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• Motivation 

– Geostationary satellites (GEOsat) sensors do not have on-
board radiometric calibration sources for visible channels  

– Need exists to develop absolute inter-calibration 
techniques capable of use with GEOsat sensors 

– Cross-calibration is plagued by the differences in the 
sensor spectral response functions (SRFs)  
 

• Objective 
– Develop inter-calibration-target-dependent Spectral Band 

Adjustment Factors (SBAFs) using SCIAMACHY hyper-
spectral visible radiances 

– Validate for accuracy using SCIAMACHY and GEOsat direct 
comparisons  

 
 

Introduction 



• Global Space-Based Inter-Calibration System (GSICS) 
– Goal is to monitor/improve data quality from operational 

environmental satellites 
– Use IASI Hyper-spectral instruments to account for IR SRF 

differences 
– Aqua-MODIS is reference for GEO visible channels 

 

•  Key instruments used in this research 
– MODerate resolution Imaging Spectroradiometer (MODIS) 

• Collection 6, L1B, 1-km (subset to 2-km) 

– Meteosat-9 (Met-9) 
• 3-km 

– SCanning Imaging Absorption spectroMeter for Atmospheric 
CartograpHY (SCIAMACHY or SCIA) 
• Level-1b, Version-7.03  

 

Background 



– Onboard ESA Environmental Satellite (Envisat) 
– Launched on 1 March 2002 
– 10:00 AM LST sun-synchronous orbit 
– 35-day repeat cycle 
– Shared scan duty between nadir and limb measurements 
– Four 30-km along-track by 240-km across-track nadir-like footprints 

• Two nadir-like footprints on either side of ground track within a 30° view 
angle 

• Total nadir scan width of 960 km 

Background- SCIAMACHY Specifications 

iup.uni-bremen.de/sciamachy/ 



• MODIS-with-Met-9 ray-matching 
– Transfer calibration using co-

incident, co-angled, and co-
located ocean regions 

• Deep Convective Clouds (DCC) 
– Treated as invariant targets 
– DCC model referenced to Aqua-

MODIS 

• Libyan Desert 
– Invariant target 
– Employs a kernel-based 

bidirectional reflectance 
distribution function (BRDF) 
model referenced to Aqua-
MODIS 

• SBAF necessary to account for 
spectral differences in all three 
methods 

Background- InterCalibration Methods 

DCC 

Libyan Desert 



• Visible-channel spectral 
corrections are dependent 
on target and reference 
SRFs 

• MODIS: 0.65-μm (CH1) 
• Met-9: CH1 and High 

Resolution Visible (HRV)   

 
• Scene-specific corrections 

for independent inter-
calibration techniques (ie. 
Separate correction for 
DCC, Desert, and Ray-
matching) 

SCIA Scene Spectra/Sensor SRF 

Mean Spectra 

Standard Deviation 



• Spectra from each SCIAMACHY scene-appropriate 
footprint are convolved with imager SRFs to 
compute imager equivalent radiances 

• Regression of the two convolved SCIAMACHY 
radiances constitutes a Spectral Band Adjustment 
Factor (SBAF) 
– Applied to the reference sensor (MODIS) radiance 

(Lref) to arrive at the predicted target sensor (Met-9) 
radiance (Ltar) 

Spectral Band Adjustment Factors 

tarreftarref LSBAFL /



Narrowband-to-Narrowband SBAFs 

DCC All-sky ocean Libyan Desert 

Regressions well-behaved for narrowband-to-narrowband case 

Corrections are small but not insignificant 



DCC Marine stratus 
and clear ocean 

Libyan Desert 

All-sky ocean 

Narrowband-to-Broadband SBAFs 

Specific scene selection critical for 
obtaining representative Spectral Band 

Adjustment Factors when calibrating 
narrowband to broadband 



Direct SCIAMACHY Calibration Transfer 

• Inter-calibrate SCIAMACHY and Aqua-MODIS 0.65µm 
channel using Near-SNOs 
– Determine SCIAMACHY stability compared against Aqua-MODIS 
– Determine relative calibration difference 

• Inter-calibrate GEO with SCIAMACHY using ray-matching 
• Can be used to validate the SBAF corrections for the other 

inter-calibration methods 
 

Aqua-MODIS 
0.65 micron  

SCIAMACHY   
MET-9 

0.65 micron  

Near SNO Ray-Match 



SCIAMACHY Aqua-MODIS 0.65µm, Jul 2010 

• coincident within 15 minutes 
• ~1300 1-km sub-sampled 
MODIS pixels are averaged into 
a 30x240km SCIAMACHY 
footprint 
• limited to <70° SZA 

N              95 
Force  0.988 
Stderr   2.8% 

Aqua-MODIS radiance 
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Nearly Simultaneous Nadir Overpass 
Comparisons with Aqua-MODIS 

 SCIAMACHY Radiance is stable to 
within -0.6% per decade compared to 

Aqua-MODIS 



SCIAMACHY-with-Met-9 Ray-Matching 

• Average Met-9 10-bit count 
computed within SCIA footprint 
bounds 
– 4-km pixels 

– Count ∝ radiance 

– Match within 15 min  

• Three-monthly gains found by 
regressing SCIA convolved 
radiances with Met-9 average 
counts 
– Regression forced through the 

Met-9 space count 

– SCIA radiances scaled to Aqua-
MODIS using NSNO comparisons 

• Figure: Jan – Mar 2008 SCIA-
with-Met-9 CH1 gain = 0.557  



SCIAMACHY-with-Met-9 Ray-Matching 

  

Standard error of 0.52% means absolute calibration coefficients are well-represented 
by the linear trend 



Before and After: Narrow-to-Narrow 
Before SBAF After SBAF 

• Before the SBAF is applied, the maximum mean difference in gain between the three 
methods for Met-9 CH1 0.4% 

• After the SBAF is applied, the difference reduces to within 0.2% 

• The mean difference in CH1 gains from before to after application of the SBAF is +2.0% 

• SCIAMACHY-to-Met-9 CH1 gain is within 1.3% of other methods after SBAF is applied  

 

 



Before and After: Narrow-to-Broad 
Before SBAF After SBAF 

• Before the SBAF is applied, the maximum mean difference in gain between the three 
methods for Met-9 HRV 8.3% 

• After the SBAF is applied, the difference reduces to within 1.0%; reduced spread 

• The mean difference in HRV gains from before to after application of the SBAF is -11.3% 

• SCIAMACHY-to-Met-9 HRV gain is within 0.2% of other methods after SBAF is applied  

 

 

 



• SCIAMACHY convolved radiances can account 
for sensor SRF differences  

• SCIAMACHY-with-Met-9 gain within 0.2% – 
1.3% of other methods after the SBAF is applied  

• A unique SBAF is required for each scene type 

– After SBAF application, three inter-calibration 
methods within 0.2%-1.0% 

– Better than 7% improvement in narrowband-to-
broadband calibration agreement, suggests SBAF is 
important in deriving a gain 

 

 

Conclusions 



Nearly Simultaneous Nadir Overpass 
Comparisons with Aqua-MODIS 

• Establish the stability of SCIAMACHY by radiometrically scaling to Aqua-MODIS 

• Accomplished using nearly simultaneous nadir overpass (NSNO) comparisons near 
the north pole during Apr-Sep 

• Aqua-MODIS is chosen following recommendations from GSICS 

• About 14 NSNOs per day (dependent on scan duty cycle) at 11:45 am LST 
– Minimal view angle difference 

– Near-symmetric solar conditions (corrections for SZA differences applied) 



Nearly Simultaneous Nadir Overpass 
Comparisons with Aqua-MODIS 

• MODIS CH1 2-km pixel 
radiances averaged within 
bounds of SCIA footprint 

 

• Regressed with SCIA radiances 
that were convolved with the 
MODIS CH1 SRF 

 



Nearly Simultaneous Nadir Overpass 
Comparisons with Aqua-MODIS 

• Stability of SCIAMACHY assessed with timeline of yearly regressions 

• Mean correction value between SCIAMACHY and Aqua-MODIS of 0.9838 

• Degradation of SCIAMACHY of 0.6% per decade 

• Low degradation and 0.23% standard deviation suggests that SCIAMACHY is stable   



SCIAMACHY-with-Met-9 Ray-Matching 

• Match VZA for Met-9 and SCIA 
FOV 

• One ray-matched location per 
FOV, four SCIA FOVs 

• Four ray-matched locations per 
GEOsat sub-satellite domain 

• Match occurs when: 
– SCIA FOV is within 160 km of  

corresponding ray-matched 
location 

– Scan difference < 15 min 

• Threshold of 160 km provides 
sufficient sampling; does not 
significantly increase standard 
error relative a tight threshold 



Before and After: Summary 

(-4.5%) 

(+3.2%) (-11.7%) 

(-11.7%) 

(-11.7%) 

(-11.6%) (+2.9%) 

(+1.3%) 

(+1.1%) 

(+0.5%) (+1.3%) 

(+1.3%) 

(+1.3%) 

(+1.3%) 

(+0.9%) 

(+0.7%) 

MODIS Characterization Support Team 
 Met-9 CH1 / Aqua CH1 SC ratio = 1.013 
 Met-9 HRV / Aqua CH1 SC ratio = 0.883  

Combination of surface reflectance and atmospheric absorption differences means 
that a single SBAF cannot account for all calibration methods 

 
SBAFs are impactful and add value 

(+) Increase from previous Column  

(-) Decrease from previous Column 


