

SI-Traceable Microwave T_B Standards Development at NIST

Dave Walker (NIST), Dazhen Gu (CU Center for Environmental Technology), Derek Houtz (CU Aerospace Dept.), Rob Billinger (NIST), Jim Randa (CU Physics)

> Electromagnetics Division National Institute of Standards and Technology Boulder, Colorado 80305

CalCon 29 August 2012

SI-based µW Measurements

- Most radiometers use a two-point calibration (observe hot and cold black-body target) to determine the antenna temp.
- SI-traceable radiance standards needed
- NIST is developing such standards, including *identifying and quantifying error sources* (uncertainty statements)

NASA BB target undergoing testing in NIST anechoic chamber

IR thermal imaging to evaluate T nonuniformity

Microwave T_Bstandard

- Either one or both (statistically combined):
 - Standard Radiometer
 - Free space radiometric measurements
 - Identifying and quantifying error sources
 - Standard Target
 - Target characterization: T_B , Γ , ϵ
 - Materials measurements
- More to SI traceability than this, but a T_B standard is fundamental
- Std. radiometer realized (TGRS pub. soon)
- Std. target—significant progress made
 - Absorber measurements: ε, μ
 - Target modeling: CU CET FDTD model

Microwave Remote Sensing Radiometric Measurements

$$T_{x} = \alpha \left(\frac{\int_{\text{target}} T_{tg} | \theta, \varphi | F_{n} | \theta, \varphi | d\Omega}{\int_{4\pi} F_{n} | \theta, \varphi | d\Omega} + \frac{\int_{\text{other}} T_{bg} | \theta, \varphi | F_{n} | \theta, \varphi | d\Omega}{\int_{4\pi} F_{n} | \theta, \varphi | d\Omega} \right) + |1 - \alpha| T_{ant}$$

 $F_n(\theta,\phi)$: normalized radiation intensity T_{tg} and T_{bg} : brightness temperature of target and background α : antenna radiation efficiency

Measurement Setup

- Experiments carried out in an anechoic chamber 5mX5mX8m
- 33 cm diameter pyramidal-array target with substrate heater
- WR-42 standard-gain (pyramidal horn) antenna connected to NIST radiometer with primary noise standards as references

Chi-square Minimization ^P

 Six temperature settings at ~10 K apart.

$$T_x = a \cdot T_{tg}^{phy} + b$$

$$\chi^{2} = \sum_{i=1}^{6} \frac{\left(\int_{x_{-i}}^{a} - a \cdot T_{tg_{-i}}^{phy} - b \right)^{2}}{u_{T_{x_{-i}}}^{2} + a^{2} \cdot u_{T_{tg_{-i}}}^{2}}$$

 $u_b^2 = 2 \cdot \Delta \chi^2 \cdot \left(\mathbf{H}^{-1} \right)_{22}$

Brightness Temperature

- Radiometric T_B standard based on η_{IE} extraction method eliminates complex ant. characterization
 - IGARSS 2012 Poster: "AN INVESTIGATION OF ANTENNA CHARACTERIZATION TECHNIQUES IN MICROWAVE REMOTE SENSING CALIBRATION"
- Report effective $T_B(\overline{T}_{tg})$ vs. T_{tg}^{phy} (i.e., transfer function) for a given antenna+target arrangement
- Conservative estimate of T_B measurement uncertainty ~1 K (~ 0.3%), with a minimum of 0.7 K
 Present NIST coverage: 1 to 65 GHz
- NIST standard radiometer meets the accuracy requirement of some climate variables...

• Ultimate goal is to reach the accuracy requirement for climate change study.

	NIST radiometer	Troposphere	Stratosphere	Precipitation	Water vapor	Sea surface temp
Accuracy	≈ 1 K	0.5 K	1 K	1 K	1.25 K	0.03 K

Quoted from "Stability and accuracy requirements for satellite remote sensing instrumentation for global climate monitoring," ISPRS 2004.

Conclusion

- Uncertainty dominated by T_x and η_{IE} for close distance (< 1 m), whereas the U in T_{bg} dominates at longer range
 - need to control/know $T_{\text{\tiny bg}}$ well if η_{IE} "small"
- Target convection and conduction effects
 - PE foam cover improves T uniformity and stability
 - Thermal-Vac (TV) chamber useful
- η_{IE} method in space-borne inst. calibration
 - $-\eta_{IE}$ and a determined pre-launch
 - b (intercept term) can be determined on-orbit
- If $\overline{T}_{tg} = T_{tg}^{phy}$, why calibrate? Useful check; near-field effects
 - Determine target ϵ (or Γ), antenna α separately
- Antenna pattern still important, but independent issue

Microwave Challenges

- T_B standards/metrology
- Accurate antenna pattern metrology
 - Main-beam efficiency, side lobe char., edge-of-scan biases
 - New NIST robotic spherical-scanning range: 40-500 GHz coverage
- Antenna emissivity characterization (near SI traceability!)
 - Test coupons, duplicates can be extremely useful (SSMI/S example)
- RFI analysis: assessment and mitigation
- Receiver nonlinearity
- Radiometer Calibration
 - Consistent pre-launch testing cross-instrument/platform
 - Consistent uncertainty analyses
 - NIST-NASA GSFC MOU signed Jan. 2010: calibration issues incl. NS
 - Radiometer stability metrics: specification and verification
 - EDA: Modeling, simulation, calibration with multiple references
- Pre-launch vs. on-orbit calibration methods: End-to-end calibration on orbit presently not verifiable by pre-launch testing
- Transparency and documentation essential!