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Humanized Monoclonal Antibody
against West Nile Virus Envelope Protein
Administered after Neuronal Infection Protects
against Lethal Encephalitis in Hamsters
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Humans infected with West Nile virus (WNV) may clinically present with symptoms that are suggestive of
neurological infection. Nearly all treatments of WNV disease have been effective in animal models only if
administered before or soon after viral challenge. Here, we evaluated whether a potent neutralizing anti-WNV
humanized monoclonal antibody (MAb), hE16, could improve the course of disease in a hamster model when
administered after the virus had infected neurons in the brain. Five days after viral injection, WNV was
detected in the brains of hamsters by cytopathic assay, quantitative reverse-transcription polymerase chain
reaction, and immunohistochemical staining of WNV envelope in neurons. Notably, 80%–90% of the hamsters
treated 5 days after viral injection by intraperitoneal injection with hE16 survived the disease, compared with
37% of the placebo-treated hamsters ( ). The hamsters that received hE16 directly in the brain alsoP � .001
exhibited markedly improved survival rates, compared with those in the placebo-treated hamsters. In pro-
spective experiments, hamsters with high levels of infectious WNV in their cerebrospinal fluid were also
protected by hE16 when administered 5 days after viral injection. These experiments suggest that humanized
MAbs with potent neutralizing activity are a possible treatment for human patients after WNV has infected
neurons in the central nervous system.

Many preclinical studies [1–4] of treatment of West Nile

virus (WNV) infection have involved intervention be-

fore or soon after viral challenge of rodents. Because
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patients often present with symptoms that suggest pos-

sible brain infection [5], the development of treatment

for WNV disease, therefore, should include interven-

tion after the virus has entered the brain. Currently, a

controlled clinical trial is under way to assess the safety

and efficacy of immune human IgG in patients with

known or suspected WNV infection (National Insti-

tutes of Health identifier NCT00068055). This product,

Omr-Ig-Gam, was generated from pools of nonimmune

and immune plasma and has relatively low neutralizing

activity against the strains of WNV that currently cir-

culate in North America [3, 6]. Because WNV enceph-

alitis alters the permeability of the blood-brain barrier

[7, 8], serum immunoglobulins may penetrate the cen-

tral nervous system (CNS) of infected patients.

The role played by WNV-specific antibody (Ab) in

protection against severe disease has been studied in
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several rodent models [3, 6, 9–13]. Natural IgM Abs [10] or

passively administered WNV-specific Abs [12] prevent WNV

disease when administered early during the course of infection.

Studies [3, 6, 11] in which WNV-reactive Abs were admin-

istered at later times, when WNV could be isolated from ho-

mogenized brain tissue, suggests that Ab therapy may be ef-

ficacious even after the virus has infected the brain. Humanized

monoclonal Abs (MAbs) against WNV have been developed

and show therapeutic efficacy in mice even when administered

as a single dose several days after viral challenge [9, 14]. Here,

we evaluated the efficacy of the humanized MAb hE16 in a

second animal species, hamsters, and tested whether therapy

improves survival even when administered after the virus has

infected neurons in the brain.

MATERIALS AND METHODS

Hamsters and virus. Adult female Syrian golden hamsters 17

weeks of age were obtained from Charles River Laboratories.

Animal use was in compliance with the guidelines of the Utah

State University Institutional Animal Care and Use Committee

was done in an Association for Assessment and Accreditation

of Laboratory Animal Care International–accredited facility.

Prototype NY99 WNV crow-brain stock (gift of R. Lanciotti,

Centers for Disease Control and Prevention) was grown on

MA-104 cells and had a titer of TCID50. Virus was8.31 � 10

diluted 1:10 in minimal essential medium (MEM) for injection

into hamsters. A volume of 0.1 mL was administered subcu-

taneously (sc) at TCID50/hamster.6.31 � 10

Humanized Abs. hE16, the humanized MAb (IgG1) spe-

cific for domain III of the WNV envelope protein [9], was

provided by MacroGenics as hE16(3.2) (lot P125.128) or as

MGAWN1 (lot 310805001). Palivizumab (Synagis; MedIm-

mune), a humanized IgG1 MAb used to prevent respiratory

syncytial virus disease in at-risk infants, was used as a negative

control.

Viral assays. Infectious virus titers in tissues or plasma

were assayed using a Vero cell cytopathic assay [15], to identify

the end point of infection [16]. Quantitative reverse-transcrip-

tion polymerase chain reaction (qRT-PCR) was used to deter-

mine the number of WNV-specific RNAs [17, 18]. Fresh tissue,

serum, or cerebrospinal fluid (CSF) samples were homogenized

in Trizol RNA purification reagent (Sigma-Aldrich Chemical).

Linear acrylamide (Ambion) and total normal mouse RNA was

added to the homogenates containing serum or CSF before

RNA purification. Primer pairs and qRT-PCR algorithms for

measurement of WNV RNA and mouse glyceraldehyde phos-

phate dehydrogenase (mGAPDH) in serum and/or tissues have

been described elsewhere [19]. Data are reported as WNV ge-

nome equivalents (ge) per milliliter for serum and CSF samples

and as WNV transcript equivalents per gram for all other

tissues.

Stereotaxic implantation of cannula into the brain ventricle.

The procedure used for stereotaxic implantation of cannula

into brain ventricles was modified from a published stereotaxic

cannulation procedure in rats [20, 21]. With a stereotaxic device

(David Kopf Instruments), all measurements for placement of

the cannula used the bregma as a reference point. A hole that

was 2 mm lateral of midline and even with the bregma in the

rostral-caudal plane was drilled for placement of a 4.5-mm

cannula into the parenchyma of the cerebrum [22]. An Alzet

osmotic pump (Durect) was attached to the cannula and placed

sc over the shoulder region of the hamster. Artificial CSF (Alzet;

Durect) was used as a vehicle control. An Alzet osmotic pump

was loaded with 200 mL of hE6 at a concentration of 25 mg/

mL, which delivers 8 mL/h or 5 mg/hamster over a course of

24 h. The hamsters weighed an average of 116 g, so they received

an average dose of 43 mg/kg of whole body weight.

Collection of CSF from hamsters. CSF was collected from

the cisterna magna of live hamsters in a manner similar to that

described elsewhere for rats [23]. Thirty to seventy microliters

of CSF was collected per hamster. Red blood cells (RBCs) were

counted on a hemocytometer to determine the extent of blood

contamination.

Immunohistochemical analysis. Infected and uninfected

hamsters were administered ketamine and xylazine and then

perfused directly with PBS and 4% paraformaldehyde after car-

diac puncture. After fixation overnight, the sections were de-

parafinized and rehydrated by standard histological procedures

with xylene-ethanol, 95% ethanol, 70% ethanol, and distilled

water. The sections were filled with DakoCytomation Target

Retrieval Solution (DakoCytomation) diluted 1:10 in distilled

water and were boiled in a microwave for 4 cycles of 1 min in

a Coplin jar or boiled at 125�C for 4 min in a decloaking

chamber (Biocare Medical). Sections were permeabilized with

0.5% Triton X-100 in PBS for 5 min and were blocked using

10% normal goat serum in 0.2% Triton X-100 in PBS blocking

solution. Slides were incubated with primary MAb (7H2 or

5H10; 1:200) against WNV (BioReliance; Invitrogen Bioser-

vices), polyclonal anti-calbindin D28K (1:500; Sigma-Aldrich),

and polyclonal anti-neuron specific enolase (NSE; 1:20; Chem-

icon) in dilution fluid containing 5% normal goat serum, 0.2%

Triton X-100 in PBS for 2 h. After washing with PBS, Alexa

Fluor 568 goat anti–mouse IgG secondary Ab, Alexa Fluor 488

goat anti–mouse IgG secondary Ab, and Alexa Fluor 488 goat

anti–rabbit IgG secondary Ab (1:200; Molecular Probes) were

diluted and incubated for 2 h. The slides were washed and

mounted with VECTASHIELD mounting medium (Vector Lab-

oratories). Stained slides were visualized using a Nikon Eclipse

TE300 microscope (Nikon) with an attached Lambda DG4

(Sutter Instrument Company) and a Bio-Rad MRC 1024 con-

focal microscope (Bio-Rad). Captured images were processed

using Confocal Assistant software (version 4.02; Bio-Rad), and



Figure 1. Therapeutic effect of hE16 monoclonal antibody (MAb) in West Nile virus (WNV)–infected hamsters. A, Intraperitoneal (ip) administration of 60 mg/kg hE16 (n p 20), 60 mg/kg palivizumab
(negative control Ab; ), or sterile saline (n p 20) 2 days after viral injection. B, ip administration of 100 mg/kg hE16 (n p 30) or sterile saline (n p 30) 5 days after viral injection. C, Brainn p 20
cannulation of 48 mg/kg hE16 ( ) or sterile saline ( ) 5 days after viral injection.n p 8 n p 9
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Table 1. Efficacy of hE16, a humanized West Nile virus–specific monoclonal antibody, in hamsters.

Experiment,
treatment

Route, day
after viral
injection

Toxicity controls Infected, treated

Dose,
mg/kg

No. alive/
total no.

Weight change,
mean � SD, %

No. alive/
total no. (%)

Weight change,
mean � SD, %a

A
hE16 ip, 2 60 3/3 5 � 1 20/20 (100)b 3 � 3b

Palivizumabc ip, 2 60 3/3 5 � 2 4/20 (20) �11 � 4
Saline ip, 2 … 3/3 3 � 2 7/20 (35) �13 � 3
Normal … … 3/3 3 � 3 … …

B
hE16 ip, 5 100 3/3 7 � 2 24/30 (80)b 6 � 4d

Saline ip, 5 … 3/3 9 � 3 11/30 (37) �1 � 5
Normal … … 3/3 14 � 2 … …

C
hE16 Cannula,e 5 50 0/1f … 7/8 (88)g �9 � 2
Saline Cannula, 5 … 1/1 �7.8 2/9 (22) �8 � 2

NOTE. Student’s t test and log-rank survival analysis were used for comparisons for the weight change and survival
data, respectively. ip, intraperitoneal.

a For experiment A, data are the percentage weight change comparing 8 and 5 days after viral injection; for experiment
B, data are the percentage weight change comparing 7 days after and 3 days before viral injection; and for experiment C,
data are the percentage weight change comparing 7 and 0 days after viral injection.

b .P � .001
c Negative control antibody.
d .P � .05
e Administration by cannula into the cerebrum.
f This hamster died as a result of surgery.
g .P � .01

the plates were made using Adobe Photoshop (version 6.0).

The control and experimental images were collected and pro-

cessed using the same instrument settings.

For immunoperoxidase localization of anti–human IgG, tis-

sue sections were processed in a fashion similar to the im-

munofluorescence protocol up to the antigen-retrieval step.

Subsequently, by use of the Ventana NexES IHC–Full System

(Ventana Medical Systems), the sections were stained for poly-

clonal anti–human IgG Fc-specific alkaline phosphatase–con-

jugated Ab (Sigma-Aldrich), and detection was done using the

Ventana Basic AEC Detection Kit (Ventana Medical Systems),

in accordance with the manufacturer’s instructions.

Statistical analysis. Survival data were analyzed using the

Wilcoxon log rank survival analysis, and other data were eval-

uated by 1-way analysis of variance (JMP Statistical Discovery

software; version 6.0; SAS Institute).

RESULTS

Efficacy of hE16 2 days after viral injection. Previous ex-

periments have demonstrated that the mouse MAb E16 protects

against lethal WNV infection in mice even when administered

as a single dose (∼100 mg/kg) 5 days after infection [9]. To

evaluate whether the humanized version of this MAb, hE16,

has therapeutic activity in a second animal species, we tested

its efficacy in hamsters. Administration of a single dose of hE16

(60 mg/kg) 2 days after viral injection protected 95% of ham-

sters (19/20) up to 21 days after the injection (figure 1A),

whereas only 20% and 35% of hamsters survived after treat-

ment with a control MAb and saline, respectively ( ).P � .001

Hamsters treated with hE16 gained weight at essentially the

same rate as did the uninfected control hamsters (table 1, ex-

periment A), whereas infected hamsters treated either with the

control MAb or saline lost significant weight over the course

of the experiment.

The effect of hE16 on viral burden was also evaluated (table

2). Administration of hE16 2 days after viral injection effectively

reduced titers in brains and spleens to below the limits of

detection as measured 7 days after viral injection. No infectious

virus was detected in the kidneys or brains of hE16-treated

hamsters, although qRT-PCR did detect low levels of viral RNA

in the spleens of 2 of 5 hamsters.

Detection of WNV in CNS tissues 5 days after viral injection.

To evaluate when WNV disseminated into CNS tissues in ham-

sters, we harvested the cerebellum, cerebrum, midbrain with

brain stem, cervical spinal cord, and thoracic and lumbosacral

spinal cord 2, 5, and 6 days after viral injection and assayed

for viral RNA using qRT-PCR. Two days after viral injection,

viral RNA in neurological tissues were at or below the levels

of detection (figure 2A). However, days 5 and 6 after infection,

viral RNA was present in CNS tissues at levels that were at least

3–4 logs higher than those 2 days after viral injection. The virus

identified 5 and 6 days after viral injection in CNS tissues was
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Table 2. Effect of a single intraperitoneal (ip) injection of hE16, administered 2 or 5 days after sub-
cutaneous injection of 106.3 TCID50 West Nile virus in hamsters, on viral titers.

Assay, tissue

Treated at 2 and assayed
at 7 days after viral injection

Treated at 5 and assayed
at 8 days after viral injection

hE16a Saline hE16b Saline

qRT-PCR
Whole brainc

!5.9d (0/5) 7.0 � 0.5 (5/5) … …
Cerebellum … … 8.7 � 0.6e (3/3) 9.6 � 0.6 (4/4)
Cerebrum … … 8.9 � 0.2d (3/3) 10.0 � 0.3 (5/5)
Midbrain, stem … … 9.2 � 0.7e (5/5) 10.8 � 1.0 (3/3)
Cervical spinal cord … … 9.2 � 0.7e (5/5) 10.8 � 0.4 (5/5)
Thoracic/lumbrosacral spinal cord … … 9.1 � 0.6f (5/5) 10.4 � 0.7 (5/5)
Spleen !5.9f (2/5) 9.3 � 0.8 (4/4) 9.4 � 0.3f (5/5) 10.9 � 0.8 (5/5)
Kidney !5.9d (0/5) 6.5 � 0.3 (5/5) … …

Cell culture
Brain !3f (0/5) 4.1 � 1.0 (4/5) … …
Kidney !3f (0/5) 5.7 � 0.5 (5/5) … …

NOTE. For quantitative reverse-transcription polymerase chain reaction (qRT-PCR), data are log WNV tran-mean � SD
script equivalents per gram of tissue (no. positive/total no.); for cell culture, data are log TCID50 per gram ofmean � SD
tissue (no. positive/total no.). Limits of detection were determined by calculating 2 SDs above the mean for all uninfected
samples for all tissues from hamsters treated either on day 2 or on day 5; the limit of detection was !log 5.9 for the qRT-
PCR assay and !log 3 for cell culture. P values are for comparisons with the saline-treated group by the x2 test, Wilcoxon
rank sum analyses, or Student’s t test.

a Single ip injection at 60 mg/kg.
b Single ip injection at 100 mg/kg.
c Whole brain consisted of homogenized whole brain and brain stem.
d .P � .01
e .P � .05
f .P � .001

likely not of intravascular origin, because serum samples from

the same hamsters had levels of viral RNA that were 12 logs

lower than those observed in neuronal tissue (figure 2B).

Because detection of infectious WNV in homogenized brain

could be the result of infection of nonneuronal cells (i.e.,

infiltrating macrophages, microglia, or glia), immunohisto-

chemical analysis was performed on neurological tissues. Thin

sections were immunostained for WNV envelope antigen,

neuron-specific enolase (CNS neuron specific), and calbindin

(Purkinje neuron specific) [24, 25]. As expected, staining for

WNV antigen in CNS tissues from uninfected hamsters was

near background levels (figure 3A, 3D, 3G, and 3J). In contrast,

WNV antigen was readily detectable in kidney tissues from in-

fected hamsters 3 and 5 days after viral injection (figure 3N–

3O); these results are consistent with the findings of previously

published studies [4, 26]. WNV-specific antigen staining was

identified in several different CNS tissues 5 days after viral

injection. Many of the WNV antigen–positive cells were clearly

stained with NSE (figure 3A–3C, arrows). Similarly, neurons in

the cervical spinal cord (figure 3G–3I) and midbrain/brain stem

(figure 3J–3L) also were infected with WNV. In the cerebellum,

WNV colocalized with calbindin expression, a marker of Pur-

kinje neurons (figure 3D–3F); these results also are consistent

with the findings of previous experiments in mice [27]. WNV

antigen expression did not colocalize with glial fibrillary acidic

protein staining of astroglial cells 5 days after viral injection

(data not shown), suggesting that the tropism of WNV in the

CNS was restricted primarily to neurons.

Efficacy of hE16 5 days after viral injection. Given that

hamsters had pathologic evidence of an active CNS infection

5 days after infection, we investigated whether hE16 could ame-

liorate WNV disease if the Ab was administered to hamsters

at this time point. Administration of hE16 (100 mg/kg) 5 days

after infection as a single intraperitoneal (ip) dose markedly

improved the survival of hamsters ( ) (figure 1B). EightyP � .001

percent of the hamsters treated with hE16 survived up to 21

days after viral injection, compared with 37% survival in the

saline-treated group. Correspondingly, hamsters receiving hE16

also showed improved weight gain ( ) (table 1, experi-P � .05

ment B).

To assess the effect of therapeutic Ab intervention on viral

burden in tissues, hamsters were infected with WNV and

treated 5 days after viral injection with either hE16 or saline,

and WNV RNA was measured by qRT-PCR on day 8 in the

cerebellum, cerebrum, brain stem, spinal cord, and kidney (ta-

ble 2). WNV RNA was detected in all tissues from hE16-treated

hamsters by qRT-PCR, but the tissue RNA levels in the saline-

treated hamsters were 11 log higher. Correspondingly, hE16

treatment also reduced WNV antigen detection by immuno-

histochemical analysis in the brain. When the cerebral cortex
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Figure 2. West Nile virus (WNV) RNA levels in serum, cerebrospinal fluid (CSF), and neurological tissues. Hamsters were injected subcutaneously
with WNV or sham (minimal essential medium). Tissues and fluids were collected 2, 5, and 6 days after viral injection and were assayed for WNV
RNA by quantitative reverse-transcription polymerase chain reaction. A, Cerebellum, cerebrum, brain stem with midbrain, cervical spinal cord, and the
remainder of the thoracic with the lumbosacral spinal cord. B, CSF and serum.

was stained for WNV antigen in hamsters treated 5 days after

viral injection and assayed 7 days after viral injection, markedly

reduced staining was evident in the hE16-treated hamsters (fig-

ure 3P and 3Q).

Efficacy of hE16 administered directed into the brain 5 days

after viral injection. The experiments above establish that

peripheral injection of hE16 effectively controls WNV infection

and prevents mortality even after virus has disseminated to

neurons in the CNS. To test the hypothesis that hE16 in the

brain correlated with its ability to control WNV mortality, we

administered Ab directly into the cerebrum of WNV-infected

hamsters 5 days after viral injection by stereotaxic surgery with

an Alzet pump. hE16 delivered directly into the brain was de-

tected by immunohistochemical analysis in 2 uninfected ham-

sters 3 days after surgery. Intense staining of hE16 was observed

in the cerebral cortex at the cannulation site, and lower levels

were seen in the cerebellum and brain stem (data not shown).

Thus, this delivery system facilitated broad delivery of Ab into

the brain, with the highest levels near the site of cannulation.

Importantly, delivery of hE16 directly into the brain 5 days

after viral injection ( ) improved the survival of hamstersP � .01

(figure 1C), with 88% percent of the hamsters treated with

hE16 surviving, compared with 22% survival in the saline-

treated group (table 1, experiment C).

Efficacy of hE16 in individual hamsters, using WNV in the

CSF as an antemortem marker for CNS infection. In human

patients, it may be difficult to define the stage of WNV infection

at clinical presentation by nonneuroinvasive means. One pos-

sible marker of disseminated CNS infection may be the presence

of viral RNA in the CSF. To address whether hE16 retained

therapeutic efficacy in animals after CSF samples had become

positive for WNV, an additional prospective study was per-

formed. CSF and serum samples were collected 2, 5, or 6 days

after viral injection and were assayed for WNV by qRT-PCR.

Two days after viral injection, only 2 of 10 CSF samples were

positive for WNV RNA. By day 5 and 6 after viral challenge,

the levels and prevalence of viral RNA in the CSF increased

dramatically. However, the pattern of viral RNA in the CSF did

not match the pattern in the serum: 2 days after viral injection,

6 logs of virus were identified in the serum, but no virus was

detected in the CSF. These data suggested that the WNV RNA

in the CSF was a marker of neurological infection and that the

WNV in the CSF did not come from blood during the collection

process.

To confirm that the WNV in the CSF did not come from

viremic blood, RBCs were quantified to rule out possible blood

contamination of CSF. RBC levels in the CSF ranged from 2

to 9000 cells/mm3 (data not shown), levels that are low given

that the average RBC count in the rodents is cells/mm371 � 10

(Mouse Phenome Database; Jackson Laboratories). If viremic

contamination had contributed to the WNV titer in the CSF,

then the WNV RNA:RBC ratio in serum should have correlated

with the WNV titer in CSF; in fact, there was no such corre-

lation (data not shown). Finally, theoretical WNV titers in CSF

( , log � ge/mL of CSF) contributed frommean � SD 0.6 � 1.6

blood contamination were calculated using the numbers of

RBCs in the CSF and serum and the WNV titer in serum.

Because the actual WNV titers 5 and 6 days after viral injection

( , log ge/mL of CSF) were many logsmean � SD 6.1 � 1.2

higher, we conclude that the CSF WNV RNA levels did not

result from contaminating blood via traumatic entry into the

CSF compartment.



Figure 3. Confocal microscopy showing, 5 days after viral injection, staining of West Nile virus (WNV) envelope (red) with neuron-specific enolase
(NSE) (green) in the cerebral cortex (A–C), with calbindin (green) in the cerebellum as a marker of Purkinje cells [24, 25] (D–F), with NSE in the
cervical spinal cord (G–I), and with NSE in the midbrain/brain stem (J–L). Also shown is WNV envelope staining in the kidneys 3 and 5 days after
viral injection as a positive tissue control (M–O), and WNV envelope staining 7 days after viral injection in the brains of WNV-infected hamsters
treated intraperitoneally 5 days after the injection with 100 mg/kg hE16 (P) or placebo (Q). Arrows indicate cells that are stained with markers of
neurons (NSE or calbindin) (green) and WNV envelope (red). The scale bar is 20 mm.



hE16 Therapy after CNS Infection by WNV • JID 2006:194 (1 November) • 1307

WNV RNA in the CSF was then used as an antemortem

marker to verify that the individual surviving hE16-treated

hamsters were actually infected in their brains 5 days after viral

injection. After collection of CSF 5 days after injection, ham-

sters were treated ip with 32 mg/kg hE16 and were monitored

for survival. As expected, hE16 at 32 mg/kg significantly im-

proved overall survival (90% vs. 40%). Importantly, individual

hamsters with viral RNA in their CSF were protected from

death by treatment with hE16 5 days after viral injection. Three

of the 4 hamsters that had the highest levels of WNV RNA (15

log ge/mL) in their CSF survived after receiving hE16. Similarly,

hamsters with low WNV RNA levels in their CSF also were

protected. One hamster of 10 having a titer higher than 5.2 log

ge/mL died, but death was delayed out to 21 days after viral

injection. Collectively, our data suggest that hamsters with ac-

tive CNS infection, as determined by the presence of WNV

RNA in CSF, were protected from death by ip treatment with

hE16.

DISCUSSION

Previous studies have demonstrated that, in rodent models,

WNV-reactive Ab reduces mortality especially when adminis-

tered before or soon after viral challenge [1–4]. Other studies

of WNV-reactive Abs in mice have shown effective treatment

even 5 days after viral injection [3, 6, 11], a time at which

infectious virus is identified in homogenized mouse brain.

These studies suggested that WNV-reactive Ab is effective even

when administered after CNS infection. The possibility still

existed, however, that neurons were not yet infected 5 days

after viral injection and that nonneuronal tissue accounted for

the titers in the homogenized brains. In the present study, we

have established that hE16 reduces WNV-induced mortality

even when administered after productive viral infection of neu-

rons. Our conclusion is based on several findings: (1) WNV

RNA was detected in homogenized hamster brains 5 days after

infection when animals were treated with hE16; (2) WNV an-

tigen staining was detected at several independent sites in the

brain and spinal cord 5 days after infection; (3) WNV antigen

staining colocalized with cells of neuronal origin; (4) WNV

RNA was present in high levels in the CSF 5 days after infection;

(5) levels of viral RNA in neurological tissues decreased between

days 5 and 7 after administration of hE16; and (6) direct ad-

ministration of hE16 into the brain 5 days after infection re-

sulted in the improvement of clinical outcome.

Protection by hE16 via a peripheral route 5 days after injection

suggests that hE16 enters the brain and directly limits viral spread

or replication. hE16 may penetrate into the brain to neutralize

virus, because of an altered blood-brain barrier associated with

encephalitis. In mice, WNV infection induces cytokines, such as

tumor necrosis factor–a, that can alter the permeability of the

blood-brain barrier [7]. The precise mechanism by which hE16

enters the brain remains to be determined.

The ability to collect CSF from hamsters during WNV in-

fection provided an opportunity to investigate its prognostic

value for different stages of disease and for identifying times

for therapeutic intervention. The presence of viral RNA before

the appearance of native WNV Ab in CSF may suggest an

important time for clinical intervention, such as with passive,

WNV-specific neutralizing Ab [28]. Conversely, the detection

of high titers of native neutralizing WNV Ab in CSF could

signal a point in the course of the disease when the efficacy of

passive Ab treatment may be diminished. WNV RNA has been

detected in human patients [29, 30], and WNV-specific IgM

in CSF has been used as a marker of CNS infection with WNV

[28, 31]. By combining WNV RNA levels in CSF with other

markers of neurological disease [32, 33], better prognostic in-

formation may be obtained as to the probable outcome. The

ability to collect CSF from WNV-infected rodents should also

allow pharmacokinetic studies to define drug distribution in

neurological tissues. Indeed, in future studies, we plan to com-

pare the levels of hE16 in CSF achieved after peripheral ad-

ministration with clinical outcome.

The efficacy of hE16 therapy after WNV has entered the CNS

in 2 independent species, hamster and mouse, increases the

plausibility that hE16 treatment may be applied to other species,

including humans. For WNV, the infection and treatment of

2 species of laboratory animals is especially important from a

preclinical evaluation standpoint, because most nonhuman pri-

mates develop low levels of viremia without evidence of disease

[34] or develop fatal neurological disease only after intracranial

inoculation [35]. Similarly, other mammalian species (e.g.,

horses, cats, and dogs) develop low levels of viremia after WNV

infection, but clinical signs of disease develop in only a small

percentage of infected animals (such as 1 of 80 mosquito-

infected horses) [36–39], which can increase the logistical dif-

ficulties of therapeutic studies. Nonetheless, there are differ-

ences between these 2 rodent models and human disease. The

time course of CNS infection in the mouse and hamster models

appears to be accelerated. In particular, WNV infection in hu-

mans is characterized by an asymptomatic incubation period

of variable length that follows the viremic phase and the onset

of neurological symptoms [28, 31], whereas the asymptomatic

period in rodents appears to be shorter. Additionally, the mor-

tality rate observed in humans is substantially less than that

observed in rodents.

In summary, the present study establishes the utility of hE16

for treatment of WNV infection that has advanced to the CNS

in a second animal species, the hamster. We show that detection

of WNV RNA in CSF is an antemortem marker of CNS in-

fection and is possibly an indication for therapeutic interven-

tion. In addition, we demonstrate the utility of convection-
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enhanced delivery of drugs into the brains of hamsters to

elucidate mechanisms for drug efficacy. Overall, these findings

suggest that further study of hE16 as possible prophylaxis

against or therapy for WNV infection in humans is warranted.
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