significance of these various mechanisms needs to 

be investigated further. 

Once BAP estimation is understood, then computer models need to 

be developed using BAP. These models will allow a better 

understanding of BAP transport and allow management decisions on how 

to control eutrophication. 
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ENGINEERING SIGNIFICANCE 

This study investigated several factors which a phosphorus 

control manager needs to be aware of when estimating available 

phosphorus in a hard water system and predicting its accompanying 

algal growth. Total phosphorus (TP) is not a good predictor of the 

algal production of a water body because it is not well correlated 

with the available fraction of phosphorus because much of the 

phosphorus has precipitated with calcium and is unavailable. This 

phenomenon probably holds true for any hardwater system that has 

excess iron, calcium, aluminum or magnesium. There are no indicators 

or chemical tests that adequately estimate BAP. 

Probably the best available method for bioavailable phosphorus 

estimation is the modified algal assay test described in this study. 

This test can give misleading BAP estimates in hardwater systems 

because of phosphorus precipitation. The steri lization procedures of 

filtration, autoclaving, and gamma radiation used as a preliminary 

step in the assay , all affected the phosphorus pool. Ultraviolet 

radiation, another sterilization procedure, was unable to consistent ly 

kill all of the protozoa. 

For the Cache Valley in northeastern Utah, both the wastewater 

treatment plants (WWTP 's) and land runoff were determined to be 

significant contributors of BAP. This means that the phosphorus 

management plan needs to control phosphorus from both the land and 

WWTP's. The impact of BAP from WWTP effluents was clearly seen in 

river samples, but BAP from land runoff was often undetectable . 

This study found that prediction of algal productivity i s very 

complex, especially for hardwater systems. The manager needs to be 

aware of the assumptions that were made in estimating BAP , so that 

proper decisions can be made. 
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